WO2019158100A1 - 一种传输方法和网络设备 - Google Patents

一种传输方法和网络设备 Download PDF

Info

Publication number
WO2019158100A1
WO2019158100A1 PCT/CN2019/075027 CN2019075027W WO2019158100A1 WO 2019158100 A1 WO2019158100 A1 WO 2019158100A1 CN 2019075027 W CN2019075027 W CN 2019075027W WO 2019158100 A1 WO2019158100 A1 WO 2019158100A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
network node
node
message
end point
Prior art date
Application number
PCT/CN2019/075027
Other languages
English (en)
French (fr)
Inventor
石小丽
罗海燕
彭文杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207026276A priority Critical patent/KR102463964B1/ko
Priority to JP2020543387A priority patent/JP7081891B2/ja
Priority to EP19753903.4A priority patent/EP3745646A4/en
Priority to BR112020016532-8A priority patent/BR112020016532A2/pt
Publication of WO2019158100A1 publication Critical patent/WO2019158100A1/zh
Priority to US16/994,003 priority patent/US20200374689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/044Network management architectures or arrangements comprising hierarchical management structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/62Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on trigger specification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/63Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP based on the content carried by the session initiation protocol [SIP] messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications and, more particularly, to a transmission method and network device.
  • the base station may be composed of a Centralized Unit (CU) and a Distributed Unit (DU), that is, a base station in the original access network.
  • CU Centralized Unit
  • DU Distributed Unit
  • the function is split, and some functions of the base station are deployed in one CU, and the remaining functions are deployed in multiple DUs, and multiple DUs share one CU, which can save cost and facilitate network expansion.
  • the data of the user plane of the primary base station is directly sent to the DU of the secondary base station, and the destination address of the downlink data transmission is allocated by the DU of the secondary base station.
  • the downlink address allocated by the DU of the secondary base station does not distinguish the interface. If the X2 interface (or Xn interface) between the primary base station and the secondary station's DU is different from the network segment of the F1 interface between the CU of the secondary base station and the DU of the secondary base station, if the address assigned by the DU of the secondary base station is On the F1 network segment, the primary base station cannot use the address to transmit certain bearer downlink data to the DU of the secondary base station.
  • the present application provides a transmission method and a network device.
  • the second network node and the second network node are facilitated by the second network node by assigning a downlink address, or the core network node and the second network node directly perform data transmission.
  • the first aspect provides a transmission method, where the first network node sends a third indication information by using a fourth interface, where the third indication information is used to trigger the second network node to allocate a downlink tunnel end point of the fifth interface.
  • a downlink tunnel end point of the sixth interface the fifth interface is an interface between the second network node and the third network node, and the sixth interface is an interface between the second network node and the core network node, the fourth interface
  • the fifth interface and the sixth interface are different interfaces; the first network node receives an eleventh message from the second network node, where the eleventh message includes a downlink tunnel end point of the fifth interface and/or Or the downstream tunnel end point of the sixth interface.
  • the first network node sends the third indication information to the second network node by using the fourth interface, where the third indication information is used to trigger the second network node to allocate the first bearer to the downlink of the fifth interface.
  • the tunnel end point and/or the second bearer is at the end of the downstream tunnel of the sixth interface.
  • the first bearer is a primary cell split bearer (MCG Split Bearer).
  • the second bearer is a secondary cell bearer (SCG Bearer).
  • SCG Bearer secondary cell bearer
  • the downlink address is allocated by the second network node, which facilitates direct data transmission between the third network node and the second network node, or the core network node and the second network node.
  • the third indication information includes an uplink tunnel end point of the fifth interface and/or an uplink tunnel end point of the sixth interface; or the third indication information is used to indicate the first bearer and the first A mapping relationship between the five interfaces, and/or a mapping relationship between the second bearer and the sixth interface.
  • the first network node explicitly or implicitly instructs the second network node to allocate a downlink tunnel end point, which is beneficial to the third network node and the second network node, or the core network node and the first The two network nodes directly perform data transmission.
  • the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and Or the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method where the second network node receives, by using a fourth interface, third indication information from a first network node, where the third indication information is used to trigger a second network node allocation.
  • a downlink tunnel end point of the fifth interface and/or a downlink tunnel end point of the sixth interface where the fifth interface is an interface between the second network node and the third network node, and the sixth interface is the second network node and the core network node Interface, the fourth interface, the fifth interface and the sixth interface are different interfaces; the second network node sends an eleventh message, where the eleventh message includes a downlink tunnel end point of the fifth interface and/or The downstream tunnel end point of the sixth interface.
  • the second network node sends the eleventh message to the first network node.
  • the first network node sends, by using the fourth interface, third indication information, where the third indication information is used to trigger the second network node to allocate the first bearer to the downlink tunnel end point of the fifth interface, and/or The second is carried at the end of the downstream tunnel of the sixth interface.
  • the first bearer is a primary cell split bearer (MCG Split Bearer).
  • the second bearer is a secondary cell bearer (SCG Bearer).
  • SCG Bearer secondary cell bearer
  • the downlink address is allocated by the second network node, which facilitates direct data transmission between the third network node and the second network node, or the core network node and the second network node.
  • the third indication information includes an uplink tunnel end point of the fifth interface and/or an uplink tunnel end point of the sixth interface; or the third indication information is used to indicate the first bearer and the first A mapping relationship between the five interfaces, and/or a mapping relationship between the second bearer and the sixth interface.
  • the first network node explicitly or implicitly instructs the second network node to allocate a downlink tunnel end point, which is beneficial to the third network node and the second network node, or the core network node and the first The two network nodes directly perform data transmission.
  • the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function; And/or the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method comprising: the third network node receiving a first request acknowledgement message from a first network node, the first request acknowledgement message including a downlink tunnel destination of the fifth interface And a downlink tunnel end point of the sixth interface, where the fifth interface is an interface between the second network node and the third network node, where the sixth interface is an interface between the second network node and a core network node, and the fourth interface is The fifth interface and the sixth interface are different interfaces; wherein the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function; and Or the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the method further includes: the third network node sends a request message to the first network node, where the request message includes an uplink tunnel end point of the fifth interface, and/or The downlink tunnel end point of the sixth interface, the request message is used to request the first network node to allocate radio resources for the first bearer and/or the second bearer.
  • the first bearer is an MCG Split Bearer.
  • the second bearer is an SCG Bearer.
  • the method further includes: the third network node sends a second request acknowledgement message to the core network node, where the second request acknowledgement message includes the sixth interface The end of the down tunnel.
  • the third network node includes a radio resource control protocol layer, a service data adaptation layer function, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function. At least one of them.
  • a transmission method includes: the control plane node receives a first message from a user plane node, where the first message includes an uplink tunnel end point of the first interface, and an uplink tunnel end point of the second interface And the downlink interface end point of the third interface, where the first interface is an interface between the user plane node and the second network node, and the second interface is an interface between the user plane node and the third network node, where the third interface is the user An interface of the surface node and the core network node, the first interface, the second interface and the third interface are different interfaces; the control plane node sends a second message, where the second message includes an uplink tunnel end point of the first interface The control plane node sends a third message, where the third message includes an uplink tunnel end point of the second interface and a downlink tunnel end point of the third interface.
  • control plane node sends the second message to the second network node; the control plane node sends the third message to the third network node.
  • control plane node and the user plane node belong to a first system, and the first system includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function.
  • the first system includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are different tunnel end points.
  • the first message includes indication information, where the indication information is used to indicate an uplink tunnel end point of the first interface is used for the first interface, and/or the second interface is indicated to the control plane node.
  • the uplink tunnel end point is used for the second interface, and/or the downstream tunnel end point of the third interface is indicated to the control plane node for the third interface.
  • different tunnel end points are determined by the user plane node, and the network segment of each interface is inconsistent, which helps solve the problem of allocation and indication of the uplink and downlink tunnels of the user plane.
  • the method further includes: the control plane node sends the first indication information, where the first indication information is used to indicate the bearer requested by the control plane node
  • the type is a secondary cell split bearer; or the first indication information is used to trigger the user plane node to allocate an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface; or
  • the first indication information includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface; or the first indication information is used to indicate that
  • the user plane node has a packet data convergence protocol layer function, or the user plane node needs to have a primary cell resource configuration, or the user plane node needs to have at least one of a secondary cell resource configuration.
  • the method further includes: the control plane node receiving a fourth message from the second network node, where the fourth message includes the first interface
  • the control tunnel node sends a fifth message, where the fifth message includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface.
  • the method further includes: the control plane node receiving a second request message sent by the third network node, where the second request message is used to request the control plane node to allocate a radio resource to the second bearer.
  • the second bearer type is a SCG split bearer.
  • the second request message includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the second request message includes bearer and/or session configuration parameters, such as a bearer identifier (ERAB ID or DRB ID), a Qos parameter of a bearer level, a session identifier of the data packet, and a Qos flow indication. (Qos flow indicator, QFI), mapping relationship between bearer and QFI, at least one of QOS parameters of QFI level.
  • the second request message includes a data forwarding indication, such as a data forwarding indication (eg, DL forwarding) of the specific bearer.
  • a data forwarding indication eg, DL forwarding
  • the method further includes: the control plane node sending a data forwarding indication to the user plane node, where the data forwarding indication is used to indicate that the user plane node is data Forwarding allocates an uplink data forwarding address and a downlink data forwarding address.
  • the method further includes: the control plane node receiving the uplink data forwarding address and the downlink data forwarding address sent by the user plane node.
  • the method further includes: the control plane node allocates an uplink data forwarding address and a downlink data forwarding address for data forwarding, and forwards the uplink data forwarding address and the The downlink data forwarding address is sent to the user plane node.
  • the uplink data forwarding address and the downlink data forwarding address are for a specific bearer, or the uplink data forwarding address and the downlink data forwarding address are specific to Qos stream.
  • control plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the third network node includes a radio resource control protocol layer, a service data adaptation layer function, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function. At least one of them.
  • a fifth aspect provides a transmission method, where the user interface node determines an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, where the first interface is the An interface between the user plane node and the second network node, where the second interface is an interface between the user plane node and the third network node, and the third interface is an interface between the user plane node and the core network node, the first interface, the first interface The second interface and the third interface are different interfaces; the user plane node sends a first message, where the first message includes an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and the third interface The end of the down tunnel.
  • the user plane node sends the first message to the control plane node.
  • control plane node and the user plane node belong to a first system, and the first system includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function.
  • the first system includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are different tunnel end points.
  • the first message includes indication information, where the indication information is used to indicate an uplink tunnel end point of the first interface is used for the first interface, and/or the second interface is indicated to the control plane node.
  • the uplink tunnel end point is used for the second interface, and/or the downstream tunnel end point of the third interface is indicated to the control plane node for the third interface.
  • different tunnel end points are determined by the user plane node, and the network segment of each interface is inconsistent, which helps solve the problem of allocation and indication of the uplink and downlink tunnels of the user plane.
  • the method further includes: the user plane node receiving the first indication information from the control plane node, where the first indication information is used to indicate the The bearer type requested by the control plane node is a secondary cell split bearer; or the first indication information is used to trigger the user plane node to allocate the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the third interface
  • the downlink indication end point; or the first indication information includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface; or, the first The indication information is used to indicate that the user plane node needs to have a packet data convergence protocol layer function, or the user plane node needs to have a primary cell resource configuration, or the user plane node needs to have at least one of a secondary cell resource configuration.
  • the method further includes: the user plane node receiving a fifth message from the control plane node, where the fifth message includes a downlink of the first interface At least one of a tunnel end point, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface.
  • the method further includes: receiving, by the user plane node, a data forwarding indication sent by the control plane node, where the data forwarding indication is used to indicate the user plane node An uplink data forwarding address and a downlink data forwarding address are allocated for data forwarding.
  • the method further includes: the user plane node sending the uplink data forwarding address and the downlink data forwarding address to the control plane node.
  • the method further includes: the user plane node receiving an uplink data forwarding address and a downlink data forwarding address sent by the control plane node.
  • the uplink data forwarding address and the downlink data forwarding address are for a specific bearer, or the uplink data forwarding address and the downlink data forwarding address are specific to Qos stream.
  • the user plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the user plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the third network node includes a radio resource control protocol layer, a service data adaptation layer function, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function. At least one of them.
  • a transmission method includes: receiving, by a third network node, a third message from a control plane node, where the third message includes an uplink tunnel destination of the second interface and a downlink tunnel of the third interface
  • the second interface is an interface between the user plane node and the third network node
  • the third interface is an interface between the user plane node and the core network node, where the second interface and the third interface are different interfaces
  • the control plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • the protocol stack structure of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • the method further includes: the third network node sends a sixth message to the control plane node, where the sixth message includes a downlink tunnel of the second interface End point and the end of the upstream tunnel for the third interface.
  • the method further includes: the third network node sending a second request message to the control plane node, where the second request message is used to request the control plane node to allocate a radio resource to the second bearer.
  • the second bearer type is a SCG split bearer.
  • the second request message includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the second request message includes bearer and/or session configuration parameters, such as a bearer identifier (ERAB ID or DRB ID), a Qos parameter of a bearer level, a session identifier of the data packet, and a Qos flow indication. (Qos flow indicator, QFI), mapping relationship between bearer and QFI, at least one of QOS parameters of QFI level.
  • the third network node includes a radio resource control protocol layer, a service data adaptation layer function, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function. At least one of them.
  • a transmission method includes: receiving, by a second network node, a second message from a control plane node, where the second message includes an uplink tunnel end point of the first interface; wherein the control plane The node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node includes a radio link control protocol layer, a medium access control layer, and a physical At least one of the layer functions.
  • the protocol stack structure of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • the transmitting method further includes: the second network node sends a fourth message to the control plane node, where the fourth message includes a downlink of the first interface The end of the tunnel.
  • a transmission method where the control plane node determines an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, where the first interface is a user An interface between the surface node and the second network node, where the second interface is an interface between the user plane node and the third network node, where the third interface is an interface between the user plane node and the core network node, the first interface, the first interface The second interface and the third interface are different interfaces; the control plane node sends a second message to the second network node, where the second message includes an uplink tunnel end point of the first interface; the control plane node is to the third network The node sends a third message, where the third message includes an uplink tunnel end point of the second interface and a downlink tunnel end point of the third interface.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are tunnel end points of the second bearer.
  • the second bearer is a SCG Split Bearer.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are different tunnel end points.
  • the third message includes indication information, where the indication information is used to indicate to the control plane node that an uplink tunnel endpoint of the second interface is used for the second interface, and/or to the control plane The node indicates that the downlink tunnel end point of the third interface is used for the third interface.
  • the transmission method of the embodiment of the present application determines different tunnel end points by the control plane node, and helps solve the problem of allocation and indication of the uplink and downlink tunnels of the user plane when the network segments of the interfaces are inconsistent.
  • the method further includes: the control plane node receiving the third request message sent by the third network node, where the third request message is used to The control plane node requests to allocate a radio resource for the second bearer.
  • the second bearer is a SCG Split Bearer.
  • the third request message specifies a feature of the second bearer, including a bearer parameter and a TNL address corresponding to the bearer type.
  • the third network node carries the most recent measurement result in the third request message.
  • the third request message includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the method further includes: the control plane node receiving a fourth message sent by the second network node, where the fourth message includes the first interface a downlink tunnel end point; the control plane node sends a fifth message to the user plane node, where the fifth message includes an uplink tunnel end point of the first interface, a downlink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a second interface At least one of a downlink tunnel end point, an uplink tunnel end point of the third interface, and a downlink tunnel end point of the third interface.
  • the message sent by the control plane node to the user plane node carries the tunnel end point of the uplink and downlink tunnel, which helps the user plane node to identify whether the data is sent to itself.
  • control plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method includes: a user plane node receives a fifth message from a control plane node, the fifth message includes an uplink tunnel end point of the first interface, and a downlink tunnel end point of the first interface At least one of an uplink tunnel end point of the second interface, a downlink tunnel end point of the second interface, an uplink tunnel end point of the third interface, and a downlink tunnel end point of the third interface; wherein the control plane node includes a radio resource control protocol layer At least one of a service data adaptation layer and a packet data convergence protocol layer function.
  • the protocol stack structure of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • a transmission method includes: receiving, by the second network node, a second message sent by the control plane node, where the second message includes an uplink tunnel end point of the first interface, where the first interface is a user An interface of the polygon node with the second network node; wherein the control plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node At least one of a radio link control protocol layer, a medium access control layer, and a physical layer function is included.
  • the method further includes: the second network node sends a fourth message to the control plane node, where the fourth message includes a downlink tunnel end point of the first interface .
  • the protocol stack architecture of the control plane node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node
  • the protocol stack architecture is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method comprising: receiving, by a third network node, a third message from a control plane node, the third message including an uplink tunnel destination of the second interface and the third interface The downlink tunnel end point; wherein the control plane node comprises at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • the third network node includes a radio resource control protocol layer, a service data adaptation layer function, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function. At least one of them.
  • the method further includes: the third network node sending a request message to the control plane node, where the request message includes a downlink tunnel end point of the second interface And/or the upstream tunnel end point of the third interface.
  • a transmission method includes: receiving, by a first network node, a seventh message from a second network node, where the seventh message includes data traffic information transmitted by the second network node; A network node sends an eighth message, where the eighth message includes the data traffic information; wherein the protocol stack architecture of the first network node is in a function of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer At least one; and/or the protocol stack architecture of the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the transmission method of the embodiment of the present application can help solve the problem of the secondary base station's recorded traffic statistics.
  • the method further includes: the first network node sends the second indication information, where the second indication information is used to indicate that the second network node reports the Data traffic information transmitted by the second network node.
  • the second indication information is used to indicate that the second network node reports the collected data traffic information; and/or indicates that the second network node reports the traffic information of the specific bearer and the start of the statistical traffic.
  • the data traffic information transmitted by the second network node includes uplink data traffic transmitted by the second network node, and downlink data transmitted by the second network node.
  • the traffic is collected and at least one of a statistical start and end time of the data traffic transmitted by the second network node is counted.
  • a transmission method includes: the second network node sends a seventh message, where the seventh message includes data traffic information transmitted by the second network node; wherein, the protocol of the second network node
  • the stack architecture is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the transmission method of the embodiment of the present application can help solve the problem of the secondary base station's recorded traffic statistics.
  • the method further includes: the second network node receiving, by the first network node, second indication information, where the second indication information is used to indicate the first
  • the second network node reports the data traffic information transmitted by the second network node, where the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer.
  • the protocol stack architecture of the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the data traffic information transmitted by the second network node includes uplink data traffic transmitted by the second network node, and downlink data transmitted by the second network node.
  • the traffic is collected and at least one of a statistical start and end time of the data traffic transmitted by the second network node is counted.
  • a transmission method includes: the first network node sends a ninth message, where the ninth message includes a power configuration parameter of the second network node, where the power configuration parameter is that the terminal device is in the primary cell The maximum transmit power that can be used by the group; wherein the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node is At least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method includes: receiving, by a second network node, a ninth message from a first network node, where the ninth message includes a power configuration parameter of the second network node, the power configuration The parameter is a maximum transmit power that the terminal device can use in the primary cell group; wherein the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and Or the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method includes: the second network node sends a tenth message to the first network node, where the tenth message includes a power configuration parameter of the second network node, the power configuration parameter The maximum transmit power that the terminal device can use in the secondary cell group; wherein the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or The second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method comprising: a first network node receiving a tenth message from a second network node, the tenth message including a power configuration parameter of the second network node, the power The configuration parameter is a maximum transmit power that the terminal device can use in the secondary cell group; wherein the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; / or the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • a transmission method includes: the first network node sends a twelfth message to the second network node, where the twelfth message includes a cell group identifier of the second network node, where The first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node is a radio link control protocol layer and media access. At least one of a control layer and a physical layer function.
  • a transmission method comprising: receiving, by a second network node, a twelfth message from a first network node, where the twelfth message includes a cell group identifier of the second network node
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or the second network node is a radio link control protocol layer and a medium. At least one of an access control layer and a physical layer function.
  • a network device for performing the method of any of the possible implementations of the various aspects described above.
  • the network device comprises means for performing the method of any of the possible implementations of the various aspects described above.
  • a network device comprising a transceiver, at least one processor, and a memory, the memory having program instructions, the at least one processor running the program instructions such that the various aspects described above
  • the processing operations performed by the first network node, the second network node, the third network node, the control plane node, or the user plane node are Implementing;
  • the transceiver is configured to perform the method in any one of the foregoing possible implementation manners, in the first network node, the second network node, the third network node, the control plane The operation of the node or the user plane node for messaging.
  • a chip system which is applicable to the network device proposed in the twenty-first aspect, the chip system includes: at least one processor, at least one memory, and an interface circuit, wherein the interface circuit is responsible for The chip system interacts with external information, the at least one memory, the interface circuit and the at least one processor are interconnected by a line, the at least one memory storing instructions; the instructions being processed by the at least one The apparatus performs the operations of the first network node, the second network node, the third network node, the control plane node, or the user plane node in the method of the above aspects.
  • a communication system comprising: a network device, and/or a terminal device; wherein the network device is the network device described in the above aspects.
  • the communication system comprises the network device provided in the aforementioned twenty first aspect.
  • a computer program product which can be applied to the network device provided in the foregoing twenty-first aspect, or can be applied to the chip system provided in the foregoing twenty-second aspect, the computer
  • the program product includes a series of instructions, when the instructions are executed, to perform the first network node, the second network node, the third network node, the control in the method of the above aspects The operation of the polygon node or the user plane node.
  • a computer readable storage medium is provided, the instructions being stored in a computer readable storage medium, when executed on a computer, causing the computer to perform the method of the various aspects described above.
  • a transmission method includes: the first network node sends power update information to the second network node, where the power update information includes the updated third power configuration parameter of the first network node
  • the third power configuration parameter is a maximum transmit power that the terminal device can use in the secondary cell group;
  • the protocol layer function of the first network node is a radio link control protocol layer, a media access control layer, and a physical layer.
  • At least one of the functions; and/or the protocol layer function of the second network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • FIG. 1 is a schematic diagram of an application scenario of a technical solution in the embodiment of the present application.
  • FIG. 2 is a schematic diagram of another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 4 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another application scenario of the technical solution in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another application scenario of the technical solution in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another application scenario of the technical solution of the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 12 is another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 13 is still another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 14 is still another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 15 is still another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 16 is still another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 17 is still another schematic flowchart of a transmission method according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 19 is another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 20 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 21 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 22 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 23 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 24 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 25 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 26 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 27 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 28 is still another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of the technical solution of the embodiment of the present application. As shown in FIG. Part of the function is separated into a first network node and a second network node.
  • FIG. 2 is a schematic diagram of another application scenario of the technical solution of the embodiment of the present application.
  • a CU-DU segmentation is introduced, and the CU may correspond to FIG.
  • the first network node in the DU corresponds to the second network node in FIG.
  • first network node and the second network node may be two physical or logical separation modules in an overall network architecture, or may be two logical network elements that are completely independent.
  • the first network node may separate the control plane from the user plane to form a user plane of the first network node and a control plane of the first network node.
  • the CU has a Radio Resource Control (RRC) or a partial RRC control function, and includes all protocol layer functions or partial protocol layer functions of the existing base station; for example, only the RRC function or part of the RRC function, or the RRC function or service is included.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control protocol
  • MAC Media Access Control
  • the DU has all or part of the protocol layer functions of the existing base station, that is, part of the protocol layer functional units of the RRC/SDAP/PDCP/RLC/MAC/PHY, such as a part of the RRC function and protocol layer functions such as PDCP/RLC/MAC/PHY. Or include protocol layer functions such as PDCP/RLC/MAC/PHY, or include protocol layer functions such as RLC/MAC/PHY or include partial RLC/MAC/PHY functions, or only all or part of PHY functions; The functions of the various protocol layers may vary and are within the scope of this application.
  • different protocol layers may be separately deployed in the first network node and the second network node, and one possible implementation manner is that at least the first protocol layer is deployed in the first network node. And a second protocol layer, at least a third protocol layer, a fourth protocol layer, and a fifth protocol layer are deployed in the second network node,
  • the first protocol layer may be an RRC layer
  • the second protocol layer may be a PDCP layer
  • the third protocol layer may be an RLC layer
  • the fourth protocol layer may be a MAC layer
  • the fifth protocol layer may be a PHY layer.
  • first protocol layer the second protocol layer, the third protocol layer, the fourth protocol layer, and the fifth protocol layer is merely exemplary, and should not be construed as limiting the application.
  • the first protocol layer and the second protocol layer may also be existing protocols (for example, LTE protocol) or other protocol layers defined in future protocols, which is not specifically limited in this application.
  • new relay nodes also have new technological advances.
  • the relay node is only deployed with layer 2 (for example, including a resource link control (RLC) layer, a MAC layer, etc.)
  • layer 2 for example, including a resource link control (RLC) layer, a MAC layer, etc.
  • the protocol stack architecture of layer 1 eg, including the PHY layer
  • the data or signaling generated by the host base station needs to be forwarded by the relay node to the terminal device.
  • the first network node in the embodiment of the present application may correspond to the DU in the CU-DU architecture, and may also correspond to the foregoing relay node, where the second network node may correspond to the CU in the CU-DU architecture, or Corresponding to the above-mentioned host base station, or CU and DU corresponding to the above-mentioned host base station, the DU and the UE are transmitted through one relay node or multiple relay nodes, and the last hop relay node of the UE corresponds to the first network node.
  • FIG. 3 is a schematic diagram of still another application scenario of the technical solution according to the embodiment of the present application.
  • MCG Split Bearer Master Cell Group Split Bearer
  • S-gNB-DU DU of the secondary base station
  • the primary base station in FIG. 3 may be a base station eNB (M-eNB) in LTE, or may be a gNB (master gNB, M-gNB) in the NR. If the base station is an S-gNB, the interface between the primary base station and the secondary base station is an X2 interface. If the primary base station is an M-gNB and the secondary base station is an S-gNB, the interface between the primary base station and the secondary base station is an Xn interface.
  • the above interface may also be other names, which is not limited in this application.
  • the primary base station is an M-eNB and the secondary base station is an S-gNB
  • the secondary base station supports a centralized unit (CU)-distributed unit (DU) separation architecture
  • the primary base station is When the LTE base station is the NR base station or the LTE base station, or the NR base station is the primary base station, and the secondary base station is the LTE base station
  • the interface between the primary base station and the CU (gNB-CU) of the secondary base station is the control plane of the X2 ( The X2-C) interface
  • the interface between the primary base station and the secondary base station's DU (gNB-DU) is the X2 user plane (X2-U) interface
  • the primary base station is the NR base station
  • the secondary base station is also the NR base station
  • the interface between the CUs (gNB-CUs) of the base station is the control plane (Xn-C) interface of Xn, and the interface between the primary base station
  • the secondary base station in FIG. 3 may be a base station-gNB (secondary gNB, S-gNB) in the NR, and correspondingly, when the secondary base station supports the CU-DU architecture, the corresponding S-gNB-DU and S-gNB
  • the interface between the CUs is an F1 interface
  • the secondary base station may be a secondary eNB (S-eNB) in LTE, and correspondingly, when the secondary base station supports the CU-DU architecture, the corresponding S-eNB-DU and S-
  • the interface between the eNB and the CU is a V1 interface.
  • the core network may be an Evolved Packet Core (EPC) of LTE, including a Mobility Management Entity (MME) and a Serving Gateway (SGW), or may be a core network of the NR (5GC).
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • 5Gcore includes a User Plane Function (UPF) and an Access and Mobility Management Function (AMF).
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • the interface between the core network of the LTE and the DU of the secondary base station is the user plane interface of the S1. (S1-U)
  • the interface between the core network of the NR and the secondary base station DU is the user plane interface (NG-U) of the NG.
  • FIG. 4 is a schematic diagram of still another application scenario according to the technical solution of the embodiment of the present application.
  • the CU control plane (CP) and the user plane (UP) are supported for the secondary base station.
  • the secondary base station S-gNB-CU can be separated into an interface between the S-gNB-CP and the S-gNB-UP, the S-gNB-CP and the S-gNB-UP.
  • the interface between the SgNB-CU-CP and the SgNB-DU is the F1 control panel interface (F1-C), and the interface between the SgNB-CU-UP and the SgNB-DU is the F1 user interface (F1-U);
  • the base station is a base station of LTE, and the secondary base station S-eNB-CU can be separated into an S-eNB-CP and an S-eNB-UP, and an interface between the S-eNB-CP and the S-eNB-UP is an E1 interface, and the SeNB-CU
  • the interface between the CP and the SeNB-DU is a V1 control plane interface (V1-C), and the interface between the SeNB-CU-UP and the SeNB-DU is a V1 user plane interface (V1-U).
  • interface name or the node name, may also be other names, which is not limited in this application.
  • FIG. 5 is a schematic diagram of still another application scenario of the technical solution according to the embodiment of the present application.
  • the primary base station supports the CU-DU architecture system
  • the secondary base station also supports the CU-DU architecture system.
  • FIG. 6 is a schematic diagram of still another application scenario according to the technical solution of the embodiment of the present application. As shown in FIG. 6, the primary base station and the secondary base station support an architecture system of a common CU multiple DU.
  • FIG. 7 is a schematic diagram of still another application scenario of the technical solution according to the embodiment of the present application.
  • the secondary base station supports the CP-UP architecture
  • the primary base station that is, the MN (Master node) in FIG. 7 may be
  • the eNB in the LTE may also be the gNB in the NR.
  • the secondary base station, that is, the SN (Secondary node) in FIG. 7 may be the CP-UP in the LTE, or may be the CP-UP in the NR, and the corresponding CP and UP.
  • the inter-interface is an E1 interface
  • the interface between the primary base station and the secondary base station may be an X2 interface or an Xn interface
  • the UPF is a User Plane Function (UPF).
  • the core network may also be an LTE network. Core network.
  • FIG. 8 is a schematic diagram of still another application scenario according to the technical solution of the embodiment of the present application.
  • the technical solution of the embodiment of the present application is applicable to an NR CU-DU architecture system for an NR CU-DU system.
  • the interface between the CU and the DU is an F1 interface
  • the interface between the base station 1 (gNB1) and the base station 2 (gNB2) is an Xn interface
  • the interface between the base station and the core network (5GC) is an NG interface.
  • FIG. 9 and FIG. 10 are schematic diagrams showing still another application scenario of the technical solution according to the embodiment of the present application.
  • the technical solution of the embodiment of the present application is applicable to an LTE CU-DU architecture system, and the difference lies in the CU.
  • the V1 interface is similar to the F1 interface.
  • the interface between the base stations (eNBs) is an X2 interface.
  • the CU can be connected to the core network EPC or to the NR core network 5GC.
  • the current 3rd Generation Partnership Project (3GPP) names the interface between CU-DUs as F1, and the F1 interface includes a control plane (CP, Control Plane) and a user plane (UP, User Plane).
  • the transport layer protocol of the control plane is the Stream Control Transmission Protocol (SCTP), and the transmitted application layer message is an F1AP (Application Protocol) message.
  • the transport layer protocol of the user plane is the GPRS Tunnelling Protocol-User plane (GTP-U) at the user level.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth-generation
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) and a base station controller (Base Station Controller) in the GSM system or CDMA.
  • BTS Base Transceiver Station
  • Base Station Controller Base Station Controller
  • the combination of the BSC may also be a base station (NodeB, NB) and a radio network controller (RNC) in the WCDMA system, or may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system.
  • BTS Base Transceiver Station
  • Base Station Controller Base Station Controller
  • the combination of the BSC may also be a base station (NodeB, NB) and a radio network controller (RNC) in the WCDMA system, or may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system.
  • NodeB NodeB
  • RNC
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and an access network device in a future 5G network, such as a next-generation base station, or a future evolved public land mobile network (PLMN). ) Access network equipment in the network, etc.
  • a future 5G network such as a next-generation base station, or a future evolved public land mobile network (PLMN).
  • PLMN public land mobile network
  • the wireless network control node and the base station are separated.
  • the baseband module and the radio frequency module are separated, that is, the radio frequency.
  • the present application describes various embodiments in connection with a terminal device.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the tunnel refers to the GTP (GPRS Tunneling Protocol) tunnel.
  • GTP GPRS Tunneling Protocol
  • the GTP tunnel is used to support the communication between two GTP-based network nodes, that is, to transmit data between two network nodes.
  • the destination end of the tunnel is assigned by the network node, and the address of the network device (for example, the base station) is the GPRS Tunnel Protocol Tunnel Endpoint (GTP Tunnel Endpoint), and the tunnel end point includes Two cells (Information Element, IE) as described in Table 1.
  • IE Information Element
  • X2/Xn UL GTP Tunnel Endpoint The tunnel end point of the network equipment carried by the X2/Xn transmission. It is used to transmit uplink data (including PDUs) to indicate the destination address of the uplink data transmission of the X2/Xn interface.
  • X2/Xn DL GTP Tunnel Endpoint The tunnel end point of the network equipment carried by the X2/Xn transmission. It is used to transmit downlink data (including PDUs) to indicate the destination address of the downlink data transmission of the X2/Xn interface.
  • S1/NG UL GTP Tunnel Endpoint The tunnel end point of the core network of the S1/NG transport bearer. It is used to transmit uplink data (including PDUs) to indicate the destination address of the uplink data transmission on the S1/NG interface.
  • S1/NG DL GTP Tunnel Endpoint The tunnel end point of the network device carried by the S1/NG transmission. It is used to transmit downlink data (including PDUs) to indicate the destination address of the downlink data transmission of the S1/NG interface.
  • F1 UL GTP Tunnel Endpoint The tunnel end point of the network device carried by the F1 transmission. It is used to transmit uplink data (including PDUs) to indicate the destination address of the uplink data transmission of the F1 interface.
  • F1 DL GTP Tunnel Endpoint The tunnel endpoint of the network device that the F1 transports is used to transmit downlink data (including PDUs), which is used to indicate the destination address of the downlink data transmission of the F1 interface.
  • the tunnel end point may be in one-to-one correspondence with the bearer, or may be one-to-one corresponding to the session, or may be in one-to-one correspondence with the quality of service (Qos) flow, or It may also be a tunnel end point allocated for a specific bearer, or may be a tunnel end point allocated for a specific session, or may be a tunnel end point allocated for a specific QoS flow, which is not limited in this application.
  • Qos quality of service
  • the embodiments of the present application are mainly directed to the flow, flow rate, and power allocation of various bearer types when the secondary base station supports the system architecture of the CU-DU and the CP-UP, and is not limited to LTE and NR.
  • the technical solution of the embodiment of the present application may also be extended to a multi-hop relay scenario, that is, the DU may be a relay node, or a scenario that is transmitted between the DU and the terminal device through the relay device.
  • FIG. 11 is a schematic flowchart of a transmission method 100 according to an embodiment of the present application.
  • the first network node in the transmission method 100 may be the first network node in FIG. 1, or may be FIG.
  • the CU may also be the S-gNB-CU in FIG. 3, and the second network node in the transmission method 100 may be the first network node in FIG. 1, or may be the CU in FIG. 2, or may be FIG.
  • the transmission method 100 includes:
  • the first network node sends the third indication information to the second network node by using the fourth interface, where the second network node receives the third indication information sent by the first network node by using the fourth interface, where the third indication information is used by the third network information. And indicating, by the second network node, the downlink tunnel end point of the fifth interface and/or the downlink tunnel end point of the sixth interface, where the fifth interface is an interface between the second network node and the third network node, where the sixth interface is An interface between the second network node and the core network node, the fourth interface, and the fifth interface and the sixth interface are different interfaces.
  • the first network node may send the third indication information to the second network node when the network segment of the fifth interface and the sixth interface are different, where the third indication information is used to trigger the second network node to allocate a downlink end point of the fifth interface and/or a downlink tunnel end point of the sixth interface, where the fifth interface is an interface between the second network node and the third network node, and the sixth interface is the second network node and the core network node
  • the fourth interface, the fifth interface and the sixth interface are different interfaces.
  • the third indication information is used to indicate a downlink tunnel end point of the fifth interface that triggers the second network node to allocate a specific bearer and/or a specific session and/or a specific Qos flow, and/or a downlink tunnel end point of the sixth interface.
  • the third indication information may be carried by the first network node through the fourth interface in an F1 AP message (eg, a UE context setup request or a UE context modification request, or other existing F1 AP message, or a new message). (such as the F1 interface) is sent to the second network node.
  • F1 AP message eg, a UE context setup request or a UE context modification request, or other existing F1 AP message, or a new message.
  • the tunnel endpoint includes at least one of an IP address transmitted by the user plane and a tunnel address (GTP TEID) transmitted by the user plane.
  • GTP TEID tunnel address
  • the first network node is an S-gNB-CU
  • the second network node is an S-gNB-DU
  • the third network node is an M-eNB
  • the fourth interface is an F1 interface.
  • the fifth interface is an X2-U interface
  • the sixth interface is an S1-U interface
  • the S-gNB-CU sends a UE Context setup request message to the S-gNB-DU, where the UE Context setup request message includes the third indication information.
  • the third indication information is used to indicate that the S-gNB-DU allocates the X2 DL GTP Tunnel Endpoint and/or the S1 DL GTP Tunnel Endpoint.
  • the S-gNB-CU determines the network segment of the F1 interface and the X2 interface. When the network segments are inconsistent, or other methods are implemented, the application does not limit this.
  • the third indication information may be carried in an F1 AP message (for example, a UE Context setup request message or a UE context modification request message, or other existing F1 AP message, or a new message, which is not limited in this application)
  • the second network node is sent by the first network node.
  • the third indication information includes an uplink tunnel end point of the fifth interface and/or an uplink tunnel end point of the sixth interface.
  • the third indication information may carry the uplink tunnel end point of the fifth interface and/or the uplink tunnel end point of the sixth interface, and the uplink tunnel end point of the fifth interface and/or the uplink tunnel end point of the sixth interface may be hidden.
  • the second network node is instructed to allocate a downlink tunnel end point of the fifth interface and/or a downlink tunnel end point of the sixth interface.
  • the S-gNB-CU carries the X2 UL GTP Tunnel Endpoint and/or the S1 UL GTP Tunnel Endpoint in the F1 AP message, such as the UE Context setup request message, and the S-gNB-DU receives the UE Context.
  • the F1 AP message sent to the S-gNB-CU such as the UE context setup response message, carries the X2 DL GTP Tunnel Endpoint and/or the S1 DL GTP Tunnel Endpoint.
  • the F1 AP message may also be a UE context modification request message, or other existing messages, which is not limited in this application.
  • the third indication information includes a mapping relationship between the first bearer and the fifth interface, and/or a mapping relationship between the second bearer and the sixth interface.
  • the third indication information carries a mapping relationship between the bearer and the interface
  • the second network node may feed back to the first network according to the mapping relationship between the bearer and the interface.
  • the message of the node is that the first bearer carries the downlink tunnel end point of the fifth interface and/or the second tunnel carries the uplink tunnel end point of the sixth interface.
  • the feedback message may be a UE context setup response message, or a UE context modification response message, or other existing F1 AP message, or a new message, which is not limited in this application.
  • the S-gNB-CU carries the mapping relationship between the X2 interface and the first bearer (for example, DRB1) in the F1 AP message, such as the UE Context setup request message, and/or the S1 interface and the first bearer.
  • the mapping relationship of the DRB2 the S-gNB-DU carries the X2 DL GTP Tunnel Endpoint and/or the S1 DL GTP Tunnel Endpoint in the F1 AP message sent to the S-gNB-CU, such as the UE context setup response message.
  • the third indication information includes the type information of the first bearer, for example, the first bearer is a primary cell split bearer, and the third indication information is used to indicate that the second network node is triggered.
  • the downlink tunnel end point of the fifth interface is allocated; for example, the first bearer is a secondary cell bearer (SCG Bearer), and the third indication information is used to indicate that the second network node is triggered to allocate the downlink tunnel end point of the sixth interface.
  • SCG Bearer secondary cell bearer
  • the third indication information may also be bit 0 or 1, for example, if it is 0, the first After receiving the third indication information, the second network node allocates the downlink tunnel address of the fifth interface; for example, if it is 1, the second network node allocates the sixth interface after receiving the third indication information. Downstream tunnel address.
  • the third indication information further includes configuration information of the first bearer, for example, the configuration information of the first bearer includes a bearer identifier of the first bearer, and a quality of service (Qos of the first bearer level).
  • the parameter, or the configuration information of the first bearer includes a session identifier corresponding to the first bearer, a Qos flow indicator (QFI), a mapping relationship between the first bearer and the QFI, a Qos parameter of the QFI level, and a first bearer. At least one of the levels of Qos parameters.
  • the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function; and/or
  • the third network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the protocol stack architecture of the second network node is at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the Partial Packet Data Convergence Protocol Layer (PDCP) function of the first network node (CU) needs to be moved down to the second network node (DU), and the PDCP function may be an encryption function.
  • the key deduction process of the two network nodes is similar to the existing process, that is, the third network node (M-eNB) first transmits the key to the first network node through the fifth interface (X2), and then passes through the fourth interface.
  • the (F1) message is sent by the first network node to the second network node.
  • the F1 message may be a UE Context setup request message or a UE context setup response message or other existing message, or a new message, The application does not impose any restrictions on this.
  • the transmission method 100 further includes:
  • the third network node sends a first request message to the first network node, where the first network node receives the first request message sent by the third network node, where the first request message is used to request the first bearer message. Allocate wireless resources.
  • the first request message may be an S-gNB addition request message, or an S-gNB modification confirm message, or an S-gNB modification request message, or other existing X2 AP message, or a new message. This application does not limit this.
  • the third network node determines to request the first network node for the radio resource of the first bearer, where the first request message may include the characteristics of the first bearer, including bearer and/or session parameters (such as ERAB ID, The radio bearer identifier, the Qos parameter of the bearer level, the session identifier (PDU session ID) of the data packet, the Qos flow indicator (QFI), the mapping relationship between the bearer and the QFI, and at least one of the Qos parameters of the QFI level. ), the transport network layer (TNL) address information corresponding to the bearer type.
  • bearer and/or session parameters such as ERAB ID
  • TNL transport network layer
  • the third network node may provide the most recent measurement result to the first network node.
  • the first bearer is an MCG split bearer
  • the first request message carries an uplink tunnel end point of the fifth interface.
  • the M-eNB may send an S-gNB Addition Request message to the S-gNB-CU, where the TNL address in the S-gNB Addition Request message is X2 UL GTP Tunnel Endpoint,
  • the TNL address is used to indicate the destination address of the uplink data transmission.
  • the first bearer is an SCG bearer
  • the first request message carries an uplink tunnel end point of the sixth interface.
  • the M-eNB may send an S-gNB Addition Request message to the S-gNB-CU, where the TNL address in the S-gNB Addition Request message is S1 UL GTP Tunnel Endpoint, the TNL The address is used to indicate the destination address of the upstream data transmission.
  • the first network node may send the third indication information to the second network node according to the type of the first bearer.
  • the first bearer is an MCG split bearer
  • the third indication information is used to indicate that the second network node is triggered to allocate the downlink tunnel end point of the fifth interface.
  • the first bearer is an SCG Bearer
  • the third indication information is used to indicate that the second network node is triggered to allocate the downlink tunnel end point of the fifth interface.
  • the two network nodes send a twelfth message to the first network node, where the first network node receives the twelfth message sent by the second network node, where the twelfth message includes a downlink tunnel of the fifth interface. End point and/or the downstream tunnel end point of the sixth interface.
  • the twelfth message includes a downlink tunnel end point of the fifth interface and/or a tunnel end point of the sixth interface under the specific bearer requested by the first network node.
  • the third indication information in S110 indicates that the second network node allocates the downlink tunnel destination of the fifth interface, the second network node allocates the downlink tunnel address of the fifth interface, or if S110 The third indication information indicates that the second network node allocates the downlink tunnel destination of the fifth interface of the specific bearer, and the second network node allocates the downlink tunnel address of the fifth interface of the specific bearer; for the SCG Bearer, if the S110 The third indication information indicates that the second network node allocates the downlink tunnel end point of the sixth interface, and the second network node allocates the downlink tunnel address of the sixth interface, or if the third indication information in S110 indicates that the second network node allocates the specific The downlink tunnel end of the sixth interface of the bearer, the second network node allocates a downlink tunnel address of the sixth interface of the specific bearer.
  • the twelfth message may be a UE Context setup response message, or may be a UE context modification message, or another existing message of the F1 AP, or a new message, which is not limited in this application.
  • the S-gNB-DU sends a UE Context setup response message to the S-gNB-CU, where the UE Context setup response message carries an X2 DL GTP Tunnel Endpoint and/or an S1 DL GTP Tunnel Endpoint.
  • the third indication information is used to indicate that the second network node allocates the downlink of the fifth interface.
  • the tunnel end point and/or the tunnel end point of the sixth interface are used to indicate that the second network node allocates the downlink of the fifth interface.
  • the first network node sends a first request determining message to the third network node, where the third network node receives the first request confirmation message sent by the first network node, where the first request confirmation message includes the fifth The downstream tunnel end point of the interface and/or the downstream tunnel end point of the sixth interface.
  • the first request determination message may be an S-gNB addition request acknowledge message, or an S-gNB modification required message, or an S-gNB modification request acknowledge message, or other existing X2 AP message, or New information, this application does not limit this.
  • the first network node after receiving the twelfth message sent by the second network node, the first network node sends a first request acknowledgement message to the third network node, where the first request acknowledgement message includes the downlink of the fifth interface.
  • the tunnel end point and/or the tunnel end point of the sixth interface are the first request acknowledgement message sent by the second network node.
  • the S-gNB-CU sends an S-gNB Addition Request Acknowledge message to the M-eNB, where the S-gNB Addition Request Acknowledge message carries the X2 DL GTP Tunnel Endpoint and/or the S1 DL GTP Tunnel Endpoint.
  • the M-eNB needs to send a message to the core network after receiving the S-gNB Addition Request Acknowledge message, and the message carries the S1 DL GTP. Tunnel Endpoint, so that the core network sends downlink data to the S-gNB-DU.
  • the tunnel end point may be in one-to-one correspondence with the bearer. For details, refer to the existing LTE and NR technologies. For brevity, details are not described herein again.
  • the second network node allocates the downlink tunnel address of the fifth interface and/or the downlink tunnel address of the sixth interface, which facilitates direct data transmission between the primary base station and the secondary base station DU, or The core network and the secondary base station DU directly perform data transmission.
  • FIG. 12 is a schematic flowchart of a transmission method 200 according to an embodiment of the present application.
  • the user plane node in the method 200 may be the SN-UP in FIG. 7, and the control plane node may be a diagram.
  • the SN-CP in the second network node may be the DU in FIG. 7, the third network node may be the MN in FIG. 7, the core network node may be the UPF in FIG. 7, and the transmission method 200 includes :
  • the user plane node determines an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, where the first interface is an interface between the user plane node and the second network node, and the second interface is The interface is an interface between the user plane node and the third network node, where the third interface is an interface between the user plane node and the core network node;
  • the user plane node sends a first message to the control plane node, where the control plane node receives the first message sent by the user plane node, where the first message includes an uplink tunnel end point of the first interface, and the second interface The end of the upstream tunnel and the end of the downstream tunnel of the third interface;
  • control plane node sends a second message to the second network node, where the second network node receives the second message sent by the control plane node, where the second message includes an uplink tunnel end point of the first interface;
  • control plane node sends a third message to the third network node, where the third network node receives the third message sent by the control plane node, where the third message includes an uplink tunnel end point of the second interface, and the The downstream tunnel end point of the three interfaces.
  • the first message may be an E1 AP message, such as a UE bearer setup response message or a UE bearer modification response message, or a UE bearer modification required message, or an existing message of another E1 AP, or a new message, this There is no restriction on the application.
  • the second message may be an F1 AP message, such as a UE context setup request message or a UE context modification request message, or a UE context modification confirm message, or an existing message of another F1 AP, or a new message.
  • F1 AP message such as a UE context setup request message or a UE context modification request message, or a UE context modification confirm message, or an existing message of another F1 AP, or a new message.
  • the third message may be an X2 AP message, such as an S-gNB addition request acknowledge message or an S-gNB modification request acknowledge message, or an S-gNB modification required message, or an existing message of another X2 AP, or New information, this application does not limit this.
  • the tunnel end point in S210-S240 is a tunnel end point under a specific bearer and/or a specific session and/or a specific Qos stream.
  • the user plane node determines the uplink end point of the specific interface and/or the specific session and/or the first interface under the specific Qos flow, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface.
  • the user plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function; and/or
  • the third network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • control plane node and the protocol stack structure of the user plane node are the same, that is, the user plane node and the control plane node both include a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function. At least one of the RRC layer, the service data adaptation layer, and the packet data convergence protocol layer respectively have a user plane and a control plane.
  • control plane node and the user plane node may belong to the same system, or may belong to different systems.
  • the control plane node is the first A control plane node of the system
  • the user plane node is a user plane node of the first system
  • the first system may be the first network node in FIG. 1 and may also be the CU in FIG.
  • the user plane node allocates an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, and carries the first interface in the first message sent to the control plane node.
  • the uplink tunnel end point, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface after the control plane node receives the first message, the control plane node sends a second message to the second network node, where the The second message includes an uplink tunnel end point of the first interface, and the control plane node sends a third message to the third network node, where the third message includes an uplink tunnel end point of the second interface and a downlink tunnel end point of the third interface.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are different tunnel end points.
  • At least part of the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are the same.
  • the network segments of the first interface, the second interface, and the third interface may be inconsistent (for example, some are internal networks, some are external networks), and then the uplink tunnel end point of the first interface and the uplink of the second interface The tunnel end point and the downstream tunnel end point of the third interface are different tunnel end points.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are the same. The end of the tunnel.
  • the first interface is an F1 interface
  • the second interface is an X2 interface (or an Xn interface, which is described below by taking an X2 interface as an example)
  • the third interface is an S1 interface.
  • the uplink tunnel end point of the first interface is an F1 UL GTP Tunnel Endpoint
  • the downlink tunnel end point of the first interface is an F1 DL GTP Tunnel Endpoint
  • the uplink tunnel end point of the second interface is an X2 UL
  • the downlink tunnel end of the second interface is the X2 DL GTP Tunnel Endpoint
  • the uplink tunnel address of the third interface is the S1 UL GTP Tunnel Endpoint
  • the downlink tunnel address of the third interface is the S1 DL GTP Tunnel Endpoint.
  • the tunnel endpoint may be in one-to-one correspondence with bearers and/or sessions and/or Qos streams.
  • the SN-UP first allocates an F1 UL GTP Tunnel Endpoint, an X2 UL GTP Tunnel Endpoint, and an S1 DL GTP Tunnel Endpoint, and the SN-UP sends an E1 AP message to the SN-CP (for example, UE Bearer Setup).
  • the Response message carries the F1 UL GTP Tunnel Endpoint, the X2 UL GTP Tunnel Endpoint, and the S1 DL GTP Tunnel Endpoint.
  • the SN-CP After receiving the UE Bearer Setup Response message, the SN-CP sends an F1 AP message to the DU (for example, the UE Context Setup Request).
  • an X2 AP message for example, a SgNB Addition Request Ack message
  • the tunnel endpoint may be in one-to-one correspondence with bearers and/or sessions and/or Qos streams.
  • the first message further includes indication information, where the indication information is used to indicate a correspondence between the tunnel end point and the interface, for example, indicating, to the control plane node, an uplink tunnel end point of the first interface, where the first interface is used, And/or indicating to the control plane node that the uplink tunnel end point of the second interface is used for the second interface, and/or indicating to the control plane node that the downlink tunnel end point of the third interface is used for the third interface.
  • the indication information is used to indicate a correspondence between the tunnel end point and the interface, for example, indicating, to the control plane node, an uplink tunnel end point of the first interface, where the first interface is used, And/or indicating to the control plane node that the uplink tunnel end point of the second interface is used for the second interface, and/or indicating to the control plane node that the downlink tunnel end point of the third interface is used for the third interface.
  • the third message further carries indication information, where the indication information is used to indicate a correspondence between the tunnel end point and the interface, for example, the uplink tunnel end point of the second interface to the third network node is used for the second interface. And/or, the downlink tunnel end point of the third interface to the third network node is used for the third interface.
  • the third message further carries a data forwarding address of the X2 interface, where the second message further carries a data forwarding address of the F1 interface, where the address may be the control plane node.
  • the assigned may also be assigned by the user plane node.
  • the address may be sent to the control plane node in S220 or S233.
  • the data forwarding address of the X2 interface includes a downlink data forwarding address and an uplink data forwarding address (for example, a DL Forwarding X2 GTP Tunnel Endpoint, indicating that the X2 transport bearer is used to forward downlink data packet PDUs, and the UL Forwarding X2 GTP Tunnel Endpoint, Instructing the X2 transport bearer to forward the uplink data packet PDUs, the data forwarding address of the F1 interface includes a downlink data forwarding address and an uplink data forwarding address (for example, a DL Forwarding F1 GTP Tunnel Endpoint, indicating that the F1 transport bearer is used to forward downlink data.
  • the F1 transport bearer is used to forward uplink data packet PDUs, where the forwarded address is the GTP Tunnel Endpoint (including the transport IP address and TEID).
  • the data forwarding address of the X2 interface and the data forwarding address of the F1 interface may be in one-to-one correspondence with the bearer.
  • the data forwarding address of the X2 interface may be carried in the E1 AP message and sent by the control plane node to the user plane node;
  • the data forwarding address of the interface can also be carried in the E1 AP message and sent by the control panel node to the user plane node.
  • the E1 AP message sent by the control plane node to the user plane node carries indication information, where the indication information is used to indicate the data forwarding address and the interface. Correspondence.
  • the E1 AP message sent by the user plane node to the control plane node carries indication information, where the indication information is used to indicate the data forwarding address and the interface. Correspondence.
  • the data forwarding address of the F1 interface may be carried in the F1 AP message and sent by the control plane node to the second network node;
  • the data forwarding address of the F1 interface can also be carried in the E1 AP message and sent by the control plane node to the user plane node.
  • the control plane node sends a data forwarding indication to the user plane node to the user plane node, where the data is forwarded.
  • the forwarding indication is used to indicate that the user plane node forwards the downlink data packet, that is, the address that the user plane node allocates data forwarding for data forwarding (for example, the data forwarding address of the X2 interface, the data forwarding address of the F1 interface, etc.), and further, Instructing the user plane node to forward the downlink data packet under the specific bearer, that is, instructing the user plane node to allocate the data forwarding address under the specific bearer for the data forwarding under the specific bearer (for example, the data forwarding address of the X2 interface under the specific bearer, the specific bearer) The data forwarding address of the F1 interface, etc.).
  • the transmission method 200 is an example in which the primary base station is an LTE eNB (M-eNB, Master eNB), and the secondary base station is an NR gNB-CU-CP and a gNB-CU-CP.
  • the primary base station the NR gNB is used.
  • the secondary base station is an LTE CP-UP architecture, or the primary base station is an NR gNB, the secondary base station is an NR CP-UP architecture, or the primary base station is an LTE eNB, and the secondary base station is an LTE CP-UP architecture.
  • the transmission method 200 further includes:
  • the third network node sends a second request message to the control plane node, where the control plane node receives the second request message sent by the third network node, where the second request message is used to request the control plane node to be the first
  • the second bearer allocates radio resources.
  • the second bearer type is a SCG split bearer.
  • the second request message includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the second request message includes a bearer parameter and/or a session parameter, where the bearer parameter includes at least one of a bearer identifier ERAB ID and a bearer level, and the session parameter includes a session identifier and a Qos flow indicator. , QFI), bearer identity, bearer and QFI mapping relationship, QFI level Qos parameter and bearer level Qos parameter.
  • the second request message includes a data forwarding indication, such as a data forwarding indication of a specific bearer (eg, DL forwarding), or a data forwarding indication of a specific Qos flow (Qos flow), or a data forwarding indication of a specific session.
  • a data forwarding indication such as a data forwarding indication of a specific bearer (eg, DL forwarding), or a data forwarding indication of a specific Qos flow (Qos flow), or a data forwarding indication of a specific session.
  • the second request message carries the latest measurement result of the third network node.
  • the second request message may be a message such as a secondary base station addition request message (such as a SgNB addition request message) or a secondary base station modification request message (such as a SgNB modification request message), or may be an existing one of the other X2 APs.
  • a secondary base station addition request message such as a SgNB addition request message
  • a secondary base station modification request message such as a SgNB modification request message
  • the message, or the new message is not limited in this application.
  • the MN sends an X2 AP message (for example, a SgNB Addition Request message) to the SN-CP, where the SgNB Addition Request message carries X2.
  • X2 AP message for example, a SgNB Addition Request message
  • the SgNB Addition Request message carries X2.
  • control plane node sends first indication information to the user plane node, where the user plane node receives the first indication information from the control plane node, where
  • the first indication information is used to indicate that the bearer type requested by the control plane node is a secondary cell split bearer
  • the first indication information is used to indicate that the user plane node allocates an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface; or
  • the first indication information includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface; or
  • the first indication information is used to indicate that the user plane node needs to have a packet data convergence protocol layer function, or the user plane node needs to have a primary cell resource configuration, or the user plane node needs to have at least one of a secondary cell resource configuration.
  • the first indication information may indicate whether the PDCP function exists, or whether the configuration of the MCG exists, or whether the configuration of the SCG exists, for example, whether the PDCP function exists or not (eg, the PDCP resource configuration in the CU-UP)
  • the value in the setting is set to "present”, or “not present”
  • the value of the MCG in the resource configuration of the CU-CP is set to "present”, or “not present”
  • the value of the SCG in the resource configuration of the CU-UP is set. Is "present", or "not present”).
  • the control plane node may send the first indication information to the user plane node before the user plane node allocates the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface,
  • the first indication information may be explicitly or implicitly indicating that the user plane node allocates an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface.
  • the first indication information is carried in an E1 AP message (for example, a UE Bearer Setup Request message, a UE bearer modification request message), or another E1 AP existing message, or a new message, which is not used in this application. Any restrictions.
  • the E1 AP message (for example, the UE Bearer Setup Request message) includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the E1 AP message includes a data forwarding indication (eg, DL forwarding) or a data forwarding indication of the specific bearer.
  • a data forwarding indication eg, DL forwarding
  • a data forwarding indication of the specific bearer e.g, DL forwarding
  • the E1 AP message includes at least one of a security configuration, a SDAP, and a PDCP configuration.
  • the E1 AP message includes parameters of the bearer and/or the session, such as a PDU session ID, a Qos flow indicator (QFI), a bearer identifier (ERAB ID or DRBID, etc.), At least one of a mapping relationship between a bearer and a QFI, a Qos parameter of a QFI level, and a Qos parameter of a bearer level.
  • parameters of the bearer and/or the session such as a PDU session ID, a Qos flow indicator (QFI), a bearer identifier (ERAB ID or DRBID, etc.), At least one of a mapping relationship between a bearer and a QFI, a Qos parameter of a QFI level, and a Qos parameter of a bearer level.
  • the E1 AP message includes a QoS of the QFI level and/or a quality of service (QoS) parameter of the bearer level.
  • the specific Qos parameter includes: the first indication information is used to indicate the control plane node.
  • the QoS parameter includes the QoS parameter of the bearer level; the first indication information is used to indicate that the user plane node needs to have the function of the packet data convergence protocol layer, or the user plane node is required to have
  • the QoS parameter includes the QoS parameter of the bearer level, the Qos parameter of the maximum bearer level that the MCG can bear, and the maximum that the SCG can bear. At least one of the QoS parameters of the bearer level.
  • the QoS parameter specifically includes at least one of a QCI (Qos Class Identifier), an allocation and retention
  • the SN-CP sends an E1 AP message (for example, a UE Bearer Setup Request message) to the SN-UP, and the UE Bearer Setup Request message may carry the first indication information.
  • E1 AP message for example, a UE Bearer Setup Request message
  • the UE Bearer Setup Request message may carry the first indication information.
  • the transmission method 200 further includes:
  • the second network node sends a fourth message to the control plane node, where the control plane node receives the fourth message sent by the second network node, where the fourth message includes a downlink tunnel end point of the first interface.
  • the fourth message may be an F1 AP message, such as a UE context setup request message, a UE context modification request message, or an F1 AP existing message, or an F1 AP new message, which is not limited in this application.
  • F1 AP message such as a UE context setup request message, a UE context modification request message, or an F1 AP existing message, or an F1 AP new message, which is not limited in this application.
  • the DU receives the UE Context Setup Request message sent by the SN-CP, and the DU replies to the SN-CP with an F1 AP message (for example, a UE Context Setup Response message), and the UE Context Setup Response message carries the F1.
  • F1 AP message for example, a UE Context Setup Response message
  • the control plane node sends a fifth message to the user plane node, where the user plane node receives the fifth message sent by the control plane node, where the fifth message includes a downlink tunnel end point of the first interface, and the second interface At least one of a downstream tunnel end point and an uplink tunnel end point of the third interface.
  • the fifth message may be an E1 AP message, such as a UE bearer setup request message, a UE bearer modification request message, or an E1 AP existing message, or an E1 AP new message, which is not limited in this application.
  • E1 AP message such as a UE bearer setup request message, a UE bearer modification request message, or an E1 AP existing message, or an E1 AP new message, which is not limited in this application.
  • the control plane node may send a fifth message to the user plane node, the fifth message may include the first indication information, and the fifth message may further include the second message.
  • control plane node may send the fifth message to the user plane node, where the fifth message includes a downlink tunnel end point of the first interface.
  • the fifth message may be a UE Bearer Setup Request message
  • the UE Bearer Setup Request message carries an X2 DL GTP Tunnel Endpoint and/or an S1 UL GTP Tunnel Endpoint.
  • the fifth message may be a UE Bearer Modification Request message, and the UE Bearer Modification Request message carries an F1 DL GTP Tunnel Endpoint.
  • the user plane node sends a request response message to the control plane node, where the control plane node receives the request response message sent by the user plane node.
  • the SN-UP transmits a UE Bearer Modification Response message to the SN-CP.
  • the transmission method of the embodiment of the present application determines the different tunnel end points by the user plane node by giving the user plane tunnel establishment process of the second bearer, especially when the network segments of the interfaces are inconsistent, which helps to solve the upper and lower sides of the user plane.
  • a transmission method 200 according to an embodiment of the present application is described in detail.
  • a user plane node is introduced to perform tunnel end point allocation.
  • a method 300 according to an embodiment of the present application is described in detail. The assignment of the tunnel end point by the control plane node is described.
  • Table 2 Table 3, and Table 4 show the addresses provided by the various network nodes in the transmission method 200, as shown in Table 2, Table 3, and Table 4.
  • FIG. 13 is a schematic flowchart of a transmission method 300 according to an embodiment of the present application.
  • the user plane node in the method 300 may be the SN-UP in FIG. 7
  • the control plane node may be a diagram.
  • the SN-CP in 7 the second network node may be the DU in FIG. 7
  • the third network node may be the MN in FIG. 7
  • the core network node may be the UPF in FIG. 7
  • the transmission method 300 includes :
  • the control plane node determines an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, where the first interface is an interface between the user plane node and the second network node, and the second interface
  • the interface is an interface between the user plane node and the third network node
  • the third interface is an interface between the user plane node and the core network node, where the second interface and the third interface are different interfaces;
  • control plane node sends a second message to the second network node, where the second network node receives the second message sent by the control plane node, where the second message includes an uplink tunnel end point of the first interface;
  • control plane node sends a third message to the third network node, where the third network node receives the third message sent by the control plane node, where the third message includes an uplink tunnel end point of the second interface, and the third The downstream tunnel end point of the three interfaces.
  • the second message may be an F1 AP message, such as a UE context setup request message or a UE context modification request message, or an existing message of another F1 AP, or a new message, which is not limited in this application.
  • the third message may be an X2 AP message, such as an S-gNB addition request acknowledge message or an S-gNB modification request acknowledge message, or an existing message of another X2 AP, or a new message. No restrictions are imposed.
  • the tunnel end point in S310-S330 is a tunnel end point under a specific bearer and/or a specific session and/or a specific Qos stream.
  • the user plane node determines the uplink end point of the specific interface and/or the specific session and/or the first interface under the specific Qos flow, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are sent by the control plane node to the user plane node by being carried in the E1 AP message, where the E1 AP message is sent. It may be a UE bearer setup request message or a UE bearer modification request message, or other existing E1 AP messages, or new messages, which is not limited in this application.
  • control plane node allocates the tunnel end point according to the address pool of the pre-configured user plane node, where the address pool of the user plane node can be interacted during the establishment of the E1 AP interface, or by the network management system (OAM, The operation and maintenance management system is pre-configured, and the present application does not limit this.
  • OAM network management system
  • the user plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function; and/or
  • the third network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • control plane node allocates an uplink tunnel destination of the first interface, an uplink tunnel destination of the second interface, and a downlink tunnel destination of the third interface, and the control plane node sends a second message to the second network node, where the The second message includes an uplink tunnel end point of the first interface, and the control plane node sends a third message to the third network node, where the third message includes an uplink tunnel end point of the second interface and a downlink tunnel end point of the third interface.
  • the network segments of the first interface, the second interface, and the third interface are inconsistent (for example, some are internal networks, some are external networks), then an uplink tunnel end point of the first interface, and an uplink tunnel of the second interface.
  • the end point and the downstream tunnel end point of the third interface are different tunnel end points.
  • the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface are the same. The end of the tunnel.
  • the first interface is an F1 interface
  • the second interface is an X2 interface (or an Xn interface, which is described below by taking an X2 interface as an example)
  • the third interface is an S1 interface.
  • the uplink tunnel end point of the first interface is an F1 UL GTP Tunnel Endpoint
  • the downlink tunnel address of the first interface is an F1 DL GTP Tunnel Endpoint
  • the uplink tunnel end point of the second interface is an X2 UL.
  • the downlink tunnel end of the second interface is the X2 DL GTP Tunnel Endpoint
  • the uplink tunnel address of the third interface is the S1 UL GTP Tunnel Endpoint
  • the downlink tunnel address of the third interface is the S1 DL GTP Tunnel Endpoint.
  • the tunnel endpoint may be in one-to-one correspondence with bearers and/or sessions and/or QoS streams.
  • the SN-CP first allocates an F1 UL GTP Tunnel Endpoint, an X2 UL GTP Tunnel Endpoint, and an S1 DL GTP Tunnel Endpoint, and the SN-CP sends an F1 AP message to the DU (for example, a UE Context Setup Request message).
  • the UE Context Setup Request message carries the F1 UL GTP Tunnel Endpoint
  • the SN-CP sends an X2 AP message (for example, a SgNB Addition Request Ack message) to the MN, where the SgNB Addition Request Ack message carries the X2 UL GTP Tunnel Endpoint and the S1 DL. GTP Tunnel Endpoint.
  • the tunnel endpoint may be in one-to-one correspondence with bearers and/or sessions and/or QoS streams.
  • the third message further carries a data forwarding address of the X2 interface, where the second message further carries a data forwarding address of the F1 interface, where the address may be the control plane node.
  • the allocation may also be assigned by the user plane node.
  • the address may be sent by the user plane node to the control plane node.
  • the data forwarding address includes a downlink data forwarding address and an uplink data forwarding address (for example, a DL Forwarding X2 GTP Tunnel Endpoint, indicating that the X2 transport bearer is used to forward downlink data packet PDUs, and the UL Forwarding X2 GTP Tunnel Endpoint indicates that the X2 transport bearer is used to forward the uplink.
  • a downlink data forwarding address for example, a DL Forwarding X2 GTP Tunnel Endpoint, indicating that the X2 transport bearer is used to forward downlink data packet PDUs
  • the UL Forwarding X2 GTP Tunnel Endpoint indicates that the X2 transport bearer is used to forward the uplink.
  • the data forwarding address of the F1 interface includes a downlink data forwarding address and an uplink data forwarding address (for example, DL Forwarding F1 GTP Tunnel Endpoint, indicating that the F1 transport bearer is used to forward downlink data packet PDUs, UL Forwarding F1 GTP Tunnel Endpoint, indicating that the F1 transport bearer is used to forward uplink data packet PDUs)
  • the forwarding address is GTP Tunnel Endpoint (including transmission IP address and TEID). It should be noted that the data forwarding address of the X2 interface and the data forwarding address of the F1 interface may be in one-to-one correspondence with the bearer.
  • the data forwarding address of the X2 interface may be carried in the E1 AP message and sent by the control plane node to the user plane node.
  • the E1 AP message sent by the control plane node to the user plane node carries indication information, where the indication information is used to indicate a correspondence between the data forwarding address and the interface.
  • the data forwarding address of the F1 interface may be carried in the F1 AP message and sent by the control plane node to the second network node;
  • the data forwarding address of the F1 interface can also be carried in the E1 AP message and sent by the control plane node to the user plane node.
  • the control plane node sends a data forwarding indication to the user plane node to the user plane node, where the data is forwarded.
  • the forwarding indication is used to indicate that the user plane node forwards the downlink data.
  • the user plane node may be instructed to forward the specific bearer and/or the specific session and/or the downlink data under the specific QoS flow.
  • the method 300 further includes:
  • the third network node sends a third request message to the control plane node, where the control plane node receives the third request message sent by the third network node, where the third request message is used to request the control plane node as The second bearer allocates radio resources.
  • the second bearer is a SCG Split Bearer.
  • the third request message specifies a feature of the second bearer, including a bearer parameter and a TNL address corresponding to the bearer type.
  • the third network node carries the latest measurement result in the third request message.
  • the third request message includes a downlink tunnel end point of the second interface and/or an uplink tunnel end point of the third interface.
  • the third request message includes bearer and/or session configuration parameters, such as a bearer identifier (ERAB ID or DRB ID), a Qos parameter of a bearer level, a session identifier of the data packet, and a Qos flow indicator. , QFI), mapping between bearers and QFI, at least one of QOS parameters of the QFI level.
  • bearer and/or session configuration parameters such as a bearer identifier (ERAB ID or DRB ID), a Qos parameter of a bearer level, a session identifier of the data packet, and a Qos flow indicator.
  • QFI bearer identifier
  • QFI mapping between bearers and QFI
  • at least one of QOS parameters of the QFI level at least one of QOS parameters of the QFI level.
  • the third request message includes a data forwarding indication, such as a data forwarding indication (eg, DL forwarding) of the specific bearer.
  • a data forwarding indication eg, DL forwarding
  • the third network node sends a third request message to the control plane node, where the third request message is used to request the control plane node to allocate radio resources for the second bearer.
  • the MN sends an X2 AP message (for example, a SgNB Addition Request message) to the SN-CP, where the SgNB Addition Request message carries the X2 DL GTP Tunnel Endpoint and the S1 UL GTP Tunnel Endpoint, bearer and/or session.
  • Configuration information (such as the bearer identifier ERAB ID, the QoS parameter of the bearer level, the session identifier of the data packet, the Qos flow indicator (QFI), the mapping relationship between the bearer and the QFI, the Qos parameter of the QFI level, and the Qos parameter of the bearer level. At least one of them.).
  • the transmission method 300 further includes:
  • the second network node sends a fourth message to the control plane node, where the control plane node receives the fourth message sent by the second network node, where the fourth message includes a downlink tunnel end point of the first interface.
  • the DU receives the UE Context Setup Request message sent by the SN-CP, and the DU replies to the SN-CP with an F1 AP message (for example, a UE Context Setup Response message), and the UE Context Setup Response message carries the F1.
  • F1 AP message for example, a UE Context Setup Response message
  • the control plane node sends a fifth message to the user plane node, where the user plane node receives the fifth message sent by the control plane node, where the fifth message includes an uplink tunnel end point of the first interface, and a downlink of the first interface. At least one of a tunnel end point, an uplink tunnel end point of the second interface, a downlink tunnel end point of the second interface, an uplink tunnel end point of the third interface, and a downlink tunnel end point of the third interface.
  • the fifth message is an E1 AP message, such as a UE bearer setup request message, a UE bearer modification request message, or another existing message of the E1 AP, or a new message, which is not limited in this application.
  • E1 AP message such as a UE bearer setup request message, a UE bearer modification request message, or another existing message of the E1 AP, or a new message, which is not limited in this application.
  • the message sent by the control plane node to the user plane node carries the tunnel end point of the uplink and downlink tunnel, which helps the user plane node to identify whether the data is sent to itself.
  • the fifth message further includes indication information, where the indication information is used to indicate a correspondence between the tunnel end point and the interface, for example, the indication information indicates, to the user plane node, an uplink tunnel end point of the first interface, where the first The interface, and/or the uplink tunnel endpoint of the second interface is for the second interface, and/or the downlink tunnel endpoint of the third interface is for the third interface.
  • the indication information indicates, to the user plane node, an uplink tunnel end point of the first interface, where the first The interface, and/or the uplink tunnel endpoint of the second interface is for the second interface, and/or the downlink tunnel endpoint of the third interface is for the third interface.
  • the SN-CP sends an E1 AP message (for example, a UE Bearer Setup Request message) to the SN-UP, and the UE Bearer Setup Request message carries the F1 UL GTP Tunnel Endpoint, the F1 DL GTP Tunnel Endpoint, the X2 UL GTP Tunnel Endpoint, and the X2 DL GTP Tunnel Endpoint, at least one of S1 UL GTP Tunnel Endpoint and S1 DL GTP Tunnel Endpoint.
  • E1 AP message for example, a UE Bearer Setup Request message
  • the user plane node sends a request response message to the control plane node, where the control plane node receives the request response message sent by the user plane node.
  • the SN-UP sends a UE Bearer Setup Response message to the SN-CP.
  • the downlink tunnel end point of the third interface may also be allocated by the user plane node, and the request response message carries the downlink tunnel end point of the third interface. Further, the request response message may further carry indication information for A downlink tunnel end point indicating the third interface is used for the third interface.
  • the transmission method of the embodiment of the present application provides a user plane tunnel establishment process of the second bearer, and the control plane node determines different tunnel end points, especially when the network segments of the interfaces are inconsistent, which helps to solve the upper and lower sides of the user plane.
  • Tables 5, 6, and 7 show the addresses provided by the various network nodes in the transmission method 300, as shown in Tables 5, 6, and 7.
  • the transmission method 200 and the transmission method 300 only describe the tunnel end point (the uplink tunnel end point of the first interface, the uplink tunnel end point of the second interface, and the downlink tunnel end point of the third interface) by the user plane node assignment and the control plane node assignment.
  • the process of assigning the tunnel end point can also be completed by the control plane node and the user plane node. For example, the user plane node allocates an uplink tunnel end point of the first interface and an uplink tunnel end point of the second interface, and the control plane node allocates a downlink tunnel end point of the third interface.
  • control plane node allocates an uplink tunnel destination of the first interface and an uplink tunnel destination of the second interface
  • user plane node allocates a downlink tunnel destination of the third interface.
  • the manner of allocation may be any arrangement and combination, and the application is not limited thereto.
  • the process of allocating and indicating the uplink and downlink tunnel end points of the user plane is described in detail by the method 100 to the method 300.
  • the following describes the process of traffic statistics, power allocation, and cell identification addition in combination with the method 400 to the method 700.
  • FIG. 14 is a schematic flowchart of a transmission method 400 according to an embodiment of the present application.
  • the first network node in the method 400 may be the first network node in FIG. 1 , or may be a diagram.
  • the CU in 2 may also be the S-gNB-CU in FIG. 3, and may also be the SgNB-CP in FIG. 4, and the second network node may be the second network node in FIG. 1, or may be FIG.
  • the DU in the figure may also be the S-gNB-DU in FIG. 3, and may also be the S-gNB-DU in FIG. 4, and the third network node may be the M-eNB in FIG. 3 or the FIG.
  • the transmission method 400 includes:
  • the second network node sends a seventh message to the first network node, where the first network node receives the seventh message from the second network node, where the seventh message includes data traffic information transmitted by the second network node.
  • the seventh message may be an F1 AP message, such as a UE context setup response message, a UE context modification response message, a UE context modification required message, or other existing messages of the F1 AP, or a new message.
  • F1 AP message such as a UE context setup response message, a UE context modification response message, a UE context modification required message, or other existing messages of the F1 AP, or a new message.
  • the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function; and/or
  • the third network node includes at least one of a radio resource control protocol layer, a service data adaptation layer, a packet data convergence protocol layer function, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the data traffic information transmitted by the second network node includes: the uplink data traffic transmitted by the second network node, the downlink data traffic transmitted by the second network node, and the statistics of the data traffic transmitted by the second network node. And at least one of the end times.
  • the data traffic information of the second network node includes traffic information of some bearers, for example, MCG Split Bearer, SCG Bearer, SCG Split Bearer, and the like.
  • the data traffic information of the second network node includes traffic information of a specific bearer and/or a specific session and/or a specific Qos flow, such as ERAB ID1, ERAB ID2, session ID1, QFI1, and the like.
  • the data traffic information herein may be data traffic information transmitted by the secondary base station, that is, data traffic transmitted to the terminal device through the air interface of the secondary base station.
  • the S-gNB-DU can actively report the data traffic information of the S-gNB-DU to the S-gNB-CU, and the S-gNB-DU can be in the F1 AP message (for example, the UE Context Setup Request message).
  • the UE Context Modification Request message, or the UE Context Modification Require message carries the data traffic information, or the F1 AP message is another existing message or a new message, and the application is not limited thereto.
  • the S-gNB-DU can actively report the data traffic information of the S-gNB-DU to the S-gNB-CP, and the S-gNB-DU can be in the F1 AP message (for example, the UE Context Setup Request)
  • the message, or the UE Context Modification Request message, or the UE Context Modification Require message carries the data traffic information, or the F1 AP message is another existing message or a new message, and the application is not limited thereto.
  • the data traffic information may include a bearer identifier (eRAB ID), a session identifier (PDU session ID), a Qos flow indicator (QFI), a timestamp for starting the statistics flow, and a time for ending the statistics traffic. End timestamp, at least one of uplink data flow information (usage count UL) or downlink data flow information (usage count DL).
  • eRAB ID bearer identifier
  • PDU session ID session identifier
  • QFI Qos flow indicator
  • End timestamp at least one of uplink data flow information (usage count UL) or downlink data flow information (usage count DL).
  • the transmission method 400 further includes:
  • the first network node sends the second indication information to the second network node, where the second network node receives the second indication information sent by the first network node, where the second indication information is used to indicate the second network
  • the node reports data traffic information transmitted by the second network node.
  • the secondary base station DU when there is data transmitted from the primary base station to the secondary base station, the secondary base station DU statistics the transmitted data traffic according to the secondary base station CU.
  • the second indication information is an F1 AP message between the CU and the DU, such as a UE context setup request message, or a UE context modification request message, or a UE context modification confirm message, etc., or may be through other existing messages or new
  • the information is not limited in this application.
  • the step is optional, that is, the DU of the secondary base station can actively count and report the traffic of the transmitted data.
  • the second indication information includes but is not limited to one or more of the following:
  • End timestamp the start timestamp of the statistical traffic of a specific bearer, the end timestamp of the statistical traffic of a specific bearer, the uplink data traffic statistics of a specific bearer, the downlink data traffic statistics of a specific bearer, and the uplink data traffic.
  • the transmission method 400 further includes:
  • S420 The first network node sends data traffic information of the second network node to the third network node, where the third network node receives data traffic information of the first network node.
  • the first network node may send the data traffic information to the third network node.
  • the S-gNB-CU sends a Secondary Rat Data Usage Report to the M-eNB, and the Secondary Rat Data Usage Report message carries the data traffic information of the S-gNB-DU.
  • the S-gNB-CP sends a Secondary Rat Data Usage Report to the M-eNB, and the Secondary Rat Data Usage Report message carries the data traffic information of the S-gNB-DU.
  • the data traffic information includes a bearer identifier (eRAB ID), a start timestamp for starting the statistics flow, an end timestamp for ending the statistics traffic, an uplink data flow information (usage count UL), or an uplink. At least one of the usage count information (DL).
  • eRAB ID bearer identifier
  • start timestamp for starting the statistics flow
  • end timestamp for ending the statistics traffic
  • uplink data flow information (usage count UL)
  • uplink usage count information
  • DL usage count information
  • the data flow information further includes a secondary rat type information, where the secondary rat type information may be added to the traffic statistics report by the secondary base station CU after receiving the data flow information sent by the secondary base station DU (Secondary Rat Data)
  • the Usage Report is sent to the primary base station again, or the Secondary Rat Type information may be added to the CU of the secondary base station by the DU of the secondary base station, and the CU of the secondary base station receives the CU, and then sends the CU to the primary base station.
  • the secondary base station CU may modify the secondary rat type or may not modify the secondary rat type.
  • the transmission method 400 of the embodiment of the present application may be a separate embodiment, or may be combined with other embodiments.
  • the transmission method 400 may be based on the transmission method 100, and the application is not limited thereto.
  • the data traffic information of the embodiment of the present application may specifically include data PDUs, an IP header in a data packet, or a transmission control protocol (TCP)/user datagram protocol (UDP) header.
  • TCP transmission control protocol
  • UDP user datagram protocol
  • the TCP controls the message (eg, ACK, etc.) and retransmits one or more of the packets.
  • the transmission method of the embodiment of the present application can help solve the problem of secondary base station recording traffic statistics.
  • the transmission method 500 of the embodiment of the present application is described below.
  • the transmission method 500 is mainly applicable to the primary and secondary base stations supporting the CU-DU structure.
  • FIG. 15 is a schematic flowchart of a transmission method 500 according to an embodiment of the present application.
  • the first network node may be the M-gNB-CU in FIG. 5, and the second network node may be In the M-gNB-DU of FIG. 5, the transmission method 500 includes:
  • the first network node sends a ninth message to the second network node, where the second network node receives the ninth message sent by the first network node, where the ninth message includes the first power of the second network node A configuration parameter, where the first power configuration parameter is a maximum transmit power that the terminal device can use in the primary cell group.
  • the power configuration parameter of the second network node may be determined by the first network node, where the first network node sends a ninth message to the second network node, where the ninth message includes the second network node A power configuration parameter.
  • the specific value of the power configuration parameter of the M-gNB-DU (for example, P-maxMCG, the specific name is not limited herein) is determined by the M-gNB-CU, and the F1 interface message is used. It can be a message such as UE Context Setup Request or UE Context Modification Request.
  • the first network node sends the first power configuration parameter to the fourth network node.
  • the transmission method 500 further includes:
  • the second network node sends a request response message to the first network node.
  • the M-gNB-DU transmits a message such as a UE Context Setup Response or a UE Context Modification Response to the M-gNB-CU.
  • the transmission method 500 further includes:
  • the second network node sends a tenth message to the first network node, where the tenth message includes a second power configuration parameter of the second network node, where the second power configuration parameter is used by the terminal device in the primary cell group. Maximum transmit power.
  • the tenth message may be sent to the first network node.
  • the transmission method 500 further includes:
  • the fourth network node sends power update information to the fifth network node, where the power update information includes a third power configuration parameter that is updated by the fourth network node, where the third power configuration parameter is that the terminal device can be in the secondary cell group.
  • the fourth network node may be the S-gNB-DU in FIG. 5, which may be the S-gNB-CU in FIG.
  • the power update information may be sent to the cellgroupconfig cell of the fifth network node by the existing fourth network node. It should be understood that after receiving the cellgroupconfig, the fifth network node needs to parse the cellgroupconfig to read the power information. Then, determine if the power is updated.
  • the power update information may be carried in a F1 AP message sent by the fourth network node to the fifth network node as a displayed cell (such as P-maxSCG). It should be understood that the fifth network node receives the power. After updating the information, the power update information is directly read, and then it is determined whether the power is updated. In this option, the power update information can also be filled in the cellgroupconfig at the same time, or the power update information may not be filled in the cellgroupconfig.
  • the updated power is carried in the X2 interface message sent by the fifth network node to the first network node.
  • the X2 interface message may also be carried.
  • An indication of the power is updated to instruct the first network node to update the power parameter of the primary cell group).
  • the X2 interface message may be a SgNB modification request message, or a SgNB addition request ack message, or a SgNB modification request ack message, or other X2 AP existing message, or a new message, which is not limited in this application.
  • the updated power is carried in the X2 interface message sent by the fifth network node to the first network node, specifically, the updated power is carried in the cell groupconfig cell.
  • the first network node parses the cellgroupconfig cell and obtains the updated power, and then determines whether the power parameter of the primary cell group needs to be updated.
  • the X2 interface message may be a SgNB modification request message, or a SgNB addition request ack message, or a SgNB modification request ack message, or other X2 AP existing message, or a new message, which is not limited in this application.
  • the first network node determines whether to accept the configuration, and specifically, if it can determine whether to accept the power update information, send a feedback message to the fifth network node, where the feedback message may directly include the rejection.
  • the message or includes new power information, etc. (for example, through an SgNB modification confirm message, or an SgNB modification reject message, or an existing message such as a SgNB modification request message, or an X2 AP new message, this application does not limit this.)
  • the fourth network node needs to be updated by a partial configuration, such as a power configuration (eg, P-maxSCG), where the power configuration parameter is the maximum transmit power that the terminal device can use in the secondary cell group, because the first
  • a power configuration eg, P-maxSCG
  • the power configuration parameter is the maximum transmit power that the terminal device can use in the secondary cell group
  • the fourth network node controls the scheduler of the uplink transmission, so the fourth network node has the right to modify the maximum transmit power that the terminal device can use in the secondary cell group, and the power configuration parameter of the fourth network node is sent by the power update information.
  • S501 is a process of modifying a configuration of the fourth network node, and the fifth network node may determine an updated power configuration parameter of the fourth network node.
  • the power configuration parameter of the S-gNB-DU may be transmitted through the F1 interface message of the S-gNB-DU to the S-gNB-CU.
  • the F1 AP message for example, UE Context Setup) Response or UE Context Modification Require/Response message
  • a new message which is not limited in this application.
  • the first network node adds the fifth network node to a multi-link data transmission (Secondary Node Addition).
  • S502 is similar to the existing multi-link establishment process, and is not described herein for brevity.
  • the power configuration parameter of the fourth network node is determined by the first network node, and sent to the fourth network node by the fifth network node.
  • a message such as a UE Context Setup Request or a UE Context Modification Request may be sent in the S-gNB-DU context establishment request process or the S-gNB-DU context modification process, or may be a new F1 AP message,
  • the application is not limited to this.
  • the transmission method 500 of the embodiment of the present application may be a single embodiment, or may be combined with other embodiments.
  • the transmission method 500 may be combined with the transmission method 200 and the transmission method 300, that is, when the transmission method 200 and
  • the third network node in the transmission method 300 (for example, the MN in FIG. 7) supports the CU-DU architecture, the CU of the third network node sends the DU of the third network node to the DU of the third network node.
  • the transmission method in the embodiment of the present application implements power allocation in a multi-link scenario under the framework that the primary base station and the secondary base station are CU-DU, which helps to prevent the total transmit power of the terminal device from exceeding the maximum transmit power of the terminal device frequently. .
  • the primary base station and the secondary base station are both CU-DU architectures.
  • Another process of power allocation is described below by the transmission method 600.
  • the primary base station The secondary base station and the secondary base station are a common CU multi-DU architecture.
  • FIG. 16 is a schematic flowchart of a transmission method 600 according to an embodiment of the present application.
  • the first network node may be the gNB-CU in FIG. 6
  • the second network node may be FIG. 6 .
  • the transmission method 600 includes:
  • the first network node sends a ninth message to the second network node, where the second network node receives the ninth message sent by the first network node, where the ninth message includes the first power of the second network node A configuration parameter, where the first power configuration parameter is a maximum transmit power that the terminal device can use in the primary cell group.
  • the first power configuration parameter of the second network node may be determined by the first network node, where the first network node sends a ninth message to the second network node, where the ninth message includes the second network node The first power configuration parameter.
  • the specific value of the power configuration parameter of the M-gNB-DU (P-maxMCG, the specific name is not limited herein) is determined by the gNB-CU, and the F1 interface message may be the UE Context.
  • a message such as Setup Request or UE Context Modification Request.
  • the first network node may also send the first power configuration parameter of the second network node to the fourth network node.
  • the transmission method 600 further includes:
  • the second network node sends a request response message to the first network node.
  • the M-gNB-DU transmits a message such as a UE Context Setup Response or a UE Context Modification Response to the gNB-CU.
  • the transmission method 600 further includes:
  • the second network node sends a tenth message to the first network node, where the tenth message includes a second power configuration parameter of the second network node, where the second power configuration parameter is used by the terminal device in the primary cell group. Maximum transmit power.
  • the tenth message may be sent to the first network node.
  • the transmission method 600 further includes:
  • the fourth network node sends power update information to the first network node, or the power update information includes a third power configuration parameter that is updated by the fourth network node, where the third power configuration parameter is that the terminal device is in the secondary cell.
  • S601 is similar to S501, and is not described herein for brevity.
  • the power configuration parameter of the S-gNB-DU may be transmitted through the F1 interface message of the S-gNB-DU to the gNB-CU.
  • the F1 AP message for example, the UE Context Setup Response or The UE Context Modification Require/Response message, or a new message, is not limited in this application, for example, it can be carried in the DU to CU information cell in the message.
  • the first network node adds the fourth network node to a multi-link data transmission (Secondary Node Addition), or the first network node modifies a multi-link configuration (Secondary Node Modification).
  • S602 is similar to the existing multi-link establishment process, and is not described herein for brevity.
  • the S-gNB-DU addition request process, or the S-gNB-DU modification process may send a message such as a UE Context Setup Request, or a UE Context Modification Request message, or may be a new F1 AP message. Not limited to this.
  • transmission method 600 of the embodiment of the present application may be a single embodiment, or may be combined with other embodiments.
  • the transmission method in the embodiment of the present application implements power allocation in a multi-link scenario under the framework of a common CU multi-DU of the primary base station and the secondary base station, which helps to prevent the total transmit power of the terminal device from exceeding the maximum transmit power of the terminal device frequently. .
  • the first network node sends the first power configuration parameter and the second power configuration parameter to the terminal device by using dedicated signaling (such as an RRC message). It should be understood that the first network node sends the maximum transmit power that the terminal device can use in the primary cell group and the maximum transmit power that can be used by the secondary cell group to the terminal device through an RRC message.
  • FIG. 17 is a schematic flowchart of a transmission method 700 according to an embodiment of the present application.
  • the first network node may be the first network node in FIG. 1 , and may also be the CU in FIG. 2 .
  • the second network node may be the second network node in FIG. 2, and may also be the DU in FIG. 2.
  • the transmission method 700 includes:
  • the first network node sends a twelfth message to the second network node, where the twelfth message includes a cell group identifier of the second network node.
  • the second network node sends a thirteenth message to the first network node, where the first network node receives the thirteenth message sent by the second network node, where the thirteenth message includes the second network node Cell group identifier, where
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the first network node allocates the cell group identifier of the second network node to the second network node.
  • the second network node is one of a plurality of network nodes in the first network node being a specific terminal device link (dual link or multi-link).
  • the DU may determine whether the terminal is a terminal by including the secondary cell group configuration information (SCG-ConfigInfo) in the RRC configuration reference information (CU-to-DU RRC information) of the DU.
  • SCG-ConfigInfo secondary cell group configuration information
  • CU-to-DU RRC information RRC configuration reference information
  • the DU can determine that the CellGroupId is 1. But for multiple connections, the DU cannot know how to correctly fill in the SCG's CellGroupId.
  • the CU adds the CellGroupId of the DU to the RRC configuration reference information of the DU, and the DU can know how to fill in the CellGroupId of the SCG in the cell group configuration fed back to the CU.
  • the CU allocates a cell group identifier of the DU to the DU, and the CU informs the DU of the cell group identifier CellGroupId, for example, in the UE context Setup/Modification Request, when the DU feeds back the cell group configuration to the CU (for example, UE Context Setup/Modification Response) contains the CellGroupId provided by the CU.
  • CellGroupId for example, in the UE context Setup/Modification Request
  • step S710 is optional, and the step S720 may include the cell group identifier of the second network node, such as filling in a default value, or may not include the cell group identifier of the second network node, and is filled in by the first network node.
  • the cell group identifier filled in by the second network node is a default value, for example, the DU does not include the CellGroupId or fills the cell groupId when the cell group is configured to feed the cell group to the CU. Is the default value, such as 0 or 1 and so on. After the CU receives it, you need to unlock the CellGroupConfig and write or modify the CellGroupId. It should be understood that the CU can implement the addition and modification of the cellgroupID by implementation.
  • the transmission method 700 of the embodiment of the present application may be a single embodiment, or may be combined with other embodiments.
  • the transmission method 700 may be combined with the transmission method 200, the transmission method 300, or the transmission method 500. .
  • the transmission method in the embodiment of the present application helps solve the problem of how to allocate cell group identifiers when there are multiple secondary DUs in the scenario of supporting multi-link data transmission.
  • the transmission method according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 17.
  • the network device according to the embodiment of the present application is described in detail below with reference to FIG. 18 to FIG.
  • FIG. 18 shows a schematic block diagram of a network device 800 according to an embodiment of the present application.
  • the network device 800 includes:
  • the processing module 810 is configured to generate third indication information.
  • the processing module 810 is configured to control the transceiver module 820 to send the third indication information by using the fourth interface, where the third indication information is used to trigger the second network node to allocate the downlink tunnel end point of the fifth interface and/or the downlink tunnel end point of the sixth interface.
  • the fifth interface is an interface between the second network node and the third network node
  • the sixth interface is an interface between the second network node and the core network node
  • the fourth interface, the fifth interface, and the sixth interface For different interfaces;
  • the transceiver module 820 is further configured to receive an eleventh message from the second network node, where the eleventh message includes a downlink tunnel end point of the fifth interface and/or a downlink tunnel end point of the sixth interface.
  • the network device 800 includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 19 shows a schematic block diagram of a network device 900 according to an embodiment of the present application.
  • the network device 900 includes:
  • the processing module 910 is configured to receive, by the transceiver module 920, the third indication information from the first network node by using the fourth interface, where the third indication information is used to indicate that the second network node is configured to allocate the downlink tunnel end point of the fifth interface and/or Or the downstream end of the sixth interface, the fifth interface is an interface between the second network node and the third network node, the sixth interface is an interface between the second network node and the core network node, and the fourth interface is The fifth interface and the sixth interface are different interfaces;
  • the processing module 910 is further configured to control the transceiver module 920 to send an eleventh message, where the eleventh message includes a downlink tunnel end point of the fifth interface and/or a downlink tunnel end point of the sixth interface.
  • the first network node includes at least one of a radio resource control protocol layer, a service data adaptation layer function, and a packet data convergence protocol layer function; and/or
  • the network device 900 includes at least one of a packet data convergence protocol layer, a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 20 is a schematic block diagram of a network device 1000 according to an embodiment of the present application. As shown in FIG. 20, the network device 1000 includes:
  • the processing module 1010 is configured to control the transceiver module 1020 to receive the first message from the user plane node, where the first message includes an uplink tunnel destination of the first interface, an uplink tunnel destination of the second interface, and a downlink tunnel destination of the third interface.
  • the first interface is an interface between the user plane node and the second network node
  • the second interface is an interface between the user plane node and the third network node
  • the third interface is an interface between the user plane node and the core network node
  • the first interface, the second interface and the third interface are different interfaces;
  • the processing module 1010 is further configured to control the transceiver module 1020 to send a second message, where the second message includes an uplink tunnel end point of the first interface;
  • the processing module 1010 is further configured to control the transceiver module 1020 to send a third message, where the third message includes an uplink tunnel end point of the second interface and a downlink tunnel end point of the third interface.
  • processing module 1010 is further configured to control the transceiver module 1020 to send the first indication information, where
  • the first indication information is used to indicate that the bearer type requested by the control plane node is a secondary cell split bearer
  • the first indication information is used to trigger the user plane node to allocate an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface;
  • the first indication information includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface; or
  • the first indication information is used to indicate that the user plane node needs to have a packet data convergence protocol layer function, or the user plane node needs to have a primary cell resource configuration, or the user plane node needs to have at least one of a secondary cell resource configuration.
  • the processing module 1010 is further configured to control the transceiver module 1020 to receive a fourth message from the second network node, where the fourth message includes a downlink tunnel end point of the first interface;
  • the processing module 1010 is further configured to control the transceiver module 1020 to send a fifth message, where the fifth message includes at least one of a downlink tunnel endpoint of the first interface, a downlink tunnel endpoint of the second interface, and an uplink tunnel endpoint of the third interface.
  • the fifth message includes at least one of a downlink tunnel endpoint of the first interface, a downlink tunnel endpoint of the second interface, and an uplink tunnel endpoint of the third interface.
  • the user plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 21 is a schematic block diagram of a network device 1100 according to an embodiment of the present application. As shown in FIG. 21, the network device 1100 includes:
  • the processing module 1110 determines an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface, where the first interface is an interface between the user plane node and the second network node, and the second interface is An interface between the user plane node and the third network node, where the third interface is an interface between the user plane node and the core network node, where the second interface and the third interface are different interfaces;
  • the processing module 1110 is further configured to control the transceiver module 1120 to send a first message, where the first message includes an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface.
  • processing module 1110 is further configured to control the transceiver module 1120 to receive the first indication information from the control plane node, where
  • the first indication information is used to indicate that the bearer type requested by the control plane node is a secondary cell split bearer
  • the first indication information is used to indicate that the user plane node allocates an uplink tunnel end point of the first interface, an uplink tunnel end point of the second interface, and a downlink tunnel end point of the third interface; or
  • the first indication information includes at least one of a downlink tunnel end point of the first interface, a downlink tunnel end point of the second interface, and an uplink tunnel end point of the third interface; or
  • the first indication information is used to indicate that the user plane node needs to have a packet data convergence protocol layer function, or the user plane node needs to have a primary cell resource configuration, or the user plane node needs to have at least one of a secondary cell resource configuration.
  • the processing module 1110 is further configured to control the transceiver module 1120 to receive a fifth message from the control plane node, where the fifth message includes a downlink tunnel endpoint of the first interface, a downlink tunnel endpoint of the second interface, and the At least one of the upstream tunnel end points of the third interface.
  • the network device 1100 includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node includes at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 22 shows a schematic block diagram of a network device 1200 according to an embodiment of the present application. As shown in FIG. 22, the network device 1200 includes:
  • the processing module 1210 is configured to control the transceiver module 1220 to receive a third message from the control plane node, where the third message includes an uplink tunnel destination of the second interface and a downlink tunnel destination of the third interface, where the second interface is a user plane node And an interface of the third network node, where the third interface is an interface of the user plane node and the core network node, where the second interface and the third interface are different interfaces;
  • the user plane node includes at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function.
  • the processing module 1210 is further configured to control the transceiver module 1220 to send a sixth message to the control plane node, where the sixth message includes a downlink tunnel end point of the second interface and an uplink tunnel end point of the third interface.
  • FIG. 23 shows a schematic block diagram of a network device 1300 according to an embodiment of the present application.
  • the network device 1300 includes:
  • the processing module 1310 is configured to control the transceiver module 1320 to receive a seventh message from the second network node, where the seventh message includes data traffic information transmitted by the second network node;
  • the processing module 1310 is further configured to control the transceiver module 1320 to send an eighth message, where the eighth message includes the data traffic information;
  • the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the protocol stack architecture of the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • processing module 1310 is further configured to control the transceiver module 1320 to send the second indication information, where the second indication information is used to indicate that the second network node reports the data traffic information transmitted by the second network node.
  • the data traffic information transmitted by the second network node includes: the uplink data traffic transmitted by the second network node, the downlink data traffic transmitted by the second network node, and the statistics of the data traffic transmitted by the second network node. And at least one of the end times.
  • FIG. 24 shows a schematic block diagram of a network device 1400 according to an embodiment of the present application.
  • the network device 1400 includes:
  • the processing module 1410 is configured to generate a seventh message.
  • the processing module 1410 is further configured to control the transceiver module 1420 to send a seventh message, where the seventh message includes data traffic information transmitted by the second network node;
  • the protocol stack architecture of the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the processing module 1410 is further configured to receive, by the transceiver module 1420, the first network node to send the second indication information, where the second indication information is used to indicate that the second network node reports the data traffic information transmitted by the second network node.
  • the protocol stack architecture of the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer.
  • the data traffic information transmitted by the second network node includes: the uplink data traffic transmitted by the second network node, the downlink data traffic transmitted by the second network node, and the statistics of the data traffic transmitted by the second network node. And at least one of the end times.
  • FIG. 25 shows a schematic block diagram of a network device 1500 according to an embodiment of the present application.
  • the network device 1500 includes:
  • the processing module 1510 is configured to generate a ninth message.
  • the processing module 1510 is further configured to control the transceiver module 1520 to send the ninth message, where the ninth message includes a power configuration parameter of the second network node, where the power configuration parameter is a maximum transmit power that the terminal device can use in the primary cell group;
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 26 shows a schematic block diagram of a network device 1600 according to an embodiment of the present application.
  • the network device 1600 includes:
  • the processing module 1610 is configured to generate a tenth message.
  • the processing module 1610 is further configured to control the transceiver module 1620 to send the eleven message, where the tenth message includes a power configuration parameter of the second network node, where the power configuration parameter is a maximum transmit power that the terminal device can use in the secondary cell group; among them,
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • FIG. 27 shows a schematic block diagram of a network device 1700 according to an embodiment of the present application.
  • the network device 1700 includes:
  • the processing module 1710 is configured to generate a twelfth message
  • the processing module 1710 is further configured to control the transceiver module 1720 to send a twelfth message, where the twelfth message includes a cell group identifier of the second network node, where
  • the first network node is at least one of a radio resource control protocol layer, a service data adaptation layer, and a packet data convergence protocol layer function; and/or
  • the second network node is at least one of a radio link control protocol layer, a medium access control layer, and a physical layer function.
  • the first network node, the second network node, the third network node, the user plane node or the control plane node involved in the foregoing embodiment, or the CU involved in the foregoing embodiment for example, S- eNB-CU, S-gNB-CU, M-eNB-CU or M-gNB-CU), DU (eg, S-eNB-DU, S-gNB-DU, M-eNB-DU, or M-gNB-DU) ), MN (eg, M-eNB or M-gNB), CP (eg, SN-CP, S-eNB-CP, or S-gNB-CP) or UP (eg, SN-UP, S-eNB-UP, or
  • the S-gNB-UP can implement the functions involved in any of the foregoing embodiments of the present application by executing program instructions through a hardware platform having a processor and a communication interface. Based on this, as shown in FIG. 28, the present application The embodiment provides a schematic block diagram of
  • a first network node, a second network node, a third network node, a user plane node, or a control plane node, or the foregoing embodiment CUs involved in for example, S-eNB-CU, S-gNB-CU, M-eNB-CU, or M-gNB-CU), DU (for example, S-eNB-DU, S-gNB-DU, M- eNB-DU or M-gNB-DU), MN (eg, M-eNB or M-gNB), CP (eg, SN-CP, S-eNB-CP, or S-gNB-CP) or UP (eg, SN -UP, S-eNB-UP
  • the memory 1803 can be used to store program instructions necessary for implementing the above-described device functions or process data generated during program execution.
  • the communication device 1800 may further include internal interconnection lines to implement communication interaction between the at least one processor 1801, the communication interface 1802, and the memory 1803.
  • the at least one processor 1801 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip. For example, for all or part of the processing of the PHY function in the distributed unit DU involved in the embodiment, or all or part of the protocol communication function on the F1 port or the E1 port, a dedicated circuit may be set in the at least one processor.
  • the implementation of the LSI function, the F1 port or the E1 port communication function is performed by the general-purpose processor provided in the at least one processor 1801; for example, for the implementation of the present application
  • the example relates to all or part of the related functions of the MAC layer, the RLC layer, the PDCP layer, the SDAP layer and the RRC layer in the device.
  • the at least one processor 1801 may include a communication processing chip, by performing a MAC layer, RLC. Layer, PDCP, SDAP, and RRC layer related functions are implemented by program instructions. It can be understood that the various methods, processes, operations or steps involved in the embodiments of the present application can be combined in one-to-one correspondence by computer software, electronic hardware, or a combination of computer software and electronic hardware.
  • the communication interface 1802 which may also be referred to as a transceiver, generally has the function of performing information interaction between two communication peers.
  • the communication interface can be designed.
  • the communication function of the E1 port can adopt this form of interface design; for the case where the communication peer performs wireless information exchange, the communication interface can be an interface circuit with a radio frequency transceiving function, or include the radio frequency
  • the hardware system of the interface circuit of the transceiving function such as when the radio communication is between the DU and the UE, then the communication interface of the DU and the UE can adopt this design.
  • the embodiment of the present application further provides a chip system, which is applicable to the foregoing communication device, the chip system includes: at least one processor, at least one memory, and an interface circuit, where the interface circuit is responsible for information about the chip system and the outside world. Interacting, the at least one memory, the interface circuit, and the at least one processor are interconnectable by an internal line, the at least one memory storing instructions; the instructions being executed by the at least one processor to perform the
  • the method of various aspects is the operation of the first network node, the second network node, the third network node, the control plane node, or the user plane node.
  • the embodiment of the present application further provides a communication system, including: a network device, and/or a terminal device; wherein the network device is the network device described in the foregoing aspects.
  • the embodiment of the present application further provides a computer program product, which is applied to a network device, where the computer program product includes a series of instructions, when the instruction is executed, to perform the method described in the above aspects.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • upstream and downstream appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the “uplink” direction generally refers to the direction in which data/information is transmitted from the terminal device to the network side, or The direction in which the distributed unit transmits to the centralized unit
  • the “downstream” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal device, or the direction in which the centralized unit transmits to the distributed unit.
  • upstream and Downlink is only used to describe the transmission direction of data/information, and the specific starting and ending devices of the data/information transmission are not limited.
  • the architecture of the CU and the DU in the embodiment of the present application is not limited to the 5G NR gNB, and may also be applied to the scenario where the LTE base station is divided into the CU and the DU; the CU may be further divided into the CP and the UP.
  • the protocol layer does not include an SDAP layer.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the computer program product can include one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic disk), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic disk
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Abstract

本申请实施例提供了一种传输方法及其网络设备,该传输方法包括:控制面节点接收第一消息,该第一消息包括第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口;该控制面节点发送第二消息,该第二消息包括该第一接口的上行隧道终点;该控制面节点发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。本申请实施例的通信方法,有助于在各个接口网段不一致的情况下,明确用户面上下行隧道地址的分配和指示,从而有助于完成数据传输。

Description

一种传输方法和网络设备
本申请要求于2018年2月14日提交中国专利局、申请号为201810152183.7、申请名称为“一种传输方法和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输方法和网络设备。
背景技术
新的接入技术例如5G(New Radio,NR)技术中,基站可以由集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)构成,即对原接入网中的基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在多个DU,多个DU共用一个CU,可以节省成本,以及易于网络扩展。
对于某些承载的数据,主基站的用户面分流的数据直接发送至辅基站的DU,下行数据传输的目的地址是由辅基站的DU分配,目前辅基站的DU分配的下行地址并没有区分接口,如果主基站与辅基站的DU之间的X2接口(或者,Xn接口)与辅基站的CU和辅基站的DU之间的F1接口的网段不同,那么如果辅基站的DU分配的地址是F1网段的,那么主基站无法使用该地址传输某些承载的下行数据至辅基站的DU。
发明内容
本申请提供一种传输方法和网络设备,通过第二网络节点分配下行地址,有助于第三网络节点和第二网络节点,或者核心网节点和第二网络节点直接进行数据传输。
第一方面,提供了一种传输方法,该传输方法包括:第一网络节点通过第四接口发送第三指示信息,该第三指示信息用于触发第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口;该第一网络节点接收来自于该第二网络节点的第十一消息,该第十一消息包括该第五接口的下行隧道终点和/或该第六接口的下行隧道终点。
在一些可能的实现方式中,第一网络节点通过第四接口向该第二网络节点发送第三指示信息,该第三指示信息用于触发第二网络节点分配第一承载在第五接口的下行隧道终点和/或第二承载在第六接口的下行隧道终点。
在一些可能的实现方式中,该第一承载为主小区分裂承载(MCG Split Bearer)。
在一些可能的实现方式中,该第二承载为辅小区承载(SCG Bearer)。
本申请实施例的传输方法,通过第二网络节点分配下行地址,有助于第三网络节点和第二网络节点,或者核心网节点和第二网络节点直接进行数据传输。
在一些可能的实现方式中,该第三指示信息包括该第五接口的上行隧道终点和/或该第六接口的上行隧道终点;或者,该第三指示信息用于指示第一承载与该第五接口的映射关系,和/或,第二承载与该第六接口的映射关系。
本申请实施例的传输方法,通过该第一网络节点显式或者隐式得指示该第二网络节点分配下行隧道终点,有助于第三网络节点和第二网络节点,或者核心网节点和第二网络节点直接进行数据传输。
结合第一方面,在第一方面的某些可能的实现方式中,该第一网络节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第二方面,提供了一种传输方法,该传输方法包括:第二网络节点通过第四接口接收来自于第一网络节点的第三指示信息,该第三指示信息用于触发第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口;该第二网络节点发送第十一消息,该第十一消息包括该第五接口的下行隧道终点和/或第六接口的下行隧道终点。
在一些可能的实现方式中,该第二网络节点向该第一网络节点发送该第十一消息。
在一些可能的实现方式中,第一网络节点通过第四接口发送第三指示信息,该第三指示信息用于触发第二网络节点分配第一承载在第五接口的下行隧道终点和/或第二承载在第六接口的下行隧道终点。
在一些可能的实现方式中,该第一承载为主小区分裂承载(MCG Split Bearer)。
在一些可能的实现方式中,该第二承载为辅小区承载(SCG Bearer)。
本申请实施例的传输方法,通过第二网络节点分配下行地址,有助于第三网络节点和第二网络节点,或者核心网节点和第二网络节点直接进行数据传输。
在一些可能的实现方式中,该第三指示信息包括该第五接口的上行隧道终点和/或该第六接口的上行隧道终点;或者,该第三指示信息用于指示第一承载与该第五接口的映射关系,和/或,第二承载与该第六接口的映射关系。
本申请实施例的传输方法,通过该第一网络节点显式或者隐式得指示该第二网络节点分配下行隧道终点,有助于第三网络节点和第二网络节点,或者核心网节点和第二网络节点直接进行数据传输。
结合第二方面,在第二方面的某些可能的实现方式中,该第一网络节点包括无线资源控制协议层、业务数据适配层功能和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该第一网络节点的协议栈架构为无线资源控制协议层、业 务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第三方面,提供了一种传输方法,该传输方法包括:该第三网络节点接收来自于第一网络节点的第一请求确认消息,该第一请求确认消息包括第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和该第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口;其中,该第一网络节点包括无线资源控制协议层、业务数据适配层功能和分组数据汇聚协议层功能中的至少一种;和/或,该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
结合第三方面,在第三方面的某些可能的实现方式中,该方法还包括:第三网络节点向第一网络节点发送请求消息,该请求消息包括第五接口的上行隧道终点和/或第六接口的下行隧道终点,该请求消息用于请求该第一网络节点为第一承载和/或第二承载分配无线资源。
在一些可能的实现方式中,该第一承载为MCG Split Bearer。
在一些可能的实现方式中,该第二承载为SCG Bearer。
结合第三方面,在第三方面的某些可能的实现方式中,该方法还包括:该第三网络节点向核心网节点发送第二请求确认消息,该第二请求确认消息包括该第六接口的下行隧道终点。
在一些可能的实现方式中,该第三网络节点包括无线资源控制协议层、业务数据适配层功能、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第四方面,提供了一种传输方法,该传输方法包括:控制面节点接收来自于用户面节点的第一消息,该第一消息包括第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;该控制面节点发送第二消息,该第二消息包括该第一接口的上行隧道终点;该控制面节点发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
在一些可能的实现方式中,该控制面节点向该第二网络节点发送该第二消息;该控制面节点向该第三网络节点发送该第三消息。
在一些可能的实现方式中,该控制面节点和该用户面节点属于第一系统,该第一系统包括无线资源控制协议层、业务数据适配层功能和分组数据汇聚协议层功能中的至少一种。
在一些可能的实现方式中,该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点为不同的隧道终点。
在一些可能的实现方式中,该第一消息包括指示信息,该指示信息用于指示第一接口的上行隧道终点用于该第一接口,和/或,向该控制面节点指示该第二接口的上行隧道终点用于该第二接口,和/或,向该控制面节点指示该第三接口的下行隧道终点用于该第三 接口。
本申请实施例的传输方法,通过用户面节点确定不同的隧道终点,在各个接口的网段不一致情况下,有助于解决用户面的上下行隧道的分配以及指示的问题。
结合第四方面,在第四方面的某些可能的实现方式中,该方法还包括:该控制面节点发送第一指示信息,其中,该第一指示信息用于表示该控制面节点请求的承载类型为辅小区分裂承载;或者,该第一指示信息用于触发该用户面节点分配该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;或者,该第一指示信息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种;或者,该第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者,需要该用户面节点具有主小区资源配置,或者,需要该用户面节点具有辅小区资源配置中的至少一种。
结合第四方面,在第四方面的某些可能的实现方式中,该方法还包括:该控制面节点接收来自于该第二网络节点的第四消息,该第四消息包括该第一接口的下行隧道终点;该控制面节点发送第五消息,该第五消息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种。
在一些可能的实现方式中,该方法还包括:该控制面节点接收该第三网络节点发送的第二请求消息,该第二请求消息用于请求该控制面节点为第二承载分配无线资源。
在一些可能的实现方式中,该第二承载类型为辅小区分裂承载(SCG split bearer)。
在一些可能的实现方式中,该第二请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
在一些可能的实现方式中,该第二请求消息中包括承载和/或会话配置参数,如承载标识(ERAB ID或DRB ID)、承载级别的Qos参数等、数据包的会话标识、Qos流指示(Qos flow indicator,QFI)、承载和QFI的映射关系,QFI级别的Qos参数中的至少一种。
在一些可能的实现方式中,该第二请求消息中包括数据转发指示,如特定承载的数据转发指示(如,DL forwarding)。
结合第四方面,在第四方面的某些可能的实现方式中,该方法还包括:该控制面节点向该用户面节点发送数据转发指示,该数据转发指示用于指示该用户面节点为数据转发分配上行数据转发地址和下行数据转发地址。
结合第四方面,在第四方面的某些可能的实现方式中,该方法还包括:该控制面节点接收该用户面节点发送的该上行数据转发地址和该下行数据转发地址。
结合第四方面,在第四方面的某些可能的实现方式中,该方法还包括:该控制面节点为数据转发分配上行数据转发地址和下行数据转发地址,并将该上行数据转发地址和该下行数据转发地址发送给该用户面节点。
结合第四方面,在第四方面的某些可能的实现方式中,该上行数据转发地址和该下行数据转发地址是针对特定承载,或者,该上行数据转发地址和该下行数据转发地址是针对特定Qos流。
结合第四方面,在第四方面的某些可能的实现方式中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该第三网络节点包括无线资源控制协议层、业务数据适配层功能、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第五方面,提供了一种传输方法,该传输方法包括:用户面节点确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;该用户面节点发送第一消息,该第一消息包括该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点。
在一些可能的实现方式中,该用户面节点向该控制面节点发送该第一消息。
在一些可能的实现方式中,该控制面节点和该用户面节点属于第一系统,该第一系统包括无线资源控制协议层、业务数据适配层功能和分组数据汇聚协议层功能中的至少一种。
在一些可能的实现方式中,该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点为不同的隧道终点。
在一些可能的实现方式中,该第一消息包括指示信息,该指示信息用于指示第一接口的上行隧道终点用于该第一接口,和/或,向该控制面节点指示该第二接口的上行隧道终点用于该第二接口,和/或,向该控制面节点指示该第三接口的下行隧道终点用于该第三接口。
本申请实施例的传输方法,通过用户面节点确定不同的隧道终点,在各个接口的网段不一致情况下,有助于解决用户面的上下行隧道的分配以及指示的问题。
结合第五方面,在第五方面的某些可能的实现方式中,该方法还包括:该用户面节点接收来自于控制面节点的第一指示信息,其中,该第一指示信息用于表示该控制面节点请求的承载类型为辅小区分裂承载;或者,该第一指示信息用于触发该用户面节点分配该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;或者,该第一指示信息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种;或者,该第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者,需要该用户面节点具有主小区资源配置,或者,需要该用户面节点具有辅小区资源配置中的至少一种。
结合第五方面,在第五方面的某些可能的实现方式中,该方法还包括:该用户面节点接收来自于该控制面节点的第五消息,该第五消息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种。
结合第五方面,在第五方面的某些可能的实现方式中,该方法还包括:该用户面节点接收该该控制面节点发送的数据转发指示,该数据转发指示用于指示该用户面节点为数据转发分配上行数据转发地址和下行数据转发地址。
结合第五方面,在第五方面的某些可能的实现方式中,该方法还包括:该用户面节点向该控制面节点发送该上行数据转发地址和该下行数据转发地址。
结合第五方面,在第五方面的某些可能的实现方式中,该方法还包括:该用户面节点接收该控制面节点发送的上行数据转发地址和下行数据转发地址。
结合第五方面,在第五方面的某些可能的实现方式中,该上行数据转发地址和该下行数据转发地址是针对特定承载,或者,该上行数据转发地址和该下行数据转发地址是针对特定Qos流。
结合第五方面,在第五方面的某些可能的实现方式中,该用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该用户面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该第三网络节点包括无线资源控制协议层、业务数据适配层功能、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第六方面,提供了一种传输方法,该传输方法包括:第三网络节点接收来自于控制面节点的第三消息,该第三消息包括第二接口的上行隧道终点和第三接口的下行隧道终点,该第二接口为用户面节点和第三网络节点的接口,该第三接口为用户面节点和核心网节点的接口,该第二接口和该第三接口为不同的接口;其中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
结合第六方面,在第六方面的某些可能的实现方式中,该方法还包括:该第三网络节点向该控制面节点发送第六消息,该第六消息包括该第二接口的下行隧道终点和该第三接口的上行隧道终点。
在一些可能的实现方式中,该方法还包括:该第三网络节点向该控制面节点发送第二请求消息,该第二请求消息用于请求该控制面节点为第二承载分配无线资源。
在一些可能的实现方式中,该第二承载类型为辅小区分裂承载(SCG split bearer)。
在一些可能的实现方式中,该第二请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
在一些可能的实现方式中,该第二请求消息中包括承载和/或会话配置参数,如承载标识(ERAB ID或DRB ID)、承载级别的Qos参数等、数据包的会话标识、Qos流指示(Qos flow indicator,QFI)、承载和QFI的映射关系,QFI级别的Qos参数中的至少一种。
在一些可能的实现方式中,该第三网络节点包括无线资源控制协议层、业务数据适配层功能、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第七方面,提供了一种传输方法,该传输方法包括:第二网络节点接收来自于控制面 节点的第二消息,该第二消息包括该第一接口的上行隧道终点;其中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或,该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
结合第七方面,在第七方面的某些可能的实现方式中,该传输方法还包括:该第二网络节点向该控制面节点发送第四消息,该第四消息包括该第一接口的下行隧道终点。
第八方面,提供了一种传输方法,该传输方法包括:控制面节点确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;该控制面节点向该第二网络节点发送第二消息,该第二消息包括该第一接口的上行隧道终点;该控制面节点向该第三网络节点发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
在一些可能的实现方式中,该第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点为第二承载的隧道终点。
在一些可能的实现方式中,该第二承载为辅小区分裂承载(SCG Split Bearer)。
在一些可能的实现方式中,该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点为不同的隧道终点。
在一些可能的实现方式中,该第三消息包括指示信息,该指示信息用于向该控制面节点指示该第二接口的上行隧道终点用于该第二接口,和/或,向该控制面节点指示该第三接口的下行隧道终点用于该第三接口。
本申请实施例的传输方法,通过控制面节点确定不同的隧道终点,在各个接口的网段不一致情况下,有助于解决用户面的上下行隧道的分配以及指示的问题。
结合第八方面,在第八方方面的某些可能的实现方式中,该方法还包括:该控制面节点接收该第三网络节点发送的该第三请求消息,该第三请求消息用于向该控制面节点请求为第二承载分配无线资源。
在一些可能的实现方式中,该第二承载为辅小区分裂承载(SCG Split Bearer)。
在一些可能的实现方式中,该第三请求消息中指定该第二承载的特征,包括承载参数、承载类型对应的TNL地址。
在一些可能的实现方式中,该第三网络节点在该第三请求消息中携带最近的测量结果。
在一些可能的实现方式中,该第三请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
结合第八方面,在第八方方面的某些可能的实现方式中,该方法还包括:该控制面节点接收该第二网络节点发送的第四消息,该第四消息包括该第一接口的下行隧道终点;该控制面节点向该用户面节点发送第五消息,该第五消息包括第一接口的上行隧道终点、第一接口的下行隧道终点、第二接口的上行隧道终点、第二接口的下行隧道终点、第三接口的上行隧道终点和第三接口的下行隧道终点中的至少一种。
本申请实施例的传输方法,通过控制面节点向用户面节点发送的消息中携带上下行隧道的隧道终点,有助于该用户面节点识别数据是否是发送给自己的。
结合第八方面,在第八方面的某些可能的实现方式中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第九方面,提供了一种传输方法,该传输方法包括:用户面节点接收来自于控制面节点的第五消息,该第五消息包括第一接口的上行隧道终点、第一接口的下行隧道终点、第二接口的上行隧道终点、第二接口的下行隧道终点、第三接口的上行隧道终点和第三接口的下行隧道终点中的至少一种;其中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
第十方面,提供了一种传输方法,该传输方法包括:第二网络节点接收控制面节点发送的第二消息,该第二消息包括该第一接口的上行隧道终点,该第一接口为用户面节点与该第二网络节点的接口;其中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
结合第十方面,在第十方面某些可能的实现方式中,该方法还包括:该第二网络节点向该控制面节点发送第四消息,该第四消息包括该第一接口的下行隧道终点。
在一些可能的实现方式中,该控制面节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或,该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十一方面,提供了一种传输方法,该传输方法包括:第三网络节点接收来自于控制面节点的第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点;其中,该控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
在一些可能的实现方式中,该第三网络节点包括无线资源控制协议层、业务数据适配层功能、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
结合第十一方面,在第十一方面某些可能的实现方式中,该方法还包括:该第三网络节点向该控制面节点发送请求消息,该请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
第十二方面,提供了一种传输方法,该传输方法包括:第一网络节点接收来自于第二网络节点的第七消息,该第七消息包括第二网络节点传输的数据流量信息;该第一网络节 点发送第八消息,该第八消息包括该数据流量信息;其中,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点的协议栈架构为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
本申请实施例的传输方法,在辅基站支持CU-DU架构的多链接场景下,当主基站与辅基站DU直接进行用户面的数据传输时,有助于解决辅基站记性流量统计的问题。
结合第十二方面,在第十二方面某些可能的实现方式中,该方法还包括:该第一网络节点发送第二指示信息,该第二指示信息用于指示该第二网络节点上报该第二网络节点传输的数据流量信息。
在一些可能的实现方式中,该第二指示信息用于指示该第二网络节点上报所统计的数据流量信息;和/或,指示该第二网络节点上报特定承载的流量信息、统计流量的开始时间和结束时间,特定承载的流量统计的开始时间和结束时间,上下行流量统计,或者,特定承载的上下行流量统计;和/或,指示该第二网络节点上报数据流量信息的上报周期。
结合第十二方面,在第十二方面某些可能的实现方式中,该第二网络节点传输的数据流量信息包括该第二网络节点传输的上行数据流量、该第二网络节点传输的下行数据流量、统计该第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
第十三方面,提供了一种传输方法,该传输方法包括:第二网络节点发送第七消息,该第七消息包括第二网络节点传输的数据流量信息;其中,该第二网络节点的协议栈架构为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
本申请实施例的传输方法,在辅基站支持CU-DU架构的多链接场景下,当主基站与辅基站DU直接进行用户面的数据传输时,有助于解决辅基站记性流量统计的问题。
结合第十三方面,在第十三方面某些可能的实现方式中,该方法还包括:该第二网络节点接收第一网络节点发送第二指示信息,该第二指示信息用于指示该第二网络节点上报该第二网络节点传输的数据流量信息;其中,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层中的至少一种,和/或该第二网络节点的协议栈架构为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
结合第十三方面,在第十三方面某些可能的实现方式中,该第二网络节点传输的数据流量信息包括该第二网络节点传输的上行数据流量、该第二网络节点传输的下行数据流量、统计该第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
第十四方面,提供了一种传输方法,该传输方法包括:第一网络节点发送第九消息,该第九消息包括第二网络节点的功率配置参数,该功率配置参数为终端设备在主小区组所能使用的最大发射功率;其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十五方面,提供了一种传输方法,该传输方法包括:第二网络节点接收来自于第一网络节点的第九消息,该第九消息包括第二网络节点的功率配置参数,该功率配置参数为终端设备在主小区组所能使用的最大发射功率;其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十六方面,提供了一种传输方法,该传输方法包括:第二网络节点向第一网络节点发送第十消息,该第十消息包括该第二网络节点的功率配置参数,该功率配置参数为终端设备在辅小区组所能使用的最大发射功率;其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十七方面,提供了一种传输方法,该传输方法包括:第一网络节点接收来自于第二网络节点的第十消息,该第十消息包括该第二网络节点的功率配置参数,该功率配置参数为终端设备在辅小区组所能使用的最大发射功率;其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十八方面,提供了一种传输方法,其特征在于,包括:第一网络节点向第二网络节点发送第十二消息,该第十二消息包括该第二网络节点的小区组标识,其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第十九方面,提供了一种传输方法,其特征在于,包括:第二网络节点接收来自于第一网络节点的第十二消息,该第十二消息包括该第二网络节点的小区组标识,其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
第二十方面,提供了一种网络设备,用于执行上述各个方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述各个方面的任一种可能的实现方式中的方法的模块。
第二十一方面,提供了一种网络设备,该网络设备包括收发器、至少一个处理器和存储器,所述存储器具有程序指令,所述至少一个处理器运行所述程序指令使得上述各个方面的任一种可能的实现方式中的方法中,在所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点进行的处理操作得以实现;所述收发器用于执行上述各个方面的任一种可能的实现方式中的方法中,在所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点进行的消息收发的操作。
第二十二方面,提供了一种芯片系统,可应用于第二十一方面所提出的网络设备中,该芯片系统包括:至少一个处理器、至少一个存储器和接口电路,所述接口电路负责所述芯片系统与外界的信息交互,所述至少一个存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行,以进行上述各个方面的所述的方法中在所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点的操作。
第二十三方面,提供了一种通信系统,包括:网络设备,和/或,终端设备;其中,所述网络设备为上述各个方面所述的网络设备。或者,该通信系统包括前述第二十一方面所提供的网络设备。
第二十四方面,提供了一种计算机程序产品,可应用于前述第二十一方面所提供的网络设备中,或者可应用于前述第二十二方面所提供的芯片系统中,所述计算机程序产品包括一系列指令,当所述指令被运行时,以进行上述各个方面的所述的方法中所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点的操作。
第二十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各个方面的所述的方法。
第二十六方面,提供了一种传输方法,该传输方法包括:第一网络节点向第二网络节点发送功率更新信息,该功率更新信息包括该第一网络节点更新后的第三功率配置参数,该第三功率配置参数为终端设备在辅小区组所能使用的最大发射功率;其中,该第一网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或,该第二网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
附图说明
图1是本申请实施例的技术方案的一种应用场景的示意图。
图2是本申请实施例的技术方案的另一种应用场景的示意图。
图3是本申请实施例的技术方案的再一种应用场景的示意图。
图4是本申请实施例的技术方案的再一种应用场景的示意图。
图5是本申请实施例的技术方案的再一种应用场景的示意图。
图6是本申请实施例的技术方案的再一种应用场景的示意图。
图7是本申请实施例的技术方案的再一种应用场景的示意图。
图8是本申请实施例的技术方案的再一种应用场景的示意图。
图9是本申请实施例的技术方案的再一种应用场景的示意图。
图10是本申请实施例的技术方案的再一种应用场景的示意图。
图11是本申请实施例的传输方法的示意性流程图。
图12是本申请实施例的传输方法的另一示意性流程图。
图13是本申请实施例的传输方法的再一示意性流程图。
图14是本申请实施例的传输方法的再一示意性流程图。
图15是本申请实施例的传输方法的再一示意性流程图。
图16是本申请实施例的传输方法的再一示意性流程图。
图17是本申请实施例的传输方法的再一示意性流程图。
图18是本申请实施例的网络设备的示意性框图。
图19是本申请实施例的网络设备的另一示意性框图。
图20是本申请实施例的网络设备的再一示意性框图。
图21是本申请实施例的网络设备的再一示意性框图。
图22是本申请实施例的网络设备的再一示意性框图。
图23是本申请实施例的网络设备的再一示意性框图。
图24是本申请实施例的网络设备的再一示意性框图。
图25是本申请实施例的网络设备的再一示意性框图。
图26是本申请实施例的网络设备的再一示意性框图。
图27是本申请实施例的网络设备的再一示意性框图。
图28是本申请实施例的网络设备的再一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例适用于各种形式的包含网络设备中部分功能分离的系统,图1示出了本申请实施例的技术方案的一种应用场景的示意图,如图1所示,该网络设备中部分功能分离为第一网络节点和第二网络节点。
具体地,图2示出了本申请实施例的技术方案的另一种应用场景的示意图,如图2所示,在CRAN架构中,引入了CU-DU的切分,CU可以对应于图1中的第一网络节点,DU对应于图1中的第二网络节点。
应理解,第一网络节点和第二网络节点可以是一个整体网络架构中的两个物理或者逻辑分离模块,也可以是完全独立的两个逻辑网元。
还应理解,该第一网络节点可以进行控制面和用户面分离,形成第一网络节点的用户面和第一网络节点的控制面。
CU具有无线资源控制(Radio Resource Control,RRC)或者部分RRC控制功能,包含现有基站的所有的协议层功能或者部分协议层功能;比如只包含RRC功能或者部分RRC功能,或者包含RRC功能或者业务数据适配协议(Service Data Adaptation Protocol,SDAP)层功能,或者包含RRC/分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层功能,或者包含RRC/PDCP以及部分无线链路控制协议(Radio Link Control,RLC)层功能;或者包含RRC/PDCP/媒体接入控制(Media Access Control,MAC)层,甚至部分或者全部物理层PHY功能,也不排除其它任何可能性。
DU具有现有基站的全部或者部分协议层功能,即RRC/SDAP/PDCP/RLC/MAC/PHY的部分协议层功能单元,比如包含部分RRC功能和PDCP/RLC/MAC/PHY等协议层功能,或者包含PDCP/RLC/MAC/PHY等协议层功能,或者包含RLC/MAC/PHY等协议层功能或者包含部分RLC/MAC/PHY功能,或者只包含全部或者部分PHY功能;需要注意的是这里提及的各个协议层的功能可能发生变化,均在本申请保护的范围内。
应理解,在本申请实施例中,可以将不同的协议层分别部署在第一网络节点和第二网络节点中,一种可能的实现方式是,在第一网络节点中至少部署第一协议层和第二协议层,在第二网络节点中至少部署第三协议层,第四协议层和第五协议层,
例如,第一协议层可以为RRC层,第二协议层可以为PDCP层,第三协议层可以为RLC层,第四协议层可以为MAC层,第五协议层可以为PHY层。
应理解,上述对第一协议层、第二协议层、第三协议层、第四协议层和第五协议层的列举仅为示例性说明,不应对本申请构成任何限定。该第一协议层和第二协议层也可以为现有协议(例如,LTE协议)或者未来协议中定义的其他协议层,本申请对此并未特别限定。
又例如,在5G网络中,新型的中继节点也有新的技术进展,例如,中继节点仅部署有层2(例如,包括无线链路控制(resource link control,RLC)层、MAC层等)和层1 (例如,包括PHY层)的协议栈架构,而未部署层2以上的全部协议栈功能,例如全部RRC层功能。因此,宿主基站产生的数据或信令,需要由中继节点转发给终端设备。
应理解,本申请实施例中的第一网络节点可以对应于CU-DU架构中的DU,也可以对应于上述中继节点,第二网络节点可以对应于CU-DU架构中的CU,也可以对应于上述宿主基站,或者CU和DU对应于上述宿主基站,DU和UE之间通过一个中继节点或者多个中继节点进行传输,UE的上一跳中继节点即对应第一网络节点。
图3示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图3所示,对于主小区分裂承载(Master Cell Group Split Bearer,MCG Split Bearer)或者其他某些承载,允许主基站(Master Evolutional Node B,M-eNB)可以直接与辅基站的DU(S-gNB-DU)进行通信,即主基站与辅基站具有用户面的接口,可以进行用户面的数据传输。
应理解,图3中的主基站可以是LTE中的基站eNB(master eNB,M-eNB),还可以是NR中的gNB(master gNB,M-gNB),若主基站为M-eNB,辅基站为S-gNB,则主基站和辅基站之间的接口为X2接口;若主基站为M-gNB,辅基站为S-gNB,则主基站和辅基站之间的接口为Xn接口。上述接口也可以是其他名字,本申请对此并不作任何限定。
还应理解,若主基站为M-eNB,辅基站为S-gNB,当辅基站支持集中单元(central Unit,CU)-分布式单元(Distributed Unit,DU)分离架构时,则,当主基站是LTE基站,辅基站是NR基站或者LTE基站时,或者,主基站时NR基站,辅基站是LTE基站时,主基站和辅基站的CU(gNB-CU)之间的接口为X2的控制面(X2-C)接口,主基站和辅基站的DU(gNB-DU)之间的接口为X2的用户面(X2-U)接口;当主基站是NR基站,辅基站也是NR基站,主基站和辅基站的CU(gNB-CU)之间的接口为Xn的控制面(Xn-C)接口,主基站和辅基站的DU(gNB-DU)之间的接口为Xn的用户面(Xn-U)接口。
还应理解,图3中的辅基站可以是NR中的基站-gNB(secondary gNB,S-gNB),相应的当辅基站支持CU-DU架构时,对应的S-gNB-DU和S-gNB-CU之间的接口为F1接口;辅基站可以是LTE中的基站eNB(secondary eNB,S-eNB),相应的当辅基站支持CU-DU架构时,对应的S-eNB-DU和S-eNB-CU之间的接口为V1接口。
还应理解,核心网可以是LTE的核心网(Evolved Packet Core,EPC),包括移动管理实体(Mobility Management Entity,MME)和服务网关(Serving Gateway,SGW),也可以是NR的核心网(5GC,5Gcore)包括用户面功能实体(User Plane Function,UPF)和接入移动管理实体(Access and Mobility Management Function,AMF),LTE的核心网与辅基站的DU之间的接口为S1的用户面接口(S1-U),NR的核心网与辅基站DU之间的接口为NG的用户面接口(NG-U)。
图4示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图4所示,对于辅基站支持CU控制面(Control Plane,CP)和用户面(User Plane,UP)分离的架构下,当辅基站是NR的基站,辅基站S-gNB-CU可以分离为S-gNB-CP和S-gNB-UP,S-gNB-CP和S-gNB-UP之间的接口为E1接口,SgNB-CU-CP与SgNB-DU的接口为F1控制面板接口(F1-C),SgNB-CU-UP与SgNB-DU的接口为F1用户面接口(F1-U);当辅基站是LTE的基站,辅基站S-eNB-CU可以分离为S-eNB-CP和S-eNB-UP,S-eNB-CP和S-eNB-UP之间的接口为E1接口,SeNB-CU-CP与SeNB-DU的接口为V1控制面板接口(V1-C),SeNB-CU-UP与SeNB-DU的接口为V1用户面接口(V1-U)。
还应理解,上述接口名称,或者,节点名称也可以是其他名称,本申请对此并不作任何限定。
图5示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图5所示,主基站支持CU-DU架构系统,辅基站也支持CU-DU架构系统。
图6示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图6所示,主基站和辅基站支持共CU多DU的架构系统。
图7示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图7所示,辅基站支持CP-UP架构,主基站即图7中的MN(Master node)可以是LTE中的eNB,也可以是NR中的gNB,辅基站即图7中的SN(Secondary node)可以是LTE中的CP-UP,还可以是NR中的CP-UP,相应的CP和UP之间的接口是E1接口,主基站和辅基站之间的接口可以是X2接口也可以是Xn接口,UPF为核心网(User Plane Function,UPF),还应理解,所述核心网也可以是LTE的核心网。
图8示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图7所示,本申请实施例的技术方案适用于NR CU-DU架构系统,对于NR CU-DU系统架构下,CU和DU之间的接口为F1接口,基站1(gNB1)和基站2(gNB2)之间的接口为Xn接口,基站与核心网(5GC)之间的接口为NG接口。
图9和图10示出了根据本申请实施例的技术方案的再一种应用场景的示意图,如图4所示,本申请实施例的技术方案适用于LTE CU-DU架构系统,区别在于CU和DU之间是V1接口,该V1接口与F1接口类似,基站(eNB)之间的接口为X2接口,CU可以与核心网EPC有连接,也可以与NR核心网5GC有连接。
应理解,当前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)将CU-DU之间的接口命名为F1,F1接口上包含控制面(CP,Control Plane)和用户面(UP,User Plane),控制面的传输层协议为流控制传输协议(Stream Control Transmission Protocol,SCTP),传输的应用层消息为F1AP(Application Protocol)消息。用户面的传输层协议为用户层面的GPRS隧道协议(GPRS Tunnelling Protocol-User plane,GTP-U)。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、未来的第五代(5th-Generation,5G)通信系统以及CRAN等通信系统。
还应理解,本申请实施例的网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS)与基站控制器(Base Station Controller,BSC)的结合,也可以是WCDMA系统中的基站(NodeB,NB)与无线网控制器(Radio Network Controller,RNC),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备,比如下一代基站,或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的接入网设备等。
具体地,第三代移动通信技术(3rd-Generation,3G)中的UMTS系统,存在无线网络控制节点和基站分离的场景;在LTE系统中,存在有基带模块和射频模块分离的情景,即射频拉远的场景;数据中心(Data Center,DC)场景,需要两个不同的网络之间互联;大小站场景,大小站相互连接存在接口;双链接(Dual Connectivity)场景,终端设备可以两个或者多个基站同时进行数据传输;LTE与Wifi聚合(LTE-Wifi aggregation,LWA)场景;在5G系统中存在各种无小区(non-cell)场景(终端可以在各个小区之间自由随意切换,各个小区之间没有明确的界线),存在一个控制节点和所有小区连接,或者在小区下面连接各个传输节点;CRAN场景,存在BBU切分的场景;CRAN虚拟化场景,BBU的某一部分功能集中部署,虚拟化,另外一部分功能分开部署,两个部分之间存在物理分开部署可能性;应理解,不同系统/制式共存场景都在本申请适用的范围内。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者PLMN中的终端设备等。
在介绍本申请实施例之前,首先简单介绍几个与本申请实施例相关的概念。
隧道终点:隧道指的是GTP(GPRS隧道协议)隧道,GTP隧道是用于支撑两个基于GTP协议的网络节点间的通信,即传输两个网络节点间的数据传输,那么隧道终点就是用于标识所述隧道是属于哪个用户的,隧道终点是网络节点分配的,网络设备(例如,基站)之间交互的地址均为隧道终点(GPRS Tunnel Protocol Tunnel Endpoint,GTP Tunnel Endpoint),该隧道终点包括如表1所述的两个信元(Information Element,IE)。
表1 隧道终点中的两个信元
Figure PCTCN2019075027-appb-000001
本申请实施例中所涉及到的GTP Tunnel Endpoint解释如下:
X2/Xn UL GTP Tunnel Endpoint:X2/Xn传输承载的网络设备的隧道终点,用于传输上行数据(包括PDUs),用于指示X2/Xn接口的上行数据传输的目的地址。
X2/Xn DL GTP Tunnel Endpoint:X2/Xn传输承载的网络设备的隧道终点,用于传输下行数据(包括PDUs),用于指示X2/Xn接口的下行数据传输的目的地址。
S1/NG UL GTP Tunnel Endpoint:S1/NG传输承载的核心网的隧道终点,用于传输上行数据(包括PDUs),用于指示S1/NG接口的上行数据传输的目的地址。
S1/NG DL GTP Tunnel Endpoint:S1/NG传输承载的网络设备的隧道终点,用于传输下行数据(包括PDUs),用于指示S1/NG接口的下行数据传输的目的地址。
F1 UL GTP Tunnel Endpoint:F1传输承载的网络设备的隧道终点,用于传输上行数据(包括PDUs),用于指示F1接口的上行数据传输的目的地址。
F1 DL GTP Tunnel Endpoint:F1传输承载的网络设备的隧道终点,用于传输下行数据(包括PDUs),用于指示F1接口的下行数据传输的目的地址。
需要说明的是,上述隧道终点可以是和承载一一对应的,或者,也可以是和会话一一对应的,或者也可以是和服务质量(quality of service,Qos)流一一对应的,或者,也可以是为特定承载分配的隧道终点,或者,也可以是为特定的会话分配的隧道终点,或者也可以是为特定的Qos流分配的隧道终点,本申请对此并不作任何限定。
应理解,本申请实施例主要针对辅基站支持CU-DU和CP-UP的系统架构时,各种承载类型的流程、流量计费和功率分配等,不限于LTE和NR。
还用理解,本申请实施例的技术方案还可以扩展到多跳的中继场景,即DU可以是中继节点,或者DU和终端设备之间通过中继设备传输的场景。
图11是根据本申请实施例的传输方法100的示意性流程图,如图10所示,该传输方法100中的第一网络节点可以是图1中的第一网络节点,也可以是图2的CU,还可以是图3中的S-gNB-CU,该传输方法100中的第二网络节点可以为图1中的第一网络节点,也可以是图2的CU,还可以是图3中的S-gNB-CU,该传输方法100包括:
S110,第一网络节点通过第四接口向第二网络节点发送第三指示信息,该第二网络节点通过第四接口接收该第一网络节点发送的该第三指示信息,该第三指示信息用于指示触发第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口。
具体而言,第一网络节点可以在判断出第五接口和第六接口的网段不同时,向第二网络节点发送第三指示信息,该第三指示信息用于触发第二网络节点分配第五接口的下行隧道终点和/或该第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口。
可选的,该第三指示信息用于指示触发第二网络节点分配特定承载和/或特定会话和/或特定Qos流的第五接口的下行隧道终点和/或第六接口的下行隧道终点。
应理解,所述第三指示信息可以携带在F1 AP消息(例如,UE context setup request或者UE context modification request,或者其他现有F1 AP消息,或者新消息)中由第一网络节点通过第四接口(如F1接口)发送给第二网络节点。
可选地,该隧道终点包括用户面传输的IP地址和用户面传输的隧道地址(GTP TEID)的至少一种。
例如,如图3所示,该第一网络节点为S-gNB-CU,该第二网络节点为S-gNB-DU,该第三网络节点为M-eNB,该第四接口为F1接口,该第五接口为X2-U接口,该第六接口为S1-U接口,S-gNB-CU向S-gNB-DU发送UE Context setup request消息,该UE Context setup request消息包括该第三指示信息,该第三指示信息用于指示S-gNB-DU分配X2 DL GTP Tunnel Endpoint和/或S1 DL GTP Tunnel Endpoint,具体的,可以是S-gNB-CU在确定F1接口的网段和X2接口的网段不一致时,或者是其他方式来实现,本申请对此并不作任何限定。
应理解,该第三指示信息可以携带在F1 AP消息(例如,UE Context setup request消 息或者UE context modification request消息,或者其他现有F1 AP消息,或者新消息,本申请对此并不作任何限定)中由该第一网络节点发送给该第二网络节点。
可选地,该第三指示信息包括第五接口的上行隧道终点和/或第六接口的上行隧道终点。
具体而言,该第三指示信息中可以携带第五接口的上行隧道终点和/或第六接口的上行隧道终点,该第五接口的上行隧道终点和/或第六接口的上行隧道终点可以隐式地指示该第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点。
例如,如图3所示,S-gNB-CU在F1 AP消息如UE Context setup request消息中携带X2 UL GTP Tunnel Endpoint和/或S1 UL GTP Tunnel Endpoint,S-gNB-DU在收到该UE Context setup request消息后,向该S-gNB-CU发送的F1 AP消息如UE context setup response消息中携带X2 DL GTP Tunnel Endpoint和/或S1 DL GTP Tunnel Endpoint。其中,F1 AP消息也可以是UE context modification request消息,或者是其他现有消息,本申请对此并不作任何限定。
可选地,该第三指示信息包括第一承载和该第五接口的映射关系,和/或,第二承载和该第六接口的映射关系。
具体而言,该第三指示信息中携带了承载和接口的映射关系,该第二网络节点在接收到该第三指示信息后,可以根据承载和接口的映射关系,在反馈给该第一网络节点的消息中,为第一承载携带该第五接口的下行隧道终点和/或为第二承载携带该第六接口的上行隧道终点。其中,所述反馈消息可以是UE context setup response消息,或者是UE context modification response消息,或者是其他现有F1 AP消息,或者是新消息,本申请对此并不作任何限定。
例如,如图3所示,S-gNB-CU在F1 AP消息如UE Context setup request消息中携带X2接口与第一承载(例如,DRB1)的映射关系,和/或,S1接口与第一承载(例如,DRB2)的映射关系,S-gNB-DU在向该S-gNB-CU发送的F1 AP消息如UE context setup response消息中携带X2 DL GTP Tunnel Endpoint和/或S1 DL GTP Tunnel Endpoint。
可选的,该第三指示信息中包括第一承载的类型信息,例如,该第一承载为主小区分裂承载(MCG Split Bearer),则该第三指示信息用于指示触发该第二网络节点分配该第五接口的下行隧道终点;又例如,该第一承载为辅小区承载(SCG Bearer),则该第三指示信息用于指示触发该第二网络节点分配该第六接口的下行隧道终点。应理解,以上所述的第三指示信息的内容仅仅是示例性的,本申请并不限于此,例如,该第三指示信息还可以是比特0或1,例如,如果是0,则该第二网络节点在收到该第三指示信息后分配该第五接口的下行隧道地址;又例如,如果是1,则该第二网络节点在收到该第三指示信息后分配该第六接口的下行隧道地址。
还应理解,该第三指示信息中还包括第一承载的配置信息,例如,第一承载的配置信息包括该第一承载的承载标识、该第一承载级别的服务质量(quality of service,Qos)参数,或者,第一承载的配置信息包括该第一承载对应的会话标识、Qos流指示(Qos flow indicator,QFI)、第一承载和QFI的映射关系,QFI级别的Qos参数以及第一承载级别的Qos参数中的至少一种。
可选地,该第一网络节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚 协议层功能中的至少一种;和/或
该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或
该第三网络节点包括无线资源控制协议层、业务数据适配层、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点的协议栈架构为分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
应理解,对于SCG Bearer,该第一网络节点(CU)的部分分组数据汇聚协议层(PDCP)功能需要下移到该第二网络节点(DU),该部分PDCP功能可以为加密功能,该第二网络节点的密钥推演过程类似现有过程,即第三网络节点(M-eNB)推演出密钥后通过该第五接口(X2)首先发送给第一网络节点,然后通过该第四接口(F1)消息由该第一网络节点发送给该第二网络节点,具体地,该F1消息可以是UE Context setup request消息或者UE context setup response消息或者是其他现有消息,或者是新消息,本申请对此并不做任何限定。
可选地,在S110第一网络节点通过第四接口向第二网络节点发送第三指示信息之前,该传输方法100还包括:
S101,该第三网络节点向该第一网络节点发送第一请求消息,该第一网络节点接收该第三网络节点发送的该第一请求消息,该第一请求消息用于请求为第一承载分配无线资源。
应理解,该第一请求消息可以是S-gNB addition request消息,或者是S-gNB modification confirm消息,或者是S-gNB modification request消息,或者是其他现有的X2 AP消息,或者是新消息,本申请对此不作任何限定。
具体而言,该第三网络节点决定去向第一网络节点请求第一承载的无线资源,该第一请求消息中可以包括该第一承载的特征,包括承载和/或会话参数(如ERAB ID,无线承载标识,承载级别的Qos参数、数据包的会话标识(PDU session ID)、Qos流指示(Qos flow indicator,QFI)、承载和QFI的映射关系,QFI级别的Qos参数中的至少一种等),承载类型对应的传输网络层(Transport Network Layer,TNL)地址信息。
可选地,该第三网络节点可以提供最近的测量结果给该第一网络节点。
可选地,该第一承载为MCG Split Bearer,该第一请求消息中携带该第五接口的上行隧道终点。
例如,如图3所示,对于MCG Split Bearer,M-eNB可以向S-gNB-CU发送S-gNB Addition Request消息,该S-gNB Addition Request消息中的TNL地址为X2 UL GTP Tunnel Endpoint,该TNL地址用于指示上行数据传输的目的地址。
可选地,该第一承载为SCG Bearer,该第一请求消息中携带该第六接口的上行隧道终点。
例如,如图3所示,对于SCG Bearer,M-eNB可以向S-gNB-CU发送S-gNB Addition Request消息,该S-gNB Addition Request消息中的TNL地址为S1 UL GTP Tunnel  Endpoint,该TNL地址用于指示上行数据传输的目的地址。
可选地,该第一网络节点可以根据该第一承载的类型,向该第二网络节点发送该第三指示信息。
例如,该第一承载为MCG Split Bearer,则该第三指示信息用于指示触发该第二网络节点分配该第五接口的下行隧道终点。
又例如,该第一承载为SCG Bearer,则该第三指示信息用于指示触发该第二网络节点分配该第五接口的下行隧道终点。
S120,该二网络节点向该第一网络节点发送第十二消息,该第一网络节点接收该第二网络节点发送的该第十二消息,该第十二消息包括该第五接口的下行隧道终点和/或该第六接口的下行隧道终点。
可选的,该第十二消息中包括第一网络节点请求的特定承载下的该第五接口的下行隧道终点和/或该第六接口的隧道终点。
具体而言,对于MCG Split Bearer,如果S110中第三指示信息指示该第二网络节点分配第五接口的下行隧道终点,则该第二网络节点分配该第五接口的下行隧道地址,或者如果S110中第三指示信息指示该第二网络节点分配特定承载的第五接口的下行隧道终点,则该第二网络节点分配该特定承载的第五接口的下行隧道地址;对于SCG Bearer,如果S110中第三指示信息指示该第二网络节点分配第六接口的下行隧道终点,则该第二网络节点分配该第六接口的下行隧道地址,或者如果S110中第三指示信息指示该第二网络节点分配特定承载的第六接口的下行隧道终点,则该第二网络节点分配该特定承载的第六接口的下行隧道地址。
应理解,该第十二消息为可以是UE Context setup response消息,也可以是UE context modification消息,或者是F1 AP其他现有消息,或者是新消息,本申请对此并不作任何限定。
例如,如图3所示,S-gNB-DU向S-gNB-CU发送UE Context setup response消息,该UE Context setup response消息中携带X2 DL GTP Tunnel Endpoint和/或S1 DL GTP Tunnel Endpoint。
应理解,若该第一网络节点可以在该第一请求消息中请求为MCG Split Bearer和SCG Bearer分配无线资源,则该第三指示信息用于指示该第二网络节点分配该第五接口的下行隧道终点和/或该第六接口的隧道终点。
S130,该第一网络节点向该第三网络节点发送第一请求确定消息,该第三网络节点接收该第一网络节点发送的该第一请求确认消息,该第一请求确认消息包括该第五接口的下行隧道终点和/或该第六接口的下行隧道终点。
应理解,该第一请求确定消息可以是S-gNB addition request acknowledge消息,或者是S-gNB modification required消息,或者是S-gNB modification request acknowledge消息,或者是其他现有的X2 AP消息,或者是新消息,本申请对此不作任何限定。
具体而言,该第一网络节点在接收该第二网络节点发送的第十二消息后,向该第三网络节点发送第一请求确认消息,该第一请求确认消息包括该第五接口的下行隧道终点和/或该第六接口的隧道终点。
例如,如图3所示,S-gNB-CU向M-eNB发送S-gNB Addition Request Acknowledge 消息,该S-gNB Addition Request Acknowledge消息中携带X2 DL GTP Tunnel Endpoint和/或S1 DL GTP Tunnel Endpoint。
应理解,若该S-gNB Addition Request Acknowledge消息中携带S1 DL GTP Tunnel Endpoint,则M-eNB在接收待该S-gNB Addition Request Acknowledge消息后,还需要核心网发送消息,消息中携带S1 DL GTP Tunnel Endpoint,以便于核心网向S-gNB-DU发送下行数据。需要说明的是,所述隧道终点可以是和承载一一对应的,具体的可以参考现有LTE和NR技术,为了简洁,在此不再赘述。
本申请实施例的传输方法,通过第二网络节点分配第五接口的下行隧道地址和/或第六接口的下行隧道地址,有助于实现主基站和辅基站DU直接进行数据传输,或者,实现核心网与辅基站DU直接进行数据传输。
图12示出了根据本申请实施例的传输方法200的示意性流程图,如图12所示,该方法200中的用户面节点可以是图7中的SN-UP,控制面节点可以为图7中的SN-CP,该第二网络节点可以为图7中的DU,该第三网络节点可以为图7中的MN,该核心网节点可以为图7中的UPF,该传输方法200包括:
S210,用户面节点确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口;
S220,该用户面节点向该控制面节点发送第一消息,该控制面节点接收该用户面节点发送的该第一消息,该第一消息包括该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;
S230,该控制面节点向该第二网络节点发送第二消息,该第二网络节点接收该控制面节点发送的该第二消息,该第二消息包括该第一接口的上行隧道终点;
S240,该控制面节点向该第三网络节点发送第三消息,该第三网络节点接收该控制面节点发送的该第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
应理解,S230与S240并没有实际的先后顺序。
应理解,该第一消息可以是E1 AP消息,如UE bearer setup response消息或者UE bearer modification response消息,或者是UE bearer modification required消息,或者是其他E1 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
应理解,该第二消息可以是F1 AP消息,如UE context setup request消息或者UE context modification request消息,或者UE context modification confirm消息,或者是其他F1 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
应理解,该第三消息可以是X2 AP消息,如S-gNB addition request acknowledge消息或者S-gNB modification request acknowledge消息,或者S-gNB modification required消息,或者是其他X2 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
可选的,S210~S240中的隧道终点是特定承载和/或特定会话和/或特定Qos流下的隧道终点。具体而言,用户面节点确定的是特定承载和/或特定会话和/或特定Qos流下的第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点。可选地,该用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的 至少一种;和/或
该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或
该第三网络节点包括无线资源控制协议层、业务数据适配层、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
应理解,该控制面节点和该用户面节点的协议栈架构是一样的,即该用户面节点和该控制面节点都包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种,该无线资源控制协议层、业务数据适配层和分组数据汇聚协议层分别具有用户面和控制面。
应理解,该控制面节点和该用户面节点可以属于同一个系统,也可以属于不同的系统,例如,该用户面节点和该控制面节点同属于第一系统,则该控制面节点为该第一系统的控制面节点,该用户面节点为该第一系统的用户面节点,该第一系统可以为图1中的第一网络节点,还可以为图2中的CU。
具体而言,该用户面节点分配第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,并在向控制面节点发送的该第一消息中携带第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该控制面节点接收到该第一消息后,该控制面节点向该第二网络节点发送第二消息,该第二消息包括该第一接口的上行隧道终点,该控制面节点向该第三网络节点发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
可选地,该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点是不同的隧道终点。
可选地,该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点中的至少部分相同。
应理解,该第一接口、该第二接口和该第三接口的网段可以不一致(例如,有些是内网,有些是外网),那么第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点是不同的隧道终点。
还应理解,若该第一接口、该第二接口和该第三接口的网段一致,那么第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点是相同的隧道终点。
例如,如图7所示,该第一接口为F1接口,该第二接口为X2接口(或者Xn接口,以下以X2接口为例进行描述),该第三接口为S1接口。
又例如,如图7所示,该第一接口的上行隧道终点为F1 UL GTP Tunnel Endpoint,该第一接口的下行隧道终点为F1 DL GTP Tunnel Endpoint,该第二接口的上行隧道终点为X2 UL GTP Tunnel Endpoint,该第二接口的下行隧道终点为X2 DL GTP Tunnel Endpoint,该第三接口的上行隧道地址为S1 UL GTP Tunnel Endpoint,该第三接口的下行隧道地址为S1 DL GTP Tunnel Endpoint。应理解,所述隧道终点是可以和承载和/或会话和/或Qos流一一对应的。
再例如,如图7所示,SN-UP首先分配F1 UL GTP Tunnel Endpoint,X2 UL GTP Tunnel Endpoint和S1 DL GTP Tunnel Endpoint,SN-UP向SN-CP发送的E1 AP消息(例如,UE Bearer Setup Response消息)中携带F1 UL GTP Tunnel Endpoint,X2 UL GTP Tunnel  Endpoint和S1 DL GTP Tunnel Endpoint,SN-CP在接收到该UE Bearer Setup Response消息后,向DU发送F1 AP消息(例如,UE Context Setup Request消息),该UE Context Setup Request消息中携带F1 UL GTP Tunnel Endpoint,SN-CP向MN发送X2 AP消息(例如,SgNB Addition Request Ack消息),该SgNB Addition Request Ack消息中携带X2 UL GTP Tunnel Endpoint和S1 DL GTP Tunnel Endpoint。应理解,所述隧道终点是可以和承载和/或会话和/或Qos流一一对应的。
可选地,该第一消息中还携带指示信息,该指示信息用于指示隧道终点与接口的对应关系,例如,向该控制面节点指示第一接口的上行隧道终点用于该第一接口,和/或,向该控制面节点指示该第二接口的上行隧道终点用于该第二接口,和/或,向该控制面节点指示该第三接口的下行隧道终点用于该第三接口。
可选地,该第三消息中还携带指示信息,该指示信息用于指示隧道终点与接口的对应关系,例如,向该第三网络节点该第二接口的上行隧道终点用于该第二接口,和/或,向该第三网络节点该第三接口的下行隧道终点用于该第三接口。
可选地,若支持数据转发,则该第三消息中还携带X2接口的数据转发(data forwarding)地址,该第二消息中还携带F1接口的数据转发地址,该地址可以是该控制面节点分配的,也可以是该用户面节点分配的,类似的,如果该地址是用户面节点分配的,则该地址可以在S220或者S233中发送给该控制面节点。
具体的,所述X2接口的数据转发地址包括下行数据转发地址和上行数据转发地址(例如,DL Forwarding X2 GTP Tunnel Endpoint,指示X2传输承载用于转发下行数据包PDUs,UL Forwarding X2 GTP Tunnel Endpoint,指示X2传输承载用于转发上行数据包PDUs),所述F1接口的数据转发地址包括下行数据转发地址和上行数据转发地址(例如,DL Forwarding F1 GTP Tunnel Endpoint,指示F1传输承载用于转发下行数据包PDUs,UL Forwarding F1 GTP Tunnel Endpoint,指示F1传输承载用于转发上行数据包PDUs),其中转发的地址就是GTP Tunnel Endpoint(包括传输IP地址和TEID)。需要说明的是,该X2接口的数据转发地址和F1接口的数据转发地址可以是与承载一一对应的。
可选的,若支持数据转发,如果数据转发地址是控制面节点分配的,那么所述X2接口的数据转发地址还可以携带在E1 AP消息中由控制面节点发送给用户面节点;所述F1接口的数据转发地址还可以携带在E1 AP消息中由控制面板节点发送给用户面节点。可选地,若支持数据转发,如果数据转发地址是控制面节点分配的,那么该控制面节点发送给用户面节点的E1 AP消息中携带指示信息,该指示信息用于指示数据转发地址与接口的对应关系。
可选的,若支持数据转发,如果数据转发地址是用户面节点分配的,那么该用户面节点发送给控制面节点的E1 AP消息中携带指示信息,该指示信息用于指示数据转发地址与接口的对应关系。
可选的,若支持数据转发,如果数据转发地址是控制面节点分配的,那么所述F1接口的数据转发地址还可以携带在F1 AP消息中由控制面节点发送给第二网络节点;所述F1接口的数据转发地址还可以携带在E1 AP消息中由控制面节点发送给用户面节点。
可选的,若支持数据转发,如果数据转发地址是用户面节点分配的,那么在控制面节点接收该数据转发地址之前,控制面节点向用户面节点发送数据转发指示给用户面节点, 该数据转发指示用于指示用户面节点转发下行数据包,也即指示用户面节点为数据转发分配数据转发的地址(例如X2接口的数据转发地址,F1接口的数据转发地址等),进一步的,也可以是指示用户面节点转发特定承载下的下行数据包,也即指示用户面节点为特定承载下的数据转发分配特定承载下的数据转发的地址(例如特定承载下X2接口的数据转发地址,特定承载下F1接口的数据转发地址等)。
应理解,传输方法200是以主基站为LTE eNB(M-eNB,Master eNB),辅基站为NR中gNB-CU-CP,gNB-CU-CP为例来介绍的,对于主基站为NR gNB,辅基站为LTE CP-UP架构,或者主基站为NR gNB,辅基站为NR CP-UP架构,或者主基站为LTE eNB,辅基站为LTE CP-UP架构同样也适用。
可选地,该传输方法200还包括:
S201,该第三网络节点向该控制面节点发送第二请求消息,该控制面节点接收该第三网络节点发送的该第二请求消息,该第二请求消息用于请求该控制面节点为第二承载分配无线资源。
可选地,该第二承载类型为辅小区分裂承载(SCG split bearer)。
可选地,该第二请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
可选地,该第二请求消息中包括承载参数和/或会话参数,承载参数包括承载标识ERAB ID,承载级别的Qos参数的至少一种,会话参数包括会话标识、Qos流指示(Qos flow indicator,QFI)、承载标识、承载和QFI的映射关系,QFI级别的Qos参数以及承载级别的Qos参数中的至少一种。
可选地,该第二请求消息中包括数据转发指示,如特定承载的数据转发指示(如,DL forwarding),或者特定Qos流(Qos flow)的数据转发指示,或者特定会话的数据转发指示。
可选地,该第二请求消息中携带该第三网络节点最近的测量结果。
可选地,所述第二请求消息可以是辅基站增加请求消息(如SgNB addition request消息)或者是辅基站修改请求消息(如SgNB modification request消息)等消息,也可以是其他X2 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
例如,如图7所示,在SN-CP向SN-UP发送该第一指示信息之前,MN向SN-CP发送X2 AP消息(例如,SgNB Addition Request消息),该SgNB Addition Request消息中携带X2 DL GTP Tunnel Endpoint和S1 UL GTP Tunnel Endpoint,以及ERAB ID、ERAB level Qos parameters、数据包的会话标识(PDU session ID)、Qos流指示(Qos flow indicator,QFI)、承载(如ERAB ID、DRB ID)和QFI的映射关系,QFI级别的Qos参数以及承载级别的Qos参数中的至少一种。
S202,该控制面节点向该用户面节点发送第一指示信息,该用户面节点接收来自于该控制面节点的该第一指示信息,其中,
该第一指示信息用于表示该控制面节点请求的承载类型为辅小区分裂承载;或者,
该第一指示信息用于指示该用户面节点分配该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;或者,
该第一指示信息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第 三接口的上行隧道终点中的至少一种;或者,
该第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者,需要该用户面节点具有主小区资源配置,或者,需要该用户面节点具有辅小区资源配置中的至少一种。
应理解,该第一指示信息可以指示PDCP功能是否存在,或者,MCG的配置是否存在,或者,SCG的配置是否存在,例如,可以指示PDCP功能是否存在(如,PDCP在CU-UP的资源配置中的值设置为“present”,或者“not present”,MCG在CU-CP的资源配置中的值设置为“present”,或者“not present”,SCG在CU-UP的资源配置中的值设置为“present”,或者“not present”)。
具体而言,该用户面节点在分配第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点之前,该控制面节点可以向用户面节点发送第一指示信息,该第一指示信息可以显式或者隐式得指示该用户面节点分配第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点。
可选地,该第一指示信息携带在E1 AP消息(例如,UE Bearer Setup Request消息,UE bearer modification request消息)中,或者其他E1 AP现有消息,或者新消息中,本申请对此并不作任何限定。
可选地,该E1 AP消息(例如,UE Bearer Setup Request消息)中包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
可选的,该E1 AP消息中包括数据转发指示(如,DL forwarding)或者特定承载的数据转发指示。
可选的,该E1 AP消息中包括安全配置,SDAP和PDCP配置中的至少一种。
可选的,该E1 AP消息中包括承载和/或会话的参数,如数据包会话标识(PDU session ID)、Qos流指示(Qos flow indicator,QFI)、承载标识(ERAB ID或DRBID等)、承载和QFI的映射关系、QFI级别的Qos参数以及承载级别的Qos参数中的至少一种。
可选的,该E1 AP消息中包括QFI级别的Qos和/或承载级别的Qos(Quality of service,服务质量)参数,具体的Qos参数包括:对于第一指示信息是用于表示该控制面节点请求的承载类型为辅小区分裂承载的场景下,Qos参数包括承载级别的Qos参数;对于第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者需要该用户面节点具有主小区资源配置,或者需要该用户面节点具有辅小区资源配置中的至少一种的场景下,Qos参数包括承载级别的Qos参数,MCG可以承受的最大承载级别的Qos参数,SCG可以承受的最大承载级别的Qos参数种的至少一种。具体而言,该Qos参数具体包括QCI(Qos Class Identifier,Qos类别标识),分配和保持优先级(allocation and retention priority),Qos信息保证率(GBR Qos information)中的至少一个。
例如,如图7所示,SN-CP向SN-UP发送E1 AP消息(例如,UE Bearer Setup Request消息),该UE Bearer Setup Request消息可以携带该第一指示信息。
可选地,该传输方法200还包括:
S231,该第二网络节点向该控制面节点发送第四消息,该控制面节点接收该第二网络节点发送的该第四消息,该第四消息包括该第一接口的下行隧道终点。
应理解,该第四消息可以是F1 AP消息,如UE context setup request消息、UE context  modification request消息,或者F1 AP现有消息,或者F1 AP新消息,本申请对此并不作任何限定。
例如,如图7所示,DU收到SN-CP发送的UE Context Setup Request消息,DU向SN-CP回复F1 AP消息(例如,UE Context Setup Response消息),该UE Context Setup Response消息中携带F1 DL GTP Tunnel Endpoint。
S232,该控制面节点向该用户面节点发送第五消息,该用户面节点接收该控制面节点发送的该第五消息,该第五消息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种。
应理解,该第五消息可以是E1 AP消息,如UE bearer setup request消息、UE bearer modification request消息,或者E1 AP现有消息,或者E1 AP新消息,本申请对此并不作任何限定。
应理解,该用户面节点在分配隧道终点之前,该控制面节点可以向该用户面节点发送第五消息,该第五消息可以包括该第一指示信息,该第五消息还可以包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
还应理解,该控制面节点在收到该第二网络节点发送的第四消息后,可以向该用户面节点发送该第五消息,该第五消息包括该第一接口的下行隧道终点。
例如,如图7所示,该第五消息可以为UE Bearer Setup Request消息,该UE Bearer Setup Request消息携带X2 DL GTP Tunnel Endpoint和/或S1 UL GTP Tunnel Endpoint。
又例如,如图7所示,该第五消息可以为UE Bearer Modification Request消息,该UE Bearer Modification Request消息携带F1 DL GTP Tunnel Endpoint。
S233,该用户面节点向该控制面节点发送请求响应消息,该控制面节点接收该用户面节点发送的该请求响应消息。
例如,如图7所示,SN-UP向SN-CP发送UE Bearer Modification Response消息。
本申请实施例的传输方法通过给出第二承载的用户面隧道建立过程,由用户面节点确定不同的隧道终点,特别是在各个接口的网段不一致情况下,有助于解决用户面的上下行隧道的分配以及指示的问题。
以上结合图12,详细得描述根据本申请实施例的传输方法200,方法200中介绍了用户面节点进行隧道终点的分配,下面结合图13,详细描述根据本申请实施例的方法300,方法300中介绍了由控制面节点进行隧道终点的分配。
表2、表3和表4示出了传输方法200中各个网络节点提供的地址,如表2、表3和表4所示。
表2 CU-CP和CU-UP提供的地址
Figure PCTCN2019075027-appb-000002
表3 CU-CP和MeNB提供的地址
Figure PCTCN2019075027-appb-000003
表4 CU-CP和DU提供的地址
Figure PCTCN2019075027-appb-000004
图13示出了根据本申请实施例的传输方法300的示意性流程图,如图13所示,该方法300中的用户面节点可以是图7中的SN-UP,控制面节点可以为图7中的SN-CP,该第二网络节点可以为图7中的DU,该第三网络节点可以为图7中的MN,该核心网节点可以为图7中的UPF,该传输方法300包括:
S310,控制面节点确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;
S320,该控制面节点向该第二网络节点发送第二消息,该第二网络节点接收该控制面节点发送的该第二消息,该第二消息包括该第一接口的上行隧道终点;
S330,该控制面节点向该第三网络节点发送第三消息,该第三网络节点接收该控制面节点发送的该第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
应理解,S320与S330并没有实际的先后顺序。
应理解,该第二消息可以是F1 AP消息,如UE context setup request消息或者UE context modification request消息,或者是其他F1 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
应理解,该第三消息可以是X2 AP消息,如S-gNB addition request acknowledge消息或者S-gNB modification request acknowledge消息,或者是其他X2 AP的现有消息,或者是新消息,本申请对此并不作任何限定。
可选的,S310~S330中的隧道终点是特定承载和/或特定会话和/或特定Qos流下的隧道终点。具体而言,用户面节点确定的是特定承载和/或特定会话和/或特定Qos流下的第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点。
可选的,该第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点通过携带在E1 AP消息中由控制面节点发送给用户面节点,所述E1 AP消息可以是UE bearer setup request消息或者UE bearer modification request消息,或者现有其他E1 AP消息,或者新消息,本申请对此并不作任何限定。
可选的,该控制面节点是根据预配的用户面节点的地址池来分配上述隧道终点,该用 户面节点的地址池是可以在E1 AP接口建立过程中交互,或者由网管系统(OAM,运维管理系统)来预配置,本申请对此并不作任何限定。
可选地,该用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或
该第三网络节点包括无线资源控制协议层、业务数据适配层、分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
具体而言,该控制面节点分配第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该控制面节点向该第二网络节点发送第二消息,该第二消息包括该第一接口的上行隧道终点,该控制面节点向该第三网络节点发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
应理解,该第一接口、该第二接口和该第三接口的网段不一致(例如,有些是内网,有些是外网),那么第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点是不同的隧道终点。
还应理解,若该第一接口、该第二接口和该第三接口的网段一致,那么第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点是相同的隧道终点。
例如,如图7所示,该第一接口为F1接口,该第二接口为X2接口(或者Xn接口,以下以X2接口为例进行描述),该第三接口为S1接口。
又例如,如图7所示,该第一接口的上行隧道终点为F1 UL GTP Tunnel Endpoint,该第一接口的下行隧道地址为F1 DL GTP Tunnel Endpoint,该第二接口的上行隧道终点为X2 UL GTP Tunnel Endpoint,该第二接口的下行隧道终点为X2 DL GTP Tunnel Endpoint,该第三接口的上行隧道地址为S1 UL GTP Tunnel Endpoint,该第三接口的下行隧道地址为S1 DL GTP Tunnel Endpoint。应理解,所述隧道终点可以是和承载和/或会话和/或Qos流一一对应的。
再例如,如图7所示,SN-CP首先分配F1 UL GTP Tunnel Endpoint,X2 UL GTP Tunnel Endpoint和S1 DL GTP Tunnel Endpoint,SN-CP向DU发送F1 AP消息(例如,UE Context Setup Request消息),该UE Context Setup Request消息中携带F1 UL GTP Tunnel Endpoint,SN-CP向MN发送X2 AP消息(例如,SgNB Addition Request Ack消息),该SgNB Addition Request Ack消息中携带X2 UL GTP Tunnel Endpoint和S1 DL GTP Tunnel Endpoint。应理解,所述隧道终点可以是和承载和/或会话和/或Qos流一一对应的。
可选地,若支持数据转发,则该第三消息中还携带X2接口的数据转发(data forwarding)地址,该第二消息中还携带F1接口的数据转发地址,该地址可以是该控制面节点分配的,也可以是该用户面节点分配的,类似的,如果该地址是用户面节点分配的,则该地址可以由该用户面节点发送给该控制面节点,具体的,所述X2接口的数据转发地址包括下行数据转发地址和上行数据转发地址(例如,DL Forwarding X2 GTP Tunnel Endpoint,指示X2传输承载用于转发下行数据包PDUs,UL Forwarding X2 GTP Tunnel Endpoint,指示X2传输承载用于转发上行数据包PDUs),所述F1接口的数据转发地址包括下行数据转发地址和上行数据转发地址(例如,DL Forwarding F1 GTP Tunnel  Endpoint,指示F1传输承载用于转发下行数据包PDUs,UL Forwarding F1 GTP Tunnel Endpoint,指示F1传输承载用于转发上行数据包PDUs),其中转发的地址就是GTP Tunnel Endpoint(包括传输IP地址和TEID)。需要说明的是,该X2接口的数据转发地址和F1接口的数据转发地址可以是与承载一一对应的。可选的,若支持数据转发,如果数据转发地址是控制面节点分配的,那么所述X2接口的数据转发地址还可以携带在E1 AP消息中由控制面节点发送给用户面节点。
可选地,该控制面节点发送给用户面节点的E1 AP消息中携带指示信息,该指示信息用于指示数据转发地址与接口的对应关系。
可选的,若支持数据转发,如果数据转发地址是控制面节点分配的,那么所述F1接口的数据转发地址还可以携带在F1 AP消息中由控制面节点发送给第二网络节点;所述F1接口的数据转发地址还可以携带在E1 AP消息中由控制面节点发送给用户面节点。
可选的,若支持数据转发,如果数据转发地址是用户面节点分配的,那么在控制面节点接收该数据转发地址之前,控制面节点向用户面节点发送数据转发指示给用户面节点,该数据转发指示用于指示用户面节点转发下行数据,进一步的,也可以是指示用户面节点转发特定承载和/或特定会话和/或特定Qos流下的下行数据。
可选地,该方法300还包括:
S301,该第三网络节点向该控制面节点发送第三请求消息,该控制面节点接收该第三网络节点发送的该第三请求消息,该第三请求消息用于向该控制面节点请求为第二承载分配无线资源。
可选地,该第二承载为辅小区分裂承载(SCG Split Bearer)。
可选地,该第三请求消息中指定该第二承载的特征,包括承载参数、承载类型对应的TNL地址。
可选地,该第三网络节点在该第三请求消息中携带最近的测量结果。
可选地,该第三请求消息包括该第二接口的下行隧道终点和/或该第三接口的上行隧道终点。
可选地,该第三请求消息中包括承载和/或会话配置参数,如承载标识(ERAB ID或DRB ID)、承载级别的Qos参数等、数据包的会话标识、Qos流指示(Qos flow indicator,QFI)、承载和QFI的映射关系,QFI级别的Qos参数中的至少一种。
可选地,该第三请求消息中包括数据转发指示,如特定承载的数据转发指示(如,DL forwarding)。
具体而言,在该控制面节点分配隧道终点之前,该第三网络节点向该控制面节点发送第三请求消息,该第三请求消息用于向该控制面节点请求为第二承载分配无线资源。
例如,如图7所示,MN向SN-CP发送X2 AP消息(例如,SgNB Addition Request消息),该SgNB Addition Request消息中携带X2 DL GTP Tunnel Endpoint和S1 UL GTP Tunnel Endpoint,承载和/或会话配置信息(例如承载标识ERAB ID、承载级别的Qos参数、数据包的会话标识、Qos流指示(Qos flow indicator,QFI)、承载和QFI的映射关系、QFI级别的Qos参数以及承载级别的Qos参数中的至少一种。)。
可选地,该传输方法300还包括:
S321,该第二网络节点向该控制面节点发送第四消息,该控制面节点接收该第二网络 节点发送的该第四消息,该第四消息包括该第一接口的下行隧道终点。
例如,如图7所示,DU收到SN-CP发送的UE Context Setup Request消息,DU向SN-CP回复F1 AP消息(例如,UE Context Setup Response消息),该UE Context Setup Response消息中携带F1 DL GTP Tunnel Endpoint。
S322,该控制面节点向该用户面节点发送第五消息,该用户面节点接收该控制面节点发送的该第五消息,该第五消息包括第一接口的上行隧道终点、第一接口的下行隧道终点、第二接口的上行隧道终点、第二接口的下行隧道终点、第三接口的上行隧道终点和第三接口的下行隧道终点中的至少一种。
应理解,该第五消息是E1 AP消息,例如UE bearer setup request消息,UE bearer modification request消息,或者E1 AP其他现有消息,或者新消息,本申请对此并不作任何限定。
本申请实施例的传输方法,通过控制面节点向用户面节点发送的消息中携带上下行隧道的隧道终点,有助于该用户面节点识别数据是否是发送给自己的。
可选地,该第五消息还包括指示信息,该指示信息用于指示隧道终点和接口的对应关系,例如,该指示信息向该用户面节点指示第一接口的上行隧道终点用于该第一接口,和/或,第二接口的上行隧道终点用于该第二接口,和/或,该第三接口的下行隧道终点用于该第三接口。
例如,SN-CP向该SN-UP发送E1 AP消息(例如,UE Bearer Setup Request消息),该UE Bearer Setup Request消息携带F1 UL GTP Tunnel Endpoint,F1 DL GTP Tunnel Endpoint,X2 UL GTP Tunnel Endpoint,X2 DL GTP Tunnel Endpoint,S1 UL GTP Tunnel Endpoint和S1 DL GTP Tunnel Endpoint中的至少一种。
S323,该用户面节点向该控制面节点发送请求响应消息,该控制面节点接收该用户面节点发送的该请求响应消息。
例如,如图7所示,SN-UP向SN-CP发送UE Bearer Setup Response消息。
应理解,该第三接口的下行隧道终点还可以有用户面节点分配,那么该请求响应消息中携带该第三接口的下行隧道终点,进一步地,该请求响应消息还可以携带指示信息,用于指示该第三接口的下行隧道终点用于该第三接口。
本申请实施例的传输方法通过给出第二承载的用户面隧道建立过程,由控制面节点确定不同的隧道终点,特别是在各个接口的网段不一致情况下,有助于解决用户面的上下行隧道的分配以及指示的问题。
表5、表6和表7示出了传输方法300中各个网络节点提供的地址,如表5、表6和表7所示。
表5 CU-CP和CU-UP提供的地址
Figure PCTCN2019075027-appb-000005
Figure PCTCN2019075027-appb-000006
表6 CU-CP和MeNB提供的地址
Figure PCTCN2019075027-appb-000007
表7 CU-CP和DU提供的地址
Figure PCTCN2019075027-appb-000008
应理解,传输方法200和传输方法300仅仅描述了隧道终点(第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点)由用户面节点分配和控制面节点分配的过程,隧道终点的分配还可以由该控制面节点和该用户面节点配合完成。例如,该用户面节点分配第一接口的上行隧道终点和第二接口的上行隧道终点,该控制面节点分配该第三接口的下行隧道终点。又例如,该控制面节点分配第一接口的上行隧道终点和第二接口的上行隧道终点,该用户面节点分配该第三接口的下行隧道终点。分配的方式可以为任意的排列组合的方式,本申请并不限于此。
以上通过方法100至方法300,详细得描述了用户面的上下行隧道终点的分配和指示的过程,下面结合方法400至方法700,详细描述流量统计、功率分配和增加小区标识的过程。
图14示出了根据本申请实施例的传输方法400的示意性流程图,如图14所示,该方法400中的第一网络节点可以为图1中的第一网络节点,也可以为图2中的CU,还可以为图3中的S-gNB-CU,还可以为图4中的SgNB-CP,该第二网络节点可以为图1中的第二网络节点,也可以为图2中的DU,还可以为图3中的S-gNB-DU,还可以为图4中的S-gNB-DU,该第三网络节点可以为图3中的M-eNB,也可以为图4中的M-eNB,该传输方法400包括:
S410,第二网络节点向第一网络节点发送第七消息,该第一网络节点接收来自于该第二网络节点的该第七消息,该第七消息包括第二网络节点传输的数据流量信息;
应理解,该第七消息可以是F1 AP消息,如UE context setup response消息,UE context modification response消息,UE context modification required消息,或者是F1 AP的其他现有消息,或者新消息,本申请对此并不作任何限定。
其中,该第一网络节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或
该第三网络节点包括无线资源控制协议层、业务数据适配层、分组数据汇聚协议层功能、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地。其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地,该第二网络节点传输的数据流量信息包括该第二网络节点传输的上行数据流量、该第二网络节点传输的下行数据流量、统计该第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
可选地,该第二网络节点的数据流量信息包括某些承载的流量信息,例如,MCG Split Bearer,SCG Bearer,SCG Split Bearer等等。
可选地,该第二网络节点的数据流量信息包括特定承载和/或特定会话和/或特定Qos流的流量信息,例如ERAB ID1、ERAB ID2、session ID1、QFI1等。
应理解,这里的数据流量信息可以是辅基站传输的数据流量信息,即通过辅基站的空口传输到终端设备的数据流量。
例如,如图3所示,S-gNB-DU可以主动向S-gNB-CU上报S-gNB-DU的数据流量信息,S-gNB-DU可以在F1 AP消息(例如,UE Context Setup Request消息,或者,UE Context Modification Request消息,或者,UE Context Modification Require消息)中携带该数据流量信息,或者,该F1 AP消息为其他现有消息或者新消息,本申请并不限于此。
又例如,如图4所示,S-gNB-DU可以主动向S-gNB-CP上报S-gNB-DU的数据流量信息,S-gNB-DU可以在F1 AP消息(例如,UE Context Setup Request消息,或者,UE Context Modification Request消息,或者,UE Context Modification Require消息)中携带该数据流量信息,或者,该F1 AP消息为其他现有消息或者新消息,本申请并不限于此。
应理解,该数据流量信息可以包括承载标识(eRAB ID),会话标识(PDU session ID),Qos flow标识(Qos flow indicator,QFI)开始统计流量的时间戳(start timestamp)、结束统计流量的时间戳(end timestamp),上行的数据流量信息(usage count UL)或者下行的数据流量信息(usage count DL)中的至少一种。
可选地,该传输方法400还包括:
S401,该第一网络节点向该第二网络节点发送第二指示信息,该第二网络节点接收该第一网络节点发送的该第二指示信息,该第二指示信息用于指示该第二网络节点上报该第二网络节点传输的数据流量信息。
应理解,对于辅基站支持CU-DU的架构或者辅基站支持CP-UP的架构,当有数据从主基站发送到辅基站的DU时,辅基站DU统计所传输的数据流量是根据辅基站CU发送的该第二指示信息。所述第二指示信息是通过CU和DU之间的F1 AP消息如UE context setup request消息,或者,UE context modification request消息,或者,UE context modification  confirm消息等,也可以通过其他现有消息或新消息,本申请对此并不做任何限定。
还应理解,在本步骤之前,多链接需要建立,多链接的建立过程类似现有技术,为了简洁,在此不再赘述。
还应理解,所述步骤为可选,即辅基站的DU可以主动统计并上报所传输数据的流量。
可选地,该第二指示信息包括但不限于以下中的一种或者多种:
(1)显示指示该第二网络节点上报所统计的流量信息;
(2)指示该第二网络节点上报特定承载(包括特定承载、特定会话、特定Qos流的至少一种)的流量信息、统计流量的开始时间和结束时间,特定承载的流量统计的开始时间和结束时间,上下行流量统计,或者,特定承载的上下行流量统计等,如该第二指示信息包括:承载标识(eRAB ID),开始统计流量的时间戳(start timestamp)、结束统计流量的时间戳(end timestamp),特定承载的统计流量的开始时间戳,特定承载的统计流量的结束时间戳,特定承载的上行的数据流量统计信息,特定承载的下行的数据流量统计信息,上行的数据流量信息(usage count UL)或者上行的数据流量信息(usage count DL)中的至少一种;
(3)指示上报数据流量信息的上报周期。
可选地,该传输方法400还包括:
S420,该第一网络节点向该第三网络节点发送该第二网络节点的数据流量信息,该第三网络节点接收该第一网络节点的数据流量信息。
具体而言,该第一网络节点在收到该第二网络节点发送的数据流量信息后,可以将该数据流量信息中发送给该第三网络节点。
例如,如图3所示,S-gNB-CU向M-eNB发送Secondary Rat Data Usage Report,该Secondary Rat Data Usage Report消息中携带该S-gNB-DU的数据流量信息。
又例如,如图4所示,S-gNB-CP向M-eNB发送Secondary Rat Data Usage Report,该Secondary Rat Data Usage Report消息中携带该S-gNB-DU的数据流量信息。
可选地,该数据流量信息包括承载标识(eRAB ID),开始统计流量的时间戳(start timestamp)、结束统计流量的时间戳(end timestamp),上行的数据流量信息(usage count UL)或者上行的数据流量信息(usage count DL)中的至少一种。
可选地,该数据流量信息还包括辅基站类型(Secondary Rat Type)信息,该Secondary Rat Type信息可以是辅基站CU收到辅基站DU发送的数据流量信息后加到流量统计报告(Secondary Rat Data Usage Report)中再发送给主基站,或者,该Secondary Rat Type信息可以是辅基站的DU来增加到流量统计信息中发送给辅基站的CU,辅基站的CU收到后再发送给主基站,此时,辅基站CU可以修改该secondary rat type,也可以不修改secondary rat type。
应理解,本申请实施例的传输方法400可以是单独的实施例,也可以与其他实施例相结合,例如,该传输方法400可以基于传输方法100,本申请并不限于此。
还应理解,本申请实施例的数据流量信息具体可以包括数据PDUs,数据报文中的IP头或者传输控制协议(transmission control protocol,TCP)/用户数据报协议(user datagram protocol,UDP)头,TCP控制报文(例如,ACK等),重传数据包中的一种或者多种。
本申请实施例的传输方法,在辅基站支持CU-DU架构的多链接场景下,当主基站与 辅基站DU直接进行用户面的数据传输时,有助于解决辅基站记性流量统计的问题。
下面介绍本申请实施例的传输方法500,该传输方法500主要适用于主辅基站支持CU-DU结构。
图15示出了根据本申请实施例的传输方法500的示意性流程图,如图15所示,该第一网络节点可以为图5中的M-gNB-CU,该第二网络节点可以为图5中的M-gNB-DU,该传输方法500包括:
S510,该第一网络节点向该第二网络节点发送第九消息,该第二网络节点接收该第一网络节点发送的该第九消息,该第九消息包括该第二网络节点的第一功率配置参数,该第一功率配置参数为终端设备在主小区组所能使用的最大发射功率。
具体而言,该第二网络节点的功率配置参数可以由该第一网络节点确定,该第一网络节点向该第二网络节点发送第九消息,该第九消息包括该第二网络节点的第一功率配置参数。
例如,如图5所示,M-gNB-DU的功率配置参数(如,P-maxMCG,具体名称本申请并不作任何限定)的具体取值由M-gNB-CU确定,所述F1接口消息可以是UE Context Setup Request或者UE Context Modification Request等消息。
可选地,该第一网络节点向该第四网络节点发送该第一功率配置参数。
可选地,该传输方法500还包括:
S520,该第二网络节点向该第一网络节点发送请求响应消息。
例如,如图5所示,M-gNB-DU向M-gNB-CU发送UE Context Setup Response或者UE Context Modification Response等消息。
可选地,该传输方法500还包括:
该第二网络节点向该第一网络节点发送第十消息,该第十消息包括该第二网络节点的第二功率配置参数,该第二功率配置参数为终端设备在主小区组所能使用的最大发射功率。
应理解,第二网络节点的功率配置参数更新时,可以向该第一网络节点发送该第十消息。
可选地,该传输方法500还包括:
S501,第四网络节点向第五网络节点发送功率更新信息,该功率更新信息包括该第四网络节点更新后的第三功率配置参数,该第三功率配置参数为终端设备在辅小区组所能使用的最大发射功率。
应理解,该第四网络节点可以是图5中的S-gNB-DU,该第五网络节点可以是图5中的S-gNB-CU。
可选的,该功率更新信息可以在现有的第四网络节点发送给第五网络节点的cellgroupconfig信元中,应理解,第五网络节点收到cellgroupconfig之后,需要解析cellgroupconfig才能从中读取功率信息,继而判断功率是否有更新。
可选的,该功率更新信息可以作为一个显示的信元(如P-maxSCG)携带在第四网络节点发送给第五网络节点的F1 AP消息中,应理解,第五网络节点收到该功率更新信息后,直接读取功率更新信息,继而判断功率是否有更新。在这个可选项下,cellgroupconfig中也可以同时填写该功率更新信息,或者,cellgroupconfig中也可以不填写该功率更新信息。
可选的,对于第五网络节点判断出功率有更新了之后,更新的功率携带在第五网络节点发送给第一网络节点的X2接口消息中(可选的,该X2接口消息中还可以携带更新功率的指示,从而指示第一网络节点更新主小区组的功率参数)。应理解,该X2接口消息可以是SgNB modification required消息,或者SgNB addition request ack消息,或者SgNB modification request ack消息,或者是其他X2 AP现有消息,或者是新消息,本申请对此不作任何限定。
可选的,对于第五网络节点判断出功率有更新了之后,更新的功率携带在第五网络节点发送给第一网络节点的X2接口消息中,具体而言,更新的功率携带在cellgroupconfig信元中,第一网络节点接收到X2接口消息后,解析cellgroupconfig信元并获取更新的功率后,判断是否需要更新主小区组的功率参数。应理解,该X2接口消息可以是SgNB modification required消息,或者SgNB addition request ack消息,或者SgNB modification request ack消息,或者是其他X2 AP现有消息,或者是新消息,本申请对此不作任何限定。
可选的,对于第一网络节点收到X2接口消息后,判断是否接受配置,具体而言,可以判断是否接受功率更新信息,则向第五网络节点发送反馈消息,该反馈消息可以直接包括拒绝消息,或者包括新的功率信息等(例如,通过SgNB modification confirm消息,或者SgNB modification reject消息,或者SgNB modification request消息等现有消息,或者X2 AP新消息,本申请对此不作任何限定。)
具体而言,该第四网络节点由部分配置需要进行更新,如功率配置(如,P-maxSCG),该功率配置参数是该终端设备在辅小区组所能使用的最大发射功率,由于该第四网络节点来控制上行传输的调度器,因此该第四网络节点具有修改终端设备在辅小区组所能使用的最大发射功率的权利,该第四网络节点的功率配置参数通过该功率更新信息发送给该第五网络节点。
可选地,S501为修改该第四网络节点的配置的过程,该第五网络节点可以确定该第四网络节点的更新功率配置参数。
例如,如图5所示,S-gNB-DU的功率配置参数可以通过S-gNB-DU到S-gNB-CU的F1接口消息传输,具体的,所述F1 AP消息(例如,UE Context Setup Response或者UE Context Modification Require/Response消息),或者新消息,本申请对此并不做任何限定。
S502,该第一网络节点增加该第五网络节点为多链接的数据传输(Secondary Node Addition)。
具体地,S502类似于现有的多链接的建立过程,为了简洁,在此不再赘述。
可选地,在S502中,该第四网络节点的功率配置参数由该第一网络节点确定,并通过该第五网络节点发送给该第四网络节点。
例如,可以在S-gNB-DU上下文建立请求过程中,或者S-gNB-DU上下文修改过程中发送消息如UE Context Setup Request,或者UE Context Modification Request等消息,也可以是新F1 AP消息,本申请并不限于此。
应理解,本申请实施例的传输方法500可以为一个单独的实施例,也可以与其他实施例进行结合,例如该传输方法500可以结合传输方法200和传输方法300,即,当传输方法200和传输方法300中的第三网络节点(例如,图7中的MN)支持CU-DU架构的时候,存在该第三网络节点的CU向该第三网络节点的DU发送该第三网络节点的DU的功 率配置参数的情况,或者,该第二网络节点向该控制面节点发送功率更新信息的情况。
本申请实施例的传输方法,在主基站和辅基站为CU-DU的架构下,实现了多链接场景下的功率分配,有助于避免终端设备的发射总功率频繁超过终端设备的最大发射功率。
上面通过传输方法500介绍了功率分配的过程,方法500中主基站和辅基站都是CU-DU架构,下面通过传输方法600介绍了另一功率分配的过程,与方法500不同的是,主基站和辅基站为共CU多DU的架构。
图16示出了根据本申请实施例的传输方法600的示意性流程图,如图16所示,该第一网络节点可以为图6中的gNB-CU,该第二网络节点可以为图6中的M-gNB-DU,该传输方法600包括:
S610,该第一网络节点向该第二网络节点发送第九消息,该第二网络节点接收该第一网络节点发送的该第九消息,该第九消息包括该第二网络节点的第一功率配置参数,该第一功率配置参数为终端设备在主小区组所能使用的最大发射功率。
具体而言,该第二网络节点的第一功率配置参数可以由该第一网络节点确定,该第一网络节点向该第二网络节点发送第九消息,该第九消息包括该第二网络节点的第一功率配置参数。
例如,如图6所示,M-gNB-DU的功率配置参数(P-maxMCG,具体名称本申请并不作任何限定)的具体取值由gNB-CU确定,所述F1接口消息可以是UE Context Setup Request或者UE Context Modification Request等消息。
应理解,该第一网络节点还可以向该第四网络节点发送该第二网络节点的第一功率配置参数。
可选地,该传输方法600还包括:
S620,该第二网络节点向该第一网络节点发送请求响应消息。
例如,如图6所示,M-gNB-DU向gNB-CU发送UE Context Setup Response或者UE Context Modification Response等消息。
可选地,该传输方法600还包括:
该第二网络节点向该第一网络节点发送第十消息,该第十消息包括该第二网络节点的第二功率配置参数,该第二功率配置参数为终端设备在主小区组所能使用的最大发射功率。
应理解,第二网络节点的功率配置参数更新时,可以向该第一网络节点发送该第十消息。
可选地,该传输方法600还包括:
S601,第四网络节点向该第一网络节点发送功率更新信息,或者,该功率更新信息包括该第四网络节点更新后的第三功率配置参数,该第三功率配置参数为终端设备在辅小区组所能使用的最大发射功率。
应理解,S601与S501类似,为了简洁,在此不再赘述。
例如,如图6所示,S-gNB-DU的功率配置参数可以通过S-gNB-DU到gNB-CU的F1接口消息传输,具体的,所述F1 AP消息(例如,UE Context Setup Response或者UE Context Modification Require/Response消息),或者新消息,本申请对此并不做任何限定,如可以通过消息中的DU to CU information信元内携带。
S602,该第一网络节点增加该第四网络节点为多链接的数据传输(Secondary Node Addition),或者,该第一网络节点修改多链接配置(Secondary Node Modification)。
具体地,S602类似于现有的多链接的建立过程,为了简洁,在此不再赘述。
例如,可以在S-gNB-DU增加请求过程中,或者S-gNB-DU修改过程中发送消息如UE Context Setup Request,或者UE Context Modification Request等消息,也可以是新F1 AP消息,本申请并不限于此。
应理解,本申请实施例的传输方法600可以为一个单独的实施例,也可以与其他实施例进行结合。
本申请实施例的传输方法,在主基站和辅基站共CU多DU的架构下,实现了多链接场景下的功率分配,有助于避免终端设备的发射总功率频繁超过终端设备的最大发射功率。
需要说明的是,对于该传输方法500和该传输方法600,该第一网络节点把该第一功率配置参数和该第二功率配置参数通过专有信令(如RRC消息)发送给终端设备,应理解,该第一网络节点把终端设备在主小区组所能使用的最大发射功率和辅小区组所能使用的最大发射功率通过RRC消息发送给终端设备。
图17示出了根据本申请实施例的传输方法700的示意性流程图,如图17所示,该第一网络节点可以为图1中的第一网络节点,还可以为图2中的CU,该第二网络节点可以为图2中的第二网络节点,还可以为图2中的DU,该传输方法700包括:
S710,第一网络节点向第二网络节点发送第十二消息,该第十二消息包括该第二网络节点的小区组标识;
S720,该第二网络节点向该第一网络节点发送第十三消息,该第一网络节点接收该第二网络节点发送的该第十三消息,该第十三消息包括该第二网络节点的小区组标识,其中,
该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地,第一网络节点向第二网络节点发送第十二消息之前,该第一网络节点为该第二网络节点分配该第二网络节点的小区组标识。
应理解,该第二网络节点为该第一网络节点为特定终端设备链接(双链接或者多链接)中多个网络节点中的一个网络节点。
具体而言,对于双链接或者多链接场景,DU可以通过CU给DU的RRC配置参考信息(CU-to-DU RRC information)中是否包含辅小区组配置信息(SCG-ConfigInfo),判断自己是终端设备的辅小区组。对于双连接而言,DU可以判断CellGroupId为1。但是对于多连接而言,DU无法知道如何正确填写SCG的CellGroupId。此时,在CU给DU的RRC配置参考信息中增加DU的CellGroupId,DU在反馈给CU的小区组配置中就可以知道如何填写SCG的CellGroupId。
例如,如图2所示,CU为DU分配DU的小区组标识,CU将小区组标识CellGroupId告知DU,例如,包含在UE context Setup/Modification Request中,DU在给CU反馈小区组配置时(例如UE Context Setup/Modification Response)包含CU提供的CellGroupId。
还应理解,S710步骤可选,S720步骤中可以包括第二网络节点的小区组标识,如填写默认值,也可以不包括第二网络节点的小区组标识,由第一网络节点来填写。
还应理解,当S720步骤中包括第二网络节点的小区组标识时,第二网络节点填写的小区组标识为默认值,例如DU在给CU反馈小区组配置cellgroupconfig时不包含CellGroupId或把cellgroupId填写为default value,例如0或1等。CU收到后,需要解开CellGroupConfig,在里面写入或修改CellGroupId。应理解,CU可以通过实现来进行cellgroupID的增加与修改。
还应理解,本申请实施例的传输方法700可以是一个单独的实施例,也可以与其他实施例进行结合,例如,该传输方法700可以与传输方法200、传输方法300或者传输方法500进行结合。
本申请实施例的传输方法,在支持多链接的数据传输的场景下,有助于解决在有多个辅DU的情况下小区组标识如何分配的问题。
以上结合图1至图17,详细得描述了根据本申请实施例的传输方法,下面结合图18至图28,详细描述根据本申请实施例的网络设备。
图18示出了根据本申请实施例的网络设备800的示意性框图,如图18所示,该网络设备800包括:
处理模块810,用于生成第三指示信息;
该处理模块810用于控制收发模块820通过第四接口发送第三指示信息,该第三指示信息用于触发第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口;
该收发模块820还用于接收来自于该第二网络节点的第十一消息,该第十一消息包括该第五接口的下行隧道终点和/或该第六接口的下行隧道终点。
可选地,该网络设备800包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
图19示出了根据本申请实施例的网络设备900的示意性框图,如图19所示,该网络设备900包括:
处理模块910,用于控制收发模块920通过第四接口接收来自于第一网络节点的第三指示信息,该第三指示信息用于指示触发第二网络节点分配第五接口的下行隧道终点和/或第六接口的下行隧道终点,该第五接口为该第二网络节点和第三网络节点的接口,该第六接口为该第二网络节点和核心网节点的接口,该第四接口,该第五接口和该第六接口为不同的接口;
该处理模块910还用于控制收发模块920发送第十一消息,该第十一消息包括该第五接口的下行隧道终点和/或第六接口的下行隧道终点。
可选地,该第一网络节点包括无线资源控制协议层、业务数据适配层功能和分组数据汇聚协议层功能中的至少一种;和/或
该网络设备900包括分组数据汇聚协议层、无线链路控制协议层、媒体接入控制层和 物理层功能中的至少一种。
图20示出了根据本申请实施例的网络设备1000的示意性框图,如图20所示,该网络设备1000包括:
处理模块1010,用于控制收发模块1020接收来自于用户面节点的第一消息,该第一消息包括第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;
处理模块1010还用于控制收发模块1020发送第二消息,该第二消息包括该第一接口的上行隧道终点;
处理模块1010还用于控制收发模块1020发送第三消息,该第三消息包括该第二接口的上行隧道终点和该第三接口的下行隧道终点。
可选地,该处理模块1010还用于控制收发模块1020发送第一指示信息,其中,
该第一指示信息用于表示该控制面节点请求的承载类型为辅小区分裂承载;或者,
该第一指示信息用于触发该用户面节点分配该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;或者,
该第一指示信息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种;或者,
该第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者,需要该用户面节点具有主小区资源配置,或者,需要该用户面节点具有辅小区资源配置中的至少一种。
可选地,其特征在于,处理模块1010还用于控制收发模块1020接收来自于该第二网络节点的第四消息,该第四消息包括该第一接口的下行隧道终点;
处理模块1010还用于控制收发模块1020发送第五消息,该第五消息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种。
可选地,该用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
图21示出了根据本申请实施例的网络设备1100的示意性框图,如图21所示,该网络设备1100包括:
处理模块1110确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,该第一接口为该用户面节点与第二网络节点的接口,该第二接口为该用户面节点与第三网络节点的接口,该第三接口为该用户面节点与核心网节点的接口,该第一接口,该第二接口和该第三接口为不同的接口;
处理模块1110还用于控制收发模块1120发送第一消息,该第一消息包括该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点。
可选地,处理模块1110还用于控制收发模块1120接收来自于控制面节点的第一指示 信息,其中,
该第一指示信息用于表示该控制面节点请求的承载类型为辅小区分裂承载;或者,
该第一指示信息用于指示该用户面节点分配该第一接口的上行隧道终点、该第二接口的上行隧道终点和该第三接口的下行隧道终点;或者,
该第一指示信息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种;或者,
该第一指示信息用于表示需要该用户面节点具有分组数据汇聚协议层功能,或者,需要该用户面节点具有主小区资源配置,或者,需要该用户面节点具有辅小区资源配置中的至少一种。
可选地,处理模块1110还用于控制收发模块1120接收来自于该控制面节点的第五消息,该第五消息包括该第一接口的下行隧道终点、该第二接口的下行隧道终点和该第三接口的上行隧道终点中的至少一种。
可选地,该网络设备1100包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
图22示出了根据本申请实施例的网络设备1200的示意性框图,如图22所示,该网络设备1200包括:
处理模块1210,用于控制收发模块1220接收来自于控制面节点的第三消息,该第三消息包括第二接口的上行隧道终点和第三接口的下行隧道终点,该第二接口为用户面节点和第三网络节点的接口,该第三接口为用户面节点和核心网节点的接口,该第二接口和该第三接口为不同的接口;其中,
该用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
可选地,处理模块1210还用于控制收发模块1220向该控制面节点发送第六消息,该第六消息包括该第二接口的下行隧道终点和该第三接口的上行隧道终点。
图23示出了根据本申请实施例的网络设备1300的示意性框图,如图23所示,该网络设备1300包括:
处理模块1310,用于控制收发模块1320接收来自于第二网络节点的第七消息,该第七消息包括第二网络节点传输的数据流量信息;
处理模块1310还用于控制收发模块1320发送第八消息,该第八消息包括该数据流量信息;
其中,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点的协议栈架构为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地,处理模块1310还用于控制收发模块1320发送第二指示信息,该第二指示信息用于指示该第二网络节点上报该第二网络节点传输的数据流量信息。
可选地,该第二网络节点传输的数据流量信息包括该第二网络节点传输的上行数据流 量、该第二网络节点传输的下行数据流量、统计该第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
图24示出了根据本申请实施例的网络设备1400的示意性框图,如图24所示,该网络设备1400包括:
处理模块1410,用于生成第七消息;
处理模块1410还用于控制收发模块1420发送第七消息,该第七消息包括第二网络节点传输的数据流量信息;
其中,该第二网络节点的协议栈架构为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可选地,处理模块1410还用于控制收发模块1420接收第一网络节点发送第二指示信息,该第二指示信息用于指示该第二网络节点上报该第二网络节点传输的数据流量信息;
其中,该第一网络节点的协议栈架构为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层中的至少一种。
可选地,该第二网络节点传输的数据流量信息包括该第二网络节点传输的上行数据流量、该第二网络节点传输的下行数据流量、统计该第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
图25示出了根据本申请实施例的网络设备1500的示意性框图,如图25所示,该网络设备1500包括:
处理模块1510,用于生成第九消息;
处理模块1510还用于控制收发模块1520发送该第九消息,该第九消息包括第二网络节点的功率配置参数,该功率配置参数为终端设备在主小区组所能使用的最大发射功率;
其中,该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
图26示出了根据本申请实施例的网络设备1600的示意性框图,如图26所示,该网络设备1600包括:
处理模块1610,用于生成第十消息;
处理模块1610还用于控制收发模块1620发送该十一消息,该第十消息包括该第二网络节点的功率配置参数,该功率配置参数为终端设备在辅小区组所能使用的最大发射功率;其中,
该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
图27示出了根据本申请实施例的网络设备1700的示意性框图,如图27所示,该网络设备1700包括:
处理模块1710,用于生成第十二消息;
处理模块1710还用于控制收发模块1720发送第十二消息,该第十二消息包括该第二 网络节点的小区组标识,其中,
该第一网络节点为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
该第二网络节点为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
可以理解,前述各实施例中对操作/各种可选设计进行了顺序编号,但可理解的是,该顺序编号仅为了便于行文,并不意味着必须按照顺序编号来依次执行操作。
可以理解的是,对于前述实施例中所涉及的第一网络节点、第二网络节点、第三网络节点、用户面节点或者控制面节点,或者,前述实施例中涉及的CU(例如,S-eNB-CU、S-gNB-CU、M-eNB-CU或者M-gNB-CU)、DU(例如,S-eNB-DU、S-gNB-DU、M-eNB-DU或者M-gNB-DU)、MN(例如,M-eNB或者M-gNB)、CP(例如,SN-CP、S-eNB-CP或者S-gNB-CP)或者UP(例如,SN-UP、S-eNB-UP或者S-gNB-UP)可以通过具有处理器和通信接口的硬件平台执行程序指令来分别实现其在本申请前述实施例中任一设计中涉及的功能,基于此,如图28所示,本申请实施例提供了一种通信设备1800的示意性框图,所述通信设备1800包括:
至少一个处理器1801,可选包括通信接口1802和存储器1803,该通信接口用于支持该通信设备1800和其他设备进行通信交互,该存储器1803具有程序指令;至少一个处理器1801运行所述程序指令使得本申请前述实施例任一设计中在如下任一设备上操作的功能得以实现:第一网络节点、第二网络节点、第三网络节点、用户面节点或者控制面节点,或者,前述实施例中涉及的CU(例如,S-eNB-CU、S-gNB-CU、M-eNB-CU或者M-gNB-CU)、DU(例如,S-eNB-DU、S-gNB-DU、M-eNB-DU或者M-gNB-DU)、MN(例如,M-eNB或者M-gNB)、CP(例如,SN-CP、S-eNB-CP或者S-gNB-CP)或者UP(例如,SN-UP、S-eNB-UP或者S-gNB-UP)。一种可选设计中,存储器1803可用以存储实现上述设备功能所必须的程序指令或者程序执行过程中所产生的过程数据。可选的,该通信设备1800还可以包含内部的互联线路,以实现该至少一个处理器1801,通信接口1802以及存储器1803之间的通信交互。该至少一个处理器1801可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。例如,对于实施例中涉及的分布式单元DU中PHY功能的全部或者部分的处理,或者涉及的F1口或者E1口上的全部或者部分的协议通信功能,可以在该至少一个处理器中设置专用电路/芯片来实现,可选的,也可以通过该至少一个处理器1801中设置的通用处理器执行具有PHY功能,F1口或者E1口通信功能相关的程序指令来实现;又例如,对于本申请实施例涉及设备中的MAC层,RLC层,PDCP层,SDAP层以及RRC层的相关功能的全部或者部分处理,可选的,该至少一个处理器1801可以包含通信处理芯片,通过执行MAC层,RLC层,PDCP层,SDAP层以及RRC层的相关功能的程序指令来实现。可以理解的是,本申请实施例描述的各种设计涉及的的方法,流程,操作或者步骤,能够以一一对应的方式,通过计算机软件,电子硬件,或者计算机软件和电子硬件的结合来一一对应实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件,比如,考虑通用性好成本低软硬件解耦等方面,可以采纳执行程序指令的方式来实现,又比如,考虑系统性能和可靠性等方面,可以采纳使用专用电路来实现。普通技术人员可以对每个特定的应用来使用不同 方法来实现所描述的功能,此处不做限定。
该通信接口1802,也可以称作收发器,通常具有为两个通信对端之间执行进行信息交互的功能,对于通信对端之间执行的是有线形式的信息交互的情况,通信接口可以设计成接口电路,或者包含该接口电路的硬件模块,以支持通信对端之间进行的有线形式的通信交互,比如,本申请中涉及的DU和CU之间的F1口,CP和UP之间的E1口的通信功能,可以采纳这种形式的接口设计;对于通信对端之间执行的是无线形式的信息交互的情况,通信接口可以是具有射频收发功能的接口电路,或者是包含该具有射频收发功能的接口电路的硬件系统,比如在DU和UE之间进行无线通信时,那么DU和UE的通信接口可以采纳这种设计。
本申请实施例还提供了一种芯片系统,可应用于前述通信设备中,该芯片系统包括:至少一个处理器、至少一个存储器和接口电路,所述接口电路负责所述芯片系统与外界的信息交互,所述至少一个存储器、所述接口电路和所述至少一个处理器可通过内部线路互联,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行,以进行上述各个方面的所述的方法中在所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点的操作。
本申请实施例还提供了一种通信系统,包括:网络设备,和/或,终端设备;其中,所述网络设备为上述各个方面所述的网络设备。
本申请实施例还提供了一种计算机程序产品,应用于网络设备中,所述计算机程序产品包括一系列指令,当所述指令被运行时,以进行上述各个方面的所述的方法中所述第一网络节点,所述第二网络节点,所述第三网络节点,所述控制面节点或所述用户面节点的操作。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态 随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,说明书中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中出现的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”本身并不对其修饰的对象的实际顺序或功能进行限定。本申请中出现的“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端设备向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端设备传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
本申请中出现的类似于“包括如下中至少一种:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当该表达为“项目包括如下中至少一种:A,B,……,以及X”时,即该表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋 名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本申请实施例中CU和DU的架构不限于5G NR gNB,还可以应用在LTE基站划分为CU和DU的场景;CU还可以进一步划分为CP和UP两部分。可选的,当为LTE基站时,所述协议层不包含SDAP层。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例描述的网络架构以及业务场景是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种传输方法,其特征在于,包括:
    控制面节点接收来自于用户面节点的第一消息,所述第一消息包括第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,所述第一接口为所述用户面节点与第二网络节点的接口,所述第二接口为所述用户面节点与第三网络节点的接口,所述第三接口为所述用户面节点与核心网节点的接口;
    所述控制面节点向所述第二网络节点发送第二消息,所述第二消息包括所述第一接口的上行隧道终点;
    所述控制面节点向所述第三网络节点发送第三消息,所述第三消息包括所述第二接口的上行隧道终点和所述第三接口的下行隧道终点。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述控制面节点向所述用户面节点发送第一指示信息,其中,
    所述第一指示信息用于表示所述控制面节点请求的承载类型为辅小区分裂承载;或者,
    所述第一指示信息用于触发所述用户面节点分配所述第一接口的上行隧道终点、所述第二接口的上行隧道终点和所述第三接口的下行隧道终点;或者,
    所述第一指示信息包括所述第一接口的下行隧道终点、所述第二接口的下行隧道终点和所述第三接口的上行隧道终点中的至少一种;或者,
    所述第一指示信息用于表示下面中的至少一种:需要所述用户面节点具有分组数据汇聚协议层功能,需要所述用户面节点具有主小区资源配置,和需要所述用户面节点具有辅小区资源配置中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述控制面节点接收来自于所述第二网络节点的第四消息,所述第四消息包括所述第一接口的下行隧道终点;
    所述控制面节点向所述用户面节点发送第五消息,所述第五消息包括所述第一接口的下行隧道终点、所述第二接口的下行隧道终点和所述第三接口的上行隧道终点中的至少一种。
  4. 根据权利要求1至3中任一所述的方法,其特征在于,所述方法还包括:
    所述控制面节点向所述用户面节点发送数据转发指示,所述数据转发指示用于指示所述用户面节点为数据转发分配上行数据转发地址和下行数据转发地址。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述控制面节点接收来自于所述用户面节点的所述上行数据转发地址和所述下行数据转发地址。
  6. 根据权利要求1至3中任一所述的方法,其特征在于,所述方法还包括:
    所述控制面节点为数据转发分配上行数据转发地址和下行数据转发地址,并将所述上行数据转发地址和所述下行数据转发地址发给所述用户面节点。
  7. 根据权利要求4至6中任一所述的方法,其特征在于,所述上行数据转发地址和 所述下行数据转发地址是针对特定承载,或者,所述上行数据转发地址和所述下行数据转发地址是针对特定Qos流。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  9. 一种传输方法,其特征在于,包括:
    用户面节点确定第一接口的上行隧道终点、第二接口的上行隧道终点和第三接口的下行隧道终点,所述第一接口为所述用户面节点与第二网络节点的接口,所述第二接口为所述用户面节点与第三网络节点的接口,所述第三接口为所述用户面节点与核心网节点的接口;
    所述用户面节点向控制面节点发送第一消息,所述第一消息包括所述第一接口的上行隧道终点、所述第二接口的上行隧道终点和所述第三接口的下行隧道终点。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述用户面节点接收来自于所述控制面节点的第一指示信息,其中,
    所述第一指示信息用于表示所述控制面节点请求的承载类型为辅小区分裂承载;或者,
    所述第一指示信息用于触发所述用户面节点分配所述第一接口的上行隧道终点、所述第二接口的上行隧道终点和所述第三接口的下行隧道终点;或者,
    所述第一指示信息包括所述第一接口的下行隧道终点、所述第二接口的下行隧道终点和所述第三接口的上行隧道终点中的至少一种;或者,
    所述第一指示信息用于表示下面中的至少一种:需要所述用户面节点具有分组数据汇聚协议层功能,或者,需要所述用户面节点具有主小区资源配置,和需要所述用户面节点具有辅小区资源配置中的至少一种。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述用户面节点接收来自于所述控制面节点的第五消息,所述第五消息包括所述第一接口的下行隧道终点、所述第二接口的下行隧道终点和所述第三接口的上行隧道终点中的至少一种。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面节点接收来自于所述控制面节点的数据转发指示,所述数据转发指示用于指示所述用户面节点为数据转发分配上行数据转发地址和下行数据转发地址。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述用户面节点向所述控制面节点发送所述上行数据转发地址和所述下行数据转发地址。
  14. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面节点接收来自于所述控制面节点的上行数据转发地址和下行数据转发地址。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述上行数据转发地址和所述下行数据转发地址是针对特定承载,或者,所述上行数据转发地址和所述下行数 据转发地址是针对特定Qos流。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述用户面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点包括无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  17. 一种传输方法,其特征在于,包括:
    第三网络节点接收来自于控制面节点的第三消息,所述第三消息包括第二接口的上行隧道终点和第三接口的下行隧道终点,所述第二接口为用户面节点和第三网络节点的接口,所述第三接口为用户面节点和核心网节点的接口;其中,
    所述控制面节点包括无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第三网络节点向所述控制面节点发送第六消息,所述第六消息包括所述第二接口的下行隧道终点和所述第三接口的上行隧道终点。
  19. 一种传输方法,其特征在于,包括:
    第一网络节点接收来自于第二网络节点的第七消息,所述第七消息包括第二网络节点传输的数据流量信息;
    所述第一网络节点向第三网络节点发送第八消息,所述第八消息包括所述数据流量信息;
    其中,所述第一网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点向所述第二网络节点发送第二指示信息,所述第二指示信息用于触发所述第二网络节点上报所述第二网络节点传输的数据流量信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第二网络节点传输的数据流量信息包括所述第二网络节点传输的上行数据流量、所述第二网络节点传输的下行数据流量、统计所述第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
  22. 一种传输方法,其特征在于,包括:
    第二网络节点向第一网络节点发送第七消息,所述第七消息包括第二网络节点传输的数据流量信息;
    其中,所述第一网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第二网络节点接收第一网络节点发送第二指示信息,所述第二指示信息用于触发所述第二网络节点上报所述第二网络节点传输的数据流量信息;
    其中,所述第一网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第二网络节点传输的数据流量信息包括所述第二网络节点传输的上行数据流量、所述第二网络节点传输的下行数据流量、统计所述第二网络节点传输的数据流量的统计开始和结束时间中的至少一种。
  25. 一种传输方法,其特征在于,包括:
    第一网络节点向第二网络节点发送第九消息,所述第九消息包括第一功率配置参数,所述第一功率配置参数为终端设备在主小区组所能使用的最大发射功率;
    其中,所述第一网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述第一网络节点接收第十消息,所述第十消息包括第二功率配置参数,所述第二功率配置参数为终端设备在主小区组所能使用的最大发射功率,或者,所述第二功率参数为所述终端设备在辅小区组所能使用的最大发射功率。
  27. 一种传输方法,其特征在于,包括:
    第一网络节点向第二网络节点发送功率更新信息,所述功率更新信息包括所述第一网络节点更新后的第三功率配置参数,所述第三功率配置参数为终端设备在辅小区组所能使用的最大发射功率;
    其中,所述第一网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种。
  28. 一种传输方法,其特征在于,包括:
    第一网络节点为第二网络节点分配所述第二网络节点的小区组标识;
    所述第一网络节点向所述第二网络节点发送第十一消息,所述第十一消息包括所述第二网络节点的小区组标识,其中,
    所述第一网络节点具有的协议层功能为无线资源控制协议层、业务数据适配层和分组数据汇聚协议层功能中的至少一种;和/或
    所述第二网络节点具有的协议层功能为无线链路控制协议层、媒体接入控制层和物理层功能中的至少一种。
  29. 一种通信设备,其特征在于,所述通信设备包括:至少一个处理器和存储器,所述存储器具有程序指令,所述处理器运行所述程序指令使得所述通信设备实现如权利要求1-28中任一所述的方法在如下任一设备上的功能:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述用户面节点和所述控制面节点。
  30. 一种通信设备,其特征在于,所述通信设备包括执行如权利要求1-28中任一所 述方法中的任一操作的模块,所述通信设备为如下任一:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述用户面节点和所述控制面节点。
  31. 一种通信设备,其特征在于,所述通信设备用于执行如权利要求1-28中任一所述的方法在如下任一设备上的功能:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述用户面节点和所述控制面节点。
  32. 一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被直接或者间接执行时,使得如权利要求1-28中任一所述的方法在如下任一设备上的功能得以实现:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述用户面节点和所述控制面节点。
  33. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求1-28中任一所述的方法在如下任一设备上的功能得以实现:所述第一网络节点,所述第二网络节点,所述第三网络节点,所述用户面节点和所述控制面节点。
  34. 一种通信系统,其特征在于,所述通信系统包括如下中一种或多种:
    如权利要求29-31中任一所述的通信设备;
    如权利要求32所述的计算机程序存储介质;或者,
    如权利要求33所述的芯片系统。
PCT/CN2019/075027 2018-02-14 2019-02-14 一种传输方法和网络设备 WO2019158100A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207026276A KR102463964B1 (ko) 2018-02-14 2019-02-14 전송 방법 및 네트워크 장치
JP2020543387A JP7081891B2 (ja) 2018-02-14 2019-02-14 伝送方法、通信デバイス、コンピュータプログラム、チップシステムおよび通信システム
EP19753903.4A EP3745646A4 (en) 2018-02-14 2019-02-14 TRANSMISSION METHOD AND NETWORK DEVICE
BR112020016532-8A BR112020016532A2 (pt) 2018-02-14 2019-02-14 Método de transmissão e dispositivo de rede
US16/994,003 US20200374689A1 (en) 2018-02-14 2020-08-14 Transmission Method And Network Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810152183.7A CN110166273B (zh) 2018-02-14 2018-02-14 一种传输方法和网络设备
CN201810152183.7 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/994,003 Continuation US20200374689A1 (en) 2018-02-14 2020-08-14 Transmission Method And Network Device

Publications (1)

Publication Number Publication Date
WO2019158100A1 true WO2019158100A1 (zh) 2019-08-22

Family

ID=67618845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075027 WO2019158100A1 (zh) 2018-02-14 2019-02-14 一种传输方法和网络设备

Country Status (7)

Country Link
US (1) US20200374689A1 (zh)
EP (1) EP3745646A4 (zh)
JP (1) JP7081891B2 (zh)
KR (1) KR102463964B1 (zh)
CN (1) CN110166273B (zh)
BR (1) BR112020016532A2 (zh)
WO (1) WO2019158100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954737A (zh) * 2019-11-26 2021-06-11 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2750155C1 (ru) * 2018-04-04 2021-06-22 Зтэ Корпорейшн Способ и системы обмена сообщениями в сети беспроводной связи
CN112534955A (zh) * 2018-08-06 2021-03-19 瑞典爱立信有限公司 用于多rat双连接(mr-dc)和nr-nr双连接(nr-dc)中的分割承载的隧道建立
CN114631354A (zh) * 2019-10-30 2022-06-14 中兴通讯股份有限公司 减少切换场景中的服务中断
US11659470B2 (en) * 2019-10-30 2023-05-23 New York University Fast inter-base station ring (FIBR): new millimeter wave cellular network architectures and processes
EP4064617A4 (en) * 2019-12-25 2022-12-07 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
EP4090066A4 (en) * 2020-02-03 2023-01-04 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN111245702B (zh) * 2020-02-05 2021-05-11 联想(北京)有限公司 基于5gs的数据传输方法及装置、转发设备和upf通信设备
CN113747515B (zh) * 2020-05-27 2023-03-21 华为技术有限公司 一种通信方法及装置
CN113973361A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 功率分配、获取方法、装置及节点设备
CN115134047A (zh) * 2021-03-29 2022-09-30 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
US11902345B2 (en) * 2021-08-11 2024-02-13 Tencent America LLC Method and apparatus for contribution reporting of uplink streaming in 5G networks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162730A (zh) * 2016-07-12 2016-11-23 上海华为技术有限公司 一种通信的方法、设备及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104782180B (zh) * 2013-08-01 2019-05-28 华为技术有限公司 接入控制方法、网络设备、用户设备和系统
WO2015100590A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 一种数据传输方法和用户设备以及基站
KR20150088746A (ko) * 2014-01-23 2015-08-03 (주)휴맥스 홀딩스 Lte 이중 연결에서의 베어러 재조립 시스템
CN106912117B (zh) * 2015-12-22 2019-08-16 电信科学技术研究院 一种选择用户面节点的方法及控制面节点
WO2018009340A1 (en) * 2016-07-05 2018-01-11 Intel Corporation Systems, methods and devices for control-user plane separation for 5g radio access networks
US10849022B2 (en) * 2017-03-17 2020-11-24 Ofinno, Llc Cell selection of inactive state wireless device
CN107135502B (zh) * 2017-05-04 2019-08-16 电信科学技术研究院 一种系统信息的发送方法及装置
KR102521308B1 (ko) * 2017-09-28 2023-04-13 혼다 기켄 고교 가부시키가이샤 패킷 복제 활성화 시그널링
EP3738393B1 (en) * 2018-01-09 2021-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Pdcp duplication configuration over e1

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162730A (zh) * 2016-07-12 2016-11-23 上海华为技术有限公司 一种通信的方法、设备及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "UE Context Setup over the Fl", 3GPP TSG RAN WG3 MEETING #98 TDOC R3-174883, 3 December 2017 (2017-12-03), XP051364080 *
SAMSUNG ET AL.: "Discussions on CU -Initiated UE Context Modification Procedure over F1", 3GPP TSG-RAN WG3 MEETING #97BIS R3-174616, 17 November 2017 (2017-11-17), XP051373197 *
See also references of EP3745646A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954737A (zh) * 2019-11-26 2021-06-11 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法
EP3829215A3 (en) * 2019-11-26 2021-07-21 Netsia, Inc. Apparatus and method for qos aware gtp-u transport in mobile networks
US11184843B2 (en) 2019-11-26 2021-11-23 Netsia, Inc. Apparatus and method for QoS aware GTP-U transport in mobile networks
US11812376B2 (en) 2019-11-26 2023-11-07 Netsia, Inc. Apparatus and method for QoS aware GTP-U transport in mobile networks
CN112954737B (zh) * 2019-11-26 2024-02-23 内西亚公司 移动网络中用于QoS感知的GTP-U传输的装置和方法

Also Published As

Publication number Publication date
KR20200119314A (ko) 2020-10-19
JP7081891B2 (ja) 2022-06-07
EP3745646A4 (en) 2021-07-21
BR112020016532A2 (pt) 2020-12-15
KR102463964B1 (ko) 2022-11-04
CN110166273A (zh) 2019-08-23
EP3745646A1 (en) 2020-12-02
US20200374689A1 (en) 2020-11-26
CN110166273B (zh) 2021-06-15
JP2021513810A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2019158100A1 (zh) 一种传输方法和网络设备
US11510131B2 (en) Configuration method, data transmission method, and apparatus
CN110999520B (zh) 无线接入网节点、核心网节点和无线终端及其方法
US11917450B2 (en) Data transmission method and data transmission apparatus
US9999028B2 (en) Data transmission method, base station, and user equipment
US20210266779A1 (en) PDCP Packet-Based DDDS Frame Transmission
US9451516B2 (en) Method for data transmission, offload point device, user equipment and system
US20200112885A1 (en) Handover control method and apparatus
US11457392B2 (en) Handover method and apparatus
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
US11357077B2 (en) Data forwarding method, apparatus, and system
US20160157155A1 (en) Selective Bearer Splitting in Cell System
JP6437132B2 (ja) 無線アクセスネットワークノード装置、無線通信デバイス、及び複数のデータユニットを処理する方法
US10952265B2 (en) Dynamic resource scaling and VM migration in NG-RAN
US20200178138A1 (en) Communication method, base station, terminal device, and system
WO2021062803A1 (zh) 一种数据包传输方法及装置
WO2020078220A1 (zh) 一种数据处理方法及装置、网络设备
US20190104439A1 (en) Data transmission method, apparatus, and system
CN113766584B (zh) 辅节点小区变更处理方法及装置
WO2016101468A1 (zh) 移动性管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753903

Country of ref document: EP

Effective date: 20200828

ENP Entry into the national phase

Ref document number: 20207026276

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016532

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200813