WO2019141410A1 - Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent - Google Patents

Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent Download PDF

Info

Publication number
WO2019141410A1
WO2019141410A1 PCT/EP2018/082026 EP2018082026W WO2019141410A1 WO 2019141410 A1 WO2019141410 A1 WO 2019141410A1 EP 2018082026 W EP2018082026 W EP 2018082026W WO 2019141410 A1 WO2019141410 A1 WO 2019141410A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiated
irradiation
layer
optimized
radiation
Prior art date
Application number
PCT/EP2018/082026
Other languages
German (de)
English (en)
Inventor
Matthias Fockele
Original Assignee
Realizer Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realizer Gmbh filed Critical Realizer Gmbh
Priority to EP18807311.8A priority Critical patent/EP3740335A1/fr
Publication of WO2019141410A1 publication Critical patent/WO2019141410A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for determining data for
  • the invention also provides a device for producing articles by the selective powder melting method and for carrying out the method, the device being adapted to the following steps a) to e)
  • the radiation sources are mostly lasers, so that the term selective laser melting has also become established in the art for this technology.
  • the prior art can be referred, for example, to DE 101 12 591 A1, WO 2013/079581 A1, DE 199 05 067 A1, DE 10 2005 014 483 A1, EP 1 839 781 B1, DE 10 2009 006 189 A1 or DE 103 20 085 A1 be referenced.
  • the article to be produced is usually built up in layers from a fine-grained powdery material in accordance with CAD data or derived geometry description, wherein the material powder is fused in accordance with a cross-sectional pattern of the article associated with the respective layer by selective irradiation. so that it solidifies on solidifying at the irradiated sites to coherent areas.
  • the location-selective irradiation is usually carried out by means of a beam deflecting the laser beam controlled deflecting, which is controlled by means of a control device on the basis of Geometriebecombiningsoire of the object to be produced.
  • the control information is usually derived and provided by a microcomputer or process computer in accordance with a corresponding program from CAD data.
  • the preparation of the next material powder layer then takes place on the layer which has been finally fused selectively by irradiation and partially.
  • an irradiation step is then carried out in the manner explained above.
  • the object thus arises layer by layer.
  • powder materials are in particular various metals in question, including z.
  • ceramic material powder or multi-component powder can be used in selective laser melting. Furthermore, with the method of selective laser melting almost all imaginable forms of objects can be produced, whereby it is predestined for the production of intricately shaped machine elements, prostheses, jewelry, etc.
  • the generation of a shaped body using the technique of selective laser melting requires a complete control of the geometric data of a component.
  • the individual layers are data-wise from a three-dimensional geometry, eg. As an STL data set generated.
  • the laser beam scans the areas to be remelted in the respective powder layer during an irradiation process. During this scanning process, traces of molten metal powder are formed which combine the volume element by volume element and layer by layer to form a dense metal part in accordance with the geometry description data of the molded article.
  • irradiation parameters come z.
  • As the laser power a laser modulation, focusing and / or the scanning speed of the laser beam and the respective geometric beam guidance on the currently irradiated layer in question.
  • a problem with the layered production of moldings from powder materials by the method of selective laser melting is that the physical properties of the originating Shaped bodies may vary from step to step with each remelted volume element.
  • One reason for this is the permanent change in the thermal conductivity as well as the heat capacity of the molded article by increasing the remelt solidified volume at various points during the building process.
  • the temperature increase induced with a specific energy input per unit of time at the respective irradiation site depends strongly on the heat dissipation capacity of the surroundings of the irradiation site and furthermore also on the heat capacity of the surroundings of the irradiation site and on the radiation absorption capacity or refractive power at the irradiation location.
  • the problem here is that the heat dissipation of the powder material often differs significantly from the heat dissipation of already in the course of the construction process by remelting solidified material of the already prepared portion of the molding. If the respective irradiation site is essentially surrounded exclusively by material powder, the heat generated at the irradiation site can not flow off very well and it can easily lead to local overheating of the material far beyond its melting temperature. If, on the other hand, the irradiation site under consideration is essentially surrounded by already solidified material, then heat can flow better due to the better heat dissipation of the environment and it is not so easy to overheat at the irradiation site. Because of these effects, it may happen that different areas of a shaped body are remelted depending on its geometry with quite significantly different temperatures during its production, which can lead to the formation of mechanical stresses in the molding and uneven shrinkage of the molding during the solidification process.
  • Proposals have also already been made for pyrometrically detecting the respective actual temperature at the respective irradiation location of the powder layer and, in the case of a deviation of the actual temperature, from the desired temperature. Temperature to regulate the radiant energy input per unit time and area in the sense of minimizing the temperature deviation.
  • WO 2013/079581 A1 discloses a method of selective laser melting for the Fier ein of a shaped body, according to which the locally selective energy input per unit time and unit area at a respective irradiation location on the respective currently irradiated layer depending on the heat dissipation of a respective defined, immediate , Three-dimensional surrounding area of the irradiation site selected and automatically modulated by adjusting irradiation parameters, such as energy density of the radiation at the irradiation site and / or duration of irradiation of the irradiation site.
  • the volume fraction is already determined by merging material powder-solidified material within this environmental region from the geometry description data of the shaped body.
  • the site-selective energy input per unit time and area unit at the irradiation site is chosen to be greater in the context of possible tolerances, the greater the heat dissipation capacity of its surrounding area. This method has yielded comparatively good results.
  • the object of the present invention is to provide a method for determining data for the improved control of a device for the production of articles by the method of selective powder melting, for the implementation of which a device with the features mentioned is used.
  • the local heating of the material or possibly emitted by the respective currently irradiated point by emission and reflection radiation by means of at least one sensor contactless in association with localization data of the irradiated body concerned or / and in association with a respective one Measure is detected for the heat dissipation capacity of a defined environmental region of the relevant irradiation point representing value, and
  • the irradiation parameters used to irradiate a respective location of the prepared powder layer are preferably selected in magnitude as a function of the heat dissipation capability of a respective defined, immediate, three-dimensional ambient region of the irradiation site, such that the energy of the radiation per unit of time and area unit at the impact location of the irradiation site Beam at a respective irradiated position
  • a heat dissipation capacity of a defined environment can be determined in a simple manner for each irradiation site (or each voxel), so that a value for the irradiation energy input per unit time and area unit can also be selected in association with the geometry description data for each irradiation location , Taking into account these data, the appropriate irradiation parameters can then be selected according to type and size for the actual construction of an object according to the method of selective laser melting. With such a procedure, good results have already been achieved in practice in the production of such articles.
  • the present invention also aims at further optimizing irradiation parameters for the production of certain geometric features of objects by the method of selective laser melting in order to set the temperatures at the irradiated points of a layer during irradiation as equal as possible.
  • the data recorded according to the present invention provide metrological values for optimizing the irradiation parameters used.
  • the correspondingly optimized irradiation parameters or energy input values are archived in association with respective localization data for irradiation sites and can later be applied for use in the production of articles having the particular geometric feature.
  • the correspondingly optimized irradiation parameters can be archived in association with the heat dissipation properties of defined environmental regions to values to be irradiated and later used in the production of articles by the method of selective laser melting.
  • the proportion of the volume of the surrounding area solidified at the time of irradiation by remelting powder is preferably selected, as described, for example, in WO
  • the constructed article has a plurality of particular geometrical features, such that irradiation parameters optimized on the basis of the acquired data may also be determined for further of the plurality of determined geometric features to be used in the fabrication of articles having at least one of these geometric features.
  • certain geometric features may be, for example, the following features:
  • the local heating of the material at the points currently irradiated is preferably detected pyrometrically by means of a radiation-sensitive sensor, for example as a temperature measure.
  • a radiation-sensitive sensor for example as a temperature measure.
  • the radiation detection of the radiation emitted by the currently irradiated points and their evaluation need not be limited to the heat radiation range or IR range, but may extend into the visible spectrum and beyond.
  • the irradiation parameters are preferably optimized on the basis of the acquired data in such a way that, when the optimized irradiation parameters are used for the corresponding production of an article, temperature differences between the irradiated points of a respective material layer during fusion of the pulverulent material are largely minimized.
  • the optimized irradiation parameters determined on the basis of the acquired data are preferably selected from the following group of irradiation parameters:
  • the focus setting or radiation energy density as a function of the irradiation sites in the case of variably focusable radiation, the focus setting or radiation energy density as a function of the irradiation sites,
  • the respective geometrical beam guidance of the laser beam on the uppermost layer currently to be irradiated is considered as a specific optimized irradiation parameter.
  • distances, lengths and orientations of lines or tracks, which are drawn in the beam guide from the point of impact of the laser beam on the respective powder layer can be varied dynamically.
  • This approach can be generalized to the extent that an order of the volume elements (voxels) in a respective layer in which the volume elements are irradiated by the laser beam can be determined as the optimized irradiation parameter of the geometric beam guidance.
  • a further preferred variant of the method according to the invention is characterized in that, with regard to the production of an object, its geometry description data are examined for the occurrence of a geometric feature for which no optimized irradiation parameters have yet been determined according to the method, and in the event of such a feature of the invention product to be manufactured and optimized for this feature according to at least one of the preceding claims are determined and archived for use in the future production of such a feature. In this way, the catalog of optimized irradiation parameters in association with relevant geometric features can be extended continuously and automatically.
  • the invention further provides an apparatus for carrying out the method according to the invention.
  • the device comprises:
  • an irradiation device for irradiating a respective last-prepared material powder layer on the support in a cross-sectional region of the article to be produced, with a radiation which melts the material powder in the region of the irradiated points,
  • At least one sensor for non-contact detection of the radiation emitted by the currently irradiated points of the material
  • control device for controlling the powder layer preparation device and the irradiation device
  • Data processing means for recording the data provided by the at least one sensor in association with respective localization data of the irradiated sites and / or in association with a measure of the heat dissipation capability of a respective defined surrounding area of the irradiated sites. to determine optimized irradiation parameters in association with respective localization data and / or in association with a measure of the politiciansableitput a respective defined surrounding area of the irradiated sites representing values based on the recorded data and for storing the optimized irradiation parameters in association with respective localization data and / or in association with a measure of the heat dissipation capability of a respective defined environmental region of the irradiated sites.
  • FIG. 2 a and FIG. 2 b show an environmental region of the instantaneously irradiated point 33 of the article 25 in an enlarged representation in side view and in plan view.
  • FIG. 3 shows a parameter function diagram
  • the device has in a (not shown) housing on a support 1 as a construction platform, which is controlled height adjustable along a guide 3.
  • a shaped body is built up in layers from material powder 28, for example metal powder, by fusing the material powder 28 corresponding to a cross section of the shaped body to be produced by locally selective irradiation in each relevant layer becomes.
  • the irradiation takes place by means of variably focusable laser radiation 5.
  • the radiation source used is at least one controllable laser 7.
  • a beam deflecting device 9 directs the laser beam 5 to the point currently to be irradiated on the uppermost powder layer 11 on the carrier 1.
  • the control of the beam deflecting device deflecting the laser beam 5 takes place by means of a control device 13 on the basis of geometry description data of the shaped article to be produced.
  • 34 denotes a beam splitter in FIG. 1 and FIG.
  • a controllable powder layer preparation device designates a controllable powder layer preparation device in the figures. This comprises a powder feed channel 17, which is fed from a (not shown) powder source with material powder 28. Denoted at 19 is a smoothing slide which, after lowering the carrier 1, is displaceable back and forth over the complete carrier 1 by the amount of a powder layer thickness in order to distribute new powder 28 as a smoothed powder layer thereon.
  • the control of the height adjustment of the carrier 1, the laser 7, the beam deflecting device 9 and the powder layer preparation device 15 takes place by means of the control device 13.
  • shaped bodies are a bar 21 with sections of different diameters, furthermore a cuboid 23, an ellipsoidal body 25, a hexagonal column 27 and three shaped bodies with roof-like overhangs 27 of different orientations. The latter are already built up and embedded in the powder volume.
  • the irradiation of the uppermost powder layer 1 1 takes place to form a further cross-sectional layer 29 of the ellipsoidal body 25.
  • the radiation sensors 31, in which e.g. can act around pyrometer sensors the radiation emitted by the currently irradiated point 33 radiation is detected.
  • the measurement data obtained thereby or temperature data derived therefrom are stored in association with localization data of the respective irradiated point. This is likewise carried out under the control of the control device 13.
  • appropriate temperature data or corresponding radiation-dependent data in association with the relevant localization data of the irradiated points are preferably determined and archived for all irradiated points of the shaped bodies 21-27.
  • the irradiation parameters are optimized so that temperature differences are minimized at the irradiated points of the powder layer in the production of a respective shaped body.
  • results from the method according to FIG. 1 can be applied in order to produce it as stress-free as possible.
  • the molded body 35 has a partially ellipsoidal shape in its lower region 37, so that data from the production of the ellipsoid 25 in FIG. 1 can be used for the production of this lower region.
  • the molded body 35 further has, above this partially ellipsoidal area 37, a roof-shaped overhang 39, during the production of which information from the production of a roof-shaped overhang 39 is obtained.
  • hang 27 can be used from Figure 1.
  • the molded body 35 still has an upper cuboidal section 41, for the Fier ein information from the production of the molding 23 in Figure 1 can be used. Any built-up supports of the moldings can also be included in the present considerations.
  • FIG. 2 a the surrounding area of the currently irradiated point 33, which is identified by 32 in FIG. 1, is shown enlarged.
  • FIG. 2b shows this surrounding area in plan view.
  • a certain proportion by volume of material 42 already solidified by remelted powder is occupied at the current irradiation time, whereas the residual volume of this surrounding area 32 is occupied by material powder 28.
  • an ambient region 32 of an irradiated point 33 is assigned the greater heat dissipation capacity the greater its volume fraction of material 42 already solidified by remelting.
  • a respective surrounding area 32 can theoretically be subdivided into small, preferably equal volume elements 43 (voxels 43), of which two voxels 43 are shown by way of example in FIG. 2a.
  • a preferred size range for the voxels is between 20pm and 400pm.
  • a voxel may e.g. have a height of 50pm and a plan diameter or plan diagonal length of 120pm.
  • the ratio of said volumes can be easily determined and used as a measure of the heat dissipation of the Estimate surrounding area 32.
  • the optimized irradiation parameters determined according to the method of the present invention can also be assigned and dependent on archived in the manner described above, the heat dissipation capacity of the surrounding area irradiated bodies and later applied accordingly in the production of moldings by the method of selective laser melting.
  • FIG. 3 shows a parameter function diagram in which parameter functions for the parameters laser power (P L ), laser beam scanning speed (V s ) and the laser beam (E D ) energy density adjustable by focusing adjustment of the laser beam depend on the volume fraction of already remelted material from surrounding areas radiating bodies are registered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un dispositif de fabrication d'objets par le procédé de fusion sélective par laser, au moyen duquel au moins un objet (21, 23, 25, 26, 27) qui présente au moins une caractéristique géométrique définie est construit en utilisant des paramètres d'irradiation définis. Le rayonnement ainsi produit aux emplacements (33) momentanément irradiés, en particulier le chauffage local du matériau, est détecté sans contact au moyen d'au moins un capteur (31) en association avec les données de localisation de l'emplacement (33) irradié concerné. Sur la base des données détectées, des paramètres d'irradiation optimisés sont déterminés et sont archivés en association avec les données de localisation concernées des emplacements irradiés, pour être utilisés pour la fabrication par le procédé de fusion sélective par laser d'objets qui présentent la caractéristique géométrique définie.
PCT/EP2018/082026 2018-01-17 2018-11-21 Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent WO2019141410A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18807311.8A EP3740335A1 (fr) 2018-01-17 2018-11-21 Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200721.7 2018-01-17
DE102018200721.7A DE102018200721A1 (de) 2018-01-17 2018-01-17 Verfahren zur Ermittlung von Daten zur verbesserten Steuerung einer Vorrichtung zur Herstellung von Gegenständen nach der Methode des selektiven Pulverschmelzens sowie Vorrichtung dazu

Publications (1)

Publication Number Publication Date
WO2019141410A1 true WO2019141410A1 (fr) 2019-07-25

Family

ID=64426944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/082026 WO2019141410A1 (fr) 2018-01-17 2018-11-21 Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent

Country Status (3)

Country Link
EP (1) EP3740335A1 (fr)
DE (1) DE102018200721A1 (fr)
WO (1) WO2019141410A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022549305A (ja) * 2019-09-30 2022-11-24 エスエルエム ソルーションズ グループ アーゲー システム及び方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019127952A1 (de) * 2019-10-16 2021-04-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Betreiben einer Einrichtung zur additiven Herstellung eines dreidimensionalen Objekts sowie Verfahren zum Erstellen eines Prozessfensters zur Durchführung des vorgenannten Verfahrens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905067A1 (de) 1999-02-08 2000-08-10 Matthias Fockele Vorrichtung zur Herstellung eines Formkörpers durch schichtweises Aufbauen aus pulverförmigem, insbesondere metallischem Werkstoff
DE10112591A1 (de) 2000-03-15 2001-10-11 Matthias Fockele Verfahren und Vorrichtung zur Herstellung eines Formkörpers
DE10320085A1 (de) 2002-05-03 2004-02-26 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern oder -schmelzen (Unterlagen in P: 103 20 281,1)
DE102004017769A1 (de) * 2003-04-09 2004-12-09 3D Systems, Inc., Valencia Sintern unter Verwendung von Thermobild-Rückkopplung
DE102005014483A1 (de) 2005-03-30 2006-10-05 Fockele, Matthias, Dr. Vorrichtung zur Herstellung von Gegenständen durch schichtweises Aufbauen aus pulverförmigem Werkstoff
DE102009006189A1 (de) 2009-01-27 2010-07-29 Fockele, Matthias, Dr. Vorrichtung und Verfahren zur Herstellung und Nachbearbeitung eines Formkörpers
WO2013079581A1 (fr) 2011-11-29 2013-06-06 Matthias Fockele Procédé de fabrication d'un corps façonné par montage en couches de matière en poudre
EP1839781B1 (fr) 2006-03-30 2015-10-21 Matthias Fockele Dispositif de fabrication d'objets par montage en couche à partir de matière première en poudre
WO2018118334A1 (fr) * 2016-12-23 2018-06-28 General Electric Company Procédé de commande de processus de fabrication additive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003937A1 (de) * 2013-03-08 2014-09-11 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur Beurteilung der Strukturqualität von dreidimensionalen Bauteilen
DE102015113700A1 (de) * 2015-04-22 2016-10-27 Cl Schutzrechtsverwaltungs Gmbh Verfahren zum Herstellen eines dreidimensionalen Bauteils

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905067A1 (de) 1999-02-08 2000-08-10 Matthias Fockele Vorrichtung zur Herstellung eines Formkörpers durch schichtweises Aufbauen aus pulverförmigem, insbesondere metallischem Werkstoff
DE10112591A1 (de) 2000-03-15 2001-10-11 Matthias Fockele Verfahren und Vorrichtung zur Herstellung eines Formkörpers
DE10320085A1 (de) 2002-05-03 2004-02-26 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern oder -schmelzen (Unterlagen in P: 103 20 281,1)
DE102004017769A1 (de) * 2003-04-09 2004-12-09 3D Systems, Inc., Valencia Sintern unter Verwendung von Thermobild-Rückkopplung
DE102005014483A1 (de) 2005-03-30 2006-10-05 Fockele, Matthias, Dr. Vorrichtung zur Herstellung von Gegenständen durch schichtweises Aufbauen aus pulverförmigem Werkstoff
EP1839781B1 (fr) 2006-03-30 2015-10-21 Matthias Fockele Dispositif de fabrication d'objets par montage en couche à partir de matière première en poudre
DE102009006189A1 (de) 2009-01-27 2010-07-29 Fockele, Matthias, Dr. Vorrichtung und Verfahren zur Herstellung und Nachbearbeitung eines Formkörpers
WO2013079581A1 (fr) 2011-11-29 2013-06-06 Matthias Fockele Procédé de fabrication d'un corps façonné par montage en couches de matière en poudre
WO2018118334A1 (fr) * 2016-12-23 2018-06-28 General Electric Company Procédé de commande de processus de fabrication additive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022549305A (ja) * 2019-09-30 2022-11-24 エスエルエム ソルーションズ グループ アーゲー システム及び方法
JP7346724B2 (ja) 2019-09-30 2023-09-19 エスエルエム ソルーションズ グループ アーゲー 積層造形技術を使用して3次元ワークピースを製造するための装置で使用するシステム、積層造形を使用して3次元ワークピースを製造するための装置の照射ユニットを制御する制御ユニット、積層造形技術を使用して3次元ワークピースを製造するための装置及び積層造形技術を使用して3次元ワークピースを製造するための装置の照射ビームを制御する方法

Also Published As

Publication number Publication date
EP3740335A1 (fr) 2020-11-25
DE102018200721A1 (de) 2019-07-18

Similar Documents

Publication Publication Date Title
DE10165113B3 (de) Verfahren und Vorrichtung zur Herstellung eines Formkörpers
EP2785481B1 (fr) Procédé de fabrication d'un corps façonné par montage en couches de matière en poudre
EP2340925B1 (fr) Procédé de fabrication générative d'un objet tridimensionnel doté d'une amenée de chaleur en continu
EP3099469B1 (fr) Procédé et dispositif de commande améliorée de l'apport d'énergie dans un procédé de construction additive par génération de couches
EP3059076A1 (fr) Procede et dispositif destines a fabriquer un objet tridimensionnel
EP3434450B1 (fr) Procédé et dispositif de fabrication d'un composant tridimensionnel
DE19516972C1 (de) Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Lasersintern
DE102005055524B4 (de) Verfahren, Vorrichtung und System zur Herstellung eines keramischen Formkörpers
DE102005015870B3 (de) Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102012012344B4 (de) Verfahren und Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials
DE10344902B4 (de) Verfahren zum Herstellen eines dreidimensionalen Objekts
EP3077180B1 (fr) Procédé de production accélérée d'objets par fabrication générative
DE10208150A1 (de) Verfahren und Vorrichtung zur Herstellung eines Formkörpers
DE102017207264A1 (de) Homogenisierung des Energieeintrags
DE102017207256A1 (de) Erhöhung der Oberflächenqualität
EP3740335A1 (fr) Procédé de détermination de données permettant d'améliorer la commande d'un dispositif de fabrication d'objets par le procédé de fusion sélective de poudre, ainsi que dispositif afférent
WO2017153187A1 (fr) Procédé de construction par couches génératif présentant une résolution améliorée des détails et dispositif pour sa réalisation
DE10320085A1 (de) Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern oder -schmelzen (Unterlagen in P: 103 20 281,1)
WO2018206581A1 (fr) Entrée d'énergie spécifique à la position
DE102018204510A1 (de) Computerbasiertes Verfahren zum Bereitstellen von Steuerbefehlsdaten für eine additive Herstellvorrichtung
DE102017127148A1 (de) Bestrahlungsstreifensortierung
DE102020106516A1 (de) Sensor-integriertes Fertigungssystem für die Additive Fertigung
DE102018205689A1 (de) Verfahren und Vorrichtung zur Verbesserung der Bauteilhomogenität von durch ein additives Herstellverfahren hergestellten Objekten
DE102015214690A1 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objektes mittels eines generativen Schichtbauverfahrens
WO2020064635A1 (fr) Procédé pour lisser la surface d'une pièce plastique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18807311

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018807311

Country of ref document: EP

Effective date: 20200817