WO2019159659A1 - レーザ溶接装置及びレーザ溶接方法 - Google Patents

レーザ溶接装置及びレーザ溶接方法 Download PDF

Info

Publication number
WO2019159659A1
WO2019159659A1 PCT/JP2019/002613 JP2019002613W WO2019159659A1 WO 2019159659 A1 WO2019159659 A1 WO 2019159659A1 JP 2019002613 W JP2019002613 W JP 2019002613W WO 2019159659 A1 WO2019159659 A1 WO 2019159659A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
laser
light
measurement light
irradiation position
Prior art date
Application number
PCT/JP2019/002613
Other languages
English (en)
French (fr)
Inventor
徹 酒井
櫻井 通雄
毅吏 浦島
大智 東
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19753685.7A priority Critical patent/EP3753666A4/en
Priority to JP2020500369A priority patent/JP7203306B2/ja
Priority to CN201980004622.2A priority patent/CN111107959B/zh
Publication of WO2019159659A1 publication Critical patent/WO2019159659A1/ja
Priority to US16/984,261 priority patent/US11999008B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Definitions

  • the present disclosure relates to a laser welding apparatus and a laser welding method.
  • Patent Document 1 laser light and measurement light are coaxially overlapped and irradiated into the keyhole of the welded portion, and the measurement light reflected at the bottom of the keyhole is passed through a beam splitter to an optical interferometer.
  • a configuration in which the light is incident is disclosed.
  • the optical interferometer can measure the optical path length of the measurement light, the depth of the keyhole is specified as the penetration depth of the weld from the measured optical path length.
  • the cross section of the bottom of the keyhole has a curved shape with a shallow penetration at the front part in the welding direction.
  • the measurement beam is shifted in front of the laser beam in the welding direction, the measurement beam is irradiated not on the deepest part of the keyhole but on the curved part that is shallower than the deepest part. . For this reason, a depth shallower than the actual deepest part of the keyhole may be measured.
  • the present disclosure has been made in view of such a point, and an object thereof is to make it possible to measure the penetration depth of the welded portion with higher accuracy.
  • a laser welding apparatus is a laser welding apparatus that welds a welded portion with a laser beam, the laser beam and a measurement beam having a wavelength different from that of the laser beam overlapped on the same axis. And the irradiation position of the measurement light and the irradiation position of the measurement light are changed so as to move on a predetermined welding path, and the optical axis position as the irradiation position of the measurement light is set to be smaller than 1 ⁇ 2 of the spot diameter of the laser light.
  • the irradiation position of the measurement light is changed so as to move on the welding path, and the optical axis position as the irradiation position of the measurement light is set to 1 / of the spot diameter of the laser light. It is changed so as to move within a rotation radius region smaller than 2. Then, the penetration depth of the welded portion is measured a plurality of times within a certain period during the movement of the measuring light, and the penetration depth is determined while shifting the start point of the certain period using the plurality of measured values. Yes.
  • the penetration depth of the weld can be measured with higher accuracy, and the measurement is performed more narrowly within the range where the deepest part of the keyhole exists.
  • the deepest part of the keyhole can be searched efficiently.
  • the irradiation position changing unit may change the irradiation position of the measurement light so as to turn around the rotation center that moves on a predetermined welding path.
  • the irradiation position changing unit may change the irradiation position of the measurement light so as to move along a trajectory having a spiral shape that circulates around the rotation center in the turning movement.
  • the irradiation position of the measurement light is changed so as to move along a locus having a spiral shape that goes around the rotation center. Accordingly, by setting the rotation period and the rotation radius appropriately, the deepest part of the keyhole can be searched by continuously irradiating the measurement light over a wide range.
  • the determination unit is a plurality of measurement values distributed within a predetermined range based on a measurement value on the deepest side among a plurality of measurement values within a certain period of penetration depth measured by the measurement unit, or You may make it determine the penetration depth of a welding part based on the average value of a some measured value.
  • the predetermined range based on the measurement value on the deepest side may be a range of 1% or more and 20% or less of the lower level when the deepest part side of the measurement value of the penetration depth is the lower level.
  • the determination unit further compares the measurement value of the penetration depth measured by the measurement unit with a threshold value serving as a reference of the penetration depth determined by at least one of the output intensity of the laser beam and the welding speed. You may make it determine whether the measured value of the penetration depth is abnormal.
  • the measurement value measured by the measurement unit is compared with a threshold value that is a reference for the penetration depth. For example, when the measured value deviates greatly from the threshold value, it is determined that the measured value is abnormal. Accordingly, it is possible to prevent an abnormal value greatly deviating from the threshold from being erroneously specified as the measurement value at the deepest part of the keyhole.
  • a laser welding method is a laser welding method in which a welded portion is welded with a laser beam, and the laser beam and measurement light having a wavelength different from that of the laser beam are coaxially overlapped on the welded portion.
  • the irradiation step for irradiation and the irradiation position of the measurement light are changed so as to move on a predetermined welding path, and the optical axis position as the irradiation position of the measurement light is smaller than 1 ⁇ 2 of the spot diameter of the laser light
  • the irradiation position of the measurement light is changed so as to move on the welding path, and the optical axis position as the irradiation position of the measurement light is set to 1 / of the spot diameter of the laser light. It is changed so as to move within a rotation radius region smaller than 2. Then, the penetration depth of the welded portion is measured a plurality of times within a certain period during the movement of the measuring light, and the penetration depth is determined while shifting the start point of the certain period using the plurality of measured values. Yes.
  • the penetration depth of the weld can be measured with higher accuracy, and the measurement is performed more narrowly within the range where the deepest part of the keyhole exists.
  • the deepest part of the keyhole can be searched efficiently.
  • the measurement light irradiation position changing step when both the laser light and measurement light irradiation positions are moved spirally, the measurement light irradiation position is moved together with the laser light, or the measurement light irradiation position with respect to the laser light. You may make it move relatively.
  • the laser light irradiation position changing step when the measurement light irradiation position is moved relative to the laser light, the laser light irradiation position is moved linearly, and the measurement light irradiation position is circular or triangular. Alternatively, it may be moved so as to have a polygonal shape such as a quadrangle.
  • the penetration depth of the welded portion can be measured with higher accuracy.
  • FIG. 1 is a schematic diagram of a laser welding apparatus 10 according to an embodiment.
  • the laser welding apparatus 10 includes a laser oscillator 11 that outputs laser light L, an optical interferometer 12 that outputs measurement light S, and directs the laser light L and measurement light S toward a welding object 30.
  • a laser irradiation head 20 irradiation unit for irradiation, a robot 18 to which the laser irradiation head 20 is attached and moves the laser irradiation head 20, a laser oscillator 11, an optical interferometer 12, the laser irradiation head 20, and the robot 18 are controlled.
  • a control device 16 for performing laser welding.
  • Laser oscillator 11 outputs laser light L based on a command from control device 16.
  • the laser oscillator 11 and the laser irradiation head 20 are connected by an optical fiber 19.
  • the laser light L is transmitted from the laser oscillator 11 to the laser irradiation head 20 via the optical fiber 19.
  • the optical interferometer 12 includes a measurement light oscillator 13 that outputs a measurement light S having a wavelength different from that of the laser light L, and a measurement unit 14 that measures a penetration depth of a welded part 35 described later.
  • the measurement light oscillator 13 outputs the measurement light S based on a command from the control device 16.
  • the optical interferometer 12 and the laser irradiation head 20 are connected by an optical fiber 19.
  • the measurement light S is transmitted from the optical interferometer 12 to the laser irradiation head 20 via the optical fiber 19.
  • the laser irradiation head 20 is attached to the arm tip portion of the robot 18 and forms an image of the laser light L and the measuring light S on the welding object 30 based on a command from the control device 16.
  • the robot 18 moves the laser irradiation head 20 to a designated position based on a command from the control device 16 and scans the laser light L and the measurement light S.
  • the control device 16 is connected to the laser oscillator 11, the optical interferometer 12, the robot 18, and the laser irradiation head 20. In addition to the moving speed of the laser irradiation head 20, the output start and stop of the laser light L, the laser light L It also has a function to control the output intensity. Although described in detail later, the control device 16 includes a determination unit 17 that determines the penetration depth of the welded part 35 based on a plurality of measurement values measured by the measurement unit 14.
  • the welding object 30 has an upper metal plate 31 and a lower metal plate 32 that are stacked one above the other.
  • the laser welding apparatus 10 welds the upper metal plate 31 and the lower metal plate 32 by irradiating the upper surface of the upper metal plate 31 with the laser beam L.
  • the penetration depth of the weld 35 can be measured simultaneously with laser welding.
  • this will be specifically described with reference to FIG.
  • FIG. 2 is a schematic diagram showing the configuration of the laser irradiation head 20.
  • the laser irradiation head 20 includes a first collimating lens 21 and a first focus lens 22 through which the laser light L passes, a second collimating lens 23 through which the measurement light S passes, and a second collimating lens 23.
  • a focus lens 24, a beam splitter 25 that couples the laser light L and the measurement light S into a coaxial light beam, a first parallel flat plate 26, and a second parallel flat plate 27 are provided.
  • the beam splitter 25 is a dichroic mirror, and the wavelength to be transmitted and reflected is set so as to transmit the laser light L from the laser oscillator 11 and reflect the measurement light S from the optical interferometer 12.
  • the wavelength difference between the laser beam L and the measurement beam S is 100 nm or more.
  • the first parallel plate 26 and the second parallel plate 27 are connected to a motor (not shown) and rotate according to a command from the control device 16.
  • the laser beam L output from the laser oscillator 11 is sent to the laser irradiation head 20 through the optical fiber 19.
  • the laser light L that has entered the laser irradiation head 20 is collimated by the first collimating lens 21 and condensed by the first focus lens 22.
  • the laser light L collected by the first focus lens 22 passes through the beam splitter 25.
  • the measurement light S output from the optical interferometer 12 is sent to the laser irradiation head 20 through the optical fiber 19.
  • the measuring light S that has entered the laser irradiation head 20 is collimated by the second collimating lens 23 and condensed by the second focus lens 24. Thereafter, the measurement light S is superposed concentrically and coaxially with the laser light L by the beam splitter 25.
  • the second focus lens 24 also has a function of causing the measurement light S reflected from the welded portion 35 to enter the optical interferometer 12 again via the beam splitter 25.
  • the laser beam L and the measuring beam S superimposed on the same axis pass through the first parallel plate 26 and the second parallel plate 27 controlled by the control device 16. Thereby, the irradiation position (focal length) of the laser beam L and the measurement beam S is determined, and the laser beam L and the measurement beam S are irradiated to the welded portion 35 of the welding object 30.
  • the laser irradiation head 20 rotates the first parallel flat plate 26 and the second parallel flat plate 27 so that the laser light L and the measurement light S are in a circular orbit, and is rotated. Can do. That is, the first parallel plate 26 and the second parallel plate 27 constitute an irradiation position changing unit that can change the irradiation positions of the laser light L and the measurement light S.
  • the irradiation position of the laser beam L and the measuring beam S can be moved in the welding region of the welding object 30.
  • FIG. 3 is a side sectional view showing the positional relationship between the laser beam L, the measuring beam S, and the keyhole 37.
  • the laser welding apparatus 10 when welding the welded portion 35 of the welding object 30 having the upper metal plate 31 and the lower metal plate 32, the upper metal plate 31 from above the welding object 30.
  • a laser beam L is irradiated on the upper surface of the substrate.
  • the welded part 35 irradiated with the laser beam L is melted from the upper part, and a molten pool 36 is formed in the welded part 35.
  • the molten metal evaporates from the molten pool 36, and the keyhole 37 is formed by the pressure of the vapor generated during the evaporation.
  • the molten pool 36 and the keyhole 37 are combined and handled as the welded portion 35. Behind the weld pool 36 in the welding direction, the molten pool 36 is solidified to form a solidified portion 38.
  • the measurement light S emitted from the optical interferometer 12 is superimposed concentrically and coaxially with the laser light L from the laser oscillator 11 by the beam splitter 25, and is irradiated inside the keyhole 37.
  • the irradiated measurement light S is reflected at the bottom 37 a of the keyhole 37 and enters the optical interferometer 12 via the beam splitter 25.
  • the optical path length of the measurement light S incident on the optical interferometer 12 is measured by the measurement unit 14.
  • the measurement unit 14 specifies the depth of the keyhole 37 from the measured optical path length as the penetration depth (measured value) of the welded portion 35.
  • the quality of the welded portion 35 is determined based on the measured penetration depth.
  • the laser welding apparatus 10 can simultaneously perform a penetration depth measurement function and a laser welding function.
  • the component holding the beam splitter 25 may be displaced due to vibration or the like, and the optical axis of the laser beam L and the measuring beam S may be shifted.
  • the optical interferometer 12 measures the depth of the keyhole 37 to be shallower than the actual depth, so that the penetration depth is accurately determined. It may not be possible to measure well.
  • the keyhole 37 is formed by the pressure of steam at the time of evaporation because the metal melted in the welded portion 35 evaporates.
  • the shape of the formed keyhole 37 varies depending on the irradiation time of the laser light L and the state of the molten pool 36.
  • the front inner wall portion of the keyhole 37 in the welding direction tends to be curved toward the rear of the keyhole 37 as the moving speed (welding speed) of the laser irradiation head 20 increases. Therefore, in order to reduce the curvature of the curved portion of the bottom 37a of the keyhole 37, it is preferable to appropriately set the laser welding speed.
  • the opening diameter of the keyhole 37 is substantially equal to the spot diameter of the laser light L that is the processing light.
  • the spot diameter of the laser beam L and the spot diameter of the measuring beam S are the size of the spot beam at the focal position imaged on the surface of the welding object 30.
  • the optical axis of the measurement light S irradiated coaxially with the optical axis of the laser light L is changed to the laser light L in a region within the spot diameter of the laser light L, for example.
  • the position of the bottom 37a of the keyhole 37 and the position of the center of the spot of the measurement light S do not coincide with each other, and the measurement light S is not irradiated on the bottom 37a. Can occur.
  • FIG. 3 shows a state in which the two optical axes of the optical axis of the measurement light S irradiated coaxially with the optical axis of the laser light L coincide with each other and no deviation occurs.
  • the measurement light S is displaced forward in the welding direction with respect to the laser light L.
  • the optical axis of the measurement light S is, for example.
  • the optical interferometer 12 measures the depth of the keyhole 37 with the position where the measurement light S is reflected as the position of the bottom 37a.
  • the optical interferometer 12 measures the depth of the keyhole 37 to be shallower than the actual depth.
  • the measuring beam S is shifted in front of the laser beam L in the welding direction, the measuring beam S is not in the deepest part of the keyhole 37 of the welded part 35 but in the shallower part of the welded part 35 than in the deepest part. Is irradiated, and a depth shallower than the actual deepest part of the keyhole 37 is measured.
  • a depth D shallower than the actual depth Dmin of the keyhole 37 is measured.
  • the welded portion 35 cannot be accurately inspected from the depth of the keyhole 37 measured to be shallower than the actual depth.
  • the laser welding apparatus 10 uses a spin orbit 40 that moves a beam spot relative to the welding direction while irradiating the laser beam L and the measurement light S in a spiral shape on the welding object 30.
  • the welding object 30 is welded by irradiating the laser beam L and the measuring beam S.
  • the spin trajectory 40 is a trajectory of the laser light L and the measuring light S that moves in the welding direction while moving the spot of the irradiated laser light L and the measuring light S along a circular trajectory.
  • the spin trajectory 40 is a trajectory in which the trajectories of the laser light L and the measurement light S are relatively linearly moved while rotating in the welding direction.
  • the irradiation positions of the laser beam L and the measurement beam S are swung so as to be separated from the rotation center RC moving on the welding path 34 by the rotation radius r and circulate around the rotation center RC at a predetermined rotation frequency. That is, the irradiation positions of the laser light L and the measurement light S move relative to the welding object 30 along the spin orbit 40 having a spiral shape.
  • the irradiation position of the measurement light S is changed so as to move with a rotation radius r smaller than the spot diameter of the laser light L.
  • the turning radius represents the radius of the orbit when it is assumed that the rotating motion is performed.
  • the opening diameter of the keyhole 37 is substantially equal to the spot diameter of the laser light L that is processing light. For this reason, the position of the optical axis of the measurement light S is more than half the spot diameter of the laser light L so that the irradiation position of the measurement light S overlaps within the spot diameter region of the laser light L.
  • the rotation radius r and set the rotation radius r it is preferable to reduce the rotation radius r and set the rotation radius r to 1/20 or more and less than 1/2 of the spot diameter of the laser beam L, and more preferably 1/16 or more and 1/8 or less.
  • the rotation radius r of the measuring light S may be set to about 50 to 100 ⁇ m. Thereby, it is possible to irradiate the measurement light S with higher quality by focusing only on the range where the deepest part of the keyhole 37 formed by the laser light L exists in the spot diameter region.
  • the spot diameter of the measuring light S is about 100 to 150 ⁇ m.
  • the spot diameter of the laser beam L is 800 ⁇ m, it may be 600 ⁇ m to 900 ⁇ m.
  • the rotation radius r of the measurement light S may be any radius that overlaps the spot diameter of the laser light L
  • the irradiation position of the measurement light S is overlapped with the spot diameter region of the laser light L. It is preferable to change so that the irradiation position of the measurement light S moves within a turning range smaller than the radius of the spot diameter of the laser beam L so as to move at a rotation radius less than 1 ⁇ 2 of the spot diameter of the laser light L.
  • the irradiation position of the measurement light S is changed so as to move on a predetermined welding path, and the optical axis position as the irradiation position of the measurement light S is smaller than 1 ⁇ 2 of the spot diameter of the laser light L. It is preferable to change so as to move within the region of the turning radius.
  • the rotation frequency of the measurement light S may be set to 40 Hz and the rotation radius r may be set to less than 400 ⁇ m.
  • the irradiation position of the measurement light S is changed so as to make a large swivel movement with a radius of rotation greater than the radius of the spot diameter of the laser light L, the area within the keyhole opening or the area within the keyhole opening
  • the degree to which the measurement light S is irradiated on the range where the deepest part of the keyhole 37 formed by the laser beam L is present is reduced, and the penetration depth data, which is the depth of the keyhole, is obtained along with the turning movement. Deep data and shallow data are detected and swelled greatly, making accurate measurement of the penetration depth more difficult.
  • the bottom portion 37a of the keyhole 37 can be searched for the welding object 30 while irradiating the measurement light S along the spiral trajectory in which the rotation center RC moves on the welding path 34. .
  • the measurement light S is irradiated to the keyhole 37 while the irradiation positions of the laser light L and the measurement light S are spirally moved, the measurement light S is irradiated to the bottom portion 37a almost certainly. It becomes. For this reason, even when the center of the spot of the measurement light S does not coincide with the bottom 37a, the measurement light S can be irradiated onto the bottom 37a.
  • the plate thickness of the upper metal plate 31 is 1 mm
  • the plate thickness of the lower metal plate 32 is 4.3 mm
  • the optical axis of the measurement light S is the welding direction more than the optical axis of the laser light L. It is assumed that there is a deviation of 100 ⁇ m in front of.
  • FIG. 6 is a graph when the depth of the keyhole 37 is measured as the penetration depth of the welded portion 35 from the surface of the welding object 30 or a virtual surface serving as a reference. As shown in FIG. 6, when the measurement light S is not swung on the spin trajectory 40, the measured value of the depth of the keyhole 37 changes in the vicinity of 3 mm. On the other hand, when the measurement light S is swung on the spin orbit 40, the measured value of the depth of the keyhole 37 changes around 4 mm.
  • the measured value of the keyhole 37 is larger when the measuring light S is swung along the spin orbit 40 than when the measuring light S is not swung, that is, the bottom 37 a of the keyhole 37 is deeper. It turns out that it can search to the position.
  • the measured value graph of FIG. 6 is obtained by extracting the measured values of the lower few% from the measured values measured a plurality of times during the turning movement of the measuring light S, and obtaining an interval SA (Sampling Area) that is a predetermined fixed period. ) For each moving average value (hereinafter, also simply referred to as “average value”).
  • extracting the measured value of the lower several percent means that the penetration depth of the welded portion 35 is measured a plurality of times, the deepest portion side of the measured value of the penetration depth is taken as the lower side, and the range of several percent on the deepest side. Extraction of measured values.
  • the penetration depth is determined based on a plurality of measured values.
  • FIG. 7 is a graph comparing the average value of all the data of the measurement values measured a plurality of times with the average value of the extracted measurement values of the lower few% when there is no optical axis deviation.
  • the measurement value of the depth of the keyhole 37 changes around 3 mm.
  • the measurement value of the depth of the keyhole 37 is It is changing around 4mm.
  • the measurement value distributed within a predetermined range based on the measurement value on the deepest side representing the depth of the actual deepest portion is the deepest portion of the measurement value of the penetration depth It is a measured value within a range of several percent when the side is the lower side.
  • the calculated value of the keyhole 37 is larger when the average value of the lower several% of the plurality of measured values is calculated than when the average value is calculated using all the data of the plurality of measured values. That is, it can be seen that the measurement can be performed up to a deep position of the bottom 37a of the keyhole 37.
  • the lower few percent of the measured value is the measured value in the range of several percent on the deepest side, which is the same as the measured value of several percent on the deepest side.
  • the measurement value with the shallow keyhole 37 is excluded because of the state of the keyhole 37 in the molten pool 36, disturbance due to noise, vibration, fume, spatter, and the like. This is because the depth of penetration of the welded portion 35 is specified with high accuracy, except for the value of variation in which 37 is measured shallow.
  • a deep value of the depth of the keyhole 37 measured with the measurement light S irradiated coaxially with the laser light L unless it is actually deep.
  • a shallow value indicates irregular reflection in the middle of the depth of the keyhole 37 due to the state of the keyhole 37 of the molten pool 36 (crushing of the keyhole 37, entrainment of molten metal, etc.) and disturbance (noise, vibration, fume, etc.). This is to eliminate irregular values such as being measured in the shallow due to erroneous reflection due to the above.
  • the range of the lower few% is preferably 1% or more and 20% or less of the lower order. If this is smaller than the lower 1%, deep singularity values may be concentrated and the depth of the keyhole 37 is an actual value (actual value representing the actual deepest depth). This is because the value becomes deeper than the moving average value of the depth.
  • the range of the lower few% is 3% or more and 7% or less, and the range of the lower 5%.
  • the average value may be simply an average value of a plurality of values, or more preferably, a predetermined average period interval is defined, and an average value within the interval is a moving average value that is continuously calculated. Is good.
  • FIG. 8 shows the penetration depth of the welded portion 35, that is, the keyhole, when there is no optical axis deviation and when the optical axis deviation occurs and the measurement light S is swung along the spin orbit 40. It is the graph which compared the measured value of 37 depth. In addition, each measurement result uses the average value of the extracted measurement values of the lower few%.
  • the measured value of the depth of the keyhole 37 is in the vicinity of 4 mm.
  • the measured value of the depth of the keyhole 37 changes in the vicinity of 4 mm. That is, it can be seen that when the measurement light S is swung along the spin orbit 40, the search can be made to a depth substantially the same as the depth of the bottom 37a of the keyhole 37 when the optical axis is not displaced.
  • FIG. 9 is a flowchart showing an operation for measuring the penetration depth of the welded portion 35.
  • step S101 the laser irradiation head 20 superimposes the laser beam L and the measuring beam S on the same axis, and starts irradiating the welded portion 35, and then proceeds to step S102.
  • step S102 the turning movement of the irradiation position of the laser beam L and the measuring beam S is started, and the process proceeds to step S103.
  • the irradiation positions of the laser light L and the measuring light S are changed so as to turn in a spiral manner around the rotation center RC moving on the welding path 34.
  • step S103 the measurement unit 14 starts measuring the penetration depth of the welded part 35 based on the measurement light S reflected by the welded part 35, and proceeds to step S104. That is, the measurement part 14 repeatedly measures the penetration depth of the weld part 35 by the process of step S103.
  • step S104 the determination unit 17 determines that all of the plurality of measured values of the penetration depth measured during the turning movement of the measuring light S are predetermined. It is determined whether the value is outside the threshold range (that is, less than a predetermined threshold value). If the determination in step S104 is “YES”, it is determined that the measured value is abnormal, and the process branches to step S105. If “NO” at step S104, the process branches to step S106.
  • the predetermined threshold is, for example, a threshold serving as a reference for the penetration depth determined in advance according to the output intensity of the laser beam L and the welding speed.
  • the predetermined threshold value is a depth value of the keyhole 37 as a penetration depth corresponding to the output intensity of the laser beam L and the welding speed, which is obtained in advance through experiments or the like, and is stored in the determination unit 17 as a table. Has been.
  • the measured value is outside the threshold value range, that is, if the measured value is greatly deviated from the threshold value, it is determined that the penetration depth cannot be measured accurately. Accordingly, it is possible to prevent an abnormal value greatly deviating from the threshold from being erroneously specified as the measurement value at the deepest portion of the keyhole 37.
  • step S105 the abnormality is notified to the user, such as displaying a message warning the abnormality of the measured value on a display monitor (not shown), and the processing of the measurement operation of the penetration depth of the welded portion 35 is completed.
  • the determination unit 17 specifies the penetration depth of the welded part 35 based on the plurality of measurement values measured by the measurement unit 14, and performs processing for measuring the penetration depth of the welded part 35.
  • the measurement value of the lower few% is extracted from a plurality of measurement values, and the average value, specifically, the average value within an interval SA (Sampling Area) that is a predetermined fixed period is continuously calculated. By doing so, the penetration depth is determined.
  • SA Samling Area
  • the measurement values of the lower several percent where the keyhole 37 depth is greater than a predetermined threshold are extracted, and the average value thereof is extracted. It is also possible to determine the penetration depth by calculating. Thereby, the dispersion
  • the penetration depth of the welded portion 35 at a position behind the irradiation position of the laser beam L is measured a plurality of times, and the penetration depth is determined based on the plurality of measured values. If determined, the depth of the deepest part of the keyhole 37 can be specified with higher accuracy.
  • a depth shallower than the actual deepest part of the keyhole 37 is measured at a position ahead of the irradiation position of the laser beam L in the welding direction.
  • the penetration depth of the welded portion 35 is measured a plurality of times at a position behind the irradiation position of the laser beam L in the welding direction, a depth shallower than the actual deepest portion of the keyhole 37 is suppressed. be able to.
  • the largest value among the plurality of measurement values or the average value of the plurality of measurement values is determined as the penetration depth of the welded portion 35. Also good.
  • the irradiation position of the measurement light S is moved and rotated, and the optical axis position as the irradiation position of the measurement light S is rotated within a radius region smaller than 1 ⁇ 2 of the spot diameter of the laser light L.
  • the search is performed so that the measurement light S is irradiated to the deepest part of the keyhole 37, and the light of the laser light L and the measurement light S is obtained.
  • the influence of the axis deviation can be suppressed. Further, for example, the largest value among the plurality of measured values measured within a certain period, the average value of the plurality of measured values, the average value of the lower few% of the plurality of measured values, etc. What is necessary is just to determine.
  • the trajectory of the spin orbit 40 may be not only a simple spiral shape but also a circular shape or a polygonal shape such as a quadrangle. Moreover, as shown in FIG. 10, the elliptical locus
  • trajectory may be formed discontinuously. That is, various shapes can be used as long as the measurement light S is a continuous trajectory irradiated inside the keyhole 37. Further, the rotation direction of the irradiation with respect to the welding direction of the laser beam L of the spin orbit 40 may be clockwise or counterclockwise.
  • the laser beam L and the measurement beam S are spirally moved along the linear welding path 34 for irradiation, but the welding path is not limited to a linear shape.
  • the welding path becomes a spiral shape by irradiating the laser beam L while moving the laser irradiation head 20 spirally by the robot 18.
  • the bottom position 37a of the keyhole 37 may be searched by rotating the irradiation position of the measurement light S on the spiral welding path.
  • the laser irradiation head 20 and the robot 18 move the irradiation positions of the laser light L and the measurement light S.
  • the galvano scanner Etc. may be used.
  • the configuration in which the upper metal plate 31 and the lower metal plate 32 are stacked to perform laser welding has been described.
  • three or more metal plates are stacked to perform laser welding. May be.
  • the first collimating lens 21 and the first focus lens 22, and the second collimating lens 23 and the second focus lens 24 are provided in front of the beam splitter 25, respectively. Although it concentrates, it is not limited to this form.
  • a collimator lens 41 and a focus lens 42 may be provided immediately below the beam splitter 25 so that the laser beam L and the measurement beam S are condensed together after passing through the beam splitter 25.
  • a structure in which light is collected by a set of lens structures including a collimator lens 41 and a focus lens 42 is preferable to have a structure in which light is collected by a set of lens structures including a collimator lens 41 and a focus lens 42.
  • a set of lens structures including a collimator lens 41 and a focus lens 42.
  • the depth of the deepest part which is the penetration depth
  • the depth of the deepest part is obtained by extracting the measured values of the lower few% when the deepest part side of the measured value of the penetration depth is the lower side, and the average value thereof
  • the moving average value such as continuously calculating the average value within the interval SA that is a predetermined fixed period is calculated, the present invention is not limited to this form.
  • the measurement of the penetration depth is performed by extracting the measured values of the lower few% for each interval SA that is a predetermined fixed period, and extracting the respective values or the average values for each interval SA. It may be calculated as a value.
  • the interval SA which is a predetermined fixed period, is set to 50 msec, and the measurement start point for each interval SA is changed in units of 50 msec, while the values of the lower few% of the plurality of data in the interval SA are continuously changed. May be calculated. Alternatively, it is possible to continuously calculate the value of the lower few% for each interval SA while changing the measurement start point in units of 1 msec.
  • the calculation processing of the average value of the lower number% for each interval SA is the interval. Calculation can be completed for each SA, and calculation processing is reduced. Therefore, even in the case where the specifications of the memory of the arithmetic unit are low, processing in a short time is possible. In addition, since the calculation processing time can be shortened due to the small number of calculation processes, it is effective in reducing the production tact time in the machining / measurement process.
  • the measurement interval is set to an interval SA that is a predetermined fixed period, for example, the interval SA is set to 50 msec and the measurement frequency (sampling frequency) is set to 20 kHz, and 1000 measurement values are acquired at the interval SA. Will be described.
  • the measurement value of the lower 5% when the deepest part is the lower side that is, the measurement value of the 50th depth from the lower side is extracted as it is, and the penetration depth This is the measured value (not averaged).
  • the measurement start point of the interval SA of 50 msec is changed so as to overlap while being finely shifted in units of 2 msec, and each lower 5% value is extracted as the measurement value of the penetration depth.
  • the penetration depth can be obtained with high reliability like a simple moving average.
  • the lower 5% value does not exist. For example, when there are only other values such as the lower 4% and 6%, the lowest number closest to the 5%.
  • the measurement value of the% is extracted as the value of the lower 5% and used as the measurement value of the penetration depth.
  • the allowable value in the range of the lower few percent is preferably 1% or more and 20% or less of the lower order. More preferably, the range of the lower few% is 3% or more and 7% or less, and is the range around the lower 5%.
  • the number of acquisitions of the measured value at the interval SA is preferably 100 to 200 times or more. If the number of acquisitions is less than 100 times, the number of acquisitions is small, and therefore the influence of the state of the keyhole 37 (crushed keyhole, entrainment of molten metal, etc.) and disturbance (noise, vibration, fume, etc.) In some cases, irregular values are measured. In such a case, it is difficult to remove irregular values with high quality.
  • the measured values of the lower 4% or more and 6% or less can be specified as the measured values of the penetration depth, so that the penetration depth can be specified with high accuracy.
  • the beam splitter 25 may more preferably use a dichroic mirror that reflects light of a specific wavelength and transmits light of other wavelengths.
  • an optical member that transmits the wavelength of the laser beam L and reflects the wavelength of the measurement beam S is used, so that the laser beam L and the measurement beam S are coaxially connected to the welded portion 35 of the welding object 30. Can be irradiated toward As a result, a sufficient amount of light can be applied to the inside of the keyhole 37 formed when the welded portion 35 is melted, which is useful for specifying the keyhole depth.
  • the irradiation positions of the laser beam L and the measurement beam S are both moved in a spiral manner.
  • the irradiation position of the measurement light S may be moved together with the laser light L, and the irradiation position of the measurement light S is moved relative to the laser light L so that the spot diameter of the laser light L is 1 It may be moved with a radius of rotation smaller than / 2.
  • the irradiation position of the measurement light S is moved relative to the laser light L, for example, the irradiation position of the laser light L is moved linearly, and the irradiation position of the measurement light S is only a simple spiral shape. Instead, it may be moved so as to have a circular shape or a polygonal shape such as a triangle or a quadrangle.
  • a circular shape or a polygonal shape such as a triangle or a quadrangle.
  • FIG. 12 is a schematic diagram showing a configuration of a laser irradiation head 20A according to a modification.
  • FIG. 13 is a schematic diagram showing how the optical path of the measurement light S changes.
  • symbol is attached
  • the laser irradiation head 20A includes a third parallel flat plate 43 in addition to the configuration of the laser irradiation head 20 shown in FIG.
  • the third parallel plate 43 is connected to a motor (not shown) and rotates in accordance with a command from the control device 16, and is irradiated with the measurement light S.
  • the irradiation position changing part which can change a position is comprised.
  • the measurement light S entering the laser irradiation head 20a passes through the third parallel flat plate 43, so that the incident position on the beam splitter 25 is switched.
  • the measurement light S is a laser beam transmitted through the beam splitter 25. Irradiate the position where L is combined.
  • the second parallel flat plate 27 is adjusted to an angle substantially parallel to the first parallel flat plate 26, unlike the angle shown in FIG.
  • the measuring light S is superposed concentrically and coaxially with the laser light L by the beam splitter 25.
  • the laser beam L and the measurement beam S superimposed on the same axis are collimated by the collimator lens 41 and collected by the focus lens 42.
  • the measurement light S is more than the laser light L transmitted through the beam splitter 25. Irradiated to the rear position in the welding direction. Specifically, in the example shown in FIG. 13, welding is performed while moving the laser irradiation head 20 ⁇ / b> A in the right direction. Therefore, the measurement light S is behind the laser light L by the beam splitter 25 in the welding direction ( The laser beam L and the measurement beam S become parallel by being refracted at a position in the left direction. Then, the laser light L and the measurement light S are collimated by the collimator lens 41 and condensed by the focus lens 42.
  • the irradiation position of the measurement light S can be moved relative to the laser light L, and the irradiation position of the measurement light S can be changed.
  • a simple spiral shape but also a circular shape or a polygonal shape such as a triangle or a quadrangle can be moved.
  • the direction of irradiation when the irradiation position of the measuring light S is moved in a spiral shape, a circular shape, or a polygonal shape may be clockwise or counterclockwise.
  • the irradiation position of the laser beam L is moved linearly.
  • the irradiation position of the laser beam L may be moved along the spin orbit 40 having a relatively large diameter.
  • the irradiation position of the measurement light S is moved relatively independently of the laser light L. Therefore, even when the irradiation position of the laser beam L is moved along the spin orbit 40 having a relatively large diameter, the irradiation position of the measurement beam S is set with a rotation radius smaller than 1 ⁇ 2 of the spot diameter of the laser beam L.
  • the irradiation position of the measurement light S is changed so as to move on a predetermined welding path, and the optical axis position as the irradiation position of the measurement light S is changed to the spot diameter of the laser light L.
  • the measurement light S can be moved and rotated at a high speed by changing so as to move within a region having a radius of rotation smaller than 1 ⁇ 2 of.
  • the bottom portion 37a of the keyhole 37 can be searched more finely and the penetration depth in the keyhole 37 can be measured.
  • the locus of the laser beam L is not limited to a continuous one, but may be formed discontinuously. That is, the laser beam L moves in the welding direction, which is the traveling direction of the movement locus irradiated with the laser beam L, and the laser beam L irradiated inside the keyhole 37 is seen in a plan view in the irradiation direction of the laser beam L.
  • various shapes can be used as long as the measurement light S intersects.
  • the laser irradiation head 20A As in the laser irradiation head 20 shown in FIG. 11, the laser irradiation head 20A according to the modification is provided with a collimating lens 41 and a focus lens 42 immediately below the beam splitter 25, and the laser light L and the measurement light S are It has been described that the light is condensed after passing through the beam splitter 25.
  • the first collimating lens 21 and the first focus lens 22 are disposed in front of the beam splitter 25 in the passing direction through which the laser light L or the measurement light S passes.
  • the second collimating lens 23 and the second focus lens 24 may be provided and condensed separately.
  • the present disclosure is extremely useful and has high industrial applicability because it provides a highly practical effect that the depth of penetration of a weld can be measured with higher accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ光(L)で溶接部(35)を溶接するレーザ溶接装置(10)であって、レーザ光(L)と、レーザ光(L)とは波長の異なる測定光(S)とを同軸に重ね合わせて溶接部(35)に照射するレーザ照射ヘッド(20)と、測定光(S)の照射位置を、所定の溶接経路上を移動する回転中心の周りをレーザ光(L)のスポット径の1/2よりも小さな回転半径で旋回移動するように変化させる第1の平行平板及び第2の平行平板と、測定光(S)の旋回移動中にレーザ照射ヘッド(20)から照射されて溶接部(35)で反射した測定光(S)に基づいて、溶接部(35)の溶け込み深さを繰り返し測定する測定部(14)と、一定期間内に測定部(14)で測定された複数の溶け込み深さの測定値を用いて、溶接部(35)の溶け込み深さの判定を、一定期間の開始時点をずらしながら行う判定部(17)とを備える。

Description

レーザ溶接装置及びレーザ溶接方法
 本開示は、レーザ溶接装置及びレーザ溶接方法に関するものである。
 従来、溶接部の溶け込み深さを直接測定することで、溶接部の品質を評価するようにしたレーザ溶接装置が知られている(例えば、特許文献1参照)。
 特許文献1には、レーザ光と測定光とを同軸状に重ね合わせて溶接部のキーホール内部に照射して、キーホールの底部で反射した測定光を、ビームスプリッタを介して光干渉計に入射させるようにした構成が開示されている。ここで、光干渉計では、測定光の光路長を測定できるため、測定した光路長からキーホールの深さを、溶接部の溶け込み深さとして特定するようにしている。
特開2012-236196号公報
 しかしながら、例えば、ビームスプリッタを保持している部品が振動等によって位置ずれしてしまい、レーザ光と測定光との光軸ずれが生じた場合には、キーホールの深さを正確に測定できなくなるおそれがある。
 具体的には、キーホールの底部の断面は、溶接方向の前方の部分で溶け込みが浅い湾曲形状となっている。ここで、レーザ光よりも溶接方向の前方に測定光が光軸ずれした場合には、キーホールの最深部ではなく、最深部よりも溶け込みの浅い湾曲部分に測定光が照射されることとなる。そのため、キーホールの実際の最深部よりも浅い深さが測定されるおそれがある。
 本開示は、かかる点に鑑みてなされたものであり、その目的は、溶接部の溶け込み深さをより精度良く測定できるようにすることにある。
 本開示の一態様に係るレーザ溶接装置は、レーザ光で溶接部を溶接するレーザ溶接装置であって、レーザ光と、レーザ光とは波長の異なる測定光とを同軸に重ね合わせて前記溶接部に照射する照射部と、測定光の照射位置を、所定の溶接経路上を移動するように変化させ、測定光の照射位置としての光軸位置を、レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させる照射位置変化部と、測定光の移動中に照射部から照射されて溶接部で反射した測定光に基づいて、溶接部の溶け込み深さを繰り返し測定する測定部と、一定期間内に測定部で測定された複数の溶け込み深さの測定値を用いて、溶接部の溶け込み深さの判定を、一定期間の開始時点をずらしながら行う判定部とを備えることを特徴とするものである。
 本開示の一態様に係るレーザ溶接装置では、測定光の照射位置を、溶接経路上を移動するように変化させ、測定光の照射位置としての光軸位置を、レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させている。そして、測定光の移動中の一定期間内に溶接部の溶け込み深さを複数回測定し、その複数の測定値を用いて、一定期間の開始時点をずらしながら溶け込み深さを判定するようにしている。
 これにより、レーザ光と測定光との光軸ずれが生じた場合でも、溶接部の溶け込み深さをより精度良く測定することができ、キーホールの最深部が存在する範囲に、より絞って測定光を照射することで、キーホールの最深部を効率良く探索することができる。
 また、照射位置変化部は、測定光の照射位置を、所定の溶接経路上を移動する回転中心の周りを旋回移動するように変化させるようにしてもよい。
 また、照射位置変化部は、旋回移動において測定光の照射位置を、回転中心を周回する螺旋形状を有する軌跡に沿って移動するように変化させるようにしてもよい。
 本開示の一態様に係るレーザ溶接装置では、測定光の照射位置を、回転中心を周回する螺旋形状を有する軌跡に沿って移動するように変化させている。これにより、回転周期や回転半径を適切に設定することで、連続的で且つ広範囲に測定光を照射して、キーホールの最深部を探索することができる。
 また、判定部は、測定部で測定された溶け込み深さの一定期間内の複数の測定値のうち、最も深い側の測定値を基準とした所定の範囲内に分布する複数の測定値、又は複数の測定値の平均値に基づいて、溶接部の溶け込み深さを判定するようにしてもよい。
 また、最も深い側の測定値を基準とした所定の範囲は、溶け込み深さの測定値の最深部側を下位としたときの、下位の1%以上で且つ20%以下の範囲にしてもよい。
 また、判定部は、更に、測定部で測定された溶け込み深さの測定値と、レーザ光の出力強度及び溶接速度の少なくとも一方により定まる溶け込み深さの基準となる閾値とを比較することで、溶け込み深さの測定値が異常であるかを判定するようにしてもよい。
 本開示の一態様に係るレーザ溶接装置では、測定部で測定された測定値と溶け込み深さの基準となる閾値とを比較するようにしている。そして、例えば、測定値がこの閾値から大きく乖離している場合には、測定値が異常であると判定するようにしている。これにより、閾値から大きく乖離している異常値を、キーホールの最深部の測定値であると誤って特定してしまうのを抑えることができる。
 本開示の一態様に係るレーザ溶接方法は、レーザ光で溶接部を溶接するレーザ溶接方法であって、レーザ光と、レーザ光とは波長の異なる測定光とを同軸に重ね合わせて溶接部に照射する照射ステップと、測定光の照射位置を、所定の溶接経路上を移動するように変化させ、測定光の照射位置としての光軸位置を、レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させる照射位置変化ステップと、測定光の移動中に溶接部で反射した測定光に基づいて、溶接部の溶け込み深さを繰り返し測定する測定ステップと、一定期間内に測定ステップで測定された複数の溶け込み深さの測定値を用いて、溶接部の溶け込み深さの判定を、一定期間の開始時点をずらしながら行う判定ステップとを有することを特徴とするものである。
 本開示の一態様に係るレーザ溶接方法では、測定光の照射位置を、溶接経路上を移動するように変化させ、測定光の照射位置としての光軸位置を、レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させている。そして、測定光の移動中の一定期間内に溶接部の溶け込み深さを複数回測定し、その複数の測定値を用いて、一定期間の開始時点をずらしながら溶け込み深さを判定するようにしている。
 これにより、レーザ光と測定光との光軸ずれが生じた場合でも、溶接部の溶け込み深さをより精度良く測定することができ、キーホールの最深部が存在する範囲に、より絞って測定光を照射することで、キーホールの最深部を効率良く探索することができる。
 また、照射位置変化ステップでは、レーザ光及び測定光の照射位置をともに螺旋状に移動させる場合は、レーザ光とともに測定光の照射位置を移動させる、または、レーザ光に対して測定光の照射位置を相対的に移動させるようにしてもよい。
 また、照射位置変化ステップでは、レーザ光に対して測定光の照射位置を相対的に移動させる場合は、レーザ光の照射位置を直線状に移動させ、測定光の照射位置を円形状や、三角形、四角形等の多角形状となるように移動させるようにしてもよい。
 本開示によれば、溶接部の溶け込み深さをより精度良く測定することができる。
実施形態に係るレーザ溶接装置の模式図である。 レーザ照射ヘッドの構成を示す模式図である。 レーザ光、測定光、キーホールの位置関係を示す側面断面図である。 測定光の光軸ずれが生じたときのレーザ光、測定光、キーホールの位置関係を示す側面断面図である。 測定光の照射位置の軌跡を示す図である。 光軸ずれが生じているときに、測定光を旋回移動させた場合とさせなかった場合との、溶け込み深さの測定結果を比較したグラフである。 光軸ずれが生じていない場合において、複数回測定した測定値の全データの平均値と、抽出した下位数%の測定値の平均値とを比較したグラフである。 光軸ずれが生じていない場合と、光軸ずれが生じており且つ測定光を旋回移動させた場合との、溶け込み深さの測定結果を比較したグラフである。 溶接部の溶け込み深さの測定動作を示すフローチャートである。 測定光の照射位置の別の軌跡を示す図である。 その他の実施形態に係るレーザ照射ヘッドの構成を示す模式図である。 変形例に係るレーザ照射ヘッドの構成を示す模式図である。 測定光の光路の変化の様子を示す模式図である。
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
 図1は、実施形態に係るレーザ溶接装置10の模式図である。
 図1に示すように、レーザ溶接装置10は、レーザ光Lを出力するレーザ発振器11と、測定光Sを出力する光干渉計12と、レーザ光L及び測定光Sを溶接対象物30に向けて照射するレーザ照射ヘッド20(照射部)と、レーザ照射ヘッド20が取り付けられてレーザ照射ヘッド20を移動させるロボット18と、レーザ発振器11、光干渉計12、レーザ照射ヘッド20及びロボット18を制御してレーザ溶接を行う制御装置16とを備えている。
 レーザ発振器11は、制御装置16からの指令に基づいて、レーザ光Lを出力する。レーザ発振器11とレーザ照射ヘッド20とは、光ファイバ19で接続されている。レーザ光Lは、光ファイバ19を介して、レーザ発振器11からレーザ照射ヘッド20に伝送される。
 光干渉計12は、レーザ光Lとは波長の異なる測定光Sを出力する測定光発振器13と、後述する溶接部35の溶け込み深さを測定する測定部14とを有する。測定光発振器13は、制御装置16からの指令に基づいて、測定光Sを出力する。光干渉計12とレーザ照射ヘッド20とは、光ファイバ19で接続されている。測定光Sは、光ファイバ19を介して、光干渉計12からレーザ照射ヘッド20に伝送される。
 レーザ照射ヘッド20は、ロボット18のアーム先端部分に取り付けられており、制御装置16からの指令に基づいて、レーザ光L及び測定光Sを溶接対象物30で結像する。
 ロボット18は、制御装置16からの指令に基づいて、レーザ照射ヘッド20を指定された位置まで移動させ、レーザ光L及び測定光Sを走査する。
 制御装置16は、レーザ発振器11、光干渉計12、ロボット18、レーザ照射ヘッド20と接続されており、レーザ照射ヘッド20の移動速度の他に、レーザ光Lの出力開始や停止、レーザ光Lの出力強度などを制御する機能も備えている。詳しくは後述するが、制御装置16は、測定部14で測定された複数の測定値に基づいて、溶接部35の溶け込み深さを判定する判定部17を有する。
 溶接対象物30は、上下に重ね合わされた上側金属板31と下側金属板32とを有する。レーザ溶接装置10は、上側金属板31の上面にレーザ光Lを照射することで、上側金属板31と下側金属板32とを溶接する。
 ここで、本実施形態に係るレーザ溶接装置10では、レーザ溶接と同時に溶接部35の溶け込み深さの測定を行うことができる。以下、図2を用いて具体的に説明する。
 図2は、レーザ照射ヘッド20の構成を示す模式図である。
 図2に示すように、レーザ照射ヘッド20は、レーザ光Lが通過する第1のコリメートレンズ21及び第1のフォーカスレンズ22と、測定光Sが通過する第2のコリメートレンズ23及び第2のフォーカスレンズ24と、レーザ光Lと測定光Sとを同軸の光束に結合するビームスプリッタ25と、第1の平行平板26と、第2の平行平板27とを有する。
 ビームスプリッタ25は、ダイクロイックミラーであり、レーザ発振器11からのレーザ光Lを透過し、光干渉計12からの測定光Sを反射するように、透過・反射させる波長が設定されている。
 このとき、ビームスプリッタ25で、レーザ光Lと測定光Sとを十分に分離するために、レーザ光Lと測定光Sとの波長差を100nm以上とすることが望ましい。
 第1の平行平板26及び第2の平行平板27は、図示しないモータに接続され、制御装置16からの指令に従って回転する。
 レーザ発振器11から出力されたレーザ光Lは、光ファイバ19を通ってレーザ照射ヘッド20に送られる。レーザ照射ヘッド20に入ったレーザ光Lは、第1のコリメートレンズ21によって平行化され、第1のフォーカスレンズ22によって集光される。第1のフォーカスレンズ22で集光されたレーザ光Lは、ビームスプリッタ25を透過する。
 一方、光干渉計12から出力された測定光Sは、光ファイバ19を通ってレーザ照射ヘッド20に送られる。レーザ照射ヘッド20に入った測定光Sは、第2のコリメートレンズ23によって平行化され、第2のフォーカスレンズ24によって集光される。その後、測定光Sは、ビームスプリッタ25によって、レーザ光Lと同心・同軸状に重ね合わされる。
 なお、第2のフォーカスレンズ24は、溶接部35から反射した測定光Sを、ビームスプリッタ25を介して、光干渉計12に再度、入射させる機能も有している。
 そして、同軸に重ね合わされたレーザ光Lと測定光Sとは、制御装置16によって制御された第1の平行平板26及び第2の平行平板27を通る。このことによって、レーザ光L及び測定光Sの照射位置(焦点距離)が決定され、溶接対象物30の溶接部35にレーザ光L及び測定光Sが照射される。
 このとき、レーザ照射ヘッド20は、第1の平行平板26及び第2の平行平板27を回転させることにより、レーザ光Lと測定光Sとが円軌道となるように回転させ、旋回移動させることができる。つまり、第1の平行平板26及び第2の平行平板27は、レーザ光L及び測定光Sの照射位置を変更可能な照射位置変化部を構成している。
 また、ロボット18によって、レーザ照射ヘッド20を移動させることで、溶接対象物30における溶接領域において、レーザ光L及び測定光Sの照射位置を移動させることができる。
 図3は、レーザ光L、測定光S、キーホール37の位置関係を示す側面断面図である。
 図3に示すように、レーザ溶接装置10では、上側金属板31と下側金属板32とを有する溶接対象物30の溶接部35を溶接するにあたり、溶接対象物30の上方から上側金属板31の上面にレーザ光Lが照射される。
 レーザ光Lの照射された溶接部35は、その上部から溶融し、溶接部35に溶融池36が形成される。溶接部35が溶融する際に、溶融池36から溶融金属が蒸発し、蒸発時に生じる蒸気の圧力によってキーホール37が形成される。ここでは、溶融池36とキーホール37とを合わせて溶接部35として扱う。溶融池36の溶接方向の後方には、溶融池36が凝固することで凝固部38が形成される。
 このとき、光干渉計12から出射される測定光Sが、ビームスプリッタ25により、レーザ発振器11からのレーザ光Lと同心・同軸状に重ね合わされ、キーホール37の内部に照射される。照射された測定光Sは、キーホール37の底部37aで反射し、ビームスプリッタ25を介して、光干渉計12に入射する。
 光干渉計12に入射した測定光Sの光路長は、測定部14で測定される。測定部14では、測定した光路長からキーホール37の深さを、溶接部35の溶け込み深さ(測定値)として特定する。レーザ溶接装置10では、測定した溶け込み深さに基づいて、溶接部35の良否を判断するようにしている。
 以上の構成により、レーザ溶接装置10は、溶け込み深さ測定機能と、レーザ溶接機能とを同時に果たすことができる。
 ところで、例えば、ビームスプリッタ25を保持している部品が振動等によって位置ずれしてしまい、レーザ光Lと測定光Sとの光軸ずれが生じることがある。そして、レーザ光Lと測定光Sとの光軸ずれが生じた場合には、光干渉計12が、キーホール37の深さを実際の深さよりも浅く測定してしまい、溶け込み深さを精度良く測定することができない場合がある。
 具体的には、キーホール37は、溶接部35で溶融した金属が蒸発し、蒸発時の蒸気の圧力によって形成される。形成されるキーホール37の形状は、レーザ光Lの照射時間や溶融池36の状態によって変化する。
 ここで、キーホール37の溶接方向の前方の内壁部は、レーザ照射ヘッド20の移動速度(溶接速度)が速くなるほど、キーホール37の後方に向かって湾曲した形状となる傾向を示す。そこで、キーホール37の底部37aの湾曲部分の曲率を低減するために、レーザ溶接速度を適切に設定するのが好ましい。
 しかしながら、レーザ溶接速度を適切に設定したとしても、キーホール37の開口径と底部37aの孔径とを略等しくするのは困難であり、キーホール37の溶接方向の前方の内壁部では、溶け込みが浅い湾曲形状が生じてしまうこととなる。
 なお、キーホール37の開口径は、加工光であるレーザ光Lのスポット径に略等しい。
 また、レーザ光Lのスポット径および測定光Sのスポット径は、溶接対象物30の表面に結像される焦点位置でのスポット光のサイズとする。
 そのため、図4の仮想線で示すように、レーザ光Lの光軸と同軸状に照射されている測定光Sの光軸が、たとえば、レーザ光Lのスポット径内の領域でレーザ光Lに対して溶接方向の前方に位置ずれした場合には、キーホール37の底部37aの位置と、測定光Sのスポットの中心の位置とが一致しなくなり、測定光Sが底部37aに照射されない状態が生じ得る。
 なお、図3では、レーザ光Lの光軸と同軸状に照射されている測定光Sの光軸との2つの光軸が、一致しズレが生じていない状態を示している。
 底部37aに測定光Sが照射されない状態としては、例えば、測定光Sが、レーザ光Lに対して溶接方向の前方に位置ずれして、詳細に言い替えると、測定光Sの光軸が、たとえばレーザ光Lの光軸に対して溶接方向の前方にレーザ光Lのスポット径の領域内での位置ずれが生じた場合、キーホール37の前側の内壁部に測定光Sが照射された状態が考えられる。この状態では、測定光Sの反射した位置を底部37aの位置として、光干渉計12は、キーホール37の深さを測定してしまう。
 つまり、底部37aに測定光Sが照射されなければ、光干渉計12は、キーホール37の深さを実際の深さよりも浅く測定してしまう。言い替えると、レーザ光Lよりも溶接方向の前方に測定光Sが光軸ずれした場合には、溶接部35のキーホール37の最深部ではなく、最深部よりも溶け込みの浅い部分に測定光Sが照射されてしまい、キーホール37の実際の最深部よりも浅い深さが測定されてしまう。
 図4に示す例では、キーホール37の実際の深さDminよりも浅い深さDを測定することとなる。このように、実際の深さよりも浅く測定したキーホール37の深さからは、精度良く溶接部35の検査を行うことはできない。
 ここで、光干渉計12が、キーホール37を実際の深さよりも浅く測定するのを抑えるためには、的確に測定光Sを底部37aに照射する必要がある。そこで、以下に、的確に測定光Sを底部37aに照射するための構成を説明する。
 図5に示すように、レーザ溶接装置10は、溶接対象物30に対して、螺旋状にレーザ光L及び測定光Sを照射しながら溶接方向に相対的にビームスポットを移動させるスピン軌道40でレーザ光L及び測定光Sを照射して、溶接対象物30を溶接する。
 なお、スピン軌道40とは、照射するレーザ光L及び測定光Sによるスポットを円形状の軌道で移動させながら溶接方向に移動させるレーザ光L及び測定光Sの軌道である。言い換えると、スピン軌道40は、溶接方向において、レーザ光L及び測定光Sの軌跡が回転しながら相対的に直線移動されている軌道である。
 レーザ光L及び測定光Sの照射位置は、溶接経路34上を移動する回転中心RCから回転半径rだけ離れて且つ所定の回転周波数で回転中心RCを周回するように旋回移動する。つまり、レーザ光L及び測定光Sの照射位置は、螺旋形状を有するスピン軌道40に沿って、溶接対象物30に対して相対的に移動する。
 ここで、レーザ照射ヘッド20では、測定光Sの照射位置を、レーザ光Lのスポット径よりも小さな回転半径rで移動するように変化させている。なお、回転半径とは回転運動をすると仮定した場合の軌道の半径を表すものである。キーホール37の開口径は、加工光であるレーザ光Lのスポット径と略等しくなる。このため、測定光Sの光軸の位置は、測定光Sの照射位置がレーザ光Lのスポット径の領域内で重なるように、レーザ光Lのスポット径の1/2よりも測定光Sの回転半径rを小さくし、回転半径rをレーザ光Lのスポット径の1/20以上1/2未満とするのが好ましく、1/16以上1/8以下がより好ましい。例えば、レーザ光Lのスポット径が800μmの場合には、測定光Sの回転半径rを50~100μm程度に設定すればよい。これにより、スポット径の領域内において、レーザ光Lによって形成されたキーホール37の最深部が存在する範囲のみに絞って、より高品質に測定光Sを照射することができる。
 なお、測定光Sのスポット径は100~150μm程度である。
 また、レーザ光Lのスポット径を800μmとしたが、600μmから900μmであっても良い。
 なお、測定光Sの回転半径rは、レーザ光Lのスポット径に重なる半径であればよいので、測定光Sの照射位置を、レーザ光Lのスポット径の領域に重なるように、レーザ光Lのスポット径の半径よりも小さな旋回範囲で測定光Sの照射位置が移動するように、レーザ光Lのスポット径の1/2未満の回転半径で移動するように変化させるのが好ましい。言い替えると、測定光Sの照射位置を、所定の溶接経路上を移動するように変化させ、測定光Sの照射位置としての光軸位置を、レーザ光Lのスポット径の1/2よりも小さな回転半径の領域内で移動するように変化させるのが好ましい。
 例えば、レーザ光Lのスポット径が800μmの場合、測定光Sの回転周波数を40Hz、回転半径rを400μm未満に設定してもよい。
 なお、測定光Sの照射位置を、レーザ光Lのスポット径の半径以上の回転半径で、大きく旋回移動するように変化させると、キーホール開口内の領域内や、キーホール開口内の領域内のレーザ光Lによって形成されたキーホール37の最深部が存在する範囲に対して測定光Sが照射される度合いが減少し、キーホールの深さである溶け込み深さのデータは、旋回移動とともに、深いデータと浅いデータ検出されて大きくうねり、正確な溶け込み深さの測定がより難しくなる。
 これにより、溶接対象物30に対して、回転中心RCが溶接経路34上を移動する螺旋状の軌跡に沿って、測定光Sを照射しながらキーホール37の底部37aの探索を行うことができる。
 このように、レーザ光L及び測定光Sの照射位置を螺旋状に旋回移動させながら、キーホール37に測定光Sを照射すれば、略確実に、底部37aに測定光Sが照射されることとなる。このため、測定光Sのスポットの中心と底部37aとが一致しない場合でも、測定光Sを底部37aに照射することが可能となる。
 以下、測定光Sをスピン軌道40で旋回移動させた場合とさせなかった場合とで、溶接部35の溶け込み深さ、つまり、キーホール37の深さの測定値がどのように変化するのかについて説明する。
 図4に示す例では、上側金属板31の板厚が1mm、下側金属板32の板厚が4.3mmであり、測定光Sの光軸が、レーザ光Lの光軸よりも溶接方向の前方に100μmずれているものとする。
 図6は、溶接対象物30の表面又は基準となる仮想の面からの、溶接部35の溶け込み深さとして、キーホール37の深さを測定したときのグラフである。図6に示すように、測定光Sをスピン軌道40で旋回移動させなかった場合には、キーホール37の深さの測定値が3mm付近を推移している。これに対し、測定光Sをスピン軌道40で旋回移動させた場合には、キーホール37の深さの測定値が4mm付近を推移している。
 このことから、測定光Sをスピン軌道40で旋回移動させた場合の方が、旋回移動させなかった場合に比べて、キーホール37の測定値が大きい、つまり、キーホール37の底部37aの深い位置まで探索できていることが分かる。なお、図6の測定値のグラフは、測定光Sの旋回移動中に複数回測定した測定値のうち、下位数%の測定値を抽出して、所定の一定期間である間隔SA(Sampling Area)毎に算出した移動平均値(以下、単に「平均値」ともいう)を示している。
 なお、下位数%の測定値を抽出するとは、溶接部35の溶け込み深さを複数回測定し、溶け込み深さの測定値の最深部側を下位側として、最も深い側の数%の範囲の測定値を抽出することをいう。
 ここで、予め実験等により求めた実際のキーホールの深さと抽出した下位数%の測定値の平均値とを比較したところ、これらが実質的に一致することが見出された。そのため、複数の測定値に基づいて、溶け込み深さを判定することとした。
 図7は、光軸ずれが生じていない場合において、複数回測定した測定値の全データの平均値と、抽出した下位数%の測定値の平均値とを比較したグラフである。
 図7に示すように、複数の測定値の全データを用いて平均値を算出した場合には、キーホール37の深さの測定値が3mm付近を推移している。一方、複数の測定値のうち、最も深い側の測定値を基準とした所定の範囲内に分布する複数の測定値の平均値を算出した場合には、キーホール37の深さの測定値が4mm付近を推移している。
 ここで、複数の測定値のうち、実際の最深部の深さを表す最も深い側の測定値を基準とした所定の範囲内に分布する測定値とは、溶け込み深さの測定値の最深部側を下位側としたときの下位数%の範囲内の測定値である。
 このことから、複数の測定値の下位数%の平均値を算出した方が、複数の測定値の全データを用いて平均値を算出した場合に比べて、キーホール37の測定値が大きい、つまり、キーホール37の底部37aの深い位置まで測定できていることが分かる。
 また、測定値の下位数%とは、最も深い側の数%の範囲の測定値であり、最深部側の測定値数%と同意である。
 また、複数の測定値のうち、キーホール37の深さが浅い測定値を除いているのは、溶融池36のキーホール37の状態やノイズ、振動、ヒュームやスパッタ等の外乱により、キーホール37が浅く測定されるばらつきの値を除いて、溶接部35の溶け込み深さを精度良く特定するためである。
 言い換えると、レーザ光Lと同軸状に照射される測定光Sで測定されるキーホール37の深さのうち、深い値は、実際に深くないと測定され難い。一方、浅い値は、溶融池36のキーホール37の状態(キーホール37のつぶれ、溶融金属の巻き込み等)や外乱(ノイズ、振動、ヒューム等)によって、キーホール37の深さの途中の乱反射等により誤反射されて浅く測定される等、イレギュラーな値が測定される場合があり、これを除くためである。
 なお、下位数%の範囲は、好ましくは、下位の1%以上20%以下である。これは、下位の1%より小さいと、深い値の特異点値が集中して含まれるおそれがあり、キーホール37の深さは、実際の値(実際の最深部の深さを表す実際の深さの移動平均値)より深めの値となるからである。
 また、下位の20%より大きいと、キーホール37の状態や外乱の影響によるイレギュラーな値が含まれることや、スピン軌道40上の測定値が浅い部分が含まれるため、キーホール37の深さは、実際の値より浅めの値となるからである。
 より好ましくは、下位数%の範囲は、3%以上7%以下であり、下位5%前後の範囲である。これにより、複数の測定値のばらつきを抑えて、溶接部35の溶け込み深さを精度良く特定することができる。
 ここで、平均値とは、単に複数の値の平均値としても良いし、より好ましくは、所定の一定期間の間隔を定め、その間隔内の平均値を連続して計算する移動平均値とするのが良い。
 図8は、光軸ずれが生じていない場合と、光軸ずれが生じており且つ測定光Sをスピン軌道40で旋回移動させた場合との、溶接部35の溶け込み深さ、つまり、キーホール37の深さの測定値を比較したグラフである。なお、何れの測定結果も、抽出した下位数%の測定値の平均値を用いている。
 図8に示すように、光軸ずれが生じていない場合には、キーホール37の深さの測定値が4mm付近を推移している。一方、測定光Sをスピン軌道40で旋回移動させた場合にも、キーホール37の深さの測定値が4mm付近を推移している。つまり、測定光Sをスピン軌道40で旋回移動させた場合には、光軸ずれが生じていない場合のキーホール37の底部37aの深さと、略同じ深さまで探索できていることが分かる。
 以下、溶接部35の溶け込み深さの測定動作について説明する。
 図9は、溶接部35の溶け込み深さの測定動作を示すフローチャートである。
 図9に示すように、まず、ステップS101では、レーザ照射ヘッド20においてレーザ光Lと測定光Sとを同軸に重ね合わせて溶接部35に照射を開始し、ステップS102に進む。
 ステップS102では、レーザ光L及び測定光Sの照射位置の旋回移動を開始し、ステップS103に進む。旋回移動は、溶接経路34上を移動する回転中心RCの周りを螺旋状に旋回移動させるように、レーザ光L及び測定光Sの照射位置を変化させる。
 ステップS103では、測定部14が、溶接部35で反射した測定光Sに基づいて、溶接部35の溶け込み深さの測定を開始し、ステップS104に進む。すなわち、ステップS103の処理により、測定部14は、溶接部35の溶け込み深さを繰り返し測定することになる。
 溶接が完了すると、ステップS101~S103で開始した処理を終了し、ステップS104では、判定部17が、測定光Sの旋回移動中に測定された溶け込み深さの複数の測定値の全てが所定の閾値の範囲外(すなわち、所定の閾値未満)であるかを判定する。ステップS104での判定が「YES」の場合には、測定値が異常であると判断して、ステップS105に分岐する。ステップS104での判定が「NO」の場合には、ステップS106に分岐する。
 ここで、所定の閾値は、例えば、レーザ光Lの出力強度や溶接速度に応じて予め決定される溶け込み深さの基準となる閾値である。言い換えると、所定の閾値は、予め実験等により求めた、レーザ光Lの出力強度や溶接速度に応じた溶け込み深さとしてのキーホール37の深さの値であり、判定部17にテーブルとして記憶されている。
 そして、測定値が閾値の範囲外、つまり、測定値が閾値から大きく乖離している場合には、溶け込み深さを正確に測定できていないと判断する。これにより、閾値から大きく乖離している異常値を、キーホール37の最深部の測定値であると誤って特定してしまうのを抑えることができる。
 ステップS105では、図示しない表示モニタに測定値の異常を警告するメッセージを表示する等、ユーザーに異常を報知して、溶接部35の溶け込み深さの測定動作の処理を終了する。
 一方、ステップS106では、判定部17が、測定部14で測定された複数の測定値に基づいて、溶接部35の溶け込み深さを特定して、溶接部35の溶け込み深さの測定動作の処理を終了する。例えば、複数の測定値のうち、下位数%の測定値を抽出して、その平均値、具体的には、所定の一定期間である間隔SA(Sampling Area)内の平均値を連続して算出することで、溶け込み深さを判定する。なお、複数の測定値のうち、キーホール37の深さが浅い測定値を除いて、キーホール37の深さが所定の閾値よりも大きな下位数%の測定値を抽出して、その平均値を算出することで、溶け込み深さを判定するようにしてもよい。これにより、複数の測定値のばらつきを抑えて、溶接部35の溶け込み深さを精度良く特定することができる。
 なお、測定光Sの旋回移動中に、レーザ光Lの照射位置よりも溶接方向の後方位置の溶接部35の溶け込み深さを複数回測定し、複数の測定値に基づいて、溶け込み深さを判定するようにすれば、キーホール37の最深部の深さをさらに精度良く特定することができる。
 つまり、レーザ光Lの照射位置よりも溶接方向の前方位置では、キーホール37の実際の最深部よりも浅い深さが測定されてしまう。一方、レーザ光Lの照射位置よりも溶接方向の後方位置で溶接部35の溶け込み深さを複数回測定すれば、キーホール37の実際の最深部よりも浅い深さが測定されるのを抑えることができる。
 なお、複数の測定値間でばらつきがそれほど生じていないのであれば、複数の測定値のうち最も大きい値や、複数の測定値の平均値を、溶接部35の溶け込み深さと判定するようにしてもよい。
 以上のように、測定光Sの照射位置を移動し旋回移動させ、測定光Sの照射位置としての光軸位置を、レーザ光Lのスポット径の1/2よりも小さな半径領域内での回転半径rで移動するように変化させながら溶け込み深さの測定を行うことで、キーホール37の最深部に測定光Sが照射されるように探索して、レーザ光Lと測定光Sとの光軸ずれの影響を抑えることができる。そして、さらに例えば、一定期間内に測定された複数の測定値のうち最も大きな値、複数の測定値の平均値、複数の測定値のうち下位数%の平均値などを、最深部の溶け込み深さとして判定すればよい。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 本実施形態では、スピン軌道40の軌跡は、単純な螺旋形状だけでなく、円形状や、四角形等の多角形状であってもよい。また、図10に示すように、楕円状の軌跡が不連続に形成されたものであってもよい。つまり、測定光Sがキーホール37内部に照射される連続的な軌跡であれば、種々の形状とすることができる。また、スピン軌道40のレーザ光Lの溶接方向に対しての照射の回転方向は、時計回りであっても良いし、反時計回りであっても良い。
 また、本実施形態では、直線状の溶接経路34に沿って、レーザ光L及び測定光Sを螺旋状に移動させて照射するようにしたが、溶接経路は直線状に限られない。例えば、ロボット18によってレーザ照射ヘッド20を螺旋状に移動させながらレーザ光Lを照射することで、溶接経路が螺旋形状となる場合が考えられる。このような場合には、この螺旋形状の溶接経路上で、測定光Sの照射位置を旋回移動させてキーホール37の底部37aの探索を行うようにすればよい。
 また、本実施形態では、レーザ照射ヘッド20やロボット18によって、レーザ光L及び測定光Sの照射位置を移動させているが、螺旋状の軌跡を通るようにレーザ照射位置を変更できれば、ガルバノスキャナなどを用いてもよい。
 また、本実施形態では、上側金属板31及び下側金属板32の2枚を重ねてレーザ溶接を行う構成について説明したが、例えば、3枚以上の金属板を重ねてレーザ溶接を行うようにしてもよい。
 また、本実施形態では、ビームスプリッタ25の手前に、第1のコリメートレンズ21及び第1のフォーカスレンズ22と、第2のコリメートレンズ23及び第2のフォーカスレンズ24とをそれぞれ設けて、別々に集光するようにしているが、この形態に限定するものではない。
 例えば、第1のコリメートレンズ21及び第1のフォーカスレンズ22と、第2のコリメートレンズ23及び第2のフォーカスレンズ24とを設ける代わりに、図11に示すようにしてもよい。すなわち、ビームスプリッタ25の直下に、コリメートレンズ41及びフォーカスレンズ42を設け、レーザ光L及び測定光Sを、ビームスプリッタ25を介した後で共に集光するようにしても良い。
 具体的には、コリメートレンズ41及びフォーカスレンズ42からなる1組のレンズ構成によって集光する構造とすることが好ましい。このように、1組のレンズ構成とすれば、光軸の調整やレンズの固定をより容易に行うことができる。
 また、本実施形態では、溶け込み深さである最深部の深さは、溶け込み深さの測定値の最深部側を下位側としたときの下位数%の測定値を抽出して、その平均値、具体的には、所定の一定期間である間隔SA内の平均値を連続して計算する等の移動平均値を算出するようにしたが、この形態に限定するものでない。
 例えば、所定の一定期間である間隔SA毎の下位数%の測定値を抽出して、それぞれの間隔SA毎における、それぞれの値、又はそれぞれの平均値を抽出することで、溶け込み深さの測定値として算出しても良い。
 具体的には、例えば、所定の一定期間である間隔SAを50msecとして、間隔SA毎の測定開始点を50msec単位で変更しながら、間隔SA内の複数のデータの下位数%の値を連続的に算出していっても良い。あるいは測定開始点を1msec単位で変更しながら、間隔SA毎の下位数%の値を連続的に算出するものであっても良い。
 これによって、最深部の深さをより精度よく効率的に特定できる。全データの下位数%を抽出した後の、移動平均としての所定の一定期間である間隔SA毎の平均値演算よりも、間隔SA毎の下位数%の平均値の演算処理の方が、間隔SA毎に演算が完結できて演算処理が少なくなる。そのため、演算部のメモリ等のスペックが低い場合でも短時間での処理が可能である。また、演算処理が少ないことにより、演算処理の時間を短縮できるため、加工・計測工程における生産タクトタイムの短縮に有効である。
 また、測定区間を所定の一定期間である間隔SAとして、例えば、この間隔SAを50msecとし、測定周波数(サンプリング周波数)を20kHzとすることで、その間隔SAにおいて1000回の測定値を取得した場合について説明する。
 この場合には、間隔SAにおける1000回の測定値のうち、最深部を下位側とした場合の下位5%目、すなわち、下位側より50番目の深さの測定値をそのまま抽出し、溶け込み深さの測定値とする(平均はしない)。
 さらに、例えば、50msecの間隔SAの測定開始点を2msec単位で細かくずらしながら重複するように変更し、それぞれの下位5%目の値を溶け込み深さの測定値として抽出する。
 これにより、演算時のメモリ量を抑制し、CPUの負担を低減させて効率良く、溶け込み深さを測定することができる。言い換えると、簡易的な移動平均のように、溶け込み深さを信頼性良く求めることができる。
 なお、間隔SAや測定周波数の設定により、下位5%目の値が存在せず、例えば下位4%目や6%目等、他の値しか存在しない場合は、5%目に最も近い下位数%目の測定値を下位5%目の値として抽出し、溶け込み深さの測定値とする。
 このとき、下位数%の範囲の許容値は、好ましくは、下位の1%以上20%以下である。より好ましくは、下位数%の範囲は、3%以上7%以下であり、下位5%前後の範囲である。
 ここで、間隔SAにおける測定値の取得回数は、好ましくは100~200回以上である。これは、100回未満では、取得回数が少ないことにより、溶融池36のキーホール37の状態(キーホールのつぶれ、溶融金属の巻き込み等)や外乱(ノイズ、振動、ヒューム等)の影響を受けてイレギュラーな値が測定された場合がある。このような場合、イレギュラーな値を高品質で除くことが困難になるためである。
 そのため、間隔SAにおける測定値の取得回数が100~200回以上であれば、イレギュラーな値が測定された場合でも、イレギュラーな値を高品質で除くことができる。
 これにより、例えば、下位5%目が存在せずとも下位の4%以上、6%以下の測定値を、溶け込み深さの測定値として特定することができるため、溶け込み深さを精度良く特定できる。
 なお、ビームスプリッタ25は、より好ましくは特定の波長の光を反射し、その他の波長の光を透過するダイクロイックミラーを用いても良い。
 何れを用いる場合においても、レーザ光Lの波長は透過し、測定光Sの波長は反射する光学部材を用いることで、レーザ光Lと測定光Sを同軸状に溶接対象物30の溶接部35に向かって照射できる。その結果、十分な光量を溶接部35の溶融時に形成されるキーホール37の内部に照射できるため、キーホール深さの特定に有用である。
 本実施形態では、レーザ光L及び測定光Sの照射位置をともに螺旋状に移動させるものとして説明した。この場合、レーザ光Lとともに測定光Sの照射位置を移動させても良く、また、レーザ光Lに対して測定光Sの照射位置を相対的に移動させて、レーザ光Lのスポット径の1/2よりも小さな回転半径で移動させてもよい。
 また、レーザ光Lに対して測定光Sの照射位置を相対的に移動させる場合は、例えばレーザ光Lの照射位置を直線状に移動させ、測定光Sの照射位置を単純な螺旋形状だけでなく、円形状や、三角形、四角形等の多角形状となるように移動させてもよい。以下、図12及び図13を用いて具体的に説明する。
 図12は、変形例に係るレーザ照射ヘッド20Aの構成を示す模式図である。また、図13は、測定光Sの光路の変化の様子を示す模式図である。なお、図11に示すレーザ照射ヘッド20の構成と同じ部分については同じ符号を付しており、以下では相違点についてのみ説明する。
 図12に示すように、レーザ照射ヘッド20Aは、図11に示すレーザ照射ヘッド20の構成に加え、第3の平行平板43を備える。
 第3の平行平板43は、第1の平行平板26や第2の平行平板27と同様に、図示しないモータに接続され、制御装置16からの指令に従って回転するものであり、測定光Sの照射位置を変更可能な照射位置変化部を構成している。レーザ照射ヘッド20aに入った測定光Sは、第3の平行平板43を通ることで、ビームスプリッタ25への入射位置が切り替えられる。
 具体的には、第3の平行平板43を回転させ、図12に示す角度となるように第3の平行平板43を調整した場合には、測定光Sは、ビームスプリッタ25を透過したレーザ光Lと結合する位置に照射される。なお、この例では、第2の平行平板27は、図11に示す角度とは異なり、第1の平行平板26と略平行となる角度に調整されている。
 そして、測定光Sは、ビームスプリッタ25によって、レーザ光Lと同心・同軸状に重ね合わされる。同軸に重ね合わされたレーザ光Lと測定光Sとは、コリメートレンズ41によって平行化され、フォーカスレンズ42によって集光される。
 一方、第3の平行平板43を回転させ、図13に示す角度となるように第3の平行平板43を調整した場合には、測定光Sは、ビームスプリッタ25を透過したレーザ光Lよりも溶接方向の後方位置に照射される。具体的には、図13に示す例では、レーザ照射ヘッド20Aを右方向に移動させながら溶接を行っているので、測定光Sは、ビームスプリッタ25によって、レーザ光Lよりも溶接方向の後方(左方向)の位置で屈折して、レーザ光Lと測定光Sとが平行となる。そして、レーザ光Lと測定光Sとは、コリメートレンズ41によって平行化され、フォーカスレンズ42によって集光される。
 このように、第3の平行平板43を回転させ、角度を調整することで、レーザ光Lに対して測定光Sの照射位置を相対的に移動させることができ、測定光Sの照射位置を単純な螺旋形状だけでなく、円形状や、三角形、四角形等の多角形状となるように移動させることができる。
 また、レーザ光Lの照射位置を直線状に移動させた場合(いわゆるライン状加工)、螺旋状に移動させたとき(いわゆるスピン状加工)よりも、高速に、つまり短時間での加工が可能となる。すなわち、ライン状加工で加工生産タクトの向上を図りつつ、より細かくキーホール37の底部37aを探索し、キーホール37内の溶け込み深さをより精度良く測定することができる。
 なお、測定光Sの照射位置を螺旋形状、円形状、多角形状となるように移動させる際の照射の方向は、時計回りであっても良いし、反時計回りであっても良い。
 また、この変形例では、レーザ光Lの照射位置を直線状に移動させる例を挙げたが、レーザ光Lの照射位置を比較的大きな径のスピン軌道40に沿って、移動させてもよい。この変形例では、測定光Sの照射位置を、レーザ光Lとは独立して相対的に移動させている。従って、レーザ光Lの照射位置を比較的大きな径のスピン軌道40に沿って移動させた場合でも、測定光Sの照射位置を、レーザ光Lのスポット径の1/2よりも小さな回転半径で移動するように変化させ、言い替えると、測定光Sの照射位置を、所定の溶接経路上を移動するように変化させ、測定光Sの照射位置としての光軸位置を、レーザ光Lのスポット径の1/2よりも小さな回転半径の領域内で移動するように変化させ、測定光Sを高速に移動・回転させることができる。すなわち、より細かくキーホール37の底部37aを探索し、キーホール37内の溶け込み深さを測定することができる。
 また、レーザ光Lの軌跡は連続的なものだけではなく、不連続に形成されたものであってもよい。つまり、レーザ光Lが照射される移動軌跡の進行方向である溶接方向にレーザ光Lが移動し、キーホール37内部に照射されたレーザ光Lに対して、レーザ光Lの照射方向の平面視で、測定光Sが交差する軌跡であれば、種々の形状とすることができる。
 なお、変形例に係るレーザ照射ヘッド20Aは、図11に示すレーザ照射ヘッド20と同様に、ビームスプリッタ25の直下に、コリメートレンズ41及びフォーカスレンズ42を設け、レーザ光L及び測定光Sを、ビームスプリッタ25を介した後で共に集光するものとして説明した。しかしながら、図2に示すレーザ照射ヘッド20と同様に、レーザ光Lまたは測定光Sが通過する通過方向でのビームスプリッタ25の手前に、第1のコリメートレンズ21及び第1のフォーカスレンズ22と、第2のコリメートレンズ23及び第2のフォーカスレンズ24とをそれぞれ設けて、別々に集光するようにしてももちろん良い。
 以上説明したように、本開示は、溶接部の溶け込み深さをより精度良く測定することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。
 10  レーザ溶接装置
 11  レーザ発振器
 12  光干渉計
 13  測定光発振器
 14  測定部
 16  制御装置
 17  判定部
 18  ロボット
 19  光ファイバ
 20  レーザ照射ヘッド(照射部)
 20A レーザ照射ヘッド(照射部)
 21  第1のコリメートレンズ
 22  第1のフォーカスレンズ
 23  第2のコリメートレンズ
 24  第2のフォーカスレンズ
 25  ビームスプリッタ
 26  第1の平行平板(照射位置変化部)
 27  第2の平行平板(照射位置変化部)
 30  溶接対象物
 31  上側金属板
 32  下側金属板
 34  溶接経路
 35  溶接部
 36  溶融池
 37  キーホール
 37a 底部
 38  凝固部
 40  スピン軌道
 41  コリメートレンズ
 42  フォーカスレンズ
 43  第3の平行平板(照射位置変化部)
  L  レーザ光
  r  回転半径
  S  測定光
 RC  回転中心

Claims (9)

  1.  レーザ光で溶接部を溶接するレーザ溶接装置であって、
     前記レーザ光と、前記レーザ光とは波長の異なる測定光とを同軸に重ね合わせて前記溶接部に照射する照射部と、
     前記測定光の照射位置を、所定の溶接経路上を移動するように変化させ、前記測定光の前記照射位置としての光軸位置を、前記レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させる照射位置変化部と、
     前記測定光の前記移動中に前記照射部から照射されて前記溶接部で反射した前記測定光に基づいて、前記溶接部の溶け込み深さを繰り返し測定する測定部と、
     一定期間内に前記測定部で測定された複数の前記溶け込み深さの測定値を用いて、前記溶接部の前記溶け込み深さの判定を、前記一定期間の開始時点をずらしながら行う判定部とを備えることを特徴とするレーザ溶接装置。
  2.  請求項1に記載のレーザ溶接装置において、
     前記照射位置変化部は、前記測定光の照射位置を、所定の溶接経路上を移動する回転中心の周りを旋回移動するように変化させることを特徴とするレーザ溶接装置。
  3.  請求項2に記載のレーザ溶接装置において、
     前記照射位置変化部は、前記旋回移動において前記測定光の前記照射位置を、前記回転中心を周回する螺旋形状を有する軌跡に沿って移動するように変化させることを特徴とするレーザ溶接装置。
  4.  請求項1又は2に記載のレーザ溶接装置において、前記判定部は、前記測定部で測定された前記溶け込み深さの前記一定期間内の複数の前記測定値のうち、最も深い側の前記測定値を基準とした所定の範囲内に分布する複数の前記測定値、又は複数の測定値の平均値に基づいて、前記溶接部の溶け込み深さを判定することを特徴とするレーザ溶接装置。
  5.  請求項4に記載のレーザ溶接装置において、最も深い側の前記測定値を基準とした前記所定の範囲は、前記溶け込み深さの前記測定値の最深部側を下位としたときの、下位の1%以上で且つ20%以下の範囲であることを特徴とするレーザ溶接装置。
  6.  請求項1乃至5のうち何れか1項に記載のレーザ溶接装置において、
     前記判定部は、更に、前記測定部で測定された前記溶け込み深さの前記測定値と、前記レーザ光の出力強度及び溶接速度の少なくとも一方により定まる前記溶け込み深さの基準となる閾値とを比較することで、前記溶け込み深さの前記測定値が異常であるかを判定することを特徴とするレーザ溶接装置。
  7.  レーザ光で溶接部を溶接するレーザ溶接方法であって、
     前記レーザ光と、前記レーザ光とは波長の異なる測定光とを同軸に重ね合わせて前記溶接部に照射する照射ステップと、
     前記測定光の照射位置を、所定の溶接経路上を移動するように変化させ、前記測定光の前記照射位置としての光軸位置を、前記レーザ光のスポット径の1/2よりも小さな回転半径領域内で移動するように変化させる照射位置変化ステップと、
     前記測定光の前記移動中に前記溶接部で反射した前記測定光に基づいて、前記溶接部の溶け込み深さを繰り返し測定する測定ステップと、
     一定期間内に前記測定ステップで測定された複数の前記溶け込み深さの測定値を用いて、前記溶接部の前記溶け込み深さの判定を、前記一定期間の開始時点をずらしながら行う判定ステップとを有することを特徴とするレーザ溶接方法。
  8.  請求項7に記載のレーザ溶接方法において、
     前記照射位置変化ステップでは、
    前記レーザ光及び前記測定光の照射位置をともに螺旋状に移動させる場合は、前記レーザ光とともに前記測定光の照射位置を移動させる、または、前記レーザ光に対して前記測定光の照射位置を相対的に移動させることを特徴とするレーザ溶接方法。
  9.  請求項7に記載のレーザ溶接方法において、
     前記照射位置変化ステップでは、
    前記レーザ光に対して前記測定光の照射位置を相対的に移動させる場合は、前記レーザ光の照射位置を直線状に移動させ、前記測定光の照射位置を円形状や、三角形、四角形等の多角形状となるように移動させることを特徴とするレーザ溶接方法。
PCT/JP2019/002613 2018-02-16 2019-01-28 レーザ溶接装置及びレーザ溶接方法 WO2019159659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19753685.7A EP3753666A4 (en) 2018-02-16 2019-01-28 LASER WELDING DEVICE AND LASER WELDING PROCESS
JP2020500369A JP7203306B2 (ja) 2018-02-16 2019-01-28 レーザ溶接装置及びレーザ溶接方法
CN201980004622.2A CN111107959B (zh) 2018-02-16 2019-01-28 激光焊接装置以及激光焊接方法
US16/984,261 US11999008B2 (en) 2018-02-16 2020-08-04 Laser welding device and laser welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018025736 2018-02-16
JP2018-025736 2018-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/984,261 Continuation US11999008B2 (en) 2018-02-16 2020-08-04 Laser welding device and laser welding method

Publications (1)

Publication Number Publication Date
WO2019159659A1 true WO2019159659A1 (ja) 2019-08-22

Family

ID=67620989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002613 WO2019159659A1 (ja) 2018-02-16 2019-01-28 レーザ溶接装置及びレーザ溶接方法

Country Status (5)

Country Link
US (1) US11999008B2 (ja)
EP (1) EP3753666A4 (ja)
JP (1) JP7203306B2 (ja)
CN (1) CN111107959B (ja)
WO (1) WO2019159659A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030295A (ja) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 レーザ加工装置および光学調整方法
US20240017358A1 (en) * 2020-12-03 2024-01-18 Jfe Steel Corporation Position detection apparatus for seam portion and heating portion of welded steel pipe, manufacturing equipment for welded steel pipe, position detection method for seam portion and heating portion of welded steel pipe, manufacturing method for welded steel pipe, and quality control method for welded steel pipe
WO2024014335A1 (ja) * 2022-07-14 2024-01-18 村田機械株式会社 異常判定装置、レーザ加工機、及び異常判定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070574A (zh) * 2021-04-29 2021-07-06 深圳市艾雷激光科技有限公司 激光焊接方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
WO2014132503A1 (ja) * 2013-02-27 2014-09-04 三菱重工業株式会社 加工装置および加工方法
JP2016538134A (ja) * 2013-09-23 2016-12-08 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP2018501964A (ja) * 2014-10-20 2018-01-25 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー 溶接シームの深さをリアルタイムで測定するための装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032555B2 (ja) * 1979-09-28 1985-07-29 株式会社日立製作所 レ−ザビ−ム溶接回転ヘツド
JP3534806B2 (ja) 1994-02-28 2004-06-07 三菱電機株式会社 レーザ切断方法及びその装置
JP3439138B2 (ja) * 1998-11-10 2003-08-25 宮本 勇 レ―ザ溶接モニタリング方法及びその装置
DE19852302A1 (de) * 1998-11-12 2000-05-25 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mit Hochenergiestrahlung
US7804043B2 (en) * 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US20060011592A1 (en) * 2004-07-14 2006-01-19 Pei-Chung Wang Laser welding control
DE102005022095B4 (de) * 2005-05-12 2007-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bestimmung einer lateralen Relativbewegung zwischen einem Bearbeitungskopf und einem Werkstück
GB0803559D0 (en) * 2008-02-27 2008-04-02 Univ Kent Canterbury Multiple path intererometer and method
DE102010011253B4 (de) * 2010-03-12 2013-07-11 Precitec Kg Laserbearbeitungskopf, Robotervorrichtung und Verfahren zur Bearbeitung eines Werkstücks mittels eines Laserstrahls
DE102010020183B4 (de) * 2010-05-11 2013-07-11 Precitec Kg Laserschneidkopf und Verfahren zum Schneiden eines Werkstücks mittels eines Laserschneidkopfes
US10124410B2 (en) * 2010-09-25 2018-11-13 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
HUE065575T2 (hu) * 2010-09-25 2024-06-28 Ipg Photonics Canada Inc Koherens képalkotó és visszacsatolásos vezérlõ eljárás anyagok módosításához
EP2567773B1 (de) * 2011-09-08 2017-04-19 TRUMPF Werkzeugmaschinen GmbH + Co. KG Verfahren zum überprüfen der nahtqualität während eines laserschweissprozesses
FR2981287B1 (fr) * 2011-10-13 2013-12-27 Commissariat Energie Atomique Appareil et procede de decoupe au laser a impulsions de gaz asservies en frequence ou en pression
HUE053513T2 (hu) * 2013-03-13 2021-07-28 Ipg Photonics Canada Inc Eljárások és összeállítások lézeres megmunkálás tulajdonságainak jellemzésére gõzcsatorna-dinamika interferometriát alkalmazó mérésével
JP5947741B2 (ja) * 2013-03-29 2016-07-06 トヨタ自動車株式会社 溶接部の検査装置とその検査方法
JP2014231071A (ja) * 2013-05-29 2014-12-11 三星ダイヤモンド工業株式会社 レーザ光による基板切断装置
DE102013218421A1 (de) * 2013-09-13 2015-04-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Überwachung, insbesondere zur Regelung, eines Schneidprozesses
CN106102981B (zh) * 2014-03-12 2017-12-29 三菱电机株式会社 带照相机监视器的激光加工头装置
DE102014011569B4 (de) * 2014-08-02 2016-08-18 Precitec Optronik Gmbh Verfahren zum Messen des Abstands zwischen einem Werkstück und einem Bearbeitungskopf einer Laserbearbeitungsvorrichtung
CN107530831B (zh) 2015-06-01 2019-08-09 松下知识产权经营株式会社 激光焊接方法、激光焊接条件决定方法以及激光焊接系统
DE102017117413B4 (de) * 2017-08-01 2019-11-28 Precitec Gmbh & Co. Kg Verfahren zur optischen Messung der Einschweißtiefe
CN111971144B (zh) * 2018-04-13 2022-09-13 松下知识产权经营株式会社 激光焊接方法
DE102019103734A1 (de) * 2019-02-14 2020-08-20 Precitec Gmbh & Co. Kg Laserbearbeitungssystem zur Bearbeitung eines Werkstücks mittels eines Laserstrahls und Verfahren zum Steuern eines Laserbearbeitungssystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
WO2014132503A1 (ja) * 2013-02-27 2014-09-04 三菱重工業株式会社 加工装置および加工方法
JP2016538134A (ja) * 2013-09-23 2016-12-08 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP2018501964A (ja) * 2014-10-20 2018-01-25 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー 溶接シームの深さをリアルタイムで測定するための装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3753666A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021030295A (ja) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 レーザ加工装置および光学調整方法
JP7262081B2 (ja) 2019-08-29 2023-04-21 パナソニックIpマネジメント株式会社 レーザ加工装置および光学調整方法
US11648624B2 (en) 2019-08-29 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Laser processing apparatus and optical adjustment method
US20240017358A1 (en) * 2020-12-03 2024-01-18 Jfe Steel Corporation Position detection apparatus for seam portion and heating portion of welded steel pipe, manufacturing equipment for welded steel pipe, position detection method for seam portion and heating portion of welded steel pipe, manufacturing method for welded steel pipe, and quality control method for welded steel pipe
WO2024014335A1 (ja) * 2022-07-14 2024-01-18 村田機械株式会社 異常判定装置、レーザ加工機、及び異常判定方法

Also Published As

Publication number Publication date
US20200376591A1 (en) 2020-12-03
US11999008B2 (en) 2024-06-04
CN111107959A (zh) 2020-05-05
EP3753666A1 (en) 2020-12-23
JPWO2019159659A1 (ja) 2021-01-28
EP3753666A4 (en) 2021-05-05
JP7203306B2 (ja) 2023-01-13
CN111107959B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2019159660A1 (ja) レーザ溶接装置及びレーザ溶接方法
WO2019159659A1 (ja) レーザ溶接装置及びレーザ溶接方法
JP7126219B2 (ja) レーザ溶接方法
JP6645960B2 (ja) 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP6808027B2 (ja) 溶接深さを光学的に測定するための方法
CA2792322C (en) Laser processing head and method for processing a workpiece by means of a laser beam
EP3778100B1 (en) Laser welding method, and laser welding device
JP6831302B2 (ja) レーザ加工品の製造方法および電池の製造方法
JPWO2018097018A1 (ja) レーザ加工装置及びレーザ加工方法
JP7126221B2 (ja) レーザ溶接装置
JP7113315B2 (ja) レーザ溶接方法
JP6854317B2 (ja) 加工プログラム作成装置及び溶融金属の飛散方向決定方法
JP2019181538A (ja) レーザ溶接装置及びレーザ溶接方法
WO2021210602A1 (ja) レーザ溶接方法
JP5533583B2 (ja) 透光性管状物体の厚さ測定装置
JP2023108708A (ja) レーザ溶接装置及びレーザ溶接方法
JP2012055929A (ja) レーザ加工装置、及び、レーザ加工装置のフォーカスサーボ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753685

Country of ref document: EP

Effective date: 20200916