WO2019167645A1 - Linear body winding/unwinding mechanism - Google Patents

Linear body winding/unwinding mechanism Download PDF

Info

Publication number
WO2019167645A1
WO2019167645A1 PCT/JP2019/005318 JP2019005318W WO2019167645A1 WO 2019167645 A1 WO2019167645 A1 WO 2019167645A1 JP 2019005318 W JP2019005318 W JP 2019005318W WO 2019167645 A1 WO2019167645 A1 WO 2019167645A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
guide
linear
central shaft
outer peripheral
Prior art date
Application number
PCT/JP2019/005318
Other languages
French (fr)
Japanese (ja)
Inventor
純雄 菅原
Original Assignee
Skマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skマシナリー株式会社 filed Critical Skマシナリー株式会社
Priority to JP2020502933A priority Critical patent/JPWO2019167645A1/en
Publication of WO2019167645A1 publication Critical patent/WO2019167645A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a winding / rewinding mechanism for a linear body (also referred to as a winding / unwinding device for a linear body) for winding or rewinding the linear body on an outer peripheral surface of a winding cylinder. More specifically, the mechanical characteristics and functions of the mechanism are improved by improving the configuration of the main part.
  • a linear body for forward winding and a linear body for reverse winding are connected to the moving body, and both There is one in which the moving body is moved forward and backward by winding the linear body on the outer peripheral surface of the winding cylinder and rewinding it. Since this is for winding and rewinding the linear body, it is called a winding / rewinding mechanism for the linear body.
  • a winding / rewinding mechanism for the linear body many such linear body winding and unwinding mechanisms have already been provided, and these are disclosed in the following Patent Documents 1 to 9.
  • Patent Documents 1 to 9 can be roughly classified into the following two types based on the type of the winding cylinder. One of them is a side-opening type schematically shown in FIG. 7A, and the other is a side-closing type schematically shown in FIG. Each type of winding cylinder has advantages and disadvantages, as will be apparent from the following description.
  • the winding cylinder 1 having the side open type shown in FIG. 7 (a)
  • one side is closed by the side wall 1a and the other side is open.
  • This side open type winding cylinder 1 can easily inspect the inside of the cylinder from the opened side, and the maintenance inside the cylinder can be easily performed for the same reason.
  • the side-opening type take-up cylinder 1 can reduce the amount of constituent material and the weight of the take-up cylinder 1 as much as there is no side wall on the open side. Furthermore, since the weight reduction of the winding cylinder 1 relaxes the strength conditions of related parts, the entire mechanism can be made compact. And these advantages realize the cost reduction of the whole mechanism including the winding cylinder 1.
  • the winding cylinder 1 in FIG. 7 (a) is connected to the central shaft 2 via a guide ring (spline nut) 3a attached to the side wall 1a. They are only in relative engagement. That is, the winding cylinder 1 shown in FIG. 7A is only assembled to the central shaft 2 in a state where one end is supported. With respect to the winding cylinder 1 in the one-end supported state, the tensile loads F1 and F2 from the forward winding linear body and the reverse winding linear body that are wound or unwound by this are shown in FIG. ) When such tensile loads F1 and F2 are steadily applied to the winding cylinder 1 that is supported at one end, the following problems may occur.
  • the take-up cylinder 1 that constantly receives the tensile loads F1 and F2 is in a supported state, and therefore, there is a possibility that the take-up cylinder 1 may be tilted as shown by phantom lines in FIG.
  • the central shaft 2 that supports the winding cylinder 1 may be partially bent. The reason why the central shaft 2 is partially bent is that the length of the engagement region between the central shaft 2 and the guide ring 3a, that is, the rigid region L1 that can resist the tensile loads F1 and F2 is very short.
  • the inclination of the winding cylinder 1 and the bending of the central axis 2 have an unfavorable effect when winding and rewinding the normal winding linear body and the reverse winding linear body via the winding cylinder 1. .
  • One of them is that the winding cylinder 1 vibrates or swings due to the above-described inclination or bending (hereinafter referred to as a swinging phenomenon of the winding cylinder 1).
  • a swinging phenomenon of the winding cylinder 1 When such a shaking phenomenon occurs, as will be obvious, the accuracy and stability of the operation of the winding cylinder 1 are impaired, so that the linear body for normal winding and the linear body for reverse winding are appropriately wound or wound. It becomes difficult to return.
  • the life reduction of the linear body winding and rewinding mechanism as described above can be suppressed or prevented by improving the mechanical strength such as increasing the design safety factor.
  • the weight and compactness of the entire mechanism are hindered, and material costs, production costs, assembly costs, etc. are also increased, so it is possible to avoid increasing the cost of winding and unwinding mechanisms for linear bodies. Absent.
  • the winding cylinder 1 of the side-closed type shown in FIG. 7 (b) has its both side surfaces closed by the side walls 1a and 1b. Further, guide rings (spline nuts) 3a and 3b are respectively attached to both side walls 1a and 1b of the winding cylinder 1 having a closed side surface, and both guide rings 3a and 3b are connected to a central shaft (spline shaft). ) 2 is relatively engaged. That is, the winding cylinder 1 shown in FIG. 7B is supported at both ends on the central shaft 2 via the two guide rings 3a and 3b. In addition, in the side-closed take-up cylinder 1 shown in FIG.
  • the rigid region L2 that can resist the above-described tensile loads F1 and F2 is also different from the rigid region L1 shown in FIG. 7 (a). Greatly surpassed.
  • the rigidity region L2 that opposes the tensile loads F1 and F2 is large in this way, the central shaft 2 is unlikely to bend, and the winding cylinder 1 supported at both ends is also difficult to tilt. The above-mentioned shaking phenomenon does not occur to the eye.
  • the thing of FIG. 7 (b) is a lack of accuracy and stability regarding the operation of the winding cylinder 1, lack of travel controllability of the mobile body, knocking phenomenon during travel of the mobile body, normal winding wire Disconnection of the linear body and the linear body for reverse winding, and a decrease in the service life of the linear body winding / rewinding mechanism are unlikely to occur.
  • the problem to be solved still remains in the winding cylinder 1 of FIG. This is because not only one side of the winding cylinder 1 is closed, but also the other side is closed. That is, in the side-closing type winding cylinder 1, since both sides are closed, the inside of the cylinder cannot be inspected or maintenance work inside the cylinder cannot be performed. In the inspection, there is a trouble of removing the side wall 1a or 1b from the take-up cylinder 1 or assembling the side wall 1a or 1b to the take-up cylinder 1 again. Further, the side-closed type winding cylinder 1 shown in FIG. 7 (b) with both side surfaces closed is side walls as compared with the side-opening type winding cylinder 1 shown in FIG. As much as one is required, weight reduction will be hindered, and the difficulty in terms of production and assembly will also increase. Of course, as much as the side wall is required, it becomes a cost increase factor and rebounds on the product.
  • the one disclosed in Patent Document 2 is the winding cylinder 1.
  • Two members engaged with each other for reciprocating the shaft along the axial direction of the central shaft 2, that is, the mutually engaged male-threaded countershaft and the internally-threaded reciprocating member are disposed outside the winding cylinder 1.
  • One reason is that the entire mechanism is not compact because the two axes are dispersedly arranged, such as the central axis and the secondary axis.
  • the secondary axis becomes an obstacle during the winding wiring for the forward winding linear body and the reverse winding linear body that are taken up from the outer peripheral surface of the winding cylinder 1 to the predetermined portion. Because it becomes.
  • the present invention has been made in view of the technical problems as described above.
  • the object of the present invention is to eliminate only the disadvantages of the prior art and to take out only the advantages of the prior art. Further, an object of the present invention is to provide an improved linear body winding / unwinding mechanism (also referred to as a linear body winding / unwinding device) so that more features can be added. It is.
  • the winding / rewinding mechanism for a linear body is characterized by the technical contents described in the following [1st paragraph] to [5th paragraph] as means for achieving the intended purpose. is there.
  • [Section 1] It comprises a central shaft, a winding cylinder, a threaded tube telescopic body, two guide rings and a pair of bearing bodies as constituent elements, and the outer diameter of the central shaft and the inner and outer diameters of the two guide rings And the inner and outer diameters of the threaded tube telescopic body and the inner and outer diameters of the winding tube body [the outer diameter of the central axis ⁇ the inner and outer diameters of the two guide rings ⁇ the inner and outer diameters of the threaded tube stretching body ⁇ the inner and outer surfaces of the winding tube body Is set to satisfy the relationship of [diameter], and An outer guide surface having a circumferential torque transmission function and an axial sliding function is formed on the outer peripheral surface of the central shaft, and The winding
  • the internal threaded tube and the female screw, wherein the threaded tube expansion / contraction body is a combination of an internal threaded tube having a male thread on the outer peripheral surface and an external threaded tube having a female thread on the inner peripheral surface.
  • the external threaded pipe having the inner peripheral surface is screwed by both male and female screws, and both the threaded pipes are combined inside and outside so as to be extendable in the axial direction, and
  • the pair of bearing bodies are for supporting both ends of the central axis so as to freely rotate forward and backward, and
  • An inner guide surface having a torque transmitting function in the circumferential direction and a sliding function in the axial direction is formed on the inner peripheral surfaces of the both guide rings for engaging with the outer guide surface of the central shaft.
  • the center shaft is supported at both ends through the pair of bearing bodies so as to be rotatable forward and backward, and
  • the outer guide surface of the central shaft and the inner guide surfaces of the guide rings are engaged with each other, the guide rings are fitted into the outer peripheral portion of the central shaft, and the outer peripheral portion of the central shaft
  • the both guide rings fitted together rotate together with the central axis and are movable along the axial direction of the central axis; and
  • the threaded pipe telescopic body is fitted on the outer peripheral part of the both guide rings fitted on the outer peripheral part of the central axis, and the central axis, the both guide rings, and the threaded pipe elastic body are arranged concentrically.
  • the winding cylinder is fitted to the outer peripheral part of the screw tube telescopic body fitted to the outer peripheral part of the both guide rings, and the central shaft, the both guide rings, the screw pipe telescopic body, and the winding cylindrical body.
  • the one guide ring, the internal threaded tube tip of the threaded tube telescopic body, and the side plate portion of the winding cylinder are fixed to each other, and the other guide ring and the internal thread of the threaded tube telescopic body
  • the tube rear end is fixed to each other, and the external screw tube base end of the threaded tube expansion / contraction body is fixed to the one bearing body on the external screw tube base end side.
  • a winding / rewinding mechanism for a linear body characterized by the above.
  • An outer guide surface of the central axis is formed by a spline guide surface in which recesses and projections along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft, and a recess along the length direction of the tube,
  • the inner guide surfaces of the two guide rings are formed by spline guide surfaces in which convex shapes are alternately arranged in the circumferential direction of the shaft, and the outer guide surfaces of the central shaft and the inner guide surfaces of the two guide rings are The winding / rewinding mechanism for a linear body according to claim 1, which is engaged with each other.
  • the winding cylinder has a side open type in which one side is opened.
  • This side-opening type winding cylinder has utility and benefit as described later.
  • the winding cylinder, the two guide rings, and the internal threaded tube of the threaded tube expansion / contraction body are connected and integrated in a concentric arrangement with the central axis of the central axis as the common axial line. It has become.
  • the relative relationship between the take-up cylinder and one guide ring is integrally connected, and the relative relationship between the take-up cylinder and the two guide rings is integrally connected, and a predetermined distance.
  • these three members are integrally connected in a relative relationship between the two guide rings on the outer peripheral surface of the central shaft and the internal threaded pipe extending over both guide rings.
  • the four members of the take-up cylinder, the two guide rings, and the internal screw tube form a four-member connection type by the respective member connections. This four-member connection type configuration is also useful and beneficial as will be described later.
  • the four-member connection type is mainly composed of the internal threaded tube of the threaded tube expansion / contraction body
  • the internal threaded tube extends over the two guide rings facing each other with a sufficient distance on the outer peripheral surface of the central axis. Both guide rings are connected in a bridged state.
  • this connection structure is mainly composed of the central axis
  • a radial multiplexing structure (rigid region) is formed around the central axis by both guide rings and internal screw tubes. Since the multiplexing structure in this case is long over both ends of the internal threaded tube, the ratio of the multiplexing rigid region formed around the central axis is extremely large. Such a large multiplexed rigidity region is also useful and useful as will be described later.
  • the linear body winding / rewinding mechanism that does not cause a vibration phenomenon in the winding cylinder can be used to perform normal, accurate, and stable linear body winding and rewinding operations. It can be done. Accordingly, it is possible to accurately and precisely control the operation of the object operated through the mechanism. For example, when the moving body travels to the target position via this mechanism and stops there, the moving body can be accurately stopped at the target position. In addition, as described above, the fact that knocking or the like does not occur in the moving body during traveling also increases the controllability of the operation target.
  • the winding cylinder rotates around the central axis or reciprocates (linearly moves) along the axial direction of the central axis.
  • intermediate members such as both guide rings and screw tube expansion / contraction bodies involved in the rotational motion and linear motion of the take-up cylinder body are the remaining space (excess space) existing between the outer periphery of the center shaft and the inner circumference of the take-up cylinder body. )
  • the remaining space existing between the outer periphery of the center shaft and the inner circumference of the take-up cylinder body.
  • the wire body for reverse use and the wire body for reverse winding use the secondary shaft as a wiring obstacle.
  • the threaded tube expansion / contraction body is arranged coaxially with the central axis and is not outside the winding cylinder, so that it does not become a wiring obstruction of the linear body.
  • the two guide rings suppress the winding cylinder from being inclined and hold it in the correct attitude.
  • These two guide rings can be said to be common parts or the same parts and do not increase the number of parts, which helps to reduce costs.
  • position holding force of a winding cylinder shows the tendency which becomes long, so that the length is long.
  • the mechanism of the present invention forms a guide ring coupling body by increasing the distance between two guide rings and connecting them with an internal screw tube. This guide ring coupling body is equivalent to a long guide ring.
  • the guide rings are connected to each other by the internal screw pipes, so that an equivalent to the long guide ring is constructed at a low cost. Therefore, this also helps to reduce costs.
  • a dedicated connecting member is not used and used, but the internal screw tube is also used as the connecting member, so that the number of parts does not increase. Therefore, this also helps to reduce costs.
  • cost reduction is performed everywhere while satisfying a required function, a high-performance and high-performance linear body winding / rewinding mechanism can be provided at low cost.
  • the mechanism according to the present invention is greatly effective in preventing the swinging phenomenon of the winding cylinder during forward and reverse rotation, and the durability is improved.
  • This anti-vibration measure is not accompanied by a cost increase factor that reinforces or enhances the mechanical strength of each part, and thus does not lead to an increase in material costs, production costs, assembly costs, and the like. Therefore, from this point of view, the linear body winding and unwinding mechanism is not expensive.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • It is the perspective view which showed schematically the winding pattern of the linear body.
  • It is the front view which outlined the various examples about the winding cylinder. It is sectional drawing which simplified and showed the principal part of the conventional mechanism.
  • 11 is a winding / rewinding mechanism
  • 21 is a mounting base
  • 31 is a prime mover
  • 41 is a central shaft
  • 51 is a winding cylinder
  • 61 is a threaded tube telescopic body
  • 71A and 71B are guide rings. Each is shown.
  • each part or each member for constituting the winding / rewinding mechanism 11, for example, each part or each member other than a well-known ready-made product such as the motor 31 is made of metal / synthetic resin ( FRP is also included.)
  • FRP metal / synthetic resin
  • Made of materials with excellent mechanical properties such as composites, and some parts may be made of rubber. In a typical example, each of these parts or members is often made of steel or other metal.
  • bearing bodies 23 to 25 are erected on the base plate 22. More specifically, the bearing body 23 is erected on one side of the base plate 22, the bearing body 25 is erected on the other side of the base plate 22, and A bearing body 24 is erected at the intermediate portion. Among these bearing bodies, the bearing body 23 and the bearing body 24 are paired to support both ends of the central shaft 41 so as to be rotatable in the forward and reverse directions.
  • the prime mover 31 has a known output shaft 32 that can rotate forward at high speed or reversely rotate at high speed.
  • the prime mover 31 is composed of an electric motor (motor) as an example.
  • the prime mover 31 is an electric motor (motor)
  • a known or well-known servo motor or pulse motor is desirable.
  • the prime mover 31 is attached to the bearing body 25 of the attachment base 21 and is mounted on the attachment base 21. More specifically, the output shaft 32 is attached to the outer surface of the bearing body 25 and passes through the bearing body 25.
  • the center shaft 41 illustrated in FIGS. 1 to 4 has an outer guide surface 42 having a circumferential torque transmission function and an axial sliding function formed on the outer circumferential surface thereof.
  • a region where the outer guide surface 42 is formed on the outer peripheral surface of the central shaft 41 is a portion excluding both end portions (bearing portions) of the central shaft 41.
  • a typical example of the external guide surface 42 is a spline guide surface (outer peripheral surface) in which ridges and convex shapes along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft.
  • the spline guide surface includes a guide surface by a ball spline, a guide surface by a square spline, and a guide surface by an involute spline.
  • the outer circumferential surface may be an elliptical outer circumferential surface with an elliptical axis or a polygonal outer circumferential surface with a polygonal axis.
  • the center shaft 41 having the spline guide surface may be referred to as a spline shaft or a spline shaft.
  • the central shaft 41 is supported at both ends through both bearing bodies 23 and 24 of the mounting base 21 so as to be rotatable forward and backward. More specifically, a well-known bearing is attached to both ends of the center shaft 41, and both ends of the center shaft 41 are supported by both bearing bodies 23 and 24 so as to be rotatable forward and backward.
  • a well-known bearing is attached to both ends of the center shaft 41, and both ends of the center shaft 41 are supported by both bearing bodies 23 and 24 so as to be rotatable forward and backward.
  • the central shaft 41 supported at both ends by the both bearing bodies 23 and 24 it is aligned with the output shaft 32 of the prime mover 31 on the mounting base 21, and one end thereof (the right end portion in FIG. 1) is the bearing. It penetrates the body 24 and protrudes toward the bearing body 25.
  • one end portion of the central shaft 41 protruding toward the bearing body 25 faces the output shaft 32 of the prime mover 31, and the one end portion of the central shaft 41 and the output shaft 32 of the prime mover 31 described above are well known.
  • the couplings 33 are connected to each other. Thus, forward / reverse rotation of the prime mover 31 is transmitted to the central shaft 41.
  • the winding cylinder 51 illustrated in FIGS. 1 to 4 is for winding and unwinding the linear body on the outer peripheral surface thereof as described later.
  • the winding cylinder 51 has a cylindrical shape with an internal space.
  • the winding cylinder 51 has a cylindrical shape.
  • a side plate 53 having a central hole 52 is provided on one side surface of the winding cylinder 51, but the other side surface of the winding cylinder 51 is open. Therefore, the winding cylinder 51 is a side open type in which one side is opened.
  • an alignment winding groove 54 for spirally winding linear bodies 81 and 82 to be described later is formed in a spiral shape.
  • the winding cylinder 51 may be referred to as a drum or a winding drum.
  • the winding cylinder 51 is provided on the outer peripheral portion of the central shaft 41 in a manner to be described later.
  • the threaded pipe expandable body 61 is formed by screwing the male thread 63 of the inner threaded pipe 62 relatively on the outside and the female thread 65 of the outer threaded pipe 64 relatively on the inner side, so that both the threaded cylinders 62 are connected.
  • -64 is combined inside and outside so that it can expand and contract in the axial direction (relative movement is possible).
  • the threaded tube expansion / contraction body 61 it is equipped on the outer peripheral portion of the central shaft 41 in a manner to be described later.
  • the two guide rings 71A and 71B illustrated in FIGS. 1 to 4 can be said to be the same parts having the same shape.
  • These two guide rings 71A and 71B can be any of a short tubular form, a short tubular form, an annular form, and the like.
  • Each of the guide rings 71A and 71B is formed with an inner guide surface 72 having a circumferential torque transmission function and an axial slip function on the inner circumferential surface thereof. Since the inner guide surfaces 72 of both guide rings 71A and 71B correspond to the outer guide surface 42 of the central shaft 41, the inner guide surfaces 72 can be engaged with the outer guide surfaces 42.
  • a typical example of the internal guide surface 72 is the above-described spline guide surface (inner peripheral surface) in which concave stripes and convex shapes along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft.
  • the spline guide surface in this case also includes a ball spline guide surface, a square spline guide surface, an involute spline guide surface, and the like.
  • the elliptical outer peripheral surface of the elliptical axis or the polygonal outer peripheral surface of the polygonal axis may be the inner guide surface 72.
  • Both guide rings 71 ⁇ / b> A and 71 ⁇ / b> B further have a flange (flange) 73 on the outer periphery of one end thereof.
  • a flange (flange) 73 on the outer periphery of one end thereof.
  • this may be called a spline nut.
  • Both guide rings 71A and 71B are also provided on the outer peripheral portion of the center shaft 41 in a manner described later.
  • the two guide rings 71A and 71B are fitted in the outer peripheral portion of the central shaft 41.
  • the external guide surface 42 of the central shaft 41 and the internal guide surfaces 72 of both guide rings 71A and 71B are relatively engaged. Therefore, when the central shaft 41 rotates, both guide rings 71A and 71B rotate together with the central shaft 41.
  • the guide rings 71A and 71B that are relatively engaged with the central shaft 41 can also move (reciprocate) along the length direction (axial direction) of the central shaft 41.
  • the part fitted on the outer peripheral surface of the central shaft 41 and on both guide rings 71 ⁇ / b> A and 71 ⁇ / b> B is a screw tube expansion / contraction body 61.
  • this threaded tube expansion / contraction body 61 it covers over the outer peripheral portions of both guide rings 71A and 71B which are opposed to each other on the outer peripheral surface of the central shaft 41.
  • the internal screw tube 62 is located at the inner peripheral portion of the threaded pipe expansion / contraction body 61, the internal screw pipe 62 is covered over the outer peripheral portions of both guide rings 71A and 71B.
  • the screw tube expansion / contraction body 61 is relatively fixed (connected or coupled) to both guide rings 71A and 71B by means described later.
  • the part fitted on the outer peripheral surface of the central shaft 41 and on the threaded tube expansion / contraction body 61 is a winding cylinder 51.
  • the external threaded tube 62 is located at the outer peripheral portion of the threaded tube expandable body 61. Therefore, in the case of the take-up cylinder 51, it is covered on the outer peripheral surface of the external screw tube 62.
  • the winding cylinder 51 in such a case is also relatively fixed (connected or coupled) to the guide ring 71A and the threaded pipe telescopic body 61 by means described later.
  • the predetermined component members are arranged in a multiplexed manner in the radial direction on the outer peripheral surface of the central shaft 41. That is, the guide rings 71A and 71B, the threaded tube telescopic body 61, and the winding cylinder 51 are sequentially arranged from the outer peripheral surface of the central shaft 41 to the centrifugal direction (the eccentric direction).
  • the outer diameter (diameter) of the central shaft 41 is D1
  • the inner diameters (diameters) of both guide rings 71A and 71B are D2
  • the outer diameters (diameters) of both guide rings 71A and 71B other than the flanges 73A and 73B are D3.
  • the inner diameter (diameter) of the inner threaded tube 62 in the threaded tube telescopic body 61 is D4
  • the outer diameter (diameter) of the outer threaded pipe 64 in the threaded tube telescopic body 61 is D5
  • the inner diameter (diameter) of the winding cylinder 51 is D6.
  • the difference between [D1] and [D2] and the difference between [D3] and [D4] are slightly different in order to ensure a precise fit.
  • the difference between [D5] and [D6] is set to such an extent that the outer peripheral surface of the screw tube expansion / contraction body 61 (the outer peripheral surface of the external screw tube 64) and the inner peripheral surface of the winding cylinder 51 do not rub against each other. The difference is very small.
  • the effective length of the central shaft 41 that is, the length of the outer guide surface 42 on the outer peripheral surface of the central shaft is the maximum expansion / contraction stroke of the screw tube expansion / contraction body 61 (maximum extension state of the internal screw tube 62 and the external screw tube 64). It is set corresponding to.
  • the right end portion of the internal threaded tube 62 which is a part of the threaded tube expansion / contraction body 61, the guide ring 71 ⁇ / b> A on the right side of FIG. It is fixed to.
  • This is component connection or component connection for integrally operating the internal screw tube 62, the guide ring 71A, and the winding cylinder 51.
  • the guide ring 71A on the right side of FIG. 1 on the outer peripheral surface of the center shaft 41 passes through the center hole in the side plate portion 53 of the take-up cylinder 51, and the flange portion 73A is formed on the side plate.
  • the right end surface of the internal threaded tube 62 is in contact with the outer surface of the side plate portion 53, and a known fixture 55 such as a bolt is attached to the three parts in the contact state. It is screwed in from the outer surface side of the side plate portion 53, and the guide ring 71A (the flange portion 73A), the take-up cylindrical body 51 (the side plate portion 53), and the screw tube expansion / contraction body 61 (the internal screw tube 62) are coupled. .
  • the collar portion 73B of the guide ring 71B on the left side of FIG. 1 is in contact with the left end surface of the internal threaded tube 62. It is screwed in from the outer surface side, and the guide ring 71B (the flange 73B) and the threaded pipe expansion / contraction body 61 (the inner threaded pipe 62) are coupled.
  • the external threaded pipe 64 of the threaded pipe expansion / contraction body 61 has an end of the external threaded pipe 64 from the outer surface side of the bearing body 23 in a state where one end thereof (the left end in FIG. 2) abuts the inner surface of the bearing body 23. It is attached and fixed to the bearing body 23 by a known fixture 55 screwed toward one end.
  • the winding cylinder 51 When the fixing manner of the threaded tube expansion / contraction body 61 is viewed in relation to the winding cylinder 51, the winding cylinder 51 is not only fixed to the internal screw pipe 62 and the side plate portion 53 but also to the bearing body 23 and the external screw. It is supported or held on the outer peripheral portion of the central shaft 41 by a stable both-end fixing structure (both-end connection configuration) of the entire threaded tube expansion / contraction body including fixing to the tube 64. Therefore, with respect to the take-up cylinder 51 supported or held by the threaded tube expansion / contraction body 61, the above-described shaking phenomenon is less likely to occur from this point of view, and as a result, this is accurate and stable of the linear body. Therefore, the controllability during the operation and the linear body operation is improved.
  • the linear body winding / rewinding mechanism may be assembled as follows. That is, the assembly structure of the two guide rings 71A and 71B, the threaded tube expansion and contraction body 61, and the take-up cylinder body 51 is assembled in advance. It fits into the outer periphery. Further, with respect to both ends of the central shaft 41 supported by the two bearing bodies 23 and 24, the both ends of the central shaft 41 after the assembly structure is covered are supported by the two bearing bodies 23 and 24 so as to be rotatable forward and backward.
  • Both the linear bodies 81 and 82 are each made of a tough long object. In particular, flexibility and tensile strength are required as characteristics of the two linear bodies 81 and 82.
  • the thing of arbitrary diameter is employ
  • both linear bodies 81 and 82 include metal, synthetic resin, and composites thereof. For these, a plurality of single yarns or wires are twisted together. Both linear bodies 81 and 82 in which aramid fibers known by the trade name Kevlar (registered trademark) are brought together are also effective examples. In a typical example, both linear bodies 81 and 82 are made of a wire made of a tensile strength metal.
  • the reverse winding linear body 82 at this time allows the moving body 91 to move forward and backward by being rewound from the winding cylinder 51.
  • the reverse winding linear body 82 wound around the winding cylinder 51 causes the moving body 91 to move. This is moved backward while taking back.
  • the linear body 81 for normal winding at this time permits the backward movement of the moving body 91 by being rewound from the winding cylinder 51.
  • “for normal winding” and “for reverse winding” in the two linear bodies 81 and 82 only mean that the winding directions of the two linear bodies 81 and 82 are different.
  • forward rotation and reverse rotation when winding and unwinding the two linear bodies 81 and 82 only mean that the rotation direction of the winding cylinder 51 is different. Therefore, regarding forward rotation and reverse rotation of the winding cylinder 51, “forward rotation” may be clockwise (clockwise) rotation, and “reverse rotation” may be counterclockwise (clockwise) rotation. “Reverse rotation” may be clockwise (clockwise) rotation, and “forward rotation” may be counterclockwise (clockwise) rotation. Therefore, these items are appropriately set according to the situation.
  • both linear bodies 81 and 82 even if a continuous one is divided into a forward winding and a reverse winding and used separately, the forward winding and the reverse winding are two independent ones. There may be.
  • both linear bodies 81 and 82 are made of a single continuous body, as described later, both ends of the continuous linear body are attached to the outer peripheral surfaces of both ends of the take-up cylinder 51 with fasteners or adhesives. It is fixed by other fixing means, and the intermediate portion of the continuous linear body is spirally wound around the outer peripheral surface of the intermediate portion of the winding cylinder 51 in a spiral manner.
  • both linear bodies 81 and 82 are made of a single continuous body, as will be described later, an intermediate portion of the continuous linear body (a portion that becomes a boundary between both linear bodies 81 and 82) is wound. While being fixed to the central part of the outer peripheral surface of the cylindrical body 51, the continuous linear body is precisely wound spirally from the central part of the outer peripheral surface of the winding cylindrical body 51 toward both ends of the winding cylindrical body. And after connecting the both ends of a continuous linear body, it connects to the mobile body 91.
  • the continuous linear body in this case becomes the linear bodies 81 and 82 for forward winding and reverse winding, the winding amount of one (forward winding) linear body 81 around the winding cylinder 51 It is desirable that the winding amount of the linear body 82 on the other side (for reverse winding) is wound so as to be equal to each other.
  • the example illustrated in FIG. 1 is an example in which the above-described continuous linear body is used as both linear bodies 81 and 82.
  • the intermediate portion of the continuous linear body is spirally wound around the outer peripheral surface of the intermediate portion of the take-up cylinder 51, and both end portions of the continuous linear body are press-type fixing tools that use screws. 56 are fixed to the outer peripheral surfaces of both ends of the winding cylinder 51 through 56.
  • the loop portion LP at the intermediate portion of the continuous linear body is roped through guide rotating wheels S1 to S5 such as sheaves or pulleys.
  • a predetermined portion of the loop portion LP is connected to the moving body 91 via a linear body clamping fixture 93.
  • one of the continuous linear bodies is a forward winding linear body 81 with the moving body 91 as a boundary, and the other is a reverse winding linear body 82.
  • the continuous linear body does not necessarily remain, and for example, the continuous linear bodies are cut between the two fixtures 93 in the moving body 91 and separated from each other. It may be.
  • FIG. 5A shows the winding pattern of the two linear bodies 81 and 82 in FIG. 1 together with the winding cylinder 51.
  • FIG. 5B shows a winding in which an intermediate portion of the continuous linear body (a portion serving as a boundary between both linear bodies 81 and 82) is fixed to the central portion of the outer peripheral surface of the winding cylinder 51 with a fixing tool 57. A pattern is shown with the winding cylinder 51.
  • a plurality of forward winding linear bodies 81 and reverse winding linear bodies 82 may be used.
  • the aligned winding groove (spiral groove) 54 formed on the outer peripheral surface of the winding cylinder 51 is one. is there.
  • the moving body 91 schematically shown in FIG. 1 is itself a processing machine tool, a transfer jig, or a part of a working robot.
  • the moving body 91 in FIG. 1 includes a traveling member (not shown) such as a bearing for traveling when reciprocating.
  • a traveling member such as a bearing for traveling when reciprocating.
  • a bearing it is desirable to select and use an appropriate one of linear ball bearings known from a shell type, a risotto type, a stroke type, and other types.
  • the linear body clamping fixture 93 is for clamping and fixing the linear body.
  • any moving body traveling guide means 92 such as a guide rail, a feed base, and a guide rail-equipped base is installed in the work area (movement area).
  • the moving body traveling guide means 92 including a guide rail is laid on a base.
  • the moving body 91 is assembled on the guide means 92 and can reciprocate along the length direction of the guide means 92. Therefore, on a predetermined surface (back surface or the like) of the moving body 91, a traveling portion corresponding to the guide rail (guide means 92), for example, a traveling portion made up of arbitrary components such as a slider, a wheel, and a groove member is provided.
  • the moving body 91 is connected to the forward winding linear body 81 and the reverse winding linear body 82, and in order to support both the linear bodies 81 and 82, Guide rotating wheels S1 to S5 are arranged at appropriate positions as shown in FIG.
  • both guide rings 71A and 71B and the take-up cylinder 51 which are integral with the internal screw tube 62, move in the same direction.
  • the winding cylinder 51 moves at a predetermined pitch in the axial direction of the center shaft 41 (right direction in FIG. 1) while rotating forward.
  • the winding cylinder 51 moves at a predetermined pitch in the axial direction of the central axis 41, the winding position of the normal winding linear body 81 on the outer peripheral surface of the winding cylindrical body 51 and the reverse winding linear body 82.
  • the rewind position does not change.
  • the reverse winding linear body 82 is rewound while the normal winding linear body 81 is wound, so that the moving body 91 moves forward on the moving body traveling guide means 92 in the direction F1 in FIG. 1 (forward movement). Will be.
  • a multiplexed structure for preventing or suppressing the shaking phenomenon of the winding cylinder 51 and other problems and exhibiting the above-described benefits and usefulness
  • the four-member connection type includes a winding cylinder 51, two guide rings 71A and 71B, and an internal screw tube 62.
  • the rigidity region in which the rigidity of the central shaft 41 is increased corresponds to almost the entire length (the length in the axial direction) of the internal screw tube 62, and can be said to be extremely long.
  • the mechanism of the present invention can also be applied to a case where one type of linear body is wound or unwound.
  • one end portion of the linear body is fastened to the outer peripheral surface of the end portion of the winding cylinder 51 and the linear body is wound by forward and reverse rotation of the winding cylinder 51. Or rewind.
  • the present invention can be carried out with the same contents.
  • the linear body winding and rewinding mechanism according to the present invention can be arranged in an arbitrary posture such as a horizontal type (horizontal type), a vertical type (vertical type), or a sloped inclined type.
  • the moving body 91 can be moved horizontally, vertically, or tilted depending on the equipment aspect of the mechanism. For example, when the moving area (moving surface) of the moving body 91 in a horizontal movement or an inclined movement is a smooth surface, the moving body 91 can be driven without the moving body traveling guide means 92.
  • the moving body 91 when the moving body 91 is moved vertically or inclined, the moving body 91 is raised by winding the linear body by the winding cylinder 51, but when the moving body 91 is lowered, There may be one that utilizes the weight of the moving body 91 while rewinding the linear body from the winding cylinder 51. In this method, the moving body 91 is lowered by its own weight. In the case of this method, the two types of linear bodies (forward winding linear body 81 and reverse winding linear body 82) from the winding cylinder 51 may be connected to the moving body 91. A kind of linear body from the cylindrical body 51 may be connected to the moving body 91.
  • a dedicated traveling path for example, a tunnel-type dedicated traveling path, an elevated dedicated traveling path, an intermediate-type traveling path, etc.
  • a dedicated traveling path for example, an overhead dedicated traveling path, a suspended suspended dedicated traveling path, a floating dedicated traveling path, a tower dedicated traveling path, or the like
  • the mobile body 91 is configured to use these work areas (moving areas). ) Can be operated as intended. In such a case, the moving body 91 can work in almost any area, as will be understood from now on.
  • the moving body 91 when the water surface (liquid level) such as the sea, river, river, lake, swamp, pond, pool, etc. is used as the dedicated traveling path, the moving body 91 may be a ship body, a floating body, a dredger, etc. Such a liquid surface floating body is used.
  • the moving body 91 when traveling on the above-described dedicated traveling paths is utilized for water bottom movement, underwater movement, water surface movement, underground movement, ground movement, ground movement, air movement, etc. It is something that can be done.
  • technical considerations may be required, such as taking waterproofing measures, taking airtight measures, taking safety measures, or taking other measures for the mobile body 91.
  • the moving body 91 that moves through the mechanism of the present invention may be applied not only to movement / conveyance / transportation of articles and the like, but also to movement / transportation of people, and movement / transportation of people and objects.
  • the winding / rewinding mechanism for linear bodies is versatile in this kind of technical field such as movement / transport / transport of goods, etc., movement / transport of people, and movement / transport of people and objects. It can be used for.
  • the present invention eliminates the problems of the prior art for such a winding / rewinding mechanism for a linear body, and satisfies an accurate and stable operability, durability, cost reduction, etc. Probability is high.

Abstract

In the present invention a central shaft, both ends of which are supported so as to enable forward/reverse rotation, two guide rings, a threaded pipe extending/retracting body, and a winding tube are arranged in the stated order concentrically and side by side in the radial direction. When the central shaft rotates, the rotation thereof is transmitted to the winding tube via the guide rings. When the central shaft rotates the threaded pipe extending/retracting body also moves reciprocally along the axial direction of the central shaft, and the winding tube moves reciprocally along the axial direction of the central shaft by means of the threaded pipe extending/retracting body, which extends and retracts. Accordingly, when the central shaft rotates, the winding tube for winding and unwinding a linear body moves along the axial direction while rotating together with the central shaft.

Description

線状体用巻き取り巻き戻し機構Winding and rewinding mechanism for linear objects
 本発明は、線状体を巻き取り筒体の外周面上に巻き取ったり巻き戻したりするための線状体用巻き取り巻き戻し機構(線状体用巻き取り巻き戻し装置ともいう)に関するものであり、より詳しくは、その要部の構成を改良することにより、当該機構の機械的諸特性や諸機能を向上させるようにしたものである。 The present invention relates to a winding / rewinding mechanism for a linear body (also referred to as a winding / unwinding device for a linear body) for winding or rewinding the linear body on an outer peripheral surface of a winding cylinder. More specifically, the mechanical characteristics and functions of the mechanism are improved by improving the configuration of the main part.
 搬送用の移動体やその他の移動体など所望の移動体を往復動させるための手段として、正巻き用の線状体と逆巻き用の線状体とを移動体に連結しておき、この両線状体を巻き取り筒体の外周面上に巻き取ったりそこから巻き戻したりすることで当該移動体を前後進させるようにしたものがある。これは線状体を巻き取り巻き戻しを行うものであるから、線状体用の巻き取り巻き戻し機構などと称される。かかる線状体用巻き取り巻き戻し機構については、すでに多くものが提供されており、それらが下記の特許文献1~9に開示されている。 As a means for reciprocating a desired moving body such as a transporting moving body or other moving bodies, a linear body for forward winding and a linear body for reverse winding are connected to the moving body, and both There is one in which the moving body is moved forward and backward by winding the linear body on the outer peripheral surface of the winding cylinder and rewinding it. Since this is for winding and rewinding the linear body, it is called a winding / rewinding mechanism for the linear body. Many such linear body winding and unwinding mechanisms have already been provided, and these are disclosed in the following Patent Documents 1 to 9.
特開2007-127138号公報JP 2007-127138 A 特開2009-204134号公報JP 2009-204134 A 特開2011-002004号公報JP 2011-002004 A 特開2011-038548号公報JP 2011-038548 A 特開2012-002297号公報JP 2012-002297 A 再表2013/137139号公報Table 2013/137139 特開2015-164821号公報Japanese Patent Laying-Open No. 2015-164821 特開2016-044757号公報Japanese Unexamined Patent Application Publication No. 2016-0444757 特開2017-206217号公報Japanese Unexamined Patent Publication No. 2017-206217
 上記の特許文献1~9に開示された線状体用巻き取り巻き戻し機構は、巻き取り筒体の型式を基準にしてつぎの二つに大別することができる。その一つは図7の(イ)に略示された側面開放型のものであり、他の一つは図7の(ロ)に略示された側面閉鎖型のものである。この各型式の巻き取り筒体には、以下の説明で明らかなように、それぞれ一長一短がある。 The linear body winding and unwinding mechanisms disclosed in Patent Documents 1 to 9 can be roughly classified into the following two types based on the type of the winding cylinder. One of them is a side-opening type schematically shown in FIG. 7A, and the other is a side-closing type schematically shown in FIG. Each type of winding cylinder has advantages and disadvantages, as will be apparent from the following description.
 図7(イ)の側面開放型からなる巻き取り筒体1の場合、一側面が側壁1aで閉鎖されていて他側面が開放されている。この側面開放型の巻き取り筒体1は、その開放された側面から筒体内部を容易に点検することができ、筒体内部の保守なども同様の理由で容易に行うことができる。側面開放型の巻き取り筒体1は、また、開放された側面に側壁がない分だけ、構成材料を節減することができるとともに、巻き取り筒体1そのものを軽量化することができる。さらに、巻き取り筒体1の軽量化が関連部品の強度条件を緩和させるので、機構全体のコンパクト化も可能になる。そして、これらの長所が巻き取り筒体1を含む機構全体のコストダウンを実現させる。 In the case of the winding cylinder 1 having the side open type shown in FIG. 7 (a), one side is closed by the side wall 1a and the other side is open. This side open type winding cylinder 1 can easily inspect the inside of the cylinder from the opened side, and the maintenance inside the cylinder can be easily performed for the same reason. The side-opening type take-up cylinder 1 can reduce the amount of constituent material and the weight of the take-up cylinder 1 as much as there is no side wall on the open side. Furthermore, since the weight reduction of the winding cylinder 1 relaxes the strength conditions of related parts, the entire mechanism can be made compact. And these advantages realize the cost reduction of the whole mechanism including the winding cylinder 1.
 一方において、中心軸(スプライン軸)2との関係でみたときの図7(イ)の巻き取り筒体1は、側壁1aに取り付けられた案内環(スプラインナット)3aを介して中心軸2と相対係合しているだけである。すなわち、図7(イ)の巻き取り筒体1は、一端支持の状態で中心軸2に組み付けられているのみである。この一端支持状態の巻き取り筒体1に対しては、これに巻き取られたり巻き戻されたりする正巻き用線状体と逆巻き用線状体からの引張荷重F1・F2が図1(イ)のように加わる。一端支持状態の巻き取り筒体1にこうした引張荷重F1・F2が定常的に作用するときには、つぎのような不具合の発生が危惧される。 On the other hand, when viewed in relation to the central axis (spline shaft) 2, the winding cylinder 1 in FIG. 7 (a) is connected to the central shaft 2 via a guide ring (spline nut) 3a attached to the side wall 1a. They are only in relative engagement. That is, the winding cylinder 1 shown in FIG. 7A is only assembled to the central shaft 2 in a state where one end is supported. With respect to the winding cylinder 1 in the one-end supported state, the tensile loads F1 and F2 from the forward winding linear body and the reverse winding linear body that are wound or unwound by this are shown in FIG. ) When such tensile loads F1 and F2 are steadily applied to the winding cylinder 1 that is supported at one end, the following problems may occur.
 図1(イ)において引張荷重F1・F2を定常的に受ける巻き取り筒体1は、これが一端支持状態であるため、同図仮想線のように傾くおそれがある。それに、この巻き取り筒体1を支えている中心軸2も、部分的に曲がるおそれがある。中心軸2が部分的に曲がるのは、中心軸2と案内環3aとの係合領域の長さ、すなわち、引張荷重F1・F2に対抗することのできる剛性領域L1がきわめて短いからである。巻き取り筒体1の傾きや中心軸2の曲がりは、巻き取り筒体1を介して正巻き用線状体や逆巻き用線状体を巻き取ったり巻き戻したりするときに好ましくない影響を及ぼす。その一つは、上記の傾きや曲がりに起因して巻き取り筒体1が振動したり揺動したりすることである(以下、巻き取り筒体1の振揺現象という)。かかる振揺現象が生じるときは、自明のとおり、巻き取り筒体1の動作の正確性や安定性が損なわれるので、正巻き用線状体や逆巻き用線状体を適切に巻き取ったり巻き戻したりするのが困難になる。これは、また、巻き取り筒体1による線状体の操作制御性が悪化することにもなるので、この種の機構を用いて移動体を前後進させる際の走行制御性も悪化する。さらに、振揺現象の発生によって走行時の移動体にノッキングが生じたりもする。こうしたノッキングも、移動体の走行性やその制御性を低下させる原因となり、はなはだしいときには線状体が断線する。結局のところ、線状体用巻き取り巻き戻し機構は、振揺現象に起因した機械的疲労によって寿命(耐久性)が短いものになるのである。 In FIG. 1 (a), the take-up cylinder 1 that constantly receives the tensile loads F1 and F2 is in a supported state, and therefore, there is a possibility that the take-up cylinder 1 may be tilted as shown by phantom lines in FIG. In addition, the central shaft 2 that supports the winding cylinder 1 may be partially bent. The reason why the central shaft 2 is partially bent is that the length of the engagement region between the central shaft 2 and the guide ring 3a, that is, the rigid region L1 that can resist the tensile loads F1 and F2 is very short. The inclination of the winding cylinder 1 and the bending of the central axis 2 have an unfavorable effect when winding and rewinding the normal winding linear body and the reverse winding linear body via the winding cylinder 1. . One of them is that the winding cylinder 1 vibrates or swings due to the above-described inclination or bending (hereinafter referred to as a swinging phenomenon of the winding cylinder 1). When such a shaking phenomenon occurs, as will be obvious, the accuracy and stability of the operation of the winding cylinder 1 are impaired, so that the linear body for normal winding and the linear body for reverse winding are appropriately wound or wound. It becomes difficult to return. This also deteriorates the operation controllability of the linear body by the winding cylinder 1, so that the traveling controllability when moving the moving body forward and backward using this type of mechanism is also deteriorated. Furthermore, knocking may occur in the moving body during traveling due to the occurrence of the shaking phenomenon. Such knocking also causes a decrease in traveling performance and controllability of the moving body, and the linear body is disconnected in extreme cases. After all, the linear body winding and unwinding mechanism has a short life (durability) due to mechanical fatigue caused by the shaking phenomenon.
 もちろん、上述のような線状体用巻き取り巻き戻し機構の寿命低下については、設計上の安全率を高めるなど機械的強度を向上させることで、抑制したり防止したりすることができるが、かかる対策の場合は、機構全体の軽量化やコンパクト化が阻害されるほか、材料費・制作費・組み立て費などもトータル的にアップするので、線状体用巻き取り巻き戻し機構の高額化が避けられない。 Of course, the life reduction of the linear body winding and rewinding mechanism as described above can be suppressed or prevented by improving the mechanical strength such as increasing the design safety factor. In the case of countermeasures, the weight and compactness of the entire mechanism are hindered, and material costs, production costs, assembly costs, etc. are also increased, so it is possible to avoid increasing the cost of winding and unwinding mechanisms for linear bodies. Absent.
 これに対し、図7(ロ)の側面閉鎖型からなる巻き取り筒体1は、その両側面がそれぞれの側壁1a・1bで閉鎖されている。さらに、この側面閉鎖型とした巻き取り筒体1の両側壁1a・1bには、案内環(スプラインナット)3a・3bがそれぞれ取り付けられていて、両案内環3a・3bと中心軸(スプライン軸)2とが相対係合している。すなわち、図7(ロ)の巻き取り筒体1が二つの案内環3a・3bを介して中心軸2上で両端支持されているのである。加えて、図7(ロ)の側面閉鎖型巻き取り筒体1では、既述の引張荷重F1・F2に対抗することのできる剛性領域L2も、図7(イ)での前記剛性領域L1を大きく上回る。引張荷重F1・F2に対抗する剛性領域L2がこのように大きいものは、中心軸2に曲がりが生じがたく、また、両端支持された巻き取り筒体1も、これが傾きがたいものであるゆえ、既述の振揺現象が皆目といってよいほど起こらない。 On the other hand, the winding cylinder 1 of the side-closed type shown in FIG. 7 (b) has its both side surfaces closed by the side walls 1a and 1b. Further, guide rings (spline nuts) 3a and 3b are respectively attached to both side walls 1a and 1b of the winding cylinder 1 having a closed side surface, and both guide rings 3a and 3b are connected to a central shaft (spline shaft). ) 2 is relatively engaged. That is, the winding cylinder 1 shown in FIG. 7B is supported at both ends on the central shaft 2 via the two guide rings 3a and 3b. In addition, in the side-closed take-up cylinder 1 shown in FIG. 7 (b), the rigid region L2 that can resist the above-described tensile loads F1 and F2 is also different from the rigid region L1 shown in FIG. 7 (a). Greatly surpassed. When the rigidity region L2 that opposes the tensile loads F1 and F2 is large in this way, the central shaft 2 is unlikely to bend, and the winding cylinder 1 supported at both ends is also difficult to tilt. The above-mentioned shaking phenomenon does not occur to the eye.
 したがって、図7(ロ)のものは、巻き取り筒体1の動作に関する正確性の欠如や安定性の欠如、移動体の走行制御性の欠如、移動体走行時のノッキング現象、正巻き用線状体や逆巻き用線状体の断線、線状体用巻き取り巻き戻し機構の寿命低下などが起こりがたいものとなる。また、その種の対策のために、上記機構の諸部品を強化することも要しないから、材料費・制作費・組み立て費などを含めたトータルコストがアップせず、かつ、機構全体の小型化・軽量化・コンパクト化なども満足させることができる。 Therefore, the thing of FIG. 7 (b) is a lack of accuracy and stability regarding the operation of the winding cylinder 1, lack of travel controllability of the mobile body, knocking phenomenon during travel of the mobile body, normal winding wire Disconnection of the linear body and the linear body for reverse winding, and a decrease in the service life of the linear body winding / rewinding mechanism are unlikely to occur. In addition, it is not necessary to reinforce the parts of the mechanism for such measures, so the total cost including material costs, production costs, assembly costs, etc. does not increase, and the entire mechanism is downsized.・ We can satisfy weight reduction, downsizing.
 しかしながら、図7(ロ)の巻き取り筒体1にも、解決すべき課題が残されている。それは巻き取り筒体1の一側面が閉鎖されているだけでなく、その他側面までが閉鎖されていることによるものである。すなわち、側面閉鎖型の巻き取り筒体1では、両側面が閉鎖されているために筒体内部を点検したり筒体内部の保守作業を実施したりすることができず、たとえば、日々行う日常点検に際しても、側壁1aまたは1bを巻き取り筒体1から取り外したり、再度側壁1aまたは1bを巻き取り筒体1に組み付けたりする煩わしさがともなう。また、両側面が閉鎖された図7(ロ)の側面閉鎖型巻き取り筒体1は、一側面が開放されている図7(イ)の側面開放型巻き取り筒体1に比し、側壁一つを多く要する分だけ軽量化が阻害されることとなり、製作面や組み立て面での難易度も高くなる。もちろん、側壁を多く要した分だけ、それがコストアップ要因となって製品に跳ね返る。 However, the problem to be solved still remains in the winding cylinder 1 of FIG. This is because not only one side of the winding cylinder 1 is closed, but also the other side is closed. That is, in the side-closing type winding cylinder 1, since both sides are closed, the inside of the cylinder cannot be inspected or maintenance work inside the cylinder cannot be performed. In the inspection, there is a trouble of removing the side wall 1a or 1b from the take-up cylinder 1 or assembling the side wall 1a or 1b to the take-up cylinder 1 again. Further, the side-closed type winding cylinder 1 shown in FIG. 7 (b) with both side surfaces closed is side walls as compared with the side-opening type winding cylinder 1 shown in FIG. As much as one is required, weight reduction will be hindered, and the difficulty in terms of production and assembly will also increase. Of course, as much as the side wall is required, it becomes a cost increase factor and rebounds on the product.
 さらに、図7(ロ)のような型式の巻き取り筒体1を構成要素とする線状体用巻き取り巻き戻し機構のうちで、特許文献2に開示されているものは、巻き取り筒体1を中心軸2の軸線方向に沿って往復動させるための互いに係合した二部材、すなわち、互いに係合した雄ネジ付き副軸と雌ネジ付き往復部材とが、巻き取り筒体1の外部に装備されている点で望ましくない。その理由の一つは、中心軸と副軸というように、二つの軸が分散配置されるために機構全体がコンパクトにまとまらないからである。他の理由の一つは、巻き取り筒体1の外周面上から所定部へと索取りされる正巻き用線状体や逆巻き用線状体にとって、副軸が索取り配線時の障害物になるからである。 Furthermore, among the winding / rewinding mechanisms for linear bodies having the winding cylinder 1 of the type as shown in FIG. 7B as a constituent element, the one disclosed in Patent Document 2 is the winding cylinder 1. Two members engaged with each other for reciprocating the shaft along the axial direction of the central shaft 2, that is, the mutually engaged male-threaded countershaft and the internally-threaded reciprocating member are disposed outside the winding cylinder 1. Undesirable in that it is equipped. One reason is that the entire mechanism is not compact because the two axes are dispersedly arranged, such as the central axis and the secondary axis. One of the other reasons is that the secondary axis becomes an obstacle during the winding wiring for the forward winding linear body and the reverse winding linear body that are taken up from the outer peripheral surface of the winding cylinder 1 to the predetermined portion. Because it becomes.
 本発明は上述のような技術課題に鑑みなされたものであり、その目的とするところは、従来技術の短所のみを排除することができるように、また、従来技術の長所のみを取り出することができるように、さらには、より多くの特徴を付加することができるように改良された線状体用巻き取り巻き戻し機構(線状体用巻き取り巻き戻し装置とも称される)を提供しようとするものである。 The present invention has been made in view of the technical problems as described above. The object of the present invention is to eliminate only the disadvantages of the prior art and to take out only the advantages of the prior art. Further, an object of the present invention is to provide an improved linear body winding / unwinding mechanism (also referred to as a linear body winding / unwinding device) so that more features can be added. It is.
 本発明に係る線状体用巻き取り巻き戻し機構は、所期の目的を達成するための手段として、下記[第1項]~[第5項]に記載された技術内容を特徴とするものである。
[第1項]
 中心軸と巻き取り筒体とネジ管伸縮体と二つの案内環と一対の軸受体とを構成要素として具備するものであり、かつ、前記中心軸の外径と前記二つの案内環の内外径と前記ネジ管伸縮体の内外径と前記巻き取り筒体の内外径とが、[中心軸の外径<二つの案内環の内外径<ネジ管伸縮体の内外径<巻き取り筒体の内外径]となる関係を満足させるように設定されていること、および、
 前記中心軸の外周面には周方向のトルク伝達機能と軸方向の滑り機能とを有する外部案内面が形成されていること、および、
 前記巻き取り筒体は外周面上において線状体を巻き取ったり巻き戻したりするためのものであり、かつ、その一側面には中心孔のある側板部が設けられているとともにその他側面が開放されていること、および、
 前記ネジ管伸縮体が雄ネジを外周面に有する内部ネジ管と雌ネジを内周面に有する外部ネジ管との組み合わせからなり、かつ、雄ネジを外周面に有する前記内部ネジ管と雌ネジを内周面に有する前記外部ネジ管とがその雌雄両ネジによりネジ結合されて、当該両ネジ管が軸方向に伸縮自在なるよう内外に組み合わされていること、および、
 前記一対の軸受体は前記中心軸を正逆回転自在に両端支持するためのものであること、および、
 前記両案内環の内周面には、前記中心軸の外部案内面と係合するためのものとして、周方向のトルク伝達機能と軸方向の滑り機能とを有する内部案内面が形成されていること、および、
 前記中心軸が前記一対の軸受体を介して正逆回転自在に両端支持されていること、および、
 前記中心軸の外部案内面と前記両案内環の内部案内面とが互いに係合されて、前記両案内環が前記中心軸の外周部に嵌め込まれており、かつ、前記中心軸の外周部に嵌め込まれた前記両案内環が、前記中心軸と一体回転するものであるとともに前記中心軸の軸方向沿いに移動自在なものであること、および、
 前記中心軸の外周部に嵌め込まれた前記両案内環の外周部に前記ネジ管伸縮体が嵌め込まれて、前記中心軸と前記両案内環と前記ネジ管伸縮体とが同心円状に並んでいること、および、
 前記両案内環の外周部に嵌め込まれた前記ネジ管伸縮体の外周部に前記巻き取り筒体が嵌め込まれて、前記中心軸と前記両案内環と前記ネジ管伸縮体と前記巻き取り筒体とが同心円状に並んでいること、および、
 前記一方の案内環と前記ネジ管伸縮体の内部ネジ管先端部と前記巻き取り筒体の側板部とが相互に固定されているとともに、前記他方の案内環と前記ネジ管伸縮体の内部ネジ管後端部とが相互に固定されており、かつ、前記ネジ管伸縮体の外部ネジ管基端部が、その外部ネジ管基端部側にあるの前記一方の軸受体に固定されていること
 を特徴とする線状体用巻き取り巻き戻し機構。
[第2項]
 軸の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並ぶスプライン案内面により前記中心軸の外部案内面が形成されているとともに、筒の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並ぶスプライン案内面により前記両案内環の内部案内面が形成されており、かつ、前記中心軸の外部案内面と前記両案内環の内部案内面とが互いに係合している請求項1に記載された線状体用巻き取り巻き戻し機構。
[第3項]
 同期して巻き取ったり巻き戻したりするための正巻き用線状体と逆巻き用線状体とが前記巻き取り筒体の外周面に装備されている第1項に記載された線状体用巻き取り巻き戻し機構。
[第4項]
 正巻き用線状体の先端部と逆巻き用線状体の先端部とが往復動自在な移動体に接続されている第3項に記載された線状体用巻き取り巻き戻し機構。
[第5項]
 移動体が、水底移動用・水中移動用・水面移動用・地中移動用・地面移動用・地上移動用・空中移動用のうちから選択されたいずれかのものである第4項に記載された線状体用巻き取り巻き戻し機構。
The winding / rewinding mechanism for a linear body according to the present invention is characterized by the technical contents described in the following [1st paragraph] to [5th paragraph] as means for achieving the intended purpose. is there.
[Section 1]
It comprises a central shaft, a winding cylinder, a threaded tube telescopic body, two guide rings and a pair of bearing bodies as constituent elements, and the outer diameter of the central shaft and the inner and outer diameters of the two guide rings And the inner and outer diameters of the threaded tube telescopic body and the inner and outer diameters of the winding tube body [the outer diameter of the central axis <the inner and outer diameters of the two guide rings <the inner and outer diameters of the threaded tube stretching body <the inner and outer surfaces of the winding tube body Is set to satisfy the relationship of [diameter], and
An outer guide surface having a circumferential torque transmission function and an axial sliding function is formed on the outer peripheral surface of the central shaft, and
The winding cylinder is for winding and rewinding the linear body on the outer peripheral surface, and a side plate portion having a center hole is provided on one side surface and the other side surface is open. And
The internal threaded tube and the female screw, wherein the threaded tube expansion / contraction body is a combination of an internal threaded tube having a male thread on the outer peripheral surface and an external threaded tube having a female thread on the inner peripheral surface. The external threaded pipe having the inner peripheral surface is screwed by both male and female screws, and both the threaded pipes are combined inside and outside so as to be extendable in the axial direction, and
The pair of bearing bodies are for supporting both ends of the central axis so as to freely rotate forward and backward, and
An inner guide surface having a torque transmitting function in the circumferential direction and a sliding function in the axial direction is formed on the inner peripheral surfaces of the both guide rings for engaging with the outer guide surface of the central shaft. And
The center shaft is supported at both ends through the pair of bearing bodies so as to be rotatable forward and backward, and
The outer guide surface of the central shaft and the inner guide surfaces of the guide rings are engaged with each other, the guide rings are fitted into the outer peripheral portion of the central shaft, and the outer peripheral portion of the central shaft The both guide rings fitted together rotate together with the central axis and are movable along the axial direction of the central axis; and
The threaded pipe telescopic body is fitted on the outer peripheral part of the both guide rings fitted on the outer peripheral part of the central axis, and the central axis, the both guide rings, and the threaded pipe elastic body are arranged concentrically. And
The winding cylinder is fitted to the outer peripheral part of the screw tube telescopic body fitted to the outer peripheral part of the both guide rings, and the central shaft, the both guide rings, the screw pipe telescopic body, and the winding cylindrical body. Are concentrically arranged, and
The one guide ring, the internal threaded tube tip of the threaded tube telescopic body, and the side plate portion of the winding cylinder are fixed to each other, and the other guide ring and the internal thread of the threaded tube telescopic body The tube rear end is fixed to each other, and the external screw tube base end of the threaded tube expansion / contraction body is fixed to the one bearing body on the external screw tube base end side. A winding / rewinding mechanism for a linear body characterized by the above.
[Section 2]
An outer guide surface of the central axis is formed by a spline guide surface in which recesses and projections along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft, and a recess along the length direction of the tube, The inner guide surfaces of the two guide rings are formed by spline guide surfaces in which convex shapes are alternately arranged in the circumferential direction of the shaft, and the outer guide surfaces of the central shaft and the inner guide surfaces of the two guide rings are The winding / rewinding mechanism for a linear body according to claim 1, which is engaged with each other.
[Section 3]
The linear body for the linear body described in the first aspect, wherein a linear body for normal winding and a linear body for reverse winding for synchronously winding and rewinding are mounted on the outer peripheral surface of the winding cylinder. Winding and rewinding mechanism.
[Section 4]
4. The linear body winding and unwinding mechanism according to item 3, wherein the forward winding linear body and the reverse winding linear body have a distal end connected to a movable body that can reciprocate.
[Section 5]
Item 4. The moving object is any one selected from the group consisting of water bottom movement, underwater movement, water surface movement, underground movement, ground movement, ground movement, and air movement. Winding and unwinding mechanism for linear bodies.
[効果につながる主要構成と主要機能]
 本発明に係る線状体用巻き取り巻き戻し機構(以下単に本発明機構ともいう)の場合、巻き取り筒体が一側面を開放された側面開放型をしている。この側面開放型の巻き取り筒体には、後述するような有用性や有益性がある。また、本発明機構の場合、巻き取り筒体と二つの案内環とネジ管伸縮体の内部ネジ管とが、中心軸の軸心線を共通軸心線とする同心円状の配列状態で連結一体化されている。すなわち、巻き取り筒体と一つの案内環との相対関係ではこの両者が一体連結され、巻き取り筒体と二つの案内環との相対関係ではこの三者が一体連結され、かつ、所定の距離をおいて中心軸の外周面上にある二つの案内環と当該両案内環にわたる内部ネジ管との相対関係ではこの三者が一体連結されているのである。総合的にみた場合には、このそれぞれの部材連結によって、巻き取り筒体と二つの案内環と内部ネジ管との四部材が四部材連結型をなしているのである。この四部材連結型の構成も、後述するとおり、有用かつ有益なものである。一方、四部材連結型についてネジ管伸縮体の内部ネジ管を主体にしてみるとき、かかる内部ネジ管は、中心軸の外周面上で十分な距離をおいて対峙する二つの案内環にわたりながら当該両案内環を橋架け状態で連結しているのである。さらに、この連結構造について中心軸を主体にしてみるとき、中心軸の周りには、両案内環や内部ネジ管による径方向の多重化構造(剛性領域)が形成されているのである。この場合における多重化構造は、内部ネジ管の両端部にわたる長いものであるから、中心軸の周りに形成される多重化剛性領域の割合がきわめて大きい。このように大きい多重化剛性領域も、後述するように、有用で有益なものとなる。
[Main components and main functions leading to effects]
In the case of the winding / rewinding mechanism for a linear body according to the present invention (hereinafter also simply referred to as the mechanism of the present invention), the winding cylinder has a side open type in which one side is opened. This side-opening type winding cylinder has utility and benefit as described later. Further, in the case of the mechanism of the present invention, the winding cylinder, the two guide rings, and the internal threaded tube of the threaded tube expansion / contraction body are connected and integrated in a concentric arrangement with the central axis of the central axis as the common axial line. It has become. That is, the relative relationship between the take-up cylinder and one guide ring is integrally connected, and the relative relationship between the take-up cylinder and the two guide rings is integrally connected, and a predetermined distance. However, these three members are integrally connected in a relative relationship between the two guide rings on the outer peripheral surface of the central shaft and the internal threaded pipe extending over both guide rings. When viewed comprehensively, the four members of the take-up cylinder, the two guide rings, and the internal screw tube form a four-member connection type by the respective member connections. This four-member connection type configuration is also useful and beneficial as will be described later. On the other hand, when the four-member connection type is mainly composed of the internal threaded tube of the threaded tube expansion / contraction body, the internal threaded tube extends over the two guide rings facing each other with a sufficient distance on the outer peripheral surface of the central axis. Both guide rings are connected in a bridged state. Further, when this connection structure is mainly composed of the central axis, a radial multiplexing structure (rigid region) is formed around the central axis by both guide rings and internal screw tubes. Since the multiplexing structure in this case is long over both ends of the internal threaded tube, the ratio of the multiplexing rigid region formed around the central axis is extremely large. Such a large multiplexed rigidity region is also useful and useful as will be described later.
 本発明機構の効果、すなわち、上述の側面開放型巻き取り筒体、四部材連結型、大きな多重化剛性領域などを根拠とする有用で有益な諸効果は下記のとおりである。 The effects of the mechanism of the present invention, that is, useful and useful effects based on the above-described side-opening type winding cylinder, four-member connection type, a large multiplexed rigidity region, and the like are as follows.
[効果1:正確で安定した動作性]
 多重化による比較的大きい剛性領域が中心軸の周りに存在する線状体用巻き取り巻き戻し機構の場合、その中心軸は、多重化剛性領域の剛性によって十分に強度保証されることとなるから、曲げ変形などしがたいものになる。加えて、機構の要部が既述の四部材連結型をなすときの巻き取り筒体と中心軸については、支持強度の高い四部材連結型によって巻き取り筒体と中心軸との適切な同心状態が保持され、かつ、巻き取り筒体と中心軸との直線性も保持されるために、この両者が傾斜状態になることもない。換言してこれは、振揺現象を惹起するような巻き取り筒体傾斜が起こりがたいというとである。この振揺現象のおそれがない巻き取り筒体の場合、異変をきたすことなく正常で正確な動作性を発揮する。振揺現象を生じることがない場合の巻き取り筒体は、また、線状体の巻き取り動作や巻き戻し動作について、安定した動作を定常的に維持するから、当該機構を介して走行させるときの移動体などにノッキングが生じない。
[効果2:操作対象物の制御性]
 線状体用巻き取り巻き戻し機構で巻き取り筒体に振揺現象のおそれがないものは、上述のとおり、線状体の巻き取り動作や巻き戻し動作を正常・正確・安定に行わせることができるものである。したがって、当該機構を介して操作する対象物の動作も正確精密に制御することができる。たとえば、この機構を介して移動体を目的位置まで走行させてそこで停止させるような場合、移動体を目的位置に正確に停止させることができる。また、上記したとおり、走行時の移動体にノッキングなどが生じないことも操作対象物の制御性を高いものにする。
[効果3:耐久性(寿命)の向上]
 正逆回転時に振揺現象をきたすことのない巻き取り筒体は、正確性や安定性のみならず常に静穏な運転状態を呈するものであるから、正巻き用線状体や逆巻き用線状体をはじめとする各部材には、想定外の無理な外力、たとえば、ノッキングなどに起因して偶発的に発生するところの大きな外力は作用しない。このような場合の機構各部には故障が発生しがたく、とくに、正巻き用線状体や逆巻き用線状体の断線が起こりがたい。ゆえに、線状体用巻き取り巻き戻し機構の耐久性(寿命)を高めることができる。
[効果4:機構の軽量化と小型化とコンパクト化(その1)]
 一側面が開放された側面開放型の巻き取り筒体は、その開放による材料省略分だけ軽量なものとなる。また、巻き取り筒体が軽量化されたことにより、これと関連する部品部材も軽量化されたり小型化されたりする。これが線状体用巻き取り巻き戻し機構全体の軽量化・小型化・コンパクト化に好結果をもたらす。
[効果5:機構の軽量化と小型化とコンパクト化(その2)]
 線状体用巻き取り巻き戻し機構は、巻き取り筒体の動作に関して正確性・安定性・制御性などを確保することのできる構成である上、機構各部の故障が起こりがたい構成でもあるから、機構諸部品を特段強化することを要しない。かかる場合は、機構全体の小型化・軽量化・コンパクト化などを満足させることができる。
[効果6:機構の軽量化と小型化とコンパクト化(その3)]
 線状体用巻き取り巻き戻し機構において、中心軸・二つの案内環・ネジ管伸縮体(内部ネジ管と外部ネジ管)・巻き取り筒体などの部品部材は、中心軸の軸心線を基準にして径方向に多重化されている。このうちで巻き取り筒体は、中心軸を中心にして回転したり中心軸の軸線方向沿いに往復動(直線運動)するものである。そして、この巻き取り筒体の回転運動や直線運動に関与する両案内環やネジ管伸縮体などの中間部材が、中心軸外周と巻き取り筒体内周との間に存在する残存空間(余剰空間)内にすべて収納配置されているのである。このような多重化構造によるときは、それぞれの部品部材を分散させることなく余剰空間を利用してその内部に集中配置することができるから、当該機構の小型化やコンパクト化をはかることができ、かつ、散在配置する場合にみられる部品の不必要な膨張重量化もないから、機構の軽量化も併せてはかることができる。
[効果7:機構の軽量化と小型化とコンパクト化(その4)]
 線状体用巻き取り巻き戻し機構において、中心軸外周と巻き取り筒体内周との間に存在するネジ管伸縮体には、巻き取り筒体を中心軸の軸線方向沿いに往復動させるための機能がある。これについて既成技術では、巻き取り筒体を往復動させるために、中心軸以外の副軸を巻き取り筒体の外部に配置していたのであるが、この場合の難点の一つが中心軸と副軸との二軸分散であり、これが機構コンパクト化の阻害要因となっていた。本発明におけるネジ管伸縮体は、中心軸の外周にあってこれと同軸状にまとめられているから、二軸分散にみられるような機構コンパクト化の阻害要因がなく、さらに、ネジ管伸縮体の内部ネジ管が二つの案内環を連結するための連結部材をも兼ねるので、部品数の増加が抑制できるのである。ゆえに、かかる観点からも、機構の軽量化・小型化・コンパクト化をはかることができる。
[効果8:線状体の配線障害の緩和]
 既成技術において、中心軸以外の副軸を巻き取り筒体の外部に配置していたことによる難点の他の一つは、巻き取り筒体の外周面上から所定部へと索取りされる正巻き用線状体や逆巻き用線状体が、副軸を配線障害物としていたことである。本発明におけるネジ管伸縮体の場合、上述のように中心軸と同軸状にまとめられていて巻き取り筒体の外部にはないから、線状体の配線障害物になることがない。
[効果9:点検作業と保守作業の容易性]
 線状体用巻き取り巻き戻し機構の巻き取り筒体は、既述の側面開放型であるので、その開放された側面より容易に筒体内部を点検したり保守作業をしたりすることができる。
[効果10:コストダウン(その1)]
 一側面が開放されている側面開放型巻き取り筒体の場合、両側面が閉鎖された側面閉鎖型巻き取り筒体に比し、巻き取り筒体の側壁が一つで足りるのであるから、その分の材料省略に依拠して材料節減に貢献することができ、製作や他部品との組み立ても簡易に行うことができる。これに基づき、線状体用巻き取り巻き戻し機構のコストダウンさせることができる。
[効果11:コストダウン(その2)]
 本発明機構における二つの案内環は、中心軸との係合状態において巻き取り筒体に回転力を伝えながら巻き取り筒体が中心軸沿いに往復動するのを許容する。これに加え、二つの案内環は、巻き取り筒体が傾斜姿勢なるのを抑制してこれを正しい姿勢に保持する。この二つの案内環は共通部品ないし同一部品といえるものであり、部品種の増加をきたさないから、コスト削減の一助となる。かかる案内環については、その長さが長いものほど巻き取り筒体の姿勢保持力が大きくなる傾向を示す。しかしながら、伝動部品である案内環は高価部品であるから、そのサイズの長いものにした場合には、それにともなって部品コストがアップする。本発明機構はこれについて、二つの案内環の間に距離をおくことでその間隔を広げ、それを内部ネジ管で連結することにより、案内環連結体を構成している。この案内環連結体は、長尺案内環と等価なものである。すなわち、個々の案内環を短いものにして部品コストを抑制しつつ、その両案内環を内部ネジ管で連結することにより、長尺案内環と同等のものを安価に構成しているのである。したがって、これもコストダウンの一助になる。さらに、両案内環の連結については、専用の連結部材を作成してこれを用いるのでなく、内部ネジ管を連結部材として兼用するのであるから部品数の増加がない。したがって、これもコストダウンの一助になる。かくて、所要の機能を満足させつつ随所随所でコストダウンをはかるときは、高機能かつ高性能の線状体用巻き取り巻き戻し機構を廉価に提供することができるようになる。
[効果12:コストダウン(その3)]
 本発明機構は上述のとおり、正逆回転時における巻き取り筒体の振揺現象を防止したことが大きく奏効して、耐久性が向上しているのである。この振揺現象防止対策は、各部の機械的強度を補強ないし増強させるというコストアップ要因をともなうものでないから、材料費・制作費・組み立て費などの増加にはつながらない。したがって、かかる観点からも線状体用巻き取り巻き戻し機構は高額化しない。
[Effect 1: Accurate and stable operation]
In the case of a winding / rewinding mechanism for a linear body in which a relatively large rigidity region due to multiplexing exists around the central axis, the strength of the central axis is sufficiently guaranteed by the rigidity of the multiplexed rigidity region. It becomes difficult to bend and deform. In addition, with respect to the winding cylinder and the central axis when the main part of the mechanism forms the above-described four-member connection type, the concentricity between the winding cylinder and the central axis is appropriate by the four-member connection type having high support strength. Since the state is maintained and the linearity between the winding cylinder and the central axis is also maintained, neither of them is inclined. In other words, this means that the take-up cylinder inclination that causes the oscillation phenomenon is difficult to occur. In the case of a take-up cylinder that does not have the possibility of this shaking phenomenon, normal and accurate operability is exhibited without causing any change. The winding cylinder in the case where the vibration phenomenon does not occur also maintains a stable operation with respect to the winding operation and the rewinding operation of the linear body, so that the winding cylinder can travel through the mechanism. Knocking does not occur in the moving body.
[Effect 2: Controllability of operation object]
As described above, the linear body winding / rewinding mechanism that does not cause a vibration phenomenon in the winding cylinder can be used to perform normal, accurate, and stable linear body winding and rewinding operations. It can be done. Accordingly, it is possible to accurately and precisely control the operation of the object operated through the mechanism. For example, when the moving body travels to the target position via this mechanism and stops there, the moving body can be accurately stopped at the target position. In addition, as described above, the fact that knocking or the like does not occur in the moving body during traveling also increases the controllability of the operation target.
[Effect 3: Improved durability (life)]
Winding cylinders that do not cause vibration during forward / reverse rotation are not only accurate and stable, but always exhibit a calm operating state. A large external force that is accidentally generated due to knocking or the like does not act on each member such as. In such a case, it is difficult for a failure to occur in each part of the mechanism. In particular, disconnection of the linear body for normal winding and the linear body for reverse winding is unlikely to occur. Therefore, the durability (life) of the linear body winding / unwinding mechanism can be increased.
[Effect 4: Lightening, downsizing and downsizing of mechanism (Part 1)]
A side-opening type winding cylinder whose one side is open is lighter by the amount of material omitted due to the opening. In addition, since the winding cylinder is reduced in weight, the related component members are also reduced in weight and size. This brings about a good result in the weight reduction, size reduction, and compactness of the whole winding / rewinding mechanism for linear bodies.
[Effect 5: Lightening, downsizing and downsizing of mechanism (Part 2)]
The linear body winding and unwinding mechanism is a configuration that can ensure accuracy, stability, controllability, etc. with respect to the operation of the winding cylinder, and is also a configuration in which failure of each part of the mechanism is unlikely to occur. There is no need to reinforce mechanical parts. In such a case, the entire mechanism can be reduced in size, weight, and size.
[Effect 6: Lightening, downsizing and downsizing of mechanism (Part 3)]
In the winding / rewinding mechanism for linear bodies, the component members such as the central shaft, two guide rings, screw tube expansion / contraction body (internal screw tube and external screw tube), and winding cylinder are based on the axis of the central shaft. And are multiplexed in the radial direction. Among these, the winding cylinder rotates around the central axis or reciprocates (linearly moves) along the axial direction of the central axis. Then, intermediate members such as both guide rings and screw tube expansion / contraction bodies involved in the rotational motion and linear motion of the take-up cylinder body are the remaining space (excess space) existing between the outer periphery of the center shaft and the inner circumference of the take-up cylinder body. ) Are all housed inside. When such a multiplexed structure is used, it is possible to concentrate and arrange the interior of the mechanism using the surplus space without dispersing each component member. In addition, since there is no unnecessary expansion and weight of the components seen in the case of the scattered arrangement, the mechanism can be reduced in weight.
[Effect 7: Lighter, smaller and more compact mechanism (Part 4)]
In the winding / rewinding mechanism for linear bodies, a function for reciprocating the winding cylinder along the axial direction of the central axis is provided in the threaded tube expansion / contraction body existing between the outer periphery of the central axis and the inner periphery of the winding cylinder. There is. In this technology, in order to reciprocate the winding cylinder, the auxiliary shaft other than the central axis is arranged outside the winding cylinder. Biaxial dispersion with the shaft, which was an impediment to making the mechanism compact. Since the screw tube expansion / contraction body in the present invention is on the outer periphery of the central axis and is coaxially arranged, there is no hindrance to downsizing the mechanism as seen in biaxial dispersion. Since the internal threaded tube also serves as a connecting member for connecting the two guide rings, an increase in the number of components can be suppressed. Therefore, from this point of view, the mechanism can be reduced in weight, size, and size.
[Effect 8: Alleviation of wire obstruction of linear body]
In the existing technology, one of the difficulties due to the fact that the auxiliary shaft other than the central shaft is arranged outside the winding cylinder is a normal winding that is routed from the outer peripheral surface of the winding cylinder to a predetermined portion. That is, the wire body for reverse use and the wire body for reverse winding use the secondary shaft as a wiring obstacle. In the case of the threaded tube expansion / contraction body according to the present invention, as described above, the threaded tube expansion / contraction body is arranged coaxially with the central axis and is not outside the winding cylinder, so that it does not become a wiring obstruction of the linear body.
[Effect 9: Ease of inspection and maintenance]
Since the winding cylinder of the linear body winding and unwinding mechanism is the above-described open side, the inside of the cylinder can be easily inspected and maintenance work can be performed from the opened side.
[Effect 10: Cost reduction (part 1)]
In the case of a side-opening type winding cylinder that is open on one side, compared to a side-closing type winding cylinder that is closed on both sides, a single side wall of the winding cylinder is sufficient. Relying on material omission can contribute to material savings, and manufacturing and assembly with other parts can be performed easily. Based on this, the cost of the linear body winding and rewinding mechanism can be reduced.
[Effect 11: Cost reduction (part 2)]
The two guide rings in the mechanism of the present invention allow the winding cylinder to reciprocate along the central axis while transmitting the rotational force to the winding cylinder in the engaged state with the central axis. In addition to this, the two guide rings suppress the winding cylinder from being inclined and hold it in the correct attitude. These two guide rings can be said to be common parts or the same parts and do not increase the number of parts, which helps to reduce costs. About this guide ring, the attitude | position holding force of a winding cylinder shows the tendency which becomes long, so that the length is long. However, since the guide ring, which is a power transmission component, is an expensive component, when the size of the guide ring is increased, the component cost increases accordingly. The mechanism of the present invention forms a guide ring coupling body by increasing the distance between two guide rings and connecting them with an internal screw tube. This guide ring coupling body is equivalent to a long guide ring. That is, by shortening the individual guide rings and suppressing the cost of parts, the guide rings are connected to each other by the internal screw pipes, so that an equivalent to the long guide ring is constructed at a low cost. Therefore, this also helps to reduce costs. Further, for the connection of both guide rings, a dedicated connecting member is not used and used, but the internal screw tube is also used as the connecting member, so that the number of parts does not increase. Therefore, this also helps to reduce costs. Thus, when cost reduction is performed everywhere while satisfying a required function, a high-performance and high-performance linear body winding / rewinding mechanism can be provided at low cost.
[Effect 12: Cost reduction (part 3)]
As described above, the mechanism according to the present invention is greatly effective in preventing the swinging phenomenon of the winding cylinder during forward and reverse rotation, and the durability is improved. This anti-vibration measure is not accompanied by a cost increase factor that reinforces or enhances the mechanical strength of each part, and thus does not lead to an increase in material costs, production costs, assembly costs, and the like. Therefore, from this point of view, the linear body winding and unwinding mechanism is not expensive.
本発明に係る線状体用巻き取り巻き戻し機構の一実施形態を略示した平面図である。It is the top view which showed schematically one Embodiment of the winding-up rewinding mechanism for linear bodies which concerns on this invention. 図1のII-II線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 図2のIII-III線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV-IV線に沿う断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 2. 線状体の巻き取りパターンを略示した斜視図である。It is the perspective view which showed schematically the winding pattern of the linear body. 巻き取り筒体について各種の例を略示した正面図である。It is the front view which outlined the various examples about the winding cylinder. 従来機構の要部を略示した断面図である。It is sectional drawing which simplified and showed the principal part of the conventional mechanism.
 本発明に係る線状体用巻き取り巻き戻し機構の実施形態を、添付図面に基づいて以下説明する。 Embodiments of a linear body winding and rewinding mechanism according to the present invention will be described below with reference to the accompanying drawings.
 図1~図4において、11は巻き取り巻き戻し機構、21は取付基台、31は原動機、41は中心軸、51は巻き取り筒体、61はネジ管伸縮体、71A・71Bは案内環をそれぞれ示す。 1 to 4, 11 is a winding / rewinding mechanism, 21 is a mounting base, 31 is a prime mover, 41 is a central shaft, 51 is a winding cylinder, 61 is a threaded tube telescopic body, and 71A and 71B are guide rings. Each is shown.
 図1~図4に例示された巻き取り巻き戻し機構11を構成するための各部品ないし各部材、たとえば、原動機31のような周知の既製品を除く各部品ないし各部材は、金属・合成樹脂(FRPも含む)・複合材など機械的特性の優れた材料からなり、ごく一部の部品がゴム製からなることもある。代表的な一例でいうと、それらの各部品ないし各部材はスチールその他の金属製であることが多い。 1 to 4, each part or each member for constituting the winding / rewinding mechanism 11, for example, each part or each member other than a well-known ready-made product such as the motor 31 is made of metal / synthetic resin ( FRP is also included.) · Made of materials with excellent mechanical properties such as composites, and some parts may be made of rubber. In a typical example, each of these parts or members is often made of steel or other metal.
 図1~図4に例示された巻き取り巻き戻し機構11において、取付基台21の場合は、台板22上に三つの軸受体23~25が立設されているものである。より具体的には、台板22上の一側部に軸受体23が立設されているとともに、台板22上の他側部に軸受体25が立設され、かつ、台板22上の中間部に軸受体24が立設されている。これら軸受体のうちでは、中心軸41を正逆回転自在に両端支持するためのものとして軸受体23と軸受体24とが対をなしている。 1 to 4, in the case of the mounting base 21, three bearing bodies 23 to 25 are erected on the base plate 22. More specifically, the bearing body 23 is erected on one side of the base plate 22, the bearing body 25 is erected on the other side of the base plate 22, and A bearing body 24 is erected at the intermediate portion. Among these bearing bodies, the bearing body 23 and the bearing body 24 are paired to support both ends of the central shaft 41 so as to be rotatable in the forward and reverse directions.
 図1~図4において、原動機31は高速で正回転したり高速で逆回転したりすることのできる周知の出力軸32を有する。この原動機31は、一例として電動機(モータ)からなる。原動機31が電動機(モータ)からなる場合、公知ないし周知のサーボモータまたはパルスモータなどが望ましい。この原動機31は、図2~図3で明らかなように、取付基台21の軸受体25に取り付けられてこの取付基台21に装備される。より具体的にいうと、出力軸32は、軸受体25の外側面に取り付けられて該軸受体25を貫通しているものである。 1 to 4, the prime mover 31 has a known output shaft 32 that can rotate forward at high speed or reversely rotate at high speed. The prime mover 31 is composed of an electric motor (motor) as an example. When the prime mover 31 is an electric motor (motor), a known or well-known servo motor or pulse motor is desirable. As is apparent from FIGS. 2 to 3, the prime mover 31 is attached to the bearing body 25 of the attachment base 21 and is mounted on the attachment base 21. More specifically, the output shaft 32 is attached to the outer surface of the bearing body 25 and passes through the bearing body 25.
 図1~図4に例示された中心軸41は、周方向のトルク伝達機能と軸方向の滑り機能とを有する外部案内面42がその外周面に形成されているものである。中心軸41の外周面において外部案内面42が形成される領域は、中心軸41の両端部(軸受される部分)を除く部分である。外部案内面42の典型的一例は、軸の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並んだスプライン案内面(外周面)である。スプライン案内面については、ボールスプラインによる案内面や角スプラインによる案内面、さらには、インボリュートスプラインによる案内面などがある。他の例として、楕円軸の楕円外周面や多角形軸の多角形外周面が外部案内面42になることもある。スプライン案内面(外周面)を有する中心軸41については、スプライン軸とかスプラインシャフトとかのように称されることがある。 The center shaft 41 illustrated in FIGS. 1 to 4 has an outer guide surface 42 having a circumferential torque transmission function and an axial sliding function formed on the outer circumferential surface thereof. A region where the outer guide surface 42 is formed on the outer peripheral surface of the central shaft 41 is a portion excluding both end portions (bearing portions) of the central shaft 41. A typical example of the external guide surface 42 is a spline guide surface (outer peripheral surface) in which ridges and convex shapes along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft. The spline guide surface includes a guide surface by a ball spline, a guide surface by a square spline, and a guide surface by an involute spline. As another example, the outer circumferential surface may be an elliptical outer circumferential surface with an elliptical axis or a polygonal outer circumferential surface with a polygonal axis. The center shaft 41 having the spline guide surface (outer peripheral surface) may be referred to as a spline shaft or a spline shaft.
 図1~図4において、中心軸41は、取付基台21の両軸受体23・24を介して正逆回転自在に両端支持されている。より具体的には、中心軸41の両端部に周知のベアリングが取り付けられ、このベアリングと共に中心軸41の両端部が両軸受体23・24で正逆回転自在に支持される。こうして両軸受体23・24により両端支持された中心軸41の場合、取付基台21上において原動機31の出力軸32と一直線状の並んでいて、その一端部(図1の右端部)が軸受体24を貫通して軸受体25側へ突出している。さらにいうと、軸受体25側へ突出した中心軸41の一端部が原動機31の出力軸32と対向しており、この中心軸41の一端部と前述した原動機31の出力軸32とが周知のカップリング33で相互に連結されている。かくて中心軸41には、原動機31の正逆回転が伝達されるようになる。 1 to 4, the central shaft 41 is supported at both ends through both bearing bodies 23 and 24 of the mounting base 21 so as to be rotatable forward and backward. More specifically, a well-known bearing is attached to both ends of the center shaft 41, and both ends of the center shaft 41 are supported by both bearing bodies 23 and 24 so as to be rotatable forward and backward. Thus, in the case of the central shaft 41 supported at both ends by the both bearing bodies 23 and 24, it is aligned with the output shaft 32 of the prime mover 31 on the mounting base 21, and one end thereof (the right end portion in FIG. 1) is the bearing. It penetrates the body 24 and protrudes toward the bearing body 25. Furthermore, one end portion of the central shaft 41 protruding toward the bearing body 25 faces the output shaft 32 of the prime mover 31, and the one end portion of the central shaft 41 and the output shaft 32 of the prime mover 31 described above are well known. The couplings 33 are connected to each other. Thus, forward / reverse rotation of the prime mover 31 is transmitted to the central shaft 41.
 図1~図4に例示された巻き取り筒体51は、後述するとおり、その外周面上において線状体を巻き取ったり巻き戻したりするためのものである。巻き取り筒体51は、内部空間のある筒状形態をしている。その代表的一例として巻き取り筒体51は円筒形をしている。巻き取り筒体51の一側面には中心孔52のある側板部53が設けられているが、巻き取り筒体51の他側面は開放されている。したがって、巻き取り筒体51は、一側面が開放された側面開放型である。巻き取り筒体51の外周面には、後述の線状体81・82を規則正しく螺旋巻きするための整列巻き用溝54が螺旋状に形成されている。巻き取り筒体51については、ドラムまたは巻き取りドラムと称されることがある。巻き取り筒体51は、後述する態様で中心軸41の外周部に装備される。 The winding cylinder 51 illustrated in FIGS. 1 to 4 is for winding and unwinding the linear body on the outer peripheral surface thereof as described later. The winding cylinder 51 has a cylindrical shape with an internal space. As a typical example, the winding cylinder 51 has a cylindrical shape. A side plate 53 having a central hole 52 is provided on one side surface of the winding cylinder 51, but the other side surface of the winding cylinder 51 is open. Therefore, the winding cylinder 51 is a side open type in which one side is opened. On the outer peripheral surface of the winding cylinder 51, an alignment winding groove 54 for spirally winding linear bodies 81 and 82 to be described later is formed in a spiral shape. The winding cylinder 51 may be referred to as a drum or a winding drum. The winding cylinder 51 is provided on the outer peripheral portion of the central shaft 41 in a manner to be described later.
 図1~図4に例示されたネジ管伸縮体61の場合、周知の雄ネジ63を外周面に有する内部ネジ管62と、周知の雌ネジ65を内周面に有する外部ネジ管64とが組み合わされたものである。すなわち、ネジ管伸縮体61は、相対的に外側にある内部ネジ管62の雄ネジ63と相対的に内側にある外部ネジ管64の雌ネジ65とがネジ結合されて、当該両ネジ筒62・64が軸方向に伸縮自在(相対移動自在)なるよう内外に組み合わされているものである。ネジ管伸縮体61の場合も、後述する態様で中心軸41の外周部に装備される。 In the case of the threaded tube expandable body 61 illustrated in FIGS. 1 to 4, an internal threaded tube 62 having a known male screw 63 on the outer peripheral surface and an outer threaded tube 64 having a known female screw 65 on the inner peripheral surface. It is a combination. That is, the threaded pipe expandable body 61 is formed by screwing the male thread 63 of the inner threaded pipe 62 relatively on the outside and the female thread 65 of the outer threaded pipe 64 relatively on the inner side, so that both the threaded cylinders 62 are connected. -64 is combined inside and outside so that it can expand and contract in the axial direction (relative movement is possible). Also in the case of the threaded tube expansion / contraction body 61, it is equipped on the outer peripheral portion of the central shaft 41 in a manner to be described later.
 図1~図4に例示された二つの案内環71A・71Bは、互いに同一の形状をした同一部品ということができる。この二つの案内環71A・71Bは、短い管状形態・短い筒状形態・環状形態など、そのいずれにもとらえることができる。両案内環71A・71Bには、周方向のトルク伝達機能と軸方向の滑り機能とを有する内部案内面72がその内周面にそれぞれ形成されている。両案内環71A・71Bの内部案内面72は、中心軸41の外部案内面42と対応するので、その外部案内面42と係合することができる。内部案内面72の典型的一例は、軸の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並んだ既述のスプライン案内面(内周面)である。この場合のスプライン案内面にも、ボールスプライン案内面、角スプライン案内面、インボリュートスプライン案内面などがある。他の一例として、楕円軸の楕円外周面や多角形軸の多角形外周面が内部案内面72になることもある。両案内環71A・71Bは、さらに、それぞれの一端部外周に鍔部(フランジ)73を有している。両案内環71A・71Bについては、これがスプラインナットなどと称されることもある。両案内環71A・71Bの場合も、後述する態様で中心軸41の外周部に装備される。 The two guide rings 71A and 71B illustrated in FIGS. 1 to 4 can be said to be the same parts having the same shape. These two guide rings 71A and 71B can be any of a short tubular form, a short tubular form, an annular form, and the like. Each of the guide rings 71A and 71B is formed with an inner guide surface 72 having a circumferential torque transmission function and an axial slip function on the inner circumferential surface thereof. Since the inner guide surfaces 72 of both guide rings 71A and 71B correspond to the outer guide surface 42 of the central shaft 41, the inner guide surfaces 72 can be engaged with the outer guide surfaces 42. A typical example of the internal guide surface 72 is the above-described spline guide surface (inner peripheral surface) in which concave stripes and convex shapes along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft. The spline guide surface in this case also includes a ball spline guide surface, a square spline guide surface, an involute spline guide surface, and the like. As another example, the elliptical outer peripheral surface of the elliptical axis or the polygonal outer peripheral surface of the polygonal axis may be the inner guide surface 72. Both guide rings 71 </ b> A and 71 </ b> B further have a flange (flange) 73 on the outer periphery of one end thereof. About both guide ring 71A * 71B, this may be called a spline nut. Both guide rings 71A and 71B are also provided on the outer peripheral portion of the center shaft 41 in a manner described later.
 図1~図4において、二つの案内環71A・71Bは、中心軸41の外周部に嵌め込まれている。この嵌め込みにより、中心軸41の外部案内面42と両案内環71A・71Bの各内部案内面72とが相対係合する。したがって、中心軸41が回転したときには両案内環71A・71Bが中心軸41と共回転する。中心軸41と相対係合している両案内環71A・71Bは、このほか、中心軸41の長さ方向(軸線方向)沿いに移動(往復動)することができるものである。 1 to 4, the two guide rings 71A and 71B are fitted in the outer peripheral portion of the central shaft 41. By this fitting, the external guide surface 42 of the central shaft 41 and the internal guide surfaces 72 of both guide rings 71A and 71B are relatively engaged. Therefore, when the central shaft 41 rotates, both guide rings 71A and 71B rotate together with the central shaft 41. The guide rings 71A and 71B that are relatively engaged with the central shaft 41 can also move (reciprocate) along the length direction (axial direction) of the central shaft 41.
 図1~図4の実施形態において、中心軸41の外周面上かつ両案内環71A・71Bの上に嵌め込まれる部品はネジ管伸縮体61である。このネジ管伸縮体61の場合、中心軸41の外周面上で離隔して対峙する両案内環71A・71Bの外周部にわたり被される。さらにいうと、ネジ管伸縮体61の内周部位に位置するのが内部ネジ管62であるから、この内部ネジ管62が両案内環71A・71Bの外周部にわたって被される。こうした場合のネジ管伸縮体61は、後述の手段で両案内環71A・71Bと相対固定(連結ないし結合)される。 In the embodiment shown in FIGS. 1 to 4, the part fitted on the outer peripheral surface of the central shaft 41 and on both guide rings 71 </ b> A and 71 </ b> B is a screw tube expansion / contraction body 61. In the case of this threaded tube expansion / contraction body 61, it covers over the outer peripheral portions of both guide rings 71A and 71B which are opposed to each other on the outer peripheral surface of the central shaft 41. Furthermore, since the internal screw tube 62 is located at the inner peripheral portion of the threaded pipe expansion / contraction body 61, the internal screw pipe 62 is covered over the outer peripheral portions of both guide rings 71A and 71B. In such a case, the screw tube expansion / contraction body 61 is relatively fixed (connected or coupled) to both guide rings 71A and 71B by means described later.
 図1~図4の実施形態において、中心軸41の外周面上かつネジ管伸縮体61の上に嵌め込まれる部品は巻き取り筒体51である。ちなみに、ネジ管伸縮体61の外周部位に位置するのが外部ネジ管62である。したがって、巻き取り筒体51の場合、この外部ネジ管62の外周面上に被される。こうした場合の巻き取り筒体51も、後述の手段で案内環71Aやネジ管伸縮体61と相対固定(連結ないし結合)される。 In the embodiment of FIGS. 1 to 4, the part fitted on the outer peripheral surface of the central shaft 41 and on the threaded tube expansion / contraction body 61 is a winding cylinder 51. Incidentally, the external threaded tube 62 is located at the outer peripheral portion of the threaded tube expandable body 61. Therefore, in the case of the take-up cylinder 51, it is covered on the outer peripheral surface of the external screw tube 62. The winding cylinder 51 in such a case is also relatively fixed (connected or coupled) to the guide ring 71A and the threaded pipe telescopic body 61 by means described later.
 図1~図4に例示された実施形態の場合は、上述したように、所定の部品部材が中心軸41の外周面上で径方向に多重化配列されているものである。すなわち、中心軸41の外周面からその遠心方向(離心方向)にわたって、両案内環71A・71B、ネジ管伸縮体61、巻き取り筒体51が順次並んでいる。ここで、中心軸41の外径(直径)をD1、両案内環71A・71Bの内径(直径)をD2、両案内環71A・71Bの鍔部73A・73B以外の外径(直径)をD3、ネジ管伸縮体61における内部ネジ管62の内径(直径)をD4、ネジ管伸縮体61における外部ネジ管64の外径(直径)をD5、巻き取り筒体51の内径(直径)をD6、巻き取り筒体51の外径(直径)をD7とした場合、これらは自明のとおり、下記の不等式(1)を満足させる。
   D1<D2<D3<D4<D5<D6<D7…………(1)
In the case of the embodiment illustrated in FIGS. 1 to 4, as described above, the predetermined component members are arranged in a multiplexed manner in the radial direction on the outer peripheral surface of the central shaft 41. That is, the guide rings 71A and 71B, the threaded tube telescopic body 61, and the winding cylinder 51 are sequentially arranged from the outer peripheral surface of the central shaft 41 to the centrifugal direction (the eccentric direction). Here, the outer diameter (diameter) of the central shaft 41 is D1, the inner diameters (diameters) of both guide rings 71A and 71B are D2, and the outer diameters (diameters) of both guide rings 71A and 71B other than the flanges 73A and 73B are D3. The inner diameter (diameter) of the inner threaded tube 62 in the threaded tube telescopic body 61 is D4, the outer diameter (diameter) of the outer threaded pipe 64 in the threaded tube telescopic body 61 is D5, and the inner diameter (diameter) of the winding cylinder 51 is D6. When the outer diameter (diameter) of the winding cylinder 51 is D7, these satisfy the following inequality (1) as is obvious.
D1 <D2 <D3 <D4 <D5 <D6 <D7 (1)
 上記不等式(1)において、[D1]と[D2]との差や、[D3]と[D4]との差は、精密な嵌め合いを期すために微差となっている。[D5]と[D6]との差については、ネジ管伸縮体61の外周面(外部ネジ管64の外周面)と巻き取り筒体51の内周面とが擦れ合うことがない程度に設定されており、その差異はきわめて小さい。一方、中心軸41の有効長、すなわち、中心軸外周面における外部案内面42の長さは、ネジ管伸縮体61の最大伸縮ストローク(内部ネジ管62と外部ネジ管64との最大伸長状態)に対応して設定されている。 In the above inequality (1), the difference between [D1] and [D2] and the difference between [D3] and [D4] are slightly different in order to ensure a precise fit. The difference between [D5] and [D6] is set to such an extent that the outer peripheral surface of the screw tube expansion / contraction body 61 (the outer peripheral surface of the external screw tube 64) and the inner peripheral surface of the winding cylinder 51 do not rub against each other. The difference is very small. On the other hand, the effective length of the central shaft 41, that is, the length of the outer guide surface 42 on the outer peripheral surface of the central shaft is the maximum expansion / contraction stroke of the screw tube expansion / contraction body 61 (maximum extension state of the internal screw tube 62 and the external screw tube 64). It is set corresponding to.
 図1を参照して明らかなように、ネジ管伸縮体61の一部品である内部ネジ管62の右端部と図1右側にある案内環71Aと巻き取り筒体51の側板部53とが相互に固定されている。これは内部ネジ管62と案内環71Aと巻き取り筒体51とを一体動作させるための部品連結ないし部品結合である。これを具体的に詳述すると、中心軸41の外周面上にある図1右側の案内環71Aが、巻き取り筒体51の側板部53にある中心孔を貫通してその鍔部73Aが側板部53の外面に当接しているとともに、内部ネジ管62の右端面が側板部53の外面に当接しており、かつ、この当接状態の三部品に対し、ボルトなど周知の固定具55が側板部53の外面側からねじ込まれて、案内環71A(鍔部73A)と巻き取り筒体51(側板部53)とネジ管伸縮体61(内部ネジ管62)とが結合されているのである。一方では、図1左側にある案内環71Bの鍔部73Bが内部ネジ管62の左端面に当接していて、この当接状態の二部品に対し、既述の固定具55が鍔部73Bの外面側からねじ込まれて、案内環71B(鍔部73B)とネジ管伸縮体61(内部ネジ管62)とが結合されているのである。 As is apparent with reference to FIG. 1, the right end portion of the internal threaded tube 62, which is a part of the threaded tube expansion / contraction body 61, the guide ring 71 </ b> A on the right side of FIG. It is fixed to. This is component connection or component connection for integrally operating the internal screw tube 62, the guide ring 71A, and the winding cylinder 51. More specifically, the guide ring 71A on the right side of FIG. 1 on the outer peripheral surface of the center shaft 41 passes through the center hole in the side plate portion 53 of the take-up cylinder 51, and the flange portion 73A is formed on the side plate. And the right end surface of the internal threaded tube 62 is in contact with the outer surface of the side plate portion 53, and a known fixture 55 such as a bolt is attached to the three parts in the contact state. It is screwed in from the outer surface side of the side plate portion 53, and the guide ring 71A (the flange portion 73A), the take-up cylindrical body 51 (the side plate portion 53), and the screw tube expansion / contraction body 61 (the internal screw tube 62) are coupled. . On the other hand, the collar portion 73B of the guide ring 71B on the left side of FIG. 1 is in contact with the left end surface of the internal threaded tube 62. It is screwed in from the outer surface side, and the guide ring 71B (the flange 73B) and the threaded pipe expansion / contraction body 61 (the inner threaded pipe 62) are coupled.
 さらに、ネジ管伸縮体61の外部ネジ管64については、その一端部(図2の左端部)が軸受体23の内面に当接した状態において、軸受体23の外面側から外部ネジ管64の一端部に向けてねじ込まれた周知の固定具55により、軸受体23に取り付け固定されている。 Further, the external threaded pipe 64 of the threaded pipe expansion / contraction body 61 has an end of the external threaded pipe 64 from the outer surface side of the bearing body 23 in a state where one end thereof (the left end in FIG. 2) abuts the inner surface of the bearing body 23. It is attached and fixed to the bearing body 23 by a known fixture 55 screwed toward one end.
 ここでネジ管伸縮体61の全体的な固定態様についてみると、ネジ管伸縮体61は、内部ネジ管62の先端部(図2の右端部)が巻き取り筒体51の側板部53に連結固定されていたり、外部ネジ管64の基端部(図2の左端部)が支持力の高い軸受体23に取り付け固定されていたりするものである。ゆえにネジ管伸縮体61の場合、[内部ネジ管62の先端部固定+外部ネジ管64の基端部固定]=[ネジ管伸縮体61の両端部固定]というように、全体が安定した両端固定構造となっているのである。このネジ管伸縮体61の固定態様を巻き取り筒体51との関係でみるとき、巻き取り筒体51は、内部ネジ管62と側板部53との固定のみならず、軸受体23と外部ネジ管64との固定をも含めたネジ管伸縮体全体の安定な両端固定構造(両端連結構成)によって中心軸41の外周部位に支持ないし保持されていることとなる。したがって、ネジ管伸縮体61に支持ないし保持される巻き取り筒体51については、かかる観点からも、既述の振揺現象がより起こりがたいものとなり、ひいてはこれが、線状体の正確で安定した動作や線状体操作時の制御性を高めることとなる。 Here, regarding the overall fixing mode of the threaded tube stretchable body 61, the threaded tube stretchable body 61 is connected to the side plate portion 53 of the take-up cylinder 51 at the tip end portion (the right end portion in FIG. 2) of the internal threaded tube 62. It is fixed, or the base end portion (left end portion in FIG. 2) of the external screw pipe 64 is attached and fixed to the bearing body 23 having a high supporting force. Therefore, in the case of the threaded tube expansion / contraction body 61, [end portion fixing of the internal threaded tube 62 + base end portion fixing of the external threaded tube 64] = [fixing both ends of the threaded tube stretching body 61] It has a fixed structure. When the fixing manner of the threaded tube expansion / contraction body 61 is viewed in relation to the winding cylinder 51, the winding cylinder 51 is not only fixed to the internal screw pipe 62 and the side plate portion 53 but also to the bearing body 23 and the external screw. It is supported or held on the outer peripheral portion of the central shaft 41 by a stable both-end fixing structure (both-end connection configuration) of the entire threaded tube expansion / contraction body including fixing to the tube 64. Therefore, with respect to the take-up cylinder 51 supported or held by the threaded tube expansion / contraction body 61, the above-described shaking phenomenon is less likely to occur from this point of view, and as a result, this is accurate and stable of the linear body. Therefore, the controllability during the operation and the linear body operation is improved.
 線状体用巻き取り巻き戻し機構について、図1~図4のような組み立て構造を得るときの一例として、つぎのように組み立てることがある。それは両案内環71A・71Bとネジ管伸縮体61と巻き取り筒体51との組み立て構造物を先行して組み立てておき、その後、この組み立て構造物における両案内環71A・71Bを中心軸41の外周部に嵌め込むというものである。さらに、両軸受体23・24による中心軸41の両端支持については、上記の組み立て構造物が外装された後の中心軸41を両軸受体23・24で正逆回転自在に両端支持する。 As an example of obtaining an assembly structure as shown in FIGS. 1 to 4, the linear body winding / rewinding mechanism may be assembled as follows. That is, the assembly structure of the two guide rings 71A and 71B, the threaded tube expansion and contraction body 61, and the take-up cylinder body 51 is assembled in advance. It fits into the outer periphery. Further, with respect to both ends of the central shaft 41 supported by the two bearing bodies 23 and 24, the both ends of the central shaft 41 after the assembly structure is covered are supported by the two bearing bodies 23 and 24 so as to be rotatable forward and backward.
 図1~図4に例示された線状体用巻き取り巻き戻し機構の場合、巻き取り筒体51の外周面に正巻き用の線状体81や逆巻き用の線状体82が巻き取られた巻き戻されたりするものである。こうした線状体の巻き取りや巻き戻しによって、たとえば往復移動体のような移動体を移動させるときは、特許文献1~9などの従来技術と同様、巻き取り筒体51の外周面における両線状体81・82の基端部を止め付けたり、両線状体81・82の先端部を移動体に繋いだりする。その具体的な態様について、図1やその他の図を参照して説明する。 In the case of the winding / rewinding mechanism for a linear body illustrated in FIGS. 1 to 4, the linear body 81 for forward winding and the linear body 82 for reverse winding are wound around the outer peripheral surface of the winding cylinder 51. It will be rewound. When a moving body such as a reciprocating body is moved by winding or unwinding such a linear body, both lines on the outer peripheral surface of the winding cylinder 51 are the same as in the conventional techniques such as Patent Documents 1 to 9. The proximal end portions of the linear bodies 81 and 82 are fastened, and the distal ends of both linear bodies 81 and 82 are connected to the moving body. The specific mode will be described with reference to FIG. 1 and other drawings.
 はじめに正巻き用線状体81や逆巻き用線状体82の材料・材質について説明する。この両線状体81・82はいずれも強靱な長尺物からなる。とくに、可撓性や抗張力性が両線状体81・82の特性として要求される。両線状体81・82の径については、糸のような極細のものからロープのように太いものまで任意径のものが採用される。実用上の観点からすると、所要の強度が確保できるかぎり径の小さい線状体81・82が望ましい。両線状体81・82は、また、可撓性を有していても抗張力性が高いために伸縮性が実質的にない。両線状体81・82の具体的な材料として金属・合成樹脂・これらの複合体をあげることができる。これらについては複数本の単糸や線材を撚り合わせたものある。商品名ケブラー(登録商標)で知られるアラミッド繊維を寄り合わせた両線状体81・82も有効な一例である。典型的な一例でいうと、両線状体81・82は抗張力金属製のワイヤからなる。 First, materials and materials of the forward winding linear body 81 and the reverse winding linear body 82 will be described. Both the linear bodies 81 and 82 are each made of a tough long object. In particular, flexibility and tensile strength are required as characteristics of the two linear bodies 81 and 82. About the diameter of both the linear bodies 81 and 82, the thing of arbitrary diameter is employ | adopted from a very thin thing like a thread | yarn to a thick thing like a rope. From a practical viewpoint, the linear bodies 81 and 82 having a small diameter are desirable as long as the required strength can be ensured. Both the linear bodies 81 and 82 have substantially no stretchability due to their high tensile strength even if they have flexibility. Specific materials for the two linear bodies 81 and 82 include metal, synthetic resin, and composites thereof. For these, a plurality of single yarns or wires are twisted together. Both linear bodies 81 and 82 in which aramid fibers known by the trade name Kevlar (registered trademark) are brought together are also effective examples. In a typical example, both linear bodies 81 and 82 are made of a wire made of a tensile strength metal.
 図1に例示された両線状体81・82は、同図にある往復動自在な移動体91に接続される。両線状体81・82における「正巻き用」と「逆巻き用」は、移動体91を基準にして定まる。すなわち、移動体91に繋がれた一方の線状体81が正巻き用となり、移動体91に繋がれた他方の線状体82が逆巻き用となる。ちなみに、移動体91を前進(往動)させるために巻き取り筒体51を正回転させたときは、巻き取り筒体51に巻き取られる正巻き用線状体81が移動体91を前進方向へ引き取りながらこれを往動させる。このときの逆巻き用線状体82は、巻き取り筒体51から巻き戻されることで移動体91の前進往動を許容する。これに対して、移動体91を後進(復動)させるために巻き取り筒体51を逆回転させたときは、巻き取り筒体51に巻き取られる逆巻き用線状体82が移動体91を後進方向へ引き取りながらこれを復動させる。このときの正巻き用線状体81は、巻き取り筒体51から巻き戻されることで移動体91の後進復動を許容する。この説明で明らかなように、両線状体81・82における「正巻き用」と「逆巻き用」は、当該両線状体81・82の巻き取り方向が異なることを意味するだけであり、また、両線状体81・82を巻き取ったり巻き戻したりするときの「正回転」や「逆回転」も巻き取り筒体51の回転方向が異なることを意味するだけである。したがって、巻き取り筒体51の正回転や逆回転については、「正回転」が右回り(時計回り)回転、かつ、「逆回転」が左回り(時計回り)回転であってもよく、また、「逆回転」が右回り(時計回り)回転、かつ、「正回転」が左回り(時計回り)回転であってもよいのである。ゆえに、これらの事項は、状況に応じて適宜設定される。 1 is connected to a movable body 91 that can reciprocate in the same figure. “For forward winding” and “for reverse winding” in both linear bodies 81 and 82 are determined based on the moving body 91. That is, one linear body 81 connected to the moving body 91 is used for forward winding, and the other linear body 82 connected to the moving body 91 is used for reverse winding. Incidentally, when the winding cylinder 51 is rotated forward in order to move the moving body 91 forward (forward movement), the normal winding linear body 81 wound around the winding cylinder 51 moves the moving body 91 in the forward direction. This is moved forward while taking over. The reverse winding linear body 82 at this time allows the moving body 91 to move forward and backward by being rewound from the winding cylinder 51. On the other hand, when the winding cylinder 51 is reversely rotated to move the moving body 91 backward (return), the reverse winding linear body 82 wound around the winding cylinder 51 causes the moving body 91 to move. This is moved backward while taking back. The linear body 81 for normal winding at this time permits the backward movement of the moving body 91 by being rewound from the winding cylinder 51. As is clear from this description, “for normal winding” and “for reverse winding” in the two linear bodies 81 and 82 only mean that the winding directions of the two linear bodies 81 and 82 are different. Further, “forward rotation” and “reverse rotation” when winding and unwinding the two linear bodies 81 and 82 only mean that the rotation direction of the winding cylinder 51 is different. Therefore, regarding forward rotation and reverse rotation of the winding cylinder 51, “forward rotation” may be clockwise (clockwise) rotation, and “reverse rotation” may be counterclockwise (clockwise) rotation. “Reverse rotation” may be clockwise (clockwise) rotation, and “forward rotation” may be counterclockwise (clockwise) rotation. Therefore, these items are appropriately set according to the situation.
 両線状体81・82については、連続した一本のものが正巻き用と逆巻き用に区分けされて使い分けられても、また、正巻き用と逆巻き用とが互いに独立した二本のものであってもよい。両線状体81・82が連続した一本のものからなるときの一例では、後述するとおり、その連続線状体の両端部が巻き取り筒体51の両端部外周面に止具・接着またはその他の固定手段で固定され、かつ、その連続線状体の中間部が巻き取り筒体51の中間部外周面に螺旋状に精密巻きされる。そして連続線状体中間部における一部に弛みのあるループ状部のが作られ、そのループ状部が索取りされた後に移動体91に接続される。両線状体81・82が連続した一本のものからなるときの他例では、後述するとおり、連続線状体の中間部(両線状体81・82の境界となる部分)が巻き取り筒体51の外周面中央部などに固定されるとともに、その連続線状体が巻き取り筒体51の外周面中央部から巻き取り筒体両端部に向けて螺旋状に精密巻きされる。そして連続線状体の両端部が索取りされた後に移動体91に接続される。この場合の連続線状体は、正巻き用や逆巻き用の線状体81・82となるものであるから、巻き取り筒体51に対する一方(正巻き用)の線状体81の巻付量と他方(逆巻き用)の線状体82の巻付量とは、互いに等しくなるように巻き付けられるのが望ましい。 About both linear bodies 81 and 82, even if a continuous one is divided into a forward winding and a reverse winding and used separately, the forward winding and the reverse winding are two independent ones. There may be. In an example when both linear bodies 81 and 82 are made of a single continuous body, as described later, both ends of the continuous linear body are attached to the outer peripheral surfaces of both ends of the take-up cylinder 51 with fasteners or adhesives. It is fixed by other fixing means, and the intermediate portion of the continuous linear body is spirally wound around the outer peripheral surface of the intermediate portion of the winding cylinder 51 in a spiral manner. Then, a loop-like portion having a slack is formed in a part of the intermediate portion of the continuous linear body, and the loop-like portion is seized and connected to the moving body 91. In another example in which both linear bodies 81 and 82 are made of a single continuous body, as will be described later, an intermediate portion of the continuous linear body (a portion that becomes a boundary between both linear bodies 81 and 82) is wound. While being fixed to the central part of the outer peripheral surface of the cylindrical body 51, the continuous linear body is precisely wound spirally from the central part of the outer peripheral surface of the winding cylindrical body 51 toward both ends of the winding cylindrical body. And after connecting the both ends of a continuous linear body, it connects to the mobile body 91. FIG. Since the continuous linear body in this case becomes the linear bodies 81 and 82 for forward winding and reverse winding, the winding amount of one (forward winding) linear body 81 around the winding cylinder 51 It is desirable that the winding amount of the linear body 82 on the other side (for reverse winding) is wound so as to be equal to each other.
 図1に例示されたものは、両線状体81・82として上述の連続線状体が用いられる場合の一例である。この場合において、連続線状体の中間部は巻き取り筒体51の中間部外周面に螺旋状に精密巻きされており、連続線状体の両端部は、ビスを併用する押圧式の固定具56を介して巻き取り筒体51の両端部外周面にそれぞれ固定されている。一方で、連続線状体中間部にあるループ状部LPは、シーブあるいはプーリのような案内用回転輪S1~S5を介して索取りされる。さらに、ループ状部LPの所定部が線状体クランプ用の固定具93を介して移動体91に接続される。かかる場合の連続線状体は、移動体91を境にしてその一方が正巻き用線状体81となり、かつ、その他方が逆巻き用線状体82となる。 The example illustrated in FIG. 1 is an example in which the above-described continuous linear body is used as both linear bodies 81 and 82. In this case, the intermediate portion of the continuous linear body is spirally wound around the outer peripheral surface of the intermediate portion of the take-up cylinder 51, and both end portions of the continuous linear body are press-type fixing tools that use screws. 56 are fixed to the outer peripheral surfaces of both ends of the winding cylinder 51 through 56. On the other hand, the loop portion LP at the intermediate portion of the continuous linear body is roped through guide rotating wheels S1 to S5 such as sheaves or pulleys. Furthermore, a predetermined portion of the loop portion LP is connected to the moving body 91 via a linear body clamping fixture 93. In such a case, one of the continuous linear bodies is a forward winding linear body 81 with the moving body 91 as a boundary, and the other is a reverse winding linear body 82.
 もちろん、上記における両線状体81・82の場合、連続線状体のままである必然性はなく、たとえば、移動体91における両固定具93の間で連続線状体が切断されて互いに分離してもよいのである。 Of course, in the case of the two linear bodies 81 and 82 described above, the continuous linear body does not necessarily remain, and for example, the continuous linear bodies are cut between the two fixtures 93 in the moving body 91 and separated from each other. It may be.
 図5(A)には、図1における両線状体81・82の巻き取りパターンが巻き取り筒体51と共に示されている。図5(B)には、連続線状体の中間部(両線状体81・82の境界となる部分)が巻き取り筒体51の外周面中央部に固定具57で固定される巻き取りパターンが巻き取り筒体51と共に示されている。 FIG. 5A shows the winding pattern of the two linear bodies 81 and 82 in FIG. 1 together with the winding cylinder 51. FIG. 5B shows a winding in which an intermediate portion of the continuous linear body (a portion serving as a boundary between both linear bodies 81 and 82) is fixed to the central portion of the outer peripheral surface of the winding cylinder 51 with a fixing tool 57. A pattern is shown with the winding cylinder 51.
 上述の各線状体81・82については、正巻き用線状体81と逆巻き用線状体82とのそれぞれが、複数本で用いられることがある。たとえば、正巻き用線状体81と逆巻き用線状体82とがそれぞれ二本の場合とか、また、正巻き用線状体81と逆巻き用線状体82とがそれぞれ三本の場合とかいう実施形態もある。ちなみに、正巻き用線状体81と逆巻き用線状体82とがそれぞれ一本の場合、巻き取り筒体51の外周面に形成される整列巻き用溝(螺旋溝)54は一条のものである。これに対して、正巻き用線状体81と逆巻き用線状体82とがそれぞれ二本の場合、図6(A)のごとく、二条の整列巻き用溝(螺旋溝)54が巻き取り筒体51の外周面に形成され、また、正巻き用線状体81と逆巻き用線状体82とがそれぞれ三本の場合、図6(B)のごとく、三条の整列巻き用溝(螺旋溝)54が巻き取り筒体51の外周面に形成される。 For each of the linear bodies 81 and 82 described above, a plurality of forward winding linear bodies 81 and reverse winding linear bodies 82 may be used. For example, the case where there are two forward winding linear bodies 81 and two reverse winding linear bodies 82, or the case where there are three forward winding linear bodies 81 and three reverse winding linear bodies 82, respectively. There is also a form. Incidentally, when each of the normal winding linear body 81 and the reverse winding linear body 82 is one, the aligned winding groove (spiral groove) 54 formed on the outer peripheral surface of the winding cylinder 51 is one. is there. On the other hand, when there are two forward winding linear bodies 81 and two reverse winding linear bodies 82, two aligned winding grooves (spiral grooves) 54 are taken up as shown in FIG. When there are three forward winding linear bodies 81 and three reverse winding linear bodies 82 formed on the outer peripheral surface of the body 51, three aligned winding grooves (spiral grooves) as shown in FIG. ) 54 is formed on the outer peripheral surface of the winding cylinder 51.
 図1に略示された移動体91は、それ自体が加工機械器具とか搬送用治具とかであったり、作業用ロボットの一部であったりする。図1の移動体91は、往復動するときの走行用としてベアリングのような走行部材(図示せず)を備えている。この場合のベアリングとしては、シェル型・リゾット型・ストローク型やその他の型式で知られるリニアボールベアリングのうちから、適当なものが選定されて用いられるのが望ましい。線状体クランプ用の固定具93は、既述のとおり、線状体を挟み込んで締め付け固定するためのものである。 The moving body 91 schematically shown in FIG. 1 is itself a processing machine tool, a transfer jig, or a part of a working robot. The moving body 91 in FIG. 1 includes a traveling member (not shown) such as a bearing for traveling when reciprocating. As a bearing in this case, it is desirable to select and use an appropriate one of linear ball bearings known from a shell type, a risotto type, a stroke type, and other types. As described above, the linear body clamping fixture 93 is for clamping and fixing the linear body.
 図1の移動体91は所定の作業を行うために所定の作業領域に装備されるものである。このようなケースでは、ガイドレール・送り台・ガイドレール付き台など、いずれかの移動体走行用ガイド手段92が作業領域(移動領域)に設置される。一例としてガイドレールからなる移動体走行用ガイド手段92などは基台上に敷設される。移動体91はガイド手段92上に組み付けられてガイド手段92の長さ方向沿いに往復動できるものである。そのため、移動体91の所定面(裏面など)には、ガイドレール(ガイド手段92)に対応した走行部たとえばスライダ・車輪・溝型部材などの任意部品による走行部が設けられる。この移動体91には、既述のとおり正巻き用線状体81や逆巻き用線状体82が繋がれるのであり、かつ、かかる両線状体81・82をサポートするために、既述の案内用回転輪S1~S5が図1のごとく適所に配置される。 1 is installed in a predetermined work area in order to perform a predetermined work. In such a case, any moving body traveling guide means 92 such as a guide rail, a feed base, and a guide rail-equipped base is installed in the work area (movement area). As an example, the moving body traveling guide means 92 including a guide rail is laid on a base. The moving body 91 is assembled on the guide means 92 and can reciprocate along the length direction of the guide means 92. Therefore, on a predetermined surface (back surface or the like) of the moving body 91, a traveling portion corresponding to the guide rail (guide means 92), for example, a traveling portion made up of arbitrary components such as a slider, a wheel, and a groove member is provided. As described above, the moving body 91 is connected to the forward winding linear body 81 and the reverse winding linear body 82, and in order to support both the linear bodies 81 and 82, Guide rotating wheels S1 to S5 are arranged at appropriate positions as shown in FIG.
 本発明に係る線状体用巻き取り巻き戻し機構が移動体の走行とその制御に用いられる場合、たとえば、図1に例示されたような態様で用いられる場合は、つぎに述べるようなものとなる。 When the winding / rewinding mechanism for a linear body according to the present invention is used for traveling and control of the moving body, for example, when used in the mode illustrated in FIG. 1, the following is described. .
 図1~図4において、原動機31を正回転させると、その回転が出力軸32・カップリング33を介して中心軸41に伝達される。ここで、両案内環71A・71Bとネジ管伸縮体61の内部ネジ管62と巻き取り筒体51についてみるとき、これらは四部材連結型をなしていてこの四部材が一体で動作する。ゆえに、中心軸41が正回転したときには、中心軸41の外部案内面42と両案内環71A・71Bの内部案内面71A・71Bとの相対係合によって、中心軸41と巻き取り筒体51と内部ネジ管62とが一体で正回転する。そして外部ネジ管64と螺合状態にある内部ネジ管62の場合、自身が回転することでネジ送りがかかり、外部ネジ管64内から図1の右方へと進出する。ゆえに、このときも、内部ネジ管62と一体関係にある両案内環71A・71Bや巻き取り筒体51が同方向へ移動する。かくて巻き取り筒体51は、正回転しながら中心軸41の軸線方向(図1の右方向)へ所定のピッチで移動する。 1 to 4, when the prime mover 31 is rotated forward, the rotation is transmitted to the central shaft 41 via the output shaft 32 and the coupling 33. Here, when seeing both the guide rings 71A and 71B, the internal threaded tube 62 of the threaded tube expansion and contraction body 61, and the winding cylinder 51, these form a four member connection type, and these four members operate integrally. Therefore, when the center shaft 41 rotates in the forward direction, the center shaft 41 and the take-up cylindrical body 51 are engaged by the relative engagement between the outer guide surface 42 of the center shaft 41 and the inner guide surfaces 71A and 71B of both guide rings 71A and 71B. The internal threaded tube 62 is integrally rotated in the forward direction. Then, in the case of the internal screw tube 62 that is screwed with the external screw tube 64, screw rotation is applied by rotating itself, and the screw advances from the inside of the external screw tube 64 to the right in FIG. Therefore, at this time as well, both guide rings 71A and 71B and the take-up cylinder 51, which are integral with the internal screw tube 62, move in the same direction. Thus, the winding cylinder 51 moves at a predetermined pitch in the axial direction of the center shaft 41 (right direction in FIG. 1) while rotating forward.
 図1において、巻き取り筒体51が上記のように正回転しながら中心軸41の軸線方向へ所定ピッチで移動するとき、正巻き用線状体81が巻き取り筒体51の外周面に巻き取られると同時に逆巻き用線状体82が巻き取り筒体51の外周面から巻き戻される。このにおける正巻き用線状体81の巻き戻し量と逆巻き用線状体82の巻き取り量とは互いに等しい。また、巻き取り筒体51が中心軸41の軸線方向へ所定ピッチで移動するため、巻き取り筒体51の外周面における正巻き用線状体81の巻き取り位置や逆巻き用線状体82の巻き戻し位置は変化しない。そして正巻き用線状体81が巻き取られながら逆巻き用線状体82が巻き戻されることにより、移動体91は移動体走行用ガイド手段92上を図1のF1方向へ前進(往動)することとなる。 In FIG. 1, when the winding cylinder 51 moves at a predetermined pitch in the axial direction of the central shaft 41 while rotating forward as described above, the positive winding linear body 81 is wound around the outer peripheral surface of the winding cylinder 51. At the same time, the reverse winding linear body 82 is rewound from the outer peripheral surface of the winding cylinder 51. In this case, the rewinding amount of the forward winding linear body 81 and the winding amount of the reverse winding linear body 82 are equal to each other. Further, since the winding cylinder 51 moves at a predetermined pitch in the axial direction of the central axis 41, the winding position of the normal winding linear body 81 on the outer peripheral surface of the winding cylindrical body 51 and the reverse winding linear body 82. The rewind position does not change. Then, the reverse winding linear body 82 is rewound while the normal winding linear body 81 is wound, so that the moving body 91 moves forward on the moving body traveling guide means 92 in the direction F1 in FIG. 1 (forward movement). Will be.
 原動機31を逆回転させたときは、上記の巻き取りや巻き戻し関する動作ないし作用がすべて逆になるため、正巻き用線状体81が巻き取り筒体51の外周面から巻き戻されると同時に逆巻き用線状体82が巻き取り筒体51の外周面に巻き取られる。この際の両線状体51・52の巻き取り量・巻き戻し量も互いに等しい。かかる両線状体51・52の巻き取り巻き戻しにより、移動体91は移動体走行用ガイド手段92上を図1のF2方向へ後進(復動)することとなる。 When the prime mover 31 is rotated in the reverse direction, all the operations and actions relating to the winding and rewinding described above are reversed, so that the linear body 81 for normal winding is unwound from the outer peripheral surface of the winding cylindrical body 51 at the same time. The reverse winding linear body 82 is wound around the outer peripheral surface of the winding cylinder 51. At this time, the winding amount and the unwinding amount of the two linear bodies 51 and 52 are also equal to each other. By taking up and rewinding both the linear bodies 51 and 52, the moving body 91 moves backward (returns) on the moving body traveling guide means 92 in the direction F2 in FIG.
 本発明の上記実施形態において、巻き取り筒体51の振揺現象やその他の不具合を防止ないし抑制して既述の有益性や有用性を発揮するための多重化構造(剛性領域)、すなわち、四部材連結型は、巻き取り筒体51と二つの案内環71A・71Bと内部ネジ管62とで構成されている。この場合において、中心軸41の剛性を高めている剛性領域は、内部ネジ管62のほぼ全長(軸方向の長さ)に相当するので、きわめて長いといえる。 In the above embodiment of the present invention, a multiplexed structure (rigid region) for preventing or suppressing the shaking phenomenon of the winding cylinder 51 and other problems and exhibiting the above-described benefits and usefulness, that is, The four-member connection type includes a winding cylinder 51, two guide rings 71A and 71B, and an internal screw tube 62. In this case, the rigidity region in which the rigidity of the central shaft 41 is increased corresponds to almost the entire length (the length in the axial direction) of the internal screw tube 62, and can be said to be extremely long.
 本発明に係る線状体用巻き取り巻き戻し機構の場合、図示の実施形態などでは、二種類の線状体(正巻き用線状体81と逆巻き用線状体82)を巻き取ったり巻き戻したりする例を掲げているが、一種類の線状体を巻き取ったり巻き戻したりする場合にも、本発明機構を適用することができる。このような場合、線状体の一端部が、たとえば、巻き取り筒体51の端部外周面などに止め付けられ、かつ、巻き取り筒体51の正逆回転で線状体が巻き取られたり巻き戻されたりする。一種類かつ複数本の線状体を巻き取ったり巻き戻したりする場合も、これに準じた内容で実施することができる。 In the case of the winding / rewinding mechanism for a linear body according to the present invention, in the illustrated embodiment or the like, two types of linear bodies (a linear body 81 for normal winding and a linear body 82 for reverse winding) are wound or unwound. However, the mechanism of the present invention can also be applied to a case where one type of linear body is wound or unwound. In such a case, for example, one end portion of the linear body is fastened to the outer peripheral surface of the end portion of the winding cylinder 51 and the linear body is wound by forward and reverse rotation of the winding cylinder 51. Or rewind. Even when one type and a plurality of linear bodies are wound or unwound, the present invention can be carried out with the same contents.
 本発明に係る線状体用巻き取り巻き戻し機構は、横型(水平型)・縦型(垂直型)・勾配のある傾斜型など、任意の姿勢で配置することができるものである。そして当該機構の設備態様いかんで、移動体91を水平移動させたり垂直移動させたり傾斜移動させたりすることができる。また、たとえば、水平移動や傾斜移動などにおける移動体91の移動領域(移動用面)が平滑面であるときは、動体走行用ガイド手段92がなくても移動体91を走行させることができる。 The linear body winding and rewinding mechanism according to the present invention can be arranged in an arbitrary posture such as a horizontal type (horizontal type), a vertical type (vertical type), or a sloped inclined type. The moving body 91 can be moved horizontally, vertically, or tilted depending on the equipment aspect of the mechanism. For example, when the moving area (moving surface) of the moving body 91 in a horizontal movement or an inclined movement is a smooth surface, the moving body 91 can be driven without the moving body traveling guide means 92.
 上記のうちで、移動体91垂直移動させたり傾斜移動させたりする場合、巻き取り筒体51による線状体巻き取りで移動体91を上昇させたりするが、移動体91を下降させる場合は、巻き取り筒体51から線状体を巻き戻しながら移動体91の自重を利用するものあってもよい。この方式は移動体91を自重で下降させるというものである。この方式の場合、巻き取り筒体51からの前記二種の線状体(正巻き用線状体81と逆巻き用線状体82)を移動体91に接続するものでもよいし、また、巻き取り筒体51からの一種の線状体を移動体91に接続するものでもよい。 Among the above, when the moving body 91 is moved vertically or inclined, the moving body 91 is raised by winding the linear body by the winding cylinder 51, but when the moving body 91 is lowered, There may be one that utilizes the weight of the moving body 91 while rewinding the linear body from the winding cylinder 51. In this method, the moving body 91 is lowered by its own weight. In the case of this method, the two types of linear bodies (forward winding linear body 81 and reverse winding linear body 82) from the winding cylinder 51 may be connected to the moving body 91. A kind of linear body from the cylindrical body 51 may be connected to the moving body 91.
 本発明機構を介して移動する移動体91の作業領域(移動領域)について、これ専用の走行路が設けられるとき、たとえば、トンネル型の専用走行路、高架型の専用走行路、中架型の専用走行路、低架型の専用走行路、宙吊り型の専用走行路、浮上型の専用走行路、タワー型の専用走行路などが設けられるとき、移動体91は、これらの作業領域(移動領域)を走行することで目的どおりに稼働することができる。かかる場合の移動体91は、これから理解できるなように、ほぼあらゆる領域で作業することができる。上記専用走行路のうちで、海・河・川・湖・沼・池・プールなどの水面(液面)を専用走行路として用いるとき、移動体91としては、舟体・浮体・筏などのような液面浮上体が用いられる。また、各種の上記専用走行路を走行するときの移動体91は、水底移動用・水中移動用・水面移動用・地中移動用・地面移動用・地上移動用・空中移動用などとして活用することができるものである。ただし、実施態様いかんでは、移動体91に防水措置を講じたり、気密措置を講じたり、安全措置を講じたり、また、その他の措置を講じたりするなど、技術的な配慮を要することがある。 For the work area (moving area) of the moving body 91 that moves through the mechanism of the present invention, when a dedicated traveling path is provided, for example, a tunnel-type dedicated traveling path, an elevated dedicated traveling path, an intermediate-type traveling path, etc. When a dedicated traveling path, an overhead dedicated traveling path, a suspended suspended dedicated traveling path, a floating dedicated traveling path, a tower dedicated traveling path, or the like is provided, the mobile body 91 is configured to use these work areas (moving areas). ) Can be operated as intended. In such a case, the moving body 91 can work in almost any area, as will be understood from now on. Among the above-mentioned exclusive traveling paths, when the water surface (liquid level) such as the sea, river, river, lake, swamp, pond, pool, etc. is used as the dedicated traveling path, the moving body 91 may be a ship body, a floating body, a dredger, etc. Such a liquid surface floating body is used. In addition, the moving body 91 when traveling on the above-described dedicated traveling paths is utilized for water bottom movement, underwater movement, water surface movement, underground movement, ground movement, ground movement, air movement, etc. It is something that can be done. However, depending on the embodiment, technical considerations may be required, such as taking waterproofing measures, taking airtight measures, taking safety measures, or taking other measures for the mobile body 91.
 本発明機構を介して移動する移動体91が、物品等に関する移動・搬送・輸送などのほか、人の移動や輸送、また、人と物の移動や輸送に適用されることがある。 The moving body 91 that moves through the mechanism of the present invention may be applied not only to movement / conveyance / transportation of articles and the like, but also to movement / transportation of people, and movement / transportation of people and objects.
 本発明に係る線状体用巻き取り巻き戻し機構は、物品等に関する移動・搬送・輸送などのほか、人の移動や輸送、また、人と物の移動や輸送など、この種の技術分野で多目的に利用することができるものである。本発明は、かかる線状体用巻き取り巻き戻し機構について、従来技術の課題が解消されており、正確で安定な動作性・耐久性・コストダウンなどを満足させるものであるから、産業上の利用可能性が高い。 The winding / rewinding mechanism for linear bodies according to the present invention is versatile in this kind of technical field such as movement / transport / transport of goods, etc., movement / transport of people, and movement / transport of people and objects. It can be used for. The present invention eliminates the problems of the prior art for such a winding / rewinding mechanism for a linear body, and satisfies an accurate and stable operability, durability, cost reduction, etc. Probability is high.
  11  線状体用の巻き取り巻き戻し機構
  21  取付基台
  22  台板
  23  軸受体
  24  軸受体
  25  軸受体
  31  原動機
  32  出力軸
  33  カップリング
  41  中心軸
  42  外部案内面
  51  巻き取り筒体
  52  中心孔
  53  側板部
  54  整列巻き用溝
  55  固定具
  56  固定具
  57  固定具
  61  ネジ管伸縮体
  62  内部ネジ管
  63  雄ネジ
  64  外部ネジ管
  65  雌ネジ
  71A 案内環
  71B 案内環
  72A 内部案内面
  72B 内部案内面
  73A 鍔部
  73B 鍔部
  81  正巻き用線状体
  82  逆巻き用線状体
  91  移動体
  92  移動体走行用のガイド手段
  93  固定具
  LP  ループ状部
  S1  案内用回転輪
  S2  案内用回転輪
  S3  案内用回転輪
  S4  案内用回転輪
  S5  案内用回転輪
DESCRIPTION OF SYMBOLS 11 Winding rewinding mechanism for linear bodies 21 Mounting base 22 Base plate 23 Bearing body 24 Bearing body 25 Bearing body 31 Motor | power_engine 32 Output shaft 33 Coupling 41 Central shaft 42 External guide surface 51 Winding cylinder 52 Central hole 53 Side plate portion 54 Alignment winding groove 55 Fixing tool 56 Fixing tool 57 Fixing tool 61 Screw pipe expansion and contraction body 62 Internal screw pipe 63 Male screw 64 External screw pipe 65 Female screw 71A Guide ring 71B Guide ring 72A Internal guide face 72B Internal guide face 73A鍔 part 73B 81 part 81 linear body for forward winding 82 linear body for reverse winding 91 moving body 92 guide means for traveling the mobile body 93 fixing device LP loop-like part S1 rotating wheel for guidance S2 rotating wheel for guidance S3 rotation for guidance Wheel S4 Guide rotating wheel S5 Guide rotating wheel

Claims (5)

  1.  中心軸と巻き取り筒体とネジ管伸縮体と二つの案内環と一対の軸受体とを構成要素として具備するものであり、かつ、前記中心軸の外径と前記二つの案内環の内外径と前記ネジ管伸縮体の内外径と前記巻き取り筒体の内外径とが、[中心軸の外径<二つの案内環の内外径<ネジ管伸縮体の内外径<巻き取り筒体の内外径]となる関係を満足させるように設定されていること、および、
     前記中心軸の外周面には周方向のトルク伝達機能と軸方向の滑り機能とを有する外部案内面が形成されていること、および、
     前記巻き取り筒体は外周面上において線状体を巻き取ったり巻き戻したりするためのものであり、かつ、その一側面には中心孔のある側板部が設けられているとともにその他側面が開放されていること、および、
     前記ネジ管伸縮体が雄ネジを外周面に有する内部ネジ管と雌ネジを内周面に有する外部ネジ管との組み合わせからなり、かつ、雄ネジを外周面に有する前記内部ネジ管と雌ネジを内周面に有する前記外部ネジ管とがその雌雄両ネジによりネジ結合されて、当該両ネジ管が軸方向に伸縮自在なるよう内外に組み合わされていること、および、
     前記一対の軸受体は前記中心軸を正逆回転自在に両端支持するためのものであること、および、
     前記両案内環の内周面には、前記中心軸の外部案内面と係合するためのものとして、周方向のトルク伝達機能と軸方向の滑り機能とを有する内部案内面が形成されていること、および、
     前記中心軸が前記一対の軸受体を介して正逆回転自在に両端支持されていること、および、
     前記中心軸の外部案内面と前記両案内環の内部案内面とが互いに係合されて、前記両案内環が前記中心軸の外周部に嵌め込まれており、かつ、前記中心軸の外周部に嵌め込まれた前記両案内環が、前記中心軸と一体回転するものであるとともに前記中心軸の軸方向沿いに移動自在なものであること、および、
     前記中心軸の外周部に嵌め込まれた前記両案内環の外周部に前記ネジ管伸縮体が嵌め込まれて、前記中心軸と前記両案内環と前記ネジ管伸縮体とが同心円状に並んでいること、および、
     前記両案内環の外周部に嵌め込まれた前記ネジ管伸縮体の外周部に前記巻き取り筒体が嵌め込まれて、前記中心軸と前記両案内環と前記ネジ管伸縮体と前記巻き取り筒体とが同心円状に並んでいること、および、
     前記一方の案内環と前記ネジ管伸縮体の内部ネジ管先端部と前記巻き取り筒体の側板部とが相互に固定されているとともに、前記他方の案内環と前記ネジ管伸縮体の内部ネジ管後端部とが相互に固定されており、かつ、前記ネジ管伸縮体の外部ネジ管基端部が、その外部ネジ管基端部側にあるの前記一方の軸受体に固定されていること
     を特徴とする線状体用巻き取り巻き戻し機構。
    It comprises a central shaft, a winding cylinder, a threaded tube telescopic body, two guide rings and a pair of bearing bodies as constituent elements, and the outer diameter of the central shaft and the inner and outer diameters of the two guide rings And the inner and outer diameters of the threaded tube telescopic body and the inner and outer diameters of the winding tube body [the outer diameter of the central axis <the inner and outer diameters of the two guide rings <the inner and outer diameters of the threaded tube stretching body <the inner and outer surfaces of the winding tube body Is set to satisfy the relationship of [diameter], and
    An outer guide surface having a circumferential torque transmission function and an axial sliding function is formed on the outer peripheral surface of the central shaft, and
    The winding cylinder is for winding and rewinding the linear body on the outer peripheral surface, and a side plate portion having a center hole is provided on one side surface and the other side surface is open. And
    The internal threaded tube and the female screw, wherein the threaded tube expansion / contraction body is a combination of an internal threaded tube having a male thread on the outer peripheral surface and an external threaded tube having a female thread on the inner peripheral surface. The external threaded pipe having the inner peripheral surface is screwed by both male and female screws, and both the threaded pipes are combined inside and outside so as to be extendable in the axial direction, and
    The pair of bearing bodies are for supporting both ends of the central axis so as to freely rotate forward and backward, and
    An inner guide surface having a torque transmitting function in the circumferential direction and a sliding function in the axial direction is formed on the inner peripheral surfaces of the both guide rings for engaging with the outer guide surface of the central shaft. And
    The center shaft is supported at both ends through the pair of bearing bodies so as to be rotatable forward and backward, and
    The outer guide surface of the central shaft and the inner guide surfaces of the guide rings are engaged with each other, the guide rings are fitted into the outer peripheral portion of the central shaft, and the outer peripheral portion of the central shaft The both guide rings fitted together rotate together with the central axis and are movable along the axial direction of the central axis; and
    The threaded pipe telescopic body is fitted on the outer peripheral part of the both guide rings fitted on the outer peripheral part of the central axis, and the central axis, the both guide rings, and the threaded pipe elastic body are arranged concentrically. And
    The winding cylinder is fitted to the outer peripheral part of the screw tube telescopic body fitted to the outer peripheral part of the both guide rings, and the central shaft, the both guide rings, the screw pipe telescopic body, and the winding cylindrical body. Are concentrically arranged, and
    The one guide ring, the internal threaded tube tip of the threaded tube telescopic body, and the side plate portion of the winding cylinder are fixed to each other, and the other guide ring and the internal thread of the threaded tube telescopic body The tube rear end is fixed to each other, and the external screw tube base end of the threaded tube expansion / contraction body is fixed to the one bearing body on the external screw tube base end side. A winding / rewinding mechanism for a linear body characterized by the above.
  2.  軸の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並ぶスプライン案内面により前記中心軸の外部案内面が形成されているとともに、筒の長さ方向に沿う凹条と凸状とが軸の周方向に交互に並ぶスプライン案内面により前記両案内環の内部案内面が形成されており、かつ、前記中心軸の外部案内面と前記両案内環の内部案内面とが互いに係合している請求項1に記載された線状体用巻き取り巻き戻し機構。 An outer guide surface of the central axis is formed by a spline guide surface in which recesses and projections along the length direction of the shaft are alternately arranged in the circumferential direction of the shaft, and a recess along the length direction of the tube, The inner guide surfaces of the two guide rings are formed by spline guide surfaces in which convex shapes are alternately arranged in the circumferential direction of the shaft, and the outer guide surfaces of the central shaft and the inner guide surfaces of the two guide rings are The winding / rewinding mechanism for a linear body according to claim 1, which is engaged with each other.
  3.  同期して巻き取ったり巻き戻したりするための正巻き用線状体と逆巻き用線状体とが前記巻き取り筒体の外周面に装備されている請求項1に記載された線状体用巻き取り巻き戻し機構。 The linear body according to claim 1, wherein a linear body for normal winding and a linear body for reverse winding for synchronously winding and rewinding are provided on the outer peripheral surface of the winding cylinder. Winding and rewinding mechanism.
  4.  正巻き用線状体の先端部と逆巻き用線状体の先端部とが往復動自在な移動体に接続されている請求項3に記載された線状体用巻き取り巻き戻し機構。 The winding / rewinding mechanism for a linear body according to claim 3, wherein the front end portion of the linear body for forward winding and the front end portion of the linear body for reverse winding are connected to a movable body that can reciprocate.
  5.  移動体が、水底移動用・水中移動用・水面移動用・地中移動用・地面移動用・地上移動用・空中移動用のうちから選択されたいずれかのものである請求項4に記載された線状体用巻き取り巻き戻し機構。 The moving body is any one selected from water bottom movement, underwater movement, water surface movement, underground movement, ground movement, ground movement, and air movement. Winding and unwinding mechanism for linear bodies.
PCT/JP2019/005318 2018-02-27 2019-02-14 Linear body winding/unwinding mechanism WO2019167645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502933A JPWO2019167645A1 (en) 2018-02-27 2019-02-14 Rewinding mechanism for linear body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033352 2018-02-27
JP2018-033352 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167645A1 true WO2019167645A1 (en) 2019-09-06

Family

ID=67805447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005318 WO2019167645A1 (en) 2018-02-27 2019-02-14 Linear body winding/unwinding mechanism

Country Status (2)

Country Link
JP (1) JPWO2019167645A1 (en)
WO (1) WO2019167645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090882A1 (en) * 2019-11-08 2021-05-14 Skマシナリー株式会社 Feeding device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002004A (en) * 2009-06-17 2011-01-06 Sk Machinery Kk Feeding device
WO2013137139A1 (en) * 2012-03-10 2013-09-19 Skマシナリー株式会社 Device and method for correcting feed error of feeder device
JP2016044757A (en) * 2014-08-22 2016-04-04 Skマシナリー株式会社 Linear body taking-up and rewinding mechanism
WO2018021536A1 (en) * 2016-07-29 2018-02-01 Skマシナリー株式会社 Movement device for reciprocating body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002004A (en) * 2009-06-17 2011-01-06 Sk Machinery Kk Feeding device
WO2013137139A1 (en) * 2012-03-10 2013-09-19 Skマシナリー株式会社 Device and method for correcting feed error of feeder device
JP2016044757A (en) * 2014-08-22 2016-04-04 Skマシナリー株式会社 Linear body taking-up and rewinding mechanism
WO2018021536A1 (en) * 2016-07-29 2018-02-01 Skマシナリー株式会社 Movement device for reciprocating body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090882A1 (en) * 2019-11-08 2021-05-14 Skマシナリー株式会社 Feeding device
JP7389999B2 (en) 2019-11-08 2023-12-01 Skマシナリー株式会社 feeding device

Also Published As

Publication number Publication date
JPWO2019167645A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP4989061B2 (en) Feeder
US11041557B2 (en) Speed reducer with electric motor
JP7088790B2 (en) Flexion meshing gear device
CN102216144A (en) Rotary-to-linear mechanism having an isolator
CN107186707B (en) Mechanical structure of flexible arm
JP6215000B2 (en) Industrial robot
WO2019167645A1 (en) Linear body winding/unwinding mechanism
KR101910889B1 (en) Robot joint actuator
JP2013099191A (en) Electro-mechanical device, actuator using the same, motor, robot and robot hand
EP2998081A1 (en) Link actuation device
KR20230107546A (en) gear pair and gear reducer
US9228626B2 (en) Tubular torsion bar
US11885405B2 (en) Housing for plastic gearbox and associated plastic gearbox and robot
CN111868412B (en) Planetary gearbox and related robot joint and robot
CN110978029A (en) Driving system for tendon-driven humanoid dexterous finger joint
CN106838266B (en) Bearing speed reducer retainer
JP6254039B2 (en) Telescopic actuator
JP7389999B2 (en) feeding device
US20230322533A1 (en) Brake device and winch having same
WO2014175685A1 (en) Wire decelerator
JP6120439B2 (en) Telescopic actuator
JP5866852B2 (en) Actuator
JP6159708B2 (en) Telescopic actuator
JP2014214800A (en) Telescopic actuator
JP2016043791A (en) Telescopic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761586

Country of ref document: EP

Kind code of ref document: A1