WO2019165722A1 - 电池仓、新能源汽车换电站及电池存储转运方法 - Google Patents

电池仓、新能源汽车换电站及电池存储转运方法 Download PDF

Info

Publication number
WO2019165722A1
WO2019165722A1 PCT/CN2018/091086 CN2018091086W WO2019165722A1 WO 2019165722 A1 WO2019165722 A1 WO 2019165722A1 CN 2018091086 W CN2018091086 W CN 2018091086W WO 2019165722 A1 WO2019165722 A1 WO 2019165722A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
location
rack
lifting platform
height
Prior art date
Application number
PCT/CN2018/091086
Other languages
English (en)
French (fr)
Inventor
郝战铎
戚文刚
杨潮
陈炯
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18907910.6A priority Critical patent/EP3760500A4/en
Publication of WO2019165722A1 publication Critical patent/WO2019165722A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/06Storage devices mechanical with means for presenting articles for removal at predetermined position or level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to the field of battery management technology; in particular, the present invention relates to a battery compartment, and further relates to a new energy vehicle power station and a battery storage and transportation method.
  • Power change is a way to quickly replenish new energy vehicles. Specifically, it refers to a method of replenishing the power battery of a new energy vehicle by replacing the electric vehicle and immediately replacing it with another set of power batteries.
  • the new energy vehicle power station is a place for powering new energy vehicles.
  • the management of the power battery, such as storage, is a basic function of the power station.
  • the general battery compartment has this basic function, but requires a special tool to remove the removed battery and transport the charged battery to prepare for the replacement of the new energy vehicle. need.
  • a first aspect of the invention provides a battery compartment, wherein the battery compartment comprises:
  • a battery rack in which a plurality of storage locations for storing batteries are provided
  • An elevator the elevator being disposed adjacent to the battery rack, and wherein the elevator has a lifting platform capable of lifting up to a height of each of the storage locations, the lifting platform being provided with a battery transfer device,
  • a battery transfer device is adapted to dock and transfer the battery between the battery rack and the docking mechanism.
  • the locations are stacked at different heights of the battery rack.
  • the battery rack is modularly designed to form a battery rack module
  • the elevator is modularly designed to constitute an elevator module
  • the battery rack module is associated with the elevator module Adjacent.
  • the battery transfer device includes a battery side shifting device and a battery traverse device.
  • a battery charging device is provided at each of said locations.
  • a smart plug mechanism is provided at each of the locations for automatically connecting and disconnecting the battery and the battery charging device.
  • the smart plug mechanism is controlled by a servo motor or cylinder.
  • a battery limiting device for fixing the battery is provided at each of the locations.
  • a battery delivery device is provided at each of the storage locations for docking and transporting the battery between the lifting platform and the location.
  • the battery delivery device is a conveyor belt.
  • a battery cooling device is provided at each of the battery shelves.
  • the battery rack is located on either side of the elevator.
  • a second aspect of the invention provides a new energy vehicle power station, wherein the new energy vehicle power station is provided with the battery compartment according to any of the preceding first aspects.
  • the battery compartment has a plurality of battery racks arranged in series.
  • each of the battery racks is respectively provided with one elevator in the battery compartment, or all of the battery racks share one elevator.
  • a third aspect of the invention provides a battery storage transport method using the battery compartment according to any of the preceding first aspects, wherein the method comprises the steps of:
  • Step A the lifting platform from the docking mechanism to the first battery, and then proceeds to step B;
  • Step B the battery transfer device adjusts the position of the first battery on the lifting platform, and then proceeds to step C or simultaneously proceeds to step C;
  • Step C the lifting platform raises or lowers the first battery to the height of the location to be stored, and then proceeds to step D;
  • Step D the lifting platform and the battery rack transfer the first battery to the location to be stored, and then proceeds to step E;
  • Step E the lifting platform rises or falls to the height of the storage location of the second battery, and then proceeds to step F;
  • Step F the lifting platform docks the second battery from the battery rack, and then proceeds to step G;
  • Step G the lifting platform raises or lowers the second battery to the height of the docking mechanism, and then proceeds to step H;
  • Step H The battery transfer device moves the second battery to the docking mechanism.
  • the method further includes:
  • Step I The battery delivery device at the location to be stored transfers the first battery into the location to be stored and locates, and then charges the first battery;
  • the starting of the step I is later than the end of the step D.
  • the method further includes:
  • Step J stopping charging of the second battery and disconnecting the second battery at the storage location where the second battery is stored;
  • the end of the step J is earlier than the start of the step F.
  • a fourth aspect of the invention provides a battery storage transport method using the battery compartment according to any of the preceding first aspects, wherein the method comprises the steps of:
  • Step A' the lifting platform docks the first battery from the docking mechanism, and then, when the height of the docking mechanism is different from the height of the first storage space on the battery rack for storing the first battery Going to step B', when the height of the docking mechanism is the same as the height of the first location, proceeding to step C';
  • Step B' the lifting platform lifts the first battery to the first location, and then proceeds to C';
  • Step C' the lifting platform and the battery rack transfer the first battery to the first location, and then proceeds to step D';
  • Step D' the lifting platform is docked from the battery rack to a second battery at a second location that is the same height as the first location, and then, when the height of the second location is When the height of the connecting mechanism is different, proceeding to step E', when the height of the second storage position is the same as the height of the parking mechanism, proceeding to step F';
  • Step E' the lifting platform lifts the second battery to a height suitable for docking with the docking mechanism
  • Step F' the battery transfer device transfers the second battery to the docking mechanism
  • the method further includes:
  • Step G' the battery rack vacates the first location
  • Step H' the battery rack transports the second battery to the second location
  • the end of the step G′ is earlier than the start of the step C′, and the end of the step H′ is earlier than the start of the step D′.
  • the method further includes:
  • Step I' stopping charging of the second battery and disconnecting the second battery at the second location
  • the method further includes:
  • Step J' the battery rack transfers the first battery into the first location and locates, then connects the first battery at the first location and charges the first battery;
  • the starting of the step J′ is later than the end of the step C′.
  • the step C' and the step D' are performed in one continuous motion.
  • FIG. 1 is a schematic perspective view of a battery compartment in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a turnaround process of a battery compartment to a new and old battery in accordance with an embodiment of the present invention
  • FIG. 3 and FIG. 4 are schematic block diagrams showing a simplified tempo of a turnaround process of a battery compartment to a new and old battery according to an embodiment of the present invention
  • FIG. 5 is a schematic flow chart of a reduced beat of a battery turnover process in accordance with an embodiment of the present invention.
  • FIGS. 6 and 7 are schematic block diagrams of an expanded distribution of an elevator and a battery rack in a battery compartment according to an embodiment of the present invention, or a battery compartment in a new energy vehicle power exchange according to an embodiment of the present invention.
  • Figure 10 shows an overall schematic view of a substation in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a battery compartment in accordance with an embodiment of the present invention.
  • the battery compartment of this embodiment includes a battery rack 10 and an elevator 20 disposed adjacent to the battery rack 10.
  • the battery rack 10 and the elevator 20 can be modularly manufactured to form a corresponding battery rack module and an elevator module, and the battery rack module and the elevator module can be easily assembled adjacent to each other, and is suitable for flexible configuration. Resources, able to be assembled in the field in a distributed layout into the required battery compartment.
  • the elevator 20 is capable of docking and transporting the battery between the docking mechanism (eg, an RGV trolley for a new energy vehicle dismounting battery, see FIG. 10) and the battery rack 10.
  • the elevator 20 may have a lifting platform capable of transporting the battery in the vertical direction, that is, the illustrated Z direction (elevating), capable of lifting up to the height of each storage location; the battery transfer device on the lifting platform and the aforementioned parking mechanism Or the battery rack 10 realizes the transfer battery and the transfer battery, realizes the lifting and traversing transportation of the battery, and causes the battery to move to the horizontal position of the battery conveying device 13 at each storage position of the battery compartment.
  • the battery transfer device may include a battery side shifting device and a battery traverse device to respectively achieve a Y direction (ie, a lateral direction) in the front-rear direction in the horizontal direction and an X direction (ie, a horizontal direction) in the left and right direction, respectively. ) Side shifting of the carried battery.
  • the battery transfer device of the elevator 20 can transfer the battery between the new energy vehicle and the battery rack 10 in the Y direction, and can transfer the battery to the X direction.
  • the battery rack 10 is either docked from the battery rack 10 and the lifting platform itself is capable of lifting the battery in the Z direction to align the battery horizontally with the battery rack or new energy vehicle.
  • Figure 1 shows a battery rack 10 in the form of a frame for achieving horizontal traverse and storage charging of the battery.
  • the frames can be made of an aluminum alloy or channel structure or the like.
  • the battery rack may also be in any other form that is feasible, such as, but not limited to, shelf, storage, and the like.
  • each battery rack 10 can be provided with a plurality of storage locations 11 for storing batteries (not shown), and can expand more storage locations. In alternative embodiments, these locations may be stacked at different heights of the battery rack.
  • the location refers to a unit on the battery rack for storing a battery.
  • each of the battery racks 10 provides a total of three sub-stored storage locations 11, which are respectively disposed on both sides of the elevator 20.
  • the battery holder can also be configured on one side of the elevator.
  • a person skilled in the art can set the number of the storage locations according to specific conditions, and can perform corresponding expansion to increase the entire power exchange capability of the power exchange and the entire electrical energy storage capability. For example, in the case where the space height (Z direction) allows, more reservoir levels can be expanded according to the specific situation; in the case where the lateral space (X direction and Y direction) allows, the expansion can be performed in the horizontal plane. It can be understood that parameters such as battery rack height and elevator stroke need to be considered when performing these expansions.
  • the battery compartment according to an alternative embodiment of the present invention has the advantage of being expandable in addition to being compact, so that the equipment resources are maximized, and the specifications of the power station can be flexibly configured to adapt to different sizes of land and different rated electricity. capacity.
  • the battery rack 10 in this embodiment can also be provided with the aforementioned lift 20.
  • the battery rack 10 and its respective storage locations 11 are respectively disposed on both sides of the elevator 20, and the storage locations on each side are stacked one on top of the other.
  • three battery compartments 11 stacked one above the other are respectively disposed in the battery racks on both sides of the elevator 20, and the corresponding hierarchical storage locations on both sides are at the same height level.
  • a battery rack may also be provided only at one side of the elevator 20, wherein the battery compartments may also be stacked.
  • the battery rack at one side of the elevator 20 of FIG. 1 may be omitted, leaving only the battery rack at the other side thereof.
  • the number of locations, etc. may also be changed, and may be extended in the X direction, the Y direction, the Z direction, or the like.
  • a battery delivery device 13 can be provided at each location 11 of the battery rack 10 for docking and transporting the battery between the battery transfer device on the lifting platform of the elevator 20 and the location 11. Specifically, after the battery transfer device rotates the battery to the corresponding layer of the battery rack 10, the battery delivery device 13 at the corresponding position can dock the battery and transport it to the storage location 11; otherwise, the battery delivery device can also The battery at the location 11 is transported to the appropriate location of the respective layer of the battery rack 10 and the battery is transferred to the lift platform of the elevator.
  • the battery delivery device 13 is illustrated as a conveyor belt that can be driven by, for example, a motor or the like.
  • various implementations have been proposed in the prior art, such as conveyor chains, rollers, rack and pinion, etc., and are not listed one by one. These prior art delivery forms can be applied to different embodiments of the invention.
  • a battery limiting device for fixing the battery may be provided at each location of the battery holder 10 to perform the battery in the storage location.
  • accurate locating The battery limiting device may be, for example, but not limited to, a limiting block, etc., and may be designed according to a specific situation, for example, may include a limiting block in the X and Y directions, etc., and can smoothly and quickly transport the battery to achieve precise positioning and insertion.
  • These limit blocks can be designed to be movable and driven by cylinders or motors.
  • the positioning hole on the battery can also be used to realize the battery charging and positioning, further ensuring the transportation, positioning and charging and unplugging of the battery between the storage positions.
  • the battery as a high energy density energy storage medium, if the lack of necessary cooling and protection measures, may not be able to control the thermal runaway in time to cause a threat, so the optional implementation of the present invention
  • the battery compartment is also designed to take into account the safety of the battery.
  • a water cooling system 30 (see FIG. 1) is provided below each battery rack for cooling a plurality of batteries while the battery is being charged. It can be understood that the water cooling system and the like are placed under the battery rack, which makes good use of space and meets the requirements of compact design.
  • a battery cooling device may also be provided at each battery rack, and the battery cooling device may be located above or below the battery storage and charging position to exchange heat during rapid charging of the battery. It can also improve the safety of the battery storage process.
  • the battery cooling device may be a water cooling device.
  • other methods such as air cooling may also be used; in the case of liquid cooling, a cooling medium other than water may also be used. The various cooling methods available are not exhaustive here, but these cooling methods can also be employed in alternative embodiments of the invention.
  • a battery charging device 14 can be provided at each location of the battery rack or at a suitable location to continuously and in a timely manner charge the battery stored in the location.
  • a smart plugging mechanism may be provided at each storage location on the battery rack 10 for automatically connecting and disconnecting the battery and battery charging device 14 .
  • it can be realized by automatically connecting and disconnecting a battery connection plug and, for example, a socket or the like in a storage location.
  • the intelligent plugging mechanism can be controlled or driven by means of a servo motor or a cylinder.
  • step J and step E in FIG. 2 are interchanged, but step F in FIG. 2 must be completed after step J and step E are completed.
  • Step I in Figure 2 can be performed any time after the completion of step D.
  • one aspect of the present application provides a battery storage transport method using a battery compartment of any of the embodiments of the present invention.
  • the method may include the following steps A-H, and may further include step I and/or step J, which are further described below.
  • step A the lifting platform of the elevator docks the first battery from the docking mechanism, such as an old battery (ie, a battery that has been depleted of power, followed by an old battery as an example), and then proceeds to step B.
  • the old battery of the new energy vehicle can be disassembled by a separate disassembly tool (for example, the disassembly tool can be set on the RGV trolley), and then the RGV trolley moves the old battery to the docking position with the battery compartment.
  • the lifting platform of the elevator is lifted to the position where it is docked, and then the battery is moved sideways and docked to the battery transfer device of the lifting platform.
  • the docking mechanism here can also be other types of docking facilities than the RGV trolley.
  • step B the battery transfer device adjusts the position of the old battery on the lifting platform and then proceeds to step C.
  • the battery transfer device With the elevator 20 of Fig. 1, after the lifting platform is docked to the old battery, the battery transfer device will adjust the old direction in the Y direction, that is, in the horizontal direction in the front and rear direction and/or in the X direction, that is, in the horizontal direction in the horizontal direction.
  • the position of the battery the positioning of the battery on the lifting platform by the positioning cylinder.
  • step C the lifting platform raises the old battery to the height of the location to be stored, and then proceeds to step D.
  • the lifting platform After the positioning of the old battery on the lifting platform is completed, if the lifting platform is not aligned with the height of the storage location of the battery to be stored, the lifting platform will raise and lower the old battery until the height of the storage location to be stored is reached, thereby facilitating the positioning of the storage battery to be stored.
  • the old battery is docked from the lifting platform to the battery rack.
  • the lifting of the elevator can be achieved by a rigid chain (not shown).
  • step D the lifting platform and the battery rack transfer the old battery to the location to be stored, and then proceed to step E.
  • the lifting platform traverses the old battery, and simultaneously transfers the old battery from the lifting platform in the X direction to the battery rack simultaneously with the traverse mechanism in the storage location to be stored.
  • the battery may not have reached the location of the battery to be stored.
  • the steps of feeding the battery into the location and positioning, and the steps of the power and water plugging mechanism in the location to complete the insertion of the battery into the battery for battery charging and battery charging can be performed simultaneously with the steps associated with the elevator below.
  • step E the lifting platform is raised or lowered to the height at which the storage location of the second battery is stored, and then proceeds to step F.
  • the second battery is, for example, a new battery, that is, a battery that is recharged. A new battery will be described later as an example.
  • the lifting platform is raised and lowered to reach a corresponding height to be flush with the height of the storage location for storing the new battery, so as to facilitate the docking of the new battery. It can be appreciated that at this point in time the new battery can have been transferred to the location to be docked in advance.
  • step F the lifting platform docks the new battery from the battery rack and can perform positioning, and then proceeds to step G.
  • the battery can be transported to the lifting platform in the X direction of the figure.
  • step G the lifting platform raises or lowers the new battery to the height of the docking mechanism and then proceeds to step H.
  • the height of the docking mechanism here is the height at which the new battery is adapted to be docked between the lifting platform and the docking mechanism.
  • step H the battery transfer device on the lifting platform moves the new battery to the aforementioned docking mechanism.
  • the docking mechanism such as an RGV trolley, can transfer the new battery to another suitable location for processing, for example, transferring to a power exchange platform and installing a new battery on the new energy vehicle to complete the replacement operation of the new energy vehicle battery.
  • the method may further include the step I, wherein the battery delivery device at the location to be stored transfers the old battery into the location to be stored and positioned, and then the old battery can be charged.
  • the starting of the step I needs to be later than the end of the step D, that is, only when the old battery is transferred to the battery rack, it can be transferred to the storage location and positioned and charged. After the old battery is carried and the precise positioning of the electrical connector and the water connector is inserted and removed in the location, the connection to the battery connector can be prepared and charged. It can be understood that since step I is independent of steps E-H, it can be performed simultaneously therewith.
  • the method may further include the step J, wherein the charging of the new battery is stopped and the connection with the new battery is stopped at the storage location where the new battery is stored, and the end of step J needs to be earlier than step F.
  • step J since step J is independent of steps A-E, it can be performed simultaneously with it. After disconnecting from the battery connector, the new battery can be transported to the lift. It can be understood that the conveying function can be completed by the motor driving the conveyor belt or the roller.
  • FIG. 3 and FIG. 4 are schematic block diagrams showing a streamlined beat of a battery compartment to a turn-over process of a new and used battery according to an embodiment of the present invention, wherein FIG. 3 is before exchange and FIG. 4 is after exchange.
  • Different location a, location b, location c, location d, location e, location f are shown in Figures 3 and 4.
  • This combined, streamlined beat improves battery turnaround speed and turnaround efficiency. Since the battery transfer time is shortened, the overall power-changing time is also shortened, and the operational efficiency and service capability of the power-changing station are improved.
  • the storage space f on the docking height side of the lifting platform can be removed for storage of the old battery, and the storage space c on the other side is dedicated to pre-storing the new battery.
  • the new battery is transferred to the other side location before the turnaround, so that step C, step E, and step G in FIG. 2 can be omitted, and step D and step F in FIG. 2 can be implemented in one beat, which can be greatly Reduce turnaround time.
  • the implementation of this aspect considers a high-reliability, high-efficiency quick-change charging method.
  • a battery-changing cycle in order to increase the battery turnover rate, by aligning the docking height of the lifting platform in the elevator with the transportation height of the storage locations on both sides, the elevator transports the old battery to the one-side storage space while The one side quickly transports the new battery to the elevator along the X direction, which can greatly reduce the turnaround time.
  • the two sides of the same height can be used as the working point of the exchange battery to effectively save the battery lifting beat.
  • the battery compartment can be optimally distributed by the control to allocate the old battery to the corresponding location number.
  • an aspect of the present application provides a battery storage transport method using a battery compartment of any of the embodiments of the present invention, the method comprising a cycle of reducing the cycle, as shown in FIG.
  • the method comprises the following steps A'-G', and may further comprise a step H' and/or a step I', which are further described below.
  • step A' the elevator docks the first battery from the docking mechanism, such as the old battery (ie, the battery that has been depleted of power, followed by the old battery as an example), and then, when the height of the docking mechanism and the battery When the heights of the first positions on the rack for storing the old batteries are different, proceed to step B', and when their heights are the same, proceed directly to step C'.
  • the docking mechanism such as the old battery (ie, the battery that has been depleted of power, followed by the old battery as an example)
  • the old battery of the new energy vehicle can be disassembled by a separate disassembly tool (for example, the disassembly tool can be set on the RGV trolley), and then the RGV trolley moves the old battery to the docking position with the battery compartment. At the same time, the lifting platform of the elevator is lifted to the position where it is docked, and then the battery is moved sideways and docked to the battery transfer device of the lifting platform.
  • the docking mechanism here can also be other types of docking facilities than the RGV trolley.
  • step B' the lifting platform lifts the old battery to the first location and then proceeds to C'.
  • the lifting platform drives the old battery to move up to the first location in the Z direction, that is, in the vertical direction.
  • the elevator 20 delivers the old battery to the first location of the battery bay, i.e., the location f in the example of FIG.
  • step C' the lifting platform and the battery rack transfer the old battery to the first location and then proceed to step D'.
  • the old battery is transferred from the elevator to the battery rack, but the battery location of the battery to be stored has not yet been reached.
  • step D' the lifting platform docks the second battery at the second location that is the same height as the first storage location from the battery rack, and can be positioned, and then, when the height of the second storage location and the height of the docking mechanism If not, proceed to step E'.
  • the height of the second location is the same as the height of the parking mechanism, proceed directly to step F'.
  • the second battery can be a new battery, that is, a battery that has been recharged. A new battery will be described later as an example.
  • step E' the lifting platform lifts the new battery to a height suitable for docking with the docking mechanism. It can be understood that steps B' and E' in the method can be omitted when the docking height of the lifting platform and the docking mechanism is the same as the height of the first location and the second inventory.
  • step F' the battery transfer device transfers the new battery to the docking mechanism.
  • the method further comprises a step G' in which the first location is emptied in the battery rack, and a step H' in which the new battery is transferred to the second location.
  • step G' in which the first location is emptied in the battery rack
  • step H' in which the new battery is transferred to the second location.
  • the method may further comprise a step I', wherein charging of the new battery is stopped and the connection to the new battery is disconnected at the second location, and the end of step I' is earlier than step D
  • the start of 'and the start of step I' is later than the end of step H'. It can be understood that the charging of the new battery can only be carried out after it has been transferred to the second location and before being lifted by the elevator.
  • the method may further include the step J′, wherein the battery rack transfers the old battery into the first location and locates, and then connects the old battery and charges the old battery at the first location, And the start of step J' is later than the end of step C'. It can be understood that charging the old battery can only be done after the battery rack has been docked and moved into the location.
  • the steps C' and D' can be completed in one continuous motion. It is beneficial to improve the efficiency of power exchange.
  • FIGS. 6 and 7 are schematic block diagrams of an expanded distribution of an elevator and a battery rack in a battery compartment according to an embodiment of the present invention, or a battery compartment in a new energy vehicle power exchange according to an embodiment of the present invention.
  • the elevator and the battery rack are simultaneously expanded in any number in the Y direction.
  • the elevator can be provided with rails to move between the various expansion modules in the Y direction, so that the expansion does not require corresponding expansion of the elevators, and it is not necessary to configure each of the extended battery racks.
  • An elevator so, as shown in Fig. 7, another extension of the elevator and the battery rack, in which only one elevator is employed, can be reciprocated between the respective battery racks along the track.
  • one aspect of the present invention provides a compact and expandable battery compartment including an elevator and a battery holder.
  • the battery compartment can be freely expanded in the Y direction to suit different site needs.
  • the battery rack itself can also be expanded in the Z direction, superimposing more layers of storage.
  • the number of storage spaces on the battery rack is mainly determined by the overall height of the power station, the height of the battery rack and the elevator travel. For example, it may be set to three in an alternative embodiment.
  • FIGS 8 and 9 respectively schematically illustrate different extensions of the elevator and battery holder in a battery compartment in accordance with an embodiment of the present invention.
  • the battery rack can not only stack more layers in the height direction for Z-direction expansion, but also can expand in both X and Y directions.
  • the battery racks 10 may be stacked in the X direction, and the battery racks 10 are respectively disposed on both sides of the elevator 20 in the X direction.
  • the battery rack 10 and the elevator 20 shown extending in the Y direction are similar to the example of FIG. 6, and the battery rack 10 and the elevator 20 are simultaneously expanded in the Y direction. By extending the battery compartment, it is better to serve the power station.
  • One aspect of the present invention also provides a new energy vehicle power exchange, in which a battery compartment of any of the foregoing embodiments may be provided.
  • the battery compartment in a new energy vehicle power station can have a plurality of battery racks arranged in series. It can be understood that the battery racks arranged in series constitute a Y-direction expansion of the battery rack, wherein each battery rack can be respectively provided with an elevator, or all of the battery racks can share one elevator.
  • FIG. 10 shows an overall schematic view of a new energy vehicle substation in accordance with an embodiment of the present invention.
  • the entire power station mainly includes a battery rack 10, an RGV cart 40, a parking platform 50, a control cabinet 60, and a charging power cabinet 70.
  • the X and Y directions of the vehicle are positioned by the V-grooves 51 and Y on the platform to the centering structure 52, and the parking platform 50 is lifted
  • the lifting mechanism 53 lifts the car to a certain height, and the RGV trolley 40 enters the car chassis through the track to perform power exchange, and the removed battery is transported by the rail to the middle position of the battery compartment and the parking platform and the elevator 20 of the battery compartment is docked.
  • the new battery is docked to the RGV trolley by the battery compartment, and the new battery is assembled by the RGV trolley through the chassis replacement mode.
  • the RGV trolley moves to zero position through the orbit, and the parking platform passes the lift.
  • the lifting mechanism unloads the vehicle to the tire contact platform and moves to zero position, and the vehicle is opened to complete a power exchange.
  • this new energy vehicle power station can well meet the characteristics of urban land shortage and floor space directly affecting the cost of power station construction and operation, and has the advantages of compact and small footprint.
  • the battery compartment of the corresponding aspect of the present invention has the advantage of being scalable in terms of the flexibility of the power plant to accommodate different sizes of land and different rated capacities.
  • the corresponding aspect of the invention also improves the overall power exchange time by improving the transport efficiency of the battery compartment to the battery, which is beneficial to the improvement of the operational efficiency and service capability of the power exchange.

Abstract

一种电池仓、新能源汽车换电站及电池存储转运方法,所述电池仓包括:电池架(10),所述电池架(10)中提供有多个用于存放电池的库位(11);以及升降机(20),所述升降机(20)与所述电池架(10)相邻地布置,并且,所述升降机(20)具有能够升降到每个所述库位(11)的高度处的升降平台,所述升降平台上设置有电池转移装置,所述电池转移装置适于在所述电池架(10)与泊接机构之间泊接和转运电池。该换电站具有紧凑、占地面积小的优势,且通过提高电池仓对电池的转运效率而提高了整体换电时间。

Description

电池仓、新能源汽车换电站及电池存储转运方法 技术领域
本发明涉及电池管理技术领域;具体地说,本发明涉及一种电池仓,并进一步涉及一种新能源汽车换电站及一种电池存储转运方法。
背景技术
换电是一种为新能源汽车快速补能的方式。具体而言,是指通过换电设备将新能源汽车的动力电池取下,并即刻换上另一组动力电池的一种补能方式。
新能源汽车换电站是为新能源汽车进行换电的场所。对于动力电池的管理,例如存储等,是换电站的一个基本功能。在现有的换电站中,一般的电池仓具有这种基本的功能,但需要专门的工具车把取下的电池运走、把充电完毕的电池运来,以备新能源汽车的换电之需。
发明内容
本发明的一个方面的目的是提供一种改进的电池仓。
本发明的另一个方面的目的是提供一种改进的新能源汽车换电站,其中安装有前述的电池仓。
本发明的再一个方面的目的是提供一种改进的电池存储转运方法。
为了实现前述目的,本发明的第一方面提供了一种电池仓,其中,所述电池仓包括:
电池架,所述电池架中提供有多个用于存放电池的库位;以及
升降机,所述升降机与所述电池架相邻地布置,并且,所述升降机具有能够升降到每个所述库位的高度处的升降平台,所述升降平台上设置有电池转移装置,所述电池转移装置适于在所述电池架与泊接机构之间泊接和转运电池。
可选地,在如前所述的电池仓中,所述库位叠置地位于所述电池架的不同高度处。
可选地,在如前所述的电池仓中,所述电池架采用模块化设计构成电池架模块,所述升降机采用模块化设计构成升降机模块,并且所述电池架模块与所述升降机模块相邻接。
可选地,在如前所述的电池仓中,所述电池转移装置包括电池侧移装置和电池横移装置。
可选地,在如前所述的电池仓中,在每个所述库位处提供有电池充电装置。
可选地,在如前所述的电池仓中,在每个所述库位处提供有智能插拔机构,用于自动地连接和断开所述电池与所述电池充电装置。
可选地,在如前所述的电池仓中,所述智能插拔机构通过伺服电机或者气缸控制。
可选地,在如前所述的电池仓中,在每个所述库位处提供有用于固定所述电池的电池限位装置。
可选地,在如前所述的电池仓中,在每个所述库位处提供有电池输送装置,用于在所述升降平台和所述库位之间泊接和转运电池。
可选地,在如前所述的电池仓中,所述电池输送装置为输送带。
可选地,在如前所述的电池仓中,在每个所述电池架处提供有电池冷却设备。
可选地,在如前所述的电池仓中,所述电池架位于所述升降机的两侧。
为了实现前述目的,本发明的第二方面提供了一种新能源汽车换电站,其中,所述新能源汽车换电站中设置有如前述第一方面中任一项所述的电池仓。
可选地,在如前所述的新能源汽车换电站中,所述电池仓具有多个串列布置的所述电池架。
可选地,在如前所述的新能源汽车换电站中,在所述电池仓中,每个所述电池架分别对应地设有一个升降机,或者,所有所述电池架共用一个升降机。
为了实现前述目的,本发明的第三方面提供了一种运用如前述第一方面中任一项所述的电池仓进行的电池存储转运方法,其中,所述方法包括如下步骤:
步骤A:所述升降平台从泊接机构泊第一电池,然后前进至步骤B;
步骤B:所述电池转移装置调整所述第一电池在所述升降平台上的位置,然后前进至步骤C或者同时进行步骤C;
步骤C:所述升降平台将所述第一电池升或降至待存放库位的高度,然后前进至步骤D;
步骤D:所述升降平台与所述电池架将所述第一电池转移到所述待存放库位处,然后前进至步骤E;
步骤E:所述升降平台升或降至存放第二电池的库位的高度,然后前进至步骤F;
步骤F:所述升降平台从所述电池架泊接所述第二电池,然后前进至步骤G;
步骤G:所述升降平台将所述第二电池升或降至所述泊接机构的高度,然后前进至步骤H;以及
步骤H:所述电池转移装置将所述第二电池移动到所述泊接机构处。
可选地,在如前所述的方法中,所述方法还包括:
步骤I:所述待存放库位处的电池输送装置将所述第一电池传送入所述待存放库位并定位,然后对所述第一电池进行充电;
并且,所述步骤I的启动晚于所述步骤D的结束。
可选地,在如前所述的方法中,所述方法还包括:
步骤J:在所述存放第二电池的库位处停止对所述第二电池的充电并断开与所述第二电池的连接;
其中,所述步骤J的结束早于所述步骤F的启动。
为了实现前述目的,本发明的第四方面提供了一种运用如前述第一方面中任一项所述的电池仓进行的电池存储转运方法,其中,所述方法包括如下步骤:
步骤A':所述升降平台从泊接机构泊接第一电池,然后,当所述泊接机构的高度与所述电池架上用于存放所述第一电池的第一库位高度不同时,前进至步骤B',当所述泊接机构的高度与所述第一库位高度相同时,前进至步骤C';
步骤B':所述升降平台将所述第一电池升降到所述第一库位处,然后前进至C';
步骤C':所述升降平台和所述电池架将所述第一电池转移到所述第一库位处,然后前进至步骤D';
步骤D':所述升降平台从所述电池架泊接与所述第一库位高度相同的第二库位处的第二电池,然后,当所述第二库位的高度与所述泊接机构的高度不同时,前进至步骤E',当所述第二库位的高度与所述泊接机构的高度相同时,前进至步骤F';
步骤E':所述升降平台将所述第二电池升降到适于与所述泊接机构泊接的高度处;以及
步骤F':所述电池转移装置将所述第二电池转移到所述泊接机构处,
并且,所述方法还包括:
步骤G':所述电池架腾空出所述第一库位;
步骤H':所述电池架将所述第二电池转运到所述第二库位;
其中,所述步骤G'的结束早于所述步骤C'的启动,所述步骤H'的结束早于所述步骤D'的启动。
可选地,在如前所述的方法中,所述方法还包括:
步骤I':在所述第二库位处停止对所述第二电池的充电并断开与所述第二电池的连接;
其中,所述步骤I'的结束早于所述步骤D'的启动并且所述步骤I'的启动晚于所述步骤H'的结束。
可选地,在如前所述的方法中,所述方法还包括:
步骤J':所述电池架将所述第一电池传送入所述第一库位并定位,然后在所述第一库位处连接所述第一电池并对所述第一电池进行充电;
其中,所述步骤J'的启动晚于所述步骤C'的结束。
可选地,在如前所述的方法中,所述步骤C'和所述步骤D'在一个连续的动作内完 成。
附图说明
参照附图,本发明的公开内容将更加显然。应当了解,这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围构成限制。图中:
图1是根据本发明的一种实施方式的电池仓的示意性立体图;
图2是根据本发明的一种实施方式中电池仓对新旧电池的一次周转过程的示意性流程图;
图3和图4是根据本发明的一种实施方式的电池仓对新旧电池的周转过程的精简节拍的示意性框图;
图5是根据本发明的一种实施方式中电池周转过程的精简节拍的示意性流程图;
图6和图7是根据本发明的一种实施方式的电池仓中升降机与电池架的扩展分布的示意性框图,或者是根据本发明的一种实施方式的新能源汽车换电站中电池仓的扩展分布的示意性框图;
图8和图9分别示意性地示出了根据本发明的一种实施方式的电池仓中升降机与电池架的不同扩展方式;以及
图10示出了根据本发明的一种实施方式中换电站的整体示意图。
具体实施方式
下面参照附图详细地说明本发明的具体实施方式。在各附图中,相同的附图标记表示相同或相应的技术特征。
图1是根据本发明的一种实施方式的电池仓的示意性立体图。
如图中所示,该实施方式的电池仓包括有电池架10及与电池架10相邻地布置的升降机20。考虑到设备的可运输性,电池架10及升降机20等可以模块化制造,构成相应的电池架模块和升降机模块,将电池架模块和升降机模块相邻接能够方便地进行组装,适于柔性配置资源、能够在现场以分布式的布局形式将其拼装成需要的电池仓。
在可选的实施方式中,升降机20能够在泊接机构(例如为新能源汽车拆装电池的RGV小车,见图10)与电池架10之间泊接和转运电池。例如,升降机20可以具有升降平台,能够在竖直方向即图示的Z方向(升降)转运电池,能够升降到每个库位的高度处;升降平台上的电池转移装置能够与前述泊接机构或电池架10实现转接电池和转运电池,实现电池的升降、横移运输,使电池运动到电池仓的每层库位处的电池输送装置13水平对齐。电池转移装置可以包括有电池侧移装置和电池横移装置,从而分别实现在水平方向上沿前后方向即图示的Y方向(即侧向)以及沿左右方向即图示的X方向(即横向)对承载的电池进行侧移。
可以了解,在一个具体的实施方式中,为新能源汽车换电时,升降机20的电池转移装置能够沿Y方向在新能源汽车与电池架10之间转运电池、能够沿X方向将电池转至电池架10或者自所述电池架10泊接电池,并且升降平台本身能够沿Z方向升降电池使电池与电池架或新能源汽车水平对齐。
图1示出了呈框架形式的电池架10,用于实现电池的水平横移及存储充电。在某些实施方式中,这些框架可以用铝合金或槽钢结构等制成。可以了解,在可选的实施方式中,电池架也可以呈可行的任何其它形式,例如但不限于架板、储柜等。
从图中可以看出,为了实现紧凑的电池存储,每个电池架10可以提供有多个用于存放电池(未图示)的库位11,并且可以扩展更多个库位堆放。在可选的实施方式中,这些库位可以叠置地位于电池架的不同高度处。在此,库位指代电池架上用以存放一个电池的单元。在该图示实施方式中每个电池架10共提供了三个分层叠置的库位11,两个电池架10分别设置在升降机20的两侧。在可选的实施方式中,电池架也可以在升降机的单侧配置。
可以理解,由于城市用地紧张,占地面积将直接影响换电站的建站和运营成本。因此,这种紧凑式的设计在满足功能齐全、设备可靠情况下,还具有占地面积小、低成本的特点。
在可选的实施方式中,所属领域的技术人员可以根据具体情况设置库位的数量,并可以进行相应的扩展,以增加换电站整个换电能力和整个电能存储能力。例如,在空间高度(Z方向)允许的情况下,可以根据具体情况扩展更多的库位层数;在横向空间(X方向及Y方向)允许的情况下,可以在水平面内进行扩展。可以了解,在进行这些扩展时还需要考虑电池架高度、升降机行程等参数。可见,根据本发明的可选实施方式的电池仓除了紧凑之外,还具有可扩展的优点,使得设备资源得到最大化,换电站的规格能够灵活配置以适应不同大小的土地和不同的额定电容量。
根据图示,该实施方式中的电池架10还可以提供有前面提及的升降机20。在该实施方式中,电池架10及其各个库位11分别布置在升降机20的两侧,并且每侧的库位均上下分层叠置。具体地,在图示示例中,升降机20两侧的电池架中分别设置有上下分层叠置的三个电池库位11,并且两侧相应分层的库位在同一高度水平上。根据本发明的前述教示,在可选的实施方式中,也可以仅在升降机20的一侧处设置有电池架,其中的电池库位同样可以是分层叠置的。例如,为了描述更加直观,可以省略图1中的升降机20的其中一侧处的电池架,而只保留其中的另一侧处的电池架。在该实施方式的变例中也可以改变库位的数量等,并且也可以沿X方向、Y方向、Z方向等进行扩展。
在电池架10的每个库位11处可以提供有电池输送装置13,用于在升降机20的升降 平台上的电池转移装置和库位11之间泊接和转运电池。具体地,当电池转移装置将电池转动到电池架10的相应层处之后,相应位置的电池输送装置13即可以泊接电池并将其转运到库位11处;反之,该电池输送装置还可以将库位11处的电池转运到电池架10的相应层的适当位置处并将电池转运到升降机的升降平台上。在图示示例中,电池输送装置13例示为输送带,该输送带可以由例如电机等驱动。为了实现电池输送,可以了解,现有技术中已经提出了多种实现方式,例如输送链、辊筒、齿轮齿条等,不再一一列举。这些现有技术的输送形式均可以应用在本发明的不同的实施方式中。
当电池输送装置13将电池输送到库位11时,为了确保电池的精确存放,可以在电池架10的每个库位处提供有用于固定电池的电池限位装置,进行电池在库位内的精确定位。该电池限位装置可以为例如但不限于限位块等,可以根据具体的情况进行设计,例如可以包括X和Y方向的限位块等,能够平稳快速地运送电池,实现精确定位插拔。这些限位块可以设计成活动式的,由气缸或电机驱动。另外,还可以利用电池上的定位孔实现电池充电定位,进一步保证电池在库位间运输、定位和充电插拔。
另外,需要指出的是,电池作为一种高能量密度的储能介质,如果缺乏必要的冷却和保护措施,在发生故障时可能无法及时控制热失控而造成威胁,所以本发明的可选的实施方式的电池仓的设计中也考虑到了电池的安全。具体地,在图示实施方式中,在每个电池架的下方设置了水冷系统30(见图1),用于在电池充电时对多个电池进行冷却。可以了解,将水冷系统等放置在电池架的下方,很好的利用了空间、满足紧凑设计的需求。
在可选的实施方式中,也可以在每个电池架处均提供有电池冷却设备,该电池冷却设备可以位于电池存储和充电位的上方或者下方,以便对电池实现快速充电时产生的热量交换,也可以提高电池存储过程中的安全性。可选地,该电池冷却设备可以是水冷设备。在可选的实施方式中,也可以采用空冷等其它方式;液冷时也可以选用水之外的冷却介质。此处不再穷举现有的各种冷却方式,但在本发明的可选实施方式中也可以采用这些冷却方式。
为了充分利用电池的存储时间,在电池存放于各库位时对电池进行充电是有利的。因此,在可选的实施方式中可以在电池架的每个库位处或适当的库位处提供有电池充电装置14,以期不间断地、及时地向在库位中存放的电池进行充电。此处,为了解放工作人员的手工进行的充电插拔操作,可以在电池架10上在每个库位处可以提供有智能插拔机构,用于自动地连接和断开电池与电池充电装置14。例如,具体实施方式中可以通过自动连接和断开电池连接插头与库位中的例如插座等来实现。智能插拔机构可以通过伺服电机或者气缸等方式进行控制或驱动。
图2是根据本发明的一种实施方式中电池仓对新旧电池的一次周转过程的示意性流 程图。在可选的实施方式中,图2中的步骤J、步骤E的顺序可互换,但图2中的步骤F必须在步骤J、步骤E完成之后。图2中的步骤I可以在步骤D完成之后的任意时间内执行。
结合以上,本申请的一个方面提供了运用本发明的任一实施方式的电池仓进行的电池存储转运方法。该方法可以包括如下各步骤A-H,还可以包括步骤I和/或步骤J,下面对其进行进一步描述。
在步骤A中,升降机的升降平台从泊接机构泊接第一电池,例如旧电池(即已经耗尽电量的电池,后面以旧电池为例进行描述),然后前进至步骤B。可以了解,新能源汽车的旧电池可以由独立的拆装工具(例如该拆装工具可以设置在RGV小车上)拆卸下来,然后由RGV小车带着旧电池运动到与电池仓的泊接位置,同时升降机的升降平台升降到与其泊接的位置,再将电池侧移并泊接到升降平台的电池转移装置上。可以了解,此处的泊接机构也可以呈RGV小车之外的其它类型的泊接设施。
在步骤B中,电池转移装置调整旧电池在升降平台上的位置,然后前进至步骤C。就图1的升降机20来说,在升降平台泊接到旧电池后,电池转移装置将沿Y方向即在水平方向上沿前后方向和/或沿X方向即在水平方向上沿左右方向调节旧电池的位置,由定位气缸实现电池在升降平台上的定位。
在步骤C中,升降平台将旧电池升降至待存放库位的高度,然后前进至步骤D。在完成旧电池在升降平台上的定位后,如果升降平台并未对齐待存放电池的库位的高度,则升降平台将对旧电池进行升降,直至达到待存放的库位所在的高度,以利于接下来从升降平台向电池架泊接旧电池。升降机的升降可以通过刚性链条(未图示)实现。
在步骤D中,升降平台与电池架将旧电池转移到待存放库位处,然后前进至步骤E。此时升降平台对旧电池进行横移,与待存放库位中的横移机构同时将旧电池从升降平台沿X方向转移到电池架上。在此步骤中,电池可能尚未达到待存放电池的库位。将电池送入库位并定位的步骤、以及库位中电和水插拔机构完成接头插入电池实现电池充电和电池充电池冷却的步骤等可以与下面的与升降机相关的步骤同时进行。
在步骤E中,升降平台升或降至存放第二电池的库位的高度,然后前进至步骤F。该第二电池例如为新电池,即重新充满电后的电池。后面以新电池为例进行描述。此时,如果升降平台与存放新电池的库位的高度不同,则升降平台进行升降以达到相应的高度,以与存放新电池的库位的高度平齐,便于对新电池的泊接。可以了解,在此步骤的同时新电池可以已经提前被转移到待被泊接的位置。
在步骤F中,升降平台从电池架泊接新电池,并可以进行定位,然后前进至步骤G。此步骤中电池可以沿图中X方向被输送到升降平台上。
在步骤G中,升降平台将新电池升或降至泊接机构的高度,然后前进至步骤H。此处泊接机构的高度为新电池适于在升降平台和该泊接机构之间进行泊接转移的高度。
在步骤H中,升降平台上的电池转移装置将该新电池移动到前述的泊接机构处。然后,该泊接机构,例如RGV小车,可以将该新电池转移到其它适当的位置进行处理,例如转移到换电平台并将新电池安装到新能源汽车上,完成新能源汽车电池的更换操作。
以上各步骤A-H可以是顺序进行的。
在可选的实施方式中,所述方法还可以包括步骤I,其中待存放库位处的电池输送装置将旧电池传送入待存放库位并定位,然后可以对旧电池进行充电。可以了解,该步骤I的启动需要晚于步骤D的结束,即只有当旧电池被转移到电池架后才能将其传入库位并进行定位、充电。在旧电池被承运并在库位上实现精确定位电接头和水接头插拔位置后,可以准备并进行与电池连接器的连接充电。可以了解,由于步骤I是独立于步骤E-H的,所以可以与其同时进行。
在可选的实施方式中,所述方法还可以包括步骤J,其中在存放新电池的库位处停止对新电池的充电并断开与新电池的连接,步骤J的结束需要早于步骤F的启动。可以了解,由于步骤J是独立于步骤A-E的,所以可以与其同时进行。在断开与电池连接器的连接后,新电池可以被运送至升降机。可以了解,其中的输送功能可以由电机带动输送带或辊筒等完成。
图3和图4是根据本发明的一种实施方式的电池仓对新旧电池的周转过程的精简节拍的示意性框图,其中图3为交换前,图4为交换后。图3和图4中示出了不同的库位a、库位b、库位c、库位d、库位e、库位f。这种合并式精简节拍的方式可以提高电池周转速度和周转效率。由于电池转运时间缩短,所以整体换电时间也被缩短,换电站的运营效率和服务能力得到了提高。
如图中所示,为提高电池周转速率,可以将升降平台的泊接高度一侧的库位f腾挪出来作为存放旧电池用,另一侧的库位c专门用于预存放新电池,将新电池在周转前就转运到该另一侧库位,这样,图2中的步骤C、步骤E、步骤G可以省略,图2中的步骤D、步骤F可以在一个节拍里实现,可以大大减少周转时间。
该方面的实施方式考虑了高可靠度、高效率的快速换电补能方式。在这样的电池换电节拍中,为了提高电池周转速率,通过将升降机中升降平台的泊接高度与两侧的库位的运输高度一致,在升降机向一侧库位运送旧电池的同时从另外一侧沿X向快速向升降机输送新电池,可以大大减少周转时间,以同一高度处的两侧库位作为交换电池的工作点可以有效地节省电池升降节拍。待新电池与外部的泊接机构泊接完后或者在其泊接的同时,电池仓可 以通过控制优化分配旧电池到相应的库位号充电。
结合以上,本申请的一个方面提供了运用本发明的任一实施方式的电池仓进行的电池存储转运方法,该方法包括精简节拍的周转过程,如图5中所示。所述方法包括如下各步骤A'-G',还可以包括步骤H'和/或步骤I',下面对其进行进一步描述。
在步骤A'中,升降机从泊接机构泊接第一电池,例如旧电池(即已经耗尽电量的电池,后面以旧电池为例进行描述),然后,当该泊接机构的高度与电池架上用于存放旧电池的第一库位的高度不同时,前进至步骤B',当它们的高度相同时,直接前进到步骤C'。
可以了解,新能源汽车的旧电池可以由独立的拆装工具(例如该拆装工具可以设置在RGV小车上)拆卸下来,然后由RGV小车带着旧电池运动到与电池仓的泊接位置,同时升降机的升降平台升降到与其泊接的位置,再将电池侧移并泊接到升降平台的电池转移装置上。可以了解,此处的泊接机构也可以呈RGV小车之外的其它类型的泊接设施。
在步骤B'中,升降平台将旧电池升降到第一库位处,然后前进至C'。就图1的电池仓10来说,在升降机20泊接到旧电池后,升降平台带动该旧电池沿Z方向即在竖直方向上升降到第一库位处。如图3中所示,升降机20将旧电池输送到电池架的第一库位处,即图3的示例中为库位f。
在步骤C'中,升降平台和电池架将旧电池转移到第一库位处,然后前进至步骤D'。此时旧电池从升降机被转移到电池架上,但尚未达到待存放电池的库位。
在步骤D'中,升降平台从电池架泊接与第一库位高度相同的第二库位处的第二电池,并且可以定位,然后,当第二库位的高度与泊接机构的高度不同时,前进至步骤E',当第二库位的高度与泊接机构的高度相同时,则直接前进至步骤F'。该第二电池可以是新电池,即完成重新充电后的电池。后面以新电池为例进行描述。
在步骤E'中,升降平台将新电池升降到适于与泊接机构泊接的高度处。可以了解,在升降平台与泊接机构的泊接高度和第一库位、第二库存位的高度相同时可以省略该方法中的步骤B'和E'。
在步骤F'中,电池转移装置将新电池转移到泊接机构处。
在此需要说明的是,所述方法还包括步骤G',其中在电池架中腾空第一库位,以及步骤H',其中将新电池转运到第二库位。此时需要步骤F'的结束早于步骤C'的启动即电池架在泊接旧电池之前腾空第一库位,而步骤H'的结束则早于步骤D'的启动即在升降机泊接新电池之间将新电池转移到第二库位。
在可选的实施方式中,所述方法还可以包括步骤I',其中在第二库位处停止对新电池的充电并断开与新电池的连接,并且步骤I'的结束早于步骤D'的启动并且步骤I'的启动晚于 步骤H'的结束。可以了解,新电池的充电只能在其被转移到第二库位之后、被升降机泊接走之前进行。
在可选的实施方式中,所述方法还可以包括步骤J',其中电池架将旧电池传送入第一库位并定位,然后在第一库位处连接旧电池并对旧电池进行充电,并且步骤J'的启动晚于步骤C'的结束。可以了解,对旧电池的充电只能在电池架泊接旧电池并且将其移进库位之后进行。
在前述方法中,由于用于接收旧电池的第一库位和用于提供新电池的第二库位位于同样的水平高度处,所以步骤C'和步骤D'可以在一个连续的动作内完成,有利于提高换电效率。
在换电站里,电池仓通常是单独使用的。但是,本发明的设计的电池仓还可以有利地在Y水平方向上扩展使用。图6和图7是根据本发明的一种实施方式的电池仓中升降机与电池架的扩展分布的示意性框图,或者是根据本发明的一种实施方式的新能源汽车换电站中电池仓的扩展分布的示意框图。
在本发明的一个实施方式中,如图6所示,同时对升降机和电池架在Y方向进行任意数量的扩展。在另一可选实施方式中,考虑到可以为升降机提供轨道从而沿Y向在各个扩展模块之间移动,所以这样扩展时无需对升降机进行相应的扩展,无需对每个扩展的电池架都配置一个升降机,所以,如图7示出了另一种升降机与电池架的扩展,其中仅采用了一个升降机,可以沿轨道在各个电池架之间往复移动。
由以上可以看出,本发明的一个方面提出了一种紧凑型可扩展的电池仓,包括升降机和电池架。电池仓可沿Y方向自由扩展,以适应不同的场地需求。毫无疑问,电池架本身也可以在Z方向扩展,叠加更多层数的库位。电池架上库位的数量主要由换电站整体高度、电池架高度和升降机行程决定。例如,在可选的实施方式中可设置为三个。
图8和图9分别示意性地示出了根据本发明的一种实施方式的电池仓中升降机与电池架的不同扩展方式。可以看出,在该可选方面的实施方式中,电池架不仅可以在高度方向上堆积更多层库位以进行Z向的扩展,并且还可以在X、Y两个方向上扩展。如图8所示,电池架10可在X方向堆叠,并且电池架10分别沿X方向布置在升降机20的两侧。如图9所示,示出的沿Y向扩展的电池架10和升降机20类似于图6的示例,电池架10和升降机20同时沿Y向扩展。通过对电池仓进行扩展可以更好的服务于换电站。
本发明的一个方面还提供了一种新能源汽车换电站,其中可以设置有如前述任一实施方式的电池仓。新能源汽车换电站中的电池仓可以具有多个串列布置的电池架。可以了解,这些串列地布置的电池架其实构成了电池架的Y向扩展,其中,每个电池架可以分别 对应地设有一个升降机,或者,所有电池架可以共用一个升降机。
图10示出了根据本发明的一种实施方式中的新能源汽车换电站的整体示意图。如图中所示,该示例中,整个换电站主要包括电池架10、RGV小车40、停车平台50、控制柜60和充电功率柜70等。当需要换电的新能源汽车(未图示)进入到停车平台50上之后,通过平台上V型槽51和Y向对中定位结构52定位车辆的X和Y向,停车平台50上通过举升机构53将汽车举起到一定的高度,由RGV小车40通过轨道进入汽车底盘进行换电,将拆下来的电池由轨道运输到电池仓和停车平台的中间位置与电池仓的升降机20泊接电池,旧电池进入电池仓后由电池仓将新电池通过升降机泊接到RGV小车上,再由RGV小车通过底盘换电的模式装配新电池,RGV小车通过轨道运动到零位置,停车平台通过举升机构将车辆下托到轮胎接触平台并运动到零位后车辆开出完成一次换电。
可以看出,这种新能源汽车换电站能够很好地满足城市用地紧张、占地面积直接影响换电站建站和运营成本的特点,具有紧凑、占地面积小的优势。另外,在换电站的规格能灵活配置以适应不同大小的土地和不同的额定电容量方面,本发明的相应方面的电池仓具有可扩展的优势。同时,本发明的相应方面还通过提高电池仓对电池的转运效率而提高了整体换电时间,有利于换电站的运营效率和服务能力的提高。
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施方式进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (22)

  1. 一种电池仓,其特征在于,所述电池仓包括:
    电池架,所述电池架中提供有多个用于存放电池的库位;以及
    升降机,所述升降机与所述电池架相邻地布置,并且,所述升降机具有能够升降到每个所述库位的高度处的升降平台,所述升降平台上设置有电池转移装置,所述电池转移装置适于在所述电池架与泊接机构之间泊接和转运电池。
  2. 如权利要求1所述的电池仓,其中,所述库位叠置地位于所述电池架的不同高度处。
  3. 如权利要求1所述的电池仓,其中,所述电池架采用模块化设计构成电池架模块,所述升降机采用模块化设计构成升降机模块,并且所述电池架模块与所述升降机模块相邻接。
  4. 如权利要求1所述的电池仓,其中,所述电池转移装置包括电池侧移装置和电池横移装置。
  5. 如权利要求1所述的电池仓,其中,在每个所述库位处提供有电池充电装置。
  6. 如权利要求5所述的电池仓,其中,在每个所述库位处提供有智能插拔机构,用于自动地连接和断开所述电池与所述电池充电装置。
  7. 如权利要求6所述的电池仓,其中,所述智能插拔机构通过伺服电机或者气缸控制。
  8. 如权利要求1所述的电池仓,其中,在每个所述库位处提供有用于固定所述电池的电池限位装置。
  9. 如权利要求1所述的电池仓,其中,在每个所述库位处提供有电池输送装置,用于在所述升降平台和所述库位之间泊接和转运电池。
  10. 如权利要求9所述的电池仓,其中,所述电池输送装置为输送带。
  11. 如权利要求1所述的电池仓,其中,在每个所述电池架处提供有电池冷却设备。
  12. 如权利要求1至11中任一项所述的电池仓,其中,所述电池架位于所述升降机的两侧。
  13. 一种新能源汽车换电站,其特征在于,所述新能源汽车换电站中设置有如前述权利要求1至12中任一项所述的电池仓。
  14. 如权利要求13所述的新能源汽车换电站,其中,所述电池仓具有多个串列布置的所述电池架。
  15. 如权利要求13所述的新能源汽车换电站,其中,在所述电池仓中,每个所述电池架分别对应地设有一个升降机,或者,所有所述电池架共用一个升降机。
  16. 一种运用如权利要求1至12中任一项所述的电池仓进行的电池存储转运方法,其特征在于,所述方法包括如下步骤:
    步骤A:所述升降平台从泊接机构泊第一电池,然后前进至步骤B;
    步骤B:所述电池转移装置调整所述第一电池在所述升降平台上的位置,然后前进至步骤C或者同时进行步骤C;
    步骤C:所述升降平台将所述第一电池升或降至待存放库位的高度,然后前进至步骤D;
    步骤D:所述升降平台与所述电池架将所述第一电池转移到所述待存放库位处,然后前进至步骤E;
    步骤E:所述升降平台升或降至存放第二电池的库位的高度,然后前进至步骤F;
    步骤F:所述升降平台从所述电池架泊接所述第二电池,然后前进至步骤G;
    步骤G:所述升降平台将所述第二电池升或降至所述泊接机构的高度,然后前进至步骤H;以及
    步骤H:所述电池转移装置将所述第二电池移动到所述泊接机构处。
  17. 如权利要求16所述的方法,其中,所述方法还包括:
    步骤I:所述待存放库位处的电池输送装置将所述第一电池传送入所述待存放库位并定位,然后对所述第一电池进行充电;
    并且,所述步骤I的启动晚于所述步骤D的结束。
  18. 如权利要求16或17所述的方法,其中,所述方法还包括:
    步骤J:在所述存放第二电池的库位处停止对所述第二电池的充电并断开与所述第二电池的连接;
    其中,所述步骤J的结束早于所述步骤F的启动。
  19. 一种运用如权利要求1至12中任一项所述的电池仓进行的电池存储转运方法,其特征在于,所述方法包括如下步骤:
    步骤A':所述升降平台从泊接机构泊接第一电池,然后,当所述泊接机构的高度与所述电池架上用于存放所述第一电池的第一库位高度不同时,前进至步骤B',当所述泊接机构的高度与所述第一库位高度相同时,前进至步骤C';
    步骤B':所述升降平台将所述第一电池升降到所述第一库位处,然后前进至C';
    步骤C':所述升降平台和所述电池架将所述第一电池转移到所述第一库位处,然后前进至步骤D';
    步骤D':所述升降平台从所述电池架泊接与所述第一库位高度相同的第二库位处的第二电池,然后,当所述第二库位的高度与所述泊接机构的高度不同时,前进至步骤E',当所述第二库位的高度与所述泊接机构的高度相同时,前进至步骤F';
    步骤E':所述升降平台将所述第二电池升降到适于与所述泊接机构泊接的高度处;以及
    步骤F':所述电池转移装置将所述第二电池转移到所述泊接机构处,
    并且,所述方法还包括:
    步骤G':所述电池架腾空出所述第一库位;
    步骤H':所述电池架将所述第二电池转运到所述第二库位;
    其中,所述步骤G'的结束早于所述步骤C'的启动,所述步骤H'的结束早于所述步骤D'的启动。
  20. 如权利要求19所述的方法,其中,所述方法还包括:
    步骤I':在所述第二库位处停止对所述第二电池的充电并断开与所述第二电池的连接;
    其中,所述步骤I'的结束早于所述步骤D'的启动并且所述步骤I'的启动晚于所述步骤H'的结束。
  21. 如权利要求19或20所述的方法,其中,所述方法还包括:
    步骤J':所述电池架将所述第一电池传送入所述第一库位并定位,然后在所述第一库位处连接所述第一电池并对所述第一电池进行充电;
    其中,所述步骤J'的启动晚于所述步骤C'的结束。
  22. 如权利要求19所述的方法,其中,所述步骤C'和所述步骤D'在一个连续的动作内完成。
PCT/CN2018/091086 2018-02-28 2018-06-13 电池仓、新能源汽车换电站及电池存储转运方法 WO2019165722A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18907910.6A EP3760500A4 (en) 2018-02-28 2018-06-13 BATTERY COMPARTMENT, STATION FOR REPLACING A VEHICLE BATTERY WITH NEW ENERGY AND BATTERY STORAGE AND TRANSFER PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810168399.2 2018-02-28
CN201810168399.2A CN108216151A (zh) 2018-02-28 2018-02-28 电池仓、新能源汽车换电站及电池存储转运方法

Publications (1)

Publication Number Publication Date
WO2019165722A1 true WO2019165722A1 (zh) 2019-09-06

Family

ID=62662491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091086 WO2019165722A1 (zh) 2018-02-28 2018-06-13 电池仓、新能源汽车换电站及电池存储转运方法

Country Status (3)

Country Link
EP (1) EP3760500A4 (zh)
CN (1) CN108216151A (zh)
WO (1) WO2019165722A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969699A (zh) * 2020-10-23 2020-11-20 北京国新智电新能源科技有限责任公司 自动更换电池式充电系统
NO20200115A1 (en) * 2020-01-29 2021-07-30 Scandinavian Micromobility As A charging and transportation system
CN114435179A (zh) * 2022-04-07 2022-05-06 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法
CN114683943A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电站的电池转运控制方法
CN114987995A (zh) * 2022-04-27 2022-09-02 宁波郎泰机械有限公司 一种便于上下料的汽车轮毂制造用转运设备
JP7372453B2 (ja) 2019-09-06 2023-10-31 杭州海康机器人股▲ふん▼有限公司 Agvのバッテリ着脱機構及びバッテリの取り外し方法
EP4173884A4 (en) * 2020-06-24 2024-01-17 Nio Tech Anhui Co Ltd BATTERY SWAPING PLATFORM, BATTERY SWAPING STATION AND BATTERY SWAPING METHOD
CN117464344A (zh) * 2023-12-26 2024-01-30 今创集团股份有限公司 一种储能集装箱装配装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334628B (zh) * 2018-10-18 2024-01-19 博众精工科技股份有限公司 一种汽车换电站
CN110077365B (zh) * 2018-12-07 2023-01-03 蔚来控股有限公司 快速换电系统和快速换电方法
CN109747476A (zh) * 2019-03-21 2019-05-14 博众精工科技股份有限公司 一种立体充电装置
CN110422067A (zh) * 2019-08-29 2019-11-08 上海钧正网络科技有限公司 一种充电柜、云服务器以及电子设备
CN112455276B (zh) * 2019-09-06 2023-11-03 杭州海康机器人股份有限公司 Agv的电池更换方法及电池更换装置
CN110606057B (zh) * 2019-10-28 2021-02-19 广东博智林机器人有限公司 更换电池机器人
CN113067049A (zh) * 2019-12-26 2021-07-02 奥动新能源汽车科技有限公司 温度自动控制组件、换电站及储能站
CN111284359A (zh) * 2020-01-23 2020-06-16 奥动新能源汽车科技有限公司 换电控制方法、系统、电子设备及存储介质
CN111959340B (zh) * 2020-08-20 2022-03-15 博众精工科技股份有限公司 一种换电站及换电站的运营方法
CN114683942A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电站的电池仓内电池拿取控制方法及系统
CN114683945A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 充电机的温度控制装置
CN112590612B (zh) * 2021-01-11 2022-07-22 深圳市金壤电子科技有限公司 一种新能源汽车电源更换装置及方法
CN115303113A (zh) * 2021-12-02 2022-11-08 奥动新能源汽车科技有限公司 结构稳固式换电站
CN114346401A (zh) * 2022-01-25 2022-04-15 苏州凯尔博精密机械有限公司 一种超声波焊接立体升降模库
CN115649004B (zh) * 2022-12-26 2023-03-21 蔚来汽车科技(安徽)有限公司 充换电站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303267A (zh) * 2013-05-14 2013-09-18 杭州德创能源设备有限公司 转运箱内充电电池全自动取放装置
CN203255158U (zh) * 2013-05-14 2013-10-30 杭州德创能源设备有限公司 电动汽车电池转运箱内电池全自动取放装置
CN106043247A (zh) * 2016-06-23 2016-10-26 蔚来汽车有限公司 模块化可扩充的换电站设备和充电架
US20160368464A1 (en) * 2015-06-17 2016-12-22 Ample Inc. Robot Assisted Modular Battery Interchanging System
CN206254979U (zh) * 2016-06-23 2017-06-16 蔚来汽车有限公司 模块化可扩充的换电站设备和充电架
CN206938726U (zh) * 2017-07-06 2018-01-30 太仓中集特种物流装备有限公司 电池更换设备和集装箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463162B1 (de) * 2010-12-07 2016-03-30 Carbike GmbH System zur Energieversorgung von Elektrofahrzeugen
CN102064579B (zh) * 2010-12-20 2014-07-02 中国电力科学研究院 一种自动仓储式电动车动力电池充电库
CN102267437B (zh) * 2011-04-28 2013-04-03 北京邮电大学 电动汽车电池箱的快速换电站及其电池箱更换方法
CN102431526A (zh) * 2011-10-18 2012-05-02 上海电巴新能源科技有限公司 一种新型动力电池更换系统
CN106043246A (zh) * 2016-06-22 2016-10-26 蔚来汽车有限公司 小型自动化换电站
CN206436986U (zh) * 2016-10-25 2017-08-25 蔚来汽车有限公司 屉式储能装置
CN106740723B (zh) * 2016-11-22 2023-06-06 深圳精智机器有限公司 重载机器人
CN208181025U (zh) * 2018-02-28 2018-12-04 蔚来汽车有限公司 电池仓及新能源汽车换电站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303267A (zh) * 2013-05-14 2013-09-18 杭州德创能源设备有限公司 转运箱内充电电池全自动取放装置
CN203255158U (zh) * 2013-05-14 2013-10-30 杭州德创能源设备有限公司 电动汽车电池转运箱内电池全自动取放装置
US20160368464A1 (en) * 2015-06-17 2016-12-22 Ample Inc. Robot Assisted Modular Battery Interchanging System
CN106043247A (zh) * 2016-06-23 2016-10-26 蔚来汽车有限公司 模块化可扩充的换电站设备和充电架
CN206254979U (zh) * 2016-06-23 2017-06-16 蔚来汽车有限公司 模块化可扩充的换电站设备和充电架
CN206938726U (zh) * 2017-07-06 2018-01-30 太仓中集特种物流装备有限公司 电池更换设备和集装箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760500A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372453B2 (ja) 2019-09-06 2023-10-31 杭州海康机器人股▲ふん▼有限公司 Agvのバッテリ着脱機構及びバッテリの取り外し方法
NO20200115A1 (en) * 2020-01-29 2021-07-30 Scandinavian Micromobility As A charging and transportation system
EP4173884A4 (en) * 2020-06-24 2024-01-17 Nio Tech Anhui Co Ltd BATTERY SWAPING PLATFORM, BATTERY SWAPING STATION AND BATTERY SWAPING METHOD
CN111969699A (zh) * 2020-10-23 2020-11-20 北京国新智电新能源科技有限责任公司 自动更换电池式充电系统
CN111969699B (zh) * 2020-10-23 2021-01-05 北京国新智电新能源科技有限责任公司 自动更换电池式充电系统
CN114683943A (zh) * 2020-12-31 2022-07-01 奥动新能源汽车科技有限公司 换电站的电池转运控制方法
CN114435179A (zh) * 2022-04-07 2022-05-06 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法
CN114435179B (zh) * 2022-04-07 2022-06-17 深圳万甲荣实业有限公司 一种新能源汽车流动换电车及换电池方法
CN114987995A (zh) * 2022-04-27 2022-09-02 宁波郎泰机械有限公司 一种便于上下料的汽车轮毂制造用转运设备
CN114987995B (zh) * 2022-04-27 2023-12-26 宁波郎泰机械有限公司 一种便于上下料的汽车轮毂制造用转运设备
CN117464344A (zh) * 2023-12-26 2024-01-30 今创集团股份有限公司 一种储能集装箱装配装置
CN117464344B (zh) * 2023-12-26 2024-03-12 今创集团股份有限公司 一种储能集装箱装配装置

Also Published As

Publication number Publication date
EP3760500A4 (en) 2021-11-24
CN108216151A (zh) 2018-06-29
EP3760500A1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2019165722A1 (zh) 电池仓、新能源汽车换电站及电池存储转运方法
WO2019114549A1 (zh) 充换电站
WO2019114546A1 (zh) 充换电站
CN106891865B (zh) 用于电动汽车的底盘式换电站及其换电方法
EP3705361A1 (en) Battery swapping transporting device
CN107399302B (zh) 充换电站及换电方法
WO2019105458A1 (zh) 换电站及其控制方法
WO2021258942A1 (zh) 换电平台、换电站和换电方法
WO2017219906A1 (zh) 模块化可扩充的换电站设备和充电架
WO2019100658A1 (zh) 电动汽车的自动换电平台和换电站
CN212667169U (zh) 换电系统
EP3705357A1 (en) Automatic battery swap station for electric vehicle
WO2019052188A1 (zh) 电动汽车的换电系统
JP5688888B2 (ja) 機械式駐車場装置
CN111439147A (zh) 换电站及其控制方法
TWI759070B (zh) 換電站
CN208181025U (zh) 电池仓及新能源汽车换电站
CN108705998B (zh) 电动汽车换电用送电车
CN111873850A (zh) 换电站的周转系统、周转系统的控制方法和换电站
CN115071643A (zh) 换电方法及移动换电站
CN113212236A (zh) 一种充电仓及换电站
CN207809354U (zh) 充换电站
CN219134116U (zh) 一种换电站
CN218661397U (zh) 一种小型集约型充换电站
CN217730259U (zh) 一种可拓展的集成换电站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907910

Country of ref document: EP

Effective date: 20200928