WO2019149270A1 - 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 - Google Patents
一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 Download PDFInfo
- Publication number
- WO2019149270A1 WO2019149270A1 PCT/CN2019/074423 CN2019074423W WO2019149270A1 WO 2019149270 A1 WO2019149270 A1 WO 2019149270A1 CN 2019074423 W CN2019074423 W CN 2019074423W WO 2019149270 A1 WO2019149270 A1 WO 2019149270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pier
- assembled
- steel bars
- bars
- bar
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 51
- 239000010959 steel Substances 0.000 title claims abstract description 51
- 230000002787 reinforcement Effects 0.000 title claims abstract description 20
- 239000004567 concrete Substances 0.000 claims abstract description 17
- 210000002435 tendon Anatomy 0.000 claims description 31
- 230000003014 reinforcing effect Effects 0.000 claims description 19
- 238000005096 rolling process Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 8
- 238000004873 anchoring Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 2
- 238000010008 shearing Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 2
- 238000010276 construction Methods 0.000 description 20
- 238000006073 displacement reaction Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011440 grout Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/02—Piers; Abutments ; Protecting same against drifting ice
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/22—Masonry; Bricks
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/30—Metal
Definitions
- the invention relates to a prefabricated segment assembling concrete pier, in particular to an assembling pier of a common reinforcing bar and a finishing rolling reinforced bar.
- Prefabricated segmental assembly bridge system has become one of the effective solutions to meet the above requirements, and its good application prospects benefit from the following main advantages: (1) Most of the components are assembled by industrial production and mechanization, with outstanding construction efficiency; (2) The on-site construction period is short and affected by the seasons and weather; (3) The components are manufactured and maintained with good durability, and the life cycle maintenance cost is reduced; (4) The ecological environment, living environment and existing traffic disturbance around the bridge site small.
- the present invention is to provide an assembly pier and a construction method for mixing reinforcing bars of ordinary steel bars and finishing rolled steel bars, and solving the problem that it is difficult to simultaneously reduce the maximum vibration of piers in the existing assembling pier technology.
- the standard value of the ordinary steel yield strength is between 400MPa and 500MPa, and the standard value of the yield strength of the precision rolled steel bar is between 785MPa and 1200MPa, and both have the same elastic modulus.
- the assembled pier of the mixed reinforcement proposed by the present invention when the assembled pier of the mixed reinforcement proposed by the present invention is subjected to an earthquake disaster, the ordinary steel bar disposed in the pier will be yielded first, and the energy input into the bridge structure by the elastoplastic deformation is dissipated, thereby facilitating the reduction. Dynamic response of displacement and acceleration of small bridges; after ordinary steel yielding, the refined rolling rebar can still maintain elastic state. When the seismic intensity continues to increase, the dynamic response of the pier displacement increases, and the tensile stress level of the finished rolling rebar will be Continue to increase, the horizontal bearing capacity of the pier will increase, which will help to improve the stiffness of the pier after yielding.
- the invention improves the post-yield stiffness of the pier by using the scheme of mixing and reinforcing the ordinary steel bars and the refining steel bars, and reduces the discreteness of the elastoplastic maximum dynamic response of the pier under strong earthquakes, and contributes to the performance-based seismic design of the assembled piers.
- the increase of the stiffness after the pier yielding can also effectively improve the self-recovering ability of the pier body, significantly reduce the residual deformation after the pier earthquake, and improve the post-earthquake functionality and repairability of the bridge structure; in addition, the construction method of the assembled pier according to the present invention is simple. It is feasible, the construction is difficult and the efficiency is high, which ensures the high efficiency and green construction of the pier.
- the present invention provides an assembled pier of a common reinforcing bar and a finishing rolled reinforced bar, including a concrete cap, an assembled pier, a through longitudinal rib, and an unbonded prestressed rib: the assembled pier
- the utility model is composed of a plurality of single prefabricated segments, which are formed by mixing two kinds of steel bars of ordinary steel bars and finely-rolled steel bars, and together with the unbonded prestressing tendons, the concrete caps and the assembled piers are connected into a complete pier. system.
- each prefabricated section can be the same to reduce the assembly difficulty and improve the construction efficiency; or different, to reduce the pre-production cost of the pier.
- the upper and lower end faces of each prefabricated segment may be planes, and the shear force generated by the earthquake is effectively transmitted between the upper and lower adjacent segments by the friction shearing mechanism; in addition, according to the seismic design requirements, the upper and lower end faces of the prefabricated segments may also be set.
- Single or multiple anti-shear keys so that the upper and lower adjacent two segments after the assembly are engaged with each other, which can effectively improve the shear bearing capacity at the joint.
- the through longitudinal reinforcement is made up of ordinary hot-rolled ribbed steel bars and fine-rolled threaded steel bars.
- the ratio of the reinforcement ratio is between 0.5 and 2.0.
- the mixed configuration of two kinds of steel bars can effectively improve the post-yield stiffness of the pier, thereby comprehensively improving the seismic performance and self-resetting ability of the pier.
- the two longitudinal ribs are spaced apart in cross section.
- the types of ordinary steel bars used for longitudinal reinforcement are HRB400, HRB500, HRBF400, HRBF500, HRB400E, HRB500E, HRBF400E, and HRBF500E.
- the types of finishing rebar used for the longitudinal reinforcement are PSB785, PSB830, PSB930, PSB1080, and PSB1200.
- Corrugated tunnels are reserved for concrete caps and prefabricated sections. The reserved corrugated tunnel is realized by means of a pre-buried circular metal bellows. The diameter of the corrugated pipe should be (2 ⁇ 3)d, where d is the diameter of the longitudinal rib.
- the metal bellows used shall comply with the requirements of the specification "Metal bellows for prestressed concrete (JG 225-2007)".
- the length of the bellows embedded in the cap is not less than 36d, and d is the diameter of the through longitudinal ribs.
- the lower end of the finishing rolled steel bar should use the nut anchors matched with the reinforcement to enhance the anchoring performance.
- the lower end of the unbonded prestressed tendon is poured into the concrete cap.
- the tendon passes through the smooth prestressed tendon hole of the inner wall reserved in each prefabricated section, and the upper part of the tendon is placed on the topmost section.
- the anchor In the groove of the anchor anchor, the anchor is to be sealed after the tension of the prestressed tendon is completed.
- the types of prestressed tendons used for unbonded prestressed tendons are steel strands, prestressed threaded bars or FRP prestressed tendons.
- the longitudinal steel bar of the invention is composed of a common steel bar with a low yield point and a high-precision threaded steel bar with a high yield point, which can significantly improve the stiffness of the pier after yielding, thereby reducing the maximum displacement response and dispersion of the pier under seismic excitation. And effectively improve the self-resetting ability of the pier, reduce the residual deformation after the earthquake, and improve the post-earthquake functionality of the bridge structure.
- the effective bearing of the pier's yield bearing capacity, post-yield stiffness, peak bearing capacity and ultimate displacement angle can be realized, thus achieving the design of the pier multi-performance level.
- the pier of the invention has outstanding hysteretic energy consumption capability, and can effectively absorb and dissipate energy input into the bridge structure during an earthquake, so that no additional energy damper or isolation bearing is needed, thereby reducing the construction cost of the bridge.
- the longitudinal ribs of the pier are wrapped by high-strength grouting material, and there are metal bellows and stirrups in addition to the grouting material. Therefore, the longitudinal ribs generally do not undergo compression buckling damage under earthquake action; on the other hand, they are constrained by metal bellows.
- the high-strength grout can participate in the compression together with the concrete, so the compressive stress level of the concrete is low and the damage is not large. Therefore, the repairing effect of the pier after the earthquake is small, which is helpful for realizing the rapid recovery of the bridge traffic network in the disaster area.
- the pier of the invention has simple assembly process and low operation precision for assembling; and no large equipment is needed for transportation and lifting, and the construction is flexible and high, which helps to realize rapid construction of the bridge.
- Figure 1 is a cross-sectional view of the assembled pier of the mixed reinforcement
- Figure 2 is a perspective view of a single prefabricated segment
- Figure 3 is a schematic cross-sectional view of the assembled pier of the mixed reinforcement
- Figure 4 is a schematic view showing the construction process of the assembled pier of the mixed reinforcement of the present invention.
- Figure 5 is a cross-sectional view showing the assembled pier of the mixed reinforcement according to Embodiment 2;
- Figure 6 is a cross-sectional view showing the assembled pier of the mixing reinforcement of the third embodiment.
- Embodiment 1 as shown in FIG. 1 , the present invention provides an assembly pier of a common reinforcing bar and a finishing rolled reinforced bar, including a concrete cap 1, an assembled pier 2, a through longitudinal rib 6 and an unbonded prestress. Rib 7.
- the assembled pier is vertically stacked by a certain number of individual prefabricated segments 4, and is stretched by the unbonded prestressed tendons 7 into a pier.
- Each of the prefabricated segments 4 has a rectangular cross section of the same size, and each segment has the same height. The height of the segment is 1.5 to 4 times the long side of the section, so that the plastic hinge of the pier can be fully developed to ensure the seismic energy dissipation capacity, and the volume and weight of the single segment can be easily assembled.
- each prefabricated segment 4 is arranged with the same number of reserved corrugated channels 5 at the same cross-sectional location. Therefore, after the assembly, it is ensured that the reserved corrugated tunnel 5 and the prestressed tendon bore 8 are vertically penetrated.
- the through longitudinal ribs 7 are placed into the reserved corrugated holes. If the length of the single through longitudinal rib 7 is smaller than the height of the pier body, the through longitudinal rib 7 is lengthened by mechanical connection, welding or lashing connection. The connection extension operation of the through longitudinal ribs shall comply with the corresponding specifications.
- the construction method of the assembled pier of the ordinary steel bar and the fine-rolled reinforced bar mixed reinforcement according to the embodiment 1 is as shown in FIG. 4: First, the foundation of the pier cap is poured, and the corrugated hole is reserved during the pouring, so that the longitudinal reinforcement is inserted into the foundation. Anchoring; then, assembling the bottom section of the pier, and assembling the remaining segments in turn, so that the prestressed tendons pass through the prestressed tendons 8 of the segments; after the assembly is completed, the prestressed tendons are tensioned; The ribs are placed in the reserved corrugated tunnel 5, and the pores are pressure grouted to ensure that the grout is filled and compacted.
- Embodiment 2 as shown in FIG. 5, the difference between the present embodiment and the foregoing Embodiment 1 is that the pier body of the assembled pier of the ordinary steel bar and the finishing steel bar has only one prefabricated segment 4.
- the whole pier body can be prefabricated as an entire segment, which can improve the assembly efficiency of the pier.
- the size and weight of the entire segment are not too large to be transported and assembled.
- the size and weight of the prefabricated pier section meet the relevant traffic regulations and do not exceed the tonnage limit of the lifting and lifting equipment.
- Embodiment 3 as shown in FIG. 6, the difference between the present embodiment and the foregoing Embodiment 1 is that the ordinary steel bars and the finishing rolled steel bars only pass through several sections of the lower portion of the assembled pier body 2, and are not arranged along the entire pier body.
- the bending moment at the bottom of the pier is the largest under the action of the earthquake, and the upward bending moment from the bottom of the pier gradually decreases.
- the longitudinal reinforcement ratio can be gradually reduced, and finally cut off at a reasonable height.
- the determination of the longitudinal rib cutoff position shall be in accordance with the relevant seismic design specifications.
- the solution can effectively reduce the amount of steel used, ensure the construction progress and improve the economic benefits while ensuring the same seismic performance.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,包括混凝土承台(1)、拼装墩身(2)、贯通纵筋(6)和无粘结预应力筋(7);拼装墩身(2)由预制节段(4)组成,贯通纵筋(6)由普通钢筋(10)和精轧螺纹钢筋(11)两种钢筋混合而成,并与无粘结预应力筋(7)一同将混凝土承台(1)及各拼装墩身(2)连接成为完整墩体系。
Description
本发明涉及一种预制节段拼装混凝土墩,特别是涉及一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩。
随着我国《国家高速公路网规划》和《中长期铁路网规划》的制定、现代城市及城市群立体交通规划理念的普及,我国乃至整个亚洲地区亟需能够实现桥梁高效率及高质量建设的新型桥梁结构体系及配套施工方案。另外,地震等自然灾害及战争所造成的桥梁垮塌也需要采用桥梁快速建造技术进行紧急重建。预制节段拼装桥梁体系成为满足上述需求的有效方案之一,其良好应用前景得益于以下主要优点:(1) 绝大多数构件采用工业化制作和机械化拼装,具有突出的建造效率;(2) 现场施工周期短且受季节和天气影响小;(3) 构件制作及养护条件好故而耐久性高,全寿命周期维护成本降低;(4) 对桥址周边生态环境、居住环境及既有交通干扰小。
目前,采用预制节段拼装实现桥梁上部结构快速建造的技术已较为成熟,相比之下,预制拼装墩的实际工程应用却较为罕见,究其主要原因是关于该新型墩抗震性能的研发及应用依然较为缺乏。我国地处环太平洋地震带与地中海-喜马拉雅地震带的交汇处,是世界上地震灾害最严重的国家之一。然而,大部分既有拼装墩的研究及发明主要致力于提高该类墩的施工便利性或减小墩自身震后损伤程度,而未对墩在地震激励下最大位移响应及震后残余位移同时进行有效控制。
已有研究表明,通过提高墩屈服后刚度可有效减小墩震时最大位移响应及其离散性,同时显著提高墩自复位能力、确保桥梁结构震后功能性。利用预制节段拼装技术以实现钢筋混凝土墩的高效及绿色建造,同时显著提高墩屈服后刚度以提高墩自身抗震性能和自复位性能,对进入交通基础设施大规模建设的我国具有突出的实际意义。但是,目前对于提高拼装墩屈服后刚度这一问题还缺乏成熟的解决方案。
为了解决上述现有技术存在的问题,本发明是要提供一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩及施工方法,解决了现有拼装墩技术中难以同时减小墩震时最大位移反应及震后残余位移这一难题。普通钢筋屈服强度标准值在400MPa~500MPa之间,精轧螺纹钢筋的屈服强度标准值在785MPa~1200MPa之间,两者具有相同的弹性模量。因此,当本发明所提出的混合配筋的拼装墩遭受地震灾害时,墩中配置的普通钢筋将率先屈服,并通过弹塑性变形耗散地面运动输入至桥梁结构中的能量,从而有利于减小桥梁位移及加速度等动力反应;普通钢筋屈服后,精轧螺纹钢筋仍能保持弹性状态,当地震强度继续增大时,墩位移动力反应增大,此时精轧螺纹钢筋的拉应力水平将继续增加,墩水平承载力随之增大,从而有利于提高墩屈服后刚度。本发明通过采用普通钢筋与精轧螺纹钢筋混合配筋的方案,提高墩屈服后刚度,减小墩在强震下弹塑性最大动力响应的离散性,有助于实现拼装墩基于性能的抗震设计;墩屈服后刚度的提高还可有效提高墩体自恢复能力,显著降低墩震后残余变形,提高桥梁结构震后功能性和可修复性;此外,本发明所涉及的拼装墩的施工方法简捷可行,施工难度小、效率高,确保了墩高效率及绿色化建造。
为解决上述技术问题,本发明提供一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,包括混凝土承台、拼装墩身、贯通纵筋和无粘结预应力筋:所述拼装墩身由若干单个预制节段组成,所述贯通纵筋由普通钢筋和精轧螺纹钢筋两种钢筋混合而成,并与无粘结预应力筋一同将混凝土承台及各拼装墩身连接成为完整墩体系。
各个预制节段的几何尺寸、配筋构造和所用材料可以相同,以降低拼装难度,提高施工效率;也可不同,以降低墩预制成本。各预制节段的上下端面可以是平面,上下相邻两节段之间通过摩擦抗剪机制有效传递地震作用下产生的剪力;另外,根据抗震设计需要,预制节段的上下端面还可以设置单个或多个抗剪键,如此,拼装后的上下相邻两节段相互咬合,可有效提高拼接缝处的抗剪承载力。
贯通纵筋由普通热轧带肋钢筋与精轧螺纹钢筋混合而成,两者配筋率比值在0.5~2.0之间。混合配置两种钢筋可有效提高墩的屈服后刚度,从而综合提高墩抗震性能和自复位能力。如图3所示,在截面上,两种纵筋间隔布置。
贯通纵筋所用普通钢筋的类型为HRB400、HRB500、HRBF400、HRBF500、HRB400E、HRB500E、HRBF400E、HRBF500E。贯通纵筋所用精轧螺纹钢筋的类型为PSB785、PSB830、PSB930、PSB1080、PSB1200。混凝土承台、各预制节段均预留波纹孔道。预留波纹孔道采用预埋圆形金属波纹管的方式实现,波纹管直径应为(2~3)d ,其中d为贯通纵筋直径。所用金属波纹管应符合规范《预应力混凝土用金属波纹管(JG 225-2007)》的要求。承台中埋置的波纹管的长度不小于36d,d为贯通纵筋直径。另外,精轧螺纹钢筋下端应使用与该筋材配套的螺母锚具,以增强锚固性能。
无粘结预应力筋的下端浇筑于混凝土承台中,墩拼装时筋束依次穿过各预制节段中预留的内壁光滑的预应力筋孔道,筋束上部放置于最顶部节段的预应力筋锚具凹槽中,待预应力筋张拉完成后进行封锚。无粘结预应力筋所用的预应力筋类型为钢绞线、预应力螺纹钢筋或FRP预应力筋。
本发明对比现有技术具有以下优点:
本发明的纵向钢筋由屈服点较低的普通钢筋和屈服点高的精轧螺纹钢筋混合而成,可显著提高墩屈服后刚度,从而减小墩在地震激励下最大位移反应及其离散性,并有效提高墩自复位能力,减小震后残余变形,提高桥梁结构震后功能性。
通过调整普通钢筋与精轧螺纹钢的配置比例,可实现对墩的屈服承载力、屈服后刚度、峰值承载力及极限位移角的有效控制,从而实现墩多性能水准下的设计。
本发明所提墩自身具有突出的滞回耗能能力,可有效吸收并耗散地震时输入至桥梁结构的能量,因此无需另外设置耗能阻尼器或隔震支座,从而降低桥梁建设成本。
墩纵筋被高强灌浆料包裹,且灌浆料之外尚有金属波纹管及箍筋约束,故在地震作用下纵筋一般不会发生受压屈曲破坏;另一方面,受金属波纹管约束的高强灌浆料可与混凝土一同参与受压,故混凝土受压应力水平与较低、破坏程度不大。因此本发明提出的墩震后修复难度小,有助于实现灾区桥梁交通网络的快速恢复。
本发明所提墩在拼装过程简单,对拼装时操作精度要求不高;且运输及吊装时无需大型设备,建造灵活、效率高,有助于实现桥梁快速建设。
图1是混合配筋的拼装墩剖面图;
图2是单个预制节段立体示意图;
图3混合配筋的拼装墩横截面示意图;
图4本发明混合配筋的拼装墩施工流程示意图;
图5是实施例2所述混合配筋的拼装墩剖面图;
图6是实施例3所述混合配筋的拼装墩剖面图。
附图中各部件的标记如下:1.承台;2.拼装墩身;3.预应力筋锚具凹槽;4.预制节段;5.预留波纹孔道;6.贯通纵筋;7.无粘结预应力筋;8.预应力筋孔道;9.金属波纹管;10.普通钢筋;11.精轧螺纹钢筋;12.箍筋。
以下结合附图详细描述本发明的实施例,对本发明作进一步的描述。各附图中相同的标号表示相同的元件。下面的实施例是示例性的,旨在解释本发明,而不能理解为对本发明的限制。
实施例1,如图1所示,本发明提供一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,包括混凝土承台1、拼装墩身2、贯通纵筋6和无粘结预应力筋7。拼装墩身由一定数量的单个预制节段4竖向叠放而成,并通过无粘结预应力筋7张拉成为墩整体。各预制节段4均具有相同尺寸的矩形截面,且各节段高度相同。节段高度为截面长边的1.5~4倍,如此既能使墩塑性铰充分开展以确保抗震耗能能力,又能使单个节段体积及重量较小而易于拼装。如图2所示,各预制节段4在相同截面位置布置有相同数量的预留波纹孔道5。因此,拼装后可确保预留波纹孔道5及预应力筋孔道8上下贯通。待各预制节段4拼装完成并张拉完预应力筋6后,将贯通纵筋7置入预留波纹孔道。若单根贯通纵筋7长度小于墩身高度,则通过机械连接、焊接或绑扎连接的方式对贯通纵筋7进行接长。贯通纵筋的连接延长操作应符合相应规范规定。实施例1所述的普通钢筋与精轧螺纹钢筋混合配筋的拼装墩的施工方法如图4所示:首先,浇筑墩承台基础,浇筑时预留波纹孔道,以便贯通纵筋插入基础中锚固;然后,拼装墩底节段,并依次拼装其余节段,使预应力筋从节段的预应力筋孔道8中穿过;待拼装完成后,张拉预应力筋;最后,将贯通纵筋置入预留波纹孔道5中,并对孔道进行压力灌浆,确保灌浆充盈密实。贯通纵筋受到周围灌浆料、金属波纹管9及箍筋12的约束,因此在地震作用下不易发生受压屈曲损伤。而且,由于灌浆料的协同抗压,地震时混凝土压应力及塑性损伤均不大。因此该类墩具有良好的震后功能性,有助于实现重要桥梁结构的震后畅通。
实施例2,如图5所示,本实施例与前述实施例1的不同之处在于,普通钢筋与精轧螺纹钢筋混合配筋的拼装墩的墩身仅有一个预制节段4。当墩长细比不大于6时,可将整个墩身作为一整个节段进行预制,如此可提高墩拼装效率。而且,由于墩长细比不大于6,因此整个节段的尺寸和重量不至于过大而难以运输、拼装。当采用与实施例2相同或相近的设计、施工方案时,应注意预制的墩身节段的尺寸及重量满足相关交通运输法规,且不超过吊装起重设备吨位限制。
实施例3,如图6所示,本实施例与前述实施例1的不同之处在于,普通钢筋与精轧螺纹钢筋仅贯通拼装墩身2下部若干节段,而不沿整个墩身布置。对于悬臂墩,地震作用下墩底弯矩最大,从墩底向上弯矩逐渐减小。抗震设计时根据墩弯矩分布,可逐渐减少纵向钢筋配筋率,并最终在某合理高度处进行截断。纵筋截断位置的确定应符合相应抗震设计规范规定。当普通钢筋与精轧螺纹钢筋混合配筋的拼装墩的高度较大时,采用此方案可在保证抗震性能不变的前提下有效减小用钢量,加快施工进度,提高经济效益。
最后说明的是,以上实例仅用于说明本发明的技术方案而非限制。
Claims (10)
- 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,包括混凝土承台(1)、拼装墩身(2)、贯通纵筋(6)和无粘结预应力筋(7);其特征在于:所述拼装墩身(2)由一个或者一个以上预制节段(4)组成,所述贯通纵筋(6)由普通钢筋和精轧螺纹钢筋两种钢筋混合而成,并与无粘结预应力筋(7)一同将混凝土承台(1)及各拼装墩身(2)连接成为完整墩体系。
- 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,包括混凝土承台(1)、拼装墩身(2)、贯通纵筋(6)和无粘结预应力筋(7);其特征在于:所述拼装墩身(2)由两个或者两个以上单个预制节段(4)组成,所述贯通纵筋(6)由普通钢筋和精轧螺纹钢筋两种钢筋混合而成,并与无粘结预应力筋(7)一同将混凝土承台(1)及各拼装墩身(2)连接成为完整墩体系,普通钢筋与精轧螺纹钢筋仅贯通拼装墩身(2)下部若干节段,而不沿整个墩身布置。
- 根据权利要求1或2所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:普通钢筋与精轧螺纹钢筋配筋率比值在0.5~2.0之间,在平面内间隔布置和/或对称布置。
- 根据权利要求1或2所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:预制节段(4)的上下端面是平面或者设置单个或多个抗剪键。
- 根据权利要求1或2所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:贯通纵筋(6)所用普通钢筋的类型为HRB400、HRB500、HRBF400、HRBF500、HRB400E、HRB500E、HRBF400E或者HRBF500E;贯通纵筋(6)所用精轧螺纹钢筋的类型为PSB785、PSB830、PSB930、PSB1080或者PSB1200。
- 根据权利要求1所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:混凝土承台(1)、各预制节段(4)均预留波纹孔道(5)。
- 根据权利要求6所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:预留波纹孔道(5)采用预埋圆形金属波纹管,波纹管直径应为(2~3)d,其中 d为贯通纵筋直径。
- 根据权利要求6或7所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:承台中埋置的波纹管的长度不小于36 d, d为贯通纵筋直径。
- 根据权利要求1或2所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:精轧螺纹钢筋下端使用与该筋材配套的螺母锚具,以增强锚固性能。
- 根据权利要求1或2所述的一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩,其特征在于:无粘结预应力筋(7)的下端浇筑于混凝土承台(1)中,墩拼装时筋束依次穿过各预制节段(4)中预留的内壁光滑的预应力筋孔道(8),筋束上部放置于最顶部节段的预应力筋锚具凹槽(3)中,待预应力筋张拉完成后进行封锚;其中,无粘结预应力筋(7)所用的预应力筋类型为钢绞线、预应力螺纹钢筋或FRP预应力筋。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/967,287 US11427975B2 (en) | 2018-02-05 | 2019-02-01 | Precast segmental pier reinforced with both conventional steel bars and high-strength steel bars |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820196039.9U CN208280001U (zh) | 2018-02-05 | 2018-02-05 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
CN201820196039.9 | 2018-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019149270A1 true WO2019149270A1 (zh) | 2019-08-08 |
Family
ID=64748646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/074423 WO2019149270A1 (zh) | 2018-02-05 | 2019-02-01 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11427975B2 (zh) |
CN (1) | CN208280001U (zh) |
WO (1) | WO2019149270A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111827091A (zh) * | 2020-06-29 | 2020-10-27 | 中国国家铁路集团有限公司 | 通过预应力连接的预制拼装空心桥墩及施工方法 |
CN114134805A (zh) * | 2021-11-08 | 2022-03-04 | 华南理工大学 | 一种采用拼接的预制桥墩及施工方法 |
CN114411975A (zh) * | 2022-02-13 | 2022-04-29 | 重庆交通大学 | 复合式栓接剪力键构造 |
CN115045181A (zh) * | 2022-06-08 | 2022-09-13 | 北京工业大学 | 一种中高烈度区预制墩柱-承台承插式节点连接方法与构造 |
CN115434255A (zh) * | 2022-11-08 | 2022-12-06 | 中国建筑第六工程局有限公司 | 一种装配式桥梁下部结构及安装与局部更换的方法 |
CN115492004A (zh) * | 2022-10-21 | 2022-12-20 | 中交路桥建设有限公司 | 一种后筋法预制装配式薄壁空心墩施工方法 |
CN116611132A (zh) * | 2023-03-13 | 2023-08-18 | 西南交通大学 | 基于地层变形的节段式衬砌纵向内力计算方法及系统 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108316130A (zh) * | 2018-02-05 | 2018-07-24 | 四川动和工程咨询有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
CN208280001U (zh) | 2018-02-05 | 2018-12-25 | 横琴共轭科技有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
CN208280002U (zh) * | 2018-02-05 | 2018-12-25 | 横琴共轭科技有限公司 | 一种混合配置frp筋与普通钢筋的拼装混凝土墩体系 |
CN110042741A (zh) * | 2019-03-12 | 2019-07-23 | 中国矿业大学 | 一种套管约束预制节段拼装墩柱及其施工方法 |
CN111305082B (zh) * | 2020-04-03 | 2021-04-06 | 中铁四局集团有限公司 | 预制装配桥梁中相邻墩柱相互约束的盖梁安装方法 |
CN112853933B (zh) * | 2021-02-24 | 2022-04-29 | 江南大学 | 一种具有可恢复功能的节段预制拼装钢管混凝土桥墩 |
CN113106852A (zh) * | 2021-05-14 | 2021-07-13 | 上海市政工程设计研究总院(集团)有限公司 | 一种轻型化模块化预制拼装桥墩结构 |
CN113373799A (zh) * | 2021-05-26 | 2021-09-10 | 北京交通大学 | 一种榫卯式拼装桥墩结构及其实施方法 |
CN114263098A (zh) * | 2022-01-17 | 2022-04-01 | 郑州大学 | 一种具备半月形耗能器的榫卯式自复位桥墩 |
CN115522457A (zh) * | 2022-09-14 | 2022-12-27 | 华南理工大学 | 一种易于更替的自复位装配式混凝土桥梁体系的施工方法 |
CN115726262A (zh) * | 2022-11-16 | 2023-03-03 | 浙大城市学院 | 一种配有起弯钢筋的新型钢筋混凝土桥墩及施工方法 |
CN115852818B (zh) * | 2022-12-30 | 2025-06-17 | 长安大学 | 一种等同现浇的预制拼装双柱墩体系及其施工方法 |
CN116306171B (zh) * | 2023-05-11 | 2023-08-29 | 合肥工业大学 | 无粘结预应力钢筋混凝土桥墩能力离散度评估方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097946A (ja) * | 2003-09-24 | 2005-04-14 | Maeda Corp | 橋脚の構築方法 |
CN101831875A (zh) * | 2010-06-09 | 2010-09-15 | 中交第一公路勘察设计研究院有限公司 | 预应力混凝土圆柱式空心桥墩预制拼装工艺 |
CN102304892A (zh) * | 2011-07-29 | 2012-01-04 | 清华大学 | 外置耗能自复位桥梁墩柱结构体系及实现方法 |
CN102409606A (zh) * | 2011-07-29 | 2012-04-11 | 清华大学 | 内置耗能组件的自复位墩柱结构体系及实现方法 |
CN103074847A (zh) * | 2013-01-21 | 2013-05-01 | 福州大学 | 新型钢筋混凝土组合墩柱及其施工方法 |
CN103374881A (zh) * | 2012-04-24 | 2013-10-30 | 上海市政工程设计研究总院(集团)有限公司 | 一种节段预制拼装桥墩结构体系及其施工方法 |
CN203603039U (zh) * | 2013-12-13 | 2014-05-21 | 上海市城市建设设计研究总院 | 中置无粘结预应力筋预制拼装桥墩 |
CN105714673A (zh) * | 2016-02-18 | 2016-06-29 | 东南大学 | 一种自复位frp-钢-混凝土组合结构墩柱及施工方法 |
CN205576723U (zh) * | 2016-02-15 | 2016-09-14 | 上海应用技术学院 | 采用高强纤维砂浆和波纹管连接的预制拼装桥墩 |
CN108316130A (zh) * | 2018-02-05 | 2018-07-24 | 四川动和工程咨询有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
CN208280001U (zh) * | 2018-02-05 | 2018-12-25 | 横琴共轭科技有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3685934A (en) * | 1969-10-06 | 1972-08-22 | Conenco Intern Ltd | Anchorage system for stressing concrete |
US4042308A (en) * | 1976-02-18 | 1977-08-16 | Westinghouse Electric Corporation | Modular roadway for a transportation system |
US5228807A (en) * | 1991-08-20 | 1993-07-20 | Perma Pile Foundation Restoration Systems, Inc. | Foundation support apparatus with sectional sleeve |
US5509759A (en) * | 1995-04-17 | 1996-04-23 | Keesling; Klinton H. | Prestressed concrete piling |
US5909984A (en) * | 1997-02-15 | 1999-06-08 | Matthews; Mike R. | Pile forming system and method of using the same |
US6123485A (en) * | 1998-02-03 | 2000-09-26 | University Of Central Florida | Pre-stressed FRP-concrete composite structural members |
US6295782B1 (en) * | 1999-06-11 | 2001-10-02 | Edward Robert Fyfe | Stay-in-place form |
US6832454B1 (en) * | 1999-07-28 | 2004-12-21 | South Dakota School Of Mines And Technology | Beam filled with material, deck system and method |
US6938392B2 (en) * | 2002-08-14 | 2005-09-06 | Newmark International, Inc. | Concrete filled pole |
ATE364754T1 (de) * | 2003-06-02 | 2007-07-15 | Yurkevich Engineering Bureau L | Stahlbetonstütze in erdaushebungen und verfahren zum bauen dieser stütze |
US7546656B2 (en) * | 2005-08-16 | 2009-06-16 | Daewoo Engineering & Construction Co., Ltd | Method of installing prefabricated, segment concrete filled tube members |
US8578537B2 (en) * | 2005-12-30 | 2013-11-12 | Matthew Ley | Partially prefabricated structural concrete beam |
KR100976847B1 (ko) * | 2008-02-18 | 2010-08-20 | (주)써포텍 | 조립식 프리캐스트 콘크리트 복공 및 가교 구조체 |
US8381479B1 (en) * | 2009-09-28 | 2013-02-26 | Felix E. Ferrer | Pre-fabricated modular reinforcement cages for concrete structures |
KR100950715B1 (ko) * | 2009-10-26 | 2010-03-31 | (주)대우건설 | 교량용 프리캐스트 코핑부의 시공 방법 |
KR101373914B1 (ko) * | 2012-05-29 | 2014-03-12 | 아주대학교산학협력단 | 중공 구조체 및 그 제조방법 |
US9637923B2 (en) * | 2013-10-30 | 2017-05-02 | Socpra Sciences Et Genie S.E.C. | Composite structural member, method for manufacturing same, and connecting assemblies for composite structural members |
-
2018
- 2018-02-05 CN CN201820196039.9U patent/CN208280001U/zh active Active
-
2019
- 2019-02-01 US US16/967,287 patent/US11427975B2/en active Active
- 2019-02-01 WO PCT/CN2019/074423 patent/WO2019149270A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097946A (ja) * | 2003-09-24 | 2005-04-14 | Maeda Corp | 橋脚の構築方法 |
CN101831875A (zh) * | 2010-06-09 | 2010-09-15 | 中交第一公路勘察设计研究院有限公司 | 预应力混凝土圆柱式空心桥墩预制拼装工艺 |
CN102304892A (zh) * | 2011-07-29 | 2012-01-04 | 清华大学 | 外置耗能自复位桥梁墩柱结构体系及实现方法 |
CN102409606A (zh) * | 2011-07-29 | 2012-04-11 | 清华大学 | 内置耗能组件的自复位墩柱结构体系及实现方法 |
CN103374881A (zh) * | 2012-04-24 | 2013-10-30 | 上海市政工程设计研究总院(集团)有限公司 | 一种节段预制拼装桥墩结构体系及其施工方法 |
CN103074847A (zh) * | 2013-01-21 | 2013-05-01 | 福州大学 | 新型钢筋混凝土组合墩柱及其施工方法 |
CN203603039U (zh) * | 2013-12-13 | 2014-05-21 | 上海市城市建设设计研究总院 | 中置无粘结预应力筋预制拼装桥墩 |
CN205576723U (zh) * | 2016-02-15 | 2016-09-14 | 上海应用技术学院 | 采用高强纤维砂浆和波纹管连接的预制拼装桥墩 |
CN105714673A (zh) * | 2016-02-18 | 2016-06-29 | 东南大学 | 一种自复位frp-钢-混凝土组合结构墩柱及施工方法 |
CN108316130A (zh) * | 2018-02-05 | 2018-07-24 | 四川动和工程咨询有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
CN208280001U (zh) * | 2018-02-05 | 2018-12-25 | 横琴共轭科技有限公司 | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111827091A (zh) * | 2020-06-29 | 2020-10-27 | 中国国家铁路集团有限公司 | 通过预应力连接的预制拼装空心桥墩及施工方法 |
CN114134805A (zh) * | 2021-11-08 | 2022-03-04 | 华南理工大学 | 一种采用拼接的预制桥墩及施工方法 |
CN114411975A (zh) * | 2022-02-13 | 2022-04-29 | 重庆交通大学 | 复合式栓接剪力键构造 |
CN114411975B (zh) * | 2022-02-13 | 2023-11-07 | 重庆交通大学 | 复合式栓接剪力键构造 |
CN115045181A (zh) * | 2022-06-08 | 2022-09-13 | 北京工业大学 | 一种中高烈度区预制墩柱-承台承插式节点连接方法与构造 |
CN115492004A (zh) * | 2022-10-21 | 2022-12-20 | 中交路桥建设有限公司 | 一种后筋法预制装配式薄壁空心墩施工方法 |
CN115492004B (zh) * | 2022-10-21 | 2024-04-12 | 中交路桥建设有限公司 | 一种后筋法预制装配式薄壁空心墩施工方法 |
CN115434255A (zh) * | 2022-11-08 | 2022-12-06 | 中国建筑第六工程局有限公司 | 一种装配式桥梁下部结构及安装与局部更换的方法 |
CN116611132A (zh) * | 2023-03-13 | 2023-08-18 | 西南交通大学 | 基于地层变形的节段式衬砌纵向内力计算方法及系统 |
CN116611132B (zh) * | 2023-03-13 | 2024-02-27 | 西南交通大学 | 基于地层变形的节段式衬砌纵向内力计算方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN208280001U (zh) | 2018-12-25 |
US20210032819A1 (en) | 2021-02-04 |
US11427975B2 (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019149270A1 (zh) | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 | |
CN108560423B (zh) | 一种普通钢筋与精轧螺纹钢筋混合配筋拼装墩的施工方法 | |
CN105297617B (zh) | 双柱式摇摆隔震桥墩结构体系 | |
CN107059599B (zh) | 无支座自复位的抗震、减震现浇桥梁 | |
CN2797476Y (zh) | 装配式混凝土框架结构梁柱的混合连接节点 | |
CN104727441B (zh) | 一种预应力装配式混凝土梁柱节点构造及其施工方法 | |
CN103388408B (zh) | 一种建筑结构体外预应力筋加固转向块 | |
CN106087702B (zh) | 一种基于带竖缝耗能角钢的摇摆自复位双层桥梁排架墩 | |
CN208501878U (zh) | 一种自复位预制装配框架结构中节点 | |
CN102409606A (zh) | 内置耗能组件的自复位墩柱结构体系及实现方法 | |
WO2019149271A1 (zh) | 一种混合配置frp筋与普通钢筋的拼装混凝土墩体系 | |
CN110777661A (zh) | 法兰连接预制拼装桥墩结构及其施工方法 | |
CN111962386A (zh) | 耗能减震型自复位预制节段拼装桥墩结构及其施工方法 | |
CN110359363A (zh) | 一种部分黏结预应力装配式自复位桥梁墩柱节点及方法 | |
CN211689864U (zh) | 带有震损可更换构件的预制拼装钢管混凝土自复位桥墩 | |
CN108678225A (zh) | 内置预应力筋钢管混凝土边框内藏钢板组合剪力墙及作法 | |
CN2784490Y (zh) | 装配式混凝土框架结构梁柱的预应力连接节点 | |
CN106930436B (zh) | 一种内置预应力钢斜撑的钢筋混凝土剪力墙 | |
CN107905091A (zh) | 一种采用sma‑预应力筋系统的节段拼装frp增强钢管混凝土桥墩 | |
CN111648467B (zh) | 一种高位拼接耗能梁柱节点及制作方法 | |
CN108316130A (zh) | 一种普通钢筋与精轧螺纹钢筋混合配筋的拼装墩 | |
CN108678226A (zh) | 一种内置预应力的钢管混凝土边框压型钢板剪力墙及作法 | |
CN108678223A (zh) | 一种可恢复的钢管混凝土边框组合剪力墙及作法 | |
CN115369747A (zh) | 一种自复位预制拼装桥墩 | |
CN105714674A (zh) | 可更换复合板内置耗能钢筋的桥墩耗能与防压碎结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19746896 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/12/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19746896 Country of ref document: EP Kind code of ref document: A1 |