WO2019142417A1 - Power supply control circuit and electronic apparatus - Google Patents

Power supply control circuit and electronic apparatus Download PDF

Info

Publication number
WO2019142417A1
WO2019142417A1 PCT/JP2018/038307 JP2018038307W WO2019142417A1 WO 2019142417 A1 WO2019142417 A1 WO 2019142417A1 JP 2018038307 W JP2018038307 W JP 2018038307W WO 2019142417 A1 WO2019142417 A1 WO 2019142417A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
control circuit
power
switch
signal
Prior art date
Application number
PCT/JP2018/038307
Other languages
French (fr)
Japanese (ja)
Inventor
宜克 神宮
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2019565712A priority Critical patent/JP7148553B2/en
Publication of WO2019142417A1 publication Critical patent/WO2019142417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present technology relates to an electronic device having a power supply control circuit. More particularly, the present invention relates to a power supply control circuit and an electronic device that wait for reception of an external signal.
  • the electronic device waiting for external signal reception is always in a standby state consuming power because it does not know when the signal is transmitted. Therefore, for example, a battery-powered wireless device can run out of battery even in a standby state. Therefore, if battery replacement is not possible or easy, reducing the amount of power consumed in the standby state also leads to prolonging the operating time of the device.
  • an intermittent reception operation is proposed in which the reception enabled state and the reception disabled state for a predetermined period are repeated (see, for example, Patent Document 1).
  • the present technology is created in view of such a situation, and an object thereof is to suppress power consumption for waiting for reception from the outside.
  • a first aspect of the present technology is a power supply start switch for starting supply of power, a receiver that receives an electromagnetic wave, and the receiver. Operates by receiving a power supply from the rectifier that rectifies the electromagnetic wave received by the IC and outputs a rectified signal to make the power supply start switch conductive by the rectified signal, and the power supply start switch becomes conductive. And a control circuit for starting the power supply control circuit and the electronic apparatus. This brings about the effect
  • the power supply maintenance switch connected in parallel with the power supply start switch is further provided, and the control circuit turns on the power supply maintenance switch when the operation is started, to the control circuit. Power supply may be maintained. This brings about the effect
  • the control circuit when the control circuit does not receive a signal for activating the main circuit by the electromagnetic wave within a predetermined period, the control circuit turns off the power supply maintenance switch to set the power supply to the control circuit.
  • the supply may be stopped. This brings about the effect
  • control circuit further includes a reception control switch for controlling reception of a signal from the rectifier to the power supply start switch, and the control circuit performs the reception control after the power supply maintenance switch is turned on.
  • the power supply start switch may be turned off by turning on the switch. This brings about the effect
  • the power supply maintenance switch is connected in series to further include a capacitance for continuing the power supply to the control circuit for a certain period of time after the power supply maintenance switch is turned off. You may This brings about an effect of stopping reception of a new signal from the receiving unit for a certain period of time even after the power supply maintenance switch is turned off.
  • the first aspect further includes a main power switch for controlling power of the main circuit, and the control circuit is configured to control the main power switch when the electromagnetic wave is a signal for activating the main circuit.
  • the supply of power to the main circuit may be started by bringing the main circuit into conduction. This brings about the effect
  • the first aspect further includes a second receiving unit for receiving an electromagnetic wave including a control signal to the main circuit, wherein the control circuit is configured to receive the control signal received by the second receiving unit.
  • the main body circuit may be controlled. This brings about the effect
  • the first aspect of the present invention further includes a splitter that splits the electromagnetic wave including the control signal to the main circuit from the electromagnetic wave received by the receiving unit, the control circuit including the splitter.
  • the main body circuit may be controlled in accordance with the branched control signal. This brings about the effect
  • the first aspect further includes a distributor that distributes an electromagnetic wave including a control signal to the main circuit from the electromagnetic wave received by the receiver, the control circuit being distributed by the distributor.
  • the main body circuit may be controlled in accordance with the control signal. This produces the effect of controlling the main circuit in accordance with the control signal distributed by the distributor.
  • the rectifier may rectify the electromagnetic wave into a positive signal, and the power supply start switch may be a normally-off type NMOS transistor. Further, the rectifier may rectify the electromagnetic wave into a negative signal, and the power supply start switch may be a normally-off type PMOS transistor.
  • the receiving unit may be an antenna or may be a coil.
  • the present technology it is possible to achieve an excellent effect that power consumption for waiting for reception from the outside can be suppressed.
  • the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
  • FIG. 7 is a timing chart showing a first example of the operation of the reception circuit 100 in the first embodiment of the present technology.
  • FIG. 7 is a timing chart showing a second example of the operation of the reception circuit 100 in the first embodiment of the present technology.
  • FIG. 21 is a timing chart showing an operation example of the reception circuit 100 in the sixth embodiment of the present technology.
  • First embodiment (example using two antennas) 2.
  • Second embodiment (an example in which a single antenna is used by using a branching filter) 3.
  • Third embodiment (example in which the polarity of the rectifier is reversed) 4.
  • Fourth Embodiment (Example in which the polarity of a rectifier is reversed to use a splitter) 5.
  • Fifth embodiment (example in which transistors having different polarities are mixed) 6.
  • Sixth embodiment (example in which one antenna is provided by using a distributor)
  • FIG. 1 is a diagram illustrating an example of a system configuration according to an embodiment of the present technology.
  • the electronic device 10 and the remote controller 20 are assumed.
  • the electronic device 10 is a device that operates according to an operation signal from the remote controller 20.
  • the electronic device 10 may be, for example, a battery-powered device such as an IoT device.
  • the remote controller 20 is a remote control device for controlling the operation of the electronic device 10.
  • An operation signal from the remote controller 20 to the electronic device 10 is transmitted by an electromagnetic wave.
  • electromagnetic waves those of various wavelengths such as radio waves and light are assumed.
  • the medium may be a dielectric other than air. Therefore, for example, the case where millimeter waves are transmitted by a waveguide is also included.
  • the electronic device 10 includes a main body circuit 400 and a power control circuit 300 for supplying power to the main body circuit 400.
  • the main body circuit 400 for example, a main body portion of a television receiver (video equipment), an air conditioner (air conditioner), an audio equipment or the like is assumed.
  • the power supply control circuit 300 includes a receiving circuit 100 and a control circuit 200.
  • the reception circuit 100 is a circuit that receives an electromagnetic wave from the remote controller 20 and supplies power to the control circuit 200 and the main circuit 400 according to the content.
  • the control circuit 200 is a circuit that controls power supply to the main circuit 400.
  • the receiving circuit 100 when the receiving circuit 100 receives an operation signal from the remote controller 20, the receiving circuit 100 temporarily supplies power to the control circuit 200.
  • the control circuit 200 waits for the subsequent operation signal from the remote controller 20 and receives the signal for activating the main circuit 400, the control circuit 200 instructs the power supply to the main circuit 400 by the control signal to the reception circuit 100. Then, the main circuit 400 is activated by the control signal to the main circuit 400.
  • the control circuit 200 instructs the reception circuit 100 to stop the power supply to the control circuit 200 by the control signal.
  • the control circuit 200 can stop its operation, and unnecessary power consumption by the control circuit 200 can be suppressed.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the first embodiment of the present technology.
  • the reception circuit 100 in the first embodiment includes two antennas 111 (# 1) and 112 (# 2), a rectifier 120, a capacity 130 (C1), and a capacity 140 (C2).
  • the reception circuit 100 further includes a power supply start switch 150 (M1), a power maintenance switch 160 (M2), a main power switch 170 (M3), a reception control switch 180 (M4), and a power supply 190.
  • the antennas 111 and 112 are devices for receiving an electromagnetic wave.
  • the antenna 111 receives a signal from the remote controller 20 which is a trigger for operating the receiving circuit 100.
  • the antenna 112 receives a signal from the remote controller 20 for activating the main circuit 400.
  • the antenna for receiving an electromagnetic wave was assumed here, the coil etc. for performing the signal reception by near field communication (Near Field Communication) may be sufficient.
  • the antenna 111 is an example of a receiving unit described in the claims.
  • the rectifier 120 is an element that rectifies an electromagnetic wave received by the antenna 111.
  • positive pulsating current or direct current is generated from an electromagnetic wave having an alternating current waveform.
  • the capacitor 140 is a capacitor that smoothes the output of the rectifier 120. Thereby, the smoothed positive direct current is supplied to the gate of the power supply start switch 150 and the drain of the reception control switch 180.
  • the capacitor 130 is a capacitor which is charged while the control circuit 200 is supplied with power. Thus, even after the power supply to the control circuit 200 is disconnected, the power supply can be continued for a certain period.
  • the power supply 190 is a power supply circuit that supplies power to the control circuit 200 and the main circuit 400.
  • the power supply by the power supply 190 is controlled by four switches (transistors) described below. That is, the power supply start switch 150, the power supply maintenance switch 160, the main body power switch 170, and the reception control switch 180. In the first embodiment, these four transistors are normally-off type NMOS transistors, and in the non-operation state, no current flows and no power is consumed.
  • the power supply start switch 150 is a transistor for supplying the control circuit 200 with a necessary power at the time of start.
  • the gate of the power supply start switch 150 is connected to the output of the rectifier 120, and the electromagnetic wave received by the antenna 111 is rectified by the rectifier 120 and the signal voltage is applied to make the power supply start switch 150 conductive. It becomes.
  • the power supply start switch 150 is turned on, the power supply 190 supplies power to the control circuit 200.
  • the control circuit 200 applies a voltage to make the power supply maintenance switch 160 conductive in order to maintain the power supply state. Further, the control circuit 200 applies a voltage to make the reception control switch 180 conductive in order to turn off the power supply start switch 150.
  • the power supply start switch 150 is turned on at the time of power supply start of the control circuit 200 to supply the power necessary for the start.
  • the control circuit 200 When the control circuit 200 is activated by the supply of power, the control circuit 200 stands by until a signal for activating the main circuit 400 from the remote controller 20 is received by the antenna 112.
  • the power supply maintenance switch 160 is a transistor for supplying the control circuit 200 with the necessary power after activation.
  • the gate of the power supply sustaining switch 160 is connected to the control circuit 200, and when the control circuit 200 applies a voltage, the power supply sustaining switch 160 becomes conductive.
  • the power supply maintenance switch 160 becomes conductive, power supply to the control circuit 200 by the power supply 190 is maintained even after the power supply start switch 150 is cut off.
  • the control circuit 200 stops applying a voltage to the power maintenance switch 160.
  • the power supply maintenance switch 160 is turned off and cut off from the power supply.
  • power supply is continued for a certain period by the power charged to the capacity 130.
  • whether to maintain the power supply to the control circuit 200 is controlled by the control circuit 200 via the power supply maintenance switch 160.
  • the main power switch 170 is a transistor for supplying power necessary for operation to the main circuit 400.
  • the gate of the main power switch 170 is connected to the control circuit 200.
  • the main power switch 170 When a voltage is applied from the control circuit 200, the main power switch 170 is turned on.
  • the control circuit 200 When the control circuit 200 is activated by the supply of power, the control circuit 200 stands by until a signal for activating the main circuit 400 from the remote controller 20 is received by the antenna 112. When the signal for activating the main circuit 400 is received, the control circuit 200 applies a voltage to make the main power switch 170 conductive.
  • the power supply 190 supplies power to the main circuit 400.
  • the reception control switch 180 is a transistor for controlling reception of a signal from the antenna 111.
  • the gate of the reception control switch 180 is connected to the control circuit 200, and when a voltage is applied from the control circuit 200, the reception control switch 180 becomes conductive.
  • the reception control switch 180 is turned on, the power supply start switch 150 is turned off, and a signal from the antenna 111 is not newly received. That is, even when an undesired electromagnetic wave is input to the antenna 111, the control circuit 200 can be shut down, and unnecessary power consumption can be suppressed.
  • FIG. 3 is a timing chart showing a first example of the operation of the reception circuit 100 in the first embodiment of the present technology.
  • the first example is an example in the case where a signal for activating the main circuit 400 is received within a predetermined period.
  • the electromagnetic wave When an electromagnetic wave is received by the antenna 111, the electromagnetic wave is rectified by the rectifier 120, and the signal voltage is applied to the gate of the power supply start switch 150. As a result, the power supply start switch 150 is turned on, power is supplied to the control circuit 200 by the power supply 190, and the control circuit 200 is started.
  • Control circuit 200 applies a voltage to the gate of power supply maintenance switch 160 to make power supply maintenance switch 160 conductive in order to maintain the state of power supply to itself. Thus, regardless of the state of the power supply start switch 150, the power supply state to the control circuit 200 is maintained.
  • control circuit 200 applies a voltage to make the reception control switch 180 conductive to the gate of the reception control switch 180. As a result, the reception control switch 180 is turned on, and the signal voltage applied to the gate of the power supply start switch 150 is stopped. As a result, the power supply start switch 150 is turned off, and the signal from the antenna 111 is not newly received.
  • the control circuit 200 confirms that the signal for activating the main circuit 400 is received by the antenna 112
  • the control circuit 200 applies a voltage to make the main power switch 170 conductive to the gate of the main power switch 170.
  • the main power switch 170 is turned on, and the power supply 190 supplies power to the main circuit 400.
  • FIG. 4 is a timing chart showing a second example of the operation of the reception circuit 100 in the first embodiment of the present technology.
  • the second example is an example in which a signal for activating the main circuit 400 is not received within a predetermined period.
  • the control circuit 200 is activated and waits for reception of a signal for activating the main body circuit 400 by the antenna 112.
  • the signal for activating the main circuit 400 can not be received within a predetermined period, and the control circuit 200 stops applying the voltage to the gate of the power supply maintenance switch 160.
  • the power supply maintenance switch 160 is turned off and cut off from the power supply. That is, in this case, the main circuit 400 is not supplied with power.
  • the reception control switch 180 is cut off so that the signal from the antenna 111 can be received again. become.
  • the control circuit 200 is activated by the voltage of the signal received at the antenna 111, and the antenna 112 waits for reception of a signal for activating the main circuit 400. .
  • the control circuit 200 does not consume standby power since it is completely shut down until it starts up.
  • a normally-off transistor can be used as a switch for receiving a signal and supplying power. Thus, it is possible to wait for signal reception from the remote controller 20 without consuming power.
  • control circuit 200 can be activated by transmitting an electromagnetic wave for activating the control circuit 200 only when an instruction is sent from the outside, the power supply activation method is efficient.
  • current does not always flow in the circuit, it is possible to delay the progression of the characteristic change of the transistor and the deterioration of the wiring, which can contribute to the reduction of the failure rate and the extension of the life of the integrated circuit.
  • Second embodiment> In the first embodiment described above, it is assumed that signals are received by two antennas. On the other hand, in the second embodiment, it is assumed that a single antenna receives a signal.
  • the basic configuration of the system is the same as that of the first embodiment described above, and thus detailed description will be omitted.
  • FIG. 5 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the second embodiment of the present technology.
  • an electromagnetic wave is received by one antenna 113, and is demultiplexed into two systems by the demultiplexer 114.
  • the splitter 114 is an antenna coupler that splits an electromagnetic wave according to its frequency band. That is, the branching filter 114 supplies the rectifier 120 if it is a frequency band signal used to start up the control circuit 200 and supplies the control circuit 200 if it is another frequency band signal.
  • the subsequent processing is the same as that of the first embodiment described above.
  • the antenna 113 is an example of the receiving part as described in a claim.
  • FIG. 6 is a timing chart showing a first example of the operation of the reception circuit 100 in the second embodiment of the present technology.
  • the signal from the remote controller 20 is modulated, and signals of two different frequency bands for controlling the control circuit 200 and the power supply start switch 150 (M1) are simultaneously transmitted. It is an example. Both signals are transmitted in different frequency bands such as 1 GHz band and 500 MHz band.
  • the splitter 114 splits the two signals and supplies one to the input of the rectifier 120 and the other to the input of the control circuit 200.
  • the signal in the high frequency band is demultiplexed with respect to the rectifier 120, and the signal in the low frequency band with respect to the control circuit 200 is demultiplexed, but the high and low frequency bands may be reversed. .
  • FIG. 7 is a timing chart showing a second example of the operation of the reception circuit 100 in the second embodiment of the present technology.
  • the signal from the remote controller 20 is modulated, and signals of two different frequency bands for controlling the control circuit 200 and the power supply start switch 150 (M1) are transmitted while being shifted in time. It is an example of the case of coming.
  • the splitter 114 splits the two signals and supplies one to the input of the rectifier 120 and the other to the input of the control circuit 200.
  • the signal in the high frequency band with respect to the rectifier 120 is demultiplexed, and the signal with the low frequency band with respect to the control circuit 200 is demultiplexed. May be reversed.
  • the signal received by the antenna 113 is demultiplexed into two systems by the demultiplexer 114 to perform each operation.
  • the demultiplexer 114 can wait for a signal without consuming power.
  • FIG. 8 is a diagram showing an example of a circuit configuration of the reception circuit 100 according to the third embodiment of the present technology.
  • the power supply start switch 151, the power supply maintenance switch 161, the main body power switch 171, and the reception control switch 181 are normally-off type PMOS transistors. Therefore, the polarity is opposite to that of the first embodiment described above. Therefore, the polarity of the rectifier 121 is also opposite to that of the first embodiment described above, and negative pulsating current or direct current is generated from the electromagnetic wave having an alternating current waveform.
  • the power supply start switch 151 is turned on when a negative signal voltage is applied from the rectifier 121.
  • the control circuit 200 is activated to perform the same operation as that of the above-described first embodiment.
  • the voltages applied to the power supply maintenance switch 161, the main body power supply switch 171, and the gate of the reception control switch 181 are negative voltages.
  • FIG. 9 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the fourth embodiment of the present technology.
  • the reception circuit 100 receives a signal by one antenna 113 as in the second embodiment described above, and a duplexer It divides into two systems by 114.
  • the signal from the remote controller 20 is awaited by one antenna 113.
  • a single antenna 113 can wait for a signal without consuming power.
  • the normally-off type PMOS transistor is used in all the four switches, but the four switches are a combination of the normally-off type NMOS transistor and the normally-off type PMOS transistor. It is also good.
  • a normally-off type NMOS transistor is used as a power control switch of the main circuit 400 and a normally-off type PMOS transistor is used as another switch, and both are mixed is described. Do.
  • FIG. 10 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the fifth embodiment of the present technology.
  • the power supply start switch 151, the power supply maintenance switch 161, and the reception control switch 181 are normally-off type PMOS transistors.
  • the main power switch 170 is a normally-off type NMOS transistor. Then, the rectifier 121 generates negative pulsating current or direct current from the electromagnetic wave having the alternating current waveform.
  • the power supply start switch 151 is turned on when a negative signal voltage is applied from the rectifier 121.
  • the control circuit 200 is activated to perform the same operation as that of the above-described first embodiment.
  • the voltage applied to the gate of the power supply maintenance switch 161 and the reception control switch 181 is a negative voltage.
  • the voltage applied to the gate of the main power switch 170 is a positive voltage.
  • the signal reception from the remote controller 20 without consuming the power Can wait in the circuit in which the normally-off type NMOS transistor and the normally-off type PMOS transistor are mixed, the signal reception from the remote controller 20 without consuming the power Can wait.
  • FIG. 11 is a diagram showing an example of a circuit configuration of the reception circuit 100 according to the sixth embodiment of the present technology.
  • an electromagnetic wave is received by one antenna 113 and distributed to two systems by the distributor 115.
  • the distributor 115 is for distributing the electromagnetic wave to a plurality of systems.
  • the configuration other than this is the same as that of the second embodiment described above, and thus detailed description will be omitted.
  • FIG. 12 is a timing chart showing an operation example of the reception circuit 100 in the sixth embodiment of the present technology. This operation example is an example when the signal from the remote controller 20 is modulated.
  • the divider 115 operates to supply a large amplitude signal to the rectifier 120 and supply a small amplitude signal to the control circuit 200 as illustrated.
  • the subsequent processing is the same as that of the first embodiment described above.
  • a signal of a high frequency band is used to drive the power supply start switch 150 (M1), and a signal of a low frequency band is used in the control circuit 200.
  • the high and low frequency bands are reversed. May be Also, the frequency bands do not necessarily have to be different.
  • the signal received by the antenna 113 is divided into two systems by the distributor 115 to perform respective operations.
  • one antenna 113 can wait for a signal without consuming power.
  • the present technology can also be configured as follows. (1) a power supply start switch for starting supply of power; A receiver for receiving an electromagnetic wave, A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal; A power control circuit comprising: a control circuit which receives power supply and starts operation when the power supply start switch is turned on. (2) The power supply maintenance switch further connected in parallel with the power supply start switch, The power supply control circuit according to (1), wherein the control circuit turns on the power supply maintenance switch when the operation is started to maintain supply of power to the control circuit.
  • control circuit When the control circuit does not receive a signal for activating the main circuit by the electromagnetic wave within a predetermined period, the control circuit turns off the power supply maintenance switch to stop the supply of power to the control circuit ((3) The power supply control circuit according to 2).
  • a reception control switch is further provided to control reception of a signal from the rectifier to the power supply start switch, The power supply control circuit according to (2) or (3), wherein the control circuit brings the power supply start switch into a disconnection state by putting the reception control switch into a conduction state after making the power supply maintenance switch into a conduction state.
  • a demultiplexer is further provided for demultiplexing an electromagnetic wave including a control signal to the main body circuit from the electromagnetic wave received by the receiving unit, The power supply control circuit according to any one of (1) to (6), wherein the control circuit controls the main body circuit in accordance with the control signal demultiplexed by the demultiplexer.
  • the power supply control circuit according to any one of (1) to (6), wherein the control circuit controls the main body circuit in accordance with the control signal distributed by the distributor.
  • the rectifier rectifies the electromagnetic wave into a positive signal,
  • the power supply control circuit according to any one of (1) to (8), wherein the power supply start switch is a normally-off type NMOS transistor.
  • the rectifier rectifies the electromagnetic wave into a negative signal,
  • the power supply control circuit according to any one of (1) to (8), wherein the power supply start switch is a normally-off type PMOS transistor.
  • Body circuit A main body power switch that performs power control of the main body circuit; A power start switch for starting power supply, A receiver for receiving an electromagnetic wave, A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal; When the power supply start switch is turned on to receive power to start operation, the main body power switch is turned on when the electromagnetic wave is a signal for starting the main circuit.
  • An electronic device comprising: a control circuit for starting supply of power to a circuit.

Abstract

The purpose of the present invention is to suppress power consumption due to a standing-by for reception from the outside. A power supply control circuit for controlling power supply in an electronic apparatus is provided with a power supply start-up switch, a reception unit, a rectifier, and a control circuit. The power supply start-up switch is a switch for starting up a supply of power. The reception unit receives electromagnetic waves. The rectifier rectifies the electromagnetic waves received by the reception unit and outputs a rectified signal. The power supply start-up switch is made conductive by means of the rectified signal. As the power supply start-up switch is made conductive, the control circuit starts operating in response to a supply of power.

Description

電源制御回路および電子機器Power supply control circuit and electronic device
 本技術は、電源制御回路を有する電子機器に関する。詳しくは、外部からの信号受信を待機する電源制御回路および電子機器に関する。 The present technology relates to an electronic device having a power supply control circuit. More particularly, the present invention relates to a power supply control circuit and an electronic device that wait for reception of an external signal.
 外部からの信号受信を待機する電子機器は、いつ信号が送信されてくるか分からないため、常に電力を消費した待機状態にある。そのため、例えば、バッテリー駆動の無線機器は、待機状態でもバッテリー切れを起こし得る。したがって、バッテリー交換が不可能または容易でない場合、待機状態で消費する電力量を削減することは、その機器の駆動時間を長寿命化することにもつながる。このような待機状態の電力消費を削減する方法として、一定の期間の受信可能状態と受信不可状態を繰り返す間欠受信動作が提案されている(例えば、特許文献1参照。)。 The electronic device waiting for external signal reception is always in a standby state consuming power because it does not know when the signal is transmitted. Therefore, for example, a battery-powered wireless device can run out of battery even in a standby state. Therefore, if battery replacement is not possible or easy, reducing the amount of power consumed in the standby state also leads to prolonging the operating time of the device. As a method of reducing power consumption in such a standby state, an intermittent reception operation is proposed in which the reception enabled state and the reception disabled state for a predetermined period are repeated (see, for example, Patent Document 1).
特開2016-001929号公報JP, 2016-001929, A
 上述の従来技術では、受信していない状態では電力消費がほとんどないため、無線機器の駆動時間を伸ばすことができる。しかしながら、時刻管理をする回路と、受信回路の電源操作をする回路とが必要となり、受信回路以外において電力を消費してしまう。したがって、信号受信のための待機電力をゼロにすることは困難である。 In the above-mentioned prior art, since there is almost no power consumption when not receiving, it is possible to extend the driving time of the wireless device. However, a circuit for managing time and a circuit for operating the power supply of the receiving circuit are required, and power is consumed except for the receiving circuit. Therefore, it is difficult to make standby power for signal reception zero.
 本技術はこのような状況に鑑みて生み出されたものであり、外部からの受信待機のための消費電力を抑制することを目的とする。 The present technology is created in view of such a situation, and an object thereof is to suppress power consumption for waiting for reception from the outside.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、電源の供給を起動するための電源起動スイッチと、電磁波を受信する受信部と、上記受信部により受信された上記電磁波を整流して整流信号を出力してその整流信号により上記電源起動スイッチを導通状態にする整流器と、上記電源起動スイッチが導通状態になることにより電源の供給を受けて動作を開始する制御回路とを具備する電源制御回路および電子機器である。これにより、受信部において受信された電磁波に基づいて制御回路の動作を開始させるという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect of the present technology is a power supply start switch for starting supply of power, a receiver that receives an electromagnetic wave, and the receiver. Operates by receiving a power supply from the rectifier that rectifies the electromagnetic wave received by the IC and outputs a rectified signal to make the power supply start switch conductive by the rectified signal, and the power supply start switch becomes conductive. And a control circuit for starting the power supply control circuit and the electronic apparatus. This brings about the effect | action of starting operation | movement of a control circuit based on the electromagnetic waves received in the receiving part.
 また、この第1の側面において、上記電源起動スイッチと並列に接続される電源維持スイッチをさらに具備し、上記制御回路は、上記動作を開始すると上記電源維持スイッチを導通状態にして上記制御回路への電源の供給を維持するようにしてもよい。これにより、制御回路の起動後、制御回路への電源の供給を維持させるという作用をもたらす。 In the first aspect, the power supply maintenance switch connected in parallel with the power supply start switch is further provided, and the control circuit turns on the power supply maintenance switch when the operation is started, to the control circuit. Power supply may be maintained. This brings about the effect | action of maintaining supply of the power supply to a control circuit after starting of a control circuit.
 また、この第1の側面において、上記制御回路は、上記電磁波により本体回路を起動する信号を所定期間内に受け取らなかった場合には上記電源維持スイッチを切断状態にして上記制御回路への電源の供給を停止するようにしてもよい。これにより、本体回路を起動する信号を受け取らなかった場合に制御回路への電源の供給を停止させるという作用をもたらす。 In the first aspect, when the control circuit does not receive a signal for activating the main circuit by the electromagnetic wave within a predetermined period, the control circuit turns off the power supply maintenance switch to set the power supply to the control circuit. The supply may be stopped. This brings about the effect | action of stopping supply of the power supply to a control circuit, when the signal which starts a main body circuit is not received.
 また、この第1の側面において、上記整流器から上記電源起動スイッチへの信号の受付を制御する受付制御スイッチをさらに具備し、上記制御回路は、上記電源維持スイッチを導通状態にした後に上記受付制御スイッチを導通状態にすることにより上記電源起動スイッチを切断状態にするようにしてもよい。これにより、受信部からの新たな信号の受付を停止させるという作用をもたらす。 In the first aspect, the control circuit further includes a reception control switch for controlling reception of a signal from the rectifier to the power supply start switch, and the control circuit performs the reception control after the power supply maintenance switch is turned on. The power supply start switch may be turned off by turning on the switch. This brings about the effect | action of stopping reception of the new signal from a receiving part.
 また、この第1の側面において、上記電源維持スイッチと直列に接続されて、上記電源維持スイッチが切断状態になった後にも上記制御回路への電源供給を一定期間継続させる容量をさらに具備するようにしてもよい。これにより、電源維持スイッチが切断状態になった後にも一定期間、受信部からの新たな信号の受付を停止させるという作用をもたらす。 In addition, in the first aspect, the power supply maintenance switch is connected in series to further include a capacitance for continuing the power supply to the control circuit for a certain period of time after the power supply maintenance switch is turned off. You may This brings about an effect of stopping reception of a new signal from the receiving unit for a certain period of time even after the power supply maintenance switch is turned off.
 また、この第1の側面において、本体回路の電源制御を行う本体電源スイッチをさらに具備し、上記制御回路は、上記電磁波が上記本体回路を起動する信号であった場合には上記本体電源スイッチを導通状態にして上記本体回路への電源の供給を開始させるようにしてもよい。これにより、制御回路によって本体回路への電源の供給を開始させるという作用をもたらす。 Further, the first aspect further includes a main power switch for controlling power of the main circuit, and the control circuit is configured to control the main power switch when the electromagnetic wave is a signal for activating the main circuit. The supply of power to the main circuit may be started by bringing the main circuit into conduction. This brings about the effect | action of starting supply of the power supply to a main body circuit by a control circuit.
 また、この第1の側面において、本体回路への制御信号を含む電磁波を受信する第2の受信部をさらに具備し、上記制御回路は、上記第2の受信部により受信された上記制御信号に従って上記本体回路を制御するようにしてもよい。これにより、第2の受信部により受信された制御信号に従って本体回路を制御するという作用をもたらす。 The first aspect further includes a second receiving unit for receiving an electromagnetic wave including a control signal to the main circuit, wherein the control circuit is configured to receive the control signal received by the second receiving unit. The main body circuit may be controlled. This brings about the effect | action of controlling a main body circuit according to the control signal received by the 2nd receiving part.
 また、この第1の側面において、上記受信部により受信された上記電磁波から本体回路への制御信号を含む電磁波を分波する分波器をさらに具備し、上記制御回路は、上記分波器により分波された上記制御信号に従って上記本体回路を制御するようにしてもよい。これにより、分波器により分波された制御信号に従って本体回路を制御するという作用をもたらす。 In addition, the first aspect of the present invention further includes a splitter that splits the electromagnetic wave including the control signal to the main circuit from the electromagnetic wave received by the receiving unit, the control circuit including the splitter. The main body circuit may be controlled in accordance with the branched control signal. This brings about the effect | action of controlling a main body circuit according to the control signal branched by the splitter.
 また、この第1の側面において、上記受信部により受信された上記電磁波から本体回路への制御信号を含む電磁波を分配する分配器をさらに具備し、上記制御回路は、上記分配器により分配された上記制御信号に従って上記本体回路を制御するようにしてもよい。これにより、分配器により分配された制御信号に従って本体回路を制御するという作用をもたらす。 In addition, the first aspect further includes a distributor that distributes an electromagnetic wave including a control signal to the main circuit from the electromagnetic wave received by the receiver, the control circuit being distributed by the distributor. The main body circuit may be controlled in accordance with the control signal. This produces the effect of controlling the main circuit in accordance with the control signal distributed by the distributor.
 また、この第1の側面において、上記整流器は、上記電磁波を正の信号に整流し、上記電源起動スイッチは、ノーマリーオフ型NMOSトランジスタであってもよい。また、上記整流器は、上記電磁波を負の信号に整流し、上記電源起動スイッチは、ノーマリーオフ型PMOSトランジスタであってもよい。 In addition, in the first aspect, the rectifier may rectify the electromagnetic wave into a positive signal, and the power supply start switch may be a normally-off type NMOS transistor. Further, the rectifier may rectify the electromagnetic wave into a negative signal, and the power supply start switch may be a normally-off type PMOS transistor.
 また、この第1の側面において、上記受信部は、アンテナであってもよく、また、コイルであってもよい。 In addition, in the first aspect, the receiving unit may be an antenna or may be a coil.
 本技術によれば、外部からの受信待機のための消費電力を抑制することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to achieve an excellent effect that power consumption for waiting for reception from the outside can be suppressed. In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本技術の実施の形態におけるシステム構成の一例を示す図である。It is a figure showing an example of the system configuration in an embodiment of this art. 本技術の第1の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 1st embodiment of this art. 本技術の第1の実施の形態における受付回路100の動作の第1の例を示すタイミング図である。FIG. 7 is a timing chart showing a first example of the operation of the reception circuit 100 in the first embodiment of the present technology. 本技術の第1の実施の形態における受付回路100の動作の第2の例を示すタイミング図である。FIG. 7 is a timing chart showing a second example of the operation of the reception circuit 100 in the first embodiment of the present technology. 本技術の第2の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 2nd embodiment of this art. 本技術の第2の実施の形態における受付回路100の動作の第1の例を示すタイミング図である。It is a timing chart which shows the 1st example of operation of acceptance circuit 100 in a 2nd embodiment of this art. 本技術の第2の実施の形態における受付回路100の動作の第2の例を示すタイミング図である。It is a timing chart which shows the 2nd example of operation of acceptance circuit 100 in a 2nd embodiment of this art. 本技術の第3の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 3rd embodiment of this art. 本技術の第4の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 4th embodiment of this art. 本技術の第5の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 5th embodiment of this art. 本技術の第6の実施の形態における受付回路100の回路構成の一例を示す図である。It is a figure showing an example of circuit composition of reception circuit 100 in a 6th embodiment of this art. 本技術の第6の実施の形態における受付回路100の動作例を示すタイミング図である。FIG. 21 is a timing chart showing an operation example of the reception circuit 100 in the sixth embodiment of the present technology.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(アンテナを2本用いた例)
 2.第2の実施の形態(分波器を利用してアンテナを1本にした例)
 3.第3の実施の形態(整流器の極性を反転させた例)
 4.第4の実施の形態(整流器の極性を反転させて分波器を利用した例)
 5.第5の実施の形態(極性の異なるトランジスタを混在させた例)
 6.第6の実施の形態(分配器を利用してアンテナを1本にした例)
Hereinafter, modes for implementing the present technology (hereinafter, referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (example using two antennas)
2. Second embodiment (an example in which a single antenna is used by using a branching filter)
3. Third embodiment (example in which the polarity of the rectifier is reversed)
4. Fourth Embodiment (Example in which the polarity of a rectifier is reversed to use a splitter)
5. Fifth embodiment (example in which transistors having different polarities are mixed)
6. Sixth embodiment (example in which one antenna is provided by using a distributor)
 <1.第1の実施の形態>
 [システム構成]
 図1は、本技術の実施の形態におけるシステム構成の一例を示す図である。この例では、電子機器10と、リモートコントローラ20とを想定する。
<1. First embodiment>
[System configuration]
FIG. 1 is a diagram illustrating an example of a system configuration according to an embodiment of the present technology. In this example, the electronic device 10 and the remote controller 20 are assumed.
 電子機器10は、リモートコントローラ20からの操作信号に従って動作を行う機器である。この電子機器10は、例えばIoT機器などのバッテリー駆動型のデバイスであってもよい。リモートコントローラ20は、電子機器10の動作を制御するための遠隔制御装置である。リモートコントローラ20から電子機器10に対する操作信号は、電磁波により送信される。ここで、電磁波としては、電波や光など、様々な波長のものが想定される。また、その媒体としては、空気以外の誘電体であってもよい。したがって、例えばミリ波を導波管により伝送するような場合も含まれる。 The electronic device 10 is a device that operates according to an operation signal from the remote controller 20. The electronic device 10 may be, for example, a battery-powered device such as an IoT device. The remote controller 20 is a remote control device for controlling the operation of the electronic device 10. An operation signal from the remote controller 20 to the electronic device 10 is transmitted by an electromagnetic wave. Here, as electromagnetic waves, those of various wavelengths such as radio waves and light are assumed. The medium may be a dielectric other than air. Therefore, for example, the case where millimeter waves are transmitted by a waveguide is also included.
 電子機器10は、本体回路400と、本体回路400に対して電源を供給する電源制御回路300とを備える。ここで、本体回路400としては、例えば、テレビジョン受像機(映像機器)、空調機器(エアーコンディショナ)やオーディオ機器などの本体部分が想定される。 The electronic device 10 includes a main body circuit 400 and a power control circuit 300 for supplying power to the main body circuit 400. Here, as the main body circuit 400, for example, a main body portion of a television receiver (video equipment), an air conditioner (air conditioner), an audio equipment or the like is assumed.
 電源制御回路300は、受付回路100と、制御回路200とを備える。受付回路100は、リモートコントローラ20からの電磁波を受け付けて、その内容に従って制御回路200および本体回路400に電源を供給する回路である。制御回路200は、本体回路400への電源供給を制御する回路である。 The power supply control circuit 300 includes a receiving circuit 100 and a control circuit 200. The reception circuit 100 is a circuit that receives an electromagnetic wave from the remote controller 20 and supplies power to the control circuit 200 and the main circuit 400 according to the content. The control circuit 200 is a circuit that controls power supply to the main circuit 400.
 このシステム構成において、受付回路100がリモートコントローラ20からの操作信号を受信すると、受付回路100は制御回路200に電源を一旦供給する。制御回路200は、リモートコントローラ20からの後続の操作信号を待って、本体回路400を起動する信号を受け取ると、受付回路100に対する制御信号により、本体回路400への電源供給を指示する。そして、本体回路400に対する制御信号により、本体回路400を起動させる。 In this system configuration, when the receiving circuit 100 receives an operation signal from the remote controller 20, the receiving circuit 100 temporarily supplies power to the control circuit 200. When the control circuit 200 waits for the subsequent operation signal from the remote controller 20 and receives the signal for activating the main circuit 400, the control circuit 200 instructs the power supply to the main circuit 400 by the control signal to the reception circuit 100. Then, the main circuit 400 is activated by the control signal to the main circuit 400.
 一方、リモートコントローラ20からの後続の操作信号を受け取らなかった場合には、制御回路200は、受付回路100に対する制御信号により、制御回路200への電源供給を停止するよう指示する。これにより、制御回路200は動作を停止し、制御回路200による不要な電力消費を抑制することができる。 On the other hand, when the subsequent operation signal from the remote controller 20 is not received, the control circuit 200 instructs the reception circuit 100 to stop the power supply to the control circuit 200 by the control signal. Thus, the control circuit 200 can stop its operation, and unnecessary power consumption by the control circuit 200 can be suppressed.
 [回路構成]
 図2は、本技術の第1の実施の形態における受付回路100の回路構成の一例を示す図である。
[Circuit configuration]
FIG. 2 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the first embodiment of the present technology.
 この第1の実施の形態における受付回路100は、2本のアンテナ111(#1)および112(#2)と、整流器120と、容量130(C1)と、容量140(C2)とを備える。また、この受付回路100は、電源起動スイッチ150(M1)と、電源維持スイッチ160(M2)と、本体電源スイッチ170(M3)と、受付制御スイッチ180(M4)と、電源190とを備える。 The reception circuit 100 in the first embodiment includes two antennas 111 (# 1) and 112 (# 2), a rectifier 120, a capacity 130 (C1), and a capacity 140 (C2). The reception circuit 100 further includes a power supply start switch 150 (M1), a power maintenance switch 160 (M2), a main power switch 170 (M3), a reception control switch 180 (M4), and a power supply 190.
 アンテナ111および112は、電磁波を受信する装置である。アンテナ111は、リモートコントローラ20からの、受付回路100を動作させる契機となる信号を受信するものである。アンテナ112は、リモートコントローラ20からの、本体回路400を起動する信号を受信するものである。なお、ここでは、電波を受信するためのアンテナを想定したが、近距離無線通信(Near Field Communication)による信号受信を行うためのコイル等であってもよい。アンテナ111は、特許請求の範囲に記載の受信部の一例である。 The antennas 111 and 112 are devices for receiving an electromagnetic wave. The antenna 111 receives a signal from the remote controller 20 which is a trigger for operating the receiving circuit 100. The antenna 112 receives a signal from the remote controller 20 for activating the main circuit 400. In addition, although the antenna for receiving an electromagnetic wave was assumed here, the coil etc. for performing the signal reception by near field communication (Near Field Communication) may be sufficient. The antenna 111 is an example of a receiving unit described in the claims.
 整流器120は、アンテナ111によって受信された電磁波を整流する素子である。ここでは、交流波形を有する電磁波から、正の脈流または直流が生成されることを想定する。容量140は、整流器120の出力を平滑化するコンデンサである。これにより、平滑化された正の直流が、電源起動スイッチ150のゲートおよび受付制御スイッチ180のドレインに供給される。 The rectifier 120 is an element that rectifies an electromagnetic wave received by the antenna 111. Here, it is assumed that positive pulsating current or direct current is generated from an electromagnetic wave having an alternating current waveform. The capacitor 140 is a capacitor that smoothes the output of the rectifier 120. Thereby, the smoothed positive direct current is supplied to the gate of the power supply start switch 150 and the drain of the reception control switch 180.
 容量130は、制御回路200に電源が供給されている間に充電されるコンデンサである。これにより、制御回路200への電源供給が切断された後にも、電源供給を一定期間継続させることができる。 The capacitor 130 is a capacitor which is charged while the control circuit 200 is supplied with power. Thus, even after the power supply to the control circuit 200 is disconnected, the power supply can be continued for a certain period.
 電源190は、制御回路200および本体回路400への電源供給を行う電源回路である。この電源190による電源供給は、以下に説明する4つのスイッチ(トランジスタ)により制御される。すなわち、電源起動スイッチ150、電源維持スイッチ160、本体電源スイッチ170、および、受付制御スイッチ180である。これら4つのトランジスタは、この第1の実施の形態においては、ノーマリーオフ型NMOSトランジスタであり、動作していない状態においては電流が流れず、電力を消費しない。 The power supply 190 is a power supply circuit that supplies power to the control circuit 200 and the main circuit 400. The power supply by the power supply 190 is controlled by four switches (transistors) described below. That is, the power supply start switch 150, the power supply maintenance switch 160, the main body power switch 170, and the reception control switch 180. In the first embodiment, these four transistors are normally-off type NMOS transistors, and in the non-operation state, no current flows and no power is consumed.
 電源起動スイッチ150は、制御回路200に対して、起動時に必要な電源を供給するためのトランジスタである。この電源起動スイッチ150のゲートは整流器120の出力に接続されており、アンテナ111によって受信された電磁波が整流器120によって整流されてその信号電圧が印加されることによって、この電源起動スイッチ150は導通状態となる。この電源起動スイッチ150が導通状態になると、電源190によって制御回路200に電源が供給される。制御回路200は、電源が供給されることによって起動すると、電源供給状態を維持するために、電源維持スイッチ160を導通状態にする電圧を印加する。また、制御回路200は、電源起動スイッチ150を遮断状態にするために、受付制御スイッチ180を導通状態にする電圧を印加する。このように、この電源起動スイッチ150は、制御回路200の電源起動時に導通状態になって、起動に必要な電源を供給する。制御回路200は、電源が供給されることによって起動すると、リモートコントローラ20からの本体回路400を起動する信号がアンテナ112によって受信されるまで待機する。 The power supply start switch 150 is a transistor for supplying the control circuit 200 with a necessary power at the time of start. The gate of the power supply start switch 150 is connected to the output of the rectifier 120, and the electromagnetic wave received by the antenna 111 is rectified by the rectifier 120 and the signal voltage is applied to make the power supply start switch 150 conductive. It becomes. When the power supply start switch 150 is turned on, the power supply 190 supplies power to the control circuit 200. When activated by the supply of power, the control circuit 200 applies a voltage to make the power supply maintenance switch 160 conductive in order to maintain the power supply state. Further, the control circuit 200 applies a voltage to make the reception control switch 180 conductive in order to turn off the power supply start switch 150. As described above, the power supply start switch 150 is turned on at the time of power supply start of the control circuit 200 to supply the power necessary for the start. When the control circuit 200 is activated by the supply of power, the control circuit 200 stands by until a signal for activating the main circuit 400 from the remote controller 20 is received by the antenna 112.
 電源維持スイッチ160は、制御回路200に対して、起動後に必要な電源を供給するためのトランジスタである。この電源維持スイッチ160のゲートは制御回路200に接続されており、制御回路200から電圧が印加されることによってこの電源維持スイッチ160は導通状態となる。この電源維持スイッチ160が導通状態になると、電源起動スイッチ150が遮断状態になった後でも、電源190による制御回路200への電源供給が維持される。ただし、アンテナ112を介して本体回路400を起動する信号を所定期間内に受け取らなかった場合には、制御回路200は電源維持スイッチ160への電圧印加を中止する。これにより、電源維持スイッチ160は切断状態となり、電源から遮断される。ただし、この場合であっても、容量130に充電された電力により一定期間、電源供給は継続される。このように、制御回路200への電源供給を維持するか否かが、この電源維持スイッチ160を介して制御回路200によって制御される。 The power supply maintenance switch 160 is a transistor for supplying the control circuit 200 with the necessary power after activation. The gate of the power supply sustaining switch 160 is connected to the control circuit 200, and when the control circuit 200 applies a voltage, the power supply sustaining switch 160 becomes conductive. When the power supply maintenance switch 160 becomes conductive, power supply to the control circuit 200 by the power supply 190 is maintained even after the power supply start switch 150 is cut off. However, when a signal for activating the main circuit 400 via the antenna 112 is not received within a predetermined period, the control circuit 200 stops applying a voltage to the power maintenance switch 160. As a result, the power supply maintenance switch 160 is turned off and cut off from the power supply. However, even in this case, power supply is continued for a certain period by the power charged to the capacity 130. As described above, whether to maintain the power supply to the control circuit 200 is controlled by the control circuit 200 via the power supply maintenance switch 160.
 本体電源スイッチ170は、本体回路400に対して、動作に必要な電源を供給するためのトランジスタである。この本体電源スイッチ170のゲートは制御回路200に接続されており、制御回路200から電圧が印加されることによってこの本体電源スイッチ170は導通状態となる。制御回路200は、電源が供給されることによって起動すると、リモートコントローラ20からの本体回路400を起動する信号がアンテナ112によって受信されるまで待機する。本体回路400を起動する信号を受信すると、制御回路200は、本体電源スイッチ170を導通状態にする電圧を印加する。この本体電源スイッチ170が導通状態になると、電源190によって本体回路400に電源が供給される。 The main power switch 170 is a transistor for supplying power necessary for operation to the main circuit 400. The gate of the main power switch 170 is connected to the control circuit 200. When a voltage is applied from the control circuit 200, the main power switch 170 is turned on. When the control circuit 200 is activated by the supply of power, the control circuit 200 stands by until a signal for activating the main circuit 400 from the remote controller 20 is received by the antenna 112. When the signal for activating the main circuit 400 is received, the control circuit 200 applies a voltage to make the main power switch 170 conductive. When the main power switch 170 is turned on, the power supply 190 supplies power to the main circuit 400.
 受付制御スイッチ180は、アンテナ111からの信号受付を制御するためのトランジスタである。この受付制御スイッチ180のゲートは制御回路200に接続されており、制御回路200から電圧が印加されることによってこの受付制御スイッチ180は導通状態となる。この受付制御スイッチ180が導通状態になると、電源起動スイッチ150は遮断状態になり、アンテナ111からの信号を新たに受け付けないようになる。すなわち、アンテナ111に望まれない電磁波が入力されても、制御回路200はシャットダウンすることができ、不要な電力消費を抑制することができる。 The reception control switch 180 is a transistor for controlling reception of a signal from the antenna 111. The gate of the reception control switch 180 is connected to the control circuit 200, and when a voltage is applied from the control circuit 200, the reception control switch 180 becomes conductive. When the reception control switch 180 is turned on, the power supply start switch 150 is turned off, and a signal from the antenna 111 is not newly received. That is, even when an undesired electromagnetic wave is input to the antenna 111, the control circuit 200 can be shut down, and unnecessary power consumption can be suppressed.
 [動作]
 図3は、本技術の第1の実施の形態における受付回路100の動作の第1の例を示すタイミング図である。この第1の例は、本体回路400を起動する信号を所定期間内に受け取った場合の例である。
[Operation]
FIG. 3 is a timing chart showing a first example of the operation of the reception circuit 100 in the first embodiment of the present technology. The first example is an example in the case where a signal for activating the main circuit 400 is received within a predetermined period.
 アンテナ111によって電磁波が受信されると、その電磁波が整流器120によって整流され、その信号電圧が電源起動スイッチ150のゲートに印加される。これにより、電源起動スイッチ150が導通状態になり、電源190によって制御回路200に電源が供給され、制御回路200が起動する。 When an electromagnetic wave is received by the antenna 111, the electromagnetic wave is rectified by the rectifier 120, and the signal voltage is applied to the gate of the power supply start switch 150. As a result, the power supply start switch 150 is turned on, power is supplied to the control circuit 200 by the power supply 190, and the control circuit 200 is started.
 制御回路200は、自身への電源供給状態を維持するために、電源維持スイッチ160を導通状態にする電圧を、電源維持スイッチ160のゲートに印加する。これにより、電源起動スイッチ150の状態にかかわらず、制御回路200への電源供給状態が維持されるようになる。 Control circuit 200 applies a voltage to the gate of power supply maintenance switch 160 to make power supply maintenance switch 160 conductive in order to maintain the state of power supply to itself. Thus, regardless of the state of the power supply start switch 150, the power supply state to the control circuit 200 is maintained.
 また、制御回路200は、受付制御スイッチ180を導通状態にする電圧を、受付制御スイッチ180のゲートに印加する。これにより、受付制御スイッチ180が導通状態になり、電源起動スイッチ150のゲートに印加されていた信号電圧が停止する。そのため、電源起動スイッチ150は遮断状態になり、アンテナ111からの信号を新たに受け付けないようになる。 Further, the control circuit 200 applies a voltage to make the reception control switch 180 conductive to the gate of the reception control switch 180. As a result, the reception control switch 180 is turned on, and the signal voltage applied to the gate of the power supply start switch 150 is stopped. As a result, the power supply start switch 150 is turned off, and the signal from the antenna 111 is not newly received.
 そして、制御回路200は、アンテナ112によって本体回路400を起動する信号が受信されたことを確認すると、本体電源スイッチ170を導通状態にする電圧を、本体電源スイッチ170のゲートに印加する。これにより、本体電源スイッチ170が導通状態になり、電源190によって本体回路400に電源が供給される。 Then, when the control circuit 200 confirms that the signal for activating the main circuit 400 is received by the antenna 112, the control circuit 200 applies a voltage to make the main power switch 170 conductive to the gate of the main power switch 170. As a result, the main power switch 170 is turned on, and the power supply 190 supplies power to the main circuit 400.
 図4は、本技術の第1の実施の形態における受付回路100の動作の第2の例を示すタイミング図である。この第2の例は、本体回路400を起動する信号を所定期間内に受け取らなかった場合の例である。 FIG. 4 is a timing chart showing a second example of the operation of the reception circuit 100 in the first embodiment of the present technology. The second example is an example in which a signal for activating the main circuit 400 is not received within a predetermined period.
 この第2の例においても、上述の第1の例と同様に、制御回路200が起動され、アンテナ112によって本体回路400を起動する信号が受信されるのを待機する。この第2の例では、本体回路400を起動する信号を所定期間内に受け取ることができず、制御回路200は電源維持スイッチ160のゲートへの電圧印加を中止する。これにより、電源維持スイッチ160は切断状態となり、電源から遮断される。すなわち、この場合には、本体回路400に電源は供給されない。 Also in the second example, as in the first example described above, the control circuit 200 is activated and waits for reception of a signal for activating the main body circuit 400 by the antenna 112. In the second example, the signal for activating the main circuit 400 can not be received within a predetermined period, and the control circuit 200 stops applying the voltage to the gate of the power supply maintenance switch 160. As a result, the power supply maintenance switch 160 is turned off and cut off from the power supply. That is, in this case, the main circuit 400 is not supplied with power.
 ただし、電源が供給されていた間に容量130が充電されており、制御回路200には一定期間、電源供給が継続される。したがって、その間は受付制御スイッチ180のゲートへの電圧印加が継続し、アンテナ111からの信号の受付を抑制する。 However, while the power is supplied, the capacitor 130 is charged, and the power supply to the control circuit 200 is continued for a certain period. Therefore, voltage application to the gate of the reception control switch 180 continues during that time, and the reception of the signal from the antenna 111 is suppressed.
 その後、容量130に充電されていた電荷がなくなり、受付制御スイッチ180のゲートへの電圧印加が行われなくなると、受付制御スイッチ180は遮断状態となり、再びアンテナ111からの信号を受け付けることができるようになる。 After that, when the charge stored in the capacitor 130 disappears and voltage application to the gate of the reception control switch 180 is not performed, the reception control switch 180 is cut off so that the signal from the antenna 111 can be received again. become.
 このように、本技術の第1の実施の形態では、アンテナ111において受信した信号の電圧により制御回路200を起動して、アンテナ112において本体回路400を起動する信号が受信されるのを待機する。制御回路200は、起動するまで完全にシャットダウンしているため、待機電力を消費しない。また、信号を受け付けて電源を供給するためのスイッチはノーマリ―オフ型のトランジスタを用いることができる。これにより、電力を消費することなくリモートコントローラ20からの信号受信を待機することができる。 As described above, in the first embodiment of the present technology, the control circuit 200 is activated by the voltage of the signal received at the antenna 111, and the antenna 112 waits for reception of a signal for activating the main circuit 400. . The control circuit 200 does not consume standby power since it is completely shut down until it starts up. In addition, as a switch for receiving a signal and supplying power, a normally-off transistor can be used. Thus, it is possible to wait for signal reception from the remote controller 20 without consuming power.
 また、バッテリー駆動型のデバイスにおいては、待機電力の削減が駆動時間の長寿命化につながるため、本技術と相性がよい。また、外部から命令を送るときだけ、制御回路200を起動するための電磁波を送ることによって制御回路200を起動することができるため、効率がよい電源起動方式である。また、回路に常に電流が流れていないため、トランジスタの特性変化や配線の劣化の進行を遅らせることができ、集積回路の故障率低下および長寿命化に寄与することができる。 In addition, in a battery-powered device, reduction in standby power leads to an increase in the lifetime of the drive time, and thus is compatible with the present technology. In addition, since the control circuit 200 can be activated by transmitting an electromagnetic wave for activating the control circuit 200 only when an instruction is sent from the outside, the power supply activation method is efficient. In addition, since current does not always flow in the circuit, it is possible to delay the progression of the characteristic change of the transistor and the deterioration of the wiring, which can contribute to the reduction of the failure rate and the extension of the life of the integrated circuit.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、2本のアンテナによって信号を受信することを想定していた。これに対し、この第2の実施の形態では、1本のアンテナによって信号を受信することを想定する。なお、システムとしての基本的な構成は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<2. Second embodiment>
In the first embodiment described above, it is assumed that signals are received by two antennas. On the other hand, in the second embodiment, it is assumed that a single antenna receives a signal. The basic configuration of the system is the same as that of the first embodiment described above, and thus detailed description will be omitted.
 [回路構成]
 図5は、本技術の第2の実施の形態における受付回路100の回路構成の一例を示す図である。
[Circuit configuration]
FIG. 5 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the second embodiment of the present technology.
 この第2の実施の形態における受付回路100では、1本のアンテナ113により電磁波を受信して、分波器114によって2つの系統に分波する。分波器114は、電磁波をその周波数帯によって分波するアンテナカプラーである。すなわち、この分波器114は、制御回路200を起動するために使用される周波数帯信号であれば整流器120に供給し、それ以外の周波数帯信号であれば制御回路200に供給する。それ以降の処理は、上述の第1の実施の形態と同様である。なお、アンテナ113は、特許請求の範囲に記載の受信部の一例である。 In the reception circuit 100 according to the second embodiment, an electromagnetic wave is received by one antenna 113, and is demultiplexed into two systems by the demultiplexer 114. The splitter 114 is an antenna coupler that splits an electromagnetic wave according to its frequency band. That is, the branching filter 114 supplies the rectifier 120 if it is a frequency band signal used to start up the control circuit 200 and supplies the control circuit 200 if it is another frequency band signal. The subsequent processing is the same as that of the first embodiment described above. In addition, the antenna 113 is an example of the receiving part as described in a claim.
 分波器114において2つの系統の電磁波を区別するために、リモートコントローラ20からの信号については、何らかの変調を施す必要がある。例えば、振幅変調や周波数変調などが想定される。 In order to distinguish the two systems of electromagnetic waves in the branching filter 114, it is necessary to apply some modulation to the signal from the remote controller 20. For example, amplitude modulation or frequency modulation is assumed.
 [動作]
 図6は、本技術の第2の実施の形態における受付回路100の動作の第1の例を示すタイミング図である。この第1の例は、リモートコントローラ20からの信号が変調されたものであり、制御回路200と電源起動スイッチ150(M1)を制御する2つの異なる周波数帯の信号が同時に送信されてくる場合の例である。両者の信号は、1GHz帯および500MHz帯などの異なる周波数帯により送信される。分波器114は、両者の信号を分波して、一方を整流器120の入力に、他方を制御回路200の入力にそれぞれ供給する。なお、この例では整流器120に対して高い周波数帯の信号を分波し、制御回路200に対して低い周波数帯の信号を分波しているが、周波数帯の高低は逆であってもよい。
[Operation]
FIG. 6 is a timing chart showing a first example of the operation of the reception circuit 100 in the second embodiment of the present technology. In the first example, the signal from the remote controller 20 is modulated, and signals of two different frequency bands for controlling the control circuit 200 and the power supply start switch 150 (M1) are simultaneously transmitted. It is an example. Both signals are transmitted in different frequency bands such as 1 GHz band and 500 MHz band. The splitter 114 splits the two signals and supplies one to the input of the rectifier 120 and the other to the input of the control circuit 200. In this example, the signal in the high frequency band is demultiplexed with respect to the rectifier 120, and the signal in the low frequency band with respect to the control circuit 200 is demultiplexed, but the high and low frequency bands may be reversed. .
 図7は、本技術の第2の実施の形態における受付回路100の動作の第2の例を示すタイミング図である。この第2の例は、リモートコントローラ20からの信号が変調されたものであり、制御回路200と電源起動スイッチ150(M1)を制御する2つの異なる周波数帯の信号が時間をずらして送信されてくる場合の例である。この場合においても、分波器114は、両者の信号を分波して、一方を整流器120の入力に、他方を制御回路200の入力にそれぞれ供給する。なお、上述の第1の例と同様に、整流器120に対して高い周波数帯の信号を分波し、制御回路200に対して低い周波数帯の信号を分波しているが、周波数帯の高低は逆であってもよい。 FIG. 7 is a timing chart showing a second example of the operation of the reception circuit 100 in the second embodiment of the present technology. In this second example, the signal from the remote controller 20 is modulated, and signals of two different frequency bands for controlling the control circuit 200 and the power supply start switch 150 (M1) are transmitted while being shifted in time. It is an example of the case of coming. Also in this case, the splitter 114 splits the two signals and supplies one to the input of the rectifier 120 and the other to the input of the control circuit 200. As in the first example described above, the signal in the high frequency band with respect to the rectifier 120 is demultiplexed, and the signal with the low frequency band with respect to the control circuit 200 is demultiplexed. May be reversed.
 このように、本技術の第2の実施の形態では、アンテナ113によって受信された信号を分波器114によって2つの系統に分波して、それぞれの動作を行う。これにより、1本のアンテナ113により、電源を消費することなく信号を待機することができる。 Thus, in the second embodiment of the present technology, the signal received by the antenna 113 is demultiplexed into two systems by the demultiplexer 114 to perform each operation. Thus, one antenna 113 can wait for a signal without consuming power.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、4つのスイッチとしてノーマリーオフ型NMOSトランジスタを用いる例を想定していた。これに対し、この第3の実施の形態では、ノーマリーオフ型PMOSトランジスタを用いることを想定する。なお、システムとしての基本的な構成は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<3. Third embodiment>
In the above-described first embodiment, it is assumed that normally-off type NMOS transistors are used as the four switches. On the other hand, in the third embodiment, it is assumed that a normally-off type PMOS transistor is used. The basic configuration of the system is the same as that of the first embodiment described above, and thus detailed description will be omitted.
 [回路構成]
 図8は、本技術の第3の実施の形態における受付回路100の回路構成の一例を示す図である。
[Circuit configuration]
FIG. 8 is a diagram showing an example of a circuit configuration of the reception circuit 100 according to the third embodiment of the present technology.
 この例では、電源起動スイッチ151、電源維持スイッチ161、本体電源スイッチ171、および、受付制御スイッチ181は、ノーマリーオフ型PMOSトランジスタである。したがって、上述の第1の実施の形態とは極性が逆になっている。そのため、整流器121の極性も上述の第1の実施の形態とは逆であり、交流波形を有する電磁波から、負の脈流または直流が生成される。 In this example, the power supply start switch 151, the power supply maintenance switch 161, the main body power switch 171, and the reception control switch 181 are normally-off type PMOS transistors. Therefore, the polarity is opposite to that of the first embodiment described above. Therefore, the polarity of the rectifier 121 is also opposite to that of the first embodiment described above, and negative pulsating current or direct current is generated from the electromagnetic wave having an alternating current waveform.
 電源起動スイッチ151は、整流器121から負の信号電圧が印加されると導通状態となる。これにより、制御回路200が起動して、上述の第1の実施の形態と同様の動作を行う。ただし、電源維持スイッチ161、本体電源スイッチ171、および、受付制御スイッチ181のゲートに印加される電圧は、負の電圧である。 The power supply start switch 151 is turned on when a negative signal voltage is applied from the rectifier 121. As a result, the control circuit 200 is activated to perform the same operation as that of the above-described first embodiment. However, the voltages applied to the power supply maintenance switch 161, the main body power supply switch 171, and the gate of the reception control switch 181 are negative voltages.
 このように、本技術の第3の実施の形態によれば、ノーマリーオフ型PMOSトランジスタを用いて、電力を消費することなくリモートコントローラ20からの信号受信を待機することができる。 As described above, according to the third embodiment of the present technology, using the normally-off PMOS transistor, it is possible to wait for signal reception from the remote controller 20 without consuming power.
 <4.第4の実施の形態>
 上述の第3の実施の形態では、第1の実施の形態と同様に、2本のアンテナによって信号を受信することを想定していた。これに対し、この第4の実施の形態では、第2の実施の形態と同様に、1本のアンテナによって信号を受信することを想定する。なお、システムとしての基本的な構成は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<4. Fourth embodiment>
In the third embodiment described above, it is assumed that signals are received by two antennas as in the first embodiment. On the other hand, in the fourth embodiment, as in the second embodiment, it is assumed that a single antenna receives a signal. The basic configuration of the system is the same as that of the first embodiment described above, and thus detailed description will be omitted.
 [回路構成]
 図9は、本技術の第4の実施の形態における受付回路100の回路構成の一例を示す図である。
[Circuit configuration]
FIG. 9 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the fourth embodiment of the present technology.
 この第4の実施の形態における受付回路100は、上述の第3の実施の形態において、上述の第2の実施の形態と同様に、1本のアンテナ113により信号を受信して、分波器114によって2つの系統に分波する。これにより、ノーマリーオフ型PMOSトランジスタを用いた回路構成において、1本のアンテナ113によりリモートコントローラ20からの信号を待機する。 In the third embodiment described above, the reception circuit 100 according to the fourth embodiment receives a signal by one antenna 113 as in the second embodiment described above, and a duplexer It divides into two systems by 114. Thus, in the circuit configuration using the normally-off type PMOS transistor, the signal from the remote controller 20 is awaited by one antenna 113.
 このように、本技術の第4の実施の形態によれば、ノーマリーオフ型PMOSトランジスタを用いた回路構成において、1本のアンテナ113により電源を消費することなく信号を待機することができる。 As described above, according to the fourth embodiment of the present technology, in a circuit configuration using a normally-off type PMOS transistor, a single antenna 113 can wait for a signal without consuming power.
 <5.第5の実施の形態>
 上述の第3の実施の形態では、4つのスイッチの全てにおいてノーマリーオフ型PMOSトランジスタを用いていたが、4つのスイッチはノーマリーオフ型NMOSトランジスタとノーマリーオフ型PMOSトランジスタとを混在させてもよい。この第5の実施の形態では、本体回路400の電源制御のスイッチにノーマリーオフ型NMOSトランジスタを用いて、他のスイッチにノーマリーオフ型PMOSトランジスタを用いて、両者を混在させた例について説明する。
<5. Fifth embodiment>
In the third embodiment described above, the normally-off type PMOS transistor is used in all the four switches, but the four switches are a combination of the normally-off type NMOS transistor and the normally-off type PMOS transistor. It is also good. In the fifth embodiment, an example in which a normally-off type NMOS transistor is used as a power control switch of the main circuit 400 and a normally-off type PMOS transistor is used as another switch, and both are mixed is described. Do.
 [回路構成]
 図10は、本技術の第5の実施の形態における受付回路100の回路構成の一例を示す図である。
[Circuit configuration]
FIG. 10 is a diagram illustrating an example of a circuit configuration of the reception circuit 100 according to the fifth embodiment of the present technology.
 この例では、電源起動スイッチ151、電源維持スイッチ161、および、受付制御スイッチ181は、ノーマリーオフ型PMOSトランジスタである。一方、本体電源スイッチ170は、ノーマリーオフ型NMOSトランジスタである。そして、整流器121は、交流波形を有する電磁波から、負の脈流または直流を生成する。 In this example, the power supply start switch 151, the power supply maintenance switch 161, and the reception control switch 181 are normally-off type PMOS transistors. On the other hand, the main power switch 170 is a normally-off type NMOS transistor. Then, the rectifier 121 generates negative pulsating current or direct current from the electromagnetic wave having the alternating current waveform.
 電源起動スイッチ151は、整流器121から負の信号電圧が印加されると導通状態となる。これにより、制御回路200が起動して、上述の第1の実施の形態と同様の動作を行う。ただし、電源維持スイッチ161、および、受付制御スイッチ181のゲートに印加される電圧は、負の電圧である。一方、本体電源スイッチ170のゲートに印加される電圧は、正の電圧である。 The power supply start switch 151 is turned on when a negative signal voltage is applied from the rectifier 121. As a result, the control circuit 200 is activated to perform the same operation as that of the above-described first embodiment. However, the voltage applied to the gate of the power supply maintenance switch 161 and the reception control switch 181 is a negative voltage. On the other hand, the voltage applied to the gate of the main power switch 170 is a positive voltage.
 このように、本技術の第5の実施の形態によれば、ノーマリーオフ型NMOSトランジスタおよびノーマリーオフ型PMOSトランジスタを混在させた回路において、電力を消費することなくリモートコントローラ20からの信号受信を待機することができる。 As described above, according to the fifth embodiment of the present technology, in the circuit in which the normally-off type NMOS transistor and the normally-off type PMOS transistor are mixed, the signal reception from the remote controller 20 without consuming the power Can wait.
 <6.第6の実施の形態>
 上述の第2の実施の形態では、1本のアンテナ113により電磁波を受信して、分波器114によって2つの系統に分波していた。これに対し、この第6の実施の形態では、分配器を用いて信号を分配する例を示す。
<6. Sixth embodiment>
In the second embodiment described above, an electromagnetic wave is received by one antenna 113 and demultiplexed into two systems by the demultiplexer 114. On the other hand, in the sixth embodiment, an example of distributing a signal using a distributor is shown.
 [回路構成]
 図11は、本技術の第6の実施の形態における受付回路100の回路構成の一例を示す図である。この第6の実施の形態における受付回路100では、1本のアンテナ113により電磁波を受信して、分配器115によって2つの系統に分配する。分配器115は、電磁波を複数系統に分配するものである。これ以外の構成については、上述の第2の実施の形態と同様であるため、詳細な説明は省略する。
[Circuit configuration]
FIG. 11 is a diagram showing an example of a circuit configuration of the reception circuit 100 according to the sixth embodiment of the present technology. In the reception circuit 100 in the sixth embodiment, an electromagnetic wave is received by one antenna 113 and distributed to two systems by the distributor 115. The distributor 115 is for distributing the electromagnetic wave to a plurality of systems. The configuration other than this is the same as that of the second embodiment described above, and thus detailed description will be omitted.
 [動作]
 図12は、本技術の第6の実施の形態における受付回路100の動作例を示すタイミング図である。この動作例は、リモートコントローラ20からの信号が変調されたものである場合の例である。
[Operation]
FIG. 12 is a timing chart showing an operation example of the reception circuit 100 in the sixth embodiment of the present technology. This operation example is an example when the signal from the remote controller 20 is modulated.
 電源起動スイッチ150(M1)を駆動するためには、整流器120に対して大きい振幅の信号を入力する必要がある。一方、本体電源スイッチ170(M3)のゲート電圧を制御する制御回路200は、小さい振幅でも信号を復調することが可能であるため、小さい電力の分配で十分である。そのため、分配器115は、図示されるように、整流器120に対して大きい振幅の信号を供給し、制御回路200に対して小さい振幅の信号を供給する、という動作を行う。それ以降の処理は、上述の第1の実施の形態と同様である。 In order to drive the power supply start switch 150 (M1), it is necessary to input a large amplitude signal to the rectifier 120. On the other hand, since the control circuit 200 that controls the gate voltage of the main power switch 170 (M3) can demodulate the signal even with a small amplitude, distribution of small power is sufficient. Therefore, the divider 115 operates to supply a large amplitude signal to the rectifier 120 and supply a small amplitude signal to the control circuit 200 as illustrated. The subsequent processing is the same as that of the first embodiment described above.
 なお、この例では電源起動スイッチ150(M1)を駆動するために高い周波数帯の信号を使用し、制御回路200において低い周波数帯の信号を使用しているが、周波数帯の高低は逆であってもよい。また、周波数帯は、必ずしも異なるものである必要はない。 In this example, a signal of a high frequency band is used to drive the power supply start switch 150 (M1), and a signal of a low frequency band is used in the control circuit 200. However, the high and low frequency bands are reversed. May be Also, the frequency bands do not necessarily have to be different.
 このように、本技術の第6の実施の形態では、アンテナ113によって受信された信号を分配器115によって2つの系統に分配して、それぞれの動作を行う。これにより、1本のアンテナ113により、電源を消費することなく信号を待機することができる。 Thus, in the sixth embodiment of the present technology, the signal received by the antenna 113 is divided into two systems by the distributor 115 to perform respective operations. Thus, one antenna 113 can wait for a signal without consuming power.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 Note that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specifying matters in the claims have correspondence relationships. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology with the same name as this have a correspondence relation, respectively. However, the present technology is not limited to the embodiments, and can be embodied by variously modifying the embodiments without departing from the scope of the present technology.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, is not limited, and may have other effects.
 なお、本技術は以下のような構成もとることができる。
(1)電源の供給を起動するための電源起動スイッチと、
 電磁波を受信する受信部と、
 前記受信部により受信された前記電磁波を整流して整流信号を出力してその整流信号により前記電源起動スイッチを導通状態にする整流器と、
 前記電源起動スイッチが導通状態になることにより電源の供給を受けて動作を開始する制御回路と
を具備する電源制御回路。
(2)前記電源起動スイッチと並列に接続される電源維持スイッチをさらに具備し、
 前記制御回路は、前記動作を開始すると前記電源維持スイッチを導通状態にして前記制御回路への電源の供給を維持する
前記(1)に記載の電源制御回路。
(3)前記制御回路は、前記電磁波により本体回路を起動する信号を所定期間内に受け取らなかった場合には前記電源維持スイッチを切断状態にして前記制御回路への電源の供給を停止する
前記(2)に記載の電源制御回路。
(4)前記整流器から前記電源起動スイッチへの信号の受付を制御する受付制御スイッチをさらに具備し、
 前記制御回路は、前記電源維持スイッチを導通状態にした後に前記受付制御スイッチを導通状態にすることにより前記電源起動スイッチを切断状態にする
前記(2)または(3)に記載の電源制御回路。
(5)前記電源維持スイッチと直列に接続されて、前記電源維持スイッチが切断状態になった後にも前記制御回路への電源供給を一定期間継続させる容量をさらに具備する
前記(2)から(4)のいずれかに記載の電源制御回路。
(6)本体回路の電源制御を行う本体電源スイッチをさらに具備し、
 前記制御回路は、前記電磁波が前記本体回路を起動する信号であった場合には前記本体電源スイッチを導通状態にして前記本体回路への電源の供給を開始させる
前記(1)から(5)のいずれかに記載の電源制御回路。
(7)本体回路への制御信号を含む電磁波を受信する第2の受信部をさらに具備し、
 前記制御回路は、前記第2の受信部により受信された前記制御信号に従って前記本体回路を制御する
前記(1)から(5)のいずれかに記載の電源制御回路。
(8)前記受信部により受信された前記電磁波から本体回路への制御信号を含む電磁波を分波する分波器をさらに具備し、
 前記制御回路は、前記分波器により分波された前記制御信号に従って前記本体回路を制御する
前記(1)から(6)のいずれかに記載の電源制御回路。
(9)前記受信部により受信された前記電磁波から本体回路への制御信号を含む電磁波を分配する分配器をさらに具備し、
 前記制御回路は、前記分配器により分配された前記制御信号に従って前記本体回路を制御する
前記(1)から(6)のいずれかに記載の電源制御回路。
(10)前記整流器は、前記電磁波を正の信号に整流し、
 前記電源起動スイッチは、ノーマリーオフ型NMOSトランジスタである
前記(1)から(8)のいずれかに記載の電源制御回路。
(11)前記整流器は、前記電磁波を負の信号に整流し、
 前記電源起動スイッチは、ノーマリーオフ型PMOSトランジスタである
前記(1)から(8)のいずれかに記載の電源制御回路。
(12)前記受信部は、アンテナである
前記(1)から(11)のいずれかに記載の電源制御回路。
(13)前記受信部は、コイルである
前記(1)から(11)のいずれかに記載の電源制御回路。
(14)本体回路と、
 前記本体回路の電源制御を行う本体電源スイッチと、
 電源の供給を起動するための電源起動スイッチと、
 電磁波を受信する受信部と、
 前記受信部により受信された前記電磁波を整流して整流信号を出力してその整流信号により前記電源起動スイッチを導通状態にする整流器と、
 前記電源起動スイッチが導通状態になることにより電源の供給を受けて動作を開始して、前記電磁波が前記本体回路を起動する信号であった場合には前記本体電源スイッチを導通状態にして前記本体回路への電源の供給を開始させる制御回路と
を具備する電子機器。
The present technology can also be configured as follows.
(1) a power supply start switch for starting supply of power;
A receiver for receiving an electromagnetic wave,
A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal;
A power control circuit comprising: a control circuit which receives power supply and starts operation when the power supply start switch is turned on.
(2) The power supply maintenance switch further connected in parallel with the power supply start switch,
The power supply control circuit according to (1), wherein the control circuit turns on the power supply maintenance switch when the operation is started to maintain supply of power to the control circuit.
(3) When the control circuit does not receive a signal for activating the main circuit by the electromagnetic wave within a predetermined period, the control circuit turns off the power supply maintenance switch to stop the supply of power to the control circuit ((3) The power supply control circuit according to 2).
(4) A reception control switch is further provided to control reception of a signal from the rectifier to the power supply start switch,
The power supply control circuit according to (2) or (3), wherein the control circuit brings the power supply start switch into a disconnection state by putting the reception control switch into a conduction state after making the power supply maintenance switch into a conduction state.
(5) From the above (2) to (4), further comprising a capacitance connected in series with the power supply maintenance switch and continuing power supply to the control circuit for a certain period of time after the power supply maintenance switch is turned off. The power supply control circuit according to any one of the above.
(6) Further equipped with a main power switch for controlling the power of the main circuit,
The control circuit turns on the main power switch when the electromagnetic wave is a signal for activating the main circuit to start supply of power to the main circuit (1) to (5). The power supply control circuit according to any one.
(7) It further comprises a second receiving unit for receiving an electromagnetic wave including a control signal to the main circuit,
The power supply control circuit according to any one of (1) to (5), wherein the control circuit controls the main body circuit in accordance with the control signal received by the second receiving unit.
(8) A demultiplexer is further provided for demultiplexing an electromagnetic wave including a control signal to the main body circuit from the electromagnetic wave received by the receiving unit,
The power supply control circuit according to any one of (1) to (6), wherein the control circuit controls the main body circuit in accordance with the control signal demultiplexed by the demultiplexer.
(9) It further comprises a distributor for distributing an electromagnetic wave including a control signal from the electromagnetic wave received by the receiving unit to the main circuit,
The power supply control circuit according to any one of (1) to (6), wherein the control circuit controls the main body circuit in accordance with the control signal distributed by the distributor.
(10) The rectifier rectifies the electromagnetic wave into a positive signal,
The power supply control circuit according to any one of (1) to (8), wherein the power supply start switch is a normally-off type NMOS transistor.
(11) The rectifier rectifies the electromagnetic wave into a negative signal,
The power supply control circuit according to any one of (1) to (8), wherein the power supply start switch is a normally-off type PMOS transistor.
(12) The power supply control circuit according to any one of (1) to (11), wherein the receiving unit is an antenna.
(13) The power supply control circuit according to any one of (1) to (11), wherein the receiving unit is a coil.
(14) Body circuit,
A main body power switch that performs power control of the main body circuit;
A power start switch for starting power supply,
A receiver for receiving an electromagnetic wave,
A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal;
When the power supply start switch is turned on to receive power to start operation, the main body power switch is turned on when the electromagnetic wave is a signal for starting the main circuit. An electronic device comprising: a control circuit for starting supply of power to a circuit.
 10 電子機器
 20 リモートコントローラ
 100 受付回路
 111~113 アンテナ
 114 分波器
 120、121 整流器
 130、140 容量
 150、151 電源起動スイッチ
 160、161 電源維持スイッチ
 170、171 本体電源スイッチ
 180、181 受付制御スイッチ
 190 電源
 200 制御回路
 300 電源制御回路
 400 本体回路
DESCRIPTION OF SYMBOLS 10 electronic device 20 remote controller 100 reception circuit 111-113 antenna 114 splitter 120, 121 rectifier 130, 140 capacity 150, 151 power supply start switch 160, 161 power maintenance switch 170, 171 main body power switch 180, 181 reception control switch 190 Power supply 200 control circuit 300 Power supply control circuit 400 main circuit

Claims (14)

  1.  電源の供給を起動するための電源起動スイッチと、
     電磁波を受信する受信部と、
     前記受信部により受信された前記電磁波を整流して整流信号を出力してその整流信号により前記電源起動スイッチを導通状態にする整流器と、
     前記電源起動スイッチが導通状態になることにより電源の供給を受けて動作を開始する制御回路と
    を具備する電源制御回路。
    A power start switch for starting power supply,
    A receiver for receiving an electromagnetic wave,
    A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal;
    A power control circuit comprising: a control circuit which receives power supply and starts operation when the power supply start switch is turned on.
  2.  前記電源起動スイッチと並列に接続される電源維持スイッチをさらに具備し、
     前記制御回路は、前記動作を開始すると前記電源維持スイッチを導通状態にして前記制御回路への電源の供給を維持する
    請求項1記載の電源制御回路。
    The power supply switch further comprises a power maintenance switch connected in parallel with the power start switch,
    The power supply control circuit according to claim 1, wherein the control circuit, when starting the operation, turns on the power supply maintenance switch to maintain supply of power to the control circuit.
  3.  前記制御回路は、前記電磁波により本体回路を起動する信号を所定期間内に受け取らなかった場合には前記電源維持スイッチを切断状態にして前記制御回路への電源の供給を停止する
    請求項2記載の電源制御回路。
    3. The control circuit according to claim 2, wherein when the signal for activating the main body circuit by the electromagnetic wave is not received within a predetermined period, the control circuit turns off the power supply maintenance switch to stop the supply of power to the control circuit. Power control circuit.
  4.  前記整流器から前記電源起動スイッチへの信号の受付を制御する受付制御スイッチをさらに具備し、
     前記制御回路は、前記電源維持スイッチを導通状態にした後に前記受付制御スイッチを導通状態にすることにより前記電源起動スイッチを切断状態にする
    請求項2記載の電源制御回路。
    A reception control switch for controlling reception of a signal from the rectifier to the power supply start switch;
    3. The power supply control circuit according to claim 2, wherein the control circuit turns on the power supply start switch by turning on the reception control switch after turning on the power supply maintenance switch.
  5.  前記電源維持スイッチと直列に接続されて、前記電源維持スイッチが切断状態になった後にも前記制御回路への電源供給を一定期間継続させる容量をさらに具備する
    請求項2記載の電源制御回路。
    3. The power supply control circuit according to claim 2, further comprising: a capacitance connected in series with the power supply maintenance switch to continue power supply to the control circuit for a certain period of time after the power supply maintenance switch is turned off.
  6.  本体回路の電源制御を行う本体電源スイッチをさらに具備し、
     前記制御回路は、前記電磁波が前記本体回路を起動する信号であった場合には前記本体電源スイッチを導通状態にして前記本体回路への電源の供給を開始させる
    請求項1記載の電源制御回路。
    Further equipped with a main power switch for controlling the power of the main circuit,
    The power supply control circuit according to claim 1, wherein the control circuit turns on the main body power switch to start supply of power to the main body circuit when the electromagnetic wave is a signal for activating the main body circuit.
  7.  本体回路への制御信号を含む電磁波を受信する第2の受信部をさらに具備し、
     前記制御回路は、前記第2の受信部により受信された前記制御信号に従って前記本体回路を制御する
    請求項1記載の電源制御回路。
    And a second receiver configured to receive an electromagnetic wave including a control signal to the main circuit,
    The power supply control circuit according to claim 1, wherein the control circuit controls the main body circuit in accordance with the control signal received by the second receiving unit.
  8.  前記受信部により受信された前記電磁波から本体回路への制御信号を含む電磁波を分波する分波器をさらに具備し、
     前記制御回路は、前記分波器により分波された前記制御信号に従って前記本体回路を制御する
    請求項1記載の電源制御回路。
    It further comprises a demultiplexer for separating the electromagnetic wave including the control signal to the main circuit from the electromagnetic wave received by the receiving unit,
    The power supply control circuit according to claim 1, wherein the control circuit controls the main body circuit in accordance with the control signal demultiplexed by the demultiplexer.
  9.  前記受信部により受信された前記電磁波から本体回路への制御信号を含む電磁波を分配する分配器をさらに具備し、
     前記制御回路は、前記分配器により分配された前記制御信号に従って前記本体回路を制御する
    請求項1記載の電源制御回路。
    The apparatus further comprises a distributor for distributing an electromagnetic wave including a control signal from the electromagnetic wave received by the receiving unit to the main circuit,
    The power supply control circuit according to claim 1, wherein the control circuit controls the main body circuit in accordance with the control signal distributed by the distributor.
  10.  前記整流器は、前記電磁波を正の信号に整流し、
     前記電源起動スイッチは、ノーマリーオフ型NMOSトランジスタである
    請求項1記載の電源制御回路。
    The rectifier rectifies the electromagnetic wave into a positive signal,
    The power supply control circuit according to claim 1, wherein the power supply start switch is a normally-off type NMOS transistor.
  11.  前記整流器は、前記電磁波を負の信号に整流し、
     前記電源起動スイッチは、ノーマリーオフ型PMOSトランジスタである
    請求項1記載の電源制御回路。
    The rectifier rectifies the electromagnetic wave into a negative signal,
    The power supply control circuit according to claim 1, wherein the power supply start switch is a normally-off type PMOS transistor.
  12.  前記受信部は、アンテナである
    請求項1記載の電源制御回路。
    The power supply control circuit according to claim 1, wherein the receiving unit is an antenna.
  13.  前記受信部は、コイルである
    請求項1記載の電源制御回路。
    The power supply control circuit according to claim 1, wherein the receiving unit is a coil.
  14.  本体回路と、
     前記本体回路の電源制御を行う本体電源スイッチと、
     電源の供給を起動するための電源起動スイッチと、
     電磁波を受信する受信部と、
     前記受信部により受信された前記電磁波を整流して整流信号を出力してその整流信号により前記電源起動スイッチを導通状態にする整流器と、
     前記電源起動スイッチが導通状態になることにより電源の供給を受けて動作を開始して、前記電磁波が前記本体回路を起動する信号であった場合には前記本体電源スイッチを導通状態にして前記本体回路への電源の供給を開始させる制御回路と
    を具備する電子機器。
    Body circuit,
    A main body power switch that performs power control of the main body circuit;
    A power start switch for starting power supply,
    A receiver for receiving an electromagnetic wave,
    A rectifier that rectifies the electromagnetic wave received by the receiving unit and outputs a rectified signal to make the power supply start switch conductive by the rectified signal;
    When the power supply start switch is turned on to receive power to start operation, the main body power switch is turned on when the electromagnetic wave is a signal for starting the main circuit. An electronic device comprising: a control circuit for starting supply of power to a circuit.
PCT/JP2018/038307 2018-01-18 2018-10-15 Power supply control circuit and electronic apparatus WO2019142417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565712A JP7148553B2 (en) 2018-01-18 2018-10-15 Power control circuits and electronics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018006037 2018-01-18
JP2018-006037 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019142417A1 true WO2019142417A1 (en) 2019-07-25

Family

ID=67301381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038307 WO2019142417A1 (en) 2018-01-18 2018-10-15 Power supply control circuit and electronic apparatus

Country Status (2)

Country Link
JP (1) JP7148553B2 (en)
WO (1) WO2019142417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687991A (en) * 2019-09-04 2020-01-14 Oppo(重庆)智能科技有限公司 Power supply method, device, equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218280A (en) * 2000-02-02 2001-08-10 Sony Corp Power supply unit for electronic equipment
JP2002016982A (en) * 2000-06-28 2002-01-18 Matsushita Electric Ind Co Ltd Remote control system
JP2002218679A (en) * 2001-01-16 2002-08-02 Pana R & D:Kk Remote control unit not consuming power in standby
JP2012531174A (en) * 2009-07-02 2012-12-06 ソニー株式会社 Standby power zero laser controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001218280A (en) * 2000-02-02 2001-08-10 Sony Corp Power supply unit for electronic equipment
JP2002016982A (en) * 2000-06-28 2002-01-18 Matsushita Electric Ind Co Ltd Remote control system
JP2002218679A (en) * 2001-01-16 2002-08-02 Pana R & D:Kk Remote control unit not consuming power in standby
JP2012531174A (en) * 2009-07-02 2012-12-06 ソニー株式会社 Standby power zero laser controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687991A (en) * 2019-09-04 2020-01-14 Oppo(重庆)智能科技有限公司 Power supply method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP7148553B2 (en) 2022-10-05
JPWO2019142417A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US9904306B2 (en) Voltage converter, wireless power reception device and wireless power transmission system including the same
KR101411433B1 (en) Circuit for saving stand-by power
WO2016136379A1 (en) Power supply device, ac adapter, ac charger, electronic apparatus, and power supply system
US9125280B2 (en) Display device and wireless power transmission system
US9893534B2 (en) Relay device of wireless power transmission system
WO2014174783A1 (en) Wireless power transfer device
KR20010051532A (en) Circuit for reducing standby power of electric apparatus
JP7227813B2 (en) wireless communication device
KR101951675B1 (en) Air conditioner having power saving function
WO2019142417A1 (en) Power supply control circuit and electronic apparatus
US10008351B2 (en) Control system for a wireless power switch without a neutral wire
KR20220114647A (en) Electronic device, wireless charging receiver, control method and wireless charging system
KR102423070B1 (en) Wireless power transmission apparatus that is turned off in standby state and electronic apparatus including wireless power transmission apparatus
CN110099234B (en) Power supply starting device and television
US10454313B2 (en) Wireless power receiver
KR20130077748A (en) Power supply apparatus and display apparatus having the same
TWI399904B (en) System and method for efficient power supply regulation compatible with radio frequency operation
JP2020092568A (en) Charger, power receiver, and power supply system
WO2015146436A1 (en) Power source device, electronic device, and television device
JP2020092570A (en) Impedance control device, charger, power receiver, and power supply system
US11942792B2 (en) Apparatus and methods for inverter mode switching in wireless charging transmitters
US10840741B2 (en) Wireless power multiple receive coil self-startup circuit for low battery condition
WO2011122674A1 (en) Power source of television broadcast signal transmitter and television broadcast signal transmitting system
US20160118807A1 (en) Apparatus and method of receiving power wirelessly, and system for supplying power wirelessly using the same
EP3289660A1 (en) Radio base station powered using wireless power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900706

Country of ref document: EP

Kind code of ref document: A1