WO2019159442A1 - 除菌装置及び水回り機器 - Google Patents

除菌装置及び水回り機器 Download PDF

Info

Publication number
WO2019159442A1
WO2019159442A1 PCT/JP2018/040762 JP2018040762W WO2019159442A1 WO 2019159442 A1 WO2019159442 A1 WO 2019159442A1 JP 2018040762 W JP2018040762 W JP 2018040762W WO 2019159442 A1 WO2019159442 A1 WO 2019159442A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
test
sterilizing
sterilized
hydrogen peroxide
Prior art date
Application number
PCT/JP2018/040762
Other languages
English (en)
French (fr)
Inventor
石川 隆久
山本 剛之
中島 泰仁
佐藤 一博
前浪 洋輝
外山 公也
肇 太田
大輝 本多
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Publication of WO2019159442A1 publication Critical patent/WO2019159442A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells

Definitions

  • the present invention relates to a sterilization apparatus for supplying sterilized water to a watering device and a watering device.
  • hypochlorous acid a sterilizing component
  • microbial soil that propagates in water-related devices involves a variety of microorganisms such as bacteria, yeasts, and molds, and each bacterium has different resistance to sterilizing components. .
  • an object of the present invention is to provide a sterilization apparatus that can effectively suppress various microbial stains on water-circulating devices.
  • the present invention is a sterilization apparatus for water-circulating devices, a heating unit that heats the temperature of the sterilizing water to 40 ° C. or higher, and the sterilized water heated to 40 ° C. or higher as the water-circulating device. It is related with a disinfection apparatus provided with the supply part which disinfects the above-mentioned water supply apparatus by supplying to and contacting.
  • the sterilizing water is preferably hydrogen peroxide.
  • the concentration of hydrogen peroxide in the sterilized water is preferably 0.1% or more.
  • the sterilized water is hypochlorous acid water.
  • the concentration of hypochlorous acid in the sterilized water is preferably 1 mg / L or more.
  • the supply unit supplies the sterilized water to the watering device for 10 seconds or more and makes contact.
  • a generating unit that generates the sterilized water by electrolyzing water.
  • the present invention also relates to a watering device equipped with the sterilization apparatus.
  • FIG. 1 is a schematic diagram of a sterilization apparatus according to an embodiment of the present invention.
  • the sterilization apparatus 1 according to this embodiment is an apparatus that sterilizes the water-circulating device 2 by supplying the sterilizing water 6 heated to 40 ° C. or more to the water-circulating device 2.
  • the sterilization apparatus 1 includes a water tank 5, a supply unit 20, and a heating unit 30, and the supply unit 20 includes a flow path 4, a pump 7, a spray nozzle 8, And a control unit 11.
  • the sterilization apparatus 1 supplies the sterilized water 6 heated to 40 ° C. or more to the water-circulating device 2, thereby effectively suppressing various microbial stains on the water-circulating device 2.
  • the bacteria causing pink slimming shown in Table 1 are sterilized by the sterilized water 6.
  • the sterilized water 6 is 40 ° C. or higher, the causative bacteria that are difficult to sterilize with the conventional sterilized water regardless of its components, for example, the black causative bacteria shown in Table 1 are sterilized.
  • the A synergistic effect of heating the sterilized water is added to the individual sterilization effect of the sterilized water, and various microbial stains of the water-circulating device 2 can be effectively suppressed.
  • the watering device 2 is, for example, a toilet, a bathroom, a kitchen, a sink, or a washing machine.
  • the water tank 5 stores sterilized water 6.
  • the sterilized water 6 is hydrogen peroxide water or hypochlorous acid water.
  • generation part 200 (refer FIG. 3) mentioned later in the water tank 5 produces
  • the sterilized water 6 may be generated by a device other than the generation unit 100 or the generation unit 200.
  • the produced sterilized water 6 is supplied (stored) to the water tank 5.
  • the generation unit 100 or the generation unit 200 may be installed upstream of the water tank 5, and the sterilized water 6 electrolyzed upstream of the water tank 5 may be supplied to the water tank 5.
  • the water tank 5 may also serve as the generation unit 100 or the generation unit 200.
  • the supply unit 20 supplies the sterilized water 6 heated to 40 ° C. or higher to the water-circulating device 2 and makes it contact.
  • the channel 4 is a channel through which the sterilized water 6 circulates.
  • the upstream end of the flow path 4 is connected to the water tank 5.
  • a pump 7 and a heater 9 to be described later are arranged from the upstream side to the downstream side of the flow path 4.
  • the downstream end of the flow path 4 is connected to the spray nozzle 8.
  • the pump 7 sucks the sterilized water 6 from the water tank 5 and supplies the sterilized water 6 toward the spray nozzle 8.
  • the pump 7 is electrically connected to the control unit 11.
  • the control unit 11 detects the usage state of the water supply device 2 and controls the operation of the pump 7. In addition to the operation of the pump 7, the control unit 11 may control, for example, the temperature of the sterilized water 6, the contact time between the sterilized water 6 and the water-circulating device 2, and the like.
  • the spray nozzle 8 sprays the sterilized water 6.
  • the spray nozzle 8 is disposed in the vicinity of a portion where the microbial contamination of the water-circulating device 2 is likely to occur.
  • the sterilized water 6 is sprayed from the spray nozzle 8, the sterilized water 6 at 40 ° C. or more directly contacts the water-circulating device 2.
  • the component of the sterilized water 6 (in this embodiment, hydrogen peroxide or hypochlorous acid) sterilizes the causative bacteria of the stains shown in Table 1, for example.
  • the sterilized water 6 is such that the contact time between the water-circulating device 2 and the sterilized water 6 is preferably 10 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer. Is sprayed. Thereby, the various microbial stains of the watering device can be more effectively suppressed.
  • the spray nozzle 8 is arranged so that the sterilized water 6 can be directly and universally supplied to the portion of the water supply device 2 where microbial contamination is likely to occur.
  • one spray nozzle 8 is disposed for one water-circulating device 2, but a plurality of spray nozzles may be disposed for one water-circulating device 2.
  • the heating unit 30 heats the temperature of the sterilized water 6 to 40 ° C. or higher.
  • the heating unit 30 includes a heater 9 and a transformer 10.
  • the heater 9 heats the sterilized water 6 so that the sterilized water 6 of 40 ° C. or higher is in contact with the water-circulating device 2.
  • the heater 9 is connected to the transformer 10.
  • the transformer 10 converts electric current into heat energy.
  • the temperature of the sterilized water 6 is preferably 40 ° C. or higher, and more preferably 50 ° C. or higher.
  • the sterilized water 6 is generated by electrolysis of tap water
  • how the sterilized water is generated is described as an example of generating hydrogen peroxide water, hypochlorous acid, and the like.
  • An example of generating acid water will be specifically described.
  • FIG. 2 is a schematic diagram of a production unit for producing hydrogen peroxide water according to an embodiment of the present invention.
  • the generation unit 100 includes a cathode 101, an anode 102, spaces 103 and 104, and a sealed container 105.
  • the cathode 101 is a conductive porous body made of open pores, and a catalyst material such as titanium oxide is applied to the surface thereof.
  • the cathode 101 divides the inside of the sealed container 105 into a space 103 to which water is supplied and a space 104 to which air is supplied.
  • the anode 102 is disposed on the side of the space 103 to which water is supplied so as to face the cathode 101.
  • the space 103 is disposed between the cathode 101 and the anode 102.
  • a DC power source (not shown) is connected to the cathode 101 and the anode 102.
  • the concentration of the hydrogen peroxide solution is preferably 0.1% or more, and more preferably 0.5% or more.
  • “%” representing the concentration of hydrogen peroxide water refers to “mass% per unit volume”.
  • FIG. 3 is a schematic diagram of a generating unit that generates hypochlorous acid water according to an embodiment of the present invention.
  • the generation unit 200 includes a cathode 201, an anode 202, and a space 203.
  • the cathode 201 is a conductive material.
  • the anode 202 is disposed so as to face the cathode 201.
  • the space 203 is disposed between the cathode 201 and the anode 202.
  • a DC power source (not shown) is connected to the cathode 201 and the anode 202.
  • hypochlorous acid water as the sterilized water 6 is generated.
  • the concentration of hypochlorous acid water is preferably 1 mg / L or more, and more preferably 5 mg / L or more.
  • hypochlorite can be obtained by supplying tap water (water to which Cl is added) and air. Water can be repeatedly generated without supplemental components.
  • the sterilization apparatus 1 is the sterilization apparatus 1 of the water-circulating device 2, and includes a heating unit 30 that heats the temperature of the sterilized water 6 to 40 ° C. or higher, and warms to 40 ° C. or higher. And a supply unit 20 for sterilizing the water-circulating device 2 by supplying the sterilized water 6 to the water-circulating device 2 and bringing it into contact therewith. Thereby, the various microbial stains of the watering device can be effectively suppressed.
  • the concentration of hydrogen peroxide in the sterilized water 6 is preferably 0.1% or more.
  • the sterilized water after sterilization returns to water and oxygen again, and even if released to the environment, it does not become a residue, so there is little impact on the environment. .
  • the concentration of hypochlorous acid in the sterilized water 6 is preferably 1 mg / L or more. Thereby, various microbial stains can be effectively suppressed.
  • the supply unit 20 supplies the sterilized water 6 to the water supply device 2 for 10 seconds or more and brings it into contact.
  • the disinfecting water 6 exhibits the disinfecting power effectively and exhibits the antifouling performance, it is possible to more effectively suppress various microbial fouling of the watering device.
  • the water supply device 2 further includes a generation unit 100 or a generation unit 200 that generates the sterilized water 6 by electrolyzing water. Since the production
  • the watering device 2 includes a sterilization apparatus 1.
  • the water supply device 2 is, for example, a toilet, a bathroom, a kitchen, a sink, or a washing machine. It is possible to effectively suppress various microbial stains on these watering devices 2.
  • Table 2 shows the reagents used in the experiments of Examples and Comparative Examples.
  • Example 1 Of the reagents shown in Table 2, hydrogen peroxide was diluted with water to a concentration of 0.1% and heated to a temperature of 40 ° C. to obtain test water of Example 1.
  • Example 2 to Example 4 Of the reagents shown in Table 2, hydrogen peroxide was diluted with water and heated so that the concentration and temperature were the values shown in Table 3 to obtain test water of Examples 2 to 4. .
  • Example 5 Test of Example 5 by electrolyzing water by the above-described method of (1) producing hydrogen peroxide solution so that the concentration of hydrogen peroxide solution becomes the value shown in Table 3 and heating to 40 ° C. Got water.
  • Example 6 to Example 9 The hypochlorous acid water shown in Table 2 was diluted with water, and heated so that the concentration and temperature were the values shown in Table 3, to obtain test water of Examples 6 to 9.
  • Example 10 was carried out by electrolyzing the water so that the concentration of hypochlorous acid water became the value shown in Table 3 by the method of generating (2) hypochlorous acid water described above and heating to 40 ° C. Test water was obtained.
  • ⁇ Sterilization power evaluation test> In the evaluation of sterilizing power, three types of bacteria, bacteria, rhodotorula, and cladosporium, were selected as representatives of bacteria often found in microbial soils in general households. Bactericidal activity against bacteria purchased from the Organization (NITE) Biogenetic Resources Department (abbreviated as NBRC (NITE Biological Resource Center)) was evaluated. The culture conditions for bacteria, yeast, and mold in the sterilizing power evaluation test were as shown in Table 4. Pre-cultured bacteria were placed in physiological saline, and each bacterial solution was prepared so that the concentration of the bacteria or mold spores was 1 ⁇ 10 5 to 1 ⁇ 10 6 co / mL.
  • NITE Biogenetic Resources Department
  • the bacterial solution and the test water were mixed so that the ratio of the bacterial solution to the test water according to each example and comparative example (bacterial solution: test water) was 1: 9. After 10 seconds, the sterilizing component was removed by centrifugation or neutralization.
  • Example 1 to 5 and Comparative Examples 4 to 6 in which the test water is hydrogen peroxide solution in order to remove hydrogen peroxide in the test water, a mixed solution of the bacterial solution and the test water is added after 10 seconds. The cells were precipitated by centrifuging, and the supernatant was removed. Thereafter, the same amount of sterilized physiological saline as the removed supernatant was added. Further, Comparative Examples 1 to 3 not containing hydrogen peroxide were subjected to the same centrifugation operation in order to make the test conditions uniform.
  • Example 6 to 10 and Comparative Examples 10 to 12 where the test water is hypochlorous acid water thiosulfuric acid sterilized in the bacterial solution after 10 seconds to remove hypochlorous acid in the test water Sodium was added to neutralize hypochlorous acid remaining in the bacterial solution. Further, Comparative Examples 7 to 9 containing no hypochlorous acid were subjected to the same neutralization operation in order to make the test conditions uniform.
  • the mixed solution from which the sterilizing components were removed was inoculated into the medium, and the bacteria were cultured again under the conditions described in Table 4 for each mixed solution, and the number of viable bacteria was counted.
  • the sterilizing power was evaluated in Examples 1-5 and Comparative Examples 2-6 using the culture result of Comparative Example 1 as the control viable count, and in Examples 6-10 and Comparative Examples 8-12, the culture result of Comparative Example 7.
  • the results are shown in Table 5. “X” in Table 5 indicates a sterilization rate of less than 90%.
  • Bacteria elimination rate (%) (Number of terrestrial organisms t-number of test organisms t) / number of control organisms t x 100 (7)
  • FIG. 4 is a schematic diagram of a test apparatus used for the field test.
  • toilet toilets were used as watering devices, and it was confirmed whether the contamination generated near the water draft line could be suppressed by spraying the test water in the toilet.
  • the test apparatus is a comparative example (comparative example 2, comparative example 5, comparative example 7, comparative example) simultaneously with the test water of the example (Example 1 or Example 6). Also spray the test water of example 11).
  • FIG. 5 is a schematic diagram of a toilet used in the field test.
  • the toilet bowl 2 was used as a common watering device for the test apparatus 1a and the test apparatus 1b. There was stagnation water 3 in the bowl of this toilet bowl 2, and the water level was kept almost constant by the toilet bowl structure, so that a water draft line 3a was formed.
  • the water tank 5a was filled with the test water 6a of Example 1 or Example 6.
  • the water tank 5b was filled with test water 6b of Comparative Example 2, Comparative Example 5, Comparative Example 7, and Comparative Example 11 for comparison of antifouling performance.
  • a heater 9a is disposed on the flow path 4a of the test apparatus 1a, and a heater 9b is disposed on the flow path 4b of the test apparatus 1b.
  • the heaters 9a and 9b were heated so that the temperature of the test water 6a and 6b flowing through the flow paths 4a and 4b was sprayed from the spray nozzles 8a and 8b at the values shown in Table 2 and the like.
  • the spray nozzle 8a and the spray nozzle 8b were fixed so as to face each other via the sewage 3 at a position slightly above the squeeze water line 3a.
  • the spray nozzle 8a and the spray nozzle 8b were fixed so as not to move during the field test period.
  • the test water 6a was sprayed from the spray nozzle 8a toward the spray part 12a, and the test water 6b was sprayed from the spray nozzle 8b toward the spray part 12b (see FIG. 5).
  • the toilet 2 was cleaned with the procedures and equipment normally used in the home before the field test.
  • test water 6a was sprayed on the spraying part 12a and the distilled water 6b was sprayed on the spraying part 12b at the same timing.
  • Example 1 In Example 1 (Test No. 2-1) and Example 6 (Test No. 2-3) in which test water was heated and sprayed at 40 ° C., test water containing no sterilizing component at 40 ° C. (Comparative Example 2) Or the generation
  • rate of dirt was late
  • contamination was slower than the site

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)

Abstract

水回り機器の多様な微生物汚れを効果的に抑制できる除菌装置を提供すること。 除菌装置1は、水回り機器2の除菌装置1であって、除菌水6の温度を40℃以上に加温する加温部30と、40℃以上に加温された除菌水6を水回り機器2に供給して接触させることで水回り機器2を除菌する供給部20と、を備える。除菌水6が過酸化水素水である場合には、除菌水6中の過酸化水素の濃度は、0.1質量%以上であることが好ましい。除菌水6が次亜塩素酸水である場合には、除菌水6中の次亜塩素酸の濃度は、1mg/L以上であることが好ましい。

Description

除菌装置及び水回り機器
 本発明は、水回り機器に除菌水を供給する除菌装置及び水回り機器に関する。
 従来、トイレ、浴室、キッチン、洗面台、洗濯機などの水回り機器では、微生物が繁殖し、様々な汚れが生じている。そこで、除菌水を水回り機器に供給することで、微生物が関与する汚れを抑制する技術が提案されている。例えば、水道水の電気分解によって次亜塩素酸を含む除菌水を生成し、便器等の汚れを抑制する装置が提案されている(例えば、特許文献1、特許文献2を参照)。
特開2000-220193号公報 特開2000-140848号公報
 しかし、従来の次亜塩素酸を含む除菌水では、例えば次亜塩素酸(除菌成分)の濃度を上げたとしても、水回り機器の多様な微生物汚れを効果的に抑制することが難しい。この原因の一つには、水まわり機器に繁殖する微生物汚れは、細菌や酵母、カビなどの多様な微生物が関与しており、しかもそれぞれの菌で除菌成分に対する耐性が異なることが挙げられる。
 上記状況に鑑み、本発明は、水回り機器の多様な微生物汚れを効果的に抑制できる除菌装置を提供することを目的とする。
 本発明は、水回り機器の除菌装置であって、除菌水の温度を40℃以上に加温する加温部と、40℃以上に加温された前記除菌水を前記水回り機器に供給して接触させることで前記水回り機器を除菌する供給部と、を備える除菌装置に関する。
 また、前記除菌水は、過酸化水素水であることが好ましい。
 また、前記除菌水中の過酸化水素の濃度は、0.1%以上であることが好ましい。
 また、前記除菌水は、次亜塩素酸水であることが好ましい。
 また、前記除菌水中の次亜塩素酸の濃度は、1mg/L以上であることが好ましい。
 また、前記供給部は、前記除菌水を前記水回り機器に10秒以上供給して接触させることが好ましい。
 また、水を電気分解することで前記除菌水を生成する生成部をさらに備えることが好ましい。
 また、本発明は、上記除菌装置を備える水回り機器に関する。
 本発明によれば、水回り機器の多様な微生物汚れを効果的に抑制できる。
本発明の一実施形態に係る除菌装置の模式図である。 本発明の一実施形態に係る過酸化水素水を生成する生成部の模式図である。 本発明の一実施形態に係る次亜塩素酸水を生成する生成部の模式図である。 フィールド試験に用いられた試験装置の模式図である。 フィールド試験に用いられた便器の模式図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、本発明は、以下の実施形態に限定されない。
 図1は、本発明の一実施形態に係る除菌装置の模式図である。本実施形態に係る除菌装置1は、40℃以上に加温された除菌水6を水回り機器2に供給して、水回り機器2を除菌する装置である。図1に示すように、除菌装置1は、水槽5と、供給部20と、加温部30と、を備え、供給部20は、流路4と、ポンプ7と、散布ノズル8と、制御部11とを備える。
 除菌装置1が、40℃以上に加温された除菌水6を水回り機器2に供給することにより、水回り機器2の多様な微生物汚れを効果的に抑制できる。除菌水6により、例えば、表1に示すピンクぬめりの原因菌が除菌される。また、除菌水6が40℃以上になることで、従来の除菌水ではその成分に依らず除菌することが難しかった原因菌、例えば、表1に示す黒ずみの原因菌が除菌される。除菌水が持つ個別の除菌効果に、除菌水を加熱することの相乗効果が加わり、水回り機器2の多様な微生物汚れを効果的に抑制できる。
Figure JPOXMLDOC01-appb-T000001
 水回り機器2は、例えば、トイレ、浴室、キッチン、洗面台又は洗濯機である。
 水槽5は、除菌水6を貯留する。本実施形態においては、除菌水6は、過酸化水素水又は次亜塩素酸水である。例えば、水槽5内の後述する生成部100(図2を参照)又は生成部200(図3を参照)が、電気分解により除菌水6を生成する。なお、除菌水6は生成部100又は生成部200以外の機器により生成されたものでもよい。生成された除菌水6は、水槽5に供給(貯留)される。
 また、生成部100又は生成部200は、水槽5の上流に設置されてもよく、水槽5の上流で電気分解された除菌水6が水槽5に供給されてもよい。あるいは、水槽5は、生成部100又は生成部200を兼ねていてもよい。
 供給部20は、40℃以上に加温された除菌水6を水回り機器2に供給して接触させる。
 流路4は、除菌水6が流通する流路である。流路4の上流側の端部は水槽5と接続される。流路4の上流側から下流側に向けて、ポンプ7と、後述するヒーター9とが配置される。流路4の下流側の端部は散布ノズル8と接続される。
 ポンプ7は、水槽5から除菌水6を吸引し、散布ノズル8に向けて除菌水6を供給する。ポンプ7は、制御部11と電気的に接続されている。
 制御部11は、水回り機器2の使用状態等を検出し、ポンプ7の動作を制御する。制御部11は、ポンプ7の動作以外にも、例えば除菌水6の温度や、除菌水6と水回り機器2との接触時間等を制御してもよい。
 散布ノズル8は、除菌水6を散布する。散布ノズル8は、水回り機器2の微生物汚れが生じやすい部分付近に配置される。散布ノズル8から除菌水6が散布されると、水回り機器2に40℃以上の除菌水6が直接的に接触する。すると、除菌水6の成分(本実施形態においては、過酸化水素又は次亜塩素酸)が例えば表1に示す汚れの原因菌を除菌する。本実施形態においては、水回り機器2と、除菌水6との接触時間が、好ましくは10秒以上、より好ましくは20秒以上、更に好ましくは30秒以上になるように、除菌水6は散布される。これにより、水回り機器の多様な微生物汚れをより効果的に抑制できる。
 散布ノズル8は、水回り機器2の微生物汚れが生じやすい部分に直接的に万遍なく除菌水6を供給できるように配置されることが好ましい。また、図1では1つの水回り機器2に対して1つの散布ノズル8が配置されているが、1つの水回り機器2に対して複数の散布ノズルが配置されてもよい。
 加温部30は、除菌水6の温度を40℃以上に加温する。加温部30は、ヒーター9と、変圧器10とを備える。ヒーター9は、水回り機器2に40℃以上の除菌水6が接触するように除菌水6を加温する。また、ヒーター9は、変圧器10と接続されている。変圧器10は、電流を熱エネルギーに変換する。なお、効果的に汚れの原因菌を除菌するために、除菌水6の温度は、40℃以上であることが好ましく、50℃以上であることがより好ましい。
 続いて、本実施形態において、水道水の電気分解により除菌水6を生成する場合において、除菌水がどのように生成されるかを、過酸化水素水を生成する例と、次亜塩素酸水を生成する例とを挙げて具体的に説明する。
(1)過酸化水素水を生成する方法
 図2は、本発明の一実施形態に係る過酸化水素水を生成する生成部の模式図である。図2に示すように、生成部100は、陰極101と、陽極102と、空間103、104と、密閉容器105とを備える。
 陰極101は、開気孔からなる導電性多孔体であり、その表面に酸化チタン等の触媒材料が塗布される。陰極101は、密閉容器105の内部を、水が供給される空間103と、空気が供給される空間104とに隔てている。陽極102は、水が供給される空間103側に、陰極101と向かい合うように配置される。空間103は、陰極101及び陽極102の間に配置される。陰極101及び陽極102には、図示しない直流電源が接続される。
 空間103に水を供給し、陰極101、陽極102間に直流電圧を印加しながら空間104(陰極101)に空気を供給すると、以下の式(1)~(3)の反応が起こる。
<陽極反応>
 2HO→O+4H+4e   ・・・(1)
<陰極反応>
 2HO+2e→H+2OH   ・・・(2)
 O+2HO+2e→H+2OH   ・・・(3)
 陰極101で式(3)の反応が起こることで、除菌水6としての過酸化水素水が生成される。なお、効果的に汚れの原因菌を除菌するために、過酸化水素水の濃度は、0.1%以上であることが好ましく、0.5%以上であることがより好ましい。
 なお、本明細書において、過酸化水素水の濃度を表わす「%」とは、「単位容積あたりの質量%」を指し、例えば「1%過酸化水素水」とは、水1L中に過酸化水素が10g溶解していることを示す。言い換えれば、1%=10,000mg/Lとなる。
 また、陽極反応、陰極反応において、水及び空気に含まれる酸素以外の物質を必要としないので、水及び空気を供給すれば、補充成分なしに必要な濃度の過酸化水素水を繰り返し生成できる。
(2)次亜塩素酸水を生成する方法
 図3は、本発明の一実施形態に係る次亜塩素酸水を生成する生成部の模式図である。図2に示すように、生成部200は、陰極201と、陽極202と、空間203とを備える。
 陰極201は、導電性材料である。陽極202は、陰極201と向かい合うように配置される。空間203は、陰極201及び陽極202の間に配置される。陰極201及び陽極202には、図示しない直流電源が接続される。
 空間203に水(Clが添加された水、例えば水道水)を供給し、陰極201、陽極202間に直流電圧を印加すると、上述した式(1)~(3)の反応を含め、以下の式(1)~(6)の反応が起こる。
<陽極反応>
 2HO→O+4H+4e   ・・・(1)
 2Cl→Cl+2e   ・・・(4)
 Cl+2HO→2HOCl+2H+2e   ・・・(5)
<陰極反応>
 2HO+2e→H+2OH   ・・・(2)
 O+2HO+2e→H+2OH   ・・・(3)
 H+2e→2OH   ・・・(6)
 陰極201で式(5)の反応が起こることで、除菌水6としての次亜塩素酸水が生成される。なお、効果的に汚れの原因菌を除菌するために、次亜塩素酸水の濃度は、1mg/L以上であることが好ましく、5mg/L以上であることがより好ましい。
 また、陽極反応、陰極反応において、水、水に含まれる塩素及び空気に含まれる酸素以外の物質は反応しないので、水道水(Clが添加された水)及び空気を供給すれば次亜塩素酸水を補充成分なしに繰り返し生成できる。
 本実施形態によれば、以下のような効果が奏される。
 本実施形態に係る除菌装置1は、水回り機器2の除菌装置1であって、除菌水6の温度を40℃以上に加温する加温部30と、40℃以上に加温された除菌水6を水回り機器2に供給して接触させることで水回り機器2を除菌する供給部20と、を備える。これにより、水回り機器の多様な微生物汚れを効果的に抑制できる。
 また、除菌水6が過酸化水素水である場合には、除菌水6中の過酸化水素の濃度は、0.1%以上であることが好ましい。これにより、多様な微生物汚れを効果的に抑制できる。また、除菌水を過酸化水素とすることで、除菌後の除菌水は再び水と酸素に戻り、環境に放出しても残留物となることがないため、環境に与える影響が小さい。
 除菌水6が次亜塩素酸水である場合には、除菌水6中の次亜塩素酸の濃度は、1mg/L以上であることが好ましい。これにより、多様な微生物汚れを効果的に抑制できる。
 また、供給部20は、除菌水6を水回り機器2に10秒以上供給して接触させる。これにより、除菌水6が効果的に除菌力を発揮し防汚性能を発揮するので、水回り機器の多様な微生物汚れをより効果的に抑制できる。
 また、水回り機器2は、水を電気分解することで除菌水6を生成する生成部100又は生成部200をさらに備える。生成部100又は生成部200は、水を電気分解することで除菌水6を生成するので、継続的に除菌剤を補充する必要がない。
 また、水回り機器2は除菌装置1を備える。水回り機器2は、例えば、トイレ、浴室、キッチン、洗面台又は洗濯機である。これらの水回り機器2の多様な微生物汚れを効果的に抑制できる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 次に、本発明の実施例について図面を参照しながら説明するが、本発明はこれら実施例に限定されるものではない。
 実施例及び比較例の実験に使用した試薬を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例1>
 表2に示した試薬のうち過酸化水素を、濃度が0.1%となるように水で希釈し、温度が40℃となるように加温して実施例1の試験水を得た。
<実施例2~実施例4>
 表2に示した試薬のうち過酸化水素を水で希釈して、濃度及び温度が、表3に示した値となるように加温して実施例2~実施例4の試験水を得た。
<実施例5>
 上述した(1)過酸化水素水を生成する方法により、過酸化水素水の濃度が表3に示した値となるように水を電気分解し、40℃に加温して実施例5の試験水を得た。
<実施例6~実施例9>
 表2に示した次亜塩素酸水を水で希釈し、濃度及び温度が表3に示した値となるように加温して実施例6~実施例9の試験水を得た。
<実施例10>
 上述した(2)次亜塩素酸水を生成する方法により、次亜塩素酸水の濃度が表3に示した値となるように水を電気分解し、40℃に加温して実施例10の試験水を得た。
<比較例1~比較例3>
 蒸留水を、表3に示した温度となるように、加温して比較例1~比較例3の試験水を得た。
<比較例4~比較例6>
 表2に示した過酸化水素を水で希釈し、濃度及び温度が表3に示した値となるように加温して比較例4~比較例6の試験水を得た。
<比較例7~比較例9>
 蒸留水を、表3に示した温度となるように、加温して比較例7~比較例9の試験水を得た。
<比較例10~比較例12>
 表2に示した次亜塩素酸水を水で希釈し、濃度及び温度が表3に示した値となるように加温して比較例10~比較例12の試験水を得た。
Figure JPOXMLDOC01-appb-T000003
<除菌力評価試験>
 除菌力評価では、一般家庭の微生物汚れ中にしばしば検出される菌の代表として、Methylobacterium(細菌)、Rhodotorula(酵母)、Cladosporium(カビ)の3種を選定し、独立行政法人 製品評価技術基盤機構(NITE)生物遺伝資源部門(NBRC(NITE Biological Resouce Center)と略される)から購入した菌に対する除菌力を評価した。
除菌力評価試験での細菌、酵母、カビの培養条件は表4のとおりとした。
 前培養した菌を生理食塩水に入れ、菌又はカビ胞子濃度が1×10~1×10コ/mLになるように各菌液を調製した。
Figure JPOXMLDOC01-appb-T000004
 菌液と、各実施例、比較例に係る試験水との比率(菌液:試験水)が1:9となるよう菌液と試験水を混合した。10秒経過後、除菌成分を遠心分離や中和によって除去した。
 試験水が過酸化水素水である実施例1~5及び比較例4~6の場合、試験水中の過酸化水素を除去するために、10秒経過後、菌液と試験水との混合液を遠心分離器にかけて菌体を沈殿させ、上澄みを除去した。その後、除去した上澄みと同量の滅菌済みの生理食塩水を加えた。また、過酸化水素を含まない比較例1~3についても、試験条件を揃えるため、同じ遠心操作を実施した。
 試験水が次亜塩素酸水である実施例6~10及び比較例10~12の場合、試験水中の次亜塩素酸を除去するために、10秒経過後、菌液に除菌したチオ硫酸ナトリウムを添加し、菌液中に残留する次亜塩素酸を中和した。また、次亜塩素酸を含まない比較例7~9についても、試験条件を揃えるため同じ中和操作を実施した。
 除菌成分を除去した混合液を培地に接種し、混合液ごとに再び表4に記載された条件で菌を培養して、生存した菌の菌数を計測した。除菌力の評価は、実施例1~5及び比較例2~6では比較例1の培養結果を対照生菌数として、実施例6~10及び比較例8~12では比較例7の培養結果を対照生菌数として、次式で算出した除菌率で評価した。結果を表5に示した。表5中の「×」は除菌率90%未満を示す。
 除菌率(%)=(照生菌数t-試験生菌数t)÷対照生菌数t×100 ・・・(7)
Figure JPOXMLDOC01-appb-T000005
<フィールド試験>
 フィールド試験にあたり、試験装置を組み立てた。図4は、フィールド試験に用いられた試験装置の模式図である。フィールド試験では、水まわり機器としてトイレの大便器を使用し、便器内のため水喫水線付近に発生する汚れを、試験水の散布によって抑制できるかを確認した。なお、試験水の防汚効果を明らかにするために、試験装置は実施例(実施例1又は実施例6)の試験水と同時に比較例(比較例2、比較例5、比較例7、比較例11)の試験水も散布する。図5はフィールド試験に用いられた便器の模式図である。以下では、除菌装置1と、試験装置1a、1bの相違点及び試験装置1aと、試験装置1bとの相違点について主に説明する。
 試験装置1a及び試験装置1bの共通の水回り機器として、便器2が使用された。この便器2の鉢内にはため水3があり、その水位は便器構造によってほぼ一定に保たれ、ため水喫水線3aが形成された。
 水槽5aには実施例1又は実施例6の試験水6aが充填された。
 水槽5bには防汚性能の比較のため、比較例2、比較例5、比較例7、比較例11の試験水6bが充填された。
 試験装置1aの流路4a上にヒーター9aが、試験装置1bの流路4b上にヒーター9bが配置された。ヒーター9a、9bは、流路4a、4bを流通する試験水6a、6bの温度を表2等に示した値で散布ノズル8a、8bから散布されるように加温した。
 散布ノズル8aと散布ノズル8bとは、それぞれため水喫水線3aのやや上部の位置に、ため水3を介して向かい合うように固定された。なお、散布ノズル8aと散布ノズル8bとは、フィールド試験期間中、動かないように固定された。
 散布ノズル8aから散布部12aに向けて試験水6aが散布され、散布ノズル8bから散布部12bに向けて試験水6bが散布された(図5を参照)。
 フィールド試験の開始にあたり、フィールド試験前に、便器2を通常その家庭で行われる手順と機材で清掃した。
 清掃後、表6に示した条件で、同じタイミングで、試験水6aを散布部12aに、蒸留水6bを散布部12bにそれぞれ散布した。
Figure JPOXMLDOC01-appb-T000006
 フィールド試験では、除菌力評価試験結果を元に、過酸化水素水及び次亜塩素酸水のそれぞれで、実施例の中でも低濃度且つ低温で除菌力を発揮した実施例と、比較例の組み合わせで試験をした(表7を参照)。
 試験開始から試験水6aの散布部12a及び試験水6bの散布部12bの汚れの発生状況を7日経過ごとに観察し、以下の評価基準で評価し、その結果を表7に示した。
 ○: 汚れが発生しなかった
 △: 汚れが発生したが、気になるほどでない
 ×: 清掃せずにはいられないほどの汚れが発生した
Figure JPOXMLDOC01-appb-T000007
 試験水を40℃に加温して散布した実施例1(試験番号2-1)及び実施例6(試験番号2-3)では、40℃で除菌成分を含まない試験水(比較例2又は比較例7)を散布した部位よりも汚れの発生速度が遅く、清掃をしなくてもよい期間をより長く確保できた。
 また、同じく試験水を40℃に加温して散布した実施例1(試験番号2-2)及び実施例6(試験番号2-4)では、40℃未満で除菌成分を同程度含む試験水(比較例5又は比較例11)を散布した部位よりも汚れの発生速度が遅く、清掃をしなくてもよい期間をより長く確保できた。
 以上から、試験装置において、除菌水を40℃以上に加温する機構を設けて除菌水を散布すると、様々な菌種に対して高い除菌力を発揮し、水回り機器に対して防汚効果を発現することが確認された。
 1 除菌装置
 2 水回り機器
 6 除菌水
 20 供給部
 30 加温部

Claims (8)

  1.  水回り機器の除菌装置であって、
     除菌水の温度を40℃以上に加温する加温部と、
     40℃以上に加温された前記除菌水を前記水回り機器に供給して接触させることで前記水回り機器を除菌する供給部と、を備える除菌装置。
  2.  前記除菌水は、過酸化水素水である請求項1に記載の除菌装置。
  3.  前記除菌水中の過酸化水素の濃度は、0.1%以上である請求項2に記載の除菌装置。
  4.  前記除菌水は、次亜塩素酸水である請求項1に記載の除菌装置。
  5.  前記除菌水中の次亜塩素酸の濃度は、1mg/L以上である請求項4に記載の除菌装置。
  6.  前記供給部は、前記除菌水を前記水回り機器に10秒以上供給して接触させる請求項1~5のいずれかに記載の除菌装置。
  7.  水を電気分解することで前記除菌水を生成する生成部をさらに備える請求項1~6のいずれかに記載の除菌装置。
  8.  請求項1~7のいずれかに記載の除菌装置を備える水回り機器。
PCT/JP2018/040762 2018-02-15 2018-11-01 除菌装置及び水回り機器 WO2019159442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025023 2018-02-15
JP2018025023A JP2019136443A (ja) 2018-02-15 2018-02-15 除菌装置及び水回り機器

Publications (1)

Publication Number Publication Date
WO2019159442A1 true WO2019159442A1 (ja) 2019-08-22

Family

ID=67619022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040762 WO2019159442A1 (ja) 2018-02-15 2018-11-01 除菌装置及び水回り機器

Country Status (2)

Country Link
JP (1) JP2019136443A (ja)
WO (1) WO2019159442A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339934A (ja) * 1991-05-16 1992-11-26 Sharp Corp 暖房便座における洗浄方法及びその装置
JPH0671269A (ja) * 1992-08-26 1994-03-15 Kurita Water Ind Ltd 殺菌方法
JPH0889563A (ja) * 1994-09-21 1996-04-09 Nippon Sanso Kk 殺菌方法
JPH11241381A (ja) * 1998-02-24 1999-09-07 Matsushita Electric Works Ltd 殺菌装置
JP2000167557A (ja) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd 抗菌水
JP2002079250A (ja) * 2000-09-07 2002-03-19 Harman Kikaku:Kk 次亜塩素酸水生成装置
JP2012077918A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd 給湯システム
JP2012101177A (ja) * 2010-11-10 2012-05-31 Panasonic Corp 浄水装置および浄水装置の消毒殺菌方法
KR20130008910A (ko) * 2011-07-13 2013-01-23 주식회사 콜러노비타 온수세정기의 노즐 세척장치
JP2014030535A (ja) * 2012-08-02 2014-02-20 Bisansei Denkaisui Kenkyusho:Kk 物品の殺菌方法
JP2016113816A (ja) * 2014-12-15 2016-06-23 パナソニックIpマネジメント株式会社 設備装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339934A (ja) * 1991-05-16 1992-11-26 Sharp Corp 暖房便座における洗浄方法及びその装置
JPH0671269A (ja) * 1992-08-26 1994-03-15 Kurita Water Ind Ltd 殺菌方法
JPH0889563A (ja) * 1994-09-21 1996-04-09 Nippon Sanso Kk 殺菌方法
JPH11241381A (ja) * 1998-02-24 1999-09-07 Matsushita Electric Works Ltd 殺菌装置
JP2000167557A (ja) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd 抗菌水
JP2002079250A (ja) * 2000-09-07 2002-03-19 Harman Kikaku:Kk 次亜塩素酸水生成装置
JP2012077918A (ja) * 2010-09-30 2012-04-19 Daikin Industries Ltd 給湯システム
JP2012101177A (ja) * 2010-11-10 2012-05-31 Panasonic Corp 浄水装置および浄水装置の消毒殺菌方法
KR20130008910A (ko) * 2011-07-13 2013-01-23 주식회사 콜러노비타 온수세정기의 노즐 세척장치
JP2014030535A (ja) * 2012-08-02 2014-02-20 Bisansei Denkaisui Kenkyusho:Kk 物品の殺菌方法
JP2016113816A (ja) * 2014-12-15 2016-06-23 パナソニックIpマネジメント株式会社 設備装置

Also Published As

Publication number Publication date
JP2019136443A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
KR101776029B1 (ko) 변기물 살균장치 및 그 방법
US20040037737A1 (en) Method of and equipment for washing, disinfecting and/or sterilizing health care devices
JP4410155B2 (ja) 電解水噴出装置
JP3619828B2 (ja) 電解用電極及びその製造方法及び電解用電極を用いた電解方法及び電解水生成装置
EP2065342B1 (en) Method of sterilization and sterilizer apparatus
CN1406142A (zh) 牙科设备和操作该设备的方法
JP2002079248A (ja) 電解水生成装置
KR20110072445A (ko) 하이 레벨 살균 기준에 부합하면서 짧은 시간 내에 행할 수 있는 의료 기기의 살균 소독 방법 및 그 장치
KR20100016361A (ko) 폐기물 처리 시스템
KR20130000043A (ko) 하이 레벨 살균 기준에 부합하면서 짧은 시간 내에 행할 수 있는 의료 기기의 살균 소독 방법 및 그 장치
US7799234B2 (en) In-line waste disinfection method
WO2019159442A1 (ja) 除菌装置及び水回り機器
JPH09299953A (ja) 電解水生成装置
KR101956575B1 (ko) 살균제 또는 세정제를 생성할 수 있는 전기분해 장치 및 그것을 위한 전기분해 방법
KR101065278B1 (ko) 해수의 살균방법 및 살균장치
JP3131357U (ja) 炭酸ガスを供給可能な循環浴装置
JPH06292892A (ja) 殺菌水の製造方法
KR101561303B1 (ko) 전극살균모듈을 이용한 식기세척기
JP2001254096A (ja) 洗浄液及びそれを用いた洗浄装置
JPH1119648A (ja) 殺菌装置
KR100453008B1 (ko) 수조의순환살균장치
JP4474910B2 (ja) 電気分解装置、および同装置を備えた洗濯機
JP2008136980A (ja) 電解水供給装置および電解水供給システム
KR100830147B1 (ko) 전해셀과 초음파를 이용한 자외선복합살균기
JP2002219463A (ja) 水の電解殺菌方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906585

Country of ref document: EP

Kind code of ref document: A1