WO2019151727A1 - Flexible battery and manufacturing method therefor - Google Patents

Flexible battery and manufacturing method therefor Download PDF

Info

Publication number
WO2019151727A1
WO2019151727A1 PCT/KR2019/001140 KR2019001140W WO2019151727A1 WO 2019151727 A1 WO2019151727 A1 WO 2019151727A1 KR 2019001140 W KR2019001140 W KR 2019001140W WO 2019151727 A1 WO2019151727 A1 WO 2019151727A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer member
electrode assembly
flexible battery
exterior
exterior member
Prior art date
Application number
PCT/KR2019/001140
Other languages
French (fr)
Korean (ko)
Inventor
노승윤
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2019151727A1 publication Critical patent/WO2019151727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible battery and a method of manufacturing the same.
  • the flexible battery may be a flexible nickel-cadmium battery, a nickel-metal hydride battery, a nickel-hydrogen battery, a lithium ion battery, or the like.
  • the lithium ion battery uses a liquid electrolyte, which is mainly welded using a metal can as a container.
  • a liquid electrolyte which is mainly welded using a metal can as a container.
  • the cylindrical lithium-ion battery using a metal can as a container has a disadvantage that restricts the design of the electric product and has a bulky problem because the shape is fixed.
  • the pouch type battery is a flexible material
  • the pouch-type battery can be manufactured in various forms, and has an advantage of enabling high energy density per mass.
  • the pouch type battery can be banded through flexibility, but it causes damage to the electrode assembly when excessive banding. For this reason, when the electrode assembly is damaged, the pouch type battery has a problem in that its performance as a battery is degraded.
  • the present invention has been made in view of the above, and an object thereof is to provide a flexible battery and a method of manufacturing the same, which can limit the bending angle while securing flexibility.
  • the present invention is an electrode assembly; An exterior member encapsulating the electrode assembly together with an electrolyte solution; A buffer member disposed between the electrode assembly and the exterior member to limit the bending angle of the electrode assembly; And a plurality of accommodating parts formed in the exterior material to accommodate the shock absorbing member therein.
  • the receiving portion may protrude along the width direction of the packaging material to be convex outward from the surface of the packaging material.
  • the buffer member may be made of a thermosetting resin having an elastic force and heat resistance, the buffer member may have a corrosion resistance.
  • the electrode assembly may be formed in a curved shape having a predetermined curvature.
  • the present invention comprises the steps of preparing a pair of exterior member including a plurality of receiving portion formed along the longitudinal direction; Filling a plurality of receiving portions with a thermosetting resin and then forming a buffer member connected to each other through curing; And disposing an electrode assembly between the pair of exterior members and sealing the edges of the pair of exterior members, wherein the plurality of receiving parts are formed to be convex in one direction from the surface of the exterior member and have a width of the exterior member. It provides a method of manufacturing a flexible battery that extends in the same cross-sectional shape along the direction.
  • the present invention while securing the flexibility of the battery itself, it is possible to limit the bending angle of the battery itself. As a result, excessive bending of the electrode assembly may be prevented, thereby preventing breakage of the electrode assembly due to excessive bending, thereby preventing performance degradation of the battery.
  • the present invention can be applied to a variety of electronic devices that require flexibility of the battery, such as a rollable display, a foldable display, as well as wearable devices such as smart watches and watch bands.
  • FIG. 1 is an overall schematic view showing a flexible battery according to an embodiment of the present invention
  • FIG. 1 is an exploded view of FIG. 1,
  • FIG. 3 is a cross-sectional view along the A-A direction of FIG.
  • FIG. 4 is a view illustrating a state in which a flexible battery is bent according to an embodiment of the present invention
  • FIG. 5 is a modification of FIG. 3,
  • FIG. 6 is another modified example of FIG.
  • FIG. 7 is another modified example of FIG.
  • FIG. 8 is an exemplary view illustrating various shapes of an accommodation part that may be applied to a flexible battery according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram illustrating a case where the flexible battery according to an embodiment of the present invention is bent at a predetermined curvature
  • FIG. 10 is a flowchart illustrating a manufacturing process of a flexible battery according to an embodiment of the present invention.
  • the flexible battery 100 may be a plate-shaped battery having a predetermined area as shown in FIG. 1.
  • Such a flexible battery 100 includes an electrode assembly 110, the exterior member 120, the buffer member 130 and the receiving portion 140 as shown in Figs. do.
  • the electrode assembly 110 may be encapsulated together with the buffer member 130 and the electrolyte in the exterior member 120.
  • the electrode assembly 110 may include a positive electrode 112, a negative electrode 116, and a separator 114.
  • the separator 114 may include the positive electrode 112 and the negative electrode 116. ) May be disposed between.
  • the anode 112, the cathode 116 and the separator 114 may be composed of a single layer or a plurality of stacked forms.
  • the positive electrode 112 and the negative electrode 116 may be implemented in the form of a plate-like sheet having a predetermined area. That is, the positive electrode 112 and the negative electrode 116 may have a form in which an active material is compressed, deposited or coated on one or both surfaces of each current collector.
  • the positive electrode 112 and the negative electrode 116 may include a positive electrode terminal 117 and a negative electrode terminal 118 for electrical connection with an external device, the positive electrode terminal 117 and the negative electrode terminal 118 ) May be formed to be exposed from the exterior member 120 to the outside.
  • the separator 114 may be a material commonly used to configure the electrode assembly 110, the separator 114 is a non-woven fabric layer, nanofiber web layer formed on one or both sides of the nonwoven fabric layer It may include.
  • the nanofiber web layer may be a nanofiber containing one or more selected from polyacrylonitrile nanofibers and polyvinylidene fluoride nanofibers.
  • nonwoven fabric layer may be a composite porous separator so as to optimize the impregnation of the electrolyte.
  • the electrode assembly 110 is a typical configuration for configuring a battery, a detailed description thereof will be omitted.
  • the electrode assembly 110 may be disposed inside the exterior member 120 in the form of a horizontal plane as shown in FIGS. 1 to 3, but the electrode assembly 110 is illustrated in FIG. 9. It may be disposed inside the exterior member 120 in a bent state to have a predetermined curvature.
  • the flexible battery 100 according to the exemplary embodiment of the present invention may be in a state in which an overall appearance of the flexible battery 100 is curved with the same or similar curvature as that of the electrode assembly 110.
  • the exterior member 120 may be a plate-shaped member having a predetermined area.
  • the exterior member 120 may accommodate the electrode assembly 110, the buffer member 130, and the electrolyte therein. Through this, the exterior member 120 may prevent the electrode assembly 110, the buffer member 130, and the electrolyte from being exposed to the outside, and prevent the leakage of the electrolyte to the outside.
  • the exterior member 120 has a first exterior member 121 disposed above the electrode assembly 110 and a second exterior member 122 disposed below the electrode assembly 110 as shown in FIG. 2. ), The first exterior member 121 and the second exterior member 122 may be sealed through an adhesive on the edge side facing each other.
  • first exterior member 121 and the second exterior member 122 may be composed of two members separated from each other, and the first exterior member 121 and the second exterior member 122 may have a border side in contact with each other. It can be sealed through an adhesive.
  • the electrode assembly 110 may be disposed between the first exterior member 121 and the second exterior member 122.
  • first exterior member 121 and the second exterior member 122 may be one member having a predetermined area, and the first exterior member 121 and the second exterior member 122 may be folded in half along the width direction or the length direction.
  • the second exterior member 122 may serve.
  • a portion disposed on the upper portion of the electrode assembly 110 may constitute a first outer member 121
  • a portion disposed on the lower portion of the electrode assembly 110 may constitute a second outer portion 122.
  • the exterior member 120 may be sealed through the adhesive except for the folded portion.
  • the electrolyte may be a liquid electrolyte that is commonly used, but a gel polymer electrolyte may be used to prevent leakage and leakage of the electrolyte during bending of the flexible battery 100.
  • the flexible battery 100 may include a buffer member 130, the buffer member 130 of one surface and the electrode assembly 110 of the outer surface facing each other (110) It may be disposed between one surface, the buffer member 130 may be disposed in the receiving portion 140 formed in the exterior member 120.
  • the electrode assembly 110 may maintain a plate shape, and the buffer member 130 may be disposed on at least one surface of both surfaces of the electrode assembly 110.
  • the receiving portion 140 may protrude outwardly from the surface of the exterior member 120 so as to accommodate the buffer member 130 therein, the overall length of the buffer member 130 It may extend in the same cross-sectional shape along the width direction of the exterior member 120 to accommodate the.
  • the accommodating part 140 may be formed along a direction inclined at a predetermined angle with respect to the longitudinal direction of the exterior member 120, and preferably a width direction perpendicular to the longitudinal direction of the exterior member 120. It may be formed along a direction parallel to the.
  • the accommodating part 140 may be provided in plural, and the accommodating part 140 may be arranged along the longitudinal direction of the exterior member 120, and arranged along the longitudinal direction of the exterior member 120.
  • the plurality of receiving portions 140 may be connected to each other.
  • the buffer member 130 may have a shape at least one surface corresponding to the inner surface of the receiving portion 140.
  • the shock absorbing member 130 may fill a portion of the accommodating part 140 by being disposed such that a portion having a shape corresponding to the accommodating part 140 is in contact with an inner surface of the accommodating part 140.
  • the flexible battery 100 is made of a material having a flexible material, even if bending occurs, the shape of the accommodating part 140 through the buffer member 130 filled in the accommodating part 140. This can be maintained.
  • the buffer member 130 may be provided with a plurality of surfaces having a shape corresponding to the inner surface of the receiving portion 140, as shown in Figure 3, the plurality of buffer member 130 is the receiving portion Each of them may be individually housed in 140.
  • the buffer member 230 has convex portions 231a and 232a having a shape corresponding to the inner surfaces of the plurality of receiving portions 140, and the convex portion 231a.
  • 232a may be one member connected to each other through the plate-shaped connecting portions 231b and 232b.
  • the plate-shaped connecting portions 231b and 232b may be provided to have a predetermined thickness.
  • shock absorbing members 130 and 230 may be partially or entirely disposed at each receiving portion 140 arranged along the longitudinal direction of the exterior member 120.
  • the two receiving parts 140 formed adjacent to each other along the longitudinal direction of the exterior member 120 may have a state in which some or all of the buffer members 130 and 230 are disposed.
  • the plurality of receiving portions 140 formed adjacent to each other along the longitudinal direction of the exterior member 120 may be formed to have the same cross-sectional shape as shown in (a) to (e) of FIG. 8, It may be formed to have a different cross-sectional shape, it may be a combination of different cross-sectional shapes.
  • the plurality of accommodating parts 140 may be formed in the exterior member 120 such that end portions of two accommodating parts 140 adjacent to each other are directly connected to each other, and the shock absorbing member 130 is the electrode assembly ( It may include a portion that the cross-sectional area is smaller from the 110 toward the packaging material 120 side.
  • the flexible battery 100 may interfere with each other by two receiving parts 140 which are adjacent to each other according to a bending direction when bending, and the flexible battery 100 through two receiving parts 140 that interfere with each other.
  • the bending angle may be limited.
  • the bending angle ⁇ of the flexible battery 100 is formed at both ends of the exterior member 120 in a state in which the flexible battery 100 is bent at a predetermined curvature along the longitudinal direction. It may refer to an angle formed by two straight lines perpendicular to two tangents, and the curvature R of the flexible battery 100 may be a curvature of the curved electrode assembly 110 in a bent state.
  • the flexible battery 100 may freely bend within a predetermined curvature range, but free banding may be limited in a range outside the curvature range. That is, the flexible battery 100 can freely bend within an allowable range and can prevent excessive bending in advance.
  • portions of the shock absorbing member 130 and the exterior member 120 disposed on the upper side of the electrode assembly 110 are mutually opposite. Free banding may be possible since no interference between the two occurs. However, the portion of the buffer member 130 and the exterior member 120 disposed on the lower side of the electrode assembly 110 may cause mutual interference of neighboring buffer members 130 when excessive bending occurs. Bending angle may be limited.
  • the flexible battery 100 is limited in bending angle through mutual interference between neighboring buffer members 130, thereby reducing performance of the battery due to excessive bending or damage of the electrode assembly 110 and the exterior member 120. It can prevent it beforehand.
  • the exterior material 120 is processed to form the receiving portion 140, but the electrode assembly 110 is to prevent the damage of the electrode assembly that may occur in the manufacturing process by the other processing is not made at the source. Can be. As a result, the capacity reduction of the electrode assembly can be prevented in advance, and thus a battery having excellent performance can be realized.
  • Such a buffer member 130 may be made of a thermosetting resin having an elastic force and heat resistance.
  • the buffer member 130 may be a silicon material or EPDM.
  • the buffer member 130 may protect the electrode assembly 110 from the external force by buffering or absorbing the external force.
  • the buffer member 130 may be made of a material having corrosion resistance so as to be prevented from being oxidized by the electrolyte when encapsulated inside the exterior member 120 together with the electrode assembly 110 and the electrolyte.
  • the material of the buffer member 130 is not limited thereto, and any thermosetting resin having elastic force, heat resistance, and corrosion resistance may be used without limitation.
  • the receiving portion 140 may be formed in the entire area of the exterior member 120 may be partially formed in the area of a part of the total area.
  • the accommodation part 140 may be formed only in an inner region except for an edge of the exterior member 120. That is, the accommodating part 140 may not be formed at the edges of the first exterior member 121 and the second exterior member 122 which are bonded to each other to prevent the electrolyte from leaking to the outside.
  • the flexible battery 100 may increase airtightness by improving the bonding force between the first exterior member 121 and the second exterior member 122 in contact with each other.
  • the buffer member 130 may be disposed only on one surface of the electrode assembly 110, but may be disposed on the upper side and the lower side of the electrode assembly 110, respectively.
  • the exterior member 120 may include a first exterior member 121 and a second exterior member 122 in which the accommodating part 140 is formed, and the buffer member 130 includes the electrode assembly 110. It may include a first buffer member 131 and a second buffer member 132 respectively disposed on both sides of the.
  • first buffer member 131 and the second buffer member 132 may be formed to have the same cross-sectional shape with each other, as shown in Figs. In this case, the first buffer member 131 and the second buffer member 132 may be formed to have the same cross-sectional area. In addition, the first buffer member 131 and the second buffer member 132 may be disposed at the same position on both sides of the electrode assembly 110, or may be arranged alternately.
  • first buffer member 131 and the second buffer member 132 may be formed to have different cross-sectional areas.
  • the second buffer member 132 may be formed to have a relatively narrower cross-sectional area than the first buffer member 131.
  • the allowable bending angle may be set differently according to the bending direction of the flexible battery 100.
  • the bending angle of the flexible battery 100 may be controlled through the second buffer member 132.
  • the bending angle of the flexible battery 100 may be controlled by the first buffer member 131.
  • the maximum bending angle when the flexible battery 100 is convexly bent downward may be 170 degrees, but the maximum bending angle when the flexible battery 100 is convex upwardly may be 150 degrees.
  • the flexible battery 100 is a bending direction in which the flexible battery 100 is convex upward, it is possible to induce the flexible battery 100 to be bent in the intended direction by adopting the above-described configuration.
  • the maximum bending angle is not limited thereto, and may be variously changed according to design conditions, and the cross-sectional shape and size of the first buffer member 131 and the second buffer member 132 may be appropriately changed. Note that it can be changed in a way.
  • first buffer member 131 and the second buffer member 132 may be formed to have different cross-sectional shapes.
  • cross-sectional shape of the first buffer member 131 and the second buffer member 132 it is noted that all the various cross-sectional shapes of the receiving portion shown in FIG.
  • the flexible battery 100 by forming an accommodating part 140 in the exterior member 120 and filled with a thermosetting resin in the accommodating part 140 as shown in Figure 10 by curing
  • the buffer member 130 may be formed.
  • the exterior member 120 may include a first exterior member 121 covering an upper portion of the electrode assembly 110 and a second exterior member 122 covering a bottom surface of the electrode assembly 110.
  • the first exterior member 121 and the second exterior member 122 may be formed in a convex shape in one direction from the surface and a plurality of receiving portions 140 extending in the same cross-sectional shape along the width direction.
  • the plurality of accommodation parts 140 may be arranged to be connected to each other along the longitudinal direction.
  • the accommodating part 140 formed on the first exterior material 121 and the accommodating part 140 formed on the second exterior material 122 may have the same shape, may have different shapes, or may have the same cross-sectional area. It may also have different cross-sectional areas.
  • the plurality of accommodating parts 140 may be filled with a liquid or gel thermosetting resin.
  • the thermosetting resin may be filled only in the accommodating part 140 or may be filled so that all of the plurality of accommodating parts 140 are connected.
  • thermosetting resin filled in the plurality of accommodation parts 140 may configure the above-mentioned buffer member 130 through curing.
  • the flexible battery 100 according to the embodiment of the present invention fills the thermosetting resin in the accommodating part 140, and then configures the buffer member 130 through curing to accommodate the buffer member 130.
  • the process for inserting into the unit 140 may be unnecessary.
  • the flexible battery 100 according to an embodiment of the present invention can improve the work productivity because the process of processing the buffer member 130 in a shape corresponding to the cross-sectional shape of the receiving portion 140 is unnecessary. .
  • the edges of the first outer member 121 and the second outer member 122 are sealed by an adhesive.
  • the above-described flexible battery 100 may be manufactured.
  • the electrolyte solution which is encapsulated in the exterior member 120 together with the electrode assembly 110 may be injected in the process of sealing the edges of the first exterior member 121 and the second exterior member 122, the first exterior member After sealing the edge of the 121 and the second exterior member 122 may be injected into the interior of the exterior member 120 through a separate process.

Abstract

A flexible battery is provided. The flexible battery according to an embodiment of the present invention comprises: an electrode assembly; an exterior material for packing the electrode assembly together with an electrolyte; a buffer member disposed between the electrode assembly and the exterior material to limit a bending angle of the electrode assembly; and a plurality of reception parts formed on the exterior material to receive the buffer member therein.

Description

플렉서블 배터리 및 이의 제조방법Flexible battery and manufacturing method thereof
본 발명은 플렉서블 배터리 및 이의 제조방법에 관한 것이다.The present invention relates to a flexible battery and a method of manufacturing the same.
플랙서블 배터리는 플랙서블한 성질을 지닌 니켈-카드뮴 배터리, 니켈-메탈 하이드라이드 배터리, 니켈-수소 배터리, 리튬이온 배터리 등을 들 수 있다.The flexible battery may be a flexible nickel-cadmium battery, a nickel-metal hydride battery, a nickel-hydrogen battery, a lithium ion battery, or the like.
이중, 리튬이온 배터리는 액체 전해질을 사용하는데, 주로 금속캔을 용기로 하여 용접한 형태이다. 하지만, 금속캔을 용기로 사용하는 원통형 리튬이온 배터리는 형태가 고정되므로 전기 제품의 디자인을 제한하는 단점이 있고 부피가 큰 문제가 있다.The lithium ion battery uses a liquid electrolyte, which is mainly welded using a metal can as a container. However, the cylindrical lithium-ion battery using a metal can as a container has a disadvantage that restricts the design of the electric product and has a bulky problem because the shape is fixed.
따라서, 상기와 같은 구조적인 문제를 해결하기 위하여 전해액과 전극조립체를 파우치 형태의 외장재에 밀봉하는 파우치형 배터리가 개발되고 있다.Therefore, in order to solve the above structural problem, a pouch-type battery for sealing an electrolyte solution and an electrode assembly in a pouch-type exterior material has been developed.
이러한 파우치형 배터리는 외장재가 가요성(flexible)을 갖는 소재이기 때문에 다양한 형태로의 제조가 가능하며, 질량당 높은 에너지밀도를 구현할 수 있다는 장점이 있다.Since the pouch type battery is a flexible material, the pouch-type battery can be manufactured in various forms, and has an advantage of enabling high energy density per mass.
그러나 이러한 파우치형 배터리는 가요성을 통해 밴딩이 가능하지만 과도한 밴딩시 전극조립체의 손상을 유발한다. 이로 인해, 전극조립체가 손상되면 파우치형 배터리는 배터리로서의 성능이 저하되는 문제가 있다.However, the pouch type battery can be banded through flexibility, but it causes damage to the electrode assembly when excessive banding. For this reason, when the electrode assembly is damaged, the pouch type battery has a problem in that its performance as a battery is degraded.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 가요성을 확보하면서도 밴딩각도를 제한할 수 있는 플렉서블 배터리 및 이의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, and an object thereof is to provide a flexible battery and a method of manufacturing the same, which can limit the bending angle while securing flexibility.
상술한 과제를 해결하기 위하여, 본 발명은 전극조립체; 상기 전극조립체를 전해액과 함께 봉지하는 외장재; 상기 전극조립체의 밴딩각도를 제한할 수 있도록 상기 전극조립체 및 외장재 사이에 배치되는 완충부재; 및 상기 완충부재를 내부에 수용할 수 있도록 상기 외장재에 형성되는 복수 개의 수용부;를 포함하는 플렉서블 배터리를 제공한다.In order to solve the above problems, the present invention is an electrode assembly; An exterior member encapsulating the electrode assembly together with an electrolyte solution; A buffer member disposed between the electrode assembly and the exterior member to limit the bending angle of the electrode assembly; And a plurality of accommodating parts formed in the exterior material to accommodate the shock absorbing member therein.
또한, 상기 수용부는 상기 외장재의 표면으로부터 외측으로 볼록하게 상기 외장재의 폭방향을 따라 돌출형성될 수 있다. 이를 통해, 밴딩시 서로 이웃하는 두 개의 수용부에 수용된 완충부재는 상기 플렉서블 배터리의 밴딩 각도를 제한함으로써 상기 플렉서블 배터리의 과도한 밴딩을 방지할 수 있다.In addition, the receiving portion may protrude along the width direction of the packaging material to be convex outward from the surface of the packaging material. Through this, the buffer member accommodated in the two receiving portion adjacent to each other when bending can limit the bending angle of the flexible battery to prevent excessive bending of the flexible battery.
또한, 상기 완충부재는 탄성력 및 내열성을 갖는 열경화성 수지로 이루어질 수 있으며, 상기 완충부재는 내식성을 가질 수 있다.In addition, the buffer member may be made of a thermosetting resin having an elastic force and heat resistance, the buffer member may have a corrosion resistance.
또한, 상기 전극조립체는 소정의 곡률을 갖는 곡선형으로 형성될 수 있다.In addition, the electrode assembly may be formed in a curved shape having a predetermined curvature.
한편, 본 발명은 길이방향을 따라 형성된 복수 개의 수용부를 포함하는 한 쌍의 외장재를 준비하는 단계; 상기 복수 개의 수용부에 열경화성 수지를 충진한 후 경화를 통해 하나로 연결된 완충부재를 형성하는 단계; 및 상기 한 쌍의 외장재 사이에 전극조립체를 배치하고, 상기 한 쌍의 외장재의 테두리를 밀봉하는 단계;를 포함하고, 상기 복수 개의 수용부는 상기 외장재의 표면으로부터 일방향으로 볼록하게 형성되고 상기 외장재의 폭방향을 따라 동일한 단면형상으로 연장된 것인 플렉서블 배터리의 제조방법을 제공한다.On the other hand, the present invention comprises the steps of preparing a pair of exterior member including a plurality of receiving portion formed along the longitudinal direction; Filling a plurality of receiving portions with a thermosetting resin and then forming a buffer member connected to each other through curing; And disposing an electrode assembly between the pair of exterior members and sealing the edges of the pair of exterior members, wherein the plurality of receiving parts are formed to be convex in one direction from the surface of the exterior member and have a width of the exterior member. It provides a method of manufacturing a flexible battery that extends in the same cross-sectional shape along the direction.
본 발명에 의하면, 배터리 자체의 가요성은 확보하면서도 배터리 자체의 밴딩각도를 제한할 수 있다. 이를 통해, 전극조립체의 과도한 밴딩을 방지할 수 있음으로써 과도한 밴딩에 의한 전극조립체의 파손을 방지하여 배터리의 성능 저하를 미연에 방지할 수 있다.According to the present invention, while securing the flexibility of the battery itself, it is possible to limit the bending angle of the battery itself. As a result, excessive bending of the electrode assembly may be prevented, thereby preventing breakage of the electrode assembly due to excessive bending, thereby preventing performance degradation of the battery.
더불어, 본 발명은 스마트워치, 시계줄 등과 같은 웨어러블 디바이스는 물론 롤러블 디스플레이, 폴더블 디스플레이 등과 같이 배터리의 유연성을 요구하는 다양한 전자기기에 적용될 수 있다.In addition, the present invention can be applied to a variety of electronic devices that require flexibility of the battery, such as a rollable display, a foldable display, as well as wearable devices such as smart watches and watch bands.
도 1은 본 발명의 일 실시예에 따른 플렉서블 배터리를 나타낸 전체개략도,1 is an overall schematic view showing a flexible battery according to an embodiment of the present invention,
도 2는 도 1의 분리도,2 is an exploded view of FIG. 1,
도 3은 도 1의 A-A 방향 단면도,3 is a cross-sectional view along the A-A direction of FIG.
도 4는 본 발명의 일 실시예에 따른 플렉서블 배터리가 밴딩된 상태를 나타낸 도면,4 is a view illustrating a state in which a flexible battery is bent according to an embodiment of the present invention;
도 5는 도 3의 변형예,5 is a modification of FIG. 3,
도 6은 도 3의 또 다른 변형예,6 is another modified example of FIG.
도 7은 도 3의 또 다른 변형예,7 is another modified example of FIG.
도 8은 본 발명의 일 실시예에 따른 플렉서블 배터리에 적용될 수 있는 수용부의 다양한 형상을 나타낸 예시도, 8 is an exemplary view illustrating various shapes of an accommodation part that may be applied to a flexible battery according to an embodiment of the present invention;
도 9는 본 발명의 일 실시예에 따른 플렉서블 배터리가 소정의 곡률로 휘어진 형태인 경우를 나타낸 개략도, 그리고,9 is a schematic diagram illustrating a case where the flexible battery according to an embodiment of the present invention is bent at a predetermined curvature, and
도 10은 본 발명의 일 실시예에 따른 플렉서블 배터리의 제조공정을 나타낸 순서도이다.10 is a flowchart illustrating a manufacturing process of a flexible battery according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 도 1에 도시된 바와 같이 소정의 면적을 갖는 판상의 배터리일 수 있다.The flexible battery 100 according to an embodiment of the present invention may be a plate-shaped battery having a predetermined area as shown in FIG. 1.
이와 같은 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 도 2 및 도 3에 도시된 바와 같이 전극조립체(110), 외장재(120), 완충부재(130) 및 수용부(140)를 포함한다.Such a flexible battery 100 according to an embodiment of the present invention includes an electrode assembly 110, the exterior member 120, the buffer member 130 and the receiving portion 140 as shown in Figs. do.
상기 전극조립체(110)는 상기 외장재(120)의 내부에 완충부재(130) 및 전해액과 함께 봉지될 수 있다.The electrode assembly 110 may be encapsulated together with the buffer member 130 and the electrolyte in the exterior member 120.
이와 같은 전극조립체(110)는 도 3에 도시된 바와 같이 양극(112), 음극(116) 및 세퍼레이터(114)를 포함할 수 있으며, 상기 세퍼레이터(114)는 상기 양극(112) 및 음극(116) 사이에 배치될 수 있다. 여기서, 상기 양극(112), 음극(116) 및 세퍼레이터(114)는 단층으로 구성될 수도 있고 복수 개가 적층된 형태일 수도 있다.As shown in FIG. 3, the electrode assembly 110 may include a positive electrode 112, a negative electrode 116, and a separator 114. The separator 114 may include the positive electrode 112 and the negative electrode 116. ) May be disposed between. Here, the anode 112, the cathode 116 and the separator 114 may be composed of a single layer or a plurality of stacked forms.
이때, 상기 양극(112) 및 음극(116)은 소정의 면적을 갖는 판상의 시트형태로 구현될 수 있다. 즉, 상기 양극(112) 및 음극(116)은 각각의 집전체의 일면 또는 양면에 활물질이 압착, 증착되거나 도포된 형태일 수 있다.At this time, the positive electrode 112 and the negative electrode 116 may be implemented in the form of a plate-like sheet having a predetermined area. That is, the positive electrode 112 and the negative electrode 116 may have a form in which an active material is compressed, deposited or coated on one or both surfaces of each current collector.
또한, 상기 양극(112) 및 음극(116)은 외부기기와의 전기적인 연결을 위한 양극단자(117) 및 음극단자(118)를 포함할 수 있으며, 상기 양극단자(117) 및 음극단자(118)는 외장재(120)로부터 외부로 노출되도록 형성될 수 있다.In addition, the positive electrode 112 and the negative electrode 116 may include a positive electrode terminal 117 and a negative electrode terminal 118 for electrical connection with an external device, the positive electrode terminal 117 and the negative electrode terminal 118 ) May be formed to be exposed from the exterior member 120 to the outside.
한편, 상기 세퍼레이터(114)는 전극조립체(110)를 구성하기 위하여 통상적으로 사용되는 재질이 사용될 수 있으나, 상기 세퍼레이터((114)는 부직포층과, 상기 부직포층의 일면 또는 양면에 형성된 나노섬유웹층을 포함할 수 있다.On the other hand, the separator 114 may be a material commonly used to configure the electrode assembly 110, the separator 114 is a non-woven fabric layer, nanofiber web layer formed on one or both sides of the nonwoven fabric layer It may include.
여기서, 상기 나노섬유웹층은 폴리아크릴로니트릴(polyacrylonitrile) 나노섬유 및 폴리비닐리덴 플루오라이드(polyvinylidene fluoride) 나노섬유 중에서 선택된 1종 이상을 함유한 나노섬유일 수 있다.Here, the nanofiber web layer may be a nanofiber containing one or more selected from polyacrylonitrile nanofibers and polyvinylidene fluoride nanofibers.
또한, 상기 부직포층은 전해액의 함침성을 최적화시킬 수 있도록 복합 다공성 분리막이 사용될 수 있다.In addition, the nonwoven fabric layer may be a composite porous separator so as to optimize the impregnation of the electrolyte.
이와 같은 전극조립체(110)는 배터리를 구성하기 위한 통상적인 구성이므로 상세한 설명은 생략하기로 한다.Since the electrode assembly 110 is a typical configuration for configuring a battery, a detailed description thereof will be omitted.
더불어, 상기 전극조립체(110)는 도 1 내지 도 3에 도시된 바와 같이 수평면의 형태로 상기 외장재(120)의 내부에 배치될 수도 있으나, 상기 전극조립체(110)는 도 9에 도시된 바와 같이 소정의 곡률을 갖도록 휘어진 상태로 상기 외장재(120)의 내부에 배치될 수도 있다. 이와 같은 경우, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 전체적인 외형이 상기 전극조립체(110)와 동일 또는 유사한 곡률로 휘어진 상태일 수 있다.In addition, the electrode assembly 110 may be disposed inside the exterior member 120 in the form of a horizontal plane as shown in FIGS. 1 to 3, but the electrode assembly 110 is illustrated in FIG. 9. It may be disposed inside the exterior member 120 in a bent state to have a predetermined curvature. In this case, the flexible battery 100 according to the exemplary embodiment of the present invention may be in a state in which an overall appearance of the flexible battery 100 is curved with the same or similar curvature as that of the electrode assembly 110.
상기 외장재(120)는 일정면적을 갖는 판상의 부재일 수 있다. 이와 같은 외장재(120)는 내부에 상기 전극조립체(110), 완충부재(130) 및 전해액을 수용할 수 있다. 이를 통해, 상기 외장재(120)는 상기 전극조립체(110), 완충부재(130) 및 전해액이 외부로 노출되는 것을 방지함과 아울러, 상기 전해액이 외부로 누설되는 것을 방지할 수 있다.The exterior member 120 may be a plate-shaped member having a predetermined area. The exterior member 120 may accommodate the electrode assembly 110, the buffer member 130, and the electrolyte therein. Through this, the exterior member 120 may prevent the electrode assembly 110, the buffer member 130, and the electrolyte from being exposed to the outside, and prevent the leakage of the electrolyte to the outside.
이를 위해, 상기 외장재(120)는 도 2에 도시된 바와 같이 상기 전극조립체(110)의 상부에 배치되는 제1외장재(121)와 상기 전극조립체(110)의 하부에 배치되는 제2외장재(122)를 포함할 수 있으며, 상기 제1외장재(121) 및 제2외장재(122)는 서로 마주하는 테두리측이 접착제를 통해 밀봉될 수 있다.To this end, the exterior member 120 has a first exterior member 121 disposed above the electrode assembly 110 and a second exterior member 122 disposed below the electrode assembly 110 as shown in FIG. 2. ), The first exterior member 121 and the second exterior member 122 may be sealed through an adhesive on the edge side facing each other.
이때, 상기 제1외장재(121) 및 제2외장재(122)는 서로 분리된 두 개의 부재로 구성될 수 있으며, 상기 제1외장재(121) 및 제2외장재(122)는 서로 맞접하는 테두리측이 접착제를 통해 밀봉될 수 있다. 여기서, 상기 제1외장재(121) 및 제2외장재(122) 사이에는 상기 전극조립체(110)가 배치된 상태일 수 있다. In this case, the first exterior member 121 and the second exterior member 122 may be composed of two members separated from each other, and the first exterior member 121 and the second exterior member 122 may have a border side in contact with each other. It can be sealed through an adhesive. Here, the electrode assembly 110 may be disposed between the first exterior member 121 and the second exterior member 122.
대안으로, 상기 제1외장재(121) 및 제2외장재(122)는 소정의 면적을 갖는 하나의 부재일 수 있으며, 폭방향 또는 길이방향을 따라 반으로 접혀짐으로써 상기 제1외장재(121) 및 제2외장재(122)의 역할을 수행할 수 있다. 이를 통해, 상기 전극조립체(110)의 상부에 배치되는 부분은 제1외장재(121)를 구성하며, 상기 전극조립체(110)의 하부에 배치되는 부분은 제2외장재(122)를 구성할 수 있다. 이와 같은 경우, 상기 외장재(120)는 접이된 부분을 제외한 나머지 테두리 측이 접착제를 통해 밀봉될 수 있다.Alternatively, the first exterior member 121 and the second exterior member 122 may be one member having a predetermined area, and the first exterior member 121 and the second exterior member 122 may be folded in half along the width direction or the length direction. The second exterior member 122 may serve. Through this, a portion disposed on the upper portion of the electrode assembly 110 may constitute a first outer member 121, and a portion disposed on the lower portion of the electrode assembly 110 may constitute a second outer portion 122. . In this case, the exterior member 120 may be sealed through the adhesive except for the folded portion.
한편, 상기 전해액은 통상적으로 사용되는 액상의 전해액이 사용될 수도 있지만, 상기 플렉서블 배터리(100)의 밴딩시 전해액의 누액 및 누출이 방지될 수 있도록 겔 폴리머 전해액이 사용될 수도 있다.Meanwhile, the electrolyte may be a liquid electrolyte that is commonly used, but a gel polymer electrolyte may be used to prevent leakage and leakage of the electrolyte during bending of the flexible battery 100.
이때, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 완충부재(130)를 포함할 수 있고, 상기 완충부재(130)는 서로 마주하는 외장재(120)의 일면과 전극조립체(110)의 일면 사이에 배치될 수 있으며, 상기 완충부재(130)는 상기 외장재(120)에 형성된 수용부(140)에 배치될 수 있다.At this time, the flexible battery 100 according to an embodiment of the present invention may include a buffer member 130, the buffer member 130 of one surface and the electrode assembly 110 of the outer surface facing each other (110) It may be disposed between one surface, the buffer member 130 may be disposed in the receiving portion 140 formed in the exterior member 120.
이를 통해, 상기 전극조립체(110)는 판상의 형태를 유지할 수 있으며, 상기 완충부재(130)는 상기 전극조립체(110)의 양면 중 적어도 일면에 배치될 수 있다.Through this, the electrode assembly 110 may maintain a plate shape, and the buffer member 130 may be disposed on at least one surface of both surfaces of the electrode assembly 110.
구체적으로, 상기 수용부(140)는 내부에 상기 완충부재(130)를 수용할 수 있도록 상기 외장재(120)의 표면으로부터 외측으로 볼록하게 돌출형성될 수 있고, 상기 완충부재(130)의 전체길이를 수용할 수 있도록 상기 외장재(120)의 폭방향을 따라 동일한 단면형상으로 연장될 수 있다. 이와 같은 경우, 상기 수용부(140)는 상기 외장재(120)의 길이방향에 대하여 일정각도 경사진 방향을 따라 형성될 수 있으며, 바람직하게는 상기 외장재(120)의 길이방향에 대하여 수직한 폭방향과 평행한 방향을 따라 형성될 수 있다.Specifically, the receiving portion 140 may protrude outwardly from the surface of the exterior member 120 so as to accommodate the buffer member 130 therein, the overall length of the buffer member 130 It may extend in the same cross-sectional shape along the width direction of the exterior member 120 to accommodate the. In this case, the accommodating part 140 may be formed along a direction inclined at a predetermined angle with respect to the longitudinal direction of the exterior member 120, and preferably a width direction perpendicular to the longitudinal direction of the exterior member 120. It may be formed along a direction parallel to the.
또한, 상기 수용부(140)는 복수 개로 구비될 수 있고, 복수 개의 수용부(140)는 상기 외장재(120)의 길이방향을 따라 배열될 수 있으며, 상기 외장재(120)의 길이방향을 따라 배열된 복수 개의 수용부(140)는 서로 연결될 수 있다. 더불어, 상기 완충부재(130)는 적어도 일면이 상기 수용부(140)의 내면과 대응되는 형상을 가질 수 있다. In addition, the accommodating part 140 may be provided in plural, and the accommodating part 140 may be arranged along the longitudinal direction of the exterior member 120, and arranged along the longitudinal direction of the exterior member 120. The plurality of receiving portions 140 may be connected to each other. In addition, the buffer member 130 may have a shape at least one surface corresponding to the inner surface of the receiving portion 140.
이에 따라, 상기 완충부재(130)는 상기 수용부(140)와 대응되는 형상을 가지는 부분이 상기 수용부(140)의 내면과 접하도록 배치됨으로써 상기 수용부(140)의 내부를 채울 수 있다. 이로 인해, 상기 플렉서블 배터리(100)는 외장재(120)가 가요성을 갖는 재질로 이루어져 밴딩이 발생한다 하더라도 상기 수용부(140)에 채워진 완충부재(130)를 통해 상기 수용부(140)의 형상이 유지될 수 있다.Accordingly, the shock absorbing member 130 may fill a portion of the accommodating part 140 by being disposed such that a portion having a shape corresponding to the accommodating part 140 is in contact with an inner surface of the accommodating part 140. Thus, the flexible battery 100 is made of a material having a flexible material, even if bending occurs, the shape of the accommodating part 140 through the buffer member 130 filled in the accommodating part 140. This can be maintained.
이때, 상기 완충부재(130)는 도 3에 도시된 바와 같이 일면이 상기 수용부(140)의 내면과 대응되는 형상을 갖는 복수 개로 구비될 수 있으며, 복수 개의 완충부재(130)는 상기 수용부(140)에 각각 개별적으로 수용될 수도 있다.At this time, the buffer member 130 may be provided with a plurality of surfaces having a shape corresponding to the inner surface of the receiving portion 140, as shown in Figure 3, the plurality of buffer member 130 is the receiving portion Each of them may be individually housed in 140.
대안으로, 상기 완충부재(230)는 도 5에 도시된 바와 같이 일면에 상기 복수 개의 수용부(140)의 내면과 대응되는 형상의 볼록부(231a)(232a)가 형성되고 상기 볼록부(231a)(232a)가 판상의 연결부(231b)(232b)를 통해 상호 연결된 하나의 부재일 수 있다. 이와 같은 경우 상기 판상의 연결부(231b)(232b)는 소정의 두께를 갖도록 구비될 수도 있다. Alternatively, as shown in FIG. 5, the buffer member 230 has convex portions 231a and 232a having a shape corresponding to the inner surfaces of the plurality of receiving portions 140, and the convex portion 231a. ) 232a may be one member connected to each other through the plate-shaped connecting portions 231b and 232b. In this case, the plate-shaped connecting portions 231b and 232b may be provided to have a predetermined thickness.
이에 따라, 상기 완충부재(130,230)는 상기 외장재(120)의 길이방향을 따라 배열된 각각의 수용부(140)에 일부 또는 전체가 모두 배치될 수 있다.Accordingly, the shock absorbing members 130 and 230 may be partially or entirely disposed at each receiving portion 140 arranged along the longitudinal direction of the exterior member 120.
이를 통해, 상기 외장재(120)의 길이방향을 따라 서로 이웃하게 형성된 두 개의 수용부(140)는 내부에 상기 완충부재(130,230)의 일부 또는 전부가 각각 배치된 상태일 수 있다.Through this, the two receiving parts 140 formed adjacent to each other along the longitudinal direction of the exterior member 120 may have a state in which some or all of the buffer members 130 and 230 are disposed.
여기서, 상기 외장재(120)의 길이방향을 따라 서로 이웃하게 형성된 복수 개의 수용부(140)는 도 8의 (a) 내지 (e)에 도시된 바와 같이 서로 동일한 단면 형상을 갖도록 형성될 수도 있고, 서로 다른 단면 형상을 갖도록 형성될 수도 있으며, 서로 다른 단면형상이 상호 조합된 것일 수도 있다.Here, the plurality of receiving portions 140 formed adjacent to each other along the longitudinal direction of the exterior member 120 may be formed to have the same cross-sectional shape as shown in (a) to (e) of FIG. 8, It may be formed to have a different cross-sectional shape, it may be a combination of different cross-sectional shapes.
또한, 상기 복수 개의 수용부(140)는 서로 이웃하는 두 개의 수용부(140)의 단부가 서로 직접 연결되도록 상기 외장재(120)에 형성될 수 있으며, 상기 완충부재(130)는 상기 전극조립체(110)로부터 외장재(120) 측으로 갈수록 단면적이 작아지는 부분을 포함할 수 있다.In addition, the plurality of accommodating parts 140 may be formed in the exterior member 120 such that end portions of two accommodating parts 140 adjacent to each other are directly connected to each other, and the shock absorbing member 130 is the electrode assembly ( It may include a portion that the cross-sectional area is smaller from the 110 toward the packaging material 120 side.
이를 통해, 상기 플렉서블 배터리(100)는 밴딩시 밴딩 방향에 따라 서로 이웃하는 두 개의 수용부(140)가 서로 간섭될 수 있으며, 서로 간섭되는 두 개의 수용부(140)를 통해 플렉서블 배터리(100)는 밴딩각도가 제한될 수 있다.As a result, the flexible battery 100 may interfere with each other by two receiving parts 140 which are adjacent to each other according to a bending direction when bending, and the flexible battery 100 through two receiving parts 140 that interfere with each other. The bending angle may be limited.
본 발명에서, 상기 플렉서블 배터리(100)의 밴딩각도(θ)는 도 4에 도시된 바와 같이 상기 플렉서블 배터리(100)가 길이방향을 따라 소정의 곡률로 휘어진 상태에서 외장재(120)의 양단부에 형성된 두 개의 접선과 수직한 두 개의 직선이 이루는 각도를 의미할 수 있으며, 상기 플렉서블 배터리(100)의 곡률(R)은 밴딩된 상태에서 휘어진 전극조립체(110)의 곡률일 수 있다.In the present invention, the bending angle θ of the flexible battery 100 is formed at both ends of the exterior member 120 in a state in which the flexible battery 100 is bent at a predetermined curvature along the longitudinal direction. It may refer to an angle formed by two straight lines perpendicular to two tangents, and the curvature R of the flexible battery 100 may be a curvature of the curved electrode assembly 110 in a bent state.
이에 따라, 상기 플렉서블 배터리(100)는 소정의 곡률 범위 내에서는 자유로운 밴딩이 가능하나 상기 곡률 범위를 벗어난 범위에서는 자유로운 밴딩이 제한될 수 있다. 즉, 상기 플렉서블 배터리(100)는 허용된 범위 내에서의 자유로운 밴딩이 가능하면서도 과도한 밴딩을 미연에 방지할 수 있다.Accordingly, the flexible battery 100 may freely bend within a predetermined curvature range, but free banding may be limited in a range outside the curvature range. That is, the flexible battery 100 can freely bend within an allowable range and can prevent excessive bending in advance.
일례로, 도 4에 도시된 바와 같이 상기 플렉서블 배터리(100)의 양단부를 하방으로 밴딩하는 경우, 상기 전극조립체(110)의 상부 측에 배치된 완충부재(130) 및 외장재(120) 부분은 상호 간의 간섭이 발생하지 않음으로써 자유로운 밴딩이 가능할 수 있다. 그러나, 상기 전극조립체(110)의 하부 측에 배치된 완충부재(130) 및 외장재(120) 부분은 과도한 밴딩이 발생하는 경우 서로 이웃하는 완충부재(130)의 상호간섭이 발생함으로써 전극조립체(110)의 밴딩각도가 제한될 수 있다.For example, as shown in FIG. 4, when both ends of the flexible battery 100 are bent downward, portions of the shock absorbing member 130 and the exterior member 120 disposed on the upper side of the electrode assembly 110 are mutually opposite. Free banding may be possible since no interference between the two occurs. However, the portion of the buffer member 130 and the exterior member 120 disposed on the lower side of the electrode assembly 110 may cause mutual interference of neighboring buffer members 130 when excessive bending occurs. Bending angle may be limited.
이를 통해, 상기 플렉서블 배터리(100)는 서로 이웃하는 완충부재(130) 간의 상호간섭을 통해 밴딩각도가 제한됨으로써 과도한 밴딩에 의한 배터리의 성능저하나 전극조립체(110) 및 외장재(120)의 파손을 미연에 방지할 수 있다.As a result, the flexible battery 100 is limited in bending angle through mutual interference between neighboring buffer members 130, thereby reducing performance of the battery due to excessive bending or damage of the electrode assembly 110 and the exterior member 120. It can prevent it beforehand.
또한, 상기 외장재(120)는 수용부(140)를 형성하기 위하여 가공이 이루어지지만 상기 전극조립체(110)는 다른 가공이 이루어지지 않음으로써 제조과정에서 일어날 수 있는 전극조립체의 데미지 발생을 원천적으로 차단할 수 있다. 이로 인해, 전극조립체의 용량저하를 미연에 방지할 수 있으므로 우수한 성능의 배터리를 구현할 수 있다.In addition, the exterior material 120 is processed to form the receiving portion 140, but the electrode assembly 110 is to prevent the damage of the electrode assembly that may occur in the manufacturing process by the other processing is not made at the source. Can be. As a result, the capacity reduction of the electrode assembly can be prevented in advance, and thus a battery having excellent performance can be realized.
이와 같은 완충부재(130)는 탄성력 및 내열성을 갖는 열경화성 수지로 이루어질 수 있다. 일례로, 상기 완충부재(130)는 실리콘 재질이거나 EPDM일 수 있다.Such a buffer member 130 may be made of a thermosetting resin having an elastic force and heat resistance. For example, the buffer member 130 may be a silicon material or EPDM.
이를 통해, 상기 완충부재(130)는 상기 플렉서블 배터리(100) 측에 외력이 가해지는 경우 상기 외력을 완충 또는 흡수함으로써 상기 전극조립체(110)를 외력으로부터 보호할 수 있다. 또한, 상기 완충부재(130)는 상기 전극조립체(110) 및 전해액과 함께 외장재(120)의 내부에 봉지되는 경우 상기 전해액에 의해 산화되는 것이 방지될 수 있도록 내식성을 가지는 재질일 수도 있다. 그러나 상기 완충부재(130)의 재질을 이에 한정하는 것은 아니며, 탄성력, 내열성 및 내식성을 갖는 열경화성 수지라면 제한없이 사용될 수 있다.Through this, when the external force is applied to the flexible battery 100, the buffer member 130 may protect the electrode assembly 110 from the external force by buffering or absorbing the external force. In addition, the buffer member 130 may be made of a material having corrosion resistance so as to be prevented from being oxidized by the electrolyte when encapsulated inside the exterior member 120 together with the electrode assembly 110 and the electrolyte. However, the material of the buffer member 130 is not limited thereto, and any thermosetting resin having elastic force, heat resistance, and corrosion resistance may be used without limitation.
한편, 상기 수용부(140)는 상기 외장재(120)의 전체면적에 형성될 수도 있지만 전체면적 중 일부의 면적에 부분적으로 형성될 수 있다.On the other hand, the receiving portion 140 may be formed in the entire area of the exterior member 120 may be partially formed in the area of a part of the total area.
일례로, 상기 수용부(140)는 상기 외장재(120)의 테두리를 제외한 내부영역에만 형성될 수 있다. 즉, 상기 수용부(140)는 전해액이 외부로 누설되는 것을 방지하기 위하여 서로 접합되는 제1외장재(121)와 제2외장재(122)의 테두리 측에는 형성되지 않을 수 있다. 이를 통해, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 서로 맞접하는 제1외장재(121)와 제2외장재(122)의 접합력을 향상시킴으로써 기밀성을 높일 수 있다.For example, the accommodation part 140 may be formed only in an inner region except for an edge of the exterior member 120. That is, the accommodating part 140 may not be formed at the edges of the first exterior member 121 and the second exterior member 122 which are bonded to each other to prevent the electrolyte from leaking to the outside. Through this, the flexible battery 100 according to the embodiment of the present invention may increase airtightness by improving the bonding force between the first exterior member 121 and the second exterior member 122 in contact with each other.
상기 완충부재(130)는 상기 전극조립체(110)의 일면에만 배치될 수도 있으나, 상기 전극조립체(110)의 상부측과 하부측에 각각 배치될 수 있다. 이와 같은 경우, 상기 외장재(120)는 상기 수용부(140)가 형성된 제1외장재(121) 및 제2외장재(122)를 포함할 수 있으며, 상기 완충부재(130)는 상기 전극조립체(110)의 양면에 각각 배치된 제1완충부재(131) 및 제2완충부재(132)를 포함할 수 있다.The buffer member 130 may be disposed only on one surface of the electrode assembly 110, but may be disposed on the upper side and the lower side of the electrode assembly 110, respectively. In this case, the exterior member 120 may include a first exterior member 121 and a second exterior member 122 in which the accommodating part 140 is formed, and the buffer member 130 includes the electrode assembly 110. It may include a first buffer member 131 and a second buffer member 132 respectively disposed on both sides of the.
이때, 상기 제1완충부재(131)와 제2완충부재(132)는 도 3 내지 도 6에 도시된 바와 같이 서로 동일한 단면형상을 갖도록 형성될 수도 있다. 이와 같은 경우, 상기 제1완충부재(131) 및 제2완충부재(132)는 서로 동일한 단면적을 갖도록 형성될 수도 있다. 또한, 상기 제1완충부재(131) 및 제2완충부재(132)는 상기 전극조립체(110)의 양면에 동일한 위치에 배치될 수도 있고 서로 엇갈리게 배치될 수도 있다.In this case, the first buffer member 131 and the second buffer member 132 may be formed to have the same cross-sectional shape with each other, as shown in Figs. In this case, the first buffer member 131 and the second buffer member 132 may be formed to have the same cross-sectional area. In addition, the first buffer member 131 and the second buffer member 132 may be disposed at the same position on both sides of the electrode assembly 110, or may be arranged alternately.
또한, 상기 제1완충부재(131) 및 제2완충부재(132)는 서로 다른 단면적을 갖도록 형성될 수도 있다. 일례로, 도 7에 도시된 바와 같이 상기 제2완충부재(132)는 상기 제1완충부재(131)보다 상대적으로 좁은 단면적을 갖도록 형성될 수 있다. 이와 같은 경우, 상기 플렉서블 배터리(100)는 밴딩방향에 따라 허용가능한 밴딩각도가 서로 다르게 설정될 수 있다.In addition, the first buffer member 131 and the second buffer member 132 may be formed to have different cross-sectional areas. For example, as illustrated in FIG. 7, the second buffer member 132 may be formed to have a relatively narrower cross-sectional area than the first buffer member 131. In this case, the allowable bending angle may be set differently according to the bending direction of the flexible battery 100.
즉, 도 7을 기준으로 상기 플렉서블 배터리(100)를 하방으로 볼록하게 밴딩하는 경우 플렉서블 배터리(100)의 밴딩 각도는 상기 제2완충부재(132)를 통해 제어될 수 있다. 반면, 도 7을 기준으로 상기 플렉서블 배터리(100)를 상방으로 볼록하게 밴딩하는 경우 플렉서블 배터리(100)의 밴딩 각도는 상기 제1완충부재(131)를 통해 제어될 수 있다. That is, when bending the flexible battery 100 convexly downward based on FIG. 7, the bending angle of the flexible battery 100 may be controlled through the second buffer member 132. In contrast, when the flexible battery 100 is convexly bent upward based on FIG. 7, the bending angle of the flexible battery 100 may be controlled by the first buffer member 131.
이에 따라, 상기 플렉서블 배터리(100)가 하방으로 볼록하게 밴딩될 때의 최대 밴딩각도는 170도 일수 있으나 상기 플렉서블 배터리(100)가 상방으로 볼록하게 밴딩될 때의 최대 밴딩각도는 150도일 수 있다. 이로 인해, 상기 플렉서블 배터리(100)가 상방으로 볼록하게 밴딩되는 것이 바람직한 밴딩 방향일 경우 상술한 구성을 채용함으로써 상기 플렉서블 배터리(100)가 의도된 방향으로 밴딩될 수 있도록 유도할 수 있다.Accordingly, the maximum bending angle when the flexible battery 100 is convexly bent downward may be 170 degrees, but the maximum bending angle when the flexible battery 100 is convex upwardly may be 150 degrees. Thus, when the flexible battery 100 is a bending direction in which the flexible battery 100 is convex upward, it is possible to induce the flexible battery 100 to be bent in the intended direction by adopting the above-described configuration.
그러나, 상기 최대 밴딩각도를 이에 한정하는 것은 아니며, 설계조건에 따라 다양하게 변경될 수 있으며, 상기 제1완충부재(131) 및 제2완충부재(132)의 단면 형상 및 크기를 적절하게 변경하는 방식을 통해 변경될 수 있음을 밝혀둔다.However, the maximum bending angle is not limited thereto, and may be variously changed according to design conditions, and the cross-sectional shape and size of the first buffer member 131 and the second buffer member 132 may be appropriately changed. Note that it can be changed in a way.
더불어, 도면에는 도시하지 않았지만, 상기 제1완충부재(131) 및 제2완충부재(132)는 서로 다른 단면형상을 갖도록 형성될 수도 있다. 또한, 상기 제1완충부재(131) 및 제2완충부재(132)의 단면형상은 도 8에 도시된 수용부의 다양한 단면형상이 모두 적용될 수 있음을 밝혀둔다.In addition, although not shown in the drawings, the first buffer member 131 and the second buffer member 132 may be formed to have different cross-sectional shapes. In addition, the cross-sectional shape of the first buffer member 131 and the second buffer member 132 it is noted that all the various cross-sectional shapes of the receiving portion shown in FIG.
한편, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 도 10에 도시된 바와 같이 외장재(120)에 수용부(140)를 형성하고 상기 수용부(140)에 열경화성 수지를 채운 후 경화함으로써 완충부재(130)를 형성할 수 있다.On the other hand, the flexible battery 100 according to an embodiment of the present invention by forming an accommodating part 140 in the exterior member 120 and filled with a thermosetting resin in the accommodating part 140 as shown in Figure 10 by curing The buffer member 130 may be formed.
일례로, 상기 외장재(120)는 상기 전극조립체(110)의 상부를 덮는 제1외장재(121)와 상기 전극조립체(110)의 하면을 덮는 제2외장재(122)를 포함할 수 있다. 이때, 상기 제1외장재(121) 및 제2외장재(122)는 표면으로부터 일방향으로 볼록하게 형성되고 폭방향을 따라 동일한 단면형상으로 연장된 복수 개의 수용부(140)가 형성된 상태일 수 있으며, 상기 복수 개의 수용부(140)는 길이방향을 따라 서로 연결되도록 배열될 수 있다.For example, the exterior member 120 may include a first exterior member 121 covering an upper portion of the electrode assembly 110 and a second exterior member 122 covering a bottom surface of the electrode assembly 110. In this case, the first exterior member 121 and the second exterior member 122 may be formed in a convex shape in one direction from the surface and a plurality of receiving portions 140 extending in the same cross-sectional shape along the width direction. The plurality of accommodation parts 140 may be arranged to be connected to each other along the longitudinal direction.
여기서, 상기 제1외장재(121)에 형성된 수용부(140)와 제2외장재(122)에 형성된 수용부(140)는 서로 동일한 형상일 수도 있고, 서로 다른 형상일 수도 있으며, 서로 동일한 단면적을 가질 수도 있고 서로 다른 단면적을 가질 수도 있다.Here, the accommodating part 140 formed on the first exterior material 121 and the accommodating part 140 formed on the second exterior material 122 may have the same shape, may have different shapes, or may have the same cross-sectional area. It may also have different cross-sectional areas.
이와 같은 상태에서, 상기 복수 개의 수용부(140)에 액상 또는 겔상의 열경화성 수지를 충진할 수 있다. 이때, 상기 열경화성 수지는 상기 수용부(140)에만 충진될 수도 있고 상기 복수 개의 수용부(140)가 모두 연결되도록 충진될 수도 있다.In this state, the plurality of accommodating parts 140 may be filled with a liquid or gel thermosetting resin. In this case, the thermosetting resin may be filled only in the accommodating part 140 or may be filled so that all of the plurality of accommodating parts 140 are connected.
이후, 상기 복수 개의 수용부(140)에 충진된 열경화성 수지는 경화를 통해 상술한 완충부재(130)를 구성할 수 있다. 이와 같이, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 상기 수용부(140)에 열경화성 수지를 충진한 후 경화를 통해 완충부재(130)를 구성함으로써 상기 완충부재(130)를 상기 수용부(140)에 삽입하기 위한 공정이 불필요할 수 있다. 이를 통해, 본 발명의 일 실시예에 따른 플렉서블 배터리(100)는 상기 수용부(140)의 단면형상과 대응되는 형상으로 완충부재(130)를 가공하는 공정이 불필하므로 작업생산성을 향상시킬 수 있다.Thereafter, the thermosetting resin filled in the plurality of accommodation parts 140 may configure the above-mentioned buffer member 130 through curing. As such, the flexible battery 100 according to the embodiment of the present invention fills the thermosetting resin in the accommodating part 140, and then configures the buffer member 130 through curing to accommodate the buffer member 130. The process for inserting into the unit 140 may be unnecessary. Through this, the flexible battery 100 according to an embodiment of the present invention can improve the work productivity because the process of processing the buffer member 130 in a shape corresponding to the cross-sectional shape of the receiving portion 140 is unnecessary. .
다음으로, 상기 제1외장재(121) 및 제2외장재(122) 사이에 전극조립체(110)를 배치한 후 상기 제1외장재(121) 및 제2외장재(122)의 테두리를 접착제를 통해 밀봉함으로써 상술한 플렉서블 배터리(100)를 제조할 수 있다.Next, after the electrode assembly 110 is disposed between the first outer member 121 and the second outer member 122, the edges of the first outer member 121 and the second outer member 122 are sealed by an adhesive. The above-described flexible battery 100 may be manufactured.
여기서, 상기 전극조립체(110)와 함께 외장재(120)의 내부에 봉지되는 전해액은 제1외장재(121) 및 제2외장재(122)의 테두리를 밀봉하는 과정에서 주입될 수도 있고, 상기 제1외장재(121) 및 제2외장재(122)의 테두리를 밀봉한 후 별도의 공정을 통해 외장재(120)의 내부에 주입될 수도 있다.Here, the electrolyte solution which is encapsulated in the exterior member 120 together with the electrode assembly 110 may be injected in the process of sealing the edges of the first exterior member 121 and the second exterior member 122, the first exterior member After sealing the edge of the 121 and the second exterior member 122 may be injected into the interior of the exterior member 120 through a separate process.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.

Claims (15)

  1. 전극조립체;Electrode assembly;
    상기 전극조립체를 전해액과 함께 봉지하는 외장재;An exterior member encapsulating the electrode assembly together with an electrolyte solution;
    상기 전극조립체의 밴딩각도를 제한할 수 있도록 상기 전극조립체 및 외장재 사이에 배치되는 완충부재; 및A buffer member disposed between the electrode assembly and the exterior member to limit the bending angle of the electrode assembly; And
    상기 완충부재를 내부에 수용할 수 있도록 상기 외장재에 형성되는 복수 개의 수용부;를 포함하는 플렉서블 배터리.And a plurality of accommodating parts formed in the exterior member to accommodate the shock absorbing member therein.
  2. 제 1항에 있어서,The method of claim 1,
    상기 수용부는 상기 외장재의 표면으로부터 외측으로 볼록하게 돌출형성되는 플렉서블 배터리.The receiving part is a flexible battery protruding outwardly from the surface of the packaging material.
  3. 제 1항에 있어서,The method of claim 1,
    상기 수용부는 상기 외장재의 길이방향에 대하여 일정각도 경사지게 형성되는 플렉서블 배터리.The accommodating part is a flexible battery formed to be inclined at an angle with respect to the longitudinal direction of the packaging material.
  4. 제 1항에 있어서,The method of claim 1,
    상기 수용부은 상기 외장재의 폭방향을 따라 반복적으로 형성되는 플렉서블 배터리.The accommodating part is repeatedly formed along the width direction of the exterior material.
  5. 제 1항에 있어서,The method of claim 1,
    상기 복수 개의 수용부는 서로 이웃하는 두 개의 수용부의 단부가 서로 직접 연결되도록 형성되는 플렉서블 배터리.The plurality of accommodating parts are formed so that the ends of two accommodating parts adjacent to each other are directly connected to each other.
  6. 제 1항에 있어서,The method of claim 1,
    상기 완충부재는 상기 전극조립체의 상면에 배치되는 제1완충부재와 상기 전극조립체의 하면에 배치되는 제2완충부재를 포함하는 플렉서블 배터리.The buffer member includes a first buffer member disposed on an upper surface of the electrode assembly and a second buffer member disposed on a lower surface of the electrode assembly.
  7. 제 6항에 있어서,The method of claim 6,
    상기 제1완충부재와 제2완충부재는 동일한 단면적을 갖도록 형성되는 플렉서블 배터리.The first buffer member and the second buffer member is formed to have the same cross-sectional area.
  8. 제 6항에 있어서,The method of claim 6,
    상기 제1완충부재와 제2완충부재는 서로 다른 단면적을 갖도록 형성되는 플렉서블 배터리.The first buffer member and the second buffer member is formed to have a different cross-sectional area.
  9. 제 1항에 있어서,The method of claim 1,
    상기 완충부재는 탄성력 및 내열성을 갖는 열경화성 수지로 이루어진 플렉서블 배터리.The buffer member is a flexible battery made of a thermosetting resin having elasticity and heat resistance.
  10. 제 9항에 있어서,The method of claim 9,
    상기 완충부재는 내식성을 갖는 재질로 이루어진 플렉서블 배터리.The buffer member is a flexible battery made of a material having corrosion resistance.
  11. 제 1항에 있어서,The method of claim 1,
    상기 플렉서블 배터리는 밴딩시 서로 이웃하는 두 개의 수용부에 수용된 완충부재를 통해 상기 플렉서블 배터리의 밴딩 각도가 제한되는 플렉서블 배터리.The flexible battery has a bending angle of the flexible battery limited through a buffer member accommodated in two adjacent receiving portions when bending.
  12. 제 1항에 있어서,The method of claim 1,
    상기 완충부재는 상기 전극조립체로부터 외측으로 갈수록 단면적이 작아지는 부분을 포함하는 플렉서블 배터리.The shock absorbing member includes a portion where the cross-sectional area is reduced toward the outside from the electrode assembly.
  13. 제 1항에 있어서,The method of claim 1,
    상기 완충부재는 일면이 소정의 두께를 갖는 연결부를 통해 서로 연결되는 플렉서블 배터리.The buffer member is a flexible battery is connected to each other through a connection portion having a predetermined thickness.
  14. 제 1항에 있어서,The method of claim 1,
    상기 전극조립체는 소정의 곡률을 갖도록 형성되는 플렉서블 배터리.The electrode assembly is formed to have a predetermined curvature.
  15. 길이방향을 따라 형성된 복수 개의 수용부를 포함하는 한 쌍의 외장재를 준비하는 단계;Preparing a pair of exterior members including a plurality of accommodation parts formed along a longitudinal direction;
    상기 복수 개의 수용부에 열경화성 수지를 충진한 후 경화를 통해 하나로 연결된 완충부재를 형성하는 단계; 및Filling a plurality of receiving portions with a thermosetting resin and then forming a buffer member connected to each other through curing; And
    상기 한 쌍의 외장재 사이에 전극조립체를 배치하고, 상기 한 쌍의 외장재의 테두리를 밀봉하는 단계;를 포함하고,And disposing an electrode assembly between the pair of exterior members and sealing the edges of the pair of exterior members.
    상기 복수 개의 수용부는 상기 외장재의 표면으로부터 일방향으로 볼록하게 형성되고 상기 외장재의 폭방향을 따라 동일한 단면형상으로 연장된 것인 플렉서블 배터리의 제조방법.The plurality of housing parts are formed convexly in one direction from the surface of the packaging material and extending in the same cross-sectional shape along the width direction of the packaging material.
PCT/KR2019/001140 2018-02-02 2019-01-28 Flexible battery and manufacturing method therefor WO2019151727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180013494A KR102154672B1 (en) 2018-02-02 2018-02-02 The method of manufacturing flexible battery
KR10-2018-0013494 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019151727A1 true WO2019151727A1 (en) 2019-08-08

Family

ID=67479423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001140 WO2019151727A1 (en) 2018-02-02 2019-01-28 Flexible battery and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102154672B1 (en)
WO (1) WO2019151727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707974A (en) * 2021-08-31 2021-11-26 京东方科技集团股份有限公司 Intelligent wearable device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006427A (en) * 1989-01-09 1991-04-09 Aeg Aktiengesellschaft Storage battery
JP2006049054A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Sheet material battery, battery pack assembled with sheet material batteries, and manufacturing method of sheet material battery
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
JP2016027544A (en) * 2013-10-22 2016-02-18 株式会社半導体エネルギー研究所 Electronic apparatus
KR20160107022A (en) * 2015-03-03 2016-09-13 주식회사 아모그린텍 Flexible battery and molding containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491873B1 (en) 2010-09-02 2015-02-10 한국전자통신연구원 Pouch-Type Flexible Rechargeable Film Battery And Method of Manufacturing the Same
WO2015173687A1 (en) * 2014-05-16 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Electronic device with secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006427A (en) * 1989-01-09 1991-04-09 Aeg Aktiengesellschaft Storage battery
JP2006049054A (en) * 2004-08-04 2006-02-16 Toyota Motor Corp Sheet material battery, battery pack assembled with sheet material batteries, and manufacturing method of sheet material battery
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
JP2016027544A (en) * 2013-10-22 2016-02-18 株式会社半導体エネルギー研究所 Electronic apparatus
KR20160107022A (en) * 2015-03-03 2016-09-13 주식회사 아모그린텍 Flexible battery and molding containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707974A (en) * 2021-08-31 2021-11-26 京东方科技集团股份有限公司 Intelligent wearable device

Also Published As

Publication number Publication date
KR102154672B1 (en) 2020-09-10
KR20190093993A (en) 2019-08-12

Similar Documents

Publication Publication Date Title
WO2013168948A1 (en) Battery cell having amorphous structure and battery module comprising same
WO2014137112A1 (en) Battery cell comprising stepped structure
WO2013168934A1 (en) Battery module having improved stability
WO2020204407A1 (en) Secondary battery battery case and pouch-type secondary battery
WO2014123329A1 (en) Battery cell including stepped structure
WO2014027786A1 (en) Battery module having assembly coupling structure
WO2014081239A1 (en) Embedded frame for pouch-type secondary battery and secondary battery having embedded frame
WO2015141920A1 (en) Battery cell having asymmetric and indented structure
WO2014042400A1 (en) Stacked type secondary battery
WO2017188605A1 (en) Battery cell having excellent manufacturing processability based on standardized structure and improved insulating properties of electrode lead, and battery pack including same
WO2019124795A1 (en) Apparatus for sealing pouch case
WO2019098522A1 (en) Pouch-type secondary battery having unsealed portion
WO2015046744A1 (en) Pouch-type battery cell comprising film member for protecting electrode lead-electrode tap joint
CN102097611A (en) Secondary battery
WO2022039369A1 (en) Secondary battery
WO2012177083A2 (en) Pouch and pouch type secondary battery
WO2019146892A1 (en) Battery module comprising a housing with integrated bus bar
WO2015102442A1 (en) Flexible battery cell
WO2014014285A1 (en) Secondary battery module comprising cell damper
WO2020145737A1 (en) Secondary battery and manufacturing method therefor
WO2019031702A1 (en) Battery cell frame and battery module comprising same
WO2021038545A1 (en) Pouch-type battery case and pouch-type secondary battery
WO2016056776A1 (en) Battery cell including battery case formed in shape corresponding to electrode assembly having step structure
WO2015056973A1 (en) Pouch-type secondary battery and secondary battery module comprising same
WO2020262852A1 (en) Battery module and battery pack including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747552

Country of ref document: EP

Kind code of ref document: A1