WO2019151250A1 - X-ray imaging device and synthesis method of tomosynthesis image - Google Patents

X-ray imaging device and synthesis method of tomosynthesis image Download PDF

Info

Publication number
WO2019151250A1
WO2019151250A1 PCT/JP2019/002969 JP2019002969W WO2019151250A1 WO 2019151250 A1 WO2019151250 A1 WO 2019151250A1 JP 2019002969 W JP2019002969 W JP 2019002969W WO 2019151250 A1 WO2019151250 A1 WO 2019151250A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
distributed
ray imaging
imaging apparatus
tubes
Prior art date
Application number
PCT/JP2019/002969
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 監物
均 桝谷
Original Assignee
ナノックス イメージング ピーエルシー
株式会社ナノックスジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノックス イメージング ピーエルシー, 株式会社ナノックスジャパン filed Critical ナノックス イメージング ピーエルシー
Priority to JP2019569135A priority Critical patent/JPWO2019151250A1/en
Priority to CN201980011378.2A priority patent/CN111683601A/en
Publication of WO2019151250A1 publication Critical patent/WO2019151250A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/52Target size or shape; Direction of electron beam, e.g. in tubes with one anode and more than one cathode

Definitions

  • the present invention relates to an X-ray imaging apparatus and a tomosynthesis image synthesis method.
  • An X-ray imaging apparatus that performs tomosynthesis imaging to obtain a tomographic image of a patient is known.
  • imaging is performed a plurality of times while moving the X-ray tube (for example, Patent Document 1).
  • the inventors of the present application arrange a plurality of X-ray tubes in advance and perform imaging while sequentially switching these by a control signal.
  • the inventor of the present application calls such a system in which a plurality of X-ray tubes are arranged in advance as “distributed X-ray source”.
  • the distributed X-ray source occupies a large continuous space, it may not be adopted depending on the application.
  • the distributed X-ray source may block the flow line of the robot arm, and thus the distributed X-ray source may not be employed.
  • an object of the present invention is to provide an X-ray imaging apparatus and a tomosynthesis image synthesis method that can increase the possibility of adopting a distributed X-ray source.
  • An X-ray imaging apparatus includes a plurality of distributed X-ray sources each having a plurality of X-ray tubes arranged at a constant pitch, and the plurality of distributed X-ray sources are arranged with a space therebetween, and the space The distance between two X-ray tubes that are adjacent to each other with respect to the X-ray imaging apparatus is larger than the pitch.
  • the tomosynthesis image synthesizing method according to the present invention is based on a plurality of images taken using each of the plurality of X-ray tubes included in the plurality of distributed X-ray sources provided in the X-ray imaging apparatus. Is a method for synthesizing tomosynthesis images.
  • the robot arm can be passed between the plurality of X-ray tubes constituting the distributed X-ray source, the possibility of adopting the distributed X-ray source can be increased.
  • FIG. 1 is a figure which shows the structure of the X-ray imaging apparatus 1 by embodiment of this invention
  • (b) is typical of the electron emission part 10 provided in each cold cathode type
  • FIG. It is sectional drawing. It is a figure explaining arrangement
  • FIG. 1A is a diagram showing a configuration of an X-ray imaging apparatus 1 according to an embodiment of the present invention.
  • the X-ray imaging apparatus 1 includes a plurality of cold cathode X-ray tubes 3 constituting a distributed X-ray source and their control devices 2.
  • FIG. 1A shows only one cross-sectional view of the plurality of X-ray tubes 3 and the control device 2.
  • each X-ray tube 3 has a structure in which an electron emission unit 10, an anode unit 11, a target 12, and a focus structure 13 are arranged inside a housing 15. ing.
  • the housing 15 is a sealing member made of any one of glass, ceramics, and stainless steel.
  • the casing 15 is provided with a valve, and as needed, exhaust inside the casing 15 and gas injection into the casing 15 are performed through this valve.
  • the inside of the housing 15 is evacuated by evacuating using a vacuum pump.
  • FIG. 1B is a schematic cross-sectional view of the electron emission portion 10.
  • the electron emission portion 10 includes a cathode electrode 20, a plurality of electron emission elements 21 arranged on the upper surface of the cathode portion 20, and a gate electrode having a plurality of openings 22h arranged in a matrix. 22.
  • Each of the plurality of electron-emitting devices 21 is a Spindt-type cold cathode, and is arranged one by one in the opening 22h. The upper end of each electron-emitting device 21 is located in the opening 22h.
  • the cathode portion 20 is supplied with the ground potential GND from the control device 2, and the gate electrode 22 is supplied with the gate voltage Vg from the control device 2.
  • the anode part 11 is a metal member having an anode surface 11a arranged to face the electron emission part 10, and is specifically made of copper (Cu).
  • the positive side terminal of the power source P is connected to the anode portion 11. Therefore, when the gate electrode 22 shown in FIG. 1B is turned on, the anode portion 11, the electron emitting portion 10, A current (anode current) flows through the cathode portion 20. At this time, a plurality of electrons are emitted from each electron-emitting device 21 shown in FIG. These electrons collide with the anode surface 11 a and pass through the anode portion 11 and are absorbed by the power source P. As shown in FIG. 1A, the anode surface 11a is formed so as to be inclined with respect to an electron moving direction (a direction from left to right in the drawing).
  • the target 12 is a member made of a material that receives electrons and generates X-rays, and is arranged so as to cover a portion of the anode surface 11a where electrons emitted from each electron-emitting device 21 directly collide. Since the target 12 is disposed on the anode surface 11a, some or all of the plurality of electrons that collide with the anode surface 11a pass through the target 12, and X-rays are generated in the target 12 during the passage. . The radiation direction of the X-rays thus generated is downward in the drawing due to the inclination of the anode surface 11a.
  • the focus structure 13 is a structure having a function of correcting the trajectory of electrons emitted from the electron emission unit 10, and is arranged between the electron emission unit 10 and the target 12 arranged on the anode surface 11a.
  • the focus structure 13 has a window 13h, and electrons emitted from the electron emission unit 10 travel toward the target 12 through the window 13h.
  • a focus voltage Vf is supplied from the control device 2 to the focus structure 13.
  • the focus voltage Vf plays a role of controlling the correction amount of the electron trajectory by the focus structure 13.
  • the focus structure 13 may be divided into two or more regions. In this case, the focus position of the electron beam on the anode surface 11a can be adjusted by applying a different focus voltage Vf to each region. Become.
  • the control device 2 is a processing device that operates according to a program written in advance or an instruction from the outside, a function of supplying the ground potential GND to the cathode unit 20, a function of supplying the gate voltage Vg to the gate electrode 22, and a focus It has a function of supplying the focus voltage Vf to the structure 13.
  • the X-ray tube 3 is in operation when the supply of the gate voltage Vg to the gate electrode 22 is started under the control of the control device 2, and starts X-ray emission.
  • FIG. 2 is a diagram for explaining the arrangement of a plurality of cold cathode X-ray tubes 3 according to the present embodiment.
  • the distributed X-ray source included in the X-ray imaging apparatus 1 according to the present embodiment is divided into three distributed X-ray sources G1 to G3. These distributed X-ray sources G1 to G3 are arranged with a space SP therebetween, and are each configured with five X-ray tubes 3 arranged at a constant pitch PI1 (center distance). The specific position and size of the space SP are determined based on the size and flow line so that the robot arm used together with the X-ray imaging apparatus 1 can pass without any problem.
  • the distance PI2 (center distance) between the two X-ray tubes 3 is larger than the pitch PI1.
  • the number of distributed X-ray sources is limited to three.
  • the number of X-ray tubes 3 included in each distributed X-ray source is not limited to five.
  • the distributed X-ray sources G1 to G3 are arranged at equal intervals on an arc centered on the patient's examination site EX.
  • the X-ray tubes 3 are arranged side by side on a straight line.
  • the X-ray tubes 3 may be arranged side by side on an arc centered on the patient's examination site EX in each of the distributed X-ray sources G1 to G3.
  • the X-ray irradiation direction of each X-ray tube 3 is adjusted in advance to the direction of the patient's test site EX.
  • an X-ray detector is disposed on the opposite side of each cold cathode X-ray tube 3 across the test site EX.
  • One detector may be provided, or may be provided for each X-ray tube 3.
  • FIG. 3 is a diagram showing a control method of the X-ray imaging apparatus 1 shown in FIG.
  • the horizontal axis represents time t
  • the vertical axis collectively represents the gate voltage Vg supplied to the gate electrode 22 of each X-ray tube 3.
  • numerals 1 to 15 shown in the figure indicate the serial numbers of the 15 X-ray tubes 3 shown in FIG.
  • the control device 2 of the X-ray imaging apparatus 1 shown in FIG. 2 is configured to sequentially activate the gate voltage Vg supplied to the gate electrodes 22 of the 15 X-ray tubes 3 as shown in FIG.
  • Each X-ray tube 3 is in an operating state by turning on the gate electrode 22 while the corresponding gate voltage Vg is in an active state.
  • the supply of the gate voltage Vg to each X-ray tube 3 is preferably performed at equal intervals so that two or more gate voltages Vg are not activated simultaneously.
  • control device 2 By the operation of the control device 2 as described above, 15 images captured using each of the 15 X-ray tubes 3 are obtained.
  • the control device 2 synthesizes a tomosynthesis image based on the plurality of images thus obtained. This makes it possible to obtain a 3D tomographic image of the test site EX.
  • the robot arm is passed through the space SP. Is possible. Therefore, it becomes possible to use a distributed X-ray source that could not be used conventionally with a surgical robot.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • X-Ray Techniques (AREA)

Abstract

[Problem] To provide an X-ray imaging device that increases the possibility that a distributed X-ray source can be adopted, and a synthesis method of tomosynthesis images. [Solution] This X-ray imaging device is provided with multiple distributed X-ray sources G1-G3, each having multiple X-ray tubes 3 arranged at a fixed pitch PI1, and the distributed X-ray sources G1-G3 are arranged separated by a space SP, and the distance PI2 between two X-ray tubes 3 that are adjacent but separated by the space SP is greater than the pitch PI1.

Description

X線撮影装置及びトモシンセシス画像の合成方法X-ray imaging apparatus and tomosynthesis image synthesis method
 本発明は、X線撮影装置及びトモシンセシス画像の合成方法に関する。 The present invention relates to an X-ray imaging apparatus and a tomosynthesis image synthesis method.
 患者の断層画像を得るためにトモシンセシス撮影を実行するX線撮影装置が知られている。この種のX線撮影装置においては、X線管を移動させながら複数回の撮影が行われる(例えば、特許文献1)。 An X-ray imaging apparatus that performs tomosynthesis imaging to obtain a tomographic image of a patient is known. In this type of X-ray imaging apparatus, imaging is performed a plurality of times while moving the X-ray tube (for example, Patent Document 1).
特開2017-164426JP 2017-164426
 ところで、X線管を移動させながら撮影していたのでは撮影に時間がかかることから、本願の発明者は、予め複数のX線管を配置しておき、これらを制御信号によって順次切り替えながら撮影を行うことで、撮影の時間短縮を実現することを考えた。本願の発明者は、このように予め複数のX線管を配置しておく方式を「分散X線源(Distributed X-ray Source)」と呼んでいる。 By the way, since it takes a long time to take an image while moving the X-ray tube, the inventors of the present application arrange a plurality of X-ray tubes in advance and perform imaging while sequentially switching these by a control signal. We thought about realizing a reduction in shooting time by The inventor of the present application calls such a system in which a plurality of X-ray tubes are arranged in advance as “distributed X-ray source”.
 しかしながら、分散X線源は大きな連続スペースを占用することになることから、用途によっては採用できない場合があった。例えば、手術用ロボットによる手術の最中にトモシンセシス撮影を実行する場合、分散X線源がロボットのアームの動線を塞いでしまうことから、分散X線源を採用できない場合があった。 However, since the distributed X-ray source occupies a large continuous space, it may not be adopted depending on the application. For example, when tomosynthesis imaging is performed during surgery by a surgical robot, the distributed X-ray source may block the flow line of the robot arm, and thus the distributed X-ray source may not be employed.
 したがって、本発明の目的は、分散X線源を採用できる可能性を高めることのできるX線撮影装置及びトモシンセシス画像の合成方法を提供することにある。 Therefore, an object of the present invention is to provide an X-ray imaging apparatus and a tomosynthesis image synthesis method that can increase the possibility of adopting a distributed X-ray source.
 本発明によるX線撮影装置は、一定のピッチで配置された複数のX線管をそれぞれ有する複数の分散X線源を備え、前記複数の分散X線源はスペースを空けて配置され、前記スペースを挟んで隣接する2つの前記X線管の間の距離は、前記ピッチより大きい、X線撮影装置である。 An X-ray imaging apparatus according to the present invention includes a plurality of distributed X-ray sources each having a plurality of X-ray tubes arranged at a constant pitch, and the plurality of distributed X-ray sources are arranged with a space therebetween, and the space The distance between two X-ray tubes that are adjacent to each other with respect to the X-ray imaging apparatus is larger than the pitch.
 本発明によるトモシンセシス画像の合成方法は、上記X線撮影装置が備える前記複数の分散X線源がそれぞれ有する前記複数のX線管のそれぞれを用いて撮影されてなる複数の画像に基づいてトモシンセシス画像の合成を行う、トモシンセシス画像の合成方法である。 The tomosynthesis image synthesizing method according to the present invention is based on a plurality of images taken using each of the plurality of X-ray tubes included in the plurality of distributed X-ray sources provided in the X-ray imaging apparatus. Is a method for synthesizing tomosynthesis images.
 本発明によれば、分散X線源を構成する複数のX線管の間にロボットアームを通すことができるので、分散X線源を採用できる可能性を高めることが可能になる。 According to the present invention, since the robot arm can be passed between the plurality of X-ray tubes constituting the distributed X-ray source, the possibility of adopting the distributed X-ray source can be increased.
(a)は、本発明の実施の形態によるX線撮影装置1の構成を示す図であり、(b)は、各冷カソード形X線管3内に設けられる電子放出部10の模式的な断面図である。(A) is a figure which shows the structure of the X-ray imaging apparatus 1 by embodiment of this invention, (b) is typical of the electron emission part 10 provided in each cold cathode type | mold X-ray tube 3. FIG. It is sectional drawing. 本発明の実施の形態による複数の冷カソード形X線管3の配置を説明する図である。It is a figure explaining arrangement | positioning of the several cold cathode type X-ray tube 3 by embodiment of this invention. 図2に示したX線撮影装置1の制御方法を示す図である。It is a figure which shows the control method of the X-ray imaging apparatus 1 shown in FIG.
 以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1(a)は、本発明の実施の形態によるX線撮影装置1の構成を示す図である。X線撮影装置1は、分散X線源を構成する複数の冷カソード形X線管3と、それらの制御装置2とを含んで構成される。ただし、図1(a)には、複数のX線管3のうちの1つの断面図と、制御装置2とのみを示している。 FIG. 1A is a diagram showing a configuration of an X-ray imaging apparatus 1 according to an embodiment of the present invention. The X-ray imaging apparatus 1 includes a plurality of cold cathode X-ray tubes 3 constituting a distributed X-ray source and their control devices 2. However, FIG. 1A shows only one cross-sectional view of the plurality of X-ray tubes 3 and the control device 2.
 図1(a)に示すように、各X線管3は、電子放出部10と、アノード部11と、ターゲット12と、フォーカス構造13とが筐体15の内部に配置された構造を有している。 As shown in FIG. 1A, each X-ray tube 3 has a structure in which an electron emission unit 10, an anode unit 11, a target 12, and a focus structure 13 are arranged inside a housing 15. ing.
 筐体15は、ガラス、セラミックス、及びステンレスのいずれかにより構成される密閉部材である。図示していないが筐体15にはバルブが設けられており、必要に応じ、このバルブを通じて筐体15の内部の排気及び筐体15の内部へのガス注入が行われる。例えば、制御装置2の制御によってX線管3を動作させる前には、真空ポンプを用いて排気することによって、筐体15内を真空状態とする。 The housing 15 is a sealing member made of any one of glass, ceramics, and stainless steel. Although not shown, the casing 15 is provided with a valve, and as needed, exhaust inside the casing 15 and gas injection into the casing 15 are performed through this valve. For example, before operating the X-ray tube 3 under the control of the control device 2, the inside of the housing 15 is evacuated by evacuating using a vacuum pump.
 図1(b)は、電子放出部10の模式的な断面図である。同図に示すように、電子放出部10は、カソード部20と、カソード部20の上面に配置される複数の電子放出素子21と、マトリクス状に配置された複数の開口部22hを有するゲート電極22とを備えて構成される。複数の電子放出素子21はそれぞれスピント型の冷カソードであり、開口部22h内に1つずつ配置される。各電子放出素子21の上端は、開口部22h内に位置している。カソード部20には制御装置2からグランド電位GNDが供給され、ゲート電極22には制御装置2からゲート電圧Vgが供給される。 FIG. 1B is a schematic cross-sectional view of the electron emission portion 10. As shown in the figure, the electron emission portion 10 includes a cathode electrode 20, a plurality of electron emission elements 21 arranged on the upper surface of the cathode portion 20, and a gate electrode having a plurality of openings 22h arranged in a matrix. 22. Each of the plurality of electron-emitting devices 21 is a Spindt-type cold cathode, and is arranged one by one in the opening 22h. The upper end of each electron-emitting device 21 is located in the opening 22h. The cathode portion 20 is supplied with the ground potential GND from the control device 2, and the gate electrode 22 is supplied with the gate voltage Vg from the control device 2.
 アノード部11は、電子放出部10と対向して配置されたアノード面11aを有する金属部材であり、具体的には銅(Cu)によって構成される。アノード部11には電源Pのプラス側端子が接続されており、したがって、図1(b)に示したゲート電極22がオンとなっている場合、電源Pからアノード部11、電子放出部10、カソード部20を通って電流(アノード電流)が流れることになる。このとき、図1(b)に示した各電子放出素子21から複数の電子が放出される。これらの電子はアノード面11aに衝突し、アノード部11内を通って電源Pに吸収される。アノード面11aは、図1(a)に示すように、電子の移動方向(図面上では、左から右に向かう方向)に対して傾斜して形成されている。 The anode part 11 is a metal member having an anode surface 11a arranged to face the electron emission part 10, and is specifically made of copper (Cu). The positive side terminal of the power source P is connected to the anode portion 11. Therefore, when the gate electrode 22 shown in FIG. 1B is turned on, the anode portion 11, the electron emitting portion 10, A current (anode current) flows through the cathode portion 20. At this time, a plurality of electrons are emitted from each electron-emitting device 21 shown in FIG. These electrons collide with the anode surface 11 a and pass through the anode portion 11 and are absorbed by the power source P. As shown in FIG. 1A, the anode surface 11a is formed so as to be inclined with respect to an electron moving direction (a direction from left to right in the drawing).
 ターゲット12は、電子を受けてX線を発生する材料によって構成された部材であり、アノード面11aのうち各電子放出素子21から放出された電子が直接衝突する部分を覆うように配置される。ターゲット12がアノード面11a上に配置されていることから、アノード面11aに衝突する複数の電子の一部又は全部はターゲット12を通過し、通過の際に、ターゲット12内でX線が発生する。こうして発生したX線の放射方向は、アノード面11aの傾斜のために図面下向きとなる。 The target 12 is a member made of a material that receives electrons and generates X-rays, and is arranged so as to cover a portion of the anode surface 11a where electrons emitted from each electron-emitting device 21 directly collide. Since the target 12 is disposed on the anode surface 11a, some or all of the plurality of electrons that collide with the anode surface 11a pass through the target 12, and X-rays are generated in the target 12 during the passage. . The radiation direction of the X-rays thus generated is downward in the drawing due to the inclination of the anode surface 11a.
 フォーカス構造13は、電子放出部10から放出された電子の軌道を修正する機能を有する構造物であり、電子放出部10と、アノード面11aに配置されるターゲット12との間に配置される。フォーカス構造13は窓13hを有しており、電子放出部10から放出された電子は、この窓13hを通ってターゲット12に向かう。フォーカス構造13には、制御装置2からフォーカス電圧Vfが供給される。このフォーカス電圧Vfは、フォーカス構造13による電子軌道の修正量を制御する役割を果たす。なお、フォーカス構造13は2つ以上の領域に分かれていてもよく、その場合、各領域に異なるフォーカス電圧Vfを印加することで、アノード面11aにおける電子線の焦点位置を調整することが可能になる。 The focus structure 13 is a structure having a function of correcting the trajectory of electrons emitted from the electron emission unit 10, and is arranged between the electron emission unit 10 and the target 12 arranged on the anode surface 11a. The focus structure 13 has a window 13h, and electrons emitted from the electron emission unit 10 travel toward the target 12 through the window 13h. A focus voltage Vf is supplied from the control device 2 to the focus structure 13. The focus voltage Vf plays a role of controlling the correction amount of the electron trajectory by the focus structure 13. The focus structure 13 may be divided into two or more regions. In this case, the focus position of the electron beam on the anode surface 11a can be adjusted by applying a different focus voltage Vf to each region. Become.
 制御装置2は、予め書き込まれたプログラム又は外部からの指示に従って動作する処理装置であり、カソード部20にグランド電位GNDを供給する機能、ゲート電極22にゲート電圧Vgを供給する機能、及び、フォーカス構造13に対してフォーカス電圧Vfを供給する機能を有する。X線管3は、制御装置2の制御によってゲート電極22へのゲート電圧Vgの供給が開始された場合に動作中となり、X線の放射を開始する。 The control device 2 is a processing device that operates according to a program written in advance or an instruction from the outside, a function of supplying the ground potential GND to the cathode unit 20, a function of supplying the gate voltage Vg to the gate electrode 22, and a focus It has a function of supplying the focus voltage Vf to the structure 13. The X-ray tube 3 is in operation when the supply of the gate voltage Vg to the gate electrode 22 is started under the control of the control device 2, and starts X-ray emission.
 図2は、本実施の形態による複数の冷カソード形X線管3の配置を説明する図である。同図に示すように、本実施の形態によるX線撮影装置1が有する分散X線源は、3つの分散X線源G1~G3に分割されている。これら分散X線源G1~G3はスペースSPを空けて配置されており、それぞれ、一定のピッチPI1(中心間距離)で配置された5個のX線管3を有して構成される。スペースSPの具体的な位置及びサイズは、X線撮影装置1とともに用いられるロボットアームが問題なく通過できるようそのサイズ及び動線に基づいて決定されるが、少なくとも、スペースSPを挟んで隣接する2つのX線管3の間の距離PI2(中心間距離)はピッチPI1より大きい値となる。なお、図2では、分散X線源が3つであり、各分散X線源が5個のX線管3を有する例を取り上げているが、分散X線源は個数は3つに限定されず、各分散X線源が有するX線管3の個数は5個に限定されない。 FIG. 2 is a diagram for explaining the arrangement of a plurality of cold cathode X-ray tubes 3 according to the present embodiment. As shown in the figure, the distributed X-ray source included in the X-ray imaging apparatus 1 according to the present embodiment is divided into three distributed X-ray sources G1 to G3. These distributed X-ray sources G1 to G3 are arranged with a space SP therebetween, and are each configured with five X-ray tubes 3 arranged at a constant pitch PI1 (center distance). The specific position and size of the space SP are determined based on the size and flow line so that the robot arm used together with the X-ray imaging apparatus 1 can pass without any problem. The distance PI2 (center distance) between the two X-ray tubes 3 is larger than the pitch PI1. In FIG. 2, there are three distributed X-ray sources and each distributed X-ray source has five X-ray tubes 3. However, the number of distributed X-ray sources is limited to three. The number of X-ray tubes 3 included in each distributed X-ray source is not limited to five.
 分散X線源G1~G3は、患者の被検部位EXを中心とする円弧上に等間隔で並べて配置される。また、分散X線源G1~G3それぞれの内部においては、各X線管3は直線上に並べて配置される。ただし、分散X線源G1~G3それぞれの内部においても、患者の被検部位EXを中心とする円弧上にX線管3を並べて配置することとしてもよい。各X線管3のX線照射方向は、患者の被検部位EXの方向に予め調整される。図示していないが、被検部位EXを挟んで各冷カソード形X線管3の反対側には、X線の検出器が配置される。この検出器は、1つであってもよいし、X線管3ごとに設けられていてもよい。 The distributed X-ray sources G1 to G3 are arranged at equal intervals on an arc centered on the patient's examination site EX. In addition, in each of the distributed X-ray sources G1 to G3, the X-ray tubes 3 are arranged side by side on a straight line. However, the X-ray tubes 3 may be arranged side by side on an arc centered on the patient's examination site EX in each of the distributed X-ray sources G1 to G3. The X-ray irradiation direction of each X-ray tube 3 is adjusted in advance to the direction of the patient's test site EX. Although not shown, an X-ray detector is disposed on the opposite side of each cold cathode X-ray tube 3 across the test site EX. One detector may be provided, or may be provided for each X-ray tube 3.
 図3は、図2に示したX線撮影装置1の制御方法を示す図である。同図において、横軸は時間tであり、縦軸は各X線管3のゲート電極22に供給されるゲート電圧Vgをまとめて表している。また、同図に示した1~15の数字は、図2に示した15個のX線管3の通番を示している。 FIG. 3 is a diagram showing a control method of the X-ray imaging apparatus 1 shown in FIG. In the figure, the horizontal axis represents time t, and the vertical axis collectively represents the gate voltage Vg supplied to the gate electrode 22 of each X-ray tube 3. Further, numerals 1 to 15 shown in the figure indicate the serial numbers of the 15 X-ray tubes 3 shown in FIG.
 図2に示したX線撮影装置1の制御装置2は、図3に示すように、15個のX線管3のゲート電極22に供給するゲート電圧Vgを順次活性化するよう構成される。各X線管3は、対応するゲート電圧Vgが活性状態となっている間、ゲート電極22がオンとなることによって動作中状態となる。なお、各X線管3に対するゲート電圧Vgの供給は、図3に示すように、等間隔でかつ2つ以上のゲート電圧Vgが同時に活性化されることのないように行うことが好ましい。 The control device 2 of the X-ray imaging apparatus 1 shown in FIG. 2 is configured to sequentially activate the gate voltage Vg supplied to the gate electrodes 22 of the 15 X-ray tubes 3 as shown in FIG. Each X-ray tube 3 is in an operating state by turning on the gate electrode 22 while the corresponding gate voltage Vg is in an active state. As shown in FIG. 3, the supply of the gate voltage Vg to each X-ray tube 3 is preferably performed at equal intervals so that two or more gate voltages Vg are not activated simultaneously.
 このような制御装置2の動作により、15個のX線管3のそれぞれを用いて撮影されてなる15枚の画像が得られることになる。制御装置2は、こうして得られた複数の画像に基づいて、トモシンセシス画像の合成を行う。これにより、被検部位EXの3D断層像を得ることが可能になる。 By the operation of the control device 2 as described above, 15 images captured using each of the 15 X-ray tubes 3 are obtained. The control device 2 synthesizes a tomosynthesis image based on the plurality of images thus obtained. This makes it possible to obtain a 3D tomographic image of the test site EX.
 以上説明したように、本実施の形態によるX線撮影装置及びトモシンセシス画像の合成方法によれば、X線撮影装置1を例えば手術用ロボットとともに使用する場合に、スペースSPにロボットのアームを通すことが可能になる。したがって、従来は使用できなかった分散X線源を、手術用ロボットとともに使用することが可能になる。 As described above, according to the X-ray imaging apparatus and the tomosynthesis image synthesis method according to the present embodiment, when the X-ray imaging apparatus 1 is used with a surgical robot, for example, the robot arm is passed through the space SP. Is possible. Therefore, it becomes possible to use a distributed X-ray source that could not be used conventionally with a surgical robot.
 以上、本発明の好ましい実施の形態について説明したが、本発明はこうした実施の形態に何等限定されるものではなく、本発明が、その要旨を逸脱しない範囲において、種々なる態様で実施され得ることは勿論である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to such embodiment at all, and this invention can be implemented in various aspects in the range which does not deviate from the summary. Of course.
1     X線撮影装置
2     制御装置
3     X線管
10    電子放出部
11    アノード部
11a   アノード面
12    ターゲット
13    フォーカス構造
13h   窓
15    筐体
20    カソード部
21    電子放出素子
22    ゲート電極
22h   開口部
EX    被検部位
G1~G3 分散X線源
P     電源
PI1   ピッチ
PI2   距離
SP    スペース
T     トランジスタ
DESCRIPTION OF SYMBOLS 1 X-ray imaging apparatus 2 Control apparatus 3 X-ray tube 10 Electron emission part 11 Anode part 11a Anode surface 12 Target 13 Focus structure 13h Window 15 Case 20 Cathode part 21 Electron emission element 22 Gate electrode 22h Opening part EX Test site G1 ~ G3 Distributed X-ray source P Power supply PI1 Pitch PI2 Distance SP Space T Transistor

Claims (3)

  1.  一定のピッチで配置された複数のX線管をそれぞれ有する複数の分散X線源を備え、
     前記複数の分散X線源はスペースを空けて配置され、
     前記スペースを挟んで隣接する2つの前記X線管の間の距離は、前記ピッチより大きい、
     X線撮影装置。
    A plurality of distributed X-ray sources each having a plurality of X-ray tubes arranged at a constant pitch;
    The plurality of distributed X-ray sources are arranged with a space therebetween;
    The distance between two X-ray tubes adjacent to each other with the space therebetween is larger than the pitch.
    X-ray imaging device.
  2.  前記複数の分散X線源がそれぞれ有する前記複数のX線管はそれぞれ、スピント型の冷カソードを用いた電子放出部を有する、
     請求項1に記載のX線撮影装置。
    Each of the plurality of X-ray tubes included in each of the plurality of distributed X-ray sources has an electron emission unit using a Spindt-type cold cathode.
    The X-ray imaging apparatus according to claim 1.
  3.  請求項1又は2に記載のX線撮影装置が備える前記複数の分散X線源がそれぞれ有する前記複数のX線管のそれぞれを用いて撮影されてなる複数の画像に基づいてトモシンセシス画像の合成を行う、
     トモシンセシス画像の合成方法。
    A tomosynthesis image is synthesized based on a plurality of images photographed using each of the plurality of X-ray tubes respectively included in the plurality of distributed X-ray sources provided in the X-ray imaging apparatus according to claim 1. Do,
    Tomosynthesis image synthesis method.
PCT/JP2019/002969 2018-01-31 2019-01-29 X-ray imaging device and synthesis method of tomosynthesis image WO2019151250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019569135A JPWO2019151250A1 (en) 2018-01-31 2019-01-29 X-ray equipment and tomosynthesis image composition method
CN201980011378.2A CN111683601A (en) 2018-01-31 2019-01-29 X-ray imaging apparatus and tomosynthesis image synthesis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862624458P 2018-01-31 2018-01-31
US62/624,458 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151250A1 true WO2019151250A1 (en) 2019-08-08

Family

ID=67478392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002969 WO2019151250A1 (en) 2018-01-31 2019-01-29 X-ray imaging device and synthesis method of tomosynthesis image

Country Status (3)

Country Link
JP (1) JPWO2019151250A1 (en)
CN (1) CN111683601A (en)
WO (1) WO2019151250A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546408A (en) * 1978-09-29 1980-04-01 Toshiba Corp X-ray device
JP2006524809A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド Control means for controlling thermal load of X-ray scanning apparatus
US20120195403A1 (en) * 2011-01-31 2012-08-02 University Of Massachusetts Tomosynthesis imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062541A1 (en) * 2010-12-07 2012-06-14 Siemens Aktiengesellschaft Mammography apparatus for performing tomosynthesis measurement of examination object e.g. breast of patient, has X-ray emitters that are arranged, in order to incident X-ray radiation on examination object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546408A (en) * 1978-09-29 1980-04-01 Toshiba Corp X-ray device
JP2006524809A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド Control means for controlling thermal load of X-ray scanning apparatus
US20120195403A1 (en) * 2011-01-31 2012-08-02 University Of Massachusetts Tomosynthesis imaging

Also Published As

Publication number Publication date
JPWO2019151250A1 (en) 2021-02-18
CN111683601A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
RU2635372C2 (en) Multi-cathode distributed x-ray apparatus with cathode control and computer-tomographic device with mentioned apparatus
US8989351B2 (en) X-ray source with a plurality of electron emitters
RU2655916C2 (en) X-ray device and ct equipment having same
US8488737B2 (en) Medical X-ray imaging system
JP4599073B2 (en) X-ray tomography equipment
US7197116B2 (en) Wide scanning x-ray source
KR100895067B1 (en) The discretely addressable large area x-ray system
JP2004357724A (en) X-ray ct apparatus, x-ray generating apparatus, and data collecting method of x-ray ct apparatus
US8938050B2 (en) Low bias mA modulation for X-ray tubes
WO2015039602A1 (en) X-ray device and ct equipment having x-ray device
JP2007095689A (en) X-ray generator by cold electron source
US6907110B2 (en) X-ray tube with ring anode, and system employing same
DE102009043424A1 (en) Medical radiography system
JP2012079695A (en) Method and system for operating electron beam system
JP2015019987A (en) Multi-source radiation generator and radiographic imaging system
WO2019151251A1 (en) Method for controlling x-ray tube and device for controlling x-ray tube
US20180005796A1 (en) X-ray tube and a controller thereof
US10499862B2 (en) Panoramic X-ray imaging apparatus
WO2019151250A1 (en) X-ray imaging device and synthesis method of tomosynthesis image
WO2019151249A1 (en) Control method of x-ray imaging device
JP2010015989A (en) Cathode assembly for rapid exchange of electron source in rotary anode type x-ray generator
US10991539B2 (en) X-ray tube and a conditioning method thereof
JP4526113B2 (en) Microfocus X-ray tube and X-ray apparatus using the same
US11212902B2 (en) Multiplexed drive systems and methods for a multi-emitter X-ray source
US20230300964A1 (en) Cnt x-ray tube control system with dummy load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747410

Country of ref document: EP

Kind code of ref document: A1