WO2019167542A1 - Light distribution control device - Google Patents

Light distribution control device Download PDF

Info

Publication number
WO2019167542A1
WO2019167542A1 PCT/JP2019/003523 JP2019003523W WO2019167542A1 WO 2019167542 A1 WO2019167542 A1 WO 2019167542A1 JP 2019003523 W JP2019003523 W JP 2019003523W WO 2019167542 A1 WO2019167542 A1 WO 2019167542A1
Authority
WO
WIPO (PCT)
Prior art keywords
light distribution
layer
refractive index
light
electrode layer
Prior art date
Application number
PCT/JP2019/003523
Other languages
French (fr)
Japanese (ja)
Inventor
旬臣 芝田
太田 益幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019167542A1 publication Critical patent/WO2019167542A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present invention relates to a light distribution control device.
  • a light distribution control device capable of changing the transmission state of external light such as sunlight incident from the outside is known.
  • Patent Document 1 includes a pair of transparent substrates, a pair of transparent electrode layers formed on each of the pair of transparent substrates, and an inclined cross-sectional structure layer and a liquid crystal layer sandwiched between the pair of transparent electrode layers.
  • a liquid crystal optical element is disclosed.
  • the refractive index of the liquid crystal layer is changed by a voltage applied to the pair of transparent electrodes, and the refraction angle of light passing through the interface between the inclined surface of the inclined sectional structure layer and the liquid crystal layer is changed.
  • the conventional liquid crystal optical element has a problem that when it is used for a window, a person in the room feels dazzled by the bent light.
  • an object of the present invention is to provide a light distribution control device that can brighten indoors and suppress glare felt by people who are indoors when used for windows. .
  • a light distribution control device includes a first substrate having translucency, and a second substrate having translucency, which is disposed to face the first substrate.
  • a light distribution layer that distributes incident light, and the light distribution layer is provided on the first substrate side and has a first concavo-convex structure layer having a plurality of first protrusions, A second concavo-convex structure layer provided on the second substrate side and having a plurality of second protrusions, and disposed between the plurality of first protrusions and between the plurality of second protrusions,
  • a refractive index variable layer whose refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer, and the refractive index variable layer
  • the interior when used for a window, the interior can be brightened and the glare felt by a person in the room can be suppressed.
  • FIG. 1 is a cross-sectional view of a light distribution control device according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the light distribution control device according to the embodiment.
  • FIG. 3A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the light distribution control device according to the embodiment.
  • FIG. 3B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the light distribution control device according to the embodiment.
  • FIG. 4 is a diagram illustrating an example when the light distribution control device according to the embodiment is applied to a window of a building.
  • FIG. 5 is a diagram showing the trajectory of the sun observed at a point of about 35 ° north latitude.
  • FIG. 6 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device according to the first embodiment for each incident angle of light.
  • FIG. 7 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device according to the second embodiment for each incident angle of light.
  • the x axis, the y axis, and the z axis indicate the three axes of the three-dimensional orthogonal coordinate system.
  • the z-axis direction is the vertical direction
  • the direction perpendicular to the z-axis is the horizontal direction.
  • the positive direction of the z-axis is vertically upward.
  • the “thickness direction” means the thickness direction of the light distribution control device, which is a direction perpendicular to the main surfaces of the first substrate and the second substrate
  • plane view means , When viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
  • FIG. 1 is a cross-sectional view of a light distribution control device 1 according to the present embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the light distribution control device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
  • the light distribution control device 1 is an optical device that controls light incident on the light distribution control device 1.
  • the light distribution control device 1 is a light distribution element that can change the traveling direction of light incident on the light distribution control device 1 (that is, distribute light) and emit the light.
  • the light distribution control device 1 is configured to transmit incident light, and includes a first substrate 10, a second substrate 20, a light distribution layer 30, One electrode layer 40 and a second electrode layer 50 are provided.
  • an adhesion layer for closely adhering the first electrode layer 40 and the first uneven structure layer 31a of the light distribution layer 30 may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side. Similarly, even if an adhesion layer is provided on the surface of the second electrode layer 50 on the light distribution layer 30 side so that the second electrode layer 50 and the second uneven structure layer 31b of the light distribution layer 30 are adhered to each other. Good.
  • the adhesion layer is, for example, a translucent adhesive sheet or a resin material generally called a primer.
  • the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the paired first substrate 10 and second substrate 20. It is a configuration. In order to maintain the distance between the first substrate 10 and the second substrate 20, a plurality of particulate spacers may be dispersed in the plane, or a columnar structure may be formed.
  • the light distribution control device 1 can be realized, for example, as a window with a light distribution function by being installed in a building window.
  • the light distribution control device 1 is used by being attached to a transparent base material such as an existing window glass through an adhesive layer, for example.
  • the light distribution control device 1 may be used as a building window itself.
  • the first substrate 10 is on the outdoor side
  • the second substrate 20 is on the indoor side
  • the second side surface 33b is on the upper side (ceiling side).
  • the refractive index of the refractive index variable layer 32 of the light distribution layer 30 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50. Thereby, a difference in refractive index is generated at the interface between the first uneven structure layer 31a and the refractive index variable layer 32, and light is distributed using light refraction and reflection (total reflection) by the interface. Further, a difference in refractive index also occurs at the interface between the second uneven structure layer 31b and the refractive index variable layer 32, and light is partially diffused by utilizing light refraction and reflection (total reflection) by the interface. .
  • the light distribution control device 1 switches between the transparent state and the light distribution state according to the magnitude of the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the light distribution direction (traveling direction) of light in the light distribution state changes according to the magnitude of the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the first substrate 10 and the second substrate 20 are base materials having translucency.
  • a glass substrate or a resin substrate can be used as the first substrate 10 and the second substrate 20.
  • Examples of the material for the glass substrate include soda glass, alkali-free glass, and high refractive index glass.
  • Examples of the material for the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA acrylic
  • the glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage of less scattering at the time of destruction.
  • the first substrate 10 and the second substrate 20 may be made of the same material, or may be made of different materials. Moreover, the 1st board
  • the second substrate 20 is a counter substrate facing the first substrate 10 and is disposed at a position facing the first substrate 10.
  • the first substrate 10 and the second substrate 20 are arranged in parallel with a predetermined distance of, for example, 1 ⁇ m to 1000 ⁇ m.
  • substrate 20 are adhere
  • the planar view shape of the first substrate 10 and the second substrate 20 is, for example, a rectangular shape such as a square or a rectangle, but is not limited thereto, and may be a polygon other than a circle or a rectangle, Any shape can be employed.
  • the light distribution layer 30 is disposed between the first electrode layer 40 and the second electrode layer 50.
  • the light distribution layer 30 has translucency and transmits incident light.
  • the light distribution layer 30 distributes the incident light. That is, the light distribution layer 30 changes the traveling direction of light when the light passes through the light distribution layer 30.
  • the light distribution layer 30 includes a first uneven structure layer 31a, a second uneven structure layer 31b, and a refractive index variable layer 32.
  • light is reflected at the interface between the first concavo-convex structure layer 31a and the refractive index variable layer 32, whereby the traveling direction of the light transmitted through the light distribution control device 1 is bent.
  • the first concavo-convex structure layer 31a is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven. As shown in FIG. 2, the first uneven structure layer 31 a includes a plurality of first protrusions 33 and a plurality of first recesses 34.
  • the first concavo-convex structure layer 31a is a concavo-convex structure constituted by a plurality of first convex portions 33 having a micro-order size. Between the plurality of first protrusions 33 are a plurality of first recesses 34. That is, one first concave portion 34 is between two adjacent first convex portions 33.
  • a plurality of first protrusions 33 are connected to each other at the root (on the first electrode layer 40 side), but the present invention is not limited to this.
  • the several 1st convex part 33 may be isolate
  • a layer (film) -like base portion serving as a base of the first convex portion 33 may be provided between the plurality of first convex portions 33 and the first electrode layer 40.
  • the plurality of first protrusions 33 are a plurality of protrusions arranged side by side in the z-axis direction parallel to the main surface of the first substrate 10 (the surface on which the first electrode layer 40 is provided). That is, in the present embodiment, the z-axis direction is an arrangement direction of the plurality of first convex portions 33.
  • the plurality of first protrusions 33 are long ridges extending in a direction orthogonal to the arrangement direction. Specifically, the plurality of first protrusions 33 are formed in a stripe shape extending in the x-axis direction. Each of the plurality of first protrusions 33 extends linearly along the x-axis direction. For example, each of the plurality of first protrusions 33 is a quadrangular prism that is disposed sideways with respect to the first electrode layer 40. The plurality of first convex portions 33 may extend while meandering along the x-axis direction. For example, the plurality of first protrusions 33 may be formed in a wavy stripe shape.
  • each of the plurality of first protrusions 33 has a shape that tapers from the root to the tip.
  • the cross-sectional shape of each of the plurality of first protrusions 33 is a tapered shape that tapers along the direction from the first substrate 10 toward the second substrate 20.
  • the cross-sectional shape of the first convex portion 33 in the yz cross section is a substantially trapezoid that tapers along the thickness direction of the light distribution control device 1, but is not limited thereto.
  • the cross-sectional shape of the first convex portion 33 may be a substantially triangular shape, other polygons, or a polygon including a curve.
  • the shapes of the plurality of first protrusions 33 are the same as each other, but may be different.
  • the substantially trapezoidal or triangular shape includes a trapezoidal or triangular shape with rounded vertices.
  • the substantially trapezoidal shape or the substantially triangular shape includes a case where each side is not completely straight, for example, a case where the side is slightly bent with a displacement of about several percent of the length of each side, or a minute unevenness. Cases are also included.
  • each of the plurality of first convex portions 33 has a first side surface 33a and a second side surface 33b.
  • the first side surface 33a and the second side surface 33b are surfaces that intersect the z-axis direction.
  • Each of the first side surface 33a and the second side surface 33b is an inclined surface that is inclined at a predetermined inclination angle with respect to the y-axis direction.
  • the distance between the first side surface 33 a and the second side surface 33 b, that is, the width of the first convex portion 33 gradually decreases from the first substrate 10 toward the second substrate 20.
  • the first side surface 33a is a side surface on the vertically lower side among the plurality of side surfaces constituting the first convex portion 33. .
  • the first side surface 33a is a refracting surface that refracts incident light.
  • the second side surface 33b is a side surface on the vertically upper side among the plurality of side surfaces constituting the first convex portion 33. .
  • the second side surface 33b is a reflecting surface that reflects incident light. The reflection here is total reflection, and the second side surface 33b functions as a total reflection surface.
  • the first side surface 33a and the second side surface 33b refract and reflect at least part of the light incident on the light distribution layer 30. Thereby, at least a part of the light passing through the light distribution layer 30 is bent up and down.
  • the inclination angle ⁇ down of the first side surface 33a and the inclination angle ⁇ up of the second side surface 33b are, for example, in the range of 0 ° to 25 °.
  • the two base angles of the substantially trapezoidal shape or the substantially triangular shape that are the cross-sectional shape of the first convex portion 33 are 65 ° or more and 90 ° or less, respectively.
  • at least one of the two base angles may be smaller than 65 °.
  • the width (length in the z-axis direction) of the plurality of first protrusions 33 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but is not limited thereto.
  • the interval between two adjacent first convex portions 33 is, for example, 0 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the material of the first concavo-convex structure layer 31a for example, a light-transmissive resin material such as acrylic resin, epoxy resin, or silicone resin can be used.
  • the first uneven structure layer 31a is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
  • the first concavo-convex structure layer 31a can form a concavo-convex structure with a trapezoidal cross section by mold pressing using an acrylic resin having a refractive index of 1.5 for green light.
  • the second concavo-convex structure layer 31b is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven. As shown in FIG. 2, the second uneven structure layer 31 b includes a plurality of second protrusions 35 and a plurality of second recesses 36.
  • the second concavo-convex structure layer 31b is a concavo-convex structure constituted by a plurality of second convex portions 35 having a micro-order size. Between the plurality of second convex portions 35 are a plurality of second concave portions 36. That is, one second concave portion 36 is between two adjacent second convex portions 35.
  • a plurality of second convex portions 35 are connected to each other at the root (second electrode layer 50 side), but the present invention is not limited to this.
  • the plurality of second convex portions 35 may be individually separated.
  • a layer (film) -like base portion serving as a base of the second convex portion 35 may be provided between the plurality of second convex portions 35 and the second electrode layer 50.
  • the plurality of second protrusions 35 are a plurality of protrusions arranged side by side in the z-axis direction parallel to the main surface of the second substrate 20 (the surface on which the second electrode layer 50 is provided). That is, in the present embodiment, the z-axis direction is an arrangement direction of the plurality of second convex portions 35.
  • the plurality of second convex portions 35 are long ridges extending in a direction orthogonal to the arrangement direction. Specifically, the plurality of second convex portions 35 are formed in a stripe shape extending in the x-axis direction. Each of the plurality of second convex portions 35 extends linearly along the x-axis direction. For example, each of the plurality of second convex portions 35 is a rectangular column that is disposed sideways with respect to the second electrode layer 50. The plurality of second convex portions 35 may extend while meandering along the x-axis direction. For example, the plurality of second convex portions 35 may be formed in a wavy stripe shape.
  • each of the plurality of first protrusions 33 of the first uneven structure layer 31a and each of the plurality of second protrusions 35 of the second uneven structure layer 31b extend in the same direction.
  • each of the plurality of second convex portions 35 has a shape that tapers from the root to the tip.
  • the cross-sectional shape of each of the plurality of second convex portions 35 is a tapered shape that tapers along the direction from the second substrate 20 toward the first substrate 10.
  • the cross-sectional shape in the yz section of the second convex portion 35 is a substantially trapezoidal shape that tapers along the thickness direction of the light distribution control device 1, but is not limited thereto.
  • the cross-sectional shape of the second convex portion 35 may be a substantially triangular shape, other polygons, or a polygon including a curve.
  • the shapes of the plurality of second convex portions 35 are the same as each other, but may be different.
  • each of the plurality of second convex portions 35 has a first side surface 35a and a second side surface 35b.
  • the first side surface 35a and the second side surface 35b are surfaces that intersect the z-axis direction.
  • Each of the first side surface 35a and the second side surface 35b is an inclined surface that is inclined at a predetermined inclination angle with respect to the y-axis direction.
  • the distance between the first side surface 35 a and the second side surface 35 b, that is, the width of the second convex portion 35 gradually decreases from the second substrate 20 toward the first substrate 10.
  • the first side surface 35a is a side surface on the vertically lower side among the plurality of side surfaces constituting the second convex portion 35. .
  • the second side surface 35b is a side surface on the vertically upper side among the plurality of side surfaces constituting the second convex portion 35. .
  • the first side surface 35a and the second side surface 35b refract or reflect part of the light that has passed through the refractive index variable layer 32. Thereby, a part of the light passing through the light distribution layer 30 is diffused.
  • the inclination angle ⁇ down of the first side surface 35a and the inclination angle ⁇ up of the second side surface 35b are, for example, in the range of 0 ° to 25 °.
  • the two base angles of the substantially trapezoidal shape or the substantially triangular shape which are the cross-sectional shape of the second convex portion 35 are 65 ° or more and 90 ° or less, respectively.
  • at least one of the two base angles may be smaller than 65 °.
  • the width (length in the z-axis direction) of the plurality of second convex portions 35 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but is not limited thereto. Further, the interval between two adjacent second convex portions 35 is, for example, 0 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the material of the second concavo-convex structure layer 31b is the same as the material of the first concavo-convex structure layer 31a.
  • a resin material having optical transparency such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
  • the material of the second uneven structure layer 31b may be different from the material of the first uneven structure layer 31a.
  • the first uneven structure layer 31a and the second uneven structure layer 31b may have the same or different refractive indexes.
  • the second uneven structure layer 31b is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
  • the second concavo-convex structure layer 31b can form a concavo-convex structure having a trapezoidal cross section by mold pressing using an acrylic resin having a refractive index of 1.5 for green light.
  • the second concavo-convex structure layer 31b has, for example, a shape and arrangement obtained by inverting the first concavo-convex structure layer 31a.
  • the arrangement interval of the first projections 33 and the arrangement interval of the second projections 35 are equal, and the tip of the first projection 33 and the tip of the second projection 35 face each other.
  • the distal end portion of the first convex portion 33 and the distal end portion of the second convex portion 35 may be shifted from each other in the z-axis direction. Further, the arrangement interval of the first protrusions 33 and the arrangement interval of the second protrusions 35 may be different.
  • first convex portion 33 and the second convex portion 35 may be different in size and shape. Specifically, the inclination angle ⁇ down of the first side surface 33 a of the first convex portion 33 may be different from the inclination angle ⁇ down of the first side surface 35 a of the second convex portion 35. The inclination angle ⁇ up of the second side surface 33 b of the first convex portion 33 may be different from the inclination angle ⁇ up of the second side surface 35 b of the second convex portion 35.
  • the refractive index variable layer 32 is disposed so as to fill between the plurality of first protrusions 33 (that is, the first recesses 34) and between the plurality of second protrusions 35 (that is, the second recesses 36). Yes. Specifically, the refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50. For example, as shown in FIG. 2, since the tip of the first protrusion 33 and the tip of the second protrusion 35 are separated from each other, the refractive index variable layer 32 includes the first recess 34 and the second recess 36.
  • the refractive index variable layer 32 is formed by the first recess 34 and the second recess 36. It may be provided separately for each space.
  • the refractive index of the refractive index variable layer 32 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • the refractive index variable layer 32 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light band when an electric field is applied.
  • the electric field changes according to the voltage applied between the first electrode layer 40 and the second electrode layer 50.
  • a DC voltage is applied between the first electrode layer 40 and the second electrode layer 50 by a control unit (not shown).
  • the refractive index variable layer 32 includes an insulating liquid 37 and nanoparticles 38 included in the insulating liquid 37.
  • the refractive index variable layer 32 is a nanoparticle dispersion layer in which countless nanoparticles 38 are dispersed in an insulating liquid 37.
  • the insulating liquid 37 is a transparent liquid having insulating properties, and is a solvent serving as a dispersion medium in which the nanoparticles 38 are dispersed as a dispersoid.
  • a material having a refractive index (solvent refractive index) of about 1.3 to about 1.6 can be used.
  • an insulating liquid 37 having a refractive index of about 1.4 is used.
  • the kinematic viscosity of the insulating liquid 37 is preferably about 100 mm 2 / s.
  • the insulating liquid 37 has a low dielectric constant (for example, less than the dielectric constant of the first concavo-convex structure layer 31a and the second concavo-convex structure layer 31b) and non-flammability (for example, a high flash point having a flash point of 250 ° C. or higher). ) And low volatility.
  • the insulating liquid 37 is a hydrocarbon such as an aliphatic hydrocarbon, naphtha, and other petroleum solvents, a low molecular weight halogen-containing polymer, or a mixture thereof.
  • the insulating liquid 37 is a halogenated hydrocarbon such as a fluorinated hydrocarbon.
  • silicone oil or the like can be used.
  • a plurality of nanoparticles 38 are dispersed in the insulating liquid 37.
  • the nanoparticles 38 are fine particles having a particle size of nano-order size. Specifically, when the wavelength of incident light is ⁇ , the particle size of the nanoparticles 38 is preferably ⁇ / 4 or less. By setting the particle size of the nanoparticles 38 to ⁇ / 4 or less, light scattering by the nanoparticles 38 can be reduced, and an average refractive index of the nanoparticles 38 and the insulating liquid 37 can be obtained.
  • the particle size of the nanoparticles 38 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
  • the nanoparticles 38 are made of, for example, a high refractive index material. Specifically, the refractive index of the nanoparticles 38 is higher than the refractive index of the insulating liquid 37. In the present embodiment, the refractive index of the nanoparticles 38 is higher than the refractive indexes of the first uneven structure layer 31a and the second uneven structure layer 31b.
  • the nanoparticles 38 for example, metal oxide fine particles can be used.
  • the nanoparticles 38 may be made of a material having a high transmittance.
  • transparent zirconia particles having a refractive index of 2.1 composed of zirconium oxide (ZrO 2 ) are used as the nanoparticles 38.
  • the nanoparticles 38 are not limited to zirconium oxide, and may be composed of titanium oxide (TiO 2 : refractive index 2.5) or the like.
  • the nanoparticles 38 are charged particles that are charged.
  • the nanoparticles 38 can be charged positively (plus) or negatively (minus).
  • the nanoparticles 38 are positively (plus) charged.
  • the refractive index variable layer 32 configured in this way, charged nanoparticles 38 are dispersed throughout the insulating liquid 37.
  • zirconia particles having a refractive index of 2.1 as nanoparticles 38 and dispersed in an insulating liquid 37 having a solvent refractive index of about 1.4 are used as the refractive index variable layer 32. It is said.
  • the refractive index (average refractive index) of the entire refractive index variable layer 32 is such that the first concavo-convex structure layer 31 a and the second concavo-convex structure layer 31 b in a state where the nanoparticles 38 are uniformly dispersed in the insulating liquid 37.
  • the refractive index is set to be substantially the same, and in the present embodiment, it is about 1.5.
  • the overall refractive index of the refractive index variable layer 32 can be changed by adjusting the concentration (amount) of the nanoparticles 38 dispersed in the insulating liquid 37.
  • the amount of the nanoparticles 38 is, for example, such that it is buried in the first recess 34 of the first uneven structure layer 31a. In this case, the concentration of the nanoparticles 38 with respect to the insulating liquid 37 is about 10% to about 30%.
  • the refractive index variable layer 32 Since the nanoparticles 38 dispersed in the insulating liquid 37 are charged, when an electric field is applied to the refractive index variable layer 32, the nanoparticles 38 migrate in the insulating liquid 37 in accordance with the electric field distribution, and the insulating liquid 37 37 is unevenly distributed. As a result, the particle distribution of the nanoparticles 38 in the refractive index variable layer 32 can be changed to give the concentration distribution of the nanoparticles 38 in the refractive index variable layer 32, so that the refractive index in the refractive index variable layer 32 can be obtained. Distribution changes. That is, the refractive index of the refractive index variable layer 32 partially changes. Thus, the refractive index variable layer 32 mainly functions as a refractive index adjustment layer that can adjust the refractive index for light in the visible light band.
  • the refractive index variable layer 32 includes, for example, the first substrate 10 on which the first electrode layer 40 and the first uneven structure layer 31a are formed, and the second substrate on which the second electrode layer 50 and the second uneven structure layer 31b are formed.
  • the refractive index variable material is injected by a vacuum injection method.
  • the refractive index variable layer 32 after the refractive index variable material is dropped onto the first electrode layer 40 and the first uneven structure layer 31a of the first substrate 10, the second electrode layer 50 and the second uneven structure layer 31b are formed. You may form by bonding the formed 2nd board
  • the refractive index variable material is an insulating liquid 37 in which nanoparticles 38 are dispersed. An insulating liquid 37 in which nanoparticles 38 are dispersed is sealed between the first substrate 10 and the second substrate 20.
  • the thickness of the refractive index variable layer 32 is, for example, 1 ⁇ m to 1000 ⁇ m, but is not limited thereto.
  • the first electrode layer 40 and the second electrode layer 50 are electrically paired, and are configured to be able to apply an electric field to the light distribution layer 30. .
  • the first electrode layer 40 and the second electrode layer 50 are paired not only electrically but also in arrangement, and are arranged between the first substrate 10 and the second substrate 20 so as to face each other. ing. Specifically, the first electrode layer 40 and the second electrode layer 50 are arranged so as to sandwich the light distribution layer 30.
  • the first electrode layer 40 and the second electrode layer 50 are translucent and transmit incident light.
  • the first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers.
  • a conductor-containing resin made of a resin containing a conductor such as a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), silver nanowires or conductive particles, or A metal thin film such as a silver thin film can be used.
  • the 1st electrode layer 40 and the 2nd electrode layer 50 may be these single layer structures, and these laminated structures (for example, laminated structure of a transparent metal oxide and a metal thin film) may be sufficient as them.
  • each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
  • the first electrode layer 40 is disposed between the first substrate 10 and the first uneven structure layer 31a. Specifically, the first electrode layer 40 is formed on the surface of the first substrate 10 on the light distribution layer 30 side.
  • the second electrode layer 50 is disposed between the second concavo-convex structure layer 31b and the second substrate 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
  • the 1st electrode layer 40 and the 2nd electrode layer 50 are comprised so that electrical connection with an external power supply is attained, for example.
  • electrode pads or the like for connecting to an external power source may be formed on the first substrate 10 and the second substrate 20 by being drawn from each of the first electrode layer 40 and the second electrode layer 50.
  • the first electrode layer 40 and the second electrode layer 50 are each formed by forming a conductive film such as ITO by vapor deposition, sputtering, or the like, for example.
  • FIG. 3A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the light distribution control device 1 according to the present embodiment.
  • the path of the light L incident obliquely on the light distribution control device 1 is indicated by a thick arrow.
  • FIG. 3A no voltage is applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the first electrode layer 40 and the second electrode layer 50 are equipotential with each other. In this case, since no electric field is applied to the refractive index variable layer 32, the nanoparticles 38 are dispersed throughout the insulating liquid 37.
  • the refractive index of the refractive index variable layer 32 in a state where the nanoparticles 38 are dispersed throughout the insulating liquid 37 is about 1.5 as described above.
  • the refractive index of the 1st convex part 33 of the 1st uneven structure layer 31a and the refractive index of the 2nd convex part 35 of the 2nd uneven structure layer 31b are about 1.5. That is, the plurality of first protrusions 33, the plurality of second protrusions 35, and the refractive index variable layer 32 have the same refractive index. Therefore, the refractive index is uniform throughout the light distribution layer 30.
  • the light L is actually incident on the first substrate 10, emitted from the second substrate 20, passed through the interface between the first substrate 10 and the first electrode layer 40, and the second Although it is refracted when the passing medium changes, such as when passing through the interface between the electrode layer 50 and the second substrate 20, it is not shown in FIG. 3A.
  • the traveling direction of the light L in the light distribution layer 30 is illustrated in detail. The same applies to FIG. 3B described later.
  • FIG. 3B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the light distribution control device 1 according to the present embodiment.
  • the path of the light L incident obliquely on the light distribution control device 1 is indicated by a thick arrow.
  • a predetermined voltage is applied between the first electrode layer 40 and the second electrode layer 50.
  • a voltage having a potential difference of about several tens of volts is applied to the first electrode layer 40 and the second electrode layer 50.
  • a predetermined electric field is applied to the refractive index variable layer 32, and therefore, in the refractive index variable layer 32, the charged nanoparticles 38 migrate in the insulating liquid 37 according to the electric field distribution. That is, the nanoparticles 38 are electrophoresed in the insulating liquid 37.
  • the second electrode layer 50 is at a higher potential than the first electrode layer 40. For this reason, the positively charged nanoparticles 38 migrate toward the first electrode layer 40, and enter and accumulate in the first recesses 34 of the first concavo-convex structure layer 31a.
  • the nanoparticles 38 are unevenly distributed on the first uneven structure layer 31a side in the refractive index variable layer 32, whereby the particle distribution of the nanoparticles 38 is changed, and the refractive index distribution in the refractive index variable layer 32 is uniform. It is not like. Specifically, as shown in FIG. 3B, a concentration distribution of nanoparticles 38 is formed in the refractive index variable layer 32.
  • the concentration of the nanoparticles 38 is high, and in the second region 32b on the second uneven structure layer 31b side, the concentration of the nanoparticles 38 is low. Accordingly, a difference in refractive index occurs between the first region 32a and the second region 32b.
  • the refractive index of the nanoparticles 38 is higher than the refractive index of the insulating liquid 37. Therefore, the refractive index of the first region 32a where the concentration of the nanoparticles 38 is high is higher than the refractive index of the second region 32b where the concentration of the nanoparticles 38 is low, that is, the proportion of the insulating liquid 37 is large.
  • the refractive index of the first region 32a is greater than about 1.5 to about 1.8 depending on the concentration of the nanoparticles 38.
  • the refractive index of the second region 32b is a value less than about 1.4 to less than about 1.5 depending on the concentration of the nanoparticles 38.
  • the refractive index of the plurality of first protrusions 33 is about 1.5, when a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the first protrusions 33 and the first protrusions 33 A refractive index difference occurs between the region 32a and the region 32a. Therefore, as shown in FIG. 3B, when the light L is incident from an oblique direction, the incident light L is refracted by the first side surface 33a of the first convex portion 33 and then totally reflected by the second side surface 33b. .
  • the refractive index of the plurality of second convex portions 35 is about 1.5, a slight difference in refractive index is also generated between the second convex portion 35 and the second region 32b.
  • the refractive index difference between the second convex portion 35 and the second region 32b is smaller than the refractive index difference between the first convex portion 33 and the first region 32a.
  • a part of the light totally reflected by the second side surface 33 b of the first convex portion 33 is refracted or reflected by the first side surface 35 a or the second side surface 35 b of the second convex portion 35. For this reason, the light totally reflected by the second side surface 33b is partially scattered.
  • the light L incident obliquely downward is bent in the traveling direction by the light distribution control device 1 and irradiated to the indoor ceiling surface or the like. At this time, a part of the light is scattered and emitted to a wide range.
  • each of the plurality of first protrusions 33 and each of the plurality of second protrusions 35 and the refractive index occurs at the interface with the variable layer 32, and the traveling direction of light incident on the light distribution layer 30 is bent. That is, the light distribution control device 1 enters a light distribution state in which incident light is transmitted with its traveling direction bent.
  • the degree of aggregation of the nanoparticles 38 can be changed depending on the magnitude of the applied voltage.
  • the refractive index of the refractive index variable layer 32 changes depending on the degree of aggregation of the nanoparticles 38. For this reason, it is also possible to change the light distribution direction by changing the difference in refractive index between the first side surface 33 a and the second side surface 33 b (interface) of the first convex portion 33.
  • FIG. 4 is a diagram showing an example when applied to the window of the building 90 of the light distribution control device 1 according to the present embodiment.
  • the light distribution control device 1 is used by being attached to a window glass 93, for example, and is disposed so as to incorporate light into a building 90.
  • FIG. 4 shows a building having a height from the floor 92 to the ceiling 91 of 2.7 m and a depth of 9 m as an example of the building 90.
  • the window glass 93 is provided in a range of height 2.4 m from 30 cm above the floor to the ceiling 91.
  • the light distribution control device 1 is provided in the upper half area of the window glass 93. At this time, a light distribution control device having characteristics different from those of the light distribution control device 1 may be provided in the lower half region of the window glass 93. Alternatively, a device that does not have a light distribution function may be provided in the lower half region. The light distribution control device 1 may be provided on the entire window glass 93.
  • the light distribution control device 1 causes the light to travel toward the ceiling 91 by totally reflecting outside light such as sunlight, and illuminates the indoor ceiling 91 brightly. At this time, the light distribution control device 1 is required to suppress the glare felt by the person 94 who is indoors.
  • the person 94 is present at a position 1.6 m away from the window glass 93, and shows a case where the person 94 is standing and a case where he is sitting.
  • the height of the line of sight when standing is 1.6 m from the floor 92
  • the height of the line of sight when sitting is 1.2 m from the floor 92.
  • the standing person 94 and the sitting person 94 are illustrated in a shifted manner, but in the following description, the case where both are present at a position 1.6 m away from the window glass 93 is shown. Assumed.
  • FIG. 4 schematically shows the light distribution area 80 and the direct-light area 81.
  • Each of the light distribution region 80 and the direct-light region 81 is expressed in the range of the light emission angle ⁇ out when a predetermined part of the light distribution control device 1 is used as a reference.
  • the emission angle ⁇ out is expressed as an angle with respect to the horizontal plane, and is expressed as positive on the upper side and negative on the lower side.
  • the predetermined part is the lower end of the light distribution control device 1.
  • the light distribution region 80 is a region through which light distributed by the light distribution control device 1 passes.
  • the light distribution region 80 is a range in which the light emission angle ⁇ out from the lower end of the light distribution control device 1 is 3.6 ° or more and 80 ° or less.
  • the lower limit value (here, 3.6 °) of the emission angle ⁇ out of the light distribution region 80 is defined as a range in which the light distributed by the light distribution control device 1 does not enter the line of sight of the person 94 standing.
  • the lower limit value is calculated by tan ⁇ 1 (0.1 / 1.6).
  • the lower limit value of the emission angle ⁇ out is not limited to this, and may be determined so that light can reach the deepest part of the building 90.
  • the lower limit value is a difference from the lower end of the light distribution control device 1 to the ceiling 91 (here, 1.2 m) and a distance from the light distribution control device 1 to the innermost part of the building 90 (here, 9m).
  • the lower limit value is calculated by tan ⁇ 1 (1.2 / 9) and may be 7.6 °.
  • the direct-light region 81 is a region through which light that can enter the eyes of the person 94 through the light distribution control device 1 passes. Specifically, the direct-light region 81 is a region through which light that directly enters the eyes of the person 94 from the light distribution control device 1 passes. For example, the direct-light region 81 is a range in which the light emission angle ⁇ out from the lower end of the light distribution control device 1 is ⁇ 43 ° to 3.6 °.
  • the upper limit value (here, 3.6 °) of the emission angle ⁇ out of the direct-light region 81 is the boundary between the range where the light distributed by the light distribution control device 1 does not enter the line of sight of the standing person 94 and the range where it enters. Is a value corresponding to. That is, the upper limit value of the direct-light region 81 corresponds to the lower limit value of the light distribution region 80.
  • the solid line indicating the lower limit value is the upper end of the light distribution control device 1 and the line of sight of the person 94 sitting. It is represented by a line parallel to the broken line connecting
  • the light distribution control device 1 is not only required to introduce a large amount of light toward the ceiling 91 but also to suppress the glare of the person 94 indoors. Is done.
  • the average value of the light distribution rate is 30% or more in order to brighten the interior.
  • the light distribution rate indicates the ratio of light distributed to the light transmitted through the light distribution control device 1 when the light distribution control device 1 is in the light distribution state.
  • the light distribution rate is represented by the intensity of light distributed relative to the intensity of incident light.
  • the light distributed is light distributed toward the ceiling 91 as shown in FIG. 4, for example, light emitted from the light distribution control device 1 within a range of 4 ° to 80 °. is there. That is, the light to be distributed is light that passes through the light distribution control device 1 and passes through the light distribution region 80.
  • the light distribution control device 1 does not have to have an average value of the light distribution rate of all incident angles of light of 30% or more, and the average value of the light distribution rate within the predetermined range of the incident angle ⁇ in is 30. % Or more.
  • the range of the incident angle ⁇ in depends on the latitude of the place where the light distribution control device 1 is installed, the installation direction of the light distribution control device 1, the surrounding environment, and the like. For example, a case is assumed where the light distribution control device 1 is installed in the south direction in Osaka at about 35 ° north latitude. At this time, the sun moves to draw a locus shown in FIG. 5 according to the season.
  • FIG. 5 is a diagram showing the movement trajectory of the sun observed at a point of about 35 ° north latitude.
  • the horizontal axis indicates the azimuth angle of the sun with 0 ° as the south, the negative side on the east side, and the positive side on the west side.
  • the vertical axis represents the solar altitude. Since the light distribution control device 1 is provided vertically, the solar altitude corresponds to the incident angle ⁇ in of light with respect to the light distribution control device 1.
  • the light distribution rate is 30% or more as the average value in the range where the incident angle ⁇ in, which is the range through which the sun during the spring, autumn and winter days can pass, is 20 ° or more and 60 ° or less.
  • the direct radiation rate is a ratio of light emitted to the direct radiation region 81 with respect to light incident on the light distribution control device 1 in the light distribution state.
  • the direct radiation rate is represented by the intensity of light emitted to the direct radiation area 81 with respect to the intensity of incident light.
  • the light emitted to the direct irradiation region 81 is light emitted from the light distribution control device 1 within a range of ⁇ 41 ° to 3.6 °.
  • the average value of the direct radiation rate with respect to the light of all incident angles may not be 10% or less, and the average value of the direct radiation rate within the predetermined range of the incident angle ⁇ in is 10% or less. Also good.
  • the range of the incident angle ⁇ in at this time is, for example, a range of 0 ° to 60 °.
  • the average value of the lower irradiation rate is 10% or less.
  • the downward irradiation rate is a ratio of light emitted downward as it is with respect to light incident on the light distribution control device 1 in the light distribution state. That is, the downward irradiation rate corresponds to the proportion of light that travels straight without being distributed by the light distribution control device 1 in the light distribution state.
  • the downward irradiation rate is represented by the intensity of light emitted downward relative to the intensity of incident light.
  • the average value of the lower irradiation rate for light of all incident angles may not be 10% or less, and the average value of the lower irradiation rate within the predetermined range of the incident angle ⁇ in is 10% or less. There may be.
  • the range of the incident angle ⁇ in at this time is, for example, a range of 60 ° to 80 °.
  • the condition is that the average value of the light distribution rate is 30% or more, the average value of the direct radiation rate is 10% or less, and the average value of the lower irradiation rate is 10% or less. It is desirable to satisfy. Note that this condition is merely an example, and any one of the light distribution rate, direct radiation rate, and downward irradiation rate may not satisfy this condition.
  • the inclination angle ⁇ down of the first side surface 33 a of the first convex portion 33, the inclination angle ⁇ up of the second side surface 33 b, and the inclination angle of the first side surface 35 a of the second convex portion 35 respectively.
  • the combinations of ⁇ down and the inclination angle ⁇ up of the second side surface 35b are different. Specifically, it is as shown in Table 1 below.
  • the thickness of the light distribution layer 30 is 1 mm
  • the height of each of the first convex portion 33 and the second convex portion 35 is 7.5 ⁇ m
  • each of the first convex portion 33 and the second convex portion 35 is.
  • the first convex portion 33 and the second convex portion 35 is triangular, and the gap between two adjacent convex portions is 0 ⁇ m (that is, the two adjacent convex portions are in contact at the root) Is assumed).
  • the refractive index of the refractive index variable layer 32 is changed in the range of 1.5 to 1.8 in the first region 32a and is fixed at 1.42 in the second region 32b.
  • the thickness of the light distribution layer 30 is 1 mm
  • the height of each of the first convex portion 33 and the second convex portion 35 is 30 ⁇ m
  • the top side of each of the first convex portion 33 and the second convex portion 35 is 2 ⁇ m (that is, the cross-sectional shape of the first convex portion 33 and the second convex portion 35 is trapezoidal)
  • the gap between the two adjacent convex portions is 2 ⁇ m (that is, the two adjacent convex portions are separated at the root) Is assumed).
  • the refractive index of the refractive index variable layer 32 is changed in the range of 1.5 to 1.8 in the first region 32a and fixed at 1.4 in the second region 32b.
  • FIG. 6 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device 1 according to the first embodiment for each incident angle of light.
  • the horizontal axis represents the incident angle ⁇ in of light
  • the vertical axis represents each of the light distribution rate, direct radiation rate, and downward irradiation rate.
  • the light distribution control device 1 includes the combination of the inclination angles of the first side surface 33a and the second side surface 33b of the first convex portion 33 and the first of the second convex portion 35.
  • the combination of the inclination angles of the side surface 35a and the second side surface 35b is the same.
  • the first convex portion 33 and the second convex portion 35 have the same shape and the same size.
  • the light distribution rate is 50% or more even at the minimum value.
  • the light distribution rate is 50% or more in the range of 0 ° to 80 ° as well as the incident angle ⁇ in of 20 ° to 60 °. That is, the light distribution control device 1 according to the first embodiment has a sufficiently high light distribution rate.
  • the direct radiation rate has an average value of 2.5% and a maximum value of 4.9% when the incident angle ⁇ in is in the range of 0 ° to 80 °.
  • the direct radiation rate is 5% or less even at the maximum value.
  • the direct radiation rate is 5% or less not only in the range of the incident angle ⁇ in of 0 ° to 60 ° but also in the range of 0 ° to 80 °. Therefore, the light distribution control device 1 according to the first embodiment has a sufficiently low direct radiation rate.
  • the lower irradiation rate has an average value of 1.9% and a maximum value of 3.3% when the incident angle ⁇ in is in the range of 60 ° to 80 °.
  • the incident angle ⁇ in is low, a portion where the lower irradiation rate is high is included, but in the range where the solar altitude is high such as in summer (specifically, the incident angle ⁇ in is in the range of 60 ° to 80 °).
  • the lower irradiation rate is sufficiently low.
  • the minimum value of the light distribution rate is 50% or more, the maximum value of the direct radiation rate is 5% or less, and the downward irradiation rate within the range of the incident angle ⁇ in of 60 ° to 80 ° is 4%.
  • the light distribution control device 1 having extremely excellent optical characteristics can be realized.
  • FIG. 7 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device 1 according to the second embodiment for each incident angle of light.
  • the horizontal axis represents the incident angle ⁇ in of light
  • the vertical axis represents each of the light distribution rate, direct radiation rate, and downward irradiation rate.
  • the inclination angle ⁇ down of the first side surface 33a of the first convex portion 33 and the inclination angle ⁇ up of the second side surface 33b are the same. . That is, the cross-sectional shape of the first convex portion 33 is an isosceles trapezoid or an isosceles triangle. About the 2nd convex part 35, inclination-angle (beta) down of the 1st side 35a differs from inclination-angle (beta) up of the 2nd side 35b.
  • the direct radiation rate has an average value of 3.4% and a maximum value of 6.3% when the incident angle ⁇ in is in the range of 0 ° to 60 °. Therefore, the light distribution control device 1 according to Example 2 has a sufficiently low direct radiation rate.
  • the lower irradiation rate has an average value of 4.7% and a maximum value of 6.6% when the incident angle ⁇ in is in the range of 60 ° to 80 °.
  • the incident angle ⁇ in is low, a portion where the lower irradiation rate is high is included, but in the range where the solar altitude is high such as in summer (specifically, the incident angle ⁇ in is in the range of 60 ° to 80 °).
  • the lower irradiation rate is sufficiently low.
  • Example 2 the light distribution control satisfying the condition that the average value of the light distribution rate is 30% or more, the average value of the direct irradiation rate is 10% or less, and the average value of the lower irradiation rate is 10% or less. It can be seen that the device 1 is realized.
  • the light distribution control device 1 includes the first substrate 10 having translucency, and the second substrate 20 having translucency disposed so as to face the first substrate 10. And the first electrode layer 40 and the second electrode layer 50 having translucency, which are disposed opposite to each other between the first substrate 10 and the second substrate 20, and the first electrode layer 40 and the second electrode.
  • the light distribution layer 30 is disposed between the layer 50 and distributes incident light.
  • the light distribution layer 30 is provided on the first substrate 10 side, and includes a first uneven structure layer 31a having a plurality of first protrusions 33, and a second substrate 20 side, and has a plurality of second protrusions 35.
  • a refractive index variable layer 32 whose refractive index changes according to the above.
  • the refractive index variable layer 32 includes an insulating liquid 37 and a plurality of charged nanoparticles 38 having a refractive index different from that of the insulating liquid 37 and dispersed in the insulating liquid 37, and a plurality of first protrusions 33.
  • each of the plurality of second convex portions 35 extend along the same direction.
  • the second convex portion 35 when the second convex portion 35 is not provided, a part of the light that has been transmitted through the light distribution control device 1 without being distributed is directly reflected on the first side surface 35a and the second side of the second convex portion 35. The light is emitted toward the indoor ceiling by reflection or refraction by the side surface 35b. Thereby, a light distribution rate can be raised compared with the case where the 2nd convex part 35 is not provided.
  • the second convex portion 35 when the second convex portion 35 is not provided, a part of the light that has passed through the light distribution control device 1 without being distributed is directly reflected on the first side surface 35a and the second side of the second convex portion 35. The light is returned to the light incident side without being emitted indoors by reflection or refraction by the two side surfaces 35b. Thereby, compared with the case where the 2nd convex part 35 is not provided, a direct radiation rate and a downward irradiation rate can be made low.
  • the light distribution control device 1 can brighten an indoor space when used for a window, and can suppress glare felt by a person in the indoor space.
  • the influence of the refractive index difference can be exerted on both P-polarized light and S-polarized light. Thereby, a light distribution rate can be raised and a direct radiation rate and a downward irradiation rate can be made low.
  • the plurality of first protrusions 33 and the plurality of second protrusions 35 have the same shape and the same size.
  • the light distribution rate can be increased, and the direct radiation rate and the downward irradiation rate can be lowered.
  • the shape of the cross section of each of the plurality of first protrusions 33 perpendicular to the same direction is a substantially trapezoid or a substantially triangle.
  • the cross-sectional shape of the first convex portion 33 is a substantially trapezoidal shape
  • the moldability of the first convex portion 33 is enhanced, for example, the mold can be easily removed during molding by nanoimprint.
  • the reliability of the shape of the 1st convex part 33, etc. increase, and a reliable light distribution performance etc. are realizable.
  • the cross-sectional shape of the 1st convex part 33 is a substantially triangle
  • positioned in a surface can be increased. Accordingly, the light distribution rate can be increased, and the direct radiation rate and the downward irradiation rate can be reduced.
  • the two base angles of the substantially trapezoidal shape or the substantially triangular shape which are the cross-sectional shape of the convex portion are 65 ° or more and 90 ° or less, respectively.
  • the plurality of first protrusions 33, the plurality of second protrusions 35, and the refractive index variable layer 32 have a refractive index.
  • the light distribution control device 1 can be made transparent. For example, since the light distribution control device 1 can be made transparent when no voltage is applied between the first electrode layer 40 and the second electrode layer 50, the electric power required to maintain the transparent state is substantially eliminated. be able to.
  • the interfaces between each of the plurality of first protrusions 33 and the refractive index variable layer 32, and the plurality of first A difference in refractive index occurs at the interface between each of the two convex portions 35 and the refractive index variable layer 32, and the traveling direction of light incident on the light distribution layer 30 is bent.
  • the traveling direction of the distributed light is changed in the light distribution state. Can do.
  • At least one of the plurality of first protrusions 33 and the plurality of second protrusions 35 may be divided into a plurality in the x-axis direction.
  • the plurality of first protrusions 33 and the plurality of second protrusions 35 may be arranged so as to be scattered in a matrix or the like. That is, at least one of the plurality of first protrusions 33 and the plurality of second protrusions 35 may be arranged so as to be dotted.
  • the refractive index of the nanoparticles 38 may be lower than the refractive index of the insulating liquid 37.
  • a transparent state and a light distribution state can be realized by appropriately adjusting the voltage to be applied according to the refractive index of the nanoparticles 38 and the like.
  • the nanoparticles 38 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 38 may be negatively charged.
  • a direct voltage is applied between the first electrode layer 40 and the second electrode layer 50 by applying a positive potential to the first electrode layer 40 and applying a negative potential to the second electrode layer 50. Good.
  • the plurality of nanoparticles 38 may include a plurality of types of nanoparticles having different optical characteristics.
  • a transparent first nanoparticle charged positively and an opaque (black or the like) second nanoparticle charged negatively may be included.
  • the light distribution control device may be provided with a light shielding function by aggregating and unevenly distributing the second nanoparticles.
  • an electrophoretic material is used as the refractive index variable material.
  • a liquid crystal material may be used as the refractive index variable material.
  • the refractive index of the refractive index variable layer changes using the birefringence of the liquid crystal molecules contained in the liquid crystal material.
  • the refractive index of the refractive index variable layer changes. Thereby, the transparent state, the light distribution state, and the light distribution direction in the light distribution state can be controlled.
  • sunlight is exemplified as light incident on the light distribution control device.
  • the present invention is not limited to this.
  • the light incident on the light distribution control device may be light emitted from a light emitting device such as a lighting device.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Abstract

This light distribution control device (1) is provided with: a first electrode layer (40) and a second electrode layer (50), which are arranged to face each other and have light transmitting properties; and a light distribution layer (30) which is arranged between the first electrode layer (40) and the second electrode layer (50). The light distribution layer (30) comprises: a first relief structure layer (31a) which is arranged on the first substrate (10) side and has a plurality of first projected parts (33); a second relief structure layer (31b) which is arranged on the second substrate (20) side and has a plurality of second projected parts (35); and a variable refractive index layer (32) which is arranged so as to fill the spaces between the plurality of first projected parts (33) and the spaces between the plurality of second projected parts (35). The variable refractive index layer (32) comprises: an insulating liquid (37); and a plurality of charged nanoparticles (38) which are dispersed in the insulating liquid (37) and have a refractive index that is different from the refractive index of the insulating liquid (37). The plurality of first projected parts (33) and the plurality of second projected parts (35) respectively extend in the same directions.

Description

配光制御デバイスLight distribution control device
 本発明は、配光制御デバイスに関する。 The present invention relates to a light distribution control device.
 従来、屋外から入射する太陽光などの外光の透過状態を変化させることができる配光制御デバイスが知られている。 Conventionally, a light distribution control device capable of changing the transmission state of external light such as sunlight incident from the outside is known.
 例えば、特許文献1には、一対の透明基板と、一対の透明基板の各々に形成された一対の透明電極層と、一対の透明電極層に挟まれた傾斜断面構造層及び液晶層とを有する液晶光学素子が開示されている。当該液晶光学素子は、一対の透明電極に印加される電圧によって液晶層の屈折率を変化させて、傾斜断面構造層の斜面と液晶層との界面を通過する光の屈折角を変化させる。 For example, Patent Document 1 includes a pair of transparent substrates, a pair of transparent electrode layers formed on each of the pair of transparent substrates, and an inclined cross-sectional structure layer and a liquid crystal layer sandwiched between the pair of transparent electrode layers. A liquid crystal optical element is disclosed. In the liquid crystal optical element, the refractive index of the liquid crystal layer is changed by a voltage applied to the pair of transparent electrodes, and the refraction angle of light passing through the interface between the inclined surface of the inclined sectional structure layer and the liquid crystal layer is changed.
特開2015-41006号公報JP 2015-41006 A
 しかしながら、上記従来の液晶光学素子は、窓に利用された場合に、曲げられた光によって、屋内に居る人が眩しく感じるという問題がある。 However, the conventional liquid crystal optical element has a problem that when it is used for a window, a person in the room feels dazzled by the bent light.
 そこで、本発明は、窓に利用された場合に、屋内を明るくすることができ、かつ、屋内に居る人が感じる眩しさを抑制することができる配光制御デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a light distribution control device that can brighten indoors and suppress glare felt by people who are indoors when used for windows. .
 上記目的を達成するため、本発明の一態様に係る配光制御デバイスは、透光性を有する第1基板と、前記第1基板に対向して配置された、透光性を有する第2基板と、前記第1基板と前記第2基板との間に互いに対向して配置された、透光性を有する第1電極層及び第2電極層と、前記第1電極層と前記第2電極層との間に配置され、入射した光を配光する配光層とを備え、前記配光層は、前記第1基板側に設けられ、複数の第1凸部を有する第1凹凸構造層と、前記第2基板側に設けられ、複数の第2凸部を有する第2凹凸構造層と、前記複数の第1凸部間及び前記複数の第2凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、前記屈折率可変層は、絶縁性液体と、前記絶縁性液体とは屈折率が異なる、前記絶縁性液体に分散された帯電する複数のナノ粒子とを備え、前記複数の第1凸部の各々と前記複数の第2凸部の各々とは、同一方向に沿って延びている。 In order to achieve the above object, a light distribution control device according to one embodiment of the present invention includes a first substrate having translucency, and a second substrate having translucency, which is disposed to face the first substrate. A first electrode layer and a second electrode layer having translucency disposed opposite to each other between the first substrate and the second substrate; the first electrode layer and the second electrode layer; And a light distribution layer that distributes incident light, and the light distribution layer is provided on the first substrate side and has a first concavo-convex structure layer having a plurality of first protrusions, A second concavo-convex structure layer provided on the second substrate side and having a plurality of second protrusions, and disposed between the plurality of first protrusions and between the plurality of second protrusions, A refractive index variable layer whose refractive index changes according to a voltage applied between the first electrode layer and the second electrode layer, and the refractive index variable layer Each of the plurality of first protrusions and the plurality of second particles, each having a plurality of charged nanoparticles dispersed in the insulating liquid and having a refractive index different from that of the insulating liquid. Each of the convex portions extends along the same direction.
 本発明に係る配光制御デバイスによれば、窓に利用された場合に、屋内を明るくすることができ、かつ、屋内に居る人が感じる眩しさを抑制することができる。 According to the light distribution control device according to the present invention, when used for a window, the interior can be brightened and the glare felt by a person in the room can be suppressed.
図1は、実施の形態に係る配光制御デバイスの断面図である。FIG. 1 is a cross-sectional view of a light distribution control device according to an embodiment. 図2は、実施の形態に係る配光制御デバイスの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of the light distribution control device according to the embodiment. 図3Aは、実施の形態に係る配光制御デバイスの無印加モード(透明状態)を説明するための拡大断面図である。FIG. 3A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the light distribution control device according to the embodiment. 図3Bは、実施の形態に係る配光制御デバイスの電圧印加モード(配光状態)を説明するための拡大断面図である。FIG. 3B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the light distribution control device according to the embodiment. 図4は、実施の形態に係る配光制御デバイスを建物の窓に適用した場合の一例を示す図である。FIG. 4 is a diagram illustrating an example when the light distribution control device according to the embodiment is applied to a window of a building. 図5は、北緯約35°の地点で観測された太陽の移動軌跡を示す図である。FIG. 5 is a diagram showing the trajectory of the sun observed at a point of about 35 ° north latitude. 図6は、実施例1に係る配光制御デバイスの配光率、直射率及び下方照射率の各々を光の入射角毎に示す図である。FIG. 6 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device according to the first embodiment for each incident angle of light. 図7は、実施例2に係る配光制御デバイスの配光率、直射率及び下方照射率の各々を光の入射角毎に示す図である。FIG. 7 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device according to the second embodiment for each incident angle of light.
 以下では、本発明の実施の形態に係る配光制御デバイスについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the light distribution control device according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as arbitrary constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code | symbol is attached | subjected about the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 また、本明細書において、平行又は垂直などの要素間の関係性を示す用語、及び、三角形又は台形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 In addition, in this specification, terms indicating the relationship between elements such as parallel or vertical, terms indicating the shape of an element such as a triangle or trapezoid, and numerical ranges are not expressions expressing only strict meanings. It is an expression that means to include a substantially equivalent range, for example, a difference of about several percent.
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施の形態では、z軸方向を鉛直方向とし、z軸に垂直な方向(xy平面に平行な方向)を水平方向としている。なお、z軸の正方向を鉛直上方としている。また、本明細書において、「厚み方向」とは、配光制御デバイスの厚み方向を意味し、第1基板及び第2基板の主面に垂直な方向のことであり、「平面視」とは、第1基板又は第2基板の主面に対して垂直な方向から見たときのことをいう。 In the present specification and drawings, the x axis, the y axis, and the z axis indicate the three axes of the three-dimensional orthogonal coordinate system. In each embodiment, the z-axis direction is the vertical direction, and the direction perpendicular to the z-axis (the direction parallel to the xy plane) is the horizontal direction. Note that the positive direction of the z-axis is vertically upward. In the present specification, the “thickness direction” means the thickness direction of the light distribution control device, which is a direction perpendicular to the main surfaces of the first substrate and the second substrate, and “plan view” means , When viewed from a direction perpendicular to the main surface of the first substrate or the second substrate.
 (実施の形態)
 [概要]
 まず、実施の形態に係る配光制御デバイスの概要について、図1及び図2を用いて説明する。
(Embodiment)
[Overview]
First, the outline of the light distribution control device according to the embodiment will be described with reference to FIGS. 1 and 2.
 図1は、本実施の形態に係る配光制御デバイス1の断面図である。図2は、本実施の形態に係る配光制御デバイス1の拡大断面図であり、図1の一点鎖線で囲まれる領域IIの拡大断面図である。 FIG. 1 is a cross-sectional view of a light distribution control device 1 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view of the light distribution control device 1 according to the present embodiment, and is an enlarged cross-sectional view of a region II surrounded by an alternate long and short dash line in FIG.
 配光制御デバイス1は、配光制御デバイス1に入射する光を制御する光学デバイスである。具体的には、配光制御デバイス1は、配光制御デバイス1に入射する光の進行方向を変更して(つまり、配光して)出射させることができる配光素子である。 The light distribution control device 1 is an optical device that controls light incident on the light distribution control device 1. Specifically, the light distribution control device 1 is a light distribution element that can change the traveling direction of light incident on the light distribution control device 1 (that is, distribute light) and emit the light.
 図1及び図2に示されるように、配光制御デバイス1は、入射する光を透過するように構成されており、第1基板10と、第2基板20と、配光層30と、第1電極層40と、第2電極層50とを備える。 As shown in FIGS. 1 and 2, the light distribution control device 1 is configured to transmit incident light, and includes a first substrate 10, a second substrate 20, a light distribution layer 30, One electrode layer 40 and a second electrode layer 50 are provided.
 なお、第1電極層40の配光層30側の面には、第1電極層40と配光層30の第1凹凸構造層31aとを密着させるための密着層が設けられていてもよい。同様に、第2電極層50の配光層30側の面には、第2電極層50と配光層30の第2凹凸構造層31bとを密着させるための密着層が設けられていてもよい。密着層は、例えば、透光性の接着シート、又は、一般的にプライマーと称される樹脂材料などである。 Note that an adhesion layer for closely adhering the first electrode layer 40 and the first uneven structure layer 31a of the light distribution layer 30 may be provided on the surface of the first electrode layer 40 on the light distribution layer 30 side. . Similarly, even if an adhesion layer is provided on the surface of the second electrode layer 50 on the light distribution layer 30 side so that the second electrode layer 50 and the second uneven structure layer 31b of the light distribution layer 30 are adhered to each other. Good. The adhesion layer is, for example, a translucent adhesive sheet or a resin material generally called a primer.
 配光制御デバイス1は、対をなす第1基板10及び第2基板20の間に、第1電極層40、配光層30及び第2電極層50がこの順で厚み方向に沿って配置された構成である。なお、第1基板10と第2基板20との間の距離を保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されてもよい。 In the light distribution control device 1, the first electrode layer 40, the light distribution layer 30, and the second electrode layer 50 are disposed in this order along the thickness direction between the paired first substrate 10 and second substrate 20. It is a configuration. In order to maintain the distance between the first substrate 10 and the second substrate 20, a plurality of particulate spacers may be dispersed in the plane, or a columnar structure may be formed.
 配光制御デバイス1は、例えば、建物の窓に設置することで、配光機能付き窓として実現することができる。配光制御デバイス1は、例えば、粘着層を介して既存の窓ガラスなどの透明基材に貼り付けられて使用される。あるいは、配光制御デバイス1は、建物の窓そのものとして利用されてもよい。配光制御デバイス1は、例えば、第1基板10が屋外側で、第2基板20が屋内側になり、かつ、図2に示される第1凸部33の第1側面33aが下側(床側)で、第2側面33bが上側(天井側)になるように配置されている。 The light distribution control device 1 can be realized, for example, as a window with a light distribution function by being installed in a building window. The light distribution control device 1 is used by being attached to a transparent base material such as an existing window glass through an adhesive layer, for example. Alternatively, the light distribution control device 1 may be used as a building window itself. In the light distribution control device 1, for example, the first substrate 10 is on the outdoor side, the second substrate 20 is on the indoor side, and the first side surface 33a of the first convex portion 33 shown in FIG. The second side surface 33b is on the upper side (ceiling side).
 配光制御デバイス1では、第1電極層40及び第2電極層50間に印加される電圧によって、配光層30の屈折率可変層32の屈折率が変化する。これにより、第1凹凸構造層31aと屈折率可変層32との界面に屈折率の差が生じ、当該界面による光の屈折及び反射(全反射)を利用して光が配光される。また、第2凹凸構造層31bと屈折率可変層32との界面にも屈折率の差が生じ、当該界面による光の屈折及び反射(全反射)を利用して光が部分的に拡散される。 In the light distribution control device 1, the refractive index of the refractive index variable layer 32 of the light distribution layer 30 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50. Thereby, a difference in refractive index is generated at the interface between the first uneven structure layer 31a and the refractive index variable layer 32, and light is distributed using light refraction and reflection (total reflection) by the interface. Further, a difference in refractive index also occurs at the interface between the second uneven structure layer 31b and the refractive index variable layer 32, and light is partially diffused by utilizing light refraction and reflection (total reflection) by the interface. .
 第1電極層40及び第2電極層50間に印加される電圧の大きさに応じて、配光制御デバイス1は、透明状態及び配光状態が切り替わる。また、配光制御デバイス1は、第1電極層40及び第2電極層50間に印加される電圧の大きさに応じて、配光状態における光の配光方向(進行方向)が変化する。 The light distribution control device 1 switches between the transparent state and the light distribution state according to the magnitude of the voltage applied between the first electrode layer 40 and the second electrode layer 50. In the light distribution control device 1, the light distribution direction (traveling direction) of light in the light distribution state changes according to the magnitude of the voltage applied between the first electrode layer 40 and the second electrode layer 50.
 以下、配光制御デバイス1の各構成部材について、図1及び図2を参照して詳細に説明する。 Hereinafter, each component of the light distribution control device 1 will be described in detail with reference to FIGS. 1 and 2.
 [第1基板及び第2基板]
 第1基板10及び第2基板20は、透光性を有する基材である。第1基板10及び第2基板20としては、例えばガラス基板又は樹脂基板を用いることができる。
[First substrate and second substrate]
The first substrate 10 and the second substrate 20 are base materials having translucency. As the first substrate 10 and the second substrate 20, for example, a glass substrate or a resin substrate can be used.
 ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。 Examples of the material for the glass substrate include soda glass, alkali-free glass, and high refractive index glass. Examples of the material for the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy. The glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage of less scattering at the time of destruction.
 第1基板10と第2基板20とは、同じ材料で構成されていてもよく、あるいは、異なる材料で構成されていてもよい。また、第1基板10及び第2基板20は、リジッド基板に限るものではなく、可撓性を有するフレキシブル基板でもよい。本実施の形態において、第1基板10及び第2基板20は、PET樹脂からなる透明樹脂基板である。 The first substrate 10 and the second substrate 20 may be made of the same material, or may be made of different materials. Moreover, the 1st board | substrate 10 and the 2nd board | substrate 20 are not restricted to a rigid board | substrate, The flexible board | substrate which has flexibility may be sufficient. In the present embodiment, the first substrate 10 and the second substrate 20 are transparent resin substrates made of PET resin.
 第2基板20は、第1基板10に対向する対向基板であり、第1基板10に対向する位置に配置される。第1基板10と第2基板20とは、例えば、1μm~1000μmなどの所定距離を空けて平行に配置されている。第1基板10と第2基板20とは、互いの端部外周に額縁状に形成された接着剤などのシール樹脂によって接着されている。 The second substrate 20 is a counter substrate facing the first substrate 10 and is disposed at a position facing the first substrate 10. The first substrate 10 and the second substrate 20 are arranged in parallel with a predetermined distance of, for example, 1 μm to 1000 μm. The 1st board | substrate 10 and the 2nd board | substrate 20 are adhere | attached by sealing resin, such as the adhesive agent formed in the frame shape at the edge part of each other.
 なお、第1基板10及び第2基板20の平面視形状は、例えば、正方形又は長方形などの矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。 The planar view shape of the first substrate 10 and the second substrate 20 is, for example, a rectangular shape such as a square or a rectangle, but is not limited thereto, and may be a polygon other than a circle or a rectangle, Any shape can be employed.
 [配光層]
 図1及び図2に示されるように、配光層30は、第1電極層40と第2電極層50との間に配置される。配光層30は、透光性を有しており、入射した光を透過させる。また、配光層30は、入射した光を配光する。つまり、配光層30は、配光層30を光が通過する際に、その光の進行方向を変更する。
[Light distribution layer]
As shown in FIGS. 1 and 2, the light distribution layer 30 is disposed between the first electrode layer 40 and the second electrode layer 50. The light distribution layer 30 has translucency and transmits incident light. The light distribution layer 30 distributes the incident light. That is, the light distribution layer 30 changes the traveling direction of light when the light passes through the light distribution layer 30.
 配光層30は、第1凹凸構造層31aと、第2凹凸構造層31bと、屈折率可変層32とを有する。本実施の形態では、第1凹凸構造層31aと屈折率可変層32との界面で光が反射されることにより、配光制御デバイス1を透過する光の進行方向が曲げられる。 The light distribution layer 30 includes a first uneven structure layer 31a, a second uneven structure layer 31b, and a refractive index variable layer 32. In the present embodiment, light is reflected at the interface between the first concavo-convex structure layer 31a and the refractive index variable layer 32, whereby the traveling direction of the light transmitted through the light distribution control device 1 is bent.
 [第1凹凸構造層]
 第1凹凸構造層31aは、屈折率可変層32の表面(界面)を凹凸にするために設けられた微細形状層である。第1凹凸構造層31aは、図2に示されるように、複数の第1凸部33と、複数の第1凹部34とを有する。
[First uneven structure layer]
The first concavo-convex structure layer 31a is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven. As shown in FIG. 2, the first uneven structure layer 31 a includes a plurality of first protrusions 33 and a plurality of first recesses 34.
 具体的には、第1凹凸構造層31aは、マイクロオーダーサイズの複数の第1凸部33によって構成された凹凸構造体である。複数の第1凸部33の間が、複数の第1凹部34である。すなわち、隣り合う2つの第1凸部33の間が、1つの第1凹部34である。図2に示される例では、複数の第1凸部33が根元(第1電極層40側)で互いに接続された例を示しているが、これに限らない。複数の第1凸部33は個々に分離されていてもよい。また、例えば、複数の第1凸部33と第1電極層40との間に第1凸部33の基台となる層(膜)状の基台部が設けられていてもよい。 Specifically, the first concavo-convex structure layer 31a is a concavo-convex structure constituted by a plurality of first convex portions 33 having a micro-order size. Between the plurality of first protrusions 33 are a plurality of first recesses 34. That is, one first concave portion 34 is between two adjacent first convex portions 33. In the example shown in FIG. 2, an example is shown in which a plurality of first protrusions 33 are connected to each other at the root (on the first electrode layer 40 side), but the present invention is not limited to this. The several 1st convex part 33 may be isolate | separated separately. In addition, for example, a layer (film) -like base portion serving as a base of the first convex portion 33 may be provided between the plurality of first convex portions 33 and the first electrode layer 40.
 複数の第1凸部33は、第1基板10の主面(第1電極層40が設けられた面)に平行なz軸方向に並んで配置された複数の凸部である。すなわち、本実施の形態では、z軸方向は、複数の第1凸部33の並び方向である。 The plurality of first protrusions 33 are a plurality of protrusions arranged side by side in the z-axis direction parallel to the main surface of the first substrate 10 (the surface on which the first electrode layer 40 is provided). That is, in the present embodiment, the z-axis direction is an arrangement direction of the plurality of first convex portions 33.
 本実施の形態では、複数の第1凸部33は、その並び方向に直交する方向に延在する長尺の凸条である。具体的には、複数の第1凸部33は、x軸方向に延びたストライプ状に形成されている。複数の第1凸部33の各々は、x軸方向に沿って直線状に延びている。例えば、複数の第1凸部33の各々は、第1電極層40に対して横倒しに配置された四角柱である。なお、複数の第1凸部33は、x軸方向に沿って蛇行しながら延びていてもよい。例えば、複数の第1凸部33は、波線のストライプ状に形成されていてもよい。 In the present embodiment, the plurality of first protrusions 33 are long ridges extending in a direction orthogonal to the arrangement direction. Specifically, the plurality of first protrusions 33 are formed in a stripe shape extending in the x-axis direction. Each of the plurality of first protrusions 33 extends linearly along the x-axis direction. For example, each of the plurality of first protrusions 33 is a quadrangular prism that is disposed sideways with respect to the first electrode layer 40. The plurality of first convex portions 33 may extend while meandering along the x-axis direction. For example, the plurality of first protrusions 33 may be formed in a wavy stripe shape.
 図2に示されるように、複数の第1凸部33の各々は、根元から先端にかけて先細る形状を有する。具体的には、複数の第1凸部33の各々の断面形状は、第1基板10から第2基板20に向かう方向に沿って先細りのテーパ形状である。本実施の形態では、第1凸部33のyz断面における断面形状は、配光制御デバイス1の厚み方向に沿って先細る略台形であるが、これに限らない。第1凸部33の断面形状は、略三角形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。複数の第1凸部33の形状は、互いに同じであるが、異なっていてもよい。 2, each of the plurality of first protrusions 33 has a shape that tapers from the root to the tip. Specifically, the cross-sectional shape of each of the plurality of first protrusions 33 is a tapered shape that tapers along the direction from the first substrate 10 toward the second substrate 20. In the present embodiment, the cross-sectional shape of the first convex portion 33 in the yz cross section is a substantially trapezoid that tapers along the thickness direction of the light distribution control device 1, but is not limited thereto. The cross-sectional shape of the first convex portion 33 may be a substantially triangular shape, other polygons, or a polygon including a curve. The shapes of the plurality of first protrusions 33 are the same as each other, but may be different.
 なお、略台形又は略三角形には、頂点が丸みを帯びた台形又は三角形も含まれる。また、略台形又は略三角形には、各辺が完全に直線ではない場合、例えば、各辺の長さの数%程度の変位で僅かに屈曲している場合、又は、微小な凹凸が含まれる場合も含まれる。 Note that the substantially trapezoidal or triangular shape includes a trapezoidal or triangular shape with rounded vertices. In addition, the substantially trapezoidal shape or the substantially triangular shape includes a case where each side is not completely straight, for example, a case where the side is slightly bent with a displacement of about several percent of the length of each side, or a minute unevenness. Cases are also included.
 本実施の形態では、図2に示されるように、複数の第1凸部33の各々は、第1側面33a及び第2側面33bを有する。第1側面33a及び第2側面33bは、z軸方向に交差する面である。第1側面33a及び第2側面33bの各々は、y軸方向に対して所定の傾斜角で傾斜する傾斜面である。第1側面33a及び第2側面33bの間隔、すなわち、第1凸部33の幅は、第1基板10から第2基板20に向かって漸次小さくなっている。 In the present embodiment, as shown in FIG. 2, each of the plurality of first convex portions 33 has a first side surface 33a and a second side surface 33b. The first side surface 33a and the second side surface 33b are surfaces that intersect the z-axis direction. Each of the first side surface 33a and the second side surface 33b is an inclined surface that is inclined at a predetermined inclination angle with respect to the y-axis direction. The distance between the first side surface 33 a and the second side surface 33 b, that is, the width of the first convex portion 33 gradually decreases from the first substrate 10 toward the second substrate 20.
 第1側面33aは、例えば、z軸が鉛直方向に一致するように配光制御デバイス1を配置した場合に、第1凸部33を構成する複数の側面のうち、鉛直下方側の側面である。第1側面33aは、入射光を屈折させる屈折面である。 For example, when the light distribution control device 1 is arranged so that the z axis coincides with the vertical direction, the first side surface 33a is a side surface on the vertically lower side among the plurality of side surfaces constituting the first convex portion 33. . The first side surface 33a is a refracting surface that refracts incident light.
 第2側面33bは、例えば、z軸が鉛直方向に一致するように配光制御デバイス1を配置した場合に、第1凸部33を構成する複数の側面のうち、鉛直上方側の側面である。第2側面33bは、入射光を反射させる反射面である。ここでの反射は、全反射であり、第2側面33bは、全反射面として機能する。 For example, when the light distribution control device 1 is arranged so that the z axis coincides with the vertical direction, the second side surface 33b is a side surface on the vertically upper side among the plurality of side surfaces constituting the first convex portion 33. . The second side surface 33b is a reflecting surface that reflects incident light. The reflection here is total reflection, and the second side surface 33b functions as a total reflection surface.
 本実施の形態では、第1側面33a及び第2側面33bは、配光層30に入射する光の少なくとも一部を屈折及び反射させる。これにより、配光層30を通過する光の少なくとも一部が上下に曲げられる。 In the present embodiment, the first side surface 33a and the second side surface 33b refract and reflect at least part of the light incident on the light distribution layer 30. Thereby, at least a part of the light passing through the light distribution layer 30 is bent up and down.
 第1側面33aの傾斜角αdown及び第2側面33bの傾斜角αupは、例えば0°以上25°以下の範囲である。言い換えると、第1凸部33の断面形状である略台形又は略三角形の2つの底角はそれぞれ、65°以上90°以下である。あるいは、2つの底角の少なくとも一方は、65°より小さくてもよい。 The inclination angle α down of the first side surface 33a and the inclination angle α up of the second side surface 33b are, for example, in the range of 0 ° to 25 °. In other words, the two base angles of the substantially trapezoidal shape or the substantially triangular shape that are the cross-sectional shape of the first convex portion 33 are 65 ° or more and 90 ° or less, respectively. Alternatively, at least one of the two base angles may be smaller than 65 °.
 複数の第1凸部33の幅(z軸方向の長さ)は、例えば1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、隣り合う2つの第1凸部33の間隔は、例えば、0μm~100μmであるが、これに限らない。 The width (length in the z-axis direction) of the plurality of first protrusions 33 is, for example, 1 μm to 20 μm, and preferably 10 μm or less, but is not limited thereto. The interval between two adjacent first convex portions 33 is, for example, 0 μm to 100 μm, but is not limited thereto.
 第1凹凸構造層31aの材料としては、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。第1凹凸構造層31aは、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。第1凹凸構造層31aは、例えば、緑色光に対する屈折率が1.5のアクリル樹脂を用いて断面が台形の凹凸構造を、モールド型押しにより形成することができる。 As the material of the first concavo-convex structure layer 31a, for example, a light-transmissive resin material such as acrylic resin, epoxy resin, or silicone resin can be used. The first uneven structure layer 31a is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting. For example, the first concavo-convex structure layer 31a can form a concavo-convex structure with a trapezoidal cross section by mold pressing using an acrylic resin having a refractive index of 1.5 for green light.
 [第2凹凸構造層]
 第2凹凸構造層31bは、屈折率可変層32の表面(界面)を凹凸にするために設けられた微細形状層である。第2凹凸構造層31bは、図2に示されるように、複数の第2凸部35と、複数の第2凹部36とを有する。
[Second uneven structure layer]
The second concavo-convex structure layer 31b is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 32 uneven. As shown in FIG. 2, the second uneven structure layer 31 b includes a plurality of second protrusions 35 and a plurality of second recesses 36.
 具体的には、第2凹凸構造層31bは、マイクロオーダーサイズの複数の第2凸部35によって構成された凹凸構造体である。複数の第2凸部35の間が、複数の第2凹部36である。すなわち、隣り合う2つの第2凸部35の間が、1つの第2凹部36である。図2に示される例では、複数の第2凸部35が根元(第2電極層50側)で互いに接続された例を示しているが、これに限らない。複数の第2凸部35は個々に分離されていてもよい。また、例えば、複数の第2凸部35と第2電極層50との間に第2凸部35の基台となる層(膜)状の基台部が設けられていてもよい。 Specifically, the second concavo-convex structure layer 31b is a concavo-convex structure constituted by a plurality of second convex portions 35 having a micro-order size. Between the plurality of second convex portions 35 are a plurality of second concave portions 36. That is, one second concave portion 36 is between two adjacent second convex portions 35. In the example shown in FIG. 2, an example is shown in which a plurality of second convex portions 35 are connected to each other at the root (second electrode layer 50 side), but the present invention is not limited to this. The plurality of second convex portions 35 may be individually separated. In addition, for example, a layer (film) -like base portion serving as a base of the second convex portion 35 may be provided between the plurality of second convex portions 35 and the second electrode layer 50.
 複数の第2凸部35は、第2基板20の主面(第2電極層50が設けられた面)に平行なz軸方向に並んで配置された複数の凸部である。すなわち、本実施の形態では、z軸方向は、複数の第2凸部35の並び方向である。 The plurality of second protrusions 35 are a plurality of protrusions arranged side by side in the z-axis direction parallel to the main surface of the second substrate 20 (the surface on which the second electrode layer 50 is provided). That is, in the present embodiment, the z-axis direction is an arrangement direction of the plurality of second convex portions 35.
 本実施の形態では、複数の第2凸部35は、その並び方向に直交する方向に延在する長尺の凸条である。具体的には、複数の第2凸部35は、x軸方向に延びたストライプ状に形成されている。複数の第2凸部35の各々は、x軸方向に沿って直線状に延びている。例えば、複数の第2凸部35の各々は、第2電極層50に対して横倒しに配置された四角柱である。なお、複数の第2凸部35は、x軸方向に沿って蛇行しながら延びていてもよい。例えば、複数の第2凸部35は、波線のストライプ状に形成されていてもよい。 In the present embodiment, the plurality of second convex portions 35 are long ridges extending in a direction orthogonal to the arrangement direction. Specifically, the plurality of second convex portions 35 are formed in a stripe shape extending in the x-axis direction. Each of the plurality of second convex portions 35 extends linearly along the x-axis direction. For example, each of the plurality of second convex portions 35 is a rectangular column that is disposed sideways with respect to the second electrode layer 50. The plurality of second convex portions 35 may extend while meandering along the x-axis direction. For example, the plurality of second convex portions 35 may be formed in a wavy stripe shape.
 このように、第1凹凸構造層31aの複数の第1凸部33の各々と、第2凹凸構造層31bの複数の第2凸部35の各々とは、同一方向に沿って延びている。 Thus, each of the plurality of first protrusions 33 of the first uneven structure layer 31a and each of the plurality of second protrusions 35 of the second uneven structure layer 31b extend in the same direction.
 図2に示されるように、複数の第2凸部35の各々は、根元から先端にかけて先細る形状を有する。具体的には、複数の第2凸部35の各々の断面形状は、第2基板20から第1基板10に向かう方向に沿って先細りのテーパ形状である。本実施の形態では、第2凸部35のyz断面における断面形状は、配光制御デバイス1の厚み方向に沿って先細る略台形であるが、これに限らない。第2凸部35の断面形状は、略三角形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。複数の第2凸部35の形状は、互いに同じであるが、異なっていてもよい。 2, each of the plurality of second convex portions 35 has a shape that tapers from the root to the tip. Specifically, the cross-sectional shape of each of the plurality of second convex portions 35 is a tapered shape that tapers along the direction from the second substrate 20 toward the first substrate 10. In the present embodiment, the cross-sectional shape in the yz section of the second convex portion 35 is a substantially trapezoidal shape that tapers along the thickness direction of the light distribution control device 1, but is not limited thereto. The cross-sectional shape of the second convex portion 35 may be a substantially triangular shape, other polygons, or a polygon including a curve. The shapes of the plurality of second convex portions 35 are the same as each other, but may be different.
 本実施の形態では、図2に示されるように、複数の第2凸部35の各々は、第1側面35a及び第2側面35bを有する。第1側面35a及び第2側面35bは、z軸方向に交差する面である。第1側面35a及び第2側面35bの各々は、y軸方向に対して所定の傾斜角で傾斜する傾斜面である。第1側面35a及び第2側面35bの間隔、すなわち、第2凸部35の幅は、第2基板20から第1基板10に向かって漸次小さくなっている。 In the present embodiment, as shown in FIG. 2, each of the plurality of second convex portions 35 has a first side surface 35a and a second side surface 35b. The first side surface 35a and the second side surface 35b are surfaces that intersect the z-axis direction. Each of the first side surface 35a and the second side surface 35b is an inclined surface that is inclined at a predetermined inclination angle with respect to the y-axis direction. The distance between the first side surface 35 a and the second side surface 35 b, that is, the width of the second convex portion 35 gradually decreases from the second substrate 20 toward the first substrate 10.
 第1側面35aは、例えば、z軸が鉛直方向に一致するように配光制御デバイス1を配置した場合に、第2凸部35を構成する複数の側面のうち、鉛直下方側の側面である。 For example, when the light distribution control device 1 is arranged so that the z-axis coincides with the vertical direction, the first side surface 35a is a side surface on the vertically lower side among the plurality of side surfaces constituting the second convex portion 35. .
 第2側面35bは、例えば、z軸が鉛直方向に一致するように配光制御デバイス1を配置した場合に、第2凸部35を構成する複数の側面のうち、鉛直上方側の側面である。 For example, when the light distribution control device 1 is arranged so that the z axis coincides with the vertical direction, the second side surface 35b is a side surface on the vertically upper side among the plurality of side surfaces constituting the second convex portion 35. .
 本実施の形態では、第1側面35a及び第2側面35bは、屈折率可変層32を通過した光の一部を屈折又は反射させる。これにより、配光層30を通過する光の一部を拡散させる。 In the present embodiment, the first side surface 35a and the second side surface 35b refract or reflect part of the light that has passed through the refractive index variable layer 32. Thereby, a part of the light passing through the light distribution layer 30 is diffused.
 第1側面35aの傾斜角βdown及び第2側面35bの傾斜角βupは、例えば0°以上25°以下の範囲である。言い換えると、第2凸部35の断面形状である略台形又は略三角形の2つの底角はそれぞれ、65°以上90°以下である。あるいは、2つの底角の少なくとも一方は、65°より小さくてもよい。 The inclination angle β down of the first side surface 35a and the inclination angle β up of the second side surface 35b are, for example, in the range of 0 ° to 25 °. In other words, the two base angles of the substantially trapezoidal shape or the substantially triangular shape which are the cross-sectional shape of the second convex portion 35 are 65 ° or more and 90 ° or less, respectively. Alternatively, at least one of the two base angles may be smaller than 65 °.
 複数の第2凸部35の幅(z軸方向の長さ)は、例えば1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、隣り合う2つの第2凸部35の間隔は、例えば、0μm~100μmであるが、これに限らない。 The width (length in the z-axis direction) of the plurality of second convex portions 35 is, for example, 1 μm to 20 μm, and preferably 10 μm or less, but is not limited thereto. Further, the interval between two adjacent second convex portions 35 is, for example, 0 μm to 100 μm, but is not limited thereto.
 第2凹凸構造層31bの材料としては、第1凹凸構造層31aの材料と同じであり、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。なお、第2凹凸構造層31bの材料は、第1凹凸構造層31aの材料と異なっていてもよい。このとき、第1凹凸構造層31aと第2凹凸構造層31bとは、屈折率が同じであってもよく、異なっていてもよい。 The material of the second concavo-convex structure layer 31b is the same as the material of the first concavo-convex structure layer 31a. For example, a resin material having optical transparency such as an acrylic resin, an epoxy resin, or a silicone resin can be used. The material of the second uneven structure layer 31b may be different from the material of the first uneven structure layer 31a. At this time, the first uneven structure layer 31a and the second uneven structure layer 31b may have the same or different refractive indexes.
 第2凹凸構造層31bは、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。第2凹凸構造層31bは、例えば、緑色光に対する屈折率が1.5のアクリル樹脂を用いて断面が台形の凹凸構造を、モールド型押しにより形成することができる。 The second uneven structure layer 31b is formed of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting. For example, the second concavo-convex structure layer 31b can form a concavo-convex structure having a trapezoidal cross section by mold pressing using an acrylic resin having a refractive index of 1.5 for green light.
 第2凹凸構造層31bは、例えば、第1凹凸構造層31aを反転させた形状及び配置である。本実施の形態では、第1凸部33の並び間隔と第2凸部35の並び間隔とが等しく、かつ、第1凸部33の先端部と第2凸部35の先端部とが互いに向かい合っているが、これに限らない。第1凸部33の先端部と第2凸部35の先端部とは、z軸方向において、ずれて配置されていてもよい。また、第1凸部33の並び間隔と第2凸部35の並び間隔とは、異なっていてもよい。 The second concavo-convex structure layer 31b has, for example, a shape and arrangement obtained by inverting the first concavo-convex structure layer 31a. In the present embodiment, the arrangement interval of the first projections 33 and the arrangement interval of the second projections 35 are equal, and the tip of the first projection 33 and the tip of the second projection 35 face each other. However, it is not limited to this. The distal end portion of the first convex portion 33 and the distal end portion of the second convex portion 35 may be shifted from each other in the z-axis direction. Further, the arrangement interval of the first protrusions 33 and the arrangement interval of the second protrusions 35 may be different.
 また、第1凸部33と第2凸部35とでは、大きさ及び形状が異なっていてもよい。具体的には、第1凸部33の第1側面33aの傾斜角αdownは、第2凸部35の第1側面35aの傾斜角βdownと異なっていてもよい。第1凸部33の第2側面33bの傾斜角αupは、第2凸部35の第2側面35bの傾斜角βupと異なっていてもよい。 Further, the first convex portion 33 and the second convex portion 35 may be different in size and shape. Specifically, the inclination angle α down of the first side surface 33 a of the first convex portion 33 may be different from the inclination angle β down of the first side surface 35 a of the second convex portion 35. The inclination angle α up of the second side surface 33 b of the first convex portion 33 may be different from the inclination angle β up of the second side surface 35 b of the second convex portion 35.
 [屈折率可変層]
 屈折率可変層32は、複数の第1凸部33の間(すなわち、第1凹部34)及び複数の第2凸部35の間(すなわち、第2凹部36)を充填するように配置されている。具体的には、屈折率可変層32は、第1電極層40と第2電極層50との間に形成される隙間を埋めるように配置されている。例えば、図2に示されるように、第1凸部33の先端部と第2凸部35の先端部とが離れているので、屈折率可変層32は、第1凹部34及び第2凹部36だけでなく、第1凸部33の先端部と第2凸部35の先端部との間の隙間を埋めるように配置される。なお、第1凸部33の先端部と第2凸部35の先端部とは接触していてもよく、この場合、屈折率可変層32は、第1凹部34と第2凹部36とで形成される空間毎に分離して設けられていてもよい。
[Refractive index variable layer]
The refractive index variable layer 32 is disposed so as to fill between the plurality of first protrusions 33 (that is, the first recesses 34) and between the plurality of second protrusions 35 (that is, the second recesses 36). Yes. Specifically, the refractive index variable layer 32 is disposed so as to fill a gap formed between the first electrode layer 40 and the second electrode layer 50. For example, as shown in FIG. 2, since the tip of the first protrusion 33 and the tip of the second protrusion 35 are separated from each other, the refractive index variable layer 32 includes the first recess 34 and the second recess 36. Moreover, it arrange | positions so that the clearance gap between the front-end | tip part of the 1st convex part 33 and the front-end | tip part of the 2nd convex part 35 may be filled up. The tip of the first protrusion 33 and the tip of the second protrusion 35 may be in contact with each other. In this case, the refractive index variable layer 32 is formed by the first recess 34 and the second recess 36. It may be provided separately for each space.
 屈折率可変層32は、第1電極層40及び第2電極層50間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層32は、電界が与えられることによって可視光帯域での屈折率が調整可能な屈折率調整層として機能する。電界は、第1電極層40及び第2電極層50間に印加される電圧に応じて変化する。例えば、図示しない制御部などによって、第1電極層40と第2電極層50との間には直流電圧が印加される。 The refractive index of the refractive index variable layer 32 changes depending on the voltage applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the refractive index variable layer 32 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light band when an electric field is applied. The electric field changes according to the voltage applied between the first electrode layer 40 and the second electrode layer 50. For example, a DC voltage is applied between the first electrode layer 40 and the second electrode layer 50 by a control unit (not shown).
 図2に示されるように、屈折率可変層32は、絶縁性液体37と、絶縁性液体37に含まれるナノ粒子38とを有する。屈折率可変層32は、無数のナノ粒子38が絶縁性液体37に分散されたナノ粒子分散層である。 2, the refractive index variable layer 32 includes an insulating liquid 37 and nanoparticles 38 included in the insulating liquid 37. The refractive index variable layer 32 is a nanoparticle dispersion layer in which countless nanoparticles 38 are dispersed in an insulating liquid 37.
 絶縁性液体37は、絶縁性を有する透明な液体であり、分散質としてナノ粒子38が分散される分散媒となる溶媒である。絶縁性液体37としては、例えば、屈折率(溶媒屈折率)が約1.3~約1.6の材料を用いることができる。本実施の形態では、屈折率が約1.4の絶縁性液体37を用いている。 The insulating liquid 37 is a transparent liquid having insulating properties, and is a solvent serving as a dispersion medium in which the nanoparticles 38 are dispersed as a dispersoid. As the insulating liquid 37, for example, a material having a refractive index (solvent refractive index) of about 1.3 to about 1.6 can be used. In this embodiment, an insulating liquid 37 having a refractive index of about 1.4 is used.
 なお、絶縁性液体37の動粘度は、100mm/s程度であるとよい。また、絶縁性液体37は、低誘電率(例えば、第1凹凸構造層31a及び第2凹凸構造層31bの誘電率以下)で、非引火性(例えば、引火点が250℃以上の高引火点)及び低揮発性を有してもよい。具体的には、絶縁性液体37は、脂肪族炭化水素、ナフサ、及びその他の石油系溶剤などの炭化水素、低分子量ハロゲン含有ポリマー、又は、これらの混合物などである。一例として、絶縁性液体37は、フッ化炭化水素などのハロゲン化炭化水素である。なお、絶縁性液体37としては、シリコーンオイルなどを用いることもできる。 The kinematic viscosity of the insulating liquid 37 is preferably about 100 mm 2 / s. The insulating liquid 37 has a low dielectric constant (for example, less than the dielectric constant of the first concavo-convex structure layer 31a and the second concavo-convex structure layer 31b) and non-flammability (for example, a high flash point having a flash point of 250 ° C. or higher). ) And low volatility. Specifically, the insulating liquid 37 is a hydrocarbon such as an aliphatic hydrocarbon, naphtha, and other petroleum solvents, a low molecular weight halogen-containing polymer, or a mixture thereof. As an example, the insulating liquid 37 is a halogenated hydrocarbon such as a fluorinated hydrocarbon. As the insulating liquid 37, silicone oil or the like can be used.
 ナノ粒子38は、絶縁性液体37に複数分散されている。ナノ粒子38は、粒径がナノオーダサイズの微粒子である。具体的には、入射光の波長をλとすると、ナノ粒子38の粒径は、λ/4以下であるとよい。ナノ粒子38の粒径をλ/4以下にすることで、ナノ粒子38による光散乱を少なくして、ナノ粒子38と絶縁性液体37との平均的な屈折率を得ることができる。ナノ粒子38の粒径は、小さい程よく、好ましくは100nm以下、より好ましくは、数nm~数十nmである。 A plurality of nanoparticles 38 are dispersed in the insulating liquid 37. The nanoparticles 38 are fine particles having a particle size of nano-order size. Specifically, when the wavelength of incident light is λ, the particle size of the nanoparticles 38 is preferably λ / 4 or less. By setting the particle size of the nanoparticles 38 to λ / 4 or less, light scattering by the nanoparticles 38 can be reduced, and an average refractive index of the nanoparticles 38 and the insulating liquid 37 can be obtained. The particle size of the nanoparticles 38 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
 ナノ粒子38は、例えば、高屈折率材料によって構成されている。具体的には、ナノ粒子38の屈折率は、絶縁性液体37の屈折率よりも高い。本実施の形態において、ナノ粒子38の屈折率は、第1凹凸構造層31a及び第2凹凸構造層31bの屈折率よりも高い。 The nanoparticles 38 are made of, for example, a high refractive index material. Specifically, the refractive index of the nanoparticles 38 is higher than the refractive index of the insulating liquid 37. In the present embodiment, the refractive index of the nanoparticles 38 is higher than the refractive indexes of the first uneven structure layer 31a and the second uneven structure layer 31b.
 ナノ粒子38としては、例えば、金属酸化物微粒子を用いることができる。また、ナノ粒子38は、透過率が高い材料で構成されていてもよい。本実施の形態では、ナノ粒子38として、酸化ジルコニウム(ZrO)によって構成された屈折率が2.1の透明なジルコニア粒子を用いている。なお、ナノ粒子38は、酸化ジルコニウムに限らず、酸化チタン(TiO:屈折率2.5)などによって構成されていてもよい。 As the nanoparticles 38, for example, metal oxide fine particles can be used. The nanoparticles 38 may be made of a material having a high transmittance. In the present embodiment, transparent zirconia particles having a refractive index of 2.1 composed of zirconium oxide (ZrO 2 ) are used as the nanoparticles 38. The nanoparticles 38 are not limited to zirconium oxide, and may be composed of titanium oxide (TiO 2 : refractive index 2.5) or the like.
 また、ナノ粒子38は、帯電している荷電粒子である。例えば、ナノ粒子38の表面を修飾することで、ナノ粒子38を正(プラス)又は負(マイナス)に帯電させることができる。本実施の形態において、ナノ粒子38は、正(プラス)に帯電している。 Further, the nanoparticles 38 are charged particles that are charged. For example, by modifying the surface of the nanoparticles 38, the nanoparticles 38 can be charged positively (plus) or negatively (minus). In the present embodiment, the nanoparticles 38 are positively (plus) charged.
 このように構成された屈折率可変層32では、帯電したナノ粒子38が絶縁性液体37の全体に分散されている。本実施の形態では、一例として、ナノ粒子38として屈折率が2.1のジルコニア粒子を用いて、溶媒屈折率が約1.4の絶縁性液体37に分散させたものを屈折率可変層32としている。 In the refractive index variable layer 32 configured in this way, charged nanoparticles 38 are dispersed throughout the insulating liquid 37. In this embodiment, as an example, zirconia particles having a refractive index of 2.1 as nanoparticles 38 and dispersed in an insulating liquid 37 having a solvent refractive index of about 1.4 are used as the refractive index variable layer 32. It is said.
 また、屈折率可変層32の全体の屈折率(平均屈折率)は、ナノ粒子38が絶縁性液体37内に均一に分散された状態において、第1凹凸構造層31a及び第2凹凸構造層31bの屈折率と略同一に設定されており、本実施の形態では、約1.5である。なお、屈折率可変層32の全体の屈折率は、絶縁性液体37に分散するナノ粒子38の濃度(量)を調整することによって変えることができる。詳細は後述するが、ナノ粒子38の量は、例えば、第1凹凸構造層31aの第1凹部34に埋まる程度である。この場合、絶縁性液体37に対するナノ粒子38の濃度は、約10%~約30%である。 The refractive index (average refractive index) of the entire refractive index variable layer 32 is such that the first concavo-convex structure layer 31 a and the second concavo-convex structure layer 31 b in a state where the nanoparticles 38 are uniformly dispersed in the insulating liquid 37. The refractive index is set to be substantially the same, and in the present embodiment, it is about 1.5. The overall refractive index of the refractive index variable layer 32 can be changed by adjusting the concentration (amount) of the nanoparticles 38 dispersed in the insulating liquid 37. Although details will be described later, the amount of the nanoparticles 38 is, for example, such that it is buried in the first recess 34 of the first uneven structure layer 31a. In this case, the concentration of the nanoparticles 38 with respect to the insulating liquid 37 is about 10% to about 30%.
 絶縁性液体37中に分散するナノ粒子38は帯電しているので、屈折率可変層32に電界が与えられると、ナノ粒子38は、電界分布に従って絶縁性液体37中を泳動し、絶縁性液体37内で偏在する。これにより、屈折率可変層32内のナノ粒子38の粒子分布が変化して屈折率可変層32内にナノ粒子38の濃度分布を持たせることができるので、屈折率可変層32内の屈折率分布が変化する。つまり、屈折率可変層32の屈折率が部分的に変化する。このように、屈折率可変層32は、主に可視光帯域の光に対する屈折率を調整することができる屈折率調整層として機能する。 Since the nanoparticles 38 dispersed in the insulating liquid 37 are charged, when an electric field is applied to the refractive index variable layer 32, the nanoparticles 38 migrate in the insulating liquid 37 in accordance with the electric field distribution, and the insulating liquid 37 37 is unevenly distributed. As a result, the particle distribution of the nanoparticles 38 in the refractive index variable layer 32 can be changed to give the concentration distribution of the nanoparticles 38 in the refractive index variable layer 32, so that the refractive index in the refractive index variable layer 32 can be obtained. Distribution changes. That is, the refractive index of the refractive index variable layer 32 partially changes. Thus, the refractive index variable layer 32 mainly functions as a refractive index adjustment layer that can adjust the refractive index for light in the visible light band.
 屈折率可変層32は、例えば、第1電極層40及び第1凹凸構造層31aが形成された第1基板10と、第2電極層50及び第2凹凸構造層31bが形成された第2基板20との各々の端部外周をシール樹脂で封止した状態で、屈折率可変材料を真空注入法で注入することで形成される。あるいは、屈折率可変層32は、第1基板10の第1電極層40及び第1凹凸構造層31a上に屈折率可変材料を滴下した後に、第2電極層50及び第2凹凸構造層31bが形成された第2基板20を貼り合わせることで形成されてもよい。本実施の形態では、屈折率可変材料は、ナノ粒子38が分散された絶縁性液体37である。ナノ粒子38が分散された絶縁性液体37が第1基板10と第2基板20との間に封止されている。 The refractive index variable layer 32 includes, for example, the first substrate 10 on which the first electrode layer 40 and the first uneven structure layer 31a are formed, and the second substrate on which the second electrode layer 50 and the second uneven structure layer 31b are formed. In a state where the outer periphery of each of the end portions 20 and 20 is sealed with a sealing resin, the refractive index variable material is injected by a vacuum injection method. Alternatively, in the refractive index variable layer 32, after the refractive index variable material is dropped onto the first electrode layer 40 and the first uneven structure layer 31a of the first substrate 10, the second electrode layer 50 and the second uneven structure layer 31b are formed. You may form by bonding the formed 2nd board | substrate 20 together. In the present embodiment, the refractive index variable material is an insulating liquid 37 in which nanoparticles 38 are dispersed. An insulating liquid 37 in which nanoparticles 38 are dispersed is sealed between the first substrate 10 and the second substrate 20.
 屈折率可変層32の厚さは、例えば1μm~1000μmであるが、これに限らない。 The thickness of the refractive index variable layer 32 is, for example, 1 μm to 1000 μm, but is not limited thereto.
 [第1電極層及び第2電極層]
 図1及び図2に示されるように、第1電極層40及び第2電極層50は、電気的に対となっており、配光層30に電界を与えることができるように構成されている。第1電極層40と第2電極層50とは、電気的だけではなく配置的にも対になっており、第1基板10と第2基板20との間に、互いに対向するように配置されている。具体的には、第1電極層40及び第2電極層50は、配光層30を挟むように配置されている。
[First electrode layer and second electrode layer]
As shown in FIGS. 1 and 2, the first electrode layer 40 and the second electrode layer 50 are electrically paired, and are configured to be able to apply an electric field to the light distribution layer 30. . The first electrode layer 40 and the second electrode layer 50 are paired not only electrically but also in arrangement, and are arranged between the first substrate 10 and the second substrate 20 so as to face each other. ing. Specifically, the first electrode layer 40 and the second electrode layer 50 are arranged so as to sandwich the light distribution layer 30.
 第1電極層40及び第2電極層50は、透光性を有し、入射した光を透過する。第1電極層40及び第2電極層50は、例えば透明導電層である。透明導電層の材料としては、ITO(Indium Tin Oxide)若しくはIZO(Indium Zinc Oxide)などの透明金属酸化物、銀ナノワイヤ若しくは導電性粒子などの導電体を含有する樹脂からなる導電体含有樹脂、又は、銀薄膜などの金属薄膜などを用いることができる。なお、第1電極層40及び第2電極層50は、これらの単層構造でよく、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)でもよい。本実施の形態では、第1電極層40及び第2電極層50はそれぞれ、厚さ100nmのITOである。 The first electrode layer 40 and the second electrode layer 50 are translucent and transmit incident light. The first electrode layer 40 and the second electrode layer 50 are, for example, transparent conductive layers. As a material of the transparent conductive layer, a conductor-containing resin made of a resin containing a conductor such as a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), silver nanowires or conductive particles, or A metal thin film such as a silver thin film can be used. In addition, the 1st electrode layer 40 and the 2nd electrode layer 50 may be these single layer structures, and these laminated structures (for example, laminated structure of a transparent metal oxide and a metal thin film) may be sufficient as them. In the present embodiment, each of the first electrode layer 40 and the second electrode layer 50 is ITO having a thickness of 100 nm.
 第1電極層40は、第1基板10と第1凹凸構造層31aとの間に配置されている。具体的には、第1電極層40は、第1基板10の配光層30側の面に形成されている。 The first electrode layer 40 is disposed between the first substrate 10 and the first uneven structure layer 31a. Specifically, the first electrode layer 40 is formed on the surface of the first substrate 10 on the light distribution layer 30 side.
 一方、第2電極層50は、第2凹凸構造層31bと第2基板20との間に配置されている。具体的には、第2電極層50は、第2基板20の配光層30側の面に形成されている。 On the other hand, the second electrode layer 50 is disposed between the second concavo-convex structure layer 31b and the second substrate 20. Specifically, the second electrode layer 50 is formed on the surface of the second substrate 20 on the light distribution layer 30 side.
 なお、第1電極層40及び第2電極層50は、例えば、外部電源との電気接続が可能となるように構成されている。例えば、外部電源に接続するための電極パッドなどが、第1電極層40及び第2電極層50の各々から引き出されて第1基板10及び第2基板20に形成されていてもよい。 In addition, the 1st electrode layer 40 and the 2nd electrode layer 50 are comprised so that electrical connection with an external power supply is attained, for example. For example, electrode pads or the like for connecting to an external power source may be formed on the first substrate 10 and the second substrate 20 by being drawn from each of the first electrode layer 40 and the second electrode layer 50.
 第1電極層40及び第2電極層50はそれぞれ、例えば、蒸着、スパッタリングなどにより、ITOなどの導電膜を成膜することで形成される。 The first electrode layer 40 and the second electrode layer 50 are each formed by forming a conductive film such as ITO by vapor deposition, sputtering, or the like, for example.
 [配光制御デバイスの動作及び光学状態]
 続いて、配光制御デバイス1の動作及び光学状態について説明する。
[Operation and optical state of light distribution control device]
Next, the operation and optical state of the light distribution control device 1 will be described.
 <透明状態(無印加モード)>
 図3Aは、本実施の形態に係る配光制御デバイス1の無印加モード(透明状態)を説明するための拡大断面図である。また、図3Aには、配光制御デバイス1に対して斜めに入射する光Lの経路を太線の矢印で示している。
<Transparent state (non-application mode)>
FIG. 3A is an enlarged cross-sectional view for explaining a non-application mode (transparent state) of the light distribution control device 1 according to the present embodiment. In FIG. 3A, the path of the light L incident obliquely on the light distribution control device 1 is indicated by a thick arrow.
 図3Aにおいて、第1電極層40及び第2電極層50間には電圧が印加されていない。具体的には、第1電極層40と第2電極層50とは、互いに等電位となっている。この場合、屈折率可変層32には電界が与えられないので、ナノ粒子38は、絶縁性液体37の全体に亘って分散された状態となる。 In FIG. 3A, no voltage is applied between the first electrode layer 40 and the second electrode layer 50. Specifically, the first electrode layer 40 and the second electrode layer 50 are equipotential with each other. In this case, since no electric field is applied to the refractive index variable layer 32, the nanoparticles 38 are dispersed throughout the insulating liquid 37.
 本実施の形態では、ナノ粒子38が絶縁性液体37の全体に分散された状態の屈折率可変層32の屈折率は、上述したように、約1.5である。また、第1凹凸構造層31aの第1凸部33の屈折率、及び、第2凹凸構造層31bの第2凸部35の屈折率は、約1.5である。つまり、複数の第1凸部33と、複数の第2凸部35と、屈折率可変層32とは、屈折率が同等になる。したがって、配光層30の全体で、屈折率が均一になる。 In the present embodiment, the refractive index of the refractive index variable layer 32 in a state where the nanoparticles 38 are dispersed throughout the insulating liquid 37 is about 1.5 as described above. Moreover, the refractive index of the 1st convex part 33 of the 1st uneven structure layer 31a and the refractive index of the 2nd convex part 35 of the 2nd uneven structure layer 31b are about 1.5. That is, the plurality of first protrusions 33, the plurality of second protrusions 35, and the refractive index variable layer 32 have the same refractive index. Therefore, the refractive index is uniform throughout the light distribution layer 30.
 このため、図3Aに示されるように、斜め方向から光Lが入射した場合、屈折率可変層32と第1凹凸構造層31aとの界面には屈折率差がないので、光が真っ直ぐに進行する。同様に、屈折率可変層32と第2凹凸構造層31bとの界面には屈折率差がないので、光が真っ直ぐに進行する。つまり、光Lの入射角θinと出射角θoutとは、実質的に同じになる。このように、配光制御デバイス1は、入射した光を実質的にそのまま(進行方向を変えることなく)透過させる透明状態になる。 For this reason, as shown in FIG. 3A, when light L is incident from an oblique direction, there is no difference in refractive index at the interface between the refractive index variable layer 32 and the first concavo-convex structure layer 31a, so that the light travels straight. To do. Similarly, since there is no refractive index difference at the interface between the refractive index variable layer 32 and the second concavo-convex structure layer 31b, light travels straight. That is, the incident angle θin and the outgoing angle θout of the light L are substantially the same. In this way, the light distribution control device 1 is in a transparent state that allows the incident light to pass through substantially as it is (without changing the traveling direction).
 なお、光Lは、実際には、第1基板10に入射するとき、第2基板20から出射するとき、第1基板10と第1電極層40との界面を通過するとき、及び、第2電極層50と第2基板20との界面を通過するとき、などの通過する媒体が変化するときに屈折するが、図3Aには図示していない。図3Aでは、配光層30内での光Lの進行方向を詳細に図示している。後述する図3Bにおいても同様である。 The light L is actually incident on the first substrate 10, emitted from the second substrate 20, passed through the interface between the first substrate 10 and the first electrode layer 40, and the second Although it is refracted when the passing medium changes, such as when passing through the interface between the electrode layer 50 and the second substrate 20, it is not shown in FIG. 3A. In FIG. 3A, the traveling direction of the light L in the light distribution layer 30 is illustrated in detail. The same applies to FIG. 3B described later.
 <配光状態(電圧印加モード)>
 図3Bは、本実施の形態に係る配光制御デバイス1の電圧印加モード(配光状態)を説明するための拡大断面図である。また、図3Bには、配光制御デバイス1に対して斜めに入射する光Lの経路を太線の矢印で示している。
<Light distribution state (voltage application mode)>
FIG. 3B is an enlarged cross-sectional view for explaining a voltage application mode (light distribution state) of the light distribution control device 1 according to the present embodiment. In FIG. 3B, the path of the light L incident obliquely on the light distribution control device 1 is indicated by a thick arrow.
 図3Bにおいて、第1電極層40及び第2電極層50間に所定の電圧が印加されている。例えば、第1電極層40と第2電極層50とには、数十V程度の電位差の電圧が印加されている。これにより、屈折率可変層32には所定の電界が与えられるので、屈折率可変層32では、帯電したナノ粒子38がその電界分布に従って絶縁性液体37内を泳動する。つまり、ナノ粒子38は、絶縁性液体37内を電気泳動する。 In FIG. 3B, a predetermined voltage is applied between the first electrode layer 40 and the second electrode layer 50. For example, a voltage having a potential difference of about several tens of volts is applied to the first electrode layer 40 and the second electrode layer 50. As a result, a predetermined electric field is applied to the refractive index variable layer 32, and therefore, in the refractive index variable layer 32, the charged nanoparticles 38 migrate in the insulating liquid 37 according to the electric field distribution. That is, the nanoparticles 38 are electrophoresed in the insulating liquid 37.
 図3Bに示す例では、第2電極層50は、第1電極層40よりも高電位になっている。このため、プラスに帯電したナノ粒子38は、第1電極層40に向かって泳動し、第1凹凸構造層31aの第1凹部34に入り込んで集積していく。 In the example shown in FIG. 3B, the second electrode layer 50 is at a higher potential than the first electrode layer 40. For this reason, the positively charged nanoparticles 38 migrate toward the first electrode layer 40, and enter and accumulate in the first recesses 34 of the first concavo-convex structure layer 31a.
 このように、ナノ粒子38が屈折率可変層32内の第1凹凸構造層31a側に偏在することで、ナノ粒子38の粒子分布が変化し、屈折率可変層32内の屈折率分布が一様ではなくなる。具体的には、図3Bに示すように、屈折率可変層32内でナノ粒子38の濃度分布が形成される。 As described above, the nanoparticles 38 are unevenly distributed on the first uneven structure layer 31a side in the refractive index variable layer 32, whereby the particle distribution of the nanoparticles 38 is changed, and the refractive index distribution in the refractive index variable layer 32 is uniform. It is not like. Specifically, as shown in FIG. 3B, a concentration distribution of nanoparticles 38 is formed in the refractive index variable layer 32.
 例えば、第1凹凸構造層31a側の第1領域32aでは、ナノ粒子38の濃度が高くなり、第2凹凸構造層31b側の第2領域32bでは、ナノ粒子38の濃度が低くなる。したがって、第1領域32aと第2領域32bとには、屈折率差が生じる。 For example, in the first region 32a on the first uneven structure layer 31a side, the concentration of the nanoparticles 38 is high, and in the second region 32b on the second uneven structure layer 31b side, the concentration of the nanoparticles 38 is low. Accordingly, a difference in refractive index occurs between the first region 32a and the second region 32b.
 本実施の形態では、ナノ粒子38の屈折率が絶縁性液体37の屈折率よりも高い。このため、ナノ粒子38の濃度が高い第1領域32aの屈折率は、ナノ粒子38の濃度が低い、すなわち、絶縁性液体37の割合が多い第2領域32bの屈折率よりも高くなる。例えば、第1領域32aの屈折率は、ナノ粒子38の濃度に応じて約1.5より大きい値~約1.8になる。第2領域32bの屈折率は、ナノ粒子38の濃度に応じて約1.4~約1.5より小さい値になる。 In this embodiment, the refractive index of the nanoparticles 38 is higher than the refractive index of the insulating liquid 37. Therefore, the refractive index of the first region 32a where the concentration of the nanoparticles 38 is high is higher than the refractive index of the second region 32b where the concentration of the nanoparticles 38 is low, that is, the proportion of the insulating liquid 37 is large. For example, the refractive index of the first region 32a is greater than about 1.5 to about 1.8 depending on the concentration of the nanoparticles 38. The refractive index of the second region 32b is a value less than about 1.4 to less than about 1.5 depending on the concentration of the nanoparticles 38.
 複数の第1凸部33の屈折率が約1.5であるので、第1電極層40と第2電極層50との間に電圧が印加されている場合、第1凸部33と第1領域32aとの間には、屈折率差が生じる。このため、図3Bに示すように、斜め方向から光Lが入射した場合、入射した光Lは、第1凸部33の第1側面33aで屈折した後、第2側面33bで全反射される。 Since the refractive index of the plurality of first protrusions 33 is about 1.5, when a voltage is applied between the first electrode layer 40 and the second electrode layer 50, the first protrusions 33 and the first protrusions 33 A refractive index difference occurs between the region 32a and the region 32a. Therefore, as shown in FIG. 3B, when the light L is incident from an oblique direction, the incident light L is refracted by the first side surface 33a of the first convex portion 33 and then totally reflected by the second side surface 33b. .
 さらに、複数の第2凸部35の屈折率が約1.5であるので、第2凸部35と第2領域32bとの間にも、僅かながら屈折率差が生じる。このときの第2凸部35と第2領域32bとの間の屈折率差は、第1凸部33と第1領域32aとの間の屈折率差よりも小さい。第1凸部33の第2側面33bで全反射された光の一部は、第2凸部35の第1側面35a又は第2側面35bなどによって屈折又は反射される。このため、第2側面33bで全反射された光が部分的に散乱される。 Furthermore, since the refractive index of the plurality of second convex portions 35 is about 1.5, a slight difference in refractive index is also generated between the second convex portion 35 and the second region 32b. At this time, the refractive index difference between the second convex portion 35 and the second region 32b is smaller than the refractive index difference between the first convex portion 33 and the first region 32a. A part of the light totally reflected by the second side surface 33 b of the first convex portion 33 is refracted or reflected by the first side surface 35 a or the second side surface 35 b of the second convex portion 35. For this reason, the light totally reflected by the second side surface 33b is partially scattered.
 これにより、斜め下方に入射する光Lは、配光制御デバイス1によって進行方向が曲げられて、屋内の天井面などに照射される。このとき、一部の光が散乱されて、広い範囲に出射される。 Thereby, the light L incident obliquely downward is bent in the traveling direction by the light distribution control device 1 and irradiated to the indoor ceiling surface or the like. At this time, a part of the light is scattered and emitted to a wide range.
 このように、第1電極層40と第2電極層50との間に所定の電位差が生じた場合に、複数の第1凸部33の各々及び複数の第2凸部35の各々と屈折率可変層32との界面に屈折率差が発生し、配光層30に入射する光の進行方向が曲げられる。つまり、配光制御デバイス1は、入射した光を、その進行方向を曲げて透過させる配光状態になる。 Thus, when a predetermined potential difference occurs between the first electrode layer 40 and the second electrode layer 50, each of the plurality of first protrusions 33 and each of the plurality of second protrusions 35 and the refractive index. A difference in refractive index occurs at the interface with the variable layer 32, and the traveling direction of light incident on the light distribution layer 30 is bent. That is, the light distribution control device 1 enters a light distribution state in which incident light is transmitted with its traveling direction bent.
 また、印加する電圧の大きさによってナノ粒子38の凝集の程度を変化させることができる。ナノ粒子38の凝集の程度によって屈折率可変層32の屈折率が変化する。このため、第1凸部33の第1側面33a及び第2側面33b(界面)における屈折率の差を変化させることで、配光方向を変化させることも可能である。 Further, the degree of aggregation of the nanoparticles 38 can be changed depending on the magnitude of the applied voltage. The refractive index of the refractive index variable layer 32 changes depending on the degree of aggregation of the nanoparticles 38. For this reason, it is also possible to change the light distribution direction by changing the difference in refractive index between the first side surface 33 a and the second side surface 33 b (interface) of the first convex portion 33.
 [配光状態における光学的な特性]
 続いて、上述したように構成された配光制御デバイス1の光学的な特性について説明する。まず、配光制御デバイス1の適用例について説明する。
[Optical characteristics in the light distribution state]
Next, the optical characteristics of the light distribution control device 1 configured as described above will be described. First, an application example of the light distribution control device 1 will be described.
 図4は、本実施の形態に係る配光制御デバイス1の建物90の窓に適用した場合の一例を示す図である。図4に示されるように、配光制御デバイス1は、例えば、窓ガラス93に貼り付けて使用され、建物90の屋内に光を採り入れるように配置されている。 FIG. 4 is a diagram showing an example when applied to the window of the building 90 of the light distribution control device 1 according to the present embodiment. As shown in FIG. 4, the light distribution control device 1 is used by being attached to a window glass 93, for example, and is disposed so as to incorporate light into a building 90.
 図4では、建物90の一例として、床92から天井91までの高さが2.7m、奥行きが9mの建物を示している。窓ガラス93は、床上30cmから天井91までの高さ2.4mの範囲に設けられている。 FIG. 4 shows a building having a height from the floor 92 to the ceiling 91 of 2.7 m and a depth of 9 m as an example of the building 90. The window glass 93 is provided in a range of height 2.4 m from 30 cm above the floor to the ceiling 91.
 配光制御デバイス1は、窓ガラス93の上半分の領域に設けられている。このとき、窓ガラス93の下半分の領域には、配光制御デバイス1とは異なる特性を有する配光制御デバイスが設けられていてもよい。あるいは、下半分の領域には、配光機能を有しないデバイスが設けられていてもよい。また、配光制御デバイス1は、窓ガラス93の全体に設けられていてもよい。 The light distribution control device 1 is provided in the upper half area of the window glass 93. At this time, a light distribution control device having characteristics different from those of the light distribution control device 1 may be provided in the lower half region of the window glass 93. Alternatively, a device that does not have a light distribution function may be provided in the lower half region. The light distribution control device 1 may be provided on the entire window glass 93.
 配光制御デバイス1は、上述したように、太陽光などの外光を全反射させることにより、天井91に向けて進行させ、屋内の天井91を明るく照らす。このとき、配光制御デバイス1には、屋内に居る人94が感じる眩しさを抑制することが要求される。 As described above, the light distribution control device 1 causes the light to travel toward the ceiling 91 by totally reflecting outside light such as sunlight, and illuminates the indoor ceiling 91 brightly. At this time, the light distribution control device 1 is required to suppress the glare felt by the person 94 who is indoors.
 図4に示す例では、人94は、窓ガラス93から1.6m離れた位置に存在し、立っている場合と座っている場合とを示している。ここでは、立っている場合の目線の高さを床92から1.6mとし、座っている場合の目線の高さを床92から1.2mとしている。なお、図4では、立っている人94と座っている人94とをずらして図示しているが、以下の説明では、両者共、窓ガラス93から1.6m離れた位置に存在する場合を想定している。 In the example shown in FIG. 4, the person 94 is present at a position 1.6 m away from the window glass 93, and shows a case where the person 94 is standing and a case where he is sitting. Here, the height of the line of sight when standing is 1.6 m from the floor 92, and the height of the line of sight when sitting is 1.2 m from the floor 92. In FIG. 4, the standing person 94 and the sitting person 94 are illustrated in a shifted manner, but in the following description, the case where both are present at a position 1.6 m away from the window glass 93 is shown. Assumed.
 図4には、配光領域80及び直射領域81を模式的に示している。配光領域80及び直射領域81のいずれも、配光制御デバイス1の所定の部位を基準としたときの光の出射角θoutの範囲で表される。出射角θoutは、水平面に対する角度で表され、水平面より上側が正、下側が負で表される。図4に示す例では、所定の部位は、配光制御デバイス1の下端である場合を示している。 FIG. 4 schematically shows the light distribution area 80 and the direct-light area 81. Each of the light distribution region 80 and the direct-light region 81 is expressed in the range of the light emission angle θout when a predetermined part of the light distribution control device 1 is used as a reference. The emission angle θout is expressed as an angle with respect to the horizontal plane, and is expressed as positive on the upper side and negative on the lower side. In the example illustrated in FIG. 4, the predetermined part is the lower end of the light distribution control device 1.
 配光領域80は、配光制御デバイス1によって配光される光が通過する領域である。例えば、配光領域80は、配光制御デバイス1の下端からの光の出射角θoutが3.6°以上80°以下になる範囲である。 The light distribution region 80 is a region through which light distributed by the light distribution control device 1 passes. For example, the light distribution region 80 is a range in which the light emission angle θout from the lower end of the light distribution control device 1 is 3.6 ° or more and 80 ° or less.
 配光領域80の出射角θoutの下限値(ここでは、3.6°)は、立っている人94の目線に配光制御デバイス1によって配光された光が入らない範囲と入る範囲との境界に相当する値である。具体的には、下限値は、配光制御デバイス1の下端と立っている人94の目線との高さの差(ここでは、0.1m(=1.6m-1.5m))と、配光制御デバイス1から人94までの距離(ここでは、1.6m)とに基づき算出される。具体的には、下限値は、tan-1(0.1/1.6)で算出される。 The lower limit value (here, 3.6 °) of the emission angle θout of the light distribution region 80 is defined as a range in which the light distributed by the light distribution control device 1 does not enter the line of sight of the person 94 standing. A value corresponding to the boundary. Specifically, the lower limit value is the difference in height between the lower end of the light distribution control device 1 and the line of sight of the person 94 (here, 0.1 m (= 1.6 m−1.5 m)), It is calculated based on the distance (here 1.6 m) from the light distribution control device 1 to the person 94. Specifically, the lower limit value is calculated by tan −1 (0.1 / 1.6).
 なお、出射角θoutの下限値は、これに限らず、建物90の最奥まで光を届かせるように定められてもよい。具体的には、下限値は、配光制御デバイス1の下端から天井91までの差(ここでは、1.2m)と、配光制御デバイス1から建物90の最奥までの距離(ここでは、9m)とに基づき算出されてもよい。具体的には、下限値は、tan-1(1.2/9)で算出され、7.6°であってもよい。 Note that the lower limit value of the emission angle θout is not limited to this, and may be determined so that light can reach the deepest part of the building 90. Specifically, the lower limit value is a difference from the lower end of the light distribution control device 1 to the ceiling 91 (here, 1.2 m) and a distance from the light distribution control device 1 to the innermost part of the building 90 (here, 9m). Specifically, the lower limit value is calculated by tan −1 (1.2 / 9) and may be 7.6 °.
 直射領域81は、配光制御デバイス1を通って人94の目に入りうる光が通過する領域である。具体的には、直射領域81は、配光制御デバイス1から人94の目に直接入る光が通過する領域である。例えば、直射領域81は、配光制御デバイス1の下端からの光の出射角θoutが-43°以上3.6°以下になる範囲である。 The direct-light region 81 is a region through which light that can enter the eyes of the person 94 through the light distribution control device 1 passes. Specifically, the direct-light region 81 is a region through which light that directly enters the eyes of the person 94 from the light distribution control device 1 passes. For example, the direct-light region 81 is a range in which the light emission angle θout from the lower end of the light distribution control device 1 is −43 ° to 3.6 °.
 直射領域81の出射角θoutの上限値(ここでは、3.6°)は、立っている人94の目線に配光制御デバイス1によって配光された光が入らない範囲と入る範囲との境界に相当する値である。つまり、直射領域81の上限値は、配光領域80の下限値に相当している。 The upper limit value (here, 3.6 °) of the emission angle θout of the direct-light region 81 is the boundary between the range where the light distributed by the light distribution control device 1 does not enter the line of sight of the standing person 94 and the range where it enters. Is a value corresponding to. That is, the upper limit value of the direct-light region 81 corresponds to the lower limit value of the light distribution region 80.
 直射領域81の出射角θoutの下限値(ここでは、-43°)は、座っている人94の目線に配光制御デバイス1を透過した光が入らない範囲と入る範囲との境界に相当する値である。具体的には、下限値は、配光制御デバイス1の上端と座っている人94の目線との高さの差(ここでは、1.5m(=2.7m-1.2m))と、配光制御デバイス1から座っている人94までの距離(ここでは、1.6m)とに基づいて算出される。具体的には、下限値は、tan-1(1.5/1.6)で算出される。 The lower limit value (here, −43 °) of the emission angle θout of the direct-light region 81 corresponds to the boundary between the range in which the light transmitted through the light distribution control device 1 does not enter the line of sight of the person 94 sitting. Value. Specifically, the lower limit value is a difference in height between the upper end of the light distribution control device 1 and the line of sight of the sitting person 94 (here, 1.5 m (= 2.7 m-1.2 m)), It is calculated based on the distance (here, 1.6 m) from the light distribution control device 1 to the person 94 sitting. Specifically, the lower limit value is calculated by tan −1 (1.5 / 1.6).
 なお、図4で示される直射領域81は、配光制御デバイス1の下端を基準として図示しているので、下限値を示す実線は、配光制御デバイス1の上端と座っている人94の目線とを結ぶ破線に平行な線で表されている。 4 is illustrated with the lower end of the light distribution control device 1 as a reference, the solid line indicating the lower limit value is the upper end of the light distribution control device 1 and the line of sight of the person 94 sitting. It is represented by a line parallel to the broken line connecting
 以上のように、配光制御デバイス1は、配光状態において、ただ単に多くの光を天井91に向けて採り入れればよいだけでなく、屋内に居る人94の眩しさを抑制することも要求される。 As described above, in the light distribution state, the light distribution control device 1 is not only required to introduce a large amount of light toward the ceiling 91 but also to suppress the glare of the person 94 indoors. Is done.
 具体的には、配光制御デバイス1が窓に利用された場合に、屋内を明るくするためには、配光率の平均値が30%以上であることが望まれる。配光率は、配光制御デバイス1が配光状態である場合において、配光制御デバイス1を透過する光に対する、配光される光の割合を示す。具体的には、配光率は、入射した光の強度に対する配光される光の強度で表される。 Specifically, when the light distribution control device 1 is used for a window, it is desirable that the average value of the light distribution rate is 30% or more in order to brighten the interior. The light distribution rate indicates the ratio of light distributed to the light transmitted through the light distribution control device 1 when the light distribution control device 1 is in the light distribution state. Specifically, the light distribution rate is represented by the intensity of light distributed relative to the intensity of incident light.
 配光される光は、図4に示されるように、天井91に向けて配光される光であり、例えば4°以上80°以下の範囲内で配光制御デバイス1から出射される光である。つまり、配光される光は、配光制御デバイス1を透過して配光領域80を通過する光である。 The light distributed is light distributed toward the ceiling 91 as shown in FIG. 4, for example, light emitted from the light distribution control device 1 within a range of 4 ° to 80 °. is there. That is, the light to be distributed is light that passes through the light distribution control device 1 and passes through the light distribution region 80.
 このとき、配光制御デバイス1は、全ての入射角の光に対する配光率の平均値が30%以上でなくてもよく、入射角θinが所定の範囲内の配光率の平均値が30%以上であってもよい。 At this time, the light distribution control device 1 does not have to have an average value of the light distribution rate of all incident angles of light of 30% or more, and the average value of the light distribution rate within the predetermined range of the incident angle θin is 30. % Or more.
 この入射角θinの範囲は、配光制御デバイス1が設置される場所の緯度、配光制御デバイス1の設置向き、及び、その周囲環境などに依存する。例えば、北緯約35°である大阪において南向きに配光制御デバイス1を立てて設置する場合を想定する。このとき、太陽は、季節に応じて、図5に示される軌跡を描くように移動する。 The range of the incident angle θin depends on the latitude of the place where the light distribution control device 1 is installed, the installation direction of the light distribution control device 1, the surrounding environment, and the like. For example, a case is assumed where the light distribution control device 1 is installed in the south direction in Osaka at about 35 ° north latitude. At this time, the sun moves to draw a locus shown in FIG. 5 according to the season.
 図5は、北緯約35°の地点で観測された太陽の移動軌跡を示す図である。横軸は、0°を真南として負側を東側、正側を西側にした太陽の方位角を示している。縦軸は、太陽高度を示している。なお、配光制御デバイス1を垂直に立てて設けているので、太陽高度は、配光制御デバイス1に対する光の入射角θinに相当する。 FIG. 5 is a diagram showing the movement trajectory of the sun observed at a point of about 35 ° north latitude. The horizontal axis indicates the azimuth angle of the sun with 0 ° as the south, the negative side on the east side, and the positive side on the west side. The vertical axis represents the solar altitude. Since the light distribution control device 1 is provided vertically, the solar altitude corresponds to the incident angle θin of light with respect to the light distribution control device 1.
 入射光を配光することで光を屋内に採り込む場合、例えば、夏を除く、春、秋、冬の日中において効率良く光が採り入れられることが望まれる。つまり、配光率は、春、秋、冬の日中の太陽が通りうる範囲である入射角θinが20°以上60°以下の範囲の平均値が、30%以上であることが望まれる。 When light is taken indoors by distributing incident light, for example, it is desired that light be taken in efficiently during the daytime of spring, autumn, and winter except summer. That is, it is desirable that the light distribution rate is 30% or more as the average value in the range where the incident angle θin, which is the range through which the sun during the spring, autumn and winter days can pass, is 20 ° or more and 60 ° or less.
 また、屋内に居る人が感じる眩しさを抑制するためには、直射率の平均値が10%以下であることが望まれる。直射率は、配光状態において、配光制御デバイス1に入射する光に対する、直射領域81に出射される光の割合である。直射率は、入射した光の強度に対する直射領域81に出射される光の強度で表される。例えば、直射領域81に出射される光は、-41°以上3.6°以下の範囲内で、配光制御デバイス1から出射される光である。 Also, in order to suppress the glare that is felt by people who are indoors, it is desirable that the average value of the direct radiation rate is 10% or less. The direct radiation rate is a ratio of light emitted to the direct radiation region 81 with respect to light incident on the light distribution control device 1 in the light distribution state. The direct radiation rate is represented by the intensity of light emitted to the direct radiation area 81 with respect to the intensity of incident light. For example, the light emitted to the direct irradiation region 81 is light emitted from the light distribution control device 1 within a range of −41 ° to 3.6 °.
 配光制御デバイス1は、全ての入射角の光に対する直射率の平均値が10%以下でなくてもよく、入射角θinが所定の範囲内の直射率の平均値が10%以下であってもよい。このときの入射角θinの範囲は、例えば、0°以上60°以下の範囲である。太陽高度が低い場合には、屋内へ進む光が多くなるので、人の目に入る光の量が多くなりうる。一方で、太陽高度が高い場合には、人の目に入る光の量が少なくなる。 In the light distribution control device 1, the average value of the direct radiation rate with respect to the light of all incident angles may not be 10% or less, and the average value of the direct radiation rate within the predetermined range of the incident angle θin is 10% or less. Also good. The range of the incident angle θin at this time is, for example, a range of 0 ° to 60 °. When the solar altitude is low, the amount of light entering the human eye can increase because more light travels indoors. On the other hand, when the solar altitude is high, the amount of light entering the human eye decreases.
 また、屋内の特に窓際の温度上昇を抑制するためには、下方照射率の平均値が10%以下であることが望まれる。下方照射率は、配光状態において、配光制御デバイス1に入射する光に対して、そのまま下方に出射される光の割合である。つまり、下方照射率は、配光状態において、配光制御デバイス1によって配光されずに直進する光の割合に相当する。下方照射率は、入射した光の強度に対する下方に出射される光の強度で表される。 Also, in order to suppress the temperature rise indoors, particularly near the window, it is desirable that the average value of the lower irradiation rate is 10% or less. The downward irradiation rate is a ratio of light emitted downward as it is with respect to light incident on the light distribution control device 1 in the light distribution state. That is, the downward irradiation rate corresponds to the proportion of light that travels straight without being distributed by the light distribution control device 1 in the light distribution state. The downward irradiation rate is represented by the intensity of light emitted downward relative to the intensity of incident light.
 配光制御デバイス1は、全ての入射角の光に対する下方照射率の平均値が10%以下でなくてもよく、入射角θinが所定の範囲内の下方照射率の平均値が10%以下であってもよい。このときの入射角θinの範囲は、例えば60°以上80°以下の範囲である。 In the light distribution control device 1, the average value of the lower irradiation rate for light of all incident angles may not be 10% or less, and the average value of the lower irradiation rate within the predetermined range of the incident angle θin is 10% or less. There may be. The range of the incident angle θin at this time is, for example, a range of 60 ° to 80 °.
 以上のように、本実施の形態では、配光率の平均値が30%以上で、直射率の平均値が10%以下で、かつ、下方照射率の平均値が10%以下であるという条件を満たすことが望まれる。なお、この条件は、一例に過ぎず、配光率、直射率及び下方照射率のいずれかがこの条件を満たさなくてもよい。 As described above, in the present embodiment, the condition is that the average value of the light distribution rate is 30% or more, the average value of the direct radiation rate is 10% or less, and the average value of the lower irradiation rate is 10% or less. It is desirable to satisfy. Note that this condition is merely an example, and any one of the light distribution rate, direct radiation rate, and downward irradiation rate may not satisfy this condition.
 以下では、上記条件を満たす配光制御デバイス1の具体的な実施例を例に挙げて、上記条件を満たすことを説明する。 Hereinafter, a specific example of the light distribution control device 1 that satisfies the above conditions will be described as an example to explain that the above conditions are satisfied.
 以下で示す実施例1及び2はそれぞれ、第1凸部33の第1側面33aの傾斜角αdown、第2側面33bの傾斜角αup、第2凸部35の第1側面35aの傾斜角βdown及び第2側面35bの傾斜角βupの組み合わせを異ならせたものである。具体的には、以下の表1に示される通りである。 In Examples 1 and 2 described below, the inclination angle α down of the first side surface 33 a of the first convex portion 33, the inclination angle α up of the second side surface 33 b, and the inclination angle of the first side surface 35 a of the second convex portion 35, respectively. The combinations of β down and the inclination angle β up of the second side surface 35b are different. Specifically, it is as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、実施例1では、配光層30の厚みが1mm、第1凸部33及び第2凸部35の各々の高さが7.5μm、第1凸部33及び第2凸部35の各々の頂辺が0μm(すなわち、第1凸部33及び第2凸部35の断面形状が三角形)、隣り合う2つの凸部間の隙間が0μm(すなわち、隣り合う2つの凸部が根元で接触している)の場合を想定した。また、屈折率可変層32の屈折率は、第1領域32aにおいて1.5~1.8の範囲で変化させ、第2領域32bでは1.42で固定である場合を想定した。 In Example 1, the thickness of the light distribution layer 30 is 1 mm, the height of each of the first convex portion 33 and the second convex portion 35 is 7.5 μm, and each of the first convex portion 33 and the second convex portion 35 is. Of the first convex portion 33 and the second convex portion 35 is triangular, and the gap between two adjacent convex portions is 0 μm (that is, the two adjacent convex portions are in contact at the root) Is assumed). Further, it is assumed that the refractive index of the refractive index variable layer 32 is changed in the range of 1.5 to 1.8 in the first region 32a and is fixed at 1.42 in the second region 32b.
 実施例2では、配光層30の厚みが1mm、第1凸部33及び第2凸部35の各々の高さが30μm、第1凸部33及び第2凸部35の各々の頂辺が2μm(すなわち、第1凸部33及び第2凸部35の断面形状が台形)、隣り合う2つの凸部間の根元での隙間が2μm(すなわち、隣り合う2つの凸部が根元で離れている)の場合を想定した。また、屈折率可変層32の屈折率は、第1領域32aにおいて1.5~1.8の範囲で変化させ、第2領域32bでは1.4で固定である場合を想定した。 In Example 2, the thickness of the light distribution layer 30 is 1 mm, the height of each of the first convex portion 33 and the second convex portion 35 is 30 μm, and the top side of each of the first convex portion 33 and the second convex portion 35 is 2 μm (that is, the cross-sectional shape of the first convex portion 33 and the second convex portion 35 is trapezoidal), the gap between the two adjacent convex portions is 2 μm (that is, the two adjacent convex portions are separated at the root) Is assumed). Further, it is assumed that the refractive index of the refractive index variable layer 32 is changed in the range of 1.5 to 1.8 in the first region 32a and fixed at 1.4 in the second region 32b.
 図6は、実施例1に係る配光制御デバイス1の配光率、直射率及び下方照射率の各々を光の入射角毎に示す図である。図6において、横軸は、光の入射角θinを表しており、縦軸は、配光率、直射率及び下方照射率の各々を表している。 FIG. 6 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device 1 according to the first embodiment for each incident angle of light. In FIG. 6, the horizontal axis represents the incident angle θin of light, and the vertical axis represents each of the light distribution rate, direct radiation rate, and downward irradiation rate.
 実施例1に係る配光制御デバイス1は、表1に示されるように、第1凸部33の第1側面33a及び第2側面33bの傾斜角の組み合わせと、第2凸部35の第1側面35a及び第2側面35bの傾斜角の組み合わせとが同じである。具体的には、実施例1では、第1凸部33と第2凸部35とは、互いに同じ形状及び同じ大きさを有する。 As shown in Table 1, the light distribution control device 1 according to the first embodiment includes the combination of the inclination angles of the first side surface 33a and the second side surface 33b of the first convex portion 33 and the first of the second convex portion 35. The combination of the inclination angles of the side surface 35a and the second side surface 35b is the same. Specifically, in Example 1, the first convex portion 33 and the second convex portion 35 have the same shape and the same size.
 図6に示されるように、実施例1では、配光率は、入射角θinが20°~60°の範囲では、平均値が57.1%であり、最小値が50.6%(θin=30°)となっている。このように、配光率は、最小値でも50%以上となっている。入射角θinが20°~60°の範囲だけでなく、0°~80°の範囲で、配光率が50%以上になっている。つまり、実施例1に係る配光制御デバイス1は、十分に高い配光率を有している。 As shown in FIG. 6, in Example 1, the light distribution rate is 57.1% in the average value and 50.6% (θin) in the range of the incident angle θin of 20 ° to 60 °. = 30 °). Thus, the light distribution rate is 50% or more even at the minimum value. The light distribution rate is 50% or more in the range of 0 ° to 80 ° as well as the incident angle θin of 20 ° to 60 °. That is, the light distribution control device 1 according to the first embodiment has a sufficiently high light distribution rate.
 また、直射率は、入射角θinが0°~80°の範囲では、平均値が2.5%であり、最大値が4.9%となっている。直射率は、最大値でも5%以下である。入射角θinが0°~60°の範囲だけでなく、0°~80°の範囲で、直射率が5%以下になっている。したがって、実施例1に係る配光制御デバイス1は、十分に低い直射率を有している。 Also, the direct radiation rate has an average value of 2.5% and a maximum value of 4.9% when the incident angle θin is in the range of 0 ° to 80 °. The direct radiation rate is 5% or less even at the maximum value. The direct radiation rate is 5% or less not only in the range of the incident angle θin of 0 ° to 60 ° but also in the range of 0 ° to 80 °. Therefore, the light distribution control device 1 according to the first embodiment has a sufficiently low direct radiation rate.
 下方照射率は、入射角θinが60°~80°の範囲で、平均値が1.9%であり、最大値が3.3%になっている。入射角θinが低い場合には、下方照射率が高くなる部分が含まれているものの、夏場などの太陽高度が高い範囲(具体的には、入射角θinが60°~80°の範囲)では、下方照射率が十分に低く抑えられている。 The lower irradiation rate has an average value of 1.9% and a maximum value of 3.3% when the incident angle θin is in the range of 60 ° to 80 °. In the case where the incident angle θin is low, a portion where the lower irradiation rate is high is included, but in the range where the solar altitude is high such as in summer (specifically, the incident angle θin is in the range of 60 ° to 80 °). The lower irradiation rate is sufficiently low.
 以上のように、実施例1では、配光率の最小値が50%以上、直射率の最大値が5%以下、入射角θinが60°~80°の範囲内における下方照射率が4%以下となっており、極めて光学特性の優れた配光制御デバイス1が実現できていることが分かる。 As described above, in Example 1, the minimum value of the light distribution rate is 50% or more, the maximum value of the direct radiation rate is 5% or less, and the downward irradiation rate within the range of the incident angle θin of 60 ° to 80 ° is 4%. As shown below, it can be seen that the light distribution control device 1 having extremely excellent optical characteristics can be realized.
 図7はそれぞれ、実施例2に係る配光制御デバイス1の配光率、直射率及び下方照射率の各々を光の入射角毎に示す図である。図7において、横軸は、光の入射角θinを表しており、縦軸は、配光率、直射率及び下方照射率の各々を表している。 FIG. 7 is a diagram illustrating each of the light distribution rate, direct radiation rate, and downward irradiation rate of the light distribution control device 1 according to the second embodiment for each incident angle of light. In FIG. 7, the horizontal axis represents the incident angle θin of light, and the vertical axis represents each of the light distribution rate, direct radiation rate, and downward irradiation rate.
 実施例2に係る配光制御デバイス1は、表1に示されるように、第1凸部33の第1側面33aの傾斜角αdownと第2側面33bの傾斜角αupとが同じである。つまり、第1凸部33の断面形状が等脚台形又は二等辺三角形となっている。第2凸部35については、第1側面35aの傾斜角βdownと第2側面35bの傾斜角βupとが異なっている。 In the light distribution control device 1 according to the second embodiment, as shown in Table 1, the inclination angle α down of the first side surface 33a of the first convex portion 33 and the inclination angle α up of the second side surface 33b are the same. . That is, the cross-sectional shape of the first convex portion 33 is an isosceles trapezoid or an isosceles triangle. About the 2nd convex part 35, inclination-angle (beta) down of the 1st side 35a differs from inclination-angle (beta) up of the 2nd side 35b.
 図7に示されるように、実施例2では、配光率は、入射角θinが20°~60°の範囲では、平均値が48.5%であり、最小値が34.8%(θin=40°)となっている。20°~50°の範囲では、配光率がやや低いものの、50°~60°の範囲では、十分に高い配光率が得られている。 As shown in FIG. 7, in Example 2, the light distribution rate is 48.5% in the average value and 34.8% (θin) in the range where the incident angle θin is 20 ° to 60 °. = 40 °). Although the light distribution rate is somewhat low in the range of 20 ° to 50 °, a sufficiently high light distribution rate is obtained in the range of 50 ° to 60 °.
 直射率は、入射角θinが0°~60°の範囲では、平均値が3.4%であり、最大値が6.3%となっている。したがって、実施例2に係る配光制御デバイス1は、十分に低い直射率を有している。 The direct radiation rate has an average value of 3.4% and a maximum value of 6.3% when the incident angle θin is in the range of 0 ° to 60 °. Therefore, the light distribution control device 1 according to Example 2 has a sufficiently low direct radiation rate.
 下方照射率は、入射角θinが60°~80°の範囲では、平均値が4.7%であり、最大値が6.6%になっている。入射角θinが低い場合には、下方照射率が高くなる部分が含まれているものの、夏場などの太陽高度が高い範囲(具体的には、入射角θinが60°~80°の範囲)では、下方照射率が十分に低く抑えられている。 The lower irradiation rate has an average value of 4.7% and a maximum value of 6.6% when the incident angle θin is in the range of 60 ° to 80 °. In the case where the incident angle θin is low, a portion where the lower irradiation rate is high is included, but in the range where the solar altitude is high such as in summer (specifically, the incident angle θin is in the range of 60 ° to 80 °). The lower irradiation rate is sufficiently low.
 以上のように、実施例2では、配光率の平均値が30%以上、直射率の平均値が10%以下、下方照射率の平均値が10%以下であるという条件を満たす配光制御デバイス1が実現できていることが分かる。 As described above, in Example 2, the light distribution control satisfying the condition that the average value of the light distribution rate is 30% or more, the average value of the direct irradiation rate is 10% or less, and the average value of the lower irradiation rate is 10% or less. It can be seen that the device 1 is realized.
 [効果など]
 以上のように、本実施の形態に係る配光制御デバイス1は、透光性を有する第1基板10と、第1基板10に対向して配置された、透光性を有する第2基板20と、第1基板10と第2基板20との間に互いに対向して配置された、透光性を有する第1電極層40及び第2電極層50と、第1電極層40と第2電極層50との間に配置され、入射した光を配光する配光層30とを備える。配光層30は、第1基板10側に設けられ、複数の第1凸部33を有する第1凹凸構造層31aと、第2基板20側に設けられ、複数の第2凸部35を有する第2凹凸構造層31bと、複数の第1凸部33間及び複数の第2凸部35間を充填するように配置され、第1電極層40及び第2電極層50間に印加される電圧に応じて屈折率が変化する屈折率可変層32とを含む。屈折率可変層32は、絶縁性液体37と、絶縁性液体37とは屈折率が異なる、絶縁性液体37に分散された帯電する複数のナノ粒子38とを備え、複数の第1凸部33の各々と複数の第2凸部35の各々とは、同一方向に沿って延びている。
[Effects, etc.]
As described above, the light distribution control device 1 according to the present embodiment includes the first substrate 10 having translucency, and the second substrate 20 having translucency disposed so as to face the first substrate 10. And the first electrode layer 40 and the second electrode layer 50 having translucency, which are disposed opposite to each other between the first substrate 10 and the second substrate 20, and the first electrode layer 40 and the second electrode. The light distribution layer 30 is disposed between the layer 50 and distributes incident light. The light distribution layer 30 is provided on the first substrate 10 side, and includes a first uneven structure layer 31a having a plurality of first protrusions 33, and a second substrate 20 side, and has a plurality of second protrusions 35. A voltage applied between the first electrode layer 40 and the second electrode layer 50, arranged so as to fill the space between the second uneven structure layer 31 b and the plurality of first protrusions 33 and between the plurality of second protrusions 35. And a refractive index variable layer 32 whose refractive index changes according to the above. The refractive index variable layer 32 includes an insulating liquid 37 and a plurality of charged nanoparticles 38 having a refractive index different from that of the insulating liquid 37 and dispersed in the insulating liquid 37, and a plurality of first protrusions 33. And each of the plurality of second convex portions 35 extend along the same direction.
 これにより、第1凸部33と屈折率可変層32との界面に屈折率差を生じさせることによって、光を反射させることができるので、太陽光などの斜めに入射する光を効率良く屋内に採り入れることができる。このときに、第2基板20側には第2凸部35が設けられているので、第2凸部35と屈折率可変層32との界面にも屈折率差が生じる。第2凸部35と屈折率可変層32との界面によって、第1凸部33によって反射された光の一部を屈折又は反射させることができるので、光の一部を散乱させることができる。 Thereby, since light can be reflected by producing a difference in refractive index at the interface between the first convex portion 33 and the refractive index variable layer 32, light incident obliquely such as sunlight can be efficiently put indoors. Can be introduced. At this time, since the second convex portion 35 is provided on the second substrate 20 side, a difference in refractive index also occurs at the interface between the second convex portion 35 and the refractive index variable layer 32. Since a part of the light reflected by the first convex part 33 can be refracted or reflected by the interface between the second convex part 35 and the refractive index variable layer 32, a part of the light can be scattered.
 例えば、第2凸部35が設けられていない場合、配光されることなく配光制御デバイス1をそのまま透過していた光の一部が、第2凸部35の第1側面35a及び第2側面35bによる反射又は屈折などによって、屋内の天井に向けて出射される。これにより、第2凸部35が設けられていない場合に比べて、配光率を高めることができる。 For example, when the second convex portion 35 is not provided, a part of the light that has been transmitted through the light distribution control device 1 without being distributed is directly reflected on the first side surface 35a and the second side of the second convex portion 35. The light is emitted toward the indoor ceiling by reflection or refraction by the side surface 35b. Thereby, a light distribution rate can be raised compared with the case where the 2nd convex part 35 is not provided.
 また、第2凸部35が設けられていない場合は、配光されることなく配光制御デバイス1をそのまま透過していた光の一部が、第2凸部35の第1側面35a及び第2側面35bによる反射又は屈折などによって、屋内に出射されることなく、光入射側に戻される。これにより、第2凸部35が設けられていない場合に比べて、直射率及び下方照射率を低くすることができる。 Further, when the second convex portion 35 is not provided, a part of the light that has passed through the light distribution control device 1 without being distributed is directly reflected on the first side surface 35a and the second side of the second convex portion 35. The light is returned to the light incident side without being emitted indoors by reflection or refraction by the two side surfaces 35b. Thereby, compared with the case where the 2nd convex part 35 is not provided, a direct radiation rate and a downward irradiation rate can be made low.
 このように、本実施の形態に係る配光制御デバイス1は、窓に利用された場合に、屋内を明るくすることができ、かつ、屋内に居る人が感じる眩しさを抑制することができる。 As described above, the light distribution control device 1 according to the present embodiment can brighten an indoor space when used for a window, and can suppress glare felt by a person in the indoor space.
 なお、本実施の形態では、電気泳動材料を用いているので、配光状態においては、P偏光及びS偏光のいずれの光にも屈折率差の影響を与えることができる。これにより、配光率を高めることができ、かつ、直射率及び下方照射率を低くすることができる。 In the present embodiment, since an electrophoretic material is used, in the light distribution state, the influence of the refractive index difference can be exerted on both P-polarized light and S-polarized light. Thereby, a light distribution rate can be raised and a direct radiation rate and a downward irradiation rate can be made low.
 また、例えば、複数の第1凸部33と複数の第2凸部35とは、互いに同じ形状及び同じ大きさを有する。 Also, for example, the plurality of first protrusions 33 and the plurality of second protrusions 35 have the same shape and the same size.
 これにより、実施例1でも示した通り、配光率を高めることができ、かつ、直射率及び下方照射率を低くすることができる。 Thereby, as also shown in Example 1, the light distribution rate can be increased, and the direct radiation rate and the downward irradiation rate can be lowered.
 また、例えば、複数の第1凸部33の各々の、上記同一方向に直交する断面の形状は、略台形又は略三角形である。 Further, for example, the shape of the cross section of each of the plurality of first protrusions 33 perpendicular to the same direction is a substantially trapezoid or a substantially triangle.
 これにより、第1凸部33の断面形状が略台形である場合、例えばナノインプリントによる成形の際の型抜きなどが容易に行えるなど、第1凸部33の成形性が高まる。このため、第1凸部33の形状の信頼性などが高まり、信頼性の高い配光性能などを実現することができる。また、第1凸部33の断面形状が略三角形である場合、面内に配置できる第1凸部33の数を増やすことができる。したがって、配光率を高めることができ、かつ、直射率及び下方照射率を低下させることができる。 Thereby, when the cross-sectional shape of the first convex portion 33 is a substantially trapezoidal shape, the moldability of the first convex portion 33 is enhanced, for example, the mold can be easily removed during molding by nanoimprint. For this reason, the reliability of the shape of the 1st convex part 33, etc. increase, and a reliable light distribution performance etc. are realizable. Moreover, when the cross-sectional shape of the 1st convex part 33 is a substantially triangle, the number of the 1st convex parts 33 which can be arrange | positioned in a surface can be increased. Accordingly, the light distribution rate can be increased, and the direct radiation rate and the downward irradiation rate can be reduced.
 また、例えば、凸部の断面形状である略台形又は略三角形の2つの底角はそれぞれ、65°以上90°以下である。 Further, for example, the two base angles of the substantially trapezoidal shape or the substantially triangular shape which are the cross-sectional shape of the convex portion are 65 ° or more and 90 ° or less, respectively.
 これにより、第2側面33bを光の全反射面として機能させやすくなるので、配光率を高めることができる。 This facilitates the functioning of the second side surface 33b as a light total reflection surface, thereby increasing the light distribution rate.
 また、例えば、第1電極層40と第2電極層50とが等電位である場合に、複数の第1凸部33と複数の第2凸部35と屈折率可変層32とは、屈折率が同等である。 Further, for example, when the first electrode layer 40 and the second electrode layer 50 are equipotential, the plurality of first protrusions 33, the plurality of second protrusions 35, and the refractive index variable layer 32 have a refractive index. Are equivalent.
 これにより、第1電極層40及び第2電極層50が等電位である場合に、第1凸部33と屈折率可変層32との界面、及び、第2凸部35と屈折率可変層32との界面における屈折率の差がほとんど0になるので、配光層30に入射する光をそのまま進行させることができる。したがって、配光制御デバイス1を透明状態にすることができる。例えば、第1電極層40及び第2電極層50間に電圧を印加しない場合に配光制御デバイス1を透明状態にすることができるので、透明状態を維持するのに要する電力を実質的になくすことができる。 Thereby, when the 1st electrode layer 40 and the 2nd electrode layer 50 are equipotential, the interface of the 1st convex part 33 and the refractive index variable layer 32, and the 2nd convex part 35 and the refractive index variable layer 32 are obtained. Since the difference in refractive index at the interface with the light becomes almost zero, the light incident on the light distribution layer 30 can be allowed to proceed as it is. Therefore, the light distribution control device 1 can be made transparent. For example, since the light distribution control device 1 can be made transparent when no voltage is applied between the first electrode layer 40 and the second electrode layer 50, the electric power required to maintain the transparent state is substantially eliminated. be able to.
 また、例えば、第1電極層40及び第2電極層50間に所定の電位差が生じた場合に、複数の第1凸部33の各々と屈折率可変層32との界面、及び、複数の第2凸部35の各々と屈折率可変層32との界面に、それぞれ屈折率差が発生し、配光層30に入射する光の進行方向が曲げられる。 Further, for example, when a predetermined potential difference is generated between the first electrode layer 40 and the second electrode layer 50, the interfaces between each of the plurality of first protrusions 33 and the refractive index variable layer 32, and the plurality of first A difference in refractive index occurs at the interface between each of the two convex portions 35 and the refractive index variable layer 32, and the traveling direction of light incident on the light distribution layer 30 is bent.
 これにより、第1電極層40及び第2電極層50間に印加する電圧に応じて屈折率差を変更することができるので、配光状態において、配光された光の進行方向を変更することができる。 Thereby, since the refractive index difference can be changed according to the voltage applied between the first electrode layer 40 and the second electrode layer 50, the traveling direction of the distributed light is changed in the light distribution state. Can do.
 (その他)
 以上、本発明に係る配光制御デバイスについて、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
The light distribution control device according to the present invention has been described based on the above embodiment, but the present invention is not limited to the above embodiment.
 例えば、複数の第1凸部33及び複数の第2凸部35の少なくとも一方は、x軸方向において複数に分割されていてもよい。例えば、複数の第1凸部33及び複数の第2凸部35は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の第1凸部33及び複数の第2凸部35の少なくとも一方を、ドット状に点在するように配置してもよい。 For example, at least one of the plurality of first protrusions 33 and the plurality of second protrusions 35 may be divided into a plurality in the x-axis direction. For example, the plurality of first protrusions 33 and the plurality of second protrusions 35 may be arranged so as to be scattered in a matrix or the like. That is, at least one of the plurality of first protrusions 33 and the plurality of second protrusions 35 may be arranged so as to be dotted.
 また、例えば、上記の実施の形態において、ナノ粒子38の屈折率が絶縁性液体37の屈折率より低くてもよい。ナノ粒子38の屈折率などに応じて印加する電圧を適宜調整することで、透明状態及び配光状態を実現することができる。 Also, for example, in the above embodiment, the refractive index of the nanoparticles 38 may be lower than the refractive index of the insulating liquid 37. A transparent state and a light distribution state can be realized by appropriately adjusting the voltage to be applied according to the refractive index of the nanoparticles 38 and the like.
 また、例えば、上記の実施の形態において、ナノ粒子38はプラスに帯電させたが、これに限らない。つまり、ナノ粒子38をマイナスに帯電させてもよい。この場合、第1電極層40にはプラス電位を印加し、第2電極層50にはマイナス電位を印加することで、第1電極層40と第2電極層50との間に直流電圧を印加するとよい。 Also, for example, in the above embodiment, the nanoparticles 38 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 38 may be negatively charged. In this case, a direct voltage is applied between the first electrode layer 40 and the second electrode layer 50 by applying a positive potential to the first electrode layer 40 and applying a negative potential to the second electrode layer 50. Good.
 また、複数のナノ粒子38には、光学特性の異なる複数種類のナノ粒子が含まれてもよい。例えば、プラスに帯電させた透明の第1ナノ粒子と、マイナスに帯電させた不透明(黒色など)の第2ナノ粒子とを含んでもよい。例えば、第2ナノ粒子を凝集させて偏在させることで、配光制御デバイスに遮光機能を持たせてもよい。 Further, the plurality of nanoparticles 38 may include a plurality of types of nanoparticles having different optical characteristics. For example, a transparent first nanoparticle charged positively and an opaque (black or the like) second nanoparticle charged negatively may be included. For example, the light distribution control device may be provided with a light shielding function by aggregating and unevenly distributing the second nanoparticles.
 また、例えば、上記実施の形態では、屈折率可変材料として電気泳動材料を利用する例について示したが、これに限らない。例えば、屈折率可変材料として、液晶材料を利用してもよい。この場合、液晶材料に含まれる液晶分子の複屈折性を利用して、屈折率可変層の屈折率が変化する。屈折率可変層に与えられる電界に応じて液晶分子の配向を変化させることにより、屈折率可変層の屈折率が変化する。これにより、透明状態及び配光状態、並びに、配光状態における配光方向を制御することができる。 For example, in the above-described embodiment, an example in which an electrophoretic material is used as the refractive index variable material has been described. For example, a liquid crystal material may be used as the refractive index variable material. In this case, the refractive index of the refractive index variable layer changes using the birefringence of the liquid crystal molecules contained in the liquid crystal material. By changing the orientation of the liquid crystal molecules in accordance with the electric field applied to the refractive index variable layer, the refractive index of the refractive index variable layer changes. Thereby, the transparent state, the light distribution state, and the light distribution direction in the light distribution state can be controlled.
 また、上記の実施の形態では、配光制御デバイスに入射する光として太陽光を例示したが、これに限らない。例えば、配光制御デバイスに入射する光は、照明装置などの発光装置が発する光であってもよい。 In the above embodiment, sunlight is exemplified as light incident on the light distribution control device. However, the present invention is not limited to this. For example, the light incident on the light distribution control device may be light emitted from a light emitting device such as a lighting device.
 また、例えば、配光制御デバイスは、建物の窓に設置する場合に限るものではなく、例えば車の窓などに設置してもよい。また、配光制御デバイスは、例えば、照明器具の透光カバーなどの配光制御部材などに利用することもできる。あるいは、配光制御デバイスは、凹凸構造の界面での光の散乱を利用した目隠し部材としても利用することができる。 Also, for example, the light distribution control device is not limited to being installed in a building window, and may be installed in a car window, for example. The light distribution control device can also be used for a light distribution control member such as a light-transmitting cover of a lighting fixture. Alternatively, the light distribution control device can also be used as a blindfold member that utilizes light scattering at the interface of the concavo-convex structure.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1 配光制御デバイス
10 第1基板
20 第2基板
30 配光層
31a 第1凹凸構造層
31b 第2凹凸構造層
32 屈折率可変層
33 第1凸部
33a、35a 第1側面
33b、35b 第2側面
35 第2凸部
37 絶縁性液体
38 ナノ粒子
40 第1電極層
50 第2電極層
DESCRIPTION OF SYMBOLS 1 Light distribution control device 10 1st board | substrate 20 2nd board | substrate 30 Light distribution layer 31a 1st uneven structure layer 31b 2nd uneven structure layer 32 Refractive index variable layer 33 1st convex part 33a, 35a 1st side surface 33b, 35b 2nd Side surface 35 Second convex portion 37 Insulating liquid 38 Nanoparticle 40 First electrode layer 50 Second electrode layer

Claims (6)

  1.  透光性を有する第1基板と、
     前記第1基板に対向して配置された、透光性を有する第2基板と、
     前記第1基板と前記第2基板との間に互いに対向して配置された、透光性を有する第1電極層及び第2電極層と、
     前記第1電極層と前記第2電極層との間に配置され、入射した光を配光する配光層とを備え、
     前記配光層は、
     前記第1基板側に設けられ、複数の第1凸部を有する第1凹凸構造層と、
     前記第2基板側に設けられ、複数の第2凸部を有する第2凹凸構造層と、
     前記複数の第1凸部間及び前記複数の第2凸部間を充填するように配置され、前記第1電極層及び前記第2電極層間に印加される電圧に応じて屈折率が変化する屈折率可変層とを含み、
     前記屈折率可変層は、
     絶縁性液体と、
     前記絶縁性液体とは屈折率が異なる、前記絶縁性液体に分散された帯電する複数のナノ粒子とを備え、
     前記複数の第1凸部の各々と前記複数の第2凸部の各々とは、同一方向に沿って延びている
     配光制御デバイス。
    A first substrate having translucency;
    A second substrate having translucency, disposed opposite to the first substrate;
    A translucent first electrode layer and a second electrode layer disposed opposite to each other between the first substrate and the second substrate;
    A light distribution layer disposed between the first electrode layer and the second electrode layer for distributing incident light;
    The light distribution layer is
    A first uneven structure layer provided on the first substrate side and having a plurality of first protrusions;
    A second uneven structure layer provided on the second substrate side and having a plurality of second protrusions;
    A refraction that is arranged so as to fill between the plurality of first protrusions and between the plurality of second protrusions, and whose refractive index changes according to the voltage applied between the first electrode layer and the second electrode layer. A variable rate layer,
    The refractive index variable layer is
    An insulating liquid;
    A plurality of charged nanoparticles dispersed in the insulating liquid having a refractive index different from that of the insulating liquid;
    Each of the plurality of first protrusions and each of the plurality of second protrusions extend along the same direction.
  2.  前記複数の第1凸部と前記複数の第2凸部とは、互いに同じ形状及び同じ大きさを有する
     請求項1に記載の配光制御デバイス。
    The light distribution control device according to claim 1, wherein the plurality of first protrusions and the plurality of second protrusions have the same shape and the same size.
  3.  前記複数の第1凸部の各々の、前記同一方向に直交する断面の形状は、略台形又は略三角形である
     請求項1又は2に記載の配光制御デバイス。
    3. The light distribution control device according to claim 1, wherein a shape of a cross section of each of the plurality of first protrusions orthogonal to the same direction is a substantially trapezoid or a substantially triangle.
  4.  前記略台形又は前記略三角形の2つの底角はそれぞれ、65°以上90°以下である
     請求項3に記載の配光制御デバイス。
    The light distribution control device according to claim 3, wherein two base angles of the substantially trapezoidal shape or the substantially triangular shape are 65 ° or more and 90 ° or less, respectively.
  5.  前記第1電極層と前記第2電極層とが等電位である場合に、前記複数の第1凸部と前記複数の第2凸部と前記屈折率可変層とは、屈折率が同等である
     請求項1~4のいずれか1項に記載の配光制御デバイス。
    When the first electrode layer and the second electrode layer are equipotential, the plurality of first protrusions, the plurality of second protrusions, and the refractive index variable layer have the same refractive index. The light distribution control device according to any one of claims 1 to 4.
  6.  前記第1電極層及び前記第2電極層間に所定の電位差が生じた場合に、前記複数の第1凸部の各々と前記屈折率可変層との界面、及び、前記複数の第2凸部の各々と前記屈折率可変層との界面に、それぞれ屈折率差が発生し、前記配光層に入射する光の進行方向が曲げられる
     請求項1~5のいずれか1項に記載の配光制御デバイス。
    When a predetermined potential difference occurs between the first electrode layer and the second electrode layer, an interface between each of the plurality of first protrusions and the refractive index variable layer, and the plurality of second protrusions The light distribution control according to any one of claims 1 to 5, wherein a refractive index difference is generated at an interface between each and the refractive index variable layer, and a traveling direction of light incident on the light distribution layer is bent. device.
PCT/JP2019/003523 2018-02-27 2019-01-31 Light distribution control device WO2019167542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033452 2018-02-27
JP2018-033452 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167542A1 true WO2019167542A1 (en) 2019-09-06

Family

ID=67808875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003523 WO2019167542A1 (en) 2018-02-27 2019-01-31 Light distribution control device

Country Status (1)

Country Link
WO (1) WO2019167542A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038755A1 (en) * 2001-08-16 2003-02-27 E Ink Corporation Light modulation by frustration of total internal reflection
JP2007505330A (en) * 2003-07-24 2007-03-08 ザ ユニバーシティ オブ ブリティッシュ コロンビア Display that suppresses total internal reflection by self-stabilized electrophoresis
JP2008008995A (en) * 2006-06-27 2008-01-17 Toshiba Corp Display device
WO2010067640A1 (en) * 2008-12-09 2010-06-17 ソニー株式会社 Optical body and window material provided with the optical body
JP2014035385A (en) * 2012-08-08 2014-02-24 Hitachi Chemical Co Ltd Dimming element, dimming device, and driving method thereof
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038755A1 (en) * 2001-08-16 2003-02-27 E Ink Corporation Light modulation by frustration of total internal reflection
JP2007505330A (en) * 2003-07-24 2007-03-08 ザ ユニバーシティ オブ ブリティッシュ コロンビア Display that suppresses total internal reflection by self-stabilized electrophoresis
JP2008008995A (en) * 2006-06-27 2008-01-17 Toshiba Corp Display device
WO2010067640A1 (en) * 2008-12-09 2010-06-17 ソニー株式会社 Optical body and window material provided with the optical body
JP2014035385A (en) * 2012-08-08 2014-02-24 Hitachi Chemical Co Ltd Dimming element, dimming device, and driving method thereof
WO2016163079A1 (en) * 2015-04-07 2016-10-13 パナソニックIpマネジメント株式会社 Light control device

Similar Documents

Publication Publication Date Title
JP6473957B2 (en) Light control device
US20180328557A1 (en) Optical device
JP2020003643A (en) Optical device
WO2018150673A1 (en) Optical device
WO2019021578A1 (en) Optical device
WO2019130913A1 (en) Photoalignment control device
WO2019167542A1 (en) Light distribution control device
JP2020052178A (en) Optical device
JP2019191220A (en) Optical device
JP2019191407A (en) Light distribution control device
WO2019163377A1 (en) Light distribution control device
WO2019163474A1 (en) Light distribution control device
WO2019187753A1 (en) Optical device
JP2019204064A (en) Optical device
WO2019225247A1 (en) Daylighting control system, drive device, and drive method
JP2020003577A (en) Light distribution control device
WO2019188191A1 (en) Light distribution control device
JP2019144363A (en) Light distribution control device
JP2020016707A (en) Light distribution control device
JP2019168573A (en) Optical device
JP2019184756A (en) Light distribution control device
WO2018150675A1 (en) Optical device and optical system
WO2018150674A1 (en) Optical device
JP2019183503A (en) Natural lighting control device, natural lighting control system, and natural lighting control method
JP2019144432A (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP