WO2019158036A1 - Method and apparatus for determining reference signal pattern - Google Patents

Method and apparatus for determining reference signal pattern Download PDF

Info

Publication number
WO2019158036A1
WO2019158036A1 PCT/CN2019/074815 CN2019074815W WO2019158036A1 WO 2019158036 A1 WO2019158036 A1 WO 2019158036A1 CN 2019074815 W CN2019074815 W CN 2019074815W WO 2019158036 A1 WO2019158036 A1 WO 2019158036A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
dmrs
port
offset
prb0
Prior art date
Application number
PCT/CN2019/074815
Other languages
French (fr)
Chinese (zh)
Inventor
石靖
夏树强
梁春丽
韩祥辉
任敏
林伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019158036A1 publication Critical patent/WO2019158036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a method and apparatus for determining a reference signal pattern.
  • the 4th Generation mobile communication technology (4G) Long-Term Evolution (LTE)/Long-Term Evolution Advance (LTE-Advance/LTE-A) and the fifth generation mobile The 5th Generation mobile communication technology (5G) faces increasing demands.
  • 4G and 5G systems are researching features that support enhanced mobile broadband, ultra-high reliability, ultra-low latency transmission, and massive connectivity.
  • DMRS Demodulation Reference Signal
  • the data part may rate match the DMRS of the legacy UE, but the DMRS used by the URLLC may collide with the DMRS of the legacy UE.
  • the DMRS used by the URLLC collides with the DMRS of the legacy UE, which results in a lower system spectrum efficiency.
  • the present disclosure provides a method and apparatus for determining a reference signal pattern to at least solve the problem of low spectral efficiency of a system caused by a collision between a DMRS used by a URLLC service and a DMRS of a legacy UE in the related art.
  • the present disclosure provides a method for determining a reference signal pattern, including: determining a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a preset pattern relative to a Long Term Evolution LTE/Enhanced Long Term Evolution (LTE-A) system The pattern after the DMRS offset.
  • LTE-A Long Term Evolution LTE/Enhanced Long Term Evolution
  • the present disclosure further provides a determining device for determining a reference signal pattern, comprising: a first determining module, configured to determine a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a preset pattern relative to Long Term Evolution (LTE) / Enhance the DMRS offset pattern of the Long Term Evolution LTE-A system.
  • a determining device for determining a reference signal pattern comprising: a first determining module, configured to determine a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a preset pattern relative to Long Term Evolution (LTE) / Enhance the DMRS offset pattern of the Long Term Evolution LTE-A system.
  • LTE Long Term Evolution
  • the present disclosure also provides a storage medium having stored therein a computer program, wherein the computer program is configured to perform a determination method of any one of the above-described reference signal patterns at runtime.
  • the present disclosure also provides an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to execute the computer program to perform a determination method of any one of the reference signal patterns described above.
  • FIG. 1 is a block diagram showing a hardware structure of a mobile terminal for determining a reference signal pattern according to an embodiment
  • FIG. 2 is a flow chart of a method for determining a reference signal pattern according to an embodiment
  • FIG. 3 is a schematic diagram of an LTE DMRS pattern according to an embodiment
  • FIG. 5 is a baseline DMRS pattern provided by an embodiment
  • 6 is a DMRS shift pattern provided by an embodiment
  • FIG. 8 is another DMRS shift pattern provided by an embodiment
  • FIG. 9 is another DMRS shift pattern provided by an embodiment
  • FIG. 10 is a structural block diagram of a determining apparatus for determining a reference signal according to an embodiment
  • FIG. 11 is a structural block diagram of another apparatus for determining a reference signal pattern according to an embodiment.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal for determining a reference signal pattern according to an embodiment.
  • mobile terminal 10 may include one or more (only one of which is shown in FIG. 1) processor 102 (processor 102 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device.
  • MCU Microcontroller Unit
  • a processing device such as a Field-Programmable Gate Array (FPGA) and a memory 104 provided to store data.
  • the mobile terminal may further include a transmission device 106 configured as a communication function and an input and output device 108.
  • FPGA Field-Programmable Gate Array
  • FIG. 1 is merely illustrative and does not limit the structure of the above mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 may be configured to store a computer program, such as a software program of a application software and a module, such as a computer program corresponding to the determination method of the reference signal pattern in the embodiment, the processor 102 running the computer program stored in the memory 104, Thereby performing at least one functional application and data processing, ie implementing the above method.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 can include memory remotely located relative to processor 102, which can be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 10.
  • transmission device 106 includes a network interface controller (NIC) that can be coupled to other network devices via a base station to communicate with the Internet.
  • NIC network interface controller
  • the transmission device 106 can be a Radio Frequency (RF) module, and the transmission device 106 is configured to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • FIG. 2 is a flow chart of a method for determining a reference signal pattern according to an embodiment. As shown in FIG. 2, the process includes the following steps.
  • Step S202 determining a demodulation reference signal DMRS offset pattern, where the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • LTE Enhanced Long Term Evolution
  • the preset pattern may be a DMRS pattern used in a sub-slot sTTI in a Short Transmission Time Interval (TTI), and there are two DMRS patterns, respectively Baseline DMRS pattern and sub-slot sTTI shift DMRS (sub-slot shift DMRS) pattern.
  • TTI Short Transmission Time Interval
  • Baseline DMRS pattern and sub-slot sTTI shift DMRS (sub-slot shift DMRS) pattern.
  • the execution body of the foregoing steps may be a base station, a terminal, or the like, but is not limited thereto.
  • a demodulation reference signal DMRS offset pattern is determined, wherein the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • LTE Enhanced Long Term Evolution
  • the above method further comprises the following steps.
  • Step S110 Determine, according to at least one of the following manners, the use of the DMRS offset pattern: Radio Resource Control (RRC) signaling configuration, Downlink Control Information (DCI) indication, and preset rules.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the DMRS resource of the legacy UE is prevented from being preempted by the URLLC, and the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS used by the URLLC and the DMRS of the legacy UE in the related art.
  • the problem of low spectral efficiency of the system caused by collisions has achieved the technical effect of improving the spectral efficiency of the system.
  • the frequency domain subcarrier position occupied by the DMRS offset pattern includes at least one of the following: port 7/8 is in two physical resource blocks.
  • k 2, 9 in PRB1; where k is a subcarrier number index in a PRB, and the value is 0-11.
  • the frequency domain subcarrier position occupied by the DMRS offset pattern includes at least one of the following:
  • the vshift is an offset value used when generating a cell-specific reference signal (CRS) pattern, and the value includes 0, 1, and 2.
  • determining the use of the DMRS offset pattern according to the RRC signaling configuration and/or the DCI indication comprises one of: using 1 bit in the RRC signaling configuration to indicate that the use is relative to the LTE DMRS.
  • determining, according to the preset rule, that the use of the DMRS offset pattern comprises at least one of: only sTTI#2 uses the DMRS offset pattern; sTTI#2 and sTTI#4 use the DMRS offset pattern; All sTTIs use the DMRS offset pattern; the configured or indicated sTTI uses the DMRS offset pattern; the sTTI without the cell-specific pilot CRS or the configured Channel State Information-Reference Signals (CSI) -RS)
  • the DMRS offset pattern is used by the non-conflicting sTTI; the DMRS offset pattern is used only by sTTI#5; the DMRS offset pattern is used by sTTI#1 and sTTI#5; the DMRS offset cannot be used by the sTTI of the baseline pattern pattern.
  • the DMRS offset pattern is only used for sTTI#2, or for sTTI#2 and sTTI#4, or all sTTIs use the DMRS shift pattern. Or sTTI for configuration or indication, or for sTTI without CRS or sTTI that does not conflict with configured CSI-RS.
  • the DMRS offset pattern is only used for sTTI#5, or for sTTI#1 and sTTI#5, Or all sTTIs use the DMRS shift pattern, or sTTI for configuration or indication, or sTTI for which a baseline pattern cannot be used.
  • the above background description of the present disclosure is only one case, but is not limited thereto.
  • the method provided in this embodiment can also be used in the case that the LTE system supports the collision of the service transmission of the enhanced mobile broadband (eMBB) terminal and the URLLC terminal, and the URLLC avoids preempting the DMRS of the eMBB. It can also be used in the case where the eMBB-enabled terminal collides with the service transmission of the URLLC terminal in the 5G New Radio (NR) system, and the URLLC avoids preempting the DMRS of the eMBB. It can also be used in the LTE system to preempt the short TTI service, for example, to preempt the 1-slot TTI. In this case, the URLLC avoids preempting the DMRS used by the 1-slot service.
  • eMBB enhanced mobile broadband
  • PRB physical resource block
  • the URLLC service is implemented in an LTE system, for example, based on a short TTI.
  • sub-slot sTTI there are two DMRS patterns based on DMRS transmission, which are called baseline DMRS pattern and sub-slot sTTI shift DMRS pattern. Therefore, how to describe the two DMRS patterns are described below through two embodiments. Avoid preempting the legacy UE's DMRS, that is, how to offset.
  • the base station scheduling terminal A repeatedly transmits downlink data in the TTI, and uses a Short Physical Downlink Shared Channel (sPDSCH) channel.
  • sPDSCH Short Physical Downlink Shared Channel
  • the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols included in the TTI is small, for example, not more than 7 OFDM symbols, but is not limited thereto.
  • OFDM Orthogonal Frequency Division Multiplexing
  • This embodiment is described in the short TTI structure in the LTE system, that is, the TTI is a short TTI (sort TTI, sTTI), but is not limited thereto.
  • the downlink (DL) short TTI frame structure is as shown in FIG.
  • the service of the terminal A is a URLLC service
  • the sPDSCH is configured to use a DMRS based (DMRS based) transmission mode.
  • the legacy UE B is already transmitting the Physical Downlink Shared Channel (PDSCH) service and occupies all or most of the frequency domain resources. In this case, there is not enough resources for transmitting the URLLC service of the terminal A. .
  • the base station schedules the URL LC service of the terminal A to use the sPDSCH to preempt the downlink resources of the legacy UE B being transmitted. In order to enable the legacy UE to obtain an accurate channel estimate and thus provide the possibility of correctly demodulating the data, it is necessary to avoid preempting the legacy UE's DMRS.
  • the TTI DMRS is located in the first two symbols of the sTTI in the time domain.
  • the premise that the baseline pattern can be used is that the sTTI has no CRS or does not conflict with the Channel State Information (CSI) configuration. In this case, only the LTE DMRS is offset.
  • CSI Channel State Information
  • the foregoing offsetting the LTE DMRS may be to offset the LTE DMRS port 7/8/9/10, or only to the LTE DMRS Port 7/8.
  • the foregoing offsetting the LTE DMRS may be to offset the LTE DMRS port 7/8/9/10, or only to the LTE DMRS Port 7/8.
  • LTE DMRS Port 7/8 is offset, it means that the resources occupied by the LTE DMRS Port 9/10 can be punctured.
  • the DMRS offset pattern is applicable to sTTI #2.
  • sTTI#2 there is no CRS, there is DMRS of LTE legacy UE, and there may be CSI-RS. Therefore, when the configured CSI-RS does not conflict with the baseline pattern, or when no CSI-RS is configured, the baseline pattern is used.
  • 4 transmit antennas (Transmit, Tx) are taken as an example (CSI configuration #0-9 is available), and CSI-RS configuration #0, 5 in sTTI#2 conflicts with the baseline pattern, and the remaining CSI configurations are configured. In sTTI#4/5, there is no conflict with sTTI#2 using the baseline pattern.
  • the possible DMRS shift pattern at this time is one of Case 1 (alt. 1), Case 2 (alt. 2), and Case 3 (alt. 3) as shown in FIG. 6.
  • Alt.2 The moved DMRS pattern is kept at equal intervals in the frequency domain. That is, for the same port, the subcarrier position occupied by the port in the frequency domain is 1 subcarrier occupied in every 6 subcarriers. For example, by moving the DMRS position on the basis of the mode 1, the DMRS interval after the movement is more uniform, and the subcarriers occupied by the same port are separated by 5 subcarriers.
  • the CSI-RS available configuration of Alt. 2 is more than the available configuration of the CSI-RS of Alt.
  • the DMRS shift pattern is only used for sTTI#2, or for sTTI#2 and sTTI#4, or all sTTIs use the DMRS shift pattern, or The sTTI configured or indicated, or used for sTTI without CRS or without conflict with the configured CSI-RS.
  • whether the terminal uses the DMRS shift pattern is configured by the base station through RRC signaling, or the DCI indication, or the DMRS shift pattern is used by default.
  • whether to use the DMRS shift pattern at this time may be configured or indicated according to whether the legacy UE uses the DMRS based transmission mode, for example, whether the RRC configuration may be used, or according to the current Whether the PDSCH of the legacy UE actually preempted in the subframe uses the DMRS to dynamically indicate whether the URLLC UE uses the DMRS shift pattern.
  • the Evolved NodeB dynamically indicates the DMRS usage of the sPDSCH.
  • DMRS shift pattern when the sPDSCH carrying the URLLC service uses the DMRS based transmission mode and preempts the PDSCH resource of the legacy UE at sTTI#2, and the legacy UE uses the DMRS based transmission mode, the Evolved NodeB (eNB) dynamically indicates the DMRS usage of the sPDSCH. DMRS shift pattern.
  • the method for determining the reference signal pattern in the embodiment may be implemented to prevent the LTE legacy UE resource from being preempted by the URLLC, and to avoid preempting the legacy UE's DMRS resource, and ensuring that the legacy UE can obtain an accurate channel estimation.
  • the simultaneously moved URLLC DMRS is used to provide channel estimation for the URLLC service. This ensures that the legacy UE obtains accurate channel estimation and thus provides the possibility of correctly demodulating the data while improving the performance of the URLLC, thereby improving the spectrum efficiency of the system.
  • the base station scheduling terminal A repeatedly transmits downlink data in the TTI, and uses the sPDSCH channel.
  • the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols, but is not limited thereto.
  • This embodiment is described in the short TTI structure in the LTE system, that is, the TTI is sTTI, but is not limited thereto.
  • the DL short TTI frame structure is as shown in the sub-slot case of FIG. 4, and includes 6 DL short TTIs in a 1 ms subframe.
  • the sPDSCH is configured to start from OFDM symbol #1 or #3, Pattern1 is used; when sPDSCH is When configured to start from OFDM symbol #2, use Pattern2.
  • the OFDM symbol number here starts from 0, that is, there are 14 OFDM symbols in the 1 ms subframe, and the sequence numbers are #0 to #13.
  • the service of the terminal A is a URLLC service
  • the sPDSCH is configured to use the DMRS based transmission mode.
  • the legacy UE B is already transmitting the PDSCH service and occupies all or most of the frequency domain resources. In this case, there is not enough resources for transmitting the URLLC service of the terminal A.
  • the base station schedules the URL LC service of the terminal A to use the sPDSCH to preempt the downlink resources of the legacy UE B being transmitted. In order to enable the legacy UE to obtain an accurate channel estimate and thus provide the possibility of correctly demodulating the data, it is necessary to avoid preempting the legacy UE's DMRS.
  • Sub-slot sTTI The DMRS is located in the first two symbols of the sTTI in the time domain.
  • the condition for using the sTTI shift DMRS pattern is that the sTTI cannot be used because of the existence of CRS or the configuration CSI-RS conflicts with the baseline pattern.
  • the sTTI shift DMRS pattern needs to be offset from the LTE DMRS.
  • the foregoing LTE DMRS is offset, and the LTE DMRS Port 7/8/9/10 may be offset, or only the LTE DMRS Port 7/8 may be offset.
  • the LTE DMRS Port 7/8 is offset, it means that the resources occupied by the LTE DMRS Port 9/10 can be punctured.
  • the DMRS offset pattern is applicable to sTTI #5.
  • sTTI#5 there is CRS, there is DMRS of LTE legacy UE, and there may be CSI-RS. Therefore, sTTI#5 cannot use the baseline pattern in the non-Multimedia Broadcast Multicast Service Single Frequency Network (non-MBSFN) subframe, and uses the sTTI shift DMRS pattern.
  • the location where the sTTI shift DMRS pattern conflicts with the LTE DMRS is as follows.
  • Vshift 0 sTTI shift
  • the offset pattern is at least one of the following:
  • the DMRS shift pattern after the LTE DMRS offset is used only for sTTI#5, or for sTTI#1 and sTTI#5, or all sTTIs use the same DMRS shift pattern, either for configuration or indication of sTTI, or for sTTI that cannot use baseline pattern.
  • whether the terminal uses the DMRS shift pattern is configured by the base station through RRC signaling, or the DCI indication, or the DMRS shift pattern is used by default. For example, if the UE transmitting the URLLC is using the DMRS based transmission mode, whether to use the DMRS shift pattern at this time may be configured or indicated according to whether the legacy UE uses the DMRS based transmission mode, for example, whether the RRC configuration may be used, or according to the current subframe. Whether the actually preempted legacy UE's PDSCH uses the DMRS to dynamically indicate whether the URLLC UE uses the DMRS shift pattern.
  • the eNB dynamically instructs the DMRS of the sPDSCH to use the DMRS shift pattern.
  • the method for determining the reference signal pattern in the embodiment may be implemented to prevent the legacy DMRS resource from being preempted by the URLLC, and to ensure that the legacy UE can obtain an accurate channel estimation, and the URLLC DMRS after the mobile station is moved.
  • Channel estimation for providing URLLC services so as to ensure the accuracy of the URL LC, the legacy UE can obtain accurate channel estimation to provide the possibility of correctly demodulating data, and improve the system spectrum efficiency.
  • the method according to the foregoing embodiment may be implemented by means of software plus a general hardware platform, or may be implemented by hardware.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium (such as Read-Only Memory (ROM) / Random Access Memory (Random Access Memory). , RAM, disk, CD-ROM, including a plurality of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the method described in any of the embodiments of the present disclosure.
  • ROM Read-Only Memory
  • Random Access Memory Random Access Memory
  • a determining device for determining a reference signal pattern is also provided in the embodiment, and the device is used to implement the above-described embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 10 is a structural block diagram of a device for determining a reference signal pattern according to an embodiment.
  • the device includes: a first determining module 102 configured to determine a DMRS offset pattern of a demodulation reference signal, where The DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE-A) system.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • the preset pattern may be a DMRS pattern used in a sub-slot sTTI in the LTE short TTI.
  • DMRS patterns There are two types of DMRS patterns, namely a baseline DMRS pattern and a sub-slot sTTI shift DMRS pattern.
  • the demodulation reference signal DMRS offset pattern is determined by the apparatus shown in FIG. 10, wherein the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • LTE Enhanced Long Term Evolution
  • the LTE legacy UE resource is preempted while the legacy network resource is preempted, and the legacy DMRS resource is prevented from being preempted, so that the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS and legacy used by the URLLC in the related art.
  • the problem of low spectral efficiency of the system caused by the collision of the DMRS of the UE achieves the technical effect of improving the spectrum efficiency of the system.
  • FIG. 11 is a structural block diagram of another apparatus for determining a reference signal pattern according to an embodiment.
  • the device includes, in addition to the module shown in FIG. 10, a second determining module 112, configured to determine the use of the DMRS offset pattern according to at least one of the following manners: radio resource control RRC signaling Configuration, downlink control information DCI indication, and preset rules.
  • the apparatus shown in FIG. 11 is configured to prevent the preemption of legacy DMRS resources while ensuring that the URLLC preempts the LTE legacy UE resources, and ensures that the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS used by the URLLC and the DMRS of the legacy UE in the related art.
  • the problem of low spectral efficiency of the system caused by collisions has achieved the technical effect of improving the spectral efficiency of the system.
  • the foregoing multiple modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing multiple modules are all located in the same processor; Modules are located in different processors in any combination.
  • the embodiment further provides a storage medium in which a computer program is stored, wherein the computer program is set to perform a determination method of the reference signal pattern in any of the above embodiments at runtime.
  • the storage medium may be configured to store a computer program for performing the following steps.
  • DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution, LTE/Enhanced Long Term Evolution (LTE) system.
  • the foregoing storage medium may include, but is not limited to, at least one medium that can store a computer program, such as a USB flash drive, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk.
  • a computer program such as a USB flash drive, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk.
  • the embodiment further provides an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to execute a computer program to perform the determination method of the reference signal pattern in any of the above embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • the above processor may be arranged to perform the following steps by a computer program.
  • DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution, LTE/Enhanced Long Term Evolution (LTE) system.
  • the at least one module or at least one of the steps described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the at least one module or at least one step may be implemented by program code executable by the computing device, such that the at least one module or at least one step may be stored in the storage device by the computing device or
  • the at least one module or the at least one step is separately fabricated into at least one integrated circuit module, or the at least one module or the plurality of modules or steps in at least one step are fabricated into a single integrated circuit module.
  • the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a method and apparatus for determining a reference signal pattern. The method comprises: determining a demodulation reference signal (DMRS) offset pattern, wherein the DMRS offset pattern is a pattern of a preset pattern with respect to DMRS offset of a long-term evolution (LTE)/long-term evolution advanced (LTE-A) system.

Description

参考信号图样的确定方法及装置Method and device for determining reference signal pattern
本公开要求在2018年02月13日提交中国专利局、申请号为201810150151.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。The present disclosure claims priority to Chinese Patent Application No. 20110115015, filed on Jan. 13, 2018, the entire disclosure of which is hereby incorporated by reference.
技术领域Technical field
本公开涉及通信技术领域,例如涉及一种参考信号图样的确定方法及装置。The present disclosure relates to the field of communication technologies, for example, to a method and apparatus for determining a reference signal pattern.
背景技术Background technique
第四代移动通信技术(the 4th Generation mobile communication technology,4G)长期演进(Long-Term Evolution,LTE)/增强长期演进(Long-Term Evolution Advance,LTE-Advance/LTE-A)和第五代移动通信技术(the 5th Generation mobile communication technology,5G)所面临的需求越来越多。4G和5G系统都在研究支持增强移动宽带、超高可靠性、超低时延传输和海量连接的特征。The 4th Generation mobile communication technology (4G) Long-Term Evolution (LTE)/Long-Term Evolution Advance (LTE-Advance/LTE-A) and the fifth generation mobile The 5th Generation mobile communication technology (5G) faces increasing demands. Both 4G and 5G systems are researching features that support enhanced mobile broadband, ultra-high reliability, ultra-low latency transmission, and massive connectivity.
为了支持超高可靠性和超低时延传输的特征,需要以短传输时间间隔传输低时延高可靠业务。由于LTE系统中资源有限,当一个子帧中资源的全部或大部分已经被老用户设备(legacy User Equipment,legacy UE)占用,此时在子帧中非首个短传输时间间隔(short Transmission Time Interval,sTTI)到达了低时延高可靠通信(Ultra Reliable&Low Latency Communicaiton,URLLC)业务的数据,为了保证该数据的低时延高可靠需求,一种方式为允许URLLC业务抢占legacy UE正在传输使用的资源,但是考虑到legacy UE的性能,需要避免抢占legacy UE的解调参考信号(Demodulation Reference Signal,DMRS)占用的资源,以使得legacy UE能够通过DMRS获得信道估计结果,从而提供解调数据正确的可能,若legacy UE的DMRS占用的资源被URLLC业务抢占,则legacy UE无法获得准确的信道估计进而无法正确解调数据,降低系统效率。In order to support the characteristics of ultra-high reliability and ultra-low latency transmission, it is required to transmit low-latency and high-reliability services at short transmission time intervals. Due to the limited resources in the LTE system, all or most of the resources in a sub-frame are occupied by the legacy user equipment (legacy UE). In this case, the short transmission time interval is not the first in the sub-frame. Interval, sTTI) arrives at the data of the Ultra Reliable & Low Latency Communicaiton (URLLC) service. In order to ensure the low latency and high reliability of the data, one way is to allow the URLLC service to preempt the legacy UE for transmission. Resources, but considering the performance of the legacy UE, it is necessary to avoid preempting the resources occupied by the legacy UE's Demodulation Reference Signal (DMRS), so that the legacy UE can obtain the channel estimation result through the DMRS, thereby providing the demodulated data correctly. Possibly, if the resources occupied by the DMRS of the legacy UE are preempted by the URLLC service, the legacy UE cannot obtain an accurate channel estimation and cannot correctly demodulate the data, thereby reducing system efficiency.
对于URLLC业务,数据部分可以对legacy UE的DMRS进行速率匹配,但是URLLC使用的DMRS可能与legacy UE的DMRS碰撞。URLLC使用的DMRS与legacy UE的DMRS发生碰撞,会导致系统频谱效率较低。For the URLLC service, the data part may rate match the DMRS of the legacy UE, but the DMRS used by the URLLC may collide with the DMRS of the legacy UE. The DMRS used by the URLLC collides with the DMRS of the legacy UE, which results in a lower system spectrum efficiency.
发明内容Summary of the invention
本公开提供了一种参考信号图样的确定方法及装置,以至少解决相关技术中URLLC业务使用的DMRS与legacy UE的DMRS发生碰撞所导致的系统频谱效率较低的问题。The present disclosure provides a method and apparatus for determining a reference signal pattern to at least solve the problem of low spectral efficiency of a system caused by a collision between a DMRS used by a URLLC service and a DMRS of a legacy UE in the related art.
本公开提供了一种参考信号图样的确定方法,包括:确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。The present disclosure provides a method for determining a reference signal pattern, including: determining a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a preset pattern relative to a Long Term Evolution LTE/Enhanced Long Term Evolution (LTE-A) system The pattern after the DMRS offset.
本公开还提供了一种参考信号图样的确定装置,包括:第一确定模块,设置为确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。The present disclosure further provides a determining device for determining a reference signal pattern, comprising: a first determining module, configured to determine a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a preset pattern relative to Long Term Evolution (LTE) / Enhance the DMRS offset pattern of the Long Term Evolution LTE-A system.
本公开还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任意一种参考信号图样的确定方法。The present disclosure also provides a storage medium having stored therein a computer program, wherein the computer program is configured to perform a determination method of any one of the above-described reference signal patterns at runtime.
本公开还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任意一种参考信号图样的确定方法。The present disclosure also provides an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to execute the computer program to perform a determination method of any one of the reference signal patterns described above.
附图说明DRAWINGS
图1是一实施例提供的一种参考信号图样的确定方法的移动终端的硬件结构框图;1 is a block diagram showing a hardware structure of a mobile terminal for determining a reference signal pattern according to an embodiment;
图2是一实施例提供的一种参考信号图样的确定方法流程图;2 is a flow chart of a method for determining a reference signal pattern according to an embodiment;
图3是一实施例提供的一种LTE DMRS pattern示意图;FIG. 3 is a schematic diagram of an LTE DMRS pattern according to an embodiment; FIG.
图4是一实施例提供的一种DL sub-slot sTTI图样;4 is a DL sub-slot sTTI pattern provided by an embodiment;
图5是一实施例提供的一种baseline DMRS图样;FIG. 5 is a baseline DMRS pattern provided by an embodiment;
图6是一实施例提供的一种DMRS shift图样;6 is a DMRS shift pattern provided by an embodiment;
图7是一实施例提供的一种sub-slot sTTI shift DMRS图样;7 is a sub-slot sTTI shift DMRS pattern provided by an embodiment;
图8是一实施例提供的另一种DMRS shift图样;FIG. 8 is another DMRS shift pattern provided by an embodiment; FIG.
图9是一实施例提供的另一种DMRS shift图样;FIG. 9 is another DMRS shift pattern provided by an embodiment; FIG.
图10是一实施例提供的一种参考信号图样的确定装置的结构框图;FIG. 10 is a structural block diagram of a determining apparatus for determining a reference signal according to an embodiment; FIG.
图11是一实施例提供的另一种参考信号图样的确定装置的结构框图。FIG. 11 is a structural block diagram of another apparatus for determining a reference signal pattern according to an embodiment.
具体实施方式Detailed ways
下文中将参考附图并结合实施例来说明本公开。The present disclosure will be hereinafter described with reference to the drawings in conjunction with the embodiments.
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。The terms "first", "second" and the like in the specification and claims of the present disclosure and the above-mentioned figures are used to distinguish similar objects, and are not necessarily used to describe a particular order or order.
实施例1Example 1
本实施例所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。本实施例以运行在移动终端上为例。图1是一实施例提供的一种参考信号图样的确定方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器(Microcontroller Unit,MCU)或可编程逻辑器件(Field-Programmable Gate Array,FPGA)等处理装置)和设置为存储数据的存储器104。在一实施例中,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。The method embodiment provided by this embodiment may be implemented in a mobile terminal, a computer terminal or the like. This embodiment takes an example of running on a mobile terminal. FIG. 1 is a block diagram showing the hardware structure of a mobile terminal for determining a reference signal pattern according to an embodiment. As shown in FIG. 1, mobile terminal 10 may include one or more (only one of which is shown in FIG. 1) processor 102 (processor 102 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device. A processing device such as a Field-Programmable Gate Array (FPGA) and a memory 104 provided to store data. In an embodiment, the mobile terminal may further include a transmission device 106 configured as a communication function and an input and output device 108. It will be understood by those skilled in the art that the structure shown in FIG. 1 is merely illustrative and does not limit the structure of the above mobile terminal. For example, the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本实施例中的参考信号图样的确定方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行至少一种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory 104 may be configured to store a computer program, such as a software program of a application software and a module, such as a computer program corresponding to the determination method of the reference signal pattern in the embodiment, the processor 102 running the computer program stored in the memory 104, Thereby performing at least one functional application and data processing, ie implementing the above method. Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory. In some examples, memory 104 can include memory remotely located relative to processor 102, which can be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
传输装置106设置为经由一个网络接收或者发送数据。上述的网络实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),传输装置106可通 过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,传输装置106设置为通过无线方式与互联网进行通讯。 Transmission device 106 is arranged to receive or transmit data via a network. The network instance described above may include a wireless network provided by a communication provider of the mobile terminal 10. In one example, transmission device 106 includes a network interface controller (NIC) that can be coupled to other network devices via a base station to communicate with the Internet. In one example, the transmission device 106 can be a Radio Frequency (RF) module, and the transmission device 106 is configured to communicate with the Internet wirelessly.
图2是一实施例提供的一种参考信号图样的确定方法流程图。如图2所示,该流程包括如下步骤。2 is a flow chart of a method for determining a reference signal pattern according to an embodiment. As shown in FIG. 2, the process includes the following steps.
步骤S202,确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。Step S202, determining a demodulation reference signal DMRS offset pattern, where the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system.
本实施例中,上述预设图样可以为LTE短(short)传输时间间隔(Transmission Time Interval,TTI)中微时隙(sub-slot)sTTI时使用的DMRS图样,有两种DMRS图样,分别为基准(baseline)DMRS图样和sub-slot sTTI偏移(shift)DMRS(sub-slot shift DMRS)图样。In this embodiment, the preset pattern may be a DMRS pattern used in a sub-slot sTTI in a Short Transmission Time Interval (TTI), and there are two DMRS patterns, respectively Baseline DMRS pattern and sub-slot sTTI shift DMRS (sub-slot shift DMRS) pattern.
在一实施例中,上述步骤的执行主体可以为基站、终端等,但不限于此。In an embodiment, the execution body of the foregoing steps may be a base station, a terminal, or the like, but is not limited thereto.
通过上述步骤S202,确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。也就是说,通过确定DMRS偏移图样实现在支持URLLC抢占LTE legacy UE资源的同时,避免抢占legacy UE的DMRS资源,保证legacy UE可以获得准确的信道估计,进而解决了相关技术中URLLC使用的DMRS与legacy UE的DMRS发生碰撞所导致的系统频谱效率较低的问题,达到了提高系统频谱效率的技术效果。Through the foregoing step S202, a demodulation reference signal DMRS offset pattern is determined, wherein the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system. In other words, by determining the DMRS offset pattern, the LMRS resource is preempted by the URLLC, and the DMRS resource of the legacy UE is prevented from being preempted, so that the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS used by the URLLC in the related art. The problem of lower spectral efficiency of the system caused by collision with the legacy UE's DMRS achieves the technical effect of improving the spectral efficiency of the system.
在一个实施方式中,上述方法还包括以下步骤。In one embodiment, the above method further comprises the following steps.
步骤S110,根据以下方式至少之一确定该DMRS偏移图样的使用:无线资源控制(Radio Resource Control,RRC)信令配置、下行控制信息(Downlink Control Information,DCI)指示以及预设规则。Step S110: Determine, according to at least one of the following manners, the use of the DMRS offset pattern: Radio Resource Control (RRC) signaling configuration, Downlink Control Information (DCI) indication, and preset rules.
通过上述步骤S110实现了在支持URLLC抢占LTE legacy UE资源的同时,避免抢占legacy UE的DMRS资源,保证legacy UE可以获得准确的信道估计,进而解决了相关技术中URLLC使用的DMRS与legacy UE的DMRS发生碰撞所导致的系统频谱效率较低的问题,达到了提高系统频谱效率的技术效果。The DMRS resource of the legacy UE is prevented from being preempted by the URLLC, and the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS used by the URLLC and the DMRS of the legacy UE in the related art. The problem of low spectral efficiency of the system caused by collisions has achieved the technical effect of improving the spectral efficiency of the system.
在一实施例中,在该预设图样为基准(baseline)图样的情况下,该DMRS偏移图样所占用的频域子载波位置包括以下至少之一:端口7/8在2个物理资源块PRB(例如PRB0、PRB1)中所占用的子载波位置分别为PRB0中的k=3、8,PRB1中的k=3、9;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=2、7,PRB1中的k=2、8;端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=3、9,PRB1中的k=3、9;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=2、8,PRB1中的k=2、8;端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=2、8,PRB1中的k=3、10;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=0、7,PRB1中的k=2、9;其中,该k为一个PRB中子载波编号索引,取值为0-11。In an embodiment, in the case that the preset pattern is a baseline pattern, the frequency domain subcarrier position occupied by the DMRS offset pattern includes at least one of the following: port 7/8 is in two physical resource blocks. The subcarrier positions occupied by the PRB (for example, PRB0, PRB1) are respectively k=3, 8 in PRB0, k=3, 9 in PRB1; the subcarrier positions occupied by port 9/10 in 2 PRBs are respectively k=2, 7 in PRB0, k=2, 8 in PRB1; the subcarrier positions occupied by port 7/8 in 2 PRBs are k=3, 9 in PRB0, respectively, k= in PRB1 3, 9; the subcarrier positions occupied by port 9/10 in 2 PRBs are k=2, 8 in PRB0, k=2, 8 in PRB1, and port 7/8 is occupied in 2 PRBs. The subcarrier positions are k=2, 8 in PRB0, and k=3, 10 in PRB1; the subcarrier positions occupied by port 9/10 in 2 PRBs are k=0, 7 in PRB0, respectively. k=2, 9 in PRB1; where k is a subcarrier number index in a PRB, and the value is 0-11.
在一实施例中,在该预设图样为微时隙偏移sub-slot shift DMRS图样的情况下,该DMRS偏移图样所占用的频域子载波位置包括以下至少之一:当偏移值vshift=0时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=4、8,PRB1中的k=4、8;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=2、7,PRB1的k=2、7;当偏移值vshift=1时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=3、9,PRB1中的k=3、9;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=2、8,PRB1中的k=2、8;当偏移值vshift=2时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=4、9,PRB1中的k=4、9;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=3、7,PRB1中的k=3、7;其中,该k为一个PRB中子载波编号索引,取值为0-11。In an embodiment, in a case where the preset pattern is a sub-slot shift DMRS pattern, the frequency domain subcarrier position occupied by the DMRS offset pattern includes at least one of the following: when the offset value When vshift=0, the subcarrier positions occupied by port 7/8 in 2 PRBs are k=4, 8 in PRB0, k=4, 8 in PRB1, and 9/10 in 2 PRBs. The occupied subcarrier positions are k=2, 7 in PRB0, and k=2, 7 in PRB1. When the offset value vshift=1, the subcarrier positions occupied by port 7/8 in 2 PRBs are respectively k=3, 9 in PRB0, k=3, 9 in PRB1; the subcarrier positions occupied by port 9/10 in 2 PRBs are k=2, 8 in PRB0, and k=2 in PRB1, respectively. 8; when the offset value vshift=2, the subcarrier positions occupied by port 7/8 in 2 PRBs are k=4, 9 in PRB0, k=4, 9 in PRB1; port 9/ 10 The subcarrier positions occupied by the two PRBs are respectively k=3, 7 in PRB0, and k=3, 7 in PRB1; wherein k is a subcarrier number index in a PRB, and the value is 0- 11.
在一实施例中,在上述预设图样为微时隙偏移sub-slot shift DMRS图样的情况下,上述DMRS偏移图样所占用的频域子载波位置包括以下至少之一:当偏移值vshift=0时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=4、8,PRB1中的k=4、10;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=2、7,PRB1的k=2、8;当偏移值vshift=1时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=2、8,PRB1中的k=3、9;端口9/10在2个PRB中所占用的子载波位置分别为PRB0中的k=0、5,PRB1中的k=2、8;当偏移值vshift=2时,端口7/8在2个PRB中所占用的子载波位置分别为PRB0中的k=3、9,PRB1中的k=3、10;端口9/10在2个PRB中所 占用的子载波位置分别为PRB0中的k=0、7,PRB1中的k=0、9;其中,上述k为一个PRB中子载波编号索引,取值为0-11。In an embodiment, in the case that the preset pattern is a micro-slot offset sub-slot shift DMRS pattern, the frequency domain subcarrier position occupied by the DMRS offset pattern includes at least one of the following: When vshift=0, the subcarrier positions occupied by port 7/8 in 2 PRBs are k=4, 8 in PRB0, k=4, 10 in PRB1, and 9/10 in 2 PRBs. The occupied subcarrier positions are k=2, 7 in PRB0, and k=2, 8 in PRB1. When the offset value vshift=1, the subcarrier positions occupied by port 7/8 in 2 PRBs are respectively k=2, 8 in PRB0, k=3, 9 in PRB1; the subcarrier positions occupied by port 9/10 in 2 PRBs are k=0, 5 in PRB0, and k=2 in PRB1, respectively. 8 when the offset value vshift=2, the subcarrier positions occupied by the port 7/8 in the two PRBs are k=3, 9 in PRB0, k=3, 10 in PRB1, and port 9/ 10 The subcarrier positions occupied by the two PRBs are respectively k=0, 7 in PRB0, and k=0, 9 in PRB1; wherein k is a subcarrier number index in a PRB, and the value is 0- 11.
在本实施例中上述vshift是生成小区专有导频(Cell-specific Reference Signals,CRS)图样时使用的偏移值,取值包括0、1、2。In the embodiment, the vshift is an offset value used when generating a cell-specific reference signal (CRS) pattern, and the value includes 0, 1, and 2.
在一个实施方式中,根据该RRC信令配置和/或DCI指示确定该DMRS偏移图样的使用包括以下之一:使用该RRC信令配置中的1个比特来指示使用相对于LTE DMRS进行偏移后的图样或使用不相对于LTE DMRS进行偏移的图样;使用该DCI指示中的1个比特来指示使用相对于LTE DMRS进行偏移后的图样或使用不相对于LTE DMRS进行偏移的图样。In an embodiment, determining the use of the DMRS offset pattern according to the RRC signaling configuration and/or the DCI indication comprises one of: using 1 bit in the RRC signaling configuration to indicate that the use is relative to the LTE DMRS. The shifted pattern or using a pattern that is not offset with respect to the LTE DMRS; using 1 bit in the DCI indication to indicate that the offset is used with respect to the LTE DMRS or the offset is not used with respect to the LTE DMRS pattern.
在一实施例中,根据该预设规则确定该DMRS偏移图样的使用包括以下至少之一:仅sTTI#2使用该DMRS偏移图样;sTTI#2和sTTI#4使用该DMRS偏移图样;所有sTTI均使用该DMRS偏移图样;配置或指示的sTTI使用该DMRS偏移图样;没有小区专有导频CRS的sTTI或与配置的信道状态信息测量导频(Channel State Information-Reference Signals,CSI-RS)不冲突的sTTI使用该DMRS偏移图样;仅sTTI#5使用该DMRS偏移图样;sTTI#1和sTTI#5使用该DMRS偏移图样;不能使用baseline图样的sTTI使用该DMRS偏移图样。In an embodiment, determining, according to the preset rule, that the use of the DMRS offset pattern comprises at least one of: only sTTI#2 uses the DMRS offset pattern; sTTI#2 and sTTI#4 use the DMRS offset pattern; All sTTIs use the DMRS offset pattern; the configured or indicated sTTI uses the DMRS offset pattern; the sTTI without the cell-specific pilot CRS or the configured Channel State Information-Reference Signals (CSI) -RS) The DMRS offset pattern is used by the non-conflicting sTTI; the DMRS offset pattern is used only by sTTI#5; the DMRS offset pattern is used by sTTI#1 and sTTI#5; the DMRS offset cannot be used by the sTTI of the baseline pattern pattern.
在一实施例中,上述预设图样为基准baseline图样的情况下,上述DMRS偏移图样仅用于sTTI#2,或者用于sTTI#2和sTTI#4,或者所有sTTI均使用该DMRS shift图样,或者用于配置或指示的sTTI,或者用于没有CRS的sTTI或与配置的CSI-RS不冲突的sTTI。In an embodiment, in the case that the preset pattern is a reference baseline pattern, the DMRS offset pattern is only used for sTTI#2, or for sTTI#2 and sTTI#4, or all sTTIs use the DMRS shift pattern. Or sTTI for configuration or indication, or for sTTI without CRS or sTTI that does not conflict with configured CSI-RS.
在一实施例中,上述预设图样为微时隙偏移sub-slot shift DMRS图样的情况下,所述DMRS偏移图样仅用于sTTI#5,或者用于sTTI#1和sTTI#5,或者所有sTTI均使用该DMRS shift图样,或者用于配置或指示的sTTI,或者用于不能使用baseline图样的sTTI。In an embodiment, where the preset pattern is a micro-slot offset sub-slot shift DMRS pattern, the DMRS offset pattern is only used for sTTI#5, or for sTTI#1 and sTTI#5, Or all sTTIs use the DMRS shift pattern, or sTTI for configuration or indication, or sTTI for which a baseline pattern cannot be used.
下面结合具体示例,对本实施例进行举例说明。The present embodiment will be exemplified below with reference to specific examples.
本公开中上述背景技术描述只是一种情况,但并不限于此。本实施例提供的方法也可以用于LTE系统高版本支持增强移动宽带(Enhance Mobile Broadband,eMBB)的终端与URLLC终端的业务传输碰撞的情况下,URLLC避免抢占eMBB的DMRS。也可以用于5G新无线(New Radio,NR)系统中 支持eMBB的终端与URLLC终端的业务传输碰撞的情况下,URLLC避免抢占eMBB的DMRS。也可以用于LTE系统中URLLC业务抢占short TTI业务,例如用于抢占1-slot TTI,此时URLLC避免抢占1-slot业务使用的DMRS。The above background description of the present disclosure is only one case, but is not limited thereto. The method provided in this embodiment can also be used in the case that the LTE system supports the collision of the service transmission of the enhanced mobile broadband (eMBB) terminal and the URLLC terminal, and the URLLC avoids preempting the DMRS of the eMBB. It can also be used in the case where the eMBB-enabled terminal collides with the service transmission of the URLLC terminal in the 5G New Radio (NR) system, and the URLLC avoids preempting the DMRS of the eMBB. It can also be used in the LTE system to preempt the short TTI service, for example, to preempt the 1-slot TTI. In this case, the URLLC avoids preempting the DMRS used by the 1-slot service.
在LTE系统中且常规循环前缀(Normal Cyclic Prefix,NCP)的情况下,以子帧为传输单位的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用的DMRS图样在频域上占用资源如图3所示,即在1个物理资源块(physical Resource Block,PRB)中12个子载波中占用子载波k=0,1,5,6,10,11,其中端口7/8占用k=1,6,11,端口9/10占用k=0,5,10。在时域上DMRS在每个时隙的最后两个符号。In the case of the LTE system and the normal Cyclic Prefix (NCP), the DMRS pattern used by the Physical Downlink Shared Channel (PDSCH) with the subframe as the transmission unit occupies resources in the frequency domain. 3, that is, occupying subcarriers k=0, 1, 5, 6, 10, 11 in 12 subcarriers in one physical resource block (PRB), wherein port 7/8 occupies k=1, 6, 11, port 9/10 occupies k=0, 5, 10. The last two symbols of the DMRS in each time slot on the time domain.
在LTE系统中实现URLLC业务,例如基于short TTI进行传输。对于sub-slot sTTI,基于DMRS传输时,有两种DMRS图样(pattern),分别称为baseline DMRS图样和sub-slot sTTI shift DMRS图样,因此下面通过两个实施例分别描述这两种DMRS pattern如何避免抢占legacy UE的DMRS,即如何进行偏移。The URLLC service is implemented in an LTE system, for example, based on a short TTI. For sub-slot sTTI, there are two DMRS patterns based on DMRS transmission, which are called baseline DMRS pattern and sub-slot sTTI shift DMRS pattern. Therefore, how to describe the two DMRS patterns are described below through two embodiments. Avoid preempting the legacy UE's DMRS, that is, how to offset.
示例性实施例1 Exemplary embodiment 1
基站调度终端A在TTI中重复传输下行数据,使用短物理下行共享信道(Short Physical Downlink Shared Channel,sPDSCH)信道。本实施例中,所述TTI包含的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数较少,例如不超过7个OFDM符号,但并不仅限于此。本实施例以LTE系统中short TTI结构进行说明,即所述TTI为短TTI(short TTI,sTTI),但并不限于此。下行(downlink,DL)short TTI帧结构如图4所示,在1毫秒(ms)子帧中包含6个DL短TTI(也称为sub-slot),当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM符号有14个,顺序编号为#0至#13。The base station scheduling terminal A repeatedly transmits downlink data in the TTI, and uses a Short Physical Downlink Shared Channel (sPDSCH) channel. In this embodiment, the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols included in the TTI is small, for example, not more than 7 OFDM symbols, but is not limited thereto. This embodiment is described in the short TTI structure in the LTE system, that is, the TTI is a short TTI (sort TTI, sTTI), but is not limited thereto. The downlink (DL) short TTI frame structure is as shown in FIG. 4, and includes 6 DL short TTIs (also referred to as sub-slots) in a 1 millisecond (ms) subframe, when the sPDSCH is configured as the OFDM symbol #1. When #3 is started, Pattern1 is used; when sPDSCH is configured to start from OFDM symbol #2, Pattern2 is used. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDM symbols in the 1 ms subframe, and the sequence numbers are #0 to #13.
此时,终端A的业务为URLLC业务,并且此时sPDSCH被配置为使用基于DMRS(DMRS based)传输模式。同时在该子帧中,legacy UE B已经正在传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH)业务并且占用了全部或大部分频域资源,此时没有足够资源用于传输终端A的URLLC业务。为了保证终端A的URLLC业务需求,基站调度终端A的URLLC业务使 用sPDSCH抢占正在传输的legacy UE B的下行资源。为了使得legacy UE能够获得准确的信道估计进而提供正确解调数据的可能性,需要避免抢占legacy UE的DMRS。At this time, the service of the terminal A is a URLLC service, and at this time, the sPDSCH is configured to use a DMRS based (DMRS based) transmission mode. At the same time, the legacy UE B is already transmitting the Physical Downlink Shared Channel (PDSCH) service and occupies all or most of the frequency domain resources. In this case, there is not enough resources for transmitting the URLLC service of the terminal A. . To ensure the URLLC service requirement of the terminal A, the base station schedules the URL LC service of the terminal A to use the sPDSCH to preempt the downlink resources of the legacy UE B being transmitted. In order to enable the legacy UE to obtain an accurate channel estimate and thus provide the possibility of correctly demodulating the data, it is necessary to avoid preempting the legacy UE's DMRS.
sub-slot TTI DMRS在时域上位于sTTI的前两个符号。当DMRS使用baseline图样时,如图5所示,Short TTI baseline DMRS,在2个PRB占用子载波k=0,1,7,8(PRB0);k=2,3,9,10(PRB1)。其中端口7/8占用k=1,8(PRB0)和k=3,10(PRB1);端口9/10占用k=0,7(PRB0)和k=2,9(PRB1)。Sub-slot The TTI DMRS is located in the first two symbols of the sTTI in the time domain. When the DMRS uses the baseline pattern, as shown in Figure 5, the Short TTI baseline DMRS occupies the subcarriers k = 0, 1, 7, 8 (PRB0) in 2 PRBs; k = 2, 3, 9, 10 (PRB1) . Port 7/8 occupies k=1, 8 (PRB0) and k=3, 10 (PRB1); port 9/10 occupies k=0, 7 (PRB0) and k=2, 9 (PRB1).
首先,可以使用baseline图样的前提条件是该sTTI没有CRS或与信道状态信息(Channel State Information,CSI)配置不冲突,此时仅对LTE DMRS进行偏移即可。First, the premise that the baseline pattern can be used is that the sTTI has no CRS or does not conflict with the Channel State Information (CSI) configuration. In this case, only the LTE DMRS is offset.
在一实施例中,上述对LTE DMRS进行偏移,可以是对LTE DMRS端口(Port)7/8/9/10都进行偏移,或者仅对LTE DMRS Port 7/8进行偏移。当仅对LTE DMRS Port 7/8进行偏移时,意味着可以打孔LTE DMRS Port 9/10所占用的资源。In an embodiment, the foregoing offsetting the LTE DMRS may be to offset the LTE DMRS port 7/8/9/10, or only to the LTE DMRS Port 7/8. When only LTE DMRS Port 7/8 is offset, it means that the resources occupied by the LTE DMRS Port 9/10 can be punctured.
在一实施例中,DMRS偏移图样适用于sTTI#2。在sTTI#2中,没有CRS,有LTE legacy UE的DMRS,可能有CSI-RS。因此当配置的CSI-RS与baseline图样没有冲突时,或者没有配置CSI-RS时,使用baseline pattern。baseline pattern与LTE DMRS冲突的位置为k=0,1(PRB0);k=10(PRB1)。In an embodiment, the DMRS offset pattern is applicable to sTTI #2. In sTTI#2, there is no CRS, there is DMRS of LTE legacy UE, and there may be CSI-RS. Therefore, when the configured CSI-RS does not conflict with the baseline pattern, or when no CSI-RS is configured, the baseline pattern is used. The position where the baseline pattern collides with the LTE DMRS is k=0, 1 (PRB0); k=10 (PRB1).
在一实施例中,以4发送天线(Transmit,Tx)为例(CSI配置(configuration)#0-9可用),sTTI#2中CSI-RS configuration#0,5与baseline图样冲突,其余CSI配置在sTTI#4/5中,所以与sTTI#2使用baseline图样不冲突。In an embodiment, 4 transmit antennas (Transmit, Tx) are taken as an example (CSI configuration #0-9 is available), and CSI- RS configuration # 0, 5 in sTTI#2 conflicts with the baseline pattern, and the remaining CSI configurations are configured. In sTTI#4/5, there is no conflict with sTTI#2 using the baseline pattern.
当为了避免与LTE DMRS碰撞,由于LTE DMRS占据了PRB的两端,因此baseline pattern在shift时必然会向内部集中。In order to avoid collision with LTE DMRS, since LTE DMRS occupies both ends of the PRB, the baseline pattern is inevitably concentrated internally when shifting.
此时可能的DMRS shift pattern为如图6所示的情形1(alt.1)、情形2(alt.2)和情形3(alt.3)中之一。The possible DMRS shift pattern at this time is one of Case 1 (alt. 1), Case 2 (alt. 2), and Case 3 (alt. 3) as shown in FIG. 6.
Alt.1:baseline图样中每个DMRS所在子载波位置与legacy UE的DMRS所在子载波发生碰撞就进行移动,对于baseline图样中每个DMRS所在子载波位置与legacy UE的DMRS所在子载波不碰撞则保持不变。即,此时DMRS shift  pattern为端口7/8占用2个PRB中的子载波位置为k=3,8(PRB0),k=3,9(PRB1);端口9/10占用2个PRB中的子载波位置为k=2,7(PRB0),k=2,8(PRB1)。Alt.1: The subcarrier location of each DMRS in the baseline pattern collides with the subcarrier where the legacy UE's DMRS is located, and moves. For the subcarrier where each DMRS is located in the baseline pattern does not collide with the subcarrier where the legacy UE's DMRS is located. constant. That is, at this time, the DMRS shift pattern is that the subcarrier positions in the two PRBs occupied by port 7/8 are k=3, 8 (PRB0), k=3, 9 (PRB1); the port 9/10 occupies 2 PRBs. The subcarrier positions are k=2, 7 (PRB0), k=2, 8 (PRB1).
Alt.2:移动后的DMRS图样在频域上保持等间隔,即对于同一个端口来说,该端口在频域上占用的子载波位置为在每6个子载波中占用1个子载波。例如通过在方式1基础上移动DMRS位置,此时移动后的DMRS间隔更均匀,同一端口占用的子载波之间间隔5个子载波。另外,Alt.2的CSI-RS可用配置比Alt.1的CSI-RS可用配置多。即,此时DMRS shift pattern为端口7/8占用2个PRB中的子载波位置为k=3,9(PRB0),k=3,9(PRB1);端口9/10占用2个PRB中的子载波位置为k=2,8(PRB0),k=2,8(PRB1)。Alt.2: The moved DMRS pattern is kept at equal intervals in the frequency domain. That is, for the same port, the subcarrier position occupied by the port in the frequency domain is 1 subcarrier occupied in every 6 subcarriers. For example, by moving the DMRS position on the basis of the mode 1, the DMRS interval after the movement is more uniform, and the subcarriers occupied by the same port are separated by 5 subcarriers. In addition, the CSI-RS available configuration of Alt. 2 is more than the available configuration of the CSI-RS of Alt. That is, at this time, the DMRS shift pattern is that the subcarrier positions in the two PRBs occupied by port 7/8 are k=3, 9 (PRB0), k=3, 9 (PRB1); the port 9/10 occupies 2 PRBs. The subcarrier positions are k=2, 8 (PRB0), k=2, 8 (PRB1).
Alt.3:仅对LTE DMRS Port 7/8进行偏移,即baseline图样中每个DMRS所在子载波位置与legacy UE的DMRS Port 7/8所在子载波发生碰撞就进行移动。即,此时DMRS shift pattern为端口7/8占用2个PRB中的子载波位置为k=2,8(PRB0),k=3,10(PRB1);端口9/10占用2个PRB中的子载波位置为k=0,7(PRB0),k=2,9(PRB1)。Alt.3: Only LTE DMRS Port 7/8 is offset, that is, the subcarrier position of each DMRS in the baseline pattern collides with the subcarrier where the legacy UE's DMRS Port 7/8 is located to move. That is, at this time, the DMRS shift pattern is that the subcarrier positions in the two PRBs occupied by port 7/8 are k=2, 8 (PRB0), k=3, 10 (PRB1); the port 9/10 occupies 2 PRBs. The subcarrier positions are k=0, 7 (PRB0), k=2, 9 (PRB1).
在一实施例中,结合legacy UE DMRS的时域位置,该DMRS shift图样仅用于sTTI#2,或者用于sTTI#2和sTTI#4,或者所有sTTI均使用该DMRS shift图样,或者用于配置或指示的sTTI,或者用于没有CRS或与配置的CSI-RS不冲突的sTTI。In an embodiment, in combination with the time domain location of the legacy UE DMRS, the DMRS shift pattern is only used for sTTI#2, or for sTTI#2 and sTTI#4, or all sTTIs use the DMRS shift pattern, or The sTTI configured or indicated, or used for sTTI without CRS or without conflict with the configured CSI-RS.
在一实施例中,终端是否使用该DMRS shift图样由基站通过RRC信令配置,或DCI指示,或默认使用该DMRS shift图样。例如,对于传输URLLC的UE在使用DMRS based传输模式的情况下,此时是否使用该DMRS shift图样可以根据legacy UE是否使用DMRS based传输模式进行配置或指示,例如可以RRC配置是否使用,或者根据当前子帧中实际抢占的legacy UE的PDSCH是否使用DMRS来动态指示URLLC UE是否使用DMRS shift图样。例如,当承载URLLC业务的sPDSCH使用DMRS based传输模式并且在sTTI#2抢占传输legacy UE的PDSCH资源,此时legacy UE使用DMRS based传输模式,则基站(Evolved NodeB,eNB)动态指示sPDSCH的DMRS使用DMRS shift图样。In an embodiment, whether the terminal uses the DMRS shift pattern is configured by the base station through RRC signaling, or the DCI indication, or the DMRS shift pattern is used by default. For example, in the case that the UE transmitting the URLLC uses the DMRS based transmission mode, whether to use the DMRS shift pattern at this time may be configured or indicated according to whether the legacy UE uses the DMRS based transmission mode, for example, whether the RRC configuration may be used, or according to the current Whether the PDSCH of the legacy UE actually preempted in the subframe uses the DMRS to dynamically indicate whether the URLLC UE uses the DMRS shift pattern. For example, when the sPDSCH carrying the URLLC service uses the DMRS based transmission mode and preempts the PDSCH resource of the legacy UE at sTTI#2, and the legacy UE uses the DMRS based transmission mode, the Evolved NodeB (eNB) dynamically indicates the DMRS usage of the sPDSCH. DMRS shift pattern.
通过本实施例所述的一种参考信号图样确定方法,可以实现在支持URLLC 抢占LTE legacy UE资源的同时,避免抢占legacy UE的DMRS资源,保证legacy UE可以获得准确的信道估计。同时移动后的URLLC DMRS用于提供URLLC业务的信道估计。使得在保证URLLC性能的同时,保证legacy UE获得准确信道估计进而提供正确解调数据的可能性,提升系统频谱效率。The method for determining the reference signal pattern in the embodiment may be implemented to prevent the LTE legacy UE resource from being preempted by the URLLC, and to avoid preempting the legacy UE's DMRS resource, and ensuring that the legacy UE can obtain an accurate channel estimation. The simultaneously moved URLLC DMRS is used to provide channel estimation for the URLLC service. This ensures that the legacy UE obtains accurate channel estimation and thus provides the possibility of correctly demodulating the data while improving the performance of the URLLC, thereby improving the spectrum efficiency of the system.
示例性实施例2 Exemplary embodiment 2
基站调度终端A在TTI中重复传输下行数据,使用sPDSCH信道。本实施例中,所述TTI包含的OFDM符号数较少,例如不超过7个OFDM符号,但并不仅限于此。本实施例以LTE系统中short TTI结构进行说明,即所述TTI为sTTI,但并不限于此。DL short TTI帧结构如图4所示sub-slot情况,在1ms子帧中包含6个DL短TTI,当sPDSCH被配置为从OFDM符号#1或#3起始时,使用Pattern1;当sPDSCH被配置为从OFDM符号#2起始时,使用Pattern2。注意这里OFDM符号编号从0开始,即1ms子帧中OFDM符号有14个,顺序编号为#0至#13。The base station scheduling terminal A repeatedly transmits downlink data in the TTI, and uses the sPDSCH channel. In this embodiment, the TTI includes a small number of OFDM symbols, for example, no more than 7 OFDM symbols, but is not limited thereto. This embodiment is described in the short TTI structure in the LTE system, that is, the TTI is sTTI, but is not limited thereto. The DL short TTI frame structure is as shown in the sub-slot case of FIG. 4, and includes 6 DL short TTIs in a 1 ms subframe. When the sPDSCH is configured to start from OFDM symbol #1 or #3, Pattern1 is used; when sPDSCH is When configured to start from OFDM symbol #2, use Pattern2. Note that the OFDM symbol number here starts from 0, that is, there are 14 OFDM symbols in the 1 ms subframe, and the sequence numbers are #0 to #13.
此时,终端A的业务为URLLC业务,并且此时sPDSCH被配置为使用DMRS based传输模式。同时在该子帧中,legacy UE B已经正在传输PDSCH业务并且占用了全部或大部分频域资源,此时没有足够资源用于传输终端A的URLLC业务。为了保证终端A的URLLC业务需求,基站调度终端A的URLLC业务使用sPDSCH抢占正在传输的legacy UE B的下行资源。为了使得legacy UE能够获得准确的信道估计进而提供正确解调数据的可能性,需要避免抢占legacy UE的DMRS。At this time, the service of the terminal A is a URLLC service, and at this time, the sPDSCH is configured to use the DMRS based transmission mode. At the same time, the legacy UE B is already transmitting the PDSCH service and occupies all or most of the frequency domain resources. In this case, there is not enough resources for transmitting the URLLC service of the terminal A. To ensure the URLLC service requirement of the terminal A, the base station schedules the URL LC service of the terminal A to use the sPDSCH to preempt the downlink resources of the legacy UE B being transmitted. In order to enable the legacy UE to obtain an accurate channel estimate and thus provide the possibility of correctly demodulating the data, it is necessary to avoid preempting the legacy UE's DMRS.
sub-slot sTTI DMRS在时域上位于sTTI的前两个符号。当DMRS使用相对于baseline图样的偏移图样时,如图7所示频域占用位置,sub-slot sTTI shift DMRS图样,是baseline图样相对于CRS进行偏移后的图样,其中在CRS取vshift=0,1,2时确定不同的偏移后图样。Sub-slot sTTI The DMRS is located in the first two symbols of the sTTI in the time domain. When the DMRS uses the offset pattern relative to the baseline pattern, as shown in Figure 7, the sub-slot sTTI shift DMRS pattern is the pattern after the baseline pattern is offset from the CRS, where vRS is taken at CRS= When 0, 1, 2 is determined, different offset patterns are determined.
首先,使用sTTI shift DMRS图样的条件是该sTTI由于存在CRS或配置CSI-RS与baseline图样有冲突,无法使用baseline图样。此时需要将sTTI shift DMRS图样对LTE DMRS进行偏移。First, the condition for using the sTTI shift DMRS pattern is that the sTTI cannot be used because of the existence of CRS or the configuration CSI-RS conflicts with the baseline pattern. In this case, the sTTI shift DMRS pattern needs to be offset from the LTE DMRS.
在一实施例中,上述对LTE DMRS进行偏移,可以是对LTE DMRS Port 7/8/9/10都进行偏移,或者仅对LTE DMRS Port 7/8进行偏移。当仅对LTE DMRS  Port 7/8进行偏移时,意味着可以打孔LTE DMRS Port 9/10所占用的资源。In an embodiment, the foregoing LTE DMRS is offset, and the LTE DMRS Port 7/8/9/10 may be offset, or only the LTE DMRS Port 7/8 may be offset. When only LTE DMRS Port 7/8 is offset, it means that the resources occupied by the LTE DMRS Port 9/10 can be punctured.
在一实施例中,DMRS偏移图样适用于sTTI#5。在sTTI#5中,有CRS,有LTE legacy UE的DMRS,可能有CSI-RS。因此sTTI#5在非组播业务单频网(non-MultimediaBroadcast Multicast Service single Frequency Network,non-MBSFN)子帧中无法使用baseline图样,使用sTTI shift DMRS图样。sTTI shift DMRS图样与LTE DMRS冲突的位置如下。In an embodiment, the DMRS offset pattern is applicable to sTTI #5. In sTTI#5, there is CRS, there is DMRS of LTE legacy UE, and there may be CSI-RS. Therefore, sTTI#5 cannot use the baseline pattern in the non-Multimedia Broadcast Multicast Service Single Frequency Network (non-MBSFN) subframe, and uses the sTTI shift DMRS pattern. The location where the sTTI shift DMRS pattern conflicts with the LTE DMRS is as follows.
vshift=0 sTTI shift DMRS图样与LTE DMRS冲突的位置为k=1(PRB0);k=10,11(RPB1);vshift=1 sTTI shift DMRS图样与LTE DMRS冲突的位置为k=0,6(PRB0);k=11(RPB1);vshift=2 sTTI shift DMRS图样与LTE DMRS冲突的位置为k=0,1(PRB0);k=1,10(RPB1)Vshift=0 sTTI shift The position where the DMRS pattern collides with the LTE DMRS is k=1(PRB0); k=10,11(RPB1); vshift=1 sTTI shift The position where the DMRS pattern collides with the LTE DMRS is k=0,6( PRB0);k=11(RPB1);vshift=2 sTTI shift The position where the DMRS pattern conflicts with the LTE DMRS is k=0,1(PRB0);k=1,10(RPB1)
在一实施例中,上述vshift=0/1/2时的sTTI shift DMRS图样相对于LTE DMRSshift时,偏移后的图样如图8所示中至少之一:其中,当vshift=0时,sTTI shift DMRS图样相对于LTE DMRS shift后图样为端口7/8占用2个PRB中的子载波位置为k=4,8(PRB0),k=4,8(PRB1);端口9/10占用2个PRB中的子载波位置为k=2,7(PRB0),k=2,7(PRB1)。其中,当vshift=1时,sTTI shift DMRS图样相对于LTE DMRS shift后图样为端口7/8占用2个PRB中的子载波位置为k=3,9(PRB0),k=3,9(PRB1);端口9/10占用2个PRB中的子载波位置为k=2,8(PRB0),k=2,8(PRB1)。其中,当vshift=2时,sTTI shift DMRS图样相对于LTE DMRS shift后图样为端口7/8占用2个PRB中的子载波位置为k=4,9(PRB0),k=4,9(PRB1);端口9/10占用2个PRB中的子载波位置为k=3,7(PRB0),k=3,7(PRB1)。In an embodiment, when the sTTI shift DMRS pattern at the vshift=0/1/2 is relative to the LTE DMRSshift, the offset pattern is at least one of the following: wherein, when vshift=0, the sTTI The shift DMRS pattern is relative to the LTE DMRS shift pattern. Port 7/8 occupies the subcarrier positions in the two PRBs as k=4, 8 (PRB0), k=4, 8 (PRB1); port 9/10 occupies 2 The subcarrier positions in the PRB are k=2, 7 (PRB0), k=2, 7 (PRB1). Wherein, when vshift=1, the sTTI shift DMRS pattern is compared with the LTE DMRS shift pattern, and the subcarrier positions in the two PRBs occupied by port 7/8 are k=3, 9 (PRB0), k=3, 9 (PRB1) ); port 9/10 occupies the subcarrier positions in the two PRBs as k=2, 8 (PRB0), k=2, 8 (PRB1). Wherein, when vshift=2, the sTTI shift DMRS pattern is compared with the LTE DMRS shift pattern, and the subcarrier positions in the two PRBs occupied by port 7/8 are k=4, 9 (PRB0), k=4, 9 (PRB1) ); port 9/10 occupies the subcarrier positions in 2 PRBs as k=3, 7 (PRB0), k=3, 7 (PRB1).
在一实施例中,上述vshift=0/1/2时的sTTI shift DMRS图样仅相对于LTE DMRS Port 7/8 shift时,偏移后的图样如图9所示中至少之一:其中,当vshift=0时,sTTI shift DMRS图样相对于LTE DMRS Port 7/8 shift后图样为端口7/8占用2个PRB中的子载波位置为k=4,8(PRB0),k=4,10(PRB1);端口9/10占用2个PRB中的子载波位置为k=2,7(PRB0),k=2,8(PRB1)。其中,当vshift=1时,sTTI shift DMRS图样相对于LTE DMRS Port 7/8 shift后图样为端口7/8占用2个PRB中的子载波位置为k=2,8(PRB0),k=3,9(PRB1);端口9/10占用2个PRB中的子载波位置为k=0,5(PRB0),k=2,8(PRB1)。 其中,当vshift=2时,sTTI shift DMRS图样相对于LTE DMRS Port 7/8 shift后图样为端口7/8占用2个PRB中的子载波位置为k=3,9(PRB0),k=3,10(PRB1);端口9/10占用2个PRB中的子载波位置为k=0,7(PRB0),k=0,9(PRB1)。In an embodiment, when the sTTI shift DMRS pattern at the vshift=0/1/2 is only relative to the LTE DMRS Port 7/8 shift, the offset pattern is at least one of the following: When vshift=0, the sTTI shift DMRS pattern relative to the LTE DMRS Port 7/8 shift pattern is port 7/8 occupying the subcarrier positions in the two PRBs as k=4, 8 (PRB0), k=4, 10 ( PRB1); Port 9/10 occupies the subcarrier positions in 2 PRBs as k=2, 7 (PRB0), k=2, 8 (PRB1). Wherein, when vshift=1, the sTTI shift DMRS pattern is compared with the LTE DMRS Port 7/8 shift pattern, and the port position of the two PRBs occupied by port 7/8 is k=2, 8 (PRB0), k=3. , 9 (PRB1); port 9/10 occupies the subcarrier positions in the two PRBs as k=0, 5 (PRB0), k=2, 8 (PRB1). Wherein, when vshift=2, the sTTI shift DMRS pattern is compared with the LTE DMRS Port 7/8 shift pattern, and the port position of the two PRBs occupied by port 7/8 is k=3, 9 (PRB0), k=3. 10 (PRB1); the port 9/10 occupies the subcarrier positions in the two PRBs as k=0, 7 (PRB0), k=0, 9 (PRB1).
在一实施例中,结合LTE DMRS的时域位置,相对于LTE DMRS偏移后的该DMRS shift图样仅用于sTTI#5,或者用于sTTI#1和sTTI#5,或者所有sTTI均使用该DMRS shift图样,或者用于配置或指示的sTTI,或者用于不能使用baseline图样的sTTI。In an embodiment, in combination with the time domain location of the LTE DMRS, the DMRS shift pattern after the LTE DMRS offset is used only for sTTI#5, or for sTTI#1 and sTTI#5, or all sTTIs use the same DMRS shift pattern, either for configuration or indication of sTTI, or for sTTI that cannot use baseline pattern.
在一实施例中,终端是否使用该DMRS shift图样由基站通过RRC信令配置,或DCI指示,或默认使用该DMRS shift图样。例如,对于传输URLLC的UE在使用DMRS based传输模式,此时是否使用该DMRS shift图样可以根据legacy UE是否使用DMRS based传输模式进行配置或指示,例如可以RRC配置是否使用,或者根据当前子帧中实际抢占的legacy UE的PDSCH是否使用DMRS来动态指示URLLC UE是否使用DMRS shift图样。例如,当承载URLLC业务的sPDSCH使用DMRS based传输模式并且在sTTI#5抢占传输legacy UE的PDSCH资源,此时legacy UE使用DMRS based传输模式,则eNB动态指示sPDSCH的DMRS使用DMRS shift图样。In an embodiment, whether the terminal uses the DMRS shift pattern is configured by the base station through RRC signaling, or the DCI indication, or the DMRS shift pattern is used by default. For example, if the UE transmitting the URLLC is using the DMRS based transmission mode, whether to use the DMRS shift pattern at this time may be configured or indicated according to whether the legacy UE uses the DMRS based transmission mode, for example, whether the RRC configuration may be used, or according to the current subframe. Whether the actually preempted legacy UE's PDSCH uses the DMRS to dynamically indicate whether the URLLC UE uses the DMRS shift pattern. For example, when the sPDSCH carrying the URLLC service uses the DMRS based transmission mode and preempts the PDSCH resource of the legacy UE at sTTI#5, and the legacy UE uses the DMRS based transmission mode, the eNB dynamically instructs the DMRS of the sPDSCH to use the DMRS shift pattern.
通过本实施例所述的一种参考信号图样确定方法,可以实现在支持URLLC抢占LTE legacy UE资源的同时,避免抢占legacy DMRS资源,保证legacy UE可以获得准确的信道估计,同时移动后的URLLC DMRS用于提供URLLC业务的信道估计,使得在保证URLLC性能的同时,保证legacy UE获得准确信道估计进而提供正确解调数据的可能性,提升系统频谱效率。The method for determining the reference signal pattern in the embodiment may be implemented to prevent the legacy DMRS resource from being preempted by the URLLC, and to ensure that the legacy UE can obtain an accurate channel estimation, and the URLLC DMRS after the mobile station is moved. Channel estimation for providing URLLC services, so as to ensure the accuracy of the URL LC, the legacy UE can obtain accurate channel estimation to provide the possibility of correctly demodulating data, and improve the system spectrum efficiency.
通过以上的实施方式的描述,本领域的技术人员可以了解到根据上述实施例的方法可借助软件加通用硬件平台的方式来实现,也可以通过硬件实现。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开任意实施例所述的方法。Through the description of the above embodiments, those skilled in the art may understand that the method according to the foregoing embodiment may be implemented by means of software plus a general hardware platform, or may be implemented by hardware. Based on such understanding, the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium (such as Read-Only Memory (ROM) / Random Access Memory (Random Access Memory). , RAM, disk, CD-ROM, including a plurality of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the method described in any of the embodiments of the present disclosure.
实施例2Example 2
在本实施例中还提供了一种参考信号图样的确定装置,该装置用于实现上述实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。A determining device for determining a reference signal pattern is also provided in the embodiment, and the device is used to implement the above-described embodiments, and the description thereof has been omitted. As used below, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
图10是一实施例提供的一种参考信号图样的确定装置的结构框图,如图10所示,该装置包括:第一确定模块102,设置为确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。FIG. 10 is a structural block diagram of a device for determining a reference signal pattern according to an embodiment. As shown in FIG. 10, the device includes: a first determining module 102 configured to determine a DMRS offset pattern of a demodulation reference signal, where The DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE-A) system.
在一实施例中,上述预设图样可以为LTE short TTI中sub-slot sTTI时使用的DMRS图样,有两种DMRS图样,分别为baseline DMRS图样和sub-slot sTTI shift DMRS图样。In an embodiment, the preset pattern may be a DMRS pattern used in a sub-slot sTTI in the LTE short TTI. There are two types of DMRS patterns, namely a baseline DMRS pattern and a sub-slot sTTI shift DMRS pattern.
通过图10所示装置,确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。也就是说,通过确定DMRS偏移图样实现在支持URLLC抢占LTE legacy UE资源的同时,避免抢占legacy DMRS资源,保证legacy UE可以获得准确的信道估计,进而解决了相关技术中URLLC使用的DMRS与legacy UE的DMRS发生碰撞所导致的系统频谱效率较低的问题,达到了提高系统频谱效率的技术效果。The demodulation reference signal DMRS offset pattern is determined by the apparatus shown in FIG. 10, wherein the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE)/Enhanced Long Term Evolution (LTE) system. In other words, by determining the DMRS offset pattern, the LTE legacy UE resource is preempted while the legacy network resource is preempted, and the legacy DMRS resource is prevented from being preempted, so that the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS and legacy used by the URLLC in the related art. The problem of low spectral efficiency of the system caused by the collision of the DMRS of the UE achieves the technical effect of improving the spectrum efficiency of the system.
图11是一实施例提供的另一种参考信号图样的确定装置的结构框图。如图11所示,该装置除了包括图10所示的模块,还包括:第二确定模块112,设置为根据以下方式至少之一确定所述DMRS偏移图样的使用:无线资源控制RRC信令配置、下行控制信息DCI指示以及预设规则。FIG. 11 is a structural block diagram of another apparatus for determining a reference signal pattern according to an embodiment. As shown in FIG. 11, the device includes, in addition to the module shown in FIG. 10, a second determining module 112, configured to determine the use of the DMRS offset pattern according to at least one of the following manners: radio resource control RRC signaling Configuration, downlink control information DCI indication, and preset rules.
通过图11所示装置实现了在支持URLLC抢占LTE legacy UE资源的同时,避免抢占legacy DMRS资源,保证legacy UE可以获得准确的信道估计,进而解决了相关技术中URLLC使用的DMRS与legacy UE的DMRS发生碰撞所导致的系统频谱效率较低的问题,达到了提高系统频谱效率的技术效果。The apparatus shown in FIG. 11 is configured to prevent the preemption of legacy DMRS resources while ensuring that the URLLC preempts the LTE legacy UE resources, and ensures that the legacy UE can obtain an accurate channel estimation, thereby solving the DMRS used by the URLLC and the DMRS of the legacy UE in the related art. The problem of low spectral efficiency of the system caused by collisions has achieved the technical effect of improving the spectral efficiency of the system.
本实施例中,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述多个模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。In this embodiment, the foregoing multiple modules may be implemented by software or hardware. For the latter, the foregoing may be implemented by, but not limited to, the foregoing multiple modules are all located in the same processor; Modules are located in different processors in any combination.
实施例3Example 3
本实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任意实施例中的参考信号图样的确定方法。The embodiment further provides a storage medium in which a computer program is stored, wherein the computer program is set to perform a determination method of the reference signal pattern in any of the above embodiments at runtime.
在一实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序。In an embodiment, the storage medium may be configured to store a computer program for performing the following steps.
确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。Determining a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution, LTE/Enhanced Long Term Evolution (LTE) system.
在一实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等至少一种可以存储计算机程序的介质。In an embodiment, the foregoing storage medium may include, but is not limited to, at least one medium that can store a computer program, such as a USB flash drive, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk.
本实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任意实施例中的参考信号图样的确定方法。The embodiment further provides an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to execute a computer program to perform the determination method of the reference signal pattern in any of the above embodiments.
在一实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。In an embodiment, the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
在一实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤。In an embodiment, the above processor may be arranged to perform the following steps by a computer program.
确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE/增强长期演进LTE-A系统的DMRS偏移后的图样。Determining a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution, LTE/Enhanced Long Term Evolution (LTE) system.
本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。For specific examples in this embodiment, reference may be made to the examples described in the foregoing embodiments, and details are not described herein again.
上述的至少一个模块或至少一个步骤可以用通用的计算装置来实现,上述至少一个模块或至少一个步骤可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,上述至少一个模块或至少一个步骤可以用计算装置可执行的程序代码来实现,从而,可以将上述至少一个模块或至少一个步骤存储在存储装置中由计算装置来执行或者将上述至少一个模块或至少一个步骤分别制作成至少一个集成电路模块,或者将上述至少一个模块或至少一个步骤中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。The at least one module or at least one of the steps described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. In an embodiment, the at least one module or at least one step may be implemented by program code executable by the computing device, such that the at least one module or at least one step may be stored in the storage device by the computing device or The at least one module or the at least one step is separately fabricated into at least one integrated circuit module, or the at least one module or the plurality of modules or steps in at least one step are fabricated into a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Claims (11)

  1. 一种参考信号图样的确定方法,包括:A method for determining a reference signal pattern, comprising:
    确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE或者增强长期演进LTE-A系统的DMRS偏移后的图样。Determining a demodulation reference signal DMRS offset pattern, wherein the DMRS offset pattern is a pattern of a preset pattern relative to a DMRS offset of a Long Term Evolution (LTE) or Enhanced Long Term Evolution (LTE) system.
  2. 根据权利要求1所述的方法,还包括:The method of claim 1 further comprising:
    根据以下方式至少之一确定所述DMRS偏移图样的使用:无线资源控制RRC信令配置、下行控制信息DCI指示以及预设规则。The use of the DMRS offset pattern is determined according to at least one of the following: a radio resource control RRC signaling configuration, a downlink control information DCI indication, and a preset rule.
  3. 根据权利要求1或2所述的方法,其中,在所述预设图样为基准baseline图样的情况下,所述DMRS偏移图样所占用的频域子载波位置包括以下至少之一:The method according to claim 1 or 2, wherein, in a case where the preset pattern is a reference baseline pattern, the frequency domain subcarrier position occupied by the DMRS offset pattern comprises at least one of the following:
    端口7和端口8中的至少之一在2个物理资源块PRB中所占用的子载波位置分别为PRB0中的k=3和k=8,PRB1中的k=3和k=9;The subcarrier positions occupied by at least one of port 7 and port 8 in the two physical resource blocks PRB are respectively k=3 and k=8 in PRB0, and k=3 and k=9 in PRB1;
    端口9端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=7,PRB1中的k=2和k=8;The subcarrier positions occupied by at least one of the ports 9 and 10 in the two PRBs are respectively k=2 and k=7 in PRB0, and k=2 and k=8 in PRB1;
    端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=3和k=9,PRB1中的k=3和k=9;The subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=3 and k=9 in PRB0, respectively, k=3 and k=9 in PRB1;
    端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=8,PRB1中的k=2和k=8;The subcarrier positions occupied by at least one of port 9 and port 10 in 2 PRBs are k=2 and k=8 in PRB0, respectively, and k=2 and k=8 in PRB1;
    端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=8,PRB1中的k=3和k=10;The subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=2 and k=8 in PRB0, respectively, and k=3 and k=10 in PRB1;
    端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=0和k=7,PRB1中的k=2和k=9;The subcarrier positions occupied by at least one of port 9 and port 10 in 2 PRBs are k=0 and k=7 in PRB0, respectively, and k=2 and k=9 in PRB1;
    其中,所述k为一个PRB中子载波编号索引,取值为0-11。The k is a subcarrier number index in a PRB, and the value is 0-11.
  4. 根据权利要求1或2所述的方法,其中,在所述预设图样为微时隙偏移sub-slot shift DMRS图样的情况下,所述DMRS偏移图样所占用的频域子载波位置包括以下至少之一:The method according to claim 1 or 2, wherein, in a case where the preset pattern is a micro-slot offset sub-slot shift DMRS pattern, a frequency domain subcarrier position occupied by the DMRS offset pattern includes At least one of the following:
    当偏移值vshift=0时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=4和k=8,PRB1中的k=4和k=8;端口9和 端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=7,PRB1的k=2和k=7;When the offset value vshift=0, the subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=4 and k=8 in PRB0, and k=4 in PRB1, respectively. k=8; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs are k=2 and k=7 in PRB0, and k=2 and k=7 in PRB1;
    当偏移值vshift=1时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=3和k=9,PRB1中的k=3和k=9;端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=8,PRB1中的k=2和k=8;When the offset value vshift=1, the subcarrier positions occupied by at least one of port 7 and port 8 in the two PRBs are k=3 and k=9 in PRB0, and k=3 in PRB1, respectively. k=9; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs are k=2 and k=8 in PRB0, and k=2 and k=8 in PRB1;
    当偏移值vshift=2时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=4和k=9,PRB1中的k=4和k=9;端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=3和k=7,PRB1中的k=3和k=7;When the offset value vshift=2, the subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=4 and k=9 in PRB0, and k=4 in PRB1, respectively. k=9; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs are k=3 and k=7 in PRB0, and k=3 and k=7 in PRB1;
    其中,所述k为一个PRB中子载波编号索引,取值为0-11。The k is a subcarrier number index in a PRB, and the value is 0-11.
  5. 根据权利要求1或2所述的方法,其中,在所述预设图样为微时隙偏移sub-slot shift DMRS图样的情况下,所述DMRS偏移图样所占用的频域子载波位置包括以下至少之一:The method according to claim 1 or 2, wherein, in a case where the preset pattern is a micro-slot offset sub-slot shift DMRS pattern, a frequency domain subcarrier position occupied by the DMRS offset pattern includes At least one of the following:
    当偏移值vshift=0时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=4和k=8,PRB1中的k=4和k=10;端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=7,PRB1的k=2和k=8;When the offset value vshift=0, the subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=4 and k=8 in PRB0, and k=4 in PRB1, respectively. k=10; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs are k=2 and k=7 in PRB0, and k=2 and k=8 in PRB1;
    当偏移值vshift=1时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=2和k=8,PRB1中的k=3和k=9;端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=0和k=5,PRB1中的k=2和k=8;When the offset value vshift=1, the subcarrier positions occupied by at least one of port 7 and port 8 in the two PRBs are k=2 and k=8 in PRB0, and k=3 in PRB1, respectively. k=9; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs, respectively, k=0 and k=5 in PRB0, and k=2 and k=8 in PRB1;
    当偏移值vshift=2时,端口7和端口8中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=3和k=9,PRB1中的k=3和k=10;端口9和端口10中的至少之一在2个PRB中所占用的子载波位置分别为PRB0中的k=0和k=7,PRB1中的k=0和k=9;When the offset value vshift=2, the subcarrier positions occupied by at least one of port 7 and port 8 in 2 PRBs are k=3 and k=9 in PRB0, and k=3 in PRB1, respectively. k=10; at least one of port 9 and port 10 occupying subcarrier positions in 2 PRBs, respectively, k=0 and k=7 in PRB0, and k=0 and k=9 in PRB1;
    其中,所述k为一个PRB中子载波编号索引,取值为0-11。The k is a subcarrier number index in a PRB, and the value is 0-11.
  6. 根据权利要求2所述的方法,其中,根据所述RRC信令配置和DCI指 示中的至少之一确定所述DMRS偏移图样的使用包括以下之一:The method of claim 2, wherein determining the use of the DMRS offset pattern based on at least one of the RRC signaling configuration and the DCI indication comprises one of the following:
    使用所述RRC信令配置中的1个比特来指示使用相对于LTE DMRS进行偏移后的图样或使用不相对于LTE DMRS进行偏移的图样;Using 1 bit in the RRC signaling configuration to indicate that a pattern after offset with respect to the LTE DMRS is used or a pattern that is not offset with respect to the LTE DMRS is used;
    使用所述DCI指示中的1个比特来指示使用相对于LTE DMRS进行偏移后的图样或使用不相对于LTE DMRS进行偏移的图样。A bit in the DCI indication is used to indicate that a pattern after offset with respect to the LTE DMRS is used or a pattern that is not offset with respect to the LTE DMRS is used.
  7. 根据权利要求2所述的方法,其中,根据所述预设规则确定所述DMRS偏移图样的使用包括以下至少之一:The method of claim 2, wherein determining the use of the DMRS offset pattern according to the preset rule comprises at least one of the following:
    仅短传输时间间隔sTTI#2使用所述DMRS偏移图样;sTTI#2和sTTI#4使用所述DMRS偏移图样;所有sTTI均使用所述DMRS偏移图样;配置或指示的sTTI使用所述DMRS偏移图样;没有小区专有导频CRS或与配置的信道状态信息测量导频CSI-RS不冲突的sTTI使用所述DMRS偏移图样;仅sTTI#5使用所述DMRS偏移图样;sTTI#1和sTTI#5使用所述DMRS偏移图样;不能使用baseline图样的sTTI使用所述DMRS偏移图样。Only the short transmission time interval sTTI#2 uses the DMRS offset pattern; sTTI#2 and sTTI#4 use the DMRS offset pattern; all sTTIs use the DMRS offset pattern; the configured or indicated sTTI uses the DMRS offset pattern; sTTI without cell-specific pilot CRS or collision with configured channel state information measurement pilot CSI-RS uses the DMRS offset pattern; only sTTI#5 uses the DMRS offset pattern; sTTI #1 and sTTI#5 use the DMRS offset pattern; the DMRS offset pattern cannot be used using the sTTI of the baseline pattern.
  8. 一种参考信号图样的确定装置,包括:A determining device for a reference signal pattern, comprising:
    第一确定模块,设置为确定解调参考信号DMRS偏移图样,其中,所述DMRS偏移图样为预设图样相对于长期演进LTE或者增强长期演进LTE-A系统的DMRS偏移后的图样。The first determining module is configured to determine a demodulation reference signal DMRS offset pattern, where the DMRS offset pattern is a pattern of the preset pattern relative to the DMRS offset of the Long Term Evolution (LTE) or Enhanced Long Term Evolution (LTE) system.
  9. 根据权利要求8所述的装置,还包括:The apparatus of claim 8 further comprising:
    第二确定模块,设置为根据以下方式至少之一确定所述DMRS偏移图样的使用:无线资源控制RRC信令配置、下行控制信息DCI指示以及预设规则。The second determining module is configured to determine, according to at least one of the following manners, the use of the DMRS offset pattern: a radio resource control RRC signaling configuration, a downlink control information DCI indication, and a preset rule.
  10. 一种存储介质,存储有计算机程序,所述计算机程序被设置为运行时执行所述权利要求1至7中任一项所述的方法。A storage medium storing a computer program, the computer program being arranged to perform the method of any one of claims 1 to 7 at runtime.
  11. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7中任一项所述的方法。An electronic device comprising a memory and a processor, the memory storing a computer program, the processor being arranged to execute the computer program to perform the method of any one of claims 1 to 7.
PCT/CN2019/074815 2018-02-13 2019-02-12 Method and apparatus for determining reference signal pattern WO2019158036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150151.3 2018-02-13
CN201810150151.3A CN110166199A (en) 2018-02-13 2018-02-13 The determination method and device of reference signal pattern

Publications (1)

Publication Number Publication Date
WO2019158036A1 true WO2019158036A1 (en) 2019-08-22

Family

ID=67619674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074815 WO2019158036A1 (en) 2018-02-13 2019-02-12 Method and apparatus for determining reference signal pattern

Country Status (2)

Country Link
CN (1) CN110166199A (en)
WO (1) WO2019158036A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104637A (en) * 2013-04-03 2014-10-15 中国移动通信集团公司 Method for transmitting dedicated demodulation signal and equipment thereof
CN105227282A (en) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 A kind of method and apparatus of LAA Resourse Distribute
CN107666452A (en) * 2017-09-15 2018-02-06 电子科技大学 The moade setting method of the demodulated reference signal of LTE V2X systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410799B1 (en) * 2013-01-25 2020-12-16 Huawei Technologies Co., Ltd. Signaling of reference signal patterns for downlink channel decoding
EP2874454A1 (en) * 2013-11-15 2015-05-20 Fujitsu Limited Reference signals in wireless communication
CN105812105B (en) * 2014-12-30 2020-05-08 杭州华为数字技术有限公司 Transmission device, system and method for demodulation reference signal
CN107046459B (en) * 2016-02-05 2020-04-07 上海诺基亚贝尔股份有限公司 Method and apparatus for communication with shortened transmission time interval

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104637A (en) * 2013-04-03 2014-10-15 中国移动通信集团公司 Method for transmitting dedicated demodulation signal and equipment thereof
CN105227282A (en) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 A kind of method and apparatus of LAA Resourse Distribute
CN107666452A (en) * 2017-09-15 2018-02-06 电子科技大学 The moade setting method of the demodulated reference signal of LTE V2X systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA: "On details of DMRS design for 2-OS and 7-OS DL shorter TTI", 3GPP TSG RAN WG1 #89, R1-1708214, 5 May 2017 (2017-05-05), XP051261380, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsgran/wg1_rl1/tsgr1_89/docs/R1-1708214.zip> *
QUALCOMM INCORPORATED: "DMRS Design for sPDSCH", 3GPP TSG RAN WG1 #89, R1-1708777, 6 May 2017 (2017-05-06), XP051262652, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/wg1_rl1/tsgr1_89/docs/R1-1708777.zip> *

Also Published As

Publication number Publication date
CN110166199A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
US10925048B2 (en) Control resource set for single-carrier waveform
CN111245561B (en) Method and equipment for processing uplink and downlink transmission of flexible subframe
CN110266454B (en) Apparatus for receiving system information block
US9451602B2 (en) CSI-RS transmission method and detection method and apparatuses thereof
EP3382926B1 (en) Apparatus, terminal and signal transmitting and receiving method thereof in a wireless communication system
TWI690233B (en) Method for transmitting and receiving reference signal and apparatus therefor
CN104854937B (en) The interpretation method of down channel, the transmission method of downlink information, user equipment and base station
KR102248027B1 (en) Method and apparatus for sending downlink control information (dci)
WO2017050065A1 (en) Method and apparatus for configuring channel state information-reference signal
CN102638892B (en) Method and device for performing resource mapping to E-PDCCHs (enhanced-physical downlink control channels)
CN105580467A (en) Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit
CN108702685B (en) Transmission method, network equipment, terminal equipment and system for information of transmission mode
JP6028981B2 (en) Terminal device, communication method, and integrated circuit
CN105723640A (en) Method and arrangement for configuring CSI measurements
CN103546233A (en) Blind detection mode determining method, blind detection method and devices
CN108811074B (en) Information transmission method and device
US10547424B2 (en) Method of configuring channel state information reference signal transmitted on pilot and device utilizing same
US20130286966A1 (en) Method of allocating radio resources for control channel and method for receiving the control channel
WO2017028072A1 (en) Downlink control information receiving and sending methods and devices
WO2017128296A1 (en) Transmission method, apparatus and system for reference signal
US20230007504A1 (en) Method and apparatus for selection of radio link monitoring reference resource in network cooperative communications
WO2017167158A1 (en) Method and device for transmitting pilot configuration information, and system
JP2016531509A (en) Information transmission method, information determination method, apparatus, and system in TDD system
EP3457806A1 (en) Terminal device, base station device, communication method and integrated circuit
WO2012134115A2 (en) Communication method and communication apparatus using an mbsfn subframe in a tdd-based wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19754511

Country of ref document: EP

Kind code of ref document: A1