WO2019161525A1 - 微小信号检测装置及其检测方法 - Google Patents

微小信号检测装置及其检测方法 Download PDF

Info

Publication number
WO2019161525A1
WO2019161525A1 PCT/CN2018/076947 CN2018076947W WO2019161525A1 WO 2019161525 A1 WO2019161525 A1 WO 2019161525A1 CN 2018076947 W CN2018076947 W CN 2018076947W WO 2019161525 A1 WO2019161525 A1 WO 2019161525A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
unit
minute signal
charging
high frequency
Prior art date
Application number
PCT/CN2018/076947
Other languages
English (en)
French (fr)
Inventor
廖淑辉
Original Assignee
廖淑辉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廖淑辉 filed Critical 廖淑辉
Priority to CN201880000150.9A priority Critical patent/CN108474817B/zh
Priority to CN202110523234.4A priority patent/CN113295948A/zh
Priority to PCT/CN2018/076947 priority patent/WO2019161525A1/zh
Publication of WO2019161525A1 publication Critical patent/WO2019161525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention relates to the field of signal recognition and detection, in particular to a detection device and a detection method for acquiring and further processing a small signal.
  • the signal itself has two characteristics, one is the energy carried by itself, and the other is the information carried.
  • the traditional method is limited to the weak energy of the small signal, and the information can only be processed and interpreted by amplifying and the like. Then, the possibility of misoperation is very high, because the information may not be complete, or the key information is processed in the process.
  • a small pulse signal that is discontinuously present is difficult to obtain in conventional detection.
  • a sudden event occurs, a single or several moments of weak pulsed electrical energy are input, and the energy is within 0.001 joules.
  • a 47uF/6.3V small capacitor stores electrical energy for pulse discharge once. That is to say, it is an uncontrolled pulse, which means that the input pulse type can be any pulse, and the pulse amplitude, pulse width and energy intensity generated by different power supply devices are different.
  • This pulse signal can be generated by a capacitor discharge instantaneously, or by coil induction, or by microbattery discharge, or by electrostatic discharge, or by piezoelectric crystals, or by temperature differences, or by other devices that can generate electricity.
  • the energy is small, the information carried is rich, and after proper interpretation, the action of the reaction can be judged.
  • the detection of a small signal not only detects the presence of a small signal, but also utilizes the energy of the small signal, and collects and further processes the information of the minute signal.
  • An object of the present invention is to provide a small signal detecting device and a detecting method thereof, which are respectively obtained from the energy aspect and the information aspect of a small signal, and utilizes the energy of the small signal to provide assistance for information.
  • Another object of the present invention is to provide a small signal detecting device and a detecting method thereof, which prolong the energy existence time of the minute signal and prolong the energy output time of the minute signal, that is, energy energy of the minute signal Time delays are provided to further provide energy support for information acquisition.
  • Another object of the present invention is to provide a micro signal detecting apparatus and a detecting method thereof, which process information of the acquired minute signal, and transmit and output the obtained information in the form of data for subsequent use.
  • Another object of the present invention is to provide a small signal detecting apparatus and a detecting method thereof, which can completely acquire information and parameters of the minute signal, such as polarity, amplitude, or time of existence, to improve the efficiency of subsequent processing.
  • Another object of the present invention is to provide a small signal detecting device and a detecting method thereof, wherein the energy of the small signal is extended by 2-10 times, the data bandwidth is increased, the reliability of data transmission is ensured, and the bit error rate is reduced.
  • Another object of the present invention is to provide a small signal detecting apparatus and a detecting method thereof, which prolong the energy existence time of the minute signal, so that the information of the minute signal is repeatedly transmitted or communicated, thereby improving the accuracy of the data.
  • Another object of the present invention is to provide a small signal detecting apparatus and a detecting method thereof, for which at least one detection, that is, energy acquisition and information acquisition, is performed to ensure that the minute signal is sufficiently detected. .
  • Another object of the present invention is to provide a minute signal detecting device and a detecting method thereof, wherein the energy of the minute signal is extended while further ensuring the stability of the energy output, so that the outputted energy is effectively utilized.
  • Another object of the present invention is to provide a small signal detecting device and a detecting method thereof, wherein the energy of the small signal is extended, and the output voltage is further controllable, so that the output voltage is directly usable, providing use efficiency and Energy conversion rate.
  • Another object of the present invention is to provide a small signal detecting apparatus and a detecting method thereof, in which the output energy can be further used for other loads after the energy of the minute signal is extended.
  • Another object of the present invention is to provide a small signal detecting device and a detecting method thereof, wherein the energy output of the minute signal is stably controlled, and the closed loop feedback ensures that the output voltage is maintained within a required range.
  • Another object of the present invention is to provide a small signal detecting device and a detecting method thereof, which are externally transmitted through a communication unit according to each time detecting the small signal, so that the specific action of the small signal reaction is recognized. know.
  • Another object of the present invention is to provide a small signal detecting apparatus and a detecting method thereof, wherein the communication unit is wirelessly transmitted, and correspondingly transmits the detected result to another matched wireless receiving unit for subsequent analysis.
  • the present invention further provides a small signal detecting apparatus, comprising:
  • An energy harvesting circuit module includes a pre-storage module and a high-frequency charging and discharging control module, wherein the pre-storage module temporarily stores energy of a small signal, wherein the high-frequency charging and discharging control module acquires the pre- Capturing energy in the module, the high frequency charging and discharging control module outputs energy at a certain frequency; and
  • An information acquisition circuit module wherein the high frequency charge and discharge control module supplies energy to the information acquisition circuit module, wherein the information acquisition circuit module acquires information from the small signal to obtain a detection result of the small signal, The detection result of the minute signal is transmitted.
  • the high frequency charging and discharging control module intermittently acquires energy from the pre-storage module, wherein the high-frequency charging and discharging control module outputs energy in a controllable voltage manner.
  • the energy harvesting circuit module is adapted to extract energy from the minute signal and extend the energy lifetime by means of a discontinuous output.
  • the high frequency charging and discharging control module outputs energy for a time greater than a time when the minute signal inputs energy to the energy harvesting circuit module.
  • the high frequency charging and discharging control module controls the energy of the minute signal to output a voltage at a certain frequency.
  • the high frequency charge and discharge control module controls the output of the energy of the minute signal in a pulse width adjustable manner.
  • the high frequency charging and discharging control module comprises a control unit, a high frequency oscillating unit, an executing unit and a feedback unit, wherein the control unit is controllably connected to the high frequency An oscillating unit, wherein the high frequency oscillating unit is controllably connected to the execution unit by an operating frequency of the execution unit, wherein the execution unit acquires energy from the pre-storage module and operates an output of energy, wherein The feedback unit monitors the energy output by the execution unit and feeds back to the control unit to form a closed loop control.
  • the feedback unit collects and feeds back the output voltage of the execution unit.
  • the feedback unit collects and feeds back the voltage output by the execution unit.
  • the execution unit is a buffer switch with respect to the pre-reservoir module and an electrical load.
  • control unit the high frequency oscillating unit, the execution unit and the feedback unit are arranged on a circuit board.
  • the high frequency charge and discharge control module is integrally packaged.
  • the high frequency charging and discharging control module is packaged by a SOC (System-on-a-Chip).
  • the pre-storage module further includes a rectifying unit and a pre-charging unit, wherein the rectifying unit receives the minute signal, wherein the pre-charging unit rectifies the rectifying unit The remaining energy is stored and awaiting acquisition by the high frequency charge and discharge control module.
  • the high frequency oscillating unit of the high frequency charging and discharging control module is activated by energy stored by the pre-charging unit.
  • the execution unit includes a disconnector and an accumulator, wherein the disconnector has an open state and a disconnected state, and the breaking frequency of the interrupter is high
  • the frequency oscillating unit is controlled, wherein the energy storage device is controlled by the disconnector to perform charging and discharging.
  • the energy of the minute signal stored in the pre-charge and discharge unit activates the high-frequency oscillating unit to control the opener.
  • the accumulator acquires energy from the pre-charge and discharge unit through the disconnector, when the disconnector is in a broken state
  • the energy storage device is disconnected from the disconnector to provide externally charged energy obtained from the pre-charge and discharge unit.
  • the accumulator when the disconnector is in an open state, the accumulator is being charged, and when the disconnector is in a broken state, the accumulator is disconnected from the disconnector On, the accumulator discharges to the outside.
  • the energy storage device is switched between charging and discharging until the energy in the pre-charging unit is output completely.
  • the frequency range between charging and discharging of the energy storage is: 20 KHz to 10 MHz.
  • the information acquisition circuit module includes an identification unit, a processing unit and a communication unit, wherein the identification unit is adapted to acquire information of the minute signal, wherein the identification unit, the The processing unit and the communication unit are in turn communicatively coupled.
  • the identification unit transmits the identification condition to the processing unit, and the processing unit transmits the result of the detection by the communication unit after processing.
  • the processing unit further includes an input interface, an output interface, an energy supply interface, and a predetermined program block, wherein the input interface inputs the identification unit to the predetermined program block.
  • the input interface inputs the identification unit to the predetermined program block.
  • the predetermined program block is initialized to run under the control of the preset program, and the parameters of the information acquisition circuit module are configured.
  • the predetermined program block is called and subjected to a certain operation by the parameter of the minute signal obtained in the input interface, and finally transmitted to the outside through the output interface.
  • the rectifying unit is a diode rectifying circuit.
  • the pre-charge and discharge unit is a capacitor or a capacitor bank.
  • the energy storage device is an inductor or an inductor group.
  • the oscillation frequency of the high frequency oscillating unit ranges from 20 kHz to 10 MHz.
  • the present invention further provides a method for detecting a small signal, comprising the steps of:
  • the method before step I, further comprises the steps of:
  • the energy source for the information acquisition process of the minute signal in step II is the energy obtained in step I.
  • step I and step II start simultaneously, providing energy support for information acquisition of the minute signal while outputting energy of the minute signal.
  • step I further comprises the steps of:
  • the energy time provided in step II is greater than the energy present time of the minute signal.
  • step II further comprises the steps of:
  • step III further comprises the steps of:
  • the step further comprises after step III:
  • step IV uses a wireless transmission.
  • the present invention further provides an energy harvesting circuit module, including:
  • a high frequency charging and discharging control module wherein the pre-storage module temporarily stores energy of a small signal, wherein the high-frequency charging and discharging control module acquires energy in the pre-storage module, and the high-frequency charging and discharging control
  • the module outputs energy at a frequency, wherein the high-frequency charging and discharging control module controls the energy of the small signal to be controlled by a pulse width adjustable manner, wherein the high-frequency charging and discharging control module includes a control unit, a high frequency oscillating unit, an execution unit, and a feedback unit, wherein the control unit is controllably connectable to the high frequency oscillating unit, wherein the high frequency oscillating unit can control the operating frequency of the executing unit to be connected
  • the execution unit wherein the execution unit acquires energy from the pre-storage module and operates an output of energy, wherein the feedback unit monitors energy output by the execution unit and feeds back to the control unit To form a closed loop control.
  • the execution unit includes a disconnector and an accumulator, wherein the disconnector has an open state and a disconnected state, and the breaking frequency of the interrupter is high
  • the frequency oscillating unit controls, wherein the energy storage device externally outputs energy for repeated charging and discharging.
  • the pre-charge and discharge unit stores energy of the minute signal, and the high-frequency oscillation unit controls the opener to be in an on or off state.
  • the accumulator acquires energy from the pre-charge and discharge unit through the disconnector, when the disconnector is in a broken state
  • the energy storage device is disconnected from the disconnector to release the energy that is just charged from the pre-charge and discharge unit to the outside.
  • the accumulator when the disconnector is in an open state, the accumulator is being charged, and when the disconnector is in a broken state, the accumulator is disconnected from the disconnector On, the accumulator discharges to the outside.
  • the energy storage device is switched between charging and discharging until the energy in the pre-charging unit is output completely.
  • the high frequency charging and discharging control module outputs energy for a time greater than a time when the minute signal inputs energy to the energy harvesting circuit module.
  • FIG. 1 is a flow diagram of a small signal detection in accordance with a preferred embodiment of the present invention.
  • Fig. 2 is a schematic block diagram of a minute signal detecting apparatus according to the above preferred embodiment of the present invention.
  • Figure 3 is a circuit diagram of a minute signal detecting apparatus in accordance with the above preferred embodiment of the present invention.
  • Fig. 4 is a schematic block diagram of a minute signal detecting apparatus according to the above preferred embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a minute signal detecting apparatus in accordance with the above preferred embodiment of the present invention.
  • Figure 6 is a flow chart showing a method of detecting a small signal in accordance with the above preferred embodiment of the present invention.
  • Fig. 7A is a diagram of a minute signal waveform in accordance with the above preferred embodiment of the present invention.
  • Fig. 7B is a waveform diagram of the capacitor being charged and discharged according to the above-described minute signal and a conventional voltage-stabilized waveform diagram according to the above-described minute signal.
  • FIG. 7C is a waveform diagram of the high-frequency charge and discharge control module outputting a voltage regulation according to the above-mentioned small signal.
  • Figure 8 is a circuit diagram of a minute signal detecting apparatus according to the above preferred embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the present invention provides a small signal detecting apparatus and method thereof for detecting at least one small signal, as shown in FIGS. 1 to 8, to further interpret the meaning and action represented by the minute signal.
  • the method for detecting a small signal includes the following steps:
  • step III further comprising:
  • step I further comprising:
  • the small signal is obtained.
  • the small signal is pre-identified.
  • the energy source of the information acquisition process for the small signal in step II is the energy obtained in step I. That is to say, the energy aspect of the small signal is utilized for information acquisition, and the small signal is sufficiently analyzed and utilized. Of course, according to different needs, the energy of the small signal can also be output to other loads. Further, the above steps I and II can be started simultaneously, providing energy support for information acquisition of the minute signal while outputting the energy of the minute signal.
  • the small signal applied in the application of the present invention mainly refers to an action signal with relatively weak energy, and particularly a pulse signal is taken as an example, and the source of the small signal may be instantaneous discharge of a capacitor or induction of a coil. Or the microbattery is generated by discharge, or by electrostatic discharge, or by piezoelectric crystals, or by temperature differences, or by other devices that can generate electricity. That is, the tiny signals are bursty, uncontrolled, or even singular.
  • the small signal itself has two characteristics, one is carried energy, and the other is carried information, wherein the energy carried can be known by the energy intensity, and the information carried needs the amplitude and width of the signal. Obtained by statistical analysis of parameters of electrical properties.
  • a small signal is captured, that is, an object to be detected is extracted in the detection.
  • the minute signal is pre-identified, and a preliminary judgment is made on the minute signal. For example, whether the weak energy signal is targeted for this test to ensure the effectiveness and safety of subsequent functions, and to avoid excessive damage to the overall device or method.
  • energy acquisition of the small signal is started, and information acquisition of the small signal is started. Because the energy of the small signal is very short, it is necessary to extend the energy existence time when performing energy acquisition on the small signal to ensure the effectiveness of the output energy.
  • the extended energy is utilized in the information acquisition of the small signal to provide energy support for obtaining complete and efficient information.
  • the acquired information of the minute signal is subjected to subsequent processing.
  • the detection results are transmitted to other terminals for further analysis as needed.
  • the information of the small signal is further encoded to provide the encoded information to other terminals or analysis terminals to improve the efficiency of the transmission.
  • the energy in the small signal is acquired and further utilized in information acquisition by extending the presence, sufficient time is provided for information acquisition of the minute signal, and the specificity of the small signal can be sufficiently identified. parameter. Therefore, the transmission bandwidth of the data is improved, and the reliability of the process in which the information of the minute signal is transmitted is ensured.
  • the transmission or communication can be repeated, the error rate is reduced, the accuracy of the information transmission of the small signal is ensured, and the action meaning represented by the minute information is obtained.
  • the information of the small signal can be transmitted to other terminals through wireless communication, which facilitates subsequent operations and interpretation.
  • the schematic structure of the micro signal detecting device is schematically shown in FIGS. 2 to 5.
  • the micro signal detecting device includes an energy harvesting circuit module 10 and an information acquiring circuit module 20, wherein the energy harvesting circuit module 10 is adapted to acquire energy from the minute signal and extend the energy existence time to provide energy to the information.
  • the circuit module 20 is obtained.
  • the information acquisition circuit module 20 acquires information from the small signal for analyzing the meaning represented by the small signal.
  • the minute signals are respectively connected to the energy acquisition circuit module 10 and the information acquisition circuit module 20, that is, the minute signals are used by the energy acquisition circuit module 10 and the information acquisition circuit module 20 Use at the same time.
  • the energy of the minute signal is extended by the energy acquisition circuit module 10, and the information acquisition circuit module 20 is provided to acquire information of the minute signal, so that complete information data of the minute signal is transmitted.
  • the energy harvesting circuit module 10 further includes a pre-storage module 11 and a high-frequency charging and discharging control module 12, and the high-frequency charging and discharging control module 12 is connected to the pre-storage module 11 so that After the micro signal passes through the pre-storage module 11, it enters the high-frequency charging and discharging control module 12 to obtain an extension of the presence of energy.
  • the energy of the minute information is stored in advance by the pre-storage module 11, and then the high-frequency charge and discharge control module 12 externally outputs energy at a certain voltage and frequency. Through the pre-storage of the pre-storage module 11, it is ensured that the energy of the minute signal is not lost.
  • the high-frequency charging and discharging control module 12 can use energy in a form as needed, instead of rapidly releasing the stored energy, and avoiding the instantaneous disappearance of the energy of the minute signal.
  • the high frequency charging and discharging control module 12 acquires energy from the pre-storage module 11 and performs energy output to the information acquisition circuit module 20. Therefore, the high frequency charging and discharging control module 12 can control the time of the energy output, that is, the time when the energy of the minute signal is extended, in addition to the control of the form of the energy output. Of course, for the extended energy existence time, it is also possible to obtain knowledge and feedback through the output situation.
  • the high frequency charging and discharging control module 12 outputs energy to the information acquisition circuit module 20 to provide energy for the information acquisition circuit module 20, as shown in FIG. That is, the energy harvesting circuit module 10 acquires the energy of the minute signal and performs a prolonged output to provide a voltage stabilizing effect to provide a subsequent load. It can be understood by those skilled in the art that the energy of the energy harvesting circuit module 10 is derived from the small signal and can be outputted in different forms of output form, which is output to the information acquiring circuit module in the preferred embodiment. 20 is a preferred solution. It is not required that the energy of the minute signal be used for the information acquisition circuit module 20. As shown in FIG. 3, the high-frequency module 12 may control the charge and discharge energy of a typical output load R L.
  • the small signal detecting device can still maintain the detection result and continue to transmit. Preferably, it is sent at least once.
  • the high frequency charging and discharging control module outputs energy for a time longer than inputting a small pulse energy to the energy harvesting circuit module.
  • the high-frequency charging and discharging control module 12 continuously obtains the energy of the small signal from the pre-storage module 11 and outputs the PWM voltage at a certain high frequency, thereby completing the extension of the existence time of the small signal energy.
  • the voltage output by the energy of the minute signal can be controlled.
  • the output voltage of the high frequency charging and discharging control module 12 is controllably outputted in a range of 1.2V to 9V, and the output is direct current. That is, the energy of the small signal has been saved in the pre-storage module 11, and the high-frequency charging and discharging control module 12 intermittently obtains energy from the pre-storage module 11 and performs pulse width modulation. Output, then the time to output energy can be guaranteed, and the output voltage can also be controlled by frequency control.
  • the high frequency charging and discharging control module 12 includes a control unit 121, a high frequency oscillating unit 122, an executing unit 123, and a feedback unit 124, wherein the control unit 121 is controllably connected to the high frequency.
  • Frequency oscillating unit 122 wherein the high frequency oscillating unit 122 can control an operating frequency of the executing unit 123, wherein the executing unit 123 acquires energy from the pre-storage module 11 and operates an output of energy such that the execution
  • the unit 123 controls the energy of the minute signal to output a voltage at a certain frequency, thereby completing the extension of the energy of the minute signal.
  • the feedback unit 124 further monitors the energy output by the execution unit 123 and feeds back an output voltage condition to the control unit 121 to form a closed loop control. That is, the execution unit 123 is controlled by the high frequency oscillating unit 122 to obtain energy and output energy.
  • the high frequency charging and discharging control module 12 acquires and outputs a certain frequency to complete a controllable PWM voltage output mode.
  • control unit 121 performs frequency switching control on the execution unit 123 by controlling the frequency of the high frequency oscillating unit 122.
  • the oscillation frequency of the high frequency oscillating unit 122 preferably ranges from 20 kHz to 10 MHz.
  • the feedback unit 124 preferably collects and feeds back the output voltage of the execution unit 123.
  • the voltage output by the execution unit 123 is very stable for the overall high frequency oscillating unit 122, thereby facilitating the direct use of energy.
  • the output voltage value is preferably 1.2V to 9V.
  • the execution unit 123 may be a buffer switch with respect to the pre-storage module 11 and an electrical load. Because of the acquisition and external output of the pre-storage module 11 by the high-frequency charging and discharging control module 12, the existence time of the energy of the minute signal is effectively extended to 2 to 10 times.
  • the execution unit 123 of the high frequency oscillating unit 12 further provides a filter for filtering the output energy such that the outputted energy appears as a direct current voltage.
  • the high frequency charging and discharging control module 12 is integrally packaged in a circuit.
  • the control unit 121, the high frequency oscillating unit 122, the execution unit 123, and the feedback unit 124 are disposed on a circuit board.
  • the high frequency charge and discharge control module 12 can also be manufactured integrally by subsequent packaging and protection. Preferably, it is encapsulated by SOC (System-on-a-Chip).
  • the pre-storage module 11 further includes a rectifying unit 111 and a pre-charging unit 112, wherein the rectifying unit 111 receives the micro signal, wherein the pre-charging unit
  • the energy rectified by the rectifying unit 111 is stored and waiting to be acquired by the high frequency charging and discharging control module 12.
  • the high frequency oscillating unit 122 of the high frequency charging and discharging control module 12 is activated by the energy stored by the pre-charging unit 112, so that the high-frequency charging and discharging control module 12 starts to work.
  • the high frequency oscillating unit 122 controls the switch of the execution unit 123 at a certain frequency.
  • the frequency of the high frequency oscillating unit 122 is controlled by the control unit 121.
  • the control unit 121 performs closed-loop control on the frequency of the high-frequency oscillating unit 122 according to the voltage requirement of the predetermined output and the output result fed back by the feedback unit 124, so that the high-frequency charging and discharging control module 12 The output voltage remains stable. That is, the pre-storage module 11 temporarily stores the energy of the small signal in the charging and discharging unit 112, and the high-frequency charging and discharging control module 12 obtains energy from the point A shown in the figure, and uses the PWM voltage to point B. The way the control outputs energy.
  • the charging and discharging unit 112 can further provide a pressure reducing effect for more direct energy storage.
  • the execution unit 123 specifically includes a disconnector 1231 and an accumulator 1232, wherein the disconnector 1231 has an open state and a disconnected state, and the disconnection The breaking frequency of the device 1231 is controlled by the high frequency oscillating unit 122, wherein the energy storage device 1232 outputs energy to the outside for repeated charge and discharge.
  • the high-frequency oscillating unit 122 starts to control the on or off state of the disconnector 1231.
  • the accumulator 1232 acquires energy from the pre-charge and discharge unit 112 through the disconnector 1231, that is, the accumulator 1232 is being charged.
  • the accumulator 1232 When the disconnector 1231 is in a broken state, the accumulator 1232 is disconnected from the disconnector 1231, and the energy that is just charged from the pre-charge and discharge unit 112 is released outward, that is, The accumulator 1232 is discharging.
  • the above-described frequency between charging and discharging is preferably performed at a high speed, preferably in the range of 20 kHz to 10 MHz.
  • the outputted energy is output at a certain frequency until the energy in the pre-charge and discharge unit 112 is acquired.
  • the voltage output by the accumulator 1232 is not only controlled, but can be used directly as needed.
  • the rectifying unit 111 is a BT rectifying circuit. That is, the diode rectifier circuit.
  • the pre-charge and discharge unit 112 is a capacitor or a capacitor bank.
  • the energy storage device is an inductor or an inductor group.
  • a capacitor C2 is provided for filtering the output energy.
  • a small signal shown in the waveform diagram of FIG. 7A is taken here for explanation.
  • the small signal When the small signal is input at the ends e1 and e2.
  • the small signal has a voltage amplitude of 10 V and a pulse presence time of 1.2 ms.
  • the minute signal may be a single positive pulse or a positive and negative pulse.
  • the minute signal detecting means operates one or more times each time a pulse is input.
  • the minute signal is rectified by the rectifying unit 111, that is, the BT pulse rectifying unit rectifies. After rectification, the pre-charge and discharge unit 112 is started to be charged, that is, the capacitor C1 is charged.
  • the capacitor has two functions, step-down and energy storage, and the small signal with a higher voltage charges the capacitor C1, and the voltage across the capacitor C1 drops to about 4-5V, and the charge and discharge curve See Figure 7B.
  • a sustain pulse having a long time is outputted at point B in FIG.
  • the energy existence time is extended to 15.6 ms. Different types of pulses are input, and the energy existence time after the high-frequency charging and discharging control module 12 can reach 2-10 times that of the conventional voltage stabilizing device.
  • the high-frequency charging and discharging control module 12 outputs the pulsed electric energy existing for a short time at point B.
  • the pulsed electric energy is as shown in FIG. 7C, and the time of the presence of the minute signal compared with the e1 and e2 terminals has been extended by several times. The tiny signal provides power to the load.
  • the information acquisition circuit module 20 includes an identification unit 21, a processing unit 22, and a communication unit 23.
  • the identification unit 21 is adapted to acquire information of the minute signal.
  • the identification unit 21, the processing unit 22, and the communication unit 23 are connected in communication in sequence.
  • the identification unit 21 receives the minute signal, and the identification unit 21 further transmits the identification condition to the processing unit 22, and the processing unit 22 performs processing to transmit the result of the detection by the communication unit 23.
  • the processing unit 22 further includes an input interface 221, an output interface 222, an energy supply interface 223, and a predetermined program block 224.
  • the input interface 221 inputs the acquisition status of the identification unit 21 to the predetermined program block 224, and the processing result of the acquisition by the predetermined program block 224 is sent out by the output interface 222, that is, Monitoring the results of the information on the small signals.
  • the predetermined program block 224 is initialized to run under the control of the preset program, and the parameters of the information acquisition circuit module 20 are configured.
  • the predetermined program block 224 is called and subjected to a certain operation by the parameters of the minute signal obtained in the input interface 221, and finally transmitted to the outside through the output interface 222.
  • the power supply interface 223 of the processing unit 22 provides energy support for the predetermined program block 224.
  • the power supply interface 223 is connected to the high frequency charging and discharging control module 12 of the energy harvesting circuit module 10, and the execution unit 123 of the high frequency charging and discharging control module 12 Get stable energy.
  • the energy output by the execution unit 123 is derived from the micro signal being stored by the pre-storage module 11. That is to say, the energy aspect of the minute signal is utilized in the information acquisition aspect of the minute signal.
  • the time of the energy obtained by the processing unit 22 is also extended by the extension of the high frequency charging and discharging control module 12. It is critical to transfer the small signal in turn.
  • the information acquisition circuit module 20 needs to transmit a 15-byte digital information with a transmission rate of 40 Kbps and a transmission power of 10 mW.
  • the information acquisition circuit module 20 can repeatedly transmit data multiple times until the data is completely transmitted.
  • the communication module 23 uses a wireless communication module, that is, by ATN1.
  • a corresponding wireless communication module is provided in the other terminal, that is, by ATN2, to receive the detection result transmitted by the communication module 23.
  • ATN1 and ATN2 are wirelessly connected.
  • the receiving wireless communication unit in the other terminal is defined as 23A, and the corresponding receiving processing unit is the receiving processing unit 22A.
  • the wireless communication unit 23A and the communication unit 23 are not necessarily structurally identical, and the wireless communication unit 23A is required to receive the data transmitted by the communication unit 23.
  • the receiving processing unit 22A is also not necessarily structurally consistent with the processing unit 22.
  • the wireless communication unit 23A may be two or more, and further processed and analyzed by one or a corresponding plurality of the receiving processing units 22A.
  • the rectifying unit 111 receives the minute signal input at the ends e1 and e2, wherein the pre-charge and discharge unit 112 stores the energy rectified by the rectifying unit 111, and waits It is acquired by the high frequency charging and discharging control module 12.
  • the high frequency oscillating unit 122 of the high frequency charging and discharging control module 12 is activated by the energy stored by the pre-charging unit 112, so that the high-frequency charging and discharging control module 12 starts to work.
  • the high frequency oscillating unit 122 controls the switch of the execution unit 123 at a certain frequency.
  • the frequency of the high frequency oscillating unit 122 is controlled by the control unit 121.
  • the high-frequency oscillating unit 122 starts to control the on or off state of the disconnector 1231.
  • the disconnector 1231 is in an open state
  • the accumulator 1232 acquires energy from the pre-charge and discharge unit 112 through the disconnector 1231, that is, the accumulator 1232 is being charged.
  • the disconnector 1231 is in a broken state
  • the accumulator 1232 is disconnected from the disconnector 1231, and the energy that is just charged from the pre-charge and discharge unit 112 is released outward, that is, The accumulator 1232 is discharging.
  • the above-described frequency between charging and discharging is preferably performed at a high speed, preferably in the range of 20 kHz to 10 MHz.
  • the control unit 121 performs closed-loop control on the frequency of the high-frequency oscillating unit 122 according to the voltage requirement of the predetermined output and the output result fed back by the feedback unit 124, so that the high-frequency charging and discharging control module 12 The output voltage remains stable.
  • a storage filter capacitor C2 is provided to provide filtering for the output energy.
  • the pre-storage module 11 temporarily stores the energy of the small signal in the charging and discharging unit 112, and the high-frequency charging and discharging control module 12 obtains energy from the point A shown in the figure, and uses the PWM voltage to point B. The way the control outputs energy.
  • FIG. 8 a specific circuit diagram of the high frequency charging and discharging control module 12 is shown in the figure.
  • the high frequency oscillating unit 122 performs switching control of a certain frequency on the disconnector 1231 of the execution unit 123.
  • the energy storage device 1232 performs repeated charging and discharging operations on the electric energy input by the pre-storage module 11.
  • a freewheeling diode D and a storage filter capacitor C2 are provided to complete the circuit.
  • the identification unit 21 receives the minute signal, and the identification unit 21 further transmits the identification to the processing unit 22.
  • the resistor R in the figure is a current limiting resistor.
  • the identification unit 21 inputs the acquisition status of the identification unit 21 to the predetermined program block 224 by the input interface 221, and the processing of the acquisition condition by the predetermined program block 224 is sent out by the output interface 222.
  • the result of the processing that is, the monitoring result of the information on the minute signal.
  • the predetermined program block 224 is initialized to run under the control of the preset program, and the parameters of the information acquisition circuit module 20 are configured.
  • the predetermined program block 224 is called and subjected to a certain operation by the parameter of the minute signal obtained in the input interface 221, and finally transmitted to the communication unit 23 through the output interface 222.
  • the wireless communication unit 23A of the other terminal device transmits the received data to the internal receiving processing unit 22A, and the receiving processing unit 22A assumes the function of the interface circuit, and the I/O port can be output and received as needed. Data, or convert the received data to a level to control other devices.
  • the I/O port of the receiving processing unit 22A outputs data to the terminal computer for processing, or directly to the driving device with a level command.
  • a DC-DC voltage stabilizing device is further provided with power supply support for the receiving processing unit 22A circuit to convert the input voltage into a voltage suitable for operation of the receiving processing unit 22A.
  • the tiny signal is divided into two ways to acquire information and energy. More specifically, the pre-storage module 11 pre-stores the energy of the minute signal, and the high-frequency charge and discharge control module 12 continuously outputs the energy of the minute signal from the pre-storage module 11.
  • the identification module 21 collects the information of the small signal, and performs processing by the processing module, transmits the external signal to the outside through the communication unit 23, and finally outputs the detection result of the small signal.
  • the high frequency charging and discharging control module 12 delays the energy of the small signal, and the delayed energy is supplied to the processing unit 22 and the communication unit 23 to start working.
  • the unit of the "identification unit 21" may be omitted, but the communication module 23 may be directly driven by the energy of the pulse signal input to transmit a preset signal.

Abstract

一种微小信号检测装置,包括:一能量获取电路模块(10),其包括一预储模块(11)和一高频充放控制模块(12),其中预储模块(11)将一微小信号的能量暂时地存储,高频充放控制模块(12)获取预储模块(11)中的能量,高频充放控制模块(12)以一定频率地方式将能量输出;和一信息获取电路模块(20),其中高频充放控制模块(12)提供能量至信息获取电路模块(20),信息获取电路模块(20)从微小信号获取信息以得到微小信号的检测结果,以将其检测结果进行传输。另外,提供一微小信号检测方法,不仅检测微小信号的存在,更对微小信号进行利用。

Description

微小信号检测装置及其检测方法 技术领域
本发明涉及信号识别与检测领域,特别是一种针对微小信号的获取和进一步处理的检测装置和检测方法。
背景技术
现今,生产中所产生的每个信号都是富有一定的意义,对于那些特征和意义都十分明显的信号而言,主要技术难点在于采集、滤波或者适当的解读等等。但是很多微小的信号也具有一定的代表意义,却常常被忽略,或者因为不能及时获取而错过。只有当小信号代表的小问题上升到一定的级别,变成大问题发出大信号时才能被获取,这个量变引起质变的过程完全可以从初始阶段的小信号进行检测和诊断。
常见地,需要检测一些微弱的突发性动作的存在及动作的过程与状态,例如检测一次轻微的撞击、轻触、挤压等动作的存在,以及通过这些动作来控制设备的运行动作,或者需要对产生这些动作的行为意识进行判断。也就是说动作对应的信号也具有相应的意义。但是,由于这些动作是瞬间产生的,随之即刻消失的,产生能量存在的时间非常短,因此对于检测上也不能是使用常见的装置和方法。
一般地,信号本身具有两种特质,一是本身携带的能量,二是携带的信息。传统的方法局限于微小信号的微弱能量,只能将携带的信息用放大等等处理进行加工解读。那么,误操作的可能性是非常高的,因为信息可能并不完整,又或者过程中被处理掉了关键的信息。
特别是一种非连续存在的微小脉冲信号,在传统的检测中是很难被获取的。当突发事件产生时才会输入单次或几次瞬间存在的微弱脉冲电能,其能量大小在0.001焦耳以内,例如一个47uF/6.3V的小电容器存储的电能进行脉冲放电一次。也就是说是一种不受控脉冲,指输入的脉冲类型可为任意脉冲,不同的供电器件其产生的脉冲幅度、脉冲宽度、能量强度均不同。这个脉冲信号可由一个电容器瞬间放电产生、或者线圈感应产生、或者微电池放电产生、或者由静电放电产生、 或者由压电晶体产生、或者由温度差异产生、或者由其它可生电的器件产生。虽然能量小,但是携带的信息丰富,适当的解读后,能判断出其反应的动作。
本发明构思所针对微小信号的检测,不仅检测微小信号的存在,更对微小信号的能量进行利用,将微小信号的信息进行收集并进一步地处理。
发明内容
本发明的一个目的在于提供一种微小信号检测装置及其检测方法,从一微小信号的能量方面和信息方面分别出发进行获取和检测,并利用所述微小信号的能量为信息方面提供助力。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,将所述微小信号的能量存在时间延长,延长所述微小信号的能量输出时间,即,对所述微小信号的能量能出时间进行延时,进一步地为信息获取提供能源支撑。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,对于获取的所述微小信号的信息进行处理,并将得到的信息以数据的形式传递输出,以供后续的使用。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,将所述微小信号的信息和参数完整地获取,例如极性、幅度、或者存在的时间,提高后续处理的效率。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述微小信号的能量存在时间延长2-10倍,提高数据带宽,保证数据传输的可靠性、降低误码率。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,将所述微小信号的能量存在时间延长,使得所述微小信号的信息被重复地传送或者通讯,提高数据的准确性。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,对于一个所述微小信号,将进行至少一次的检测,也就是能量获取和信息获取,保证所述微小信号被充分地检测。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述微小信号的能量被延长的同时,还进一步地保证能量输出的稳定性,使得输出的能量被有效地利用。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述微小信号的能量被延长的同时,进一步对输出电压可控,使得输出电压为直接可以利用的,提供使用效率和能源转化率。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述微小信号的能量被延长存在后,输出能量可以进一步地用在其他负载。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述微小信号的能量输出被稳定地控制,通过闭环反馈,保证输出电压被维持在需求范围内。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,根据每次对所述微小信号检测的情况,都通过一通讯单元对外传送,使得所述微小信号反应的具体动作被认知。
本发明的另一个目的在于提供一种微小信号检测装置及其检测方法,所述通讯单元为无线传输,对应地向匹配的另一无线接收单元传送检测的结果,以供后续的分析使用。
依本发明的一个方面,本发明进一步提供一微小信号检测装置,包括:
一能量获取电路模块,其包括一预储模块和一高频充放控制模块,其中所述预储模块将一微小信号的能量暂时地存储,其中所述高频充放控制模块获取所述预储模块中的能量,所述高频充放控制模块以一定频率的方式将能量输出;和
一信息获取电路模块,其中所述高频充放控制模块提供能量至所述信息获取电路模块,其中所述信息获取电路模块从所述微小信号获取信息以得到所述微小信号的检测结果,以将所述微小信号的检测结果进行传输。
根据本发明的一个实施例,所述高频充放控制模块从所述预储模块间断地获取能量,其中所述高频充放控制模块用可控电压方式进行输出能量。
根据本发明的一个实施例,所述能量获取电路模块适于从所述微小信号获取能量,通过间断输出的方式延长能量存在时间。
根据本发明的一个实施例,所述高频充放控制模块输出能量的时间大于所述微小信号向所述能量获取电路模块输入能量的时间。
根据本发明的一个实施例,所述高频充放控制模块控制所述微小信号的能量以一定的频率输出电压。
根据本发明的一个实施例,所述高频充放控制模块用脉冲宽度可调的方式控 制而输出所述微小信号的能量。
根据本发明的一个实施例,所述高频充放控制模块包括一控制单元、一高频振荡单元、一执行单元以及一反馈单元,其中所述控制单元可控制频率地连接于所述高频振荡单元,其中所述高频振荡单元可控制所述执行单元的操作频率地连接于所述执行单元,其中所述执行单元自所述预储模块获取能量,并操作能量的输出,其中所述反馈单元对所述执行单元所输出的能量进行监控,并反馈至所述控制单元,以形成闭环控制。
根据本发明的一个实施例,所述反馈单元对所述执行单元的输出电压进行采集并反馈。
根据本发明的一个实施例,所述反馈单元对所述执行单元输出的电压进行采集并反馈。
根据本发明的一个实施例,所述执行单元为相对于所述预储模块和用电负载的缓冲开关。
根据本发明的一个实施例,所述控制单元、所述高频振荡单元、所述执行单元以及所述反馈单元被设置于一电路板。
根据本发明的一个实施例,所述高频充放控制模块被一体地封装。
根据本发明的一个实施例,所述高频充放控制模块通过SOC(System-on-a-Chip)封装。
根据本发明的一个实施例,所述预储模块进一步地包括一整流单元和一预充放单元,其中所述整流单元接收所述微小信号,其中所述预充放单元将所述整流单元整流后的能量储存,并等待被所述高频充放控制模块获取。
根据本发明的一个实施例,所述高频充放控制模块的所述高频振荡单元被所述预充放单元所储存的能量激活。
根据本发明的一个实施例,所述执行单元包括一开断器和一储能器,其中所述开断器具有一开状态和一断状态,所述开断器的开断频率被所述高频振荡单元所控制,其中所述储能器被所述开断器控制而进行充放电。
根据本发明的一个实施例,所述预充放单元中存储有所述微小信号的能量激活所述高频振荡单元控制开断器。
根据本发明的一个实施例,当所述开断器处于开的状态,所述储能器通过所述开断器从所述预充放单元获取能量,当所述开断器处于断的状态,所述储能器 与所述开断器断开,向外部提供刚刚充电的从所述预充放单元获取的能量。
根据本发明的一个实施例,当所述开断器处于开的状态,所述储能器在充电,当所述开断器处于断的状态,所述储能器与所述开断器断开,所述储能器对外部放电。
根据本发明的一个实施例,通过所述储能器在充电和放电之间转换,直至所述预充放单元中的能量被输出完全。
根据本发明的一个实施例,所述储能器充电与放电之间的频率范围为:20KHz至10MHz。
根据本发明的一个实施例,所述信息获取电路模块包括一识别单元,一处理单元以及一通讯单元,其中所述识别单元适于获取所述微小信号的信息,其中所述识别单元、所述处理单元以及所述通讯单元依次相通信地连接。
根据本发明的一个实施例,所述识别单元将识别情况传至所述处理单元,所述处理单元进行处理后由所述通讯单元传送检测的结果。
根据本发明的一个实施例,所述处理单元进一步地包括一输入接口、一输出接口、一供能接口以及一预定程序块,其中所述输入接口向所述预定程序块输入所述识别单元的获取情况,经过所述预定程序块对获取情况的处理,由所述输出接口向外发送处理的结果,其中所述供能接口被连接于所述能量获取电路模块的所述高频充放控制模块。
根据本发明的一个实施例,所述预定程序块在预置程序的控制下初始化运行,将所述信息获取电路模块的参数进行配置。
根据本发明的一个实施例,通过对所述输入接口中得到的所述微小信号的参数,所述预定程序块进行调用并进行一定的运算,最后通过所述输出接口传输至外部。
根据本发明的一个实施例,所述整流单元为二极管整流电路。
根据本发明的一个实施例,所述预充放单元为电容器或电容器组。
根据本发明的一个实施例,所述储能器为电感或电感组。
根据本发明的一个实施例,所述高频振荡单元的振荡频率的范围为:20KHz至10MHz之间。
依本发明的另一个方面,本发明进一步提供一微小信号检测方法,其特征在于,包括以下步骤:
I.对所述微小信号进行能量获取;
II.对所述微小信号进行信息获取;以及
III.处理所述微小信号的信息。
根据本发明的一个实施例,在步骤I之前,进一步包括步骤:
获得一微小信号。
根据本发明的一个实施例,步骤II中对于所述微小信号的信息获取过程的能量来源为步骤I中所获取的能量。
根据本发明的一个实施例,步骤I和步骤II同时地开始,在输出所述微小信号的能量的同时为所述微小信号的信息获取提供能源支撑。
根据本发明的一个实施例,步骤I进一步包括步骤:
I.1延长所述微小脉冲的能量存在的时间。
根据本发明的一个实施例,为步骤II中提供的能量时间大于所述微小信号的能量存在时间。
根据本发明的一个实施例,步骤II进一步包括步骤:
II.1获取所述微小信号的参数,其中所述微小信号的参数选自组合:信号产生、脉宽、极性中的一种或多种。
根据本发明的一个实施例,步骤III进一步包括步骤:
III.1在程序的控制下产生特定的编码信息。
根据本发明的一个实施例,在步骤III之后进一步地包括步骤:
IV输出检测结果。
根据本发明的一个实施例,步骤IV采用无线传输的方式。
依本发明的另一个方面,本发明进一步提供一能量获取电路模块,其特征在于,包括:
一预储模块;和
一高频充放控制模块,其中所述预储模块将一微小信号的能量暂时地存储,其中所述高频充放控制模块获取所述预储模块中的能量,所述高频充放控制模块以一定频率地方式将能量输出,其中所述高频充放控制模块用脉冲宽度可调的方式控制而输出所述微小信号的能量,其中所述高频充放控制模块包括一控制单元、一高频振荡单元、一执行单元以及一反馈单元,其中所述控制单元可控制频率地连接于所述高频振荡单元,其中所述高频振荡单元可控制所述执行单元的操作频 率地连接于所述执行单元,其中所述执行单元自所述预储模块获取能量,并操作能量的输出,其中所述反馈单元对所述执行单元所输出的能量进行监控,并反馈至所述控制单元,以形成闭环控制。
根据本发明的一个实施例,所述执行单元包括一开断器和一储能器,其中所述开断器具有一开状态和一断状态,所述开断器的开断频率被所述高频振荡单元所控制,其中所述储能器为反复充放电地对外输出能量。
根据本发明的一个实施例,所述预充放单元中存储有所述微小信号的能量,所述高频振荡单元控制开断器处于开或者断的状态。
根据本发明的一个实施例,当所述开断器处于开的状态,所述储能器通过所述开断器从所述预充放单元获取能量,当所述开断器处于断的状态,所述储能器与所述开断器断开,向外部释放刚刚充电的从所述预充放单元获取的能量。
根据本发明的一个实施例,当所述开断器处于开的状态,所述储能器在充电,当所述开断器处于断的状态,所述储能器与所述开断器断开,所述储能器对外部放电。
根据本发明的一个实施例,通过所述储能器在充电和放电之间转换,直至所述预充放单元中的能量被输出完全。
根据本发明的一个实施例,所述高频充放控制模块输出能量的时间大于所述微小信号向所述能量获取电路模块输入能量的时间。
附图说明
图1是根据本发明的一个优选实施例的微小信号检测的流程示意图。
图2是根据本发明的上述优选实施例的微小信号检测装置的框架示意图。
图3是根据本发明的上述优选实施例的微小信号检测装置的电路示意图。
图4是根据本发明的上述优选实施例的微小信号检测装置的框架示意图。
图5是根据本发明的上述优选实施例的微小信号检测装置的电路示意图。
图6是根据本发明的上述优选实施例的微小信号检测方法的流程示意图。
图7A是根据本发明的上述优选实施例的微小信号波形图。
图7B是电容器根据上述微小信号而充放电的波形图和根据上述微小信号传统稳压波形图。
图7C是所述高频充放控制模块根据上述微小信号而输出稳压的波形图。
图8是根据本发明的上述优选实施例的微小信号检测装置的电路示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明提供一微小信号检测装置及其方法,对至少一微小信号进行检测,如图1至图8所示,将所述微小信号所表征的意义和动作进一步地解读。
如图1所示,所述微小信号检测方法包括以下步骤:
I.对所述微小信号进行能量获取;
II.对所述微小信号进行信息获取;以及
III.处理所述微小信号的信息。
更多地,在步骤III之后,进一步地包括:
IV.输出检测结果。
更多地,在步骤I之前,进一步地包括:
获得所述微小信号。
更多地,在获得所述微小信号之后,进一步地包括:
预识别所述微小信号。
值得一提的是,步骤II中对于所述微小信号的信息获取过程的能量来源为步骤I中所获取的能量。也就是说,所述微小信号的能量方面被利用于信息获取方 面,充分地将所述微小信号进行解析和利用。当然,根据不同的需求,所述微小信号的能量也可以被输出至其他负载。更多地,上述的步骤I和步骤II可以同时地开始,在输出所述微小信号的能量的同时为所述微小信号的信息获取提供能源支撑。
需要说明的是,本发明中所涉及应用的所述微小信号主要是指能量比较微弱的动作信号,特别以脉冲信号为例,所述微小信号的来源可以为电容器瞬间放电产生、或者线圈感应产生、或者微电池放电产生、或者由静电放电产生、或者由压电晶体产生、或者由温度差异产生、或者由其它可生电的器件产生。也就是说,所述微小信号是突发的、不受控的,甚至是单一的。所述微小信号本身具有的两种特质,一种是所携带的能量,一种是携带的信息,其中所携带的能量可以通过能量强度而得知,所携带的信息需要对信号的幅度、宽度等等电属性的参数统计分析而获得。
更具体地,首先,捕捉一微小信号,也就是说在检测中提取需要检测的对象。然后,预识别所述微小信号,对所述微小信号做初步的判断。例如,是否为本次检测所针对的携带微弱能量的信号,以保证后续功能的有效性和安全性,避免过大的冲击对整体装置或者方法产生破坏性的影响。接着,开始对所述微小信号进行能量获取,并开始对所述微小信号进行信息获取。因为所述微小信号的能量存在时间十分短暂,对所述微小信号进行能量获取时需要延长能量存在时间,以保证输出能量的有效性。被延长的能量被利用与所述微小信号的信息获取中,为获取完整地、有效地信息而提供能源上的支撑。之后,对获取的所述微小信号的信息进行后续处理。根据需要,传输检测结果至其他的终端进行进一步地分析。在一种可行的实施例中,所述微小信号的信息被进一步地编码,进而向其他终端或者分析端提供被编码了的信息,以提高传送的效率。
因为所述微小信号中的能量被获取,并通过延长存在的方式进一步地利用于信息获取中,所以对于所述微小信号的信息获取提供了足够的时间,可以充分地识别所述微小信号的具体参数。因此,提高了数据的传送带宽,保证了在所述微小信号的信息被传送的过程的可靠性。另外,可以重复地传送或者通讯,降低误码率,保证所述微小信号的信息传输的准确性,进而获得所述微小信息所代表的动作意义。更多地,可以通过无线通讯,将所述微小信号的信息传至其他终端,方便后续的操作和解读。
所述微小信号检测装置的原理结构示意如图2至图5所示。所述微小信号检测装置包括一能量获取电路模块10和一信息获取电路模块20,其中所述能量获取电路模块10适于从所述微小信号获取能量并延长能量存在时间,提供能量至所述信息获取电路模块20。所述信息获取电路模块20从所述微小信号获取信息,以供分析所述微小信号所代表的意义。所述微小信号是分别地接入所述能量获取电路模块10和所述信息获取电路模块20的,也就是说,所述微小信号被所述能量获取电路模块10和所述信息获取电路模块20同时地利用。所述微小信号的能量通过所述能量获取电路模块10进行延长,提供给所述信息获取电路模块20对所述微小信号的信息进行获取,使得所述微小信号的完整的信息数据被传送。
更多地,所述能量获取电路模块10进一步地包括一预储模块11和一高频充放控制模块12,所述高频充放控制模块12被连接于所述预储模块11,使得所述微小信号经过所述预储模块11之后进入所述高频充放控制模块12进而得到能量存在的延长。所述微小信息的能量被所述预储模块11先行地储存,然后被所述高频充放控制模块12以一定的电压和频率对外进行能量的输出。通过所述预储模块11的预先储存,可以保证所述微小信号的能量不流失。进而,通过所述高频充放控制模块12可以按照需求的形式来使用能量,而不是将保存的能量迅速地释放,避免所述微小信号的能量瞬间的消失。所述高频充放控制模块12自所述预储模块11中获取能量,向所述信息获取电路模块20进行能量输出。因此,所述高频充放控制模块12除了对能量输出的形式可以控制外,也可以控制能量输出的时间,也就是延长了所述微小信号的能量存在的时间。当然,对于所延长后的能量存在时间,也可以通过输出情况得到知晓和反馈。
优选地,在本优选实施例中,所述高频充放控制模块12将能量输出至所述信息获取电路模块20,为所述信息获取电路模块20提供能源,如图2所示。也就是说,所述能量获取电路模块10将所述微小信号的能量获取,并进行延长性的输出,提供稳压的效果以提供至后续的负载。本领域的技术人员可以理解的是,所述能量获取电路模块10的能源来自于所述微小信号,并可以以不同形式的输出形式被输出,本优选实施例中输出至所述信息获取电路模块20为一种优选的方案。并不是要求所述微小信号的能量一定被用于所述信息获取电路模块20。如图3所示,所述高频充放控制模块12可以对一典型负载R L输出能量。
值得一提的是,当输入的所述微小信号消失以后,所述微小信号检测装置仍 能维持的将检测结果继续传送。优选地,至少向外发送一次。所述高频充放控制模块输出能量的时间大于向所述能量获取电路模块输入微小脉冲能量的时间。
所述高频充放控制模块12从所述预储模块11中间续地获得所述微小信号的能量,以一定的高频率输出PWM电压,进而完成所述微小信号能量存在时间的延长。通过所述高频充放控制模块12,所述微小信号的能量所输出的电压可以被控制。优选地,所述高频充放控制模块12输出电压可控制地在1.2V至9V的范围内输出,而且输出为直流电。也就是说,所述预储模块11中已经保存好所述微小信号的能量,所述高频充放控制模块12从所述预储模块11中间断地获取能量,并用脉冲宽度调制的方式进行输出,那么输出能量的时间就可以被保证,而且输出的电压也可以通过频率控制被控制。
进一步地,所述高频充放控制模块12包括一控制单元121、一高频振荡单元122、一执行单元123以及一反馈单元124,其中所述控制单元121可控制频率地连接于所述高频振荡单元122,其中所述高频振荡单元122可控制所述执行单元123的操作频率,其中所述执行单元123自所述预储模块11获取能量,并操作能量的输出,使得所述执行单元123控制所述微小信号的能量以一定的频率输出电压,进而完成对所述微小信号能量的延长。所述反馈单元124进一步地对所述执行单元123所输出的能量进行监控,并将输出电压情况反馈至所述控制单元121,以形成闭环控制。也就是说,所述执行单元123被所述高频振荡单元122所控制获取能量和输出能量。所述高频充放控制模块12利用一定频率地获取和输出,完成可控的PWM电压输出方式。
值得一提的是,所述控制单元121通过对所述高频振荡单元122的频率控制,进而实现对所述执行单元123的频率开关控制。所述高频振荡单元122的振荡频率优选的范围为:20KHz至10MHz之间。所述反馈单元124优选地对所述执行单元123的输出电压进行采集并反馈。当然,直接采集所述执行单元123所输出的电压值和频率值是最优的,但是也可以通过对所述执行单元123间接的采集获得可以直接反馈的值。也就是说,对于所述高频充放控制模块12而言,振荡频率为控制变量,输出电压和频率为输出量。因为所述控制单元121可以实施闭关控制,对于整体的所述高频振荡单元122而言,所述执行单元123所输出的电压是十分稳定的,进而方便能量被直接地利用。更多地,输出电压值优选为1.2V至9V。优选地,所述执行单元123可以为相对于所述预储模块11和用电负载的 缓冲开关。因为所述高频充放控制模块12对于所述预储模块11的获取和对外输出,所述微小信号的能量的存在时间被有效地延长至2至10倍。
更多地,所述高频振荡单元12的所述执行单元123进一步地提供一滤波器,为输出的能量进行滤波,使得输出的能量表现为直流电压。
优选地,所述高频充放控制模块12被一体地封装于电路。换句话说,所述控制单元121、所述高频振荡单元122、所述执行单元123以及所述反馈单元124被设置于一电路板。通过后续的封装和保护,所述高频充放控制模块12也可以被一体地制造。优选地,通过SOC(System-on-a-Chip)封装。
更具体地,如图3所示,所述预储模块11进一步地包括一整流单元111和一预充放单元112,其中所述整流单元111接收所述微小信号,其中所述预充放单元112将所述整流单元111整流后的能量储存,并等待被所述高频充放控制模块12获取。所述高频充放控制模块12的所述高频振荡单元122被所述预充放单元112所储存的能量激活,从而所述高频充放控制模块12开始工作。所述高频振荡单元122以一定的频率控制所述执行单元123的开关。而所述高频振荡单元122的频率被所述控制单元121所控制。根据预定输出的电压要求,以及所述反馈单元124所反馈回来的输出结果,所述控制单元121对所述高频振荡单元122的频率进行闭环控制,使得所述高频充放控制模块12的输出电压保持一定的稳定。也就是说,所述预储模块11将所述微小信号的能量暂存于所述充放单元112,所述高频充放控制模块12从图示A点获取能量,向B点以PWM电压控制的方式输出能量。所述充放单元112进一步地可以提供降压效果,以供更直接地储能。
特别地,在本优选实施例中,所述执行单元123具体地包括一开断器1231和一储能器1232,其中所述开断器1231具有一开状态和一断状态,所述开断器1231的开断频率被所述高频振荡单元122所控制,其中所述储能器1232为反复充放电地对外输出能量。换句话说,当所述预充放单元112中存储有所述微小信号的能量后,所述高频振荡单元122开始控制开断器1231的开或者断的状态。当所述开断器1231处于开的状态,所述储能器1232通过所述开断器1231从所述预充放单元112获取能量,也就是说所述储能器1232在充电。当所述开断器1231处于断的状态,所述储能器1232与所述开断器1231断开,向外释放刚刚充电的从所述预充放单元112获取的能量,也就是说所述储能器1232在放电。上述的充电与放电之间的频率优选为高速进行的,优选地频范围为:20KHz至 10MHz。通过所述储能器1232的充放电,使得输出的能量以一定的频率被输出,直至所述预充放单元112中的能量被获取完全。所述储能器1232所输出的电压不仅受到控制,而且根据需求可以直接地被使用。
优选地,所述整流单元111为BT整流电路。也就是二极管整流电路。
优选地,所述预充放单元112为电容器或电容器组。
优选地,所述储能器为电感或电感组。更多地,提供一电容器C2为输出能量进行滤波。
为方便说明,这里取图7A中波形图所示的一微小信号做以说明。当在e1、e2端输入一个所述微小信号。例如所述微小信号的电压幅度为10V,脉冲存在时间为1.2ms。所述微小信号可以是单一的正脉冲,也可以是正负脉冲。每输入一个脉冲,所述微小信号检测装置就会工作一次或者多次。所述微小信号被所述整流单元111整流,也就是BT脉冲整流单元整流。整流后,开始对所述预充放单元112充电,也就是电容器C1充电。本优选实施例中,电容器有两个作用,降压与储能,有着较高电压的所述微小信号冲对电容器C1充电,在电容器C1的两端电压降到4-5V左右,充放电曲线见图7B。电容C中存储的电能经过本发明中的所述高频充放控制模块12后,在图3中的B点会输出时间较长的维持脉冲。当输入脉冲不变的情况下,经过所述高频充放控制模块12后,能量存在时间被延长至15.6ms。输入不同类型的脉冲,经过所述高频充放控制模块12后的能量存在时间可以到达采用传统稳压器件的2-10倍。当脉冲存在的时间被延长后,就可以发送更多的数据,从而具有更高的数据带宽,可靠性、纠错率更好。所述高频充放控制模块12在B点输出短时间存在的脉冲电能,这个脉冲电能如图7C所示,存在时间对比于e1、e2端输入所述微小信号的时间已将延长数倍,所述微小信号给负载提供电能。
更多地,如图4和图5所示,所述信息获取电路模块20包括一识别单元21,一处理单元22以及一通讯单元23。所述识别单元21适于获取所述微小信号的信息。所述识别单元21、所述处理单元22以及所述通讯单元23依次相通信地连接。所述识别单元21接收所述微小信号,所述识别单元21将识别情况进一步地传至所述处理单元22,所述处理单元22进行处理后由所述通讯单元23传送检测的结果。另外,所述处理单元22进一步地包括一输入接口221、一输出接口222、一供能接口223以及一预定程序块224。所述输入接口221向所述预定 程序块224输入所述识别单元21的获取情况,经过所述预定程序块224对获取情况的处理,由所述输出接口222向外发送处理的结果,也就是对所述微小信号的信息监测结果。所述预定程序块224在预置程序的控制下初始化运行,将所述信息获取电路模块20的参数进行配置。通过对所述输入接口221中得到的所述微小信号的参数,所述预定程序块224进行调用并进行一定的运算,最后通过所述输出接口222传输至外部。
值得一提的是,所述处理单元22的所述供能接口223为所述预定程序块224提供能源上的支撑。在本优选实施例中,所述供能接口223被连接于所述能量获取电路模块10的所述高频充放控制模块12,从所述高频充放控制模块12的所述执行单元123中获取稳定的能量。而所述执行单元123输出的能量来源于所述微小信号经过所述预储模块11储存而来。也就是说,所述微小信号的能量方面被利用于所述微小信号的信息获取方面。而且,经过所述高频充放控制模块12的延长,所述处理单元22所得到的能量的时间也被延长。对于将所述微小信号进而完整地传送是十分关键的。
例如,所述信息获取电路模块20需要发送一个15个字节的数字信息,发送速率为40Kbps,发射功率为10mW,所述信息获取电路模块20在3V的供电条件下平均电流为20mA。如果输入一个0.0002焦耳的脉冲型的所述微小信号,供电部分如果采用传统的稳压器件只能为所述信息获取电路模块20提供约2.6ms的电能维持时间,40*2.6=104bit,仅能发送104bit的数据,采用传统稳压器件显然无法发送15个字节的数据。但是,如果所述信息获取电路模块20采用所述高频充放控制模块12延长所述微小信号的供电时间,将时间延长至15.8ms,那么就可以发送15.8*40=632bit=79字节。所述信息获取电路模块20可以将数据多次重复发射,直至数据完整发送。
具体地,如图5所示,在本优选实施例中,所述通讯模块23采用无线通讯模块,也就是藉由ATN1。相应地,在另外的终端中设置有相应的无线通讯模块,也就是藉由ATN2,以接收所述通信模块23传送出的检测结果。需要说明的是,ATN1和ATN2之间是无线连接的。这里为方便说明,定义另外终端中的接收无线通讯单元为23A,相应接收处理的单元为接收处理单元22A。本领域的技术人员可以理解的是,所述无线通讯单元23A与所述通讯单元23不一定在结构上是一致的,而需要所述无线通讯单元23A可以接收所述通讯单元23发射出的数据。 所述接收处理单元22A也不一定于所述处理单元22在结构上保持一致。更多地,所述无线通讯单元23A可能为两个或者多个,再由一个或者相对应的多个所述接收处理单元22A进行进一步地处理和分析。
本优选实施例的一种可行的电路如图5所示。对于所述微小信号的能量获取方面,所述整流单元111接收在e1、e2端输入的所述微小信号,其中所述预充放单元112将所述整流单元111整流后的能量储存,并等待被所述高频充放控制模块12获取。所述高频充放控制模块12的所述高频振荡单元122被所述预充放单元112所储存的能量激活,从而所述高频充放控制模块12开始工作。所述高频振荡单元122以一定的频率控制所述执行单元123的开关。而所述高频振荡单元122的频率被所述控制单元121所控制。当所述预充放单元112中存储有所述微小信号的能量后,所述高频振荡单元122开始控制开断器1231的开或者断的状态。当所述开断器1231处于开的状态,所述储能器1232通过所述开断器1231从所述预充放单元112获取能量,也就是说所述储能器1232在充电。当所述开断器1231处于断的状态,所述储能器1232与所述开断器1231断开,向外释放刚刚充电的从所述预充放单元112获取的能量,也就是说所述储能器1232在放电。上述的充电与放电之间的频率优选为高速进行的,优选地范围为:20KHz至10MHz。通过所述储能器1232的充放电,使得输出的能量以一定的频率被输出,直至所述预充放单元112中的能量被获取完全。根据预定输出的电压要求,以及所述反馈单元124所反馈回来的输出结果,所述控制单元121对所述高频振荡单元122的频率进行闭环控制,使得所述高频充放控制模块12的输出电压保持一定的稳定。并提供一储能滤波电容器C2,为输出的能量提供滤波。也就是说,所述预储模块11将所述微小信号的能量暂存于所述充放单元112,所述高频充放控制模块12从图示A点获取能量,向B点以PWM电压控制的方式输出能量。如图8所示,一种所述高频充放控制模块12的具体电路示意如图所示。所述高频振荡单元122对所述执行单元123的所述开断器1231进行一定频率的开关控制。所述储能器1232对所述预储模块11输入的电能进行反复的充电和放电操作。优选地,提供一续流二极管D和一储能滤波电容器C2进而完善电路。
对于所述微小信号的信息获取方面,所述识别单元21接收所述微小信号,所述识别单元21将识别情况进一步地传至所述处理单元22。需要注意的是,图示中的电阻R为限流电阻。所述识别单元21由所述输入接口221向所述预定程 序块224输入所述识别单元21的获取情况,经过所述预定程序块224对获取情况的处理,由所述输出接口222向外发送处理的结果,也就是对所述微小信号的信息监测结果。所述预定程序块224在预置程序的控制下初始化运行,将所述信息获取电路模块20的参数进行配置。通过对所述输入接口221中得到的所述微小信号的参数,所述预定程序块224进行调用并进行一定的运算,最后通过所述输出接口222传输至所述通讯单元23。另外的终端设备的所述无线通讯单元23A将接收到的数据传送给内部所述接收处理单元22A,该所述接收处理单元22A承担接口电路的功能,其I/O端口根据需要可以输出接收到的数据、或者将接收到的数据转换成电平以控制其他的设备。优选地,所述接收处理单元22A的I/O口输出数据给终端计算机处理,或者直接给驱动装置以电平指令。优选地,更具有DC-DC稳压器件为所述接收处理单元22A电路提供电源支持,将输入的电压转换成适合所述接收处理单元22A工作的电压。
如图6所示,所述微小信号检测装置的一种流程方法如图阐释。所述微小信号分为两路对信息和能量进行获取。更具体地,所述预储模块11对所述微小信号的能进行预先地存储,所述高频充放控制模块12从所述预储模块11中间续地输出所述微小信号的能量。另外,所述识别模块21对所述微小信号的信息进行采集,并交由所述处理模块进行处理,经过所述通讯单元23传送至外部,最后输出所述微小信号的检测结果。值得一提的是,所述高频充放控制模块12将所述微小信号的能量进行延时,被延时的能量输送给所述处理单元22与所述通讯单元23,使之开始工作。在一些实施例当中也可以省略掉“识别单元21”这个单元,而是可以直接利用脉冲信号输入时的能量驱动所述通讯模块23传输预设的信号。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (47)

  1. 一微小信号检测装置,其特征在于,包括:
    一能量获取电路模块,其包括一预储模块和一高频充放控制模块,其中所述预储模块将一微小信号的能量暂时地存储,其中所述高频充放控制模块获取所述预储模块中的能量,所述高频充放控制模块以一定频率的方式将能量输出;和
    一信息获取电路模块,其中所述高频充放控制模块提供能量至所述信息获取电路模块,其中所述信息获取电路模块从所述微小信号获取信息以得到所述微小信号的检测结果,以将所述微小信号的检测结果进行传输。
  2. 根据权利要求1所述的微小信号检测装置,其中所述高频充放控制模块从所述预储模块间断地获取能量,其中所述高频充放控制模块用可控电压方式进行输出能量。
  3. 根据权利要求2所述的微小信号检测装置,其中所述能量获取电路模块适于从所述微小信号获取能量,通过间断输出的方式延长能量存在时间。
  4. 根据权利要求3所述的微小信号检测装置,其中所述高频充放控制模块输出能量的时间大于所述微小信号向所述能量获取电路模块输入能量的时间。
  5. 根据权利要求2所述的微小信号检测装置,其中所述高频充放控制模块控制所述微小信号的能量以一定的频率输出电压。
  6. 根据权利要求5所述的微小信号检测装置,其中所述高频充放控制模块用脉冲宽度可调的方式控制而输出所述微小信号的能量。
  7. 根据权利要求5所述的微小信号检测装置,其中所述高频充放控制模块包括一控制单元、一高频振荡单元、一执行单元以及一反馈单元,其中所述控制单元可控制频率地连接于所述高频振荡单元,其中所述高频振荡单元可控制所述执行单元的操作频率地连接于所述执行单元,其中所述执行单元自所述预储模块获取能量,并操作能量的输出,其中所述反馈单元对所述执行单元所输出的能量进行监控,并反馈至所述控制单元,以形成闭环控制。
  8. 根据权利要求7所述的微小信号检测装置,其中所述反馈单元对所述执行单元的输出电压进行采集并反馈。
  9. 根据权利要求8所述的微小信号检测装置,其中所述反馈单元对所述执行单元输出的电压进行采集并反馈。
  10. 根据权利要求8所述的微小信号检测装置,其中所述执行单元为相对于所述预储模块和用电负载的缓冲开关。
  11. 根据权利要求8所述的微小信号检测装置,其中所述控制单元、所述高频振荡单元、所述执行单元以及所述反馈单元被设置于一电路板。
  12. 根据权利要求11所述的微小信号检测装置,其中所述高频充放控制模块被一体地封装。
  13. 根据权利要求11所述的微小信号检测装置,其中所述高频充放控制模块通过SOC(System-on-a-Chip)封装。
  14. 根据权利要求8所述的微小信号检测装置,其中所述预储模块进一步地包括一整流单元和一预充放单元,其中所述整流单元接收所述微小信号,其中所述预充放单元将所述整流单元整流后的能量储存,并等待被所述高频充放控制模块获取。
  15. 根据权利要求14所述的微小信号检测装置,其中所述高频充放控制模块的所述高频振荡单元被所述预充放单元所储存的能量激活。
  16. 根据权利要求15所述的微小信号检测装置,其中所述执行单元包括一开断器和一储能器,其中所述开断器具有一开状态和一断状态,所述开断器的开断频率被所述高频振荡单元所控制,其中所述储能器被所述开断器控制而进行充放电。
  17. 根据权利要求16所述的微小信号检测装置,其中所述预充放单元中存储有所述微小信号的能量激活所述高频振荡单元控制开断器。
  18. 根据权利要求16所述的微小信号检测装置,其中当所述开断器处于开的状态,所述储能器通过所述开断器从所述预充放单元获取能量,当所述开断器处于断的状态,所述储能器与所述开断器断开,向外部提供刚刚充电的从所述预充放单元获取的能量。
  19. 根据权利要求16所述的微小信号检测装置,其中当所述开断器处于开的状态,所述储能器在充电,当所述开断器处于断的状态,所述储能器与所述开断器断开,所述储能器对外部放电。
  20. 根据权利要求19所述的微小信号检测装置,其中通过所述储能器在充电和放电之间转换,直至所述预充放单元中的能量被输出完全。
  21. 根据权利要求19所述的微小信号检测装置,其中所述储能器充电与放电之间的频率范围为:20KHz至10MHz。
  22. 根据权利要求16所述的微小信号检测装置,其中所述信息获取电路模块包括一识别单元,一处理单元以及一通讯单元,其中所述识别单元适于获取所述微小信号的信息,其中所述识别单元、所述处理单元以及所述通讯单元依次相通信地连接。
  23. 根据权利要求22所述的微小信号检测装置,其中所述识别单元将识别情况传至所述处理单元,所述处理单元进行处理后由所述通讯单元传送检测的结果。
  24. 根据权利要求22所述的微小信号检测装置,其中所述处理单元进一步地包括一输入接口、一输出接口、一供能接口以及一预定程序块,其中所述输入接口向所述预定程序块输入所述识别单元的获取情况,经过所述预定程序块对获取情况的处理,由所述输出接口向外发送处理的结果,其中所述供能接口被连接于所述能量获取电路模块的所述高频充放控制模块。
  25. 根据权利要求24所述的微小信号检测装置,其中所述预定程序块在预置程序的控制下初始化运行,将所述信息获取电路模块的参数进行配置。
  26. 根据权利要求24所述的微小信号检测装置,其中通过对所述输入接口中得到的所述微小信号的参数,所述预定程序块进行调用并进行一定的运算,最后通过所述输出接口传输至外部。
  27. 根据权利要求24所述的微小信号检测装置,其中所述整流单元为二极管整流电路。
  28. 根据权利要求24所述的微小信号检测装置,其中所述预充放单元为电容器或电容器组。
  29. 根据权利要求24所述的微小信号检测装置,其中所述储能器为电感或电感组。
  30. 根据权利要求24所述的微小信号检测装置,其中所述高频振荡单元的振荡频率的范围为:20KHz至10MHz之间。
  31. 一微小信号检测方法,其特征在于,包括以下步骤:
    I.对一微小信号进行能量获取;
    II.对所述微小信号进行信息获取;以及
    III.处理所述微小信号的信息。
  32. 根据权利要求31所述的微小信号检测方法,在步骤I之前,进一步包括步 骤:
    获得所述微小信号。
  33. 根据权利要求31所述的微小信号检测方法,其中步骤II中对于所述微小信号的信息获取过程的能量来源为步骤I中所获取的能量。
  34. 根据权利要求31所述的微小信号检测方法,其中步骤I和步骤II同时地开始,在输出所述微小信号的能量的同时为所述微小信号的信息获取提供能源支撑。
  35. 根据权利要求33所述的微小信号检测方法,其中步骤I进一步包括步骤:
    I.1延长所述微小脉冲的能量存在的时间。
  36. 根据权利要求35所述的微小信号检测方法,其中为步骤II中提供的能量时间大于所述微小信号的能量存在时间。
  37. 根据权利要求35所述的微小信号检测方法,其中步骤II进一步包括步骤:
    II.1获取所述微小信号的参数,其中所述微小信号的参数选自组合:信号产生、脉宽、极性中的一种或多种。
  38. 根据权利要求35所述的微小信号检测方法,其中步骤III进一步包括步骤:
    III.1在程序的控制下产生特定的编码信息。
  39. 根据权利要求35所述的微小信号检测方法,在步骤III之后进一步地包括步骤:
    IV输出检测结果。
  40. 根据权利要求39所述的微小信号检测方法,其中步骤IV采用无线传输的方式。
  41. 一能量获取电路模块,其特征在于,包括:
    一预储模块;和
    一高频充放控制模块,其中所述预储模块将一微小信号的能量暂时地存储,其中所述高频充放控制模块获取所述预储模块中的能量,所述高频充放控制模块以一定频率地方式将能量输出,其中所述高频充放控制模块用脉冲宽度可调的方式控制而输出所述微小信号的能量,其中所述高频充放控制模块包括一控制单元、一高频振荡单元、一执行单元以及一反馈单元,其中所述控制单元可控制频率地连接于所述高频振荡单元,其中所述高频振荡单元可控制所述执行单元的操作频率地连接于所述执行单元,其中所述执行单元自所述预储模块获取能量,并操作 能量的输出,其中所述反馈单元对所述执行单元所输出的能量进行监控,并反馈至所述控制单元,以形成闭环控制。
  42. 根据权利要求41所述的能量获取电路模块,其中所述执行单元包括一开断器和一储能器,其中所述开断器具有一开状态和一断状态,所述开断器的开断频率被所述高频振荡单元所控制,其中所述储能器为反复充放电地对外输出能量。
  43. 根据权利要求41所述的能量获取电路模块,其中所述预充放单元中存储有所述微小信号的能量,所述高频振荡单元控制开断器处于开或者断的状态。
  44. 根据权利要求41所述的能量获取电路模块,其中当所述开断器处于开的状态,所述储能器通过所述开断器从所述预充放单元获取能量,当所述开断器处于断的状态,所述储能器与所述开断器断开,向外部释放刚刚充电的从所述预充放单元获取的能量。
  45. 根据权利要求41所述的能量获取电路模块,其中当所述开断器处于开的状态,所述储能器在充电,当所述开断器处于断的状态,所述储能器与所述开断器断开,所述储能器对外部放电。
  46. 根据权利要求44所述的能量获取电路模块,其中通过所述储能器在充电和放电之间转换,直至所述预充放单元中的能量被输出完全。
  47. 根据权利要求44所述的微小信号检测装置,其中所述高频充放控制模块输出能量的时间大于所述微小信号向所述能量获取电路模块输入能量的时间。
PCT/CN2018/076947 2018-02-22 2018-02-22 微小信号检测装置及其检测方法 WO2019161525A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880000150.9A CN108474817B (zh) 2018-02-22 2018-02-22 微小信号检测装置及其检测方法
CN202110523234.4A CN113295948A (zh) 2018-02-22 2018-02-22 微小信号检测装置及其检测方法
PCT/CN2018/076947 WO2019161525A1 (zh) 2018-02-22 2018-02-22 微小信号检测装置及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076947 WO2019161525A1 (zh) 2018-02-22 2018-02-22 微小信号检测装置及其检测方法

Publications (1)

Publication Number Publication Date
WO2019161525A1 true WO2019161525A1 (zh) 2019-08-29

Family

ID=63259937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076947 WO2019161525A1 (zh) 2018-02-22 2018-02-22 微小信号检测装置及其检测方法

Country Status (2)

Country Link
CN (2) CN108474817B (zh)
WO (1) WO2019161525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572268A (zh) * 2021-09-26 2021-10-29 广东易百珑智能科技有限公司 电荷传递装置和电荷传递方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386659A (zh) * 2011-12-01 2012-03-21 无锡中星微电子有限公司 充电管理电路
US20120287985A1 (en) * 2011-05-09 2012-11-15 Panasonic Corporation Wireless power and data transmission system, power transmitting apparatus, and power receiving apparatus
CN103346834A (zh) * 2013-06-26 2013-10-09 上海无线通信研究中心 可见光携能通信系统及方法
CN203747515U (zh) * 2013-10-24 2014-07-30 深圳市迈安杰科技有限公司 微能量采集控制电路
CN105516039A (zh) * 2015-11-30 2016-04-20 四川大学 一种基于fsk和磁耦合谐振的无线携能通信系统
CN105656333A (zh) * 2016-01-22 2016-06-08 西安电子科技大学 一种宽输入范围高效率的集成压电能量获取系统
CN106787088A (zh) * 2017-01-18 2017-05-31 西北工业大学 应用于非连续压电能量采集系统的自供电电源管理电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525316B2 (en) * 2005-09-06 2009-04-28 3M Innovative Properties Company Electrostatic discharge event and transient signal detection and measurement device and method
CN101871979B (zh) * 2010-05-21 2013-10-30 捷开通讯(深圳)有限公司 一种无线信号检测报警方法及报警器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287985A1 (en) * 2011-05-09 2012-11-15 Panasonic Corporation Wireless power and data transmission system, power transmitting apparatus, and power receiving apparatus
CN102386659A (zh) * 2011-12-01 2012-03-21 无锡中星微电子有限公司 充电管理电路
CN103346834A (zh) * 2013-06-26 2013-10-09 上海无线通信研究中心 可见光携能通信系统及方法
CN203747515U (zh) * 2013-10-24 2014-07-30 深圳市迈安杰科技有限公司 微能量采集控制电路
CN105516039A (zh) * 2015-11-30 2016-04-20 四川大学 一种基于fsk和磁耦合谐振的无线携能通信系统
CN105656333A (zh) * 2016-01-22 2016-06-08 西安电子科技大学 一种宽输入范围高效率的集成压电能量获取系统
CN106787088A (zh) * 2017-01-18 2017-05-31 西北工业大学 应用于非连续压电能量采集系统的自供电电源管理电路

Also Published As

Publication number Publication date
CN108474817A (zh) 2018-08-31
CN108474817B (zh) 2021-06-01
CN113295948A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US20200274453A1 (en) Techniques for controlling a power converter using multiple controllers
US10141787B2 (en) Receiving circuit for magnetic coupling resonant wireless power transmission
CN103208865B (zh) 谐振无线电力传输装置的过电压保护装置及其控制方法
US6222343B1 (en) Battery charger, a method for charging a battery, and a software program for operating the battery charger
CN102447385B (zh) 电源设备
CN101159414B (zh) 功率转换器的控制电路
WO2020038455A1 (zh) 能量延时装置、能量震荡模块、能量延时系统及其延时方法
CN104065147A (zh) 一种充电适配器、终端、充电控制方法
CN105191098A (zh) 使用多个控制器的功率转换器
CN107251396A (zh) 电源控制用半导体装置
CN105379067A (zh) 电力传输系统
WO2019161525A1 (zh) 微小信号检测装置及其检测方法
CN104205593A (zh) 电源装置
CN205941847U (zh) 电力输入检测装置
US10153699B2 (en) Control method for power transmitter, power transmitter and noncontact power transfer apparatus
EP3611834B1 (en) Power conversion device and contactless power supply system
CN210669553U (zh) 电脉冲合并装置
CN210867178U (zh) 一种驱动器短路保护电路
CN209545460U (zh) 高压脉冲发生装置及系统
CN201239845Y (zh) 单端正激逆变式电焊机控制装置
CN108964438A (zh) 一种臭氧发生电源启动控制装置、方法及臭氧发生装置
CN202840992U (zh) 一种用于小功率风机的整流电路
CN214189371U (zh) 混合主动放电电路
CN110518661A (zh) 电脉冲合并装置及其合并方法
JP5968634B2 (ja) 電子機器システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907366

Country of ref document: EP

Kind code of ref document: A1