WO2019137475A1 - 一种资源映射方法及设备 - Google Patents

一种资源映射方法及设备 Download PDF

Info

Publication number
WO2019137475A1
WO2019137475A1 PCT/CN2019/071364 CN2019071364W WO2019137475A1 WO 2019137475 A1 WO2019137475 A1 WO 2019137475A1 CN 2019071364 W CN2019071364 W CN 2019071364W WO 2019137475 A1 WO2019137475 A1 WO 2019137475A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
physical resource
virtual resource
block group
carrier bandwidth
Prior art date
Application number
PCT/CN2019/071364
Other languages
English (en)
French (fr)
Inventor
李俊超
张旭
王轶
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810065051.0A external-priority patent/CN110035533B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19738253.4A priority Critical patent/EP3723431B1/en
Publication of WO2019137475A1 publication Critical patent/WO2019137475A1/zh
Priority to US16/925,380 priority patent/US11470610B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a resource mapping method and device.
  • resource allocation is based on a virtual resource block (VRB), and actual data transmission is based on a physical resource block (PRB).
  • VRB virtual resource block
  • PRB physical resource block
  • the terminal may determine the VRB for transmitting data in a given transmission time unit by using the indication information transmitted by the downlink control channel; mapping the data to the VRB, and determining the correspondence between the VRB group and the PRB group by interleaving, thereby Data is transmitted on the PRB in the group.
  • the above approach may not guarantee the correct transmission of the data mapped on the VRB on the PRB.
  • the embodiment of the present application provides a resource mapping method and device, which can ensure correct transmission of data mapped on a VRB on a PRB.
  • the embodiment of the present application provides a resource mapping method, which may include: a network device writes n physical resource block groups row by row into an interleaving matrix, and an intersection or interleaving matrix of a first row and a last N columns of the interlacing matrix. The intersection of the last row and the first N columns is inserted with N null values, n is a positive integer, and N is a natural number. Then, the network device reads n physical resource block groups from the interlace matrix column by column, and the read n physical resource block groups are mapped with n virtual resource block groups. Thereafter, the network device determines, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups.
  • the embodiment of the present application provides a resource mapping method, which may include: the network device writes n virtual resource block groups into an interleave matrix column by column, and an intersection or interleave matrix of the first row and the last N columns of the interleave matrix. The intersection of the last row and the first N columns is inserted with N null values, n is a positive integer, and N is a natural number. Then, the network device reads n virtual resource block groups from the interlace matrix row by row, and the read n virtual resource block groups are mapped with n physical resource block groups. Thereafter, the network device determines, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups.
  • the network device may determine a virtual resource block group corresponding to the target physical resource block group, where the target physical resource block group is a physical resource block group whose number of physical resource blocks is less than L, so that Mapping the complex value symbols on the virtual resource blocks in the virtual resource block group and the same number of physical resource blocks in the target physical resource block group, ensuring that the complex value symbols of the virtual resource block mappings in the virtual resource block group can be in the target physical resource block.
  • the corresponding physical resource block in the group is correctly transmitted.
  • the method further comprises: the network device mapping the complex-valued symbols on the subset of the virtual resource blocks in the n virtual resource block groups. After the network device determines the virtual resource block mapped physical resource block in the n virtual resource block groups, the method further includes: the network device transmitting the complex physical resource block corresponding to the subset of the virtual resource blocks in the n virtual resource block groups Value symbol.
  • the network device can determine the virtual resource block group corresponding to the target physical resource block group without pre-computing the inter-frame, so that the virtual resource group in the virtual resource block group can be the same as the virtual resource block in the target physical resource block group.
  • the complex-valued symbols are mapped on the block to ensure that the complex-valued symbols mapped by the virtual resource block groups in the virtual resource block group can be correctly transmitted on the corresponding physical resource blocks in the target physical resource block group.
  • the n physical resource block groups form a carrier bandwidth portion.
  • the network device can write all the physical resource block groups included in the carrier bandwidth portion to the interlace matrix.
  • the physical resource block group that is the largest index of the n physical resource block groups includes a physical resource block that is smaller than a reference value.
  • the virtual resource block group having the largest index among the n virtual resource block groups includes the number of virtual resource blocks smaller than the reference value.
  • the number of physical resource blocks included in the carrier bandwidth portion is a non-integer multiple of the reference value
  • the number of physical resource blocks included in the physical resource block group with the largest index among the n physical resource block groups is smaller than the reference value
  • n The virtual resource block group with the largest index in the virtual resource block group includes the number of virtual resource blocks smaller than the reference value.
  • the n physical resource block groups are true subsets of the m physical resource block groups corresponding to the carrier bandwidth portion, and n physical groups
  • the resource block group includes the physical resource block group with the largest index among the m physical resource block groups, and m is a positive integer greater than n.
  • the physical resource block group with the largest index in the carrier bandwidth portion is written into the interlace matrix, and the physical resource block group with the largest index is interleaved to map the virtual resource block group with the largest index among the carrier bandwidth portions.
  • the number of rows of the interlace matrix is 2, and N is 0 or 1.
  • null value is inserted in the interleaving matrix, or one null value is inserted in the interleaving matrix.
  • the virtual resource block group i is mapped to the physical resource block group j, where
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • L represents a reference value of the number of physical resource blocks included in the virtual resource block group.
  • Indicates rounding up and max means max.
  • the virtual resource block group i is mapped to the physical resource block group j, where
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • or Indicates the number of physical resource blocks included in the carrier bandwidth portion
  • L represents a reference value of the number of physical resource blocks included in the virtual resource block group. Indicates rounding up.
  • the first N columns of the last row of the interleaving matrix are inserted with N null values.
  • the method before the network device maps the complex value symbol on the subset of the virtual resource blocks in the n virtual resource block groups, the method also includes the network device receiving a portion of the carrier bandwidth transmitted by the other network device and a virtual resource block allocated in the portion of the carrier bandwidth.
  • the network device can perform resource mapping according to the received carrier bandwidth portion and the virtual resource block allocated in the carrier bandwidth portion.
  • the network device before the network device writes the n physical resource block groups row by row into the interlace matrix, or the network device Before the virtual resource block group is written into the interleaving matrix column by column, the network device may further receive a reference value sent by another network device, where the reference value is a reference quantity of the resource block included in the resource block group.
  • the n physical resource block groups are written row by row into the interleave matrix or the n virtual resource block groups are written column by column into the interleave matrix.
  • n physical resource block groups form a carrier bandwidth portion
  • the interlace matrix is: among them, or Indicates the number of physical resource blocks included in the carrier bandwidth portion, Indicates the number of virtual resource block groups and/or physical resource block groups in the bandwidth portion of the carrier, L represents a reference value of the number of physical resource blocks included in the physical resource block group, C represents the number of columns of the interleaving matrix, and R represents an interleaving matrix. The number of lines.
  • the network device reads n physical resource block groups from the interlace matrix column by column, and the read n physical resource block groups correspond to n virtual resource block groups.
  • the network device determines, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups. In this way, regardless of whether the target physical resource block group is the physical resource block group with the smallest index in the carrier bandwidth portion or the physical resource block group with the largest index, the network device can determine the virtual resource block group corresponding thereto without pre-computing the interlace. Therefore, the complex value symbol can be mapped on the virtual resource block with the same number of physical resource blocks in the target physical resource block group in the virtual resource block group, so that the complex value symbol of the virtual resource block mapping in the virtual resource block group can be The corresponding physical resource block in the target physical resource block group is correctly transmitted.
  • the embodiment of the present application provides a resource mapping method, including: a network device mapping a virtual resource block in a group of n virtual resource blocks to a physical resource block.
  • a network device mapping a virtual resource block in a group of n virtual resource blocks to a physical resource block.
  • the virtual resource block corresponding to the resource block that is not in the carrier bandwidth portion is remapped onto other physical resource blocks in the carrier bandwidth portion.
  • each virtual resource block can be mapped onto a physical resource block within the carrier bandwidth portion, such that the complex-valued symbols on the virtual resource block can be correctly transmitted on the physical resource block.
  • the embodiment of the present application provides a resource mapping method, including: determining, by using a network device, a mapping relationship between a virtual resource block group and a physical resource block group.
  • the network device maps the complex value symbol on the virtual resource block according to the mapping relationship between the virtual resource block group and the physical resource block group.
  • the network device determines, according to the mapping relationship between the virtual resource block group and the physical resource block group, the first virtual resource block in the allocated virtual resource block, and the terminal is in the allocated virtual resource block.
  • the complex value symbol is mapped on the virtual resource block except the first virtual resource block, and the virtual resource block group corresponding to the first virtual resource block maps the physical resource block group with the largest index in the carrier bandwidth portion.
  • the terminal determines the first virtual resource block in the allocated virtual resource block, and the terminal remaps the complex value symbol on the first virtual resource block to the second virtual resource block.
  • the virtual resource block group corresponding to the first virtual resource block maps the physical resource block group with the largest index in the carrier bandwidth portion.
  • the virtual resource block group in which the virtual resource block mapped with the complex value symbol is located can be matched with the number of resource blocks included in the corresponding physical resource block group, thereby ensuring that the complex value symbol on the virtual resource block can be in the physical resource.
  • the block is transmitted correctly.
  • an embodiment of the present application provides an apparatus, including: a writing unit, configured to write n physical resource block groups row by row into an interlace matrix or write n virtual resource block groups column by column into an interlace matrix.
  • a writing unit configured to write n physical resource block groups row by row into an interlace matrix or write n virtual resource block groups column by column into an interlace matrix.
  • N null values are inserted, n is a positive integer, and N is a natural number.
  • a reading unit configured to read n physical resource block groups from the interleaving matrix column by column or read n virtual resource block groups from the interleaving matrix column by column, and read out n physical resource block groups and n virtual
  • the n virtual resource block groups mapped or read out by the resource block group are mapped to the n physical resource block groups.
  • a determining unit configured to determine, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource block in the n virtual resource block groups.
  • the apparatus further includes: a mapping unit, configured to: before the writing unit writes the n physical resource block groups row by row into the interleave matrix or the n virtual resource block groups The complex-valued symbols are mapped on a subset of the virtual resource blocks in the n virtual resource block groups before being written into the interleaving matrix column by column.
  • a transmitting unit configured to transmit a complex value on a physical resource block corresponding to a subset of the virtual resource blocks in the n virtual resource block groups after the determining unit determines the physical resource blocks of the virtual resource block mapping in the n virtual resource block groups symbol.
  • the n physical resource block groups form a carrier bandwidth portion.
  • the index of the n physical resource block groups is the largest.
  • the number of physical resource blocks included in the physical resource block group is smaller than a reference value, and the number of virtual resource blocks included in the virtual resource block group having the largest index among the n virtual resource block groups is smaller than a reference value.
  • the n virtual resource block groups are true subsets of the m virtual resource block groups corresponding to the carrier bandwidth portion, and the n virtual resource block groups include The virtual resource block group with the largest index of m virtual resource block groups.
  • the number of rows of the interleave matrix is 2, and N is 0 or 1.
  • the virtual resource block group i is mapped to the physical resource block group j, where
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • L represents a reference value of the number of physical resource blocks included in the virtual resource block group.
  • the virtual resource block group i is mapped to the physical resource block group j, where
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • L represents a reference value of the number of physical resource blocks included in the virtual resource block group.
  • the apparatus further includes: a receiving unit, configured to map, on the subset of the virtual resource blocks in the n virtual resource block groups, by the mapping unit Before the value symbol, the part of the carrier bandwidth transmitted by the other network device and the virtual resource block allocated in the part of the carrier bandwidth are received.
  • an embodiment of the present application provides an apparatus, including: a writing unit, configured to write n physical resource block groups row by row into an interlace matrix, where n physical resource block groups form a carrier bandwidth portion, and the interlace matrix is : among them, or Indicates the number of physical resource blocks included in the carrier bandwidth portion, Indicates the number of virtual resource block groups and/or physical resource block groups in the bandwidth portion of the carrier, L represents a reference value of the number of physical resource blocks included in the physical resource block group, C represents the number of columns of the interleaving matrix, and R represents an interleaving matrix. The number of lines.
  • the network device reads n physical resource block groups from the interleaving matrix column by column, and obtains n physical resource block groups mapped after n virtual resource block groups are interleaved.
  • the reading unit is configured to read n physical resource block groups from the interleaving matrix column by column, and the read n physical resource block groups correspond to the n virtual resource block groups.
  • a determining unit configured to determine, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource block in the n virtual resource block groups.
  • the embodiment of the present application provides an apparatus, including: a first mapping unit, configured to map a virtual resource block in the n virtual resource block groups to a physical resource block. a second mapping unit, configured to: when at least one of the foregoing virtual resource blocks corresponds to a resource block that is not in the carrier bandwidth portion, re-map the virtual resource block of the resource block that is not in the carrier bandwidth portion into the carrier bandwidth portion On other physical resource blocks.
  • an embodiment of the present application provides an apparatus, including: a determining unit, configured to determine, by interleaving, a mapping relationship between a virtual resource block group and a physical resource block group. And a mapping unit, configured to map the complex value symbol on the virtual resource block according to the mapping relationship between the virtual resource block group and the physical resource block group.
  • the network device determines, according to the mapping relationship between the virtual resource block group and the physical resource block group, the first virtual resource block in the allocated virtual resource block, and the terminal is in the allocated virtual resource block.
  • the complex value symbol is mapped on the virtual resource block except the first virtual resource block, and the virtual resource block group corresponding to the first virtual resource block maps the physical resource block group with the largest index in the carrier bandwidth portion.
  • the terminal determines the first virtual resource block in the allocated virtual resource block, and the terminal remaps the complex value symbol on the first virtual resource block to the second virtual resource block.
  • the virtual resource block group corresponding to the first virtual resource block maps the physical resource block group with the largest index in the carrier bandwidth portion.
  • the ninth aspect the embodiment of the present application provides an apparatus, including at least one processor and at least one memory, where the processor is configured to perform the resource mapping method in any one of the foregoing first to fourth aspects, where the memory is coupled to the processor .
  • an embodiment of the present application provides an apparatus, including at least one processor and at least one memory, at least one memory coupled to at least one processor, at least one memory for storing computer program code, and computer program code including computer instructions
  • the apparatus performs the resource mapping method in any one of the above first to fourth aspects when the one or more processors execute the computer instructions.
  • an embodiment of the present application provides an apparatus, including at least one processor, where the processor is configured to perform the resource mapping method in any one of the foregoing first to fourth aspects.
  • the embodiment of the present application provides a computer storage medium, including computer instructions, when the computer instruction is run on a network device, causing the network device to perform resource mapping in any one of the foregoing first to fourth aspects. method.
  • the embodiment of the present application provides a computer program product, when the computer program product is run on a computer, causing the computer to perform the data transmission method in any one of the above first to fourth aspects.
  • the embodiment of the present application provides a chip, which is in the form of a device, and the chip may be any one of the fifth to thirteenth aspects.
  • FIG. 1 is a schematic diagram of a resource mapping method provided by the prior art
  • FIG. 2 is a schematic diagram of a carrier bandwidth portion according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a resource mapping method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an interlace matrix according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another interlacing matrix according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another interlacing matrix according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another interlace matrix according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another interlace matrix according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a grouping manner according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another grouping manner provided by an embodiment of the present application.
  • FIG. 12 is a flowchart of another resource mapping method according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another interlacing matrix according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of another resource mapping method according to an embodiment of the present application.
  • FIG. 15 is a flowchart of another resource mapping method according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another apparatus according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another apparatus according to an embodiment of the present application.
  • System frequency resource The frequency resource managed and allocated by the base station, and may also be a frequency resource used for communication between the base station and the terminal.
  • the system frequency resource may also be referred to as a carrier resource, a system resource, or a transmission resource.
  • the width of the system frequency resource may be referred to as the bandwidth of the system frequency resource, and may also be referred to as carrier bandwidth, system bandwidth, or transmission bandwidth.
  • Carrier Bandwidth Part Part or all of the system carrier.
  • the configuration of the carrier bandwidth portion includes a frequency starting resource block, a bandwidth (BW), and a corresponding parameter (numerology) of the carrier bandwidth portion.
  • the bandwidth refers to the number of RBs included in the bandwidth portion of the carrier, and the parameter includes at least one of a subcarrier interval or a cyclic prefix (CP).
  • CP cyclic prefix
  • FIG. 2 is a schematic diagram showing the configuration of the frequency start RB and the bandwidth of the carrier bandwidth portion.
  • the carrier bandwidth portion may be part or all of the resources in the carrier bandwidth, the bandwidth of the carrier bandwidth portion is W, and the frequency of the center frequency point is F.
  • the frequency of the boundary point of the carrier bandwidth part is FW/2 and F+W/2, respectively. It can also be described that the frequency of the highest frequency point in the carrier bandwidth part is F+W/2, and the lowest frequency in the carrier bandwidth part.
  • the frequency of the point is FW/2.
  • Numerology is a parameter used by the communication system.
  • Communication systems can support a variety of numerologies.
  • Numerology can be defined by one or more of the following parameter information: subcarrier spacing, cyclic prefix (CP), time unit, bandwidth, and so on.
  • numerology can be defined by subcarrier spacing and CP.
  • the subcarrier spacing may be an integer greater than or equal to zero. For example, it may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, or the like. For example, different subcarrier spacings may be an integer multiple of two. It can be understood that other values can also be designed.
  • the CP information may include a CP length and/or a CP type.
  • the CP can be a normal CP (NCP) or an extended CP (ECP).
  • the time unit is used to represent a time unit in the time domain, and may be, for example, a sampling point, a symbol, a minislot, a time slot, a subframe, or a radio frame, and the like.
  • the time unit information may include the type, length, or structure of the time unit.
  • the bandwidth can be a contiguous resource on the frequency.
  • the bandwidth may sometimes be referred to as a bandwidth part (BWP), a carrier bandwidth part, a subband bandwidth, a narrowband bandwidth, or other names.
  • BWP bandwidth part
  • one BWP includes consecutive K (K>0) subcarriers; or one BWP is a frequency resource in which N non-overlapping consecutive resource blocks (RBs) are located, and the subcarrier spacing of the RB may be 15 kHz. 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values; or, one BWP is a frequency resource in which M consecutive non-overlapping consecutive resource block groups (RBGs) are located, and one RBG includes P consecutive RBs.
  • the subcarrier spacing of the RB may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, or other values, for example, an integer multiple of 2.
  • the virtual resource block VRB and the physical resource block PRB may be collectively referred to as a resource block (RB); the virtual resource block group VRB group and the physical resource block group PRB group may be collectively referred to as a resource.
  • Block group RB group may be collectively referred to as a resource block (RB);
  • Embodiments of the present application relate to resource allocation and data transmission in a carrier bandwidth portion.
  • the transmission may refer to both uplink transmission and downlink reception.
  • the network device involved in the embodiment of the present application may be a network device that performs data transmission in a communication system.
  • the network device may be a terminal, and may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, and a terminal.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • the network device can be a base station, a relay station, or an access point, and the like.
  • the base station may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, or may be a broadband code division.
  • the NB (NodeB) in the wideband code division multiple access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may also be a gNB in a 5G network or a network device in a future evolved PLMN network.
  • FIG. 3 is a schematic structural diagram of a communication device 300.
  • the communication device 300 may be a network device, which may be a chip, a base station, a terminal, or other network device.
  • the Communication device 300 includes one or more processors 301.
  • the processor 301 can be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • a network device may include one or more modules, which may be implemented by one or more processors, or by one or more processors and memories.
  • communication device 300 includes one or more processors 301, and one or more processors 301 can implement interleaving, mapping functions.
  • processors 301 can implement other functions in addition to the interleaving and mapping functions.
  • the processor 301 can include instructions 303 (sometimes referred to as code or programs) that can be executed on the processor such that the communication device 300 performs the methods described in the above embodiments.
  • the communication device 300 can also include circuitry that can implement interleaving, modulation, etc. functions in the foregoing embodiments.
  • the communication device 300 can include one or more memories 302 on which instructions 304 are stored, the instructions can be executed on the processor, such that the communication device 300 performs the method described in the above method embodiment. Methods.
  • data can also be stored in the memory.
  • Instructions and/or data can also be stored in the optional processor.
  • the processor and memory can be set up separately or integrated.
  • the communication device 300 may further include a transceiver 305 and an antenna 306.
  • the processor 301 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver 505 can be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 306.
  • the communication device 300 may further include an interleaver for interleaving or a modulator for modulation processing or the like.
  • the functionality of these devices can be implemented by one or more processors 301.
  • the communication device 300 may further include a demodulator for demodulation operation, a deinterleaver for deinterleaving, and the like.
  • the functionality of these devices can be implemented by one or more processors 301.
  • the data transmission between the base station and the terminal is discussed and supported by the two-step resource allocation method, that is, the base station first indicates a carrier bandwidth for the terminal.
  • a bandwidth part (BWP) which allocates resources and transmits data to the UE in the bandwidth portion of the carrier.
  • BWP bandwidth part
  • the UE and the base station may map the complex value symbol on the VRB in the carrier bandwidth portion, and transmit the complex value symbol on the PRB corresponding to the VRB.
  • the two-step resource allocation mode may be applied, but is not limited to the following three scenarios.
  • the base station may allocate a carrier bandwidth portion to the UE, so that the UE performs data transmission through resources in the carrier bandwidth portion.
  • the existing communication system proposes a system bandwidth with a large bandwidth design to provide more system resources. This can provide a higher data transfer rate.
  • the bandwidth supported by the UE may be smaller than the system bandwidth in consideration of the cost of the UE and the traffic volume of the UE. The greater the bandwidth supported by the UE, the stronger the processing capability of the UE, the higher the data transmission rate of the UE, and the higher the design cost of the UE.
  • the bandwidth supported by the UE may also be referred to as the bandwidth capability of the UE, and the carrier bandwidth portion is within the bandwidth capability of the UE.
  • the system bandwidth may be up to 400 MHz, and the bandwidth capability of the UE may be 20 MHz, 50 MHz, or 100 MHz, and the like.
  • the bandwidth capabilities of different UEs may be the same or different, and are not limited in this embodiment.
  • the base station may configure a carrier bandwidth portion for the UE from the system frequency resource, and the bandwidth of the carrier bandwidth portion is, for example, less than or equal to the bandwidth capability of the UE, because the bandwidth capability of the UE is smaller than the system bandwidth.
  • the base station may allocate some or all of the resources in the carrier bandwidth portion configured for the UE to the UE, for performing communication between the base station and the UE.
  • the base station may configure multiple carrier bandwidth parts in the system frequency resource, and independently configure parameters for each carrier bandwidth part of the multiple carrier bandwidth parts, and support multiple types in the system frequency resource.
  • the numerology of the different carrier bandwidth parts may be the same or different, and the application does not limit the application.
  • the base station may determine the numerology A for performing communication based on the service type and/or the communication scenario corresponding to the communication, so that the corresponding carrier bandwidth portion may be configured for the UE based on the numerology A.
  • the numerology of the corresponding carrier bandwidth portion is configured as numerology A.
  • the base station may allocate some or all of the resources in the carrier bandwidth portion configured for the UE to the UE, for performing communication between the base station and the UE.
  • the base station may configure a carrier bandwidth portion for the UE based on the traffic of the UE, to save power consumption of the UE.
  • the UE may receive the control information only in the smaller carrier bandwidth portion, and the task amount of the radio frequency processing of the UE and the task amount of the baseband processing may be reduced, so that the power consumption of the UE may be reduced.
  • the base station can configure a carrier bandwidth portion with a smaller bandwidth for the UE, which can reduce the workload of the radio processing of the UE and the workload of the baseband processing, thereby reducing the power consumption of the UE.
  • the base station can configure a carrier bandwidth portion with a larger bandwidth for the UE, thereby providing a higher data transmission rate.
  • the base station may allocate some or all of the resources in the carrier bandwidth portion configured for the UE to the UE, for performing communication between the base station and the UE.
  • the carrier bandwidth portion may be a downlink carrier bandwidth portion for downlink reception of the UE.
  • the bandwidth of the carrier bandwidth portion does not exceed the receiving bandwidth capability of the UE; the carrier bandwidth portion may also be the uplink carrier bandwidth portion.
  • the uplink is sent by the UE, and the bandwidth of the bandwidth portion of the carrier does not exceed the transmission bandwidth capability of the UE.
  • the base station When the base station and the UE use the carrier bandwidth portion for wireless communication, the base station manages the system frequency resource, and allocates a carrier bandwidth portion to the UE from the system frequency resource, so that the base station and the UE can communicate by using the allocated carrier bandwidth portion.
  • the carrier bandwidth portion is a self-contained structure, that is, the UE does not expect downlink reception outside the downlink carrier bandwidth portion, and it is not desirable to perform uplink transmission outside the uplink carrier bandwidth portion.
  • the resource mapping scheme provided in the prior art determines the correspondence between the VRB group and the PRB group by interleaving, so that data is transmitted on the PRB in the PRB group, and the data mapped on the VRB may not be correctly transmitted on the PRB.
  • the resource mapping scheme provided by the embodiment of the present application can ensure the correct transmission of the data mapped on the VRB on the PRB.
  • the resource mapping scheme provided by the present application will be described in detail below through a detailed embodiment.
  • an embodiment of the present application provides a resource mapping method, which may include:
  • the network device writes n physical resource block groups row by row into the interlace matrix, and the intersection of the first row and the last N columns of the interlacing matrix or the intersection of the last row and the first N columns of the interleaving matrix is inserted with N null values, where n is A positive integer, N is a natural number.
  • the number of rows R of the interlaced matrix can be known according to a protocol or from other devices, for example, R can be 2.
  • the number of columns C of the interleaving matrix may be based on the number of RBs included in the BWP Number of virtual resource block groups and/or physical resource block groups within the BWP
  • the number of rows R of the interlaced matrix and the reference value L are calculated, that is, or among them, Indicates rounding up. There are a total of R ⁇ C elements in the interleaving matrix.
  • the N columns of the first row of the first row of the interleaving matrix are inserted with N null values; or, the first N columns of the last row of the interleaving matrix are inserted with N null values.
  • the first N columns of the interleaving matrix include the first column of the interleaving matrix and the N-1 columns which are successively incremented.
  • the last N columns of the interleaving matrix include the last column of the interleaving matrix and the N-1 columns which are successively decremented.
  • the null value inserted in the interleaving matrix can be understood as writing a null value, a null element or a null element; or, it can be understood as not inserting, not filling or not reading; or, it can be understood as writing and reading a physical resource block.
  • the group is skipped.
  • the i-th (i is a positive integer) line of the interleaving matrix is arranged in order from top to bottom of the rows in the interleaving matrix.
  • the first row refers to the top row in the interleaving matrix
  • the last row refers to the lowest row in the interleaving matrix.
  • the i-th (i is a positive integer) column of the interleaving matrix is arranged in order from left to right in the columns in the interleaving matrix.
  • the first N columns of the interleaving matrix refer to the leftmost N columns, including the leftmost first column; the last N columns of the interleaving matrix refer to the rightmost N columns, including the rightmost column.
  • the intersection of the first row and the last N columns of the interleaving matrix is located in an ellipse as shown in FIG. 6.
  • the intersection of each row and column in the ellipse is inserted with a null value, and the null value is represented by *.
  • the intersection of the last row and the first N columns of the interleaving matrix is located in an ellipse as shown in FIG. 7.
  • the intersection of each row and column in the ellipse is inserted with a null value, and the null value is represented by *.
  • N 1, the intersection of the first row and the last N columns of the interleaving matrix is the intersection of the first row and the last column, located at the A position as shown in FIG. 8, and the A position is inserted with a null value, and the null value is inserted. Expressed in *.
  • N 1, the intersection of the last row and the first N columns of the interleaving matrix is the intersection of the last row and the first column, located at the B position as shown in FIG. 9, and the B position is inserted with a null value, and the null value is represented by *.
  • the progressive write means that n physical resource block groups are written into the interlaced matrix in the order of the top-to-bottom rows in the interleaving matrix and the left-to-right columns in each row of the interleaving matrix. In each line.
  • the interleaving matrix when a null value in the interleaving matrix is encountered, the null position is skipped, and the physical resource block group is not written in the null position.
  • the network device may write the n physical resource block groups row by row into the interlace matrix according to the index of the physical resource block group from small to large. That is, the network device may follow the order of the indexes of the physical resource block groups from small to large, the order of the top-to-bottom rows in the interleaving matrix, and the order of the columns from left to right in each row of the interleaving matrix, n
  • the physical resource block groups are written row by row into each row of the interleaving matrix.
  • the index of the physical resource block in the physical resource block group may be sequenced according to the frequency corresponding to the physical resource block, or may be sequenced according to the frequency corresponding to the physical resource block.
  • the indexes of the virtual resource blocks in the virtual resource block group may be sequenced in a small to large order according to the frequency corresponding to the virtual resource blocks, or may be ordered in a small to large order according to the frequency corresponding to the virtual resource blocks.
  • n physical resource block groups include physical resource block groups 0 to 4, and the interleaving matrix is in the form shown in FIG. 6, the indexes according to the physical resource block group are in descending order, that is, according to the physical resource block group 0-physical.
  • the result of writing n physical resource block groups into the interleaving matrix row by row may be the following matrix 1; when the interleaving matrix In the form shown in FIG. 7, the index of the physical resource block group is in descending order, that is, according to the physical resource block group 0-physical resource block group 1 - physical resource block group 2 - physical resource block group 3 - physical In the order of the resource block group 4, the result obtained by writing the n physical resource block groups to the interleave matrix row by row may be the matrix 2 as follows.
  • the above matrix 1 and the matrix 2 are in the order of the index of the physical resource block group from small to large, and the n physical resource block groups are written into the interleave matrix, and the n physical resource block groups can also be otherwise determined.
  • the interleaving matrix is written, which is not specifically limited in this embodiment.
  • the intersection of the first row and the last N/2 column of the interleaving matrix and the intersection of the last row and the first N/2 column of the interleaving matrix are inserted with N/2 null values, where N is 0 or N is A positive integer multiple of 2; or, in the embodiment of the present application, the intersection of the first row and the last a column of the interleaving matrix is inserted with a null value, and the intersection of the last row of the interleaving matrix and the previous b column is inserted with b null values.
  • the sum of a and b is equal to N, and N is a natural number.
  • each physical resource block group may include at least one physical resource block.
  • the physical resource blocks in the n physical resource block groups of the interleaving matrix may be physical resource blocks that are consecutive in frequency, or may be physical resource blocks that are not consecutive in frequency.
  • the network device reads n physical resource block groups from the interlace matrix column by column, and the read n physical resource block groups are mapped to the n virtual resource block groups.
  • reading column by column from the interleaving matrix means reading the elements in each column of the interleaving matrix according to the order of the columns from left to right in the interleaving matrix; for each column of the interleaving matrix, in order from top to bottom
  • the elements in the column are read to read the n physical resource block groups written in the interleave matrix.
  • the read result may be physical resource block groups 0, 2, 1, 3, 4.
  • the index of the n physical resource block groups read by the network device from the interleaving matrix column by column is the index of the physical resource block group mapped after the n virtual resource block groups are interleaved.
  • each virtual resource block group includes at least one virtual resource block.
  • the n virtual resource block groups are arranged in an order from small to large.
  • the virtual resource block group i is mapped to the physical resource block group j, and the physical resource block group j is read by the xth in the reading, and the virtual resource block group i is the xth virtual resource block of the index, where i, j is an integer greater than or equal to 0 and less than or equal to n-1, and x is an integer greater than or equal to 1 and less than or equal to n.
  • the i-th (i is a positive integer) physical resource block group refers to a physical resource block group determined according to an index of a physical resource block group from small to large; i (i) A positive virtual integer) virtual resource block group refers to a virtual resource block group determined in descending order of the index of the virtual resource block group.
  • the i-th (i is a positive integer) physical resource block refers to a physical resource block determined according to an order of the physical resource block from small to large; the i-th (i is a positive integer) virtual resource block refers to the virtual resource block according to the virtual resource block.
  • the network device may write the index of the virtual resource block group column by column into the interlace in step 101, and read the index of the virtual resource block group in the interlace matrix row by row in step 102, thereby obtaining n.
  • the n physical resource block groups mapped after the virtual resource block groups are interleaved.
  • the column-by-column write means that n virtual resource block groups are written into the interleave matrix in the order of the left-to-right columns in the interleave matrix and the order of the top-to-bottom rows in each column of the interleaving matrix. In each line.
  • the null position is skipped, and the virtual resource block group is not written in the null position.
  • the network device may write n virtual resource block groups to the interlace matrix column by column according to the index of the virtual resource block group from small to large. That is, the network device may follow the order of the index of the virtual resource block group from small to large, the order of the columns from left to right in the interleaving matrix, and the order of the top-to-bottom rows in each column of the interleaving matrix, n
  • the virtual resource block groups are written column by column into each column of the interleaving matrix.
  • each virtual resource block group may include at least one virtual resource block.
  • the virtual resource blocks in the n virtual resource block groups of the interleaving matrix may be the virtual resource blocks that are consecutively indexed, or may be the virtual resource blocks that are not consecutively indexed.
  • the network device reads n virtual resource block groups from the interlace matrix row by row, and the read n virtual resource block groups are mapped with n physical resource block groups.
  • reading from the interleaving matrix row by row means reading the elements in each row of the interleaving matrix according to the order of the rows from top to bottom in the interleaving matrix; for each row of the interlacing matrix, in order from left to right
  • the elements in the row are read to read the n virtual resource block groups written in the interleaving matrix.
  • the null position is skipped and the reading of the element in the next position is continued.
  • the n physical resource block groups are arranged in an order from small to large.
  • the virtual resource block group i is mapped to the physical resource block group j, and the virtual resource block group j is read by the xth in the reading, and the physical resource block group i is the xth physical resource block of the index, where i, j is an integer greater than or equal to 0 and less than or equal to n-1, and x is an integer greater than or equal to 1 and less than or equal to n.
  • the n physical resource block groups that are mapped after the n virtual resource block groups are interleaved are used to determine that the virtual resource block group i corresponds to the physical resource block group j.
  • the determination method is the same as above, and details are not described herein again.
  • the physical resource block group with the largest index may be corresponding to the virtual resource block group of the same index, or may be written.
  • the virtual resource block group with the largest index corresponds to the physical resource block group of the same index.
  • the network device determines, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups.
  • the network device may determine, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups, thereby transmitting the complex value symbols according to the determined physical resource blocks.
  • the virtual resource block in the virtual resource block group corresponds to the physical resource block in the physical resource block group for the corresponding virtual resource block group and the physical resource block group.
  • the virtual resource block in the virtual resource block group corresponds to the physical resource block in the physical resource block group
  • the xth virtual resource block in the virtual resource block group corresponds to the xth physical in the physical resource block group.
  • the virtual resource block in the virtual resource block group corresponds to the physical resource block in the physical resource block group
  • the xth virtual resource block in the virtual resource block group corresponds to the L-x in the physical resource block group.
  • +1 physical resource block where x is an integer greater than 1 and less than or equal to L
  • L is the number of virtual resource blocks in the virtual resource block group, and is also the number of physical resource blocks in the physical resource block group.
  • the xth virtual resource block in the virtual resource block group corresponds to the xth physical resource block in the physical resource block group; in Table 2, the xth virtual resource block in the virtual resource block group corresponds to the physical L-x+1 physical resource blocks in the resource block group.
  • the network device writes the interleaving matrix may be an index of a physical resource block group, and the read from the interlace matrix may also be an index of a physical resource block, or the network device may write the interlace matrix. It is an index of a virtual resource block group, and an index read from the interlace matrix may also be an index of a virtual resource block group, and the index may also be referred to as a number, a serial number, and the like.
  • the physical resource block group and the virtual resource block group mainly have the following two determination methods:
  • the carrier bandwidth is partially
  • the physical resource blocks are formed, and the indexes of the physical resource blocks are determined in order of frequency from small to large.
  • the physical resource block group can be grouped and numbered according to the index of the physical resource block in the carrier bandwidth portion. In this manner, in the carrier bandwidth portion, the index of the physical resource block and the index of the physical resource block group are all numbered from 0.
  • the physical resource blocks are grouped according to the reference value L according to the index from small to large, and the physical resource block groups obtained by the group are also numbered according to the index from small to large, and the carrier bandwidth portion is included. Physical resource block groups. among them, Indicates rounding up.
  • the size of the reference value L may be related to the channel quality. When the channel quality is good, L may be large, for example, may be 4; when the channel quality is poor, L may be small, for example, may be 2.
  • the index in the carrier bandwidth portion is in the order of the index of the physical resource block group from small to large.
  • the physical resource block group that is, the first to the second to last physical resource block group, includes L physical resource blocks, and the last physical resource block group may include L or less than L physical resource blocks. Specifically, the number of physical resource blocks in the last physical resource block group is among them, Indicates rounding down.
  • the carrier bandwidth portion corresponds to A virtual resource block, which can be grouped and numbered according to the index of the virtual resource block.
  • the index of the virtual resource block and the index of the virtual resource block group are all numbered from 0.
  • the virtual resource blocks are grouped according to the reference value L according to the index from small to large, and the virtual resource block groups obtained by the grouping are also numbered according to the index from small to large, and the carrier bandwidth portion corresponds to Virtual resource block group.
  • the carrier bandwidth portion corresponds to the former according to the index of the virtual resource block group from small to large.
  • the virtual resource block group that is, the first to the second to last virtual resource block group, contains L virtual resource blocks, and the last virtual resource block group may contain L or less than L virtual resource blocks. Specifically, the number of virtual resource blocks in the last virtual resource block group is
  • the carrier bandwidth is partially
  • the physical resource blocks are formed, and the indexes of the physical resource blocks are determined in order of frequency from small to large.
  • Physical resource block groups can be grouped and numbered according to the index of the common resource block. In this manner, in the carrier bandwidth portion, the index of the physical resource block and the index of the physical resource block group are all numbered from 0.
  • the physical resource blocks are grouped according to the reference value L according to the index from small to large, and the physical resource block groups obtained by the group are also numbered according to the index from small to large, and the carrier bandwidth portion is included. or Physical resource block groups.
  • the first and last physical resource block groups in the carrier bandwidth portion may include less than L physical resource blocks, and the second to second last physical resource block group includes L physical resource blocks.
  • the number of physical resource blocks included in the first physical resource block group is The number of physical resource blocks included in the last physical resource block group is among them Indicates the location of the starting physical resource block of the carrier bandwidth portion in the common resource block, and mod represents the remainder.
  • the starting physical resource block of the carrier bandwidth portion is configured according to the common resource block.
  • the common resource block is numbered from the common resource block 0 in the direction of increasing frequency, and the starting physical resource block of the carrier bandwidth part is indexed as a common resource block; or, the offset of the position of the starting physical resource block of the carrier bandwidth portion in frequency relative to the position of the common resource block 0 in frequency is Resource blocks.
  • the common resource block 0 is determined by the reference frequency position and the offset from the reference frequency position, specifically:
  • the reference frequency location is determined according to the lowest physical resource block of the synchronization signal block accessed by the terminal;
  • the reference frequency location is determined according to the lowest frequency physical resource block of the synchronization signal block accessed by the terminal;
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute radio frequency channel number (ARFCN);
  • ARFCN absolute radio frequency channel number
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number ARFCN;
  • the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number ARFCN.
  • the carrier bandwidth portion corresponds to Virtual resource blocks.
  • Virtual resource block groups can be grouped and numbered according to the index of the common resource block. In this manner, in the carrier bandwidth portion, the index of the virtual resource block and the index of the virtual resource block group are all numbered from 0.
  • the virtual resource blocks are grouped according to the reference value L according to the index from small to large, and the virtual resource block groups obtained by the grouping are also numbered according to the index from small to large, and the carrier bandwidth portion is included. or Virtual resource block group.
  • the first and last virtual resource block groups in the carrier bandwidth portion may include less than L virtual resource blocks, and the second to second last physical resource block group includes L virtual resource blocks. Specifically, the number of virtual resource blocks included in the first virtual resource block group is The number of virtual resource blocks included in the last virtual resource block group is
  • the target physical resource block group may be the smallest index of the physical resource block group and/or the index in the carrier bandwidth portion. Physical resource block group.
  • the virtual resource block group with the smallest index also contains less than L number of virtual resource blocks.
  • the physical resource block group with the smallest index is written into the first row and the first column of the interlaced matrix.
  • the intersection of the intersection ie, the upper left corner of the interleaving matrix
  • the smallest physical resource block group of the index is the first one to be read, so that the obtained virtual resource block group with the smallest index corresponds to the smallest index of the carrier bandwidth portion.
  • the virtual resource block group with the smallest index is written into the first row and the first column of the interleaving matrix.
  • the position corresponding to the intersection ie, the upper left corner of the interleaving matrix
  • the virtual resource block group with the smallest index is the first one to be read, so that the virtual resource block group with the smallest index is obtained corresponding to the physics with the smallest index in the carrier bandwidth portion.
  • the virtual resource block group with the smallest index directly corresponds to (not through interleaving) The group of physical resource blocks with the smallest index in the carrier bandwidth portion.
  • the virtual resource block group with the largest index also contains less than L number of virtual resource blocks.
  • the physical resource block group with the largest index is written into the intersection of the last row and the last column of the interleaving matrix. (ie, the lower right corner of the interleaving matrix) corresponds to the position where the largest physical resource block of the index is the last one, so that the obtained virtual resource block group with the largest index corresponds to the physical resource block group with the largest index in the carrier bandwidth portion.
  • the virtual resource block group with the largest index is written into the intersection of the last row and the last column of the interleaving matrix ( That is, the position corresponding to the lower right corner of the interleaving matrix, the virtual resource block group with the largest index is the last one read out, so that the virtual resource block group with the largest index corresponding to the virtual resource block group with the largest index corresponding to the carrier bandwidth portion is the largest.
  • the virtual resource block group with the largest index is directly (not interleaved) Corresponding to the largest resource resource block group in the carrier bandwidth portion.
  • the network device can determine the virtual resource block group corresponding thereto, so that the virtual resource block can be in the virtual resource block.
  • the complex value symbols are mapped on the virtual resource blocks in the group with the same number of physical resource blocks in the target physical resource block group, so that the number of resource blocks included in the virtual resource block group and the physical resource block group are matched, thereby ensuring mapping on the VRB.
  • the data can be transmitted correctly on the PRB.
  • the kth physical resource block group refers to a physical resource block group determined according to an index from small to large, and the last physical resource block group refers to a physical resource block group with the largest index.
  • the first physical resource block group refers to the physical resource block group with the smallest index.
  • the method may further include:
  • the network device maps the complex value symbol on a subset of the virtual resource blocks in the n virtual resource block groups.
  • the subset can include a true subset and a complete set.
  • a subset of the virtual resource blocks in the n virtual resource block groups is a partial virtual resource block or all virtual resource blocks included in the n virtual resource block groups.
  • the network device may first map the complex value symbols on the subset of the virtual resource blocks in the n virtual resource block groups, and then determine the physical resources mapped by the virtual resource block in the n virtual resource block groups by using the interlace. a block, thereby determining a virtual resource block mapped physical resource block in a subset of the virtual resource blocks in the n virtual resource block groups.
  • a subset of the virtual resource blocks can be part of a virtual resource block to be mapped.
  • the virtual resource block to be mapped may be a virtual resource block allocated by the base station to the terminal in the carrier bandwidth portion.
  • the virtual resource blocks to be mapped may be virtual resource blocks that are consecutive in frequency, or may be virtual resource blocks that are not consecutive in frequency.
  • the network device may first map the complex value symbols on the virtual resource blocks to be mapped, and then determine the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups by interleaving.
  • the allocated virtual resource block may be a continuous virtual resource block in the frequency domain or a non-contiguous virtual resource block in the frequency domain.
  • the interleaving can cause consecutive virtual resource blocks in the frequency domain to be mapped to non-contiguous physical resource blocks in the frequency domain, so that the channel transmission process may be highlighted.
  • the problem produces concentrated error decentralization, reducing the impact of channel generation.
  • the method may further include:
  • the network device transmits the complex value symbol on the physical resource block corresponding to the subset of the virtual resource blocks in the n virtual resource block groups.
  • the physical resource blocks corresponding to the subset of the virtual resource blocks may be determined, so that the physical resource blocks corresponding to the subset of the virtual resource blocks are Transmit the complex-valued symbols mapped on a subset of the virtual resource blocks.
  • the network device may transmit the complex value symbol on the physical resource block corresponding to the virtual resource block to be mapped.
  • a virtual resource block in the resource block to be mapped that does not determine a corresponding physical resource block according to the interlace matrix directly corresponds to a physical resource block in the physical resource block group in which the virtual resource block group has the same index.
  • the network device can determine the virtual resource block group corresponding thereto without pre-computing the interlace, so that the virtual resource block group can be mapped on the virtual resource block with the same number of physical resource blocks in the target physical resource block group.
  • the complex value symbol ensures that the complex value symbols of the virtual resource block mappings in the virtual resource block group can be correctly transmitted on the corresponding physical resource blocks in the target physical resource block group.
  • the network device may map the complex value symbol on the corresponding s virtual resource block groups in the corresponding virtual resource block group, where s is a positive integer smaller than L.
  • the n physical resource block groups constitute a carrier bandwidth portion
  • the network device may write all physical resource block groups included in the carrier bandwidth portion to the interlace matrix, or all virtual regions corresponding to the carrier bandwidth portion in the foregoing step 102.
  • the resource block group is written into the interlace matrix, so that n physical resource block groups mapped after n virtual resource block groups corresponding to the carrier bandwidth portion and physical resource blocks mapped by the virtual resource block corresponding to the carrier bandwidth portion are obtained.
  • the n physical resource block groups form a carrier bandwidth portion, and the index of the physical resource block and the index of the n physical resource block groups are arranged according to the frequency in the carrier bandwidth portion from low to high.
  • the carrier bandwidth portion includes 9 physical resource blocks of physical resource blocks 0-8, and the carrier bandwidth portion corresponds to 9 virtual resource blocks 0-8 Virtual resource block.
  • the five physical resource block groups included in the carrier bandwidth portion are physical resource block groups 0 to 4.
  • the correspondence between the physical resource block group and the physical resource block can be referred to the third column and the fourth table in Table 2.
  • the five virtual resource block groups corresponding to the carrier bandwidth portion are virtual resource block groups 0 to 4.
  • the correspondence between the virtual resource block group and the virtual resource block can be referred to the first column and the second column in Table 2.
  • the number of virtual resource blocks corresponding to the carrier bandwidth portion is 9, which is a non-integer multiple of the reference value 2, and the last virtual resource block group in the carrier bandwidth portion, that is, virtual
  • the resource block group 4 includes the number of virtual resource blocks smaller than the reference value 2, and the virtual resource block group 4 includes one virtual resource block; from the third column and the fourth column in Table 4, the physical resource blocks included in the carrier bandwidth portion are known.
  • the quantity is 9, which is a non-integer multiple of the reference value 2, and the last physical resource block group in the carrier bandwidth portion, that is, the physical resource block group 4 includes the number of physical resource blocks smaller than the reference value 2, and the physical resource block group 4 includes 1 physical resource block.
  • the physical resource block group is written row by row into an interleaving matrix provided by the embodiment of the present application, and then read out column by column, and the corresponding relationship shown in Table 2 can be obtained.
  • the virtual resource block group 4 corresponds to the physical resource block group 4, and both include 1 (less than the reference value 2) resource blocks; the virtual resource block groups 0, 1, 2, and 3 respectively correspond to the physical resource block group 0, 2, 1, 3, and both include 2 (equal to the reference value 2) resource blocks.
  • the number of virtual resource block groups in the carrier bandwidth portion is equal to the number of resource blocks included in the physical resource block group mapped after interleaving.
  • the complex value symbols corresponding to the two resource blocks may be mapped on the virtual resource block groups 0, 1, 2, and 3, respectively, and the virtual resource block group 4 is Mapping the complex-valued symbols corresponding to one resource block may enable the complex-valued symbols mapped on the virtual resource block group to be correctly transmitted on the physical resource blocks in the physical resource block group.
  • the number of physical resource blocks included in the carrier bandwidth portion is an integer multiple of the reference value
  • the number of physical resource blocks included in the last physical resource block group in the carrier bandwidth portion and the last virtual resource block group corresponding to the carrier bandwidth portion are included.
  • the number of virtual resource blocks is equal to the reference value, and the number of resource blocks included in the virtual resource block group and the physical resource block group mapped after the interleaving is equal, so that the complex valued symbols mapped on the virtual resource block can be correctly performed on the physical resource block. transmission.
  • the n physical resource block groups are true subsets of m physical resource block groups included in the carrier bandwidth portion, and the n physical resource block groups include the last physical resource block group of the m physical resource block groups.
  • the n physical resource block groups are true subsets of the m physical resource block groups included in the carrier bandwidth portion, and the n physical resource block groups are part of the m physical resource block groups.
  • the last physical resource block group of the m physical resource block groups refers to the physical resource block group with the largest index among the m physical resource block groups.
  • the physical resource block group with the largest index corresponds to the virtual resource block group of the same index; and when the n physical resource block groups are true subsets of the m physical resource block groups included in the carrier bandwidth portion, the n physical resource block groups include m
  • the last physical resource block group of the physical resource block group the last physical resource block group written in the carrier bandwidth portion of the interlace matrix corresponds to the last virtual resource block group in the carrier bandwidth portion.
  • the physical resource block and the corresponding virtual resource block included in the carrier bandwidth portion adopt the second determining manner, and the first virtual resource block group and the last virtual resource block group included in the carrier bandwidth portion are included.
  • the number of virtual resource blocks is less than L.
  • the n physical resource block groups are true subsets of m physical resource block groups corresponding to the carrier bandwidth portion, and the n physical resource block groups are defined in the carrier bandwidth portion, and may include the last physical in the carrier bandwidth portion.
  • the resource block group, m is a positive integer greater than n; the n virtual resource block groups corresponding to the n physical resource block groups are true subsets of the m virtual resource block groups corresponding to the carrier bandwidth portion.
  • the n physical resource block groups may be the second physical resource block group to the last physical resource block group of the m physical resource block groups, and the m virtual matrix may be determined by the interleaving matrix provided by the embodiment of the present application.
  • a second virtual resource block group in the resource block group to a physical resource block corresponding to the virtual resource block in the last virtual resource block group, and the carrier bandwidth portion includes a carrier corresponding to the last virtual resource block group of the L virtual resource blocks The last physical resource block group in the bandwidth portion.
  • the first virtual resource block group including less than L virtual resource blocks in the carrier bandwidth portion is a write interleave matrix
  • the first physical resource block group in the carrier bandwidth portion can be directly corresponding, so the network device can determine The number of virtual resource blocks included in the virtual resource block group and the physical resource block group is smaller than L, so that the complex valued symbols mapped on the virtual resource block can be correctly transmitted on the physical resource block.
  • the correspondence between the physical resource block group and the physical resource block is as shown in the third column and the fourth column in Table 4, the virtual resource block group and the virtual resource block.
  • the corresponding relationship is as shown in the first column and the second column in Table 4.
  • VRB group 1 first VRB group
  • VRB group 4 last VRB group
  • PRB group 1 first PRB group
  • PRB group 4 The first PRB group
  • VRB group 1 corresponds to PRB group 1
  • VRB group 4 corresponds to PRB group 4.
  • n virtual resource block groups are true subsets of m virtual resource block groups corresponding to carrier bandwidth portions, and n virtual resource block groups include m virtual resources. The last virtual resource block group of the block group.
  • the n virtual resource block groups are true subsets of the m virtual resource block groups corresponding to the carrier bandwidth portion, and the n virtual resource block groups are part of the m virtual resource block groups.
  • the last virtual resource block group of the m virtual resource block groups refers to the virtual resource block group with the largest index among the m virtual resource block groups.
  • the virtual resource block group with the largest index corresponds to the physical resource block group of the same index; and when the n virtual resource block groups are true subsets of the m virtual resource block groups included in the carrier bandwidth portion, the n virtual resource block groups include m
  • the last virtual resource block group of the virtual resource block group the last virtual resource block group written to the carrier bandwidth portion of the interlace matrix corresponds to the last physical resource block group of the carrier bandwidth portion.
  • the number of rows of the interlace matrix may be 2, the number N of null values may be 0 or 1, n physical resource block groups constitute a carrier bandwidth portion, and the physical resource block group and the virtual resource block group are grouped.
  • the first determination method or the second determination method On the basis of this, another description of steps 101 to 102 is given as follows.
  • the virtual resource block group i is mapped to the physical resource block group j and satisfies:
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • the number of rows of the interlace matrix may be 2, the number N of null values may be 0 or 1, n physical resource block groups constitute a carrier bandwidth portion, and the physical resource block group and the virtual resource block group are grouped.
  • the first determination method or the second determination method On the basis of this, another description of steps 101 to 102 is given as follows.
  • the virtual resource block group i is mapped to the physical resource block group j and satisfies:
  • R represents the row of the interleaving matrix Number
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values
  • Indicates the number of physical resource blocks included in the carrier bandwidth portion Indicates the number of virtual resource block groups and/or physical resource block groups in the carrier bandwidth portion
  • L represents a reference value
  • max represents a maximum value.
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • the method may further include:
  • the network device receives a carrier bandwidth part sent by another network device and a virtual resource block allocated in a carrier bandwidth part.
  • the other network device when the network device is a terminal, the other network device may be a base station.
  • the terminal Before the mapping of the complex value symbol on the virtual resource block, the terminal may further receive configuration information sent by the base station, where the configuration information is related resource information allocated to the terminal, and may include a carrier bandwidth part and a virtual resource block allocated in the carrier bandwidth part. It is also possible to include a reference value L or the like.
  • the carrier bandwidth part of the configuration information, the virtual resource block allocated in the carrier bandwidth part, and the reference value L may be transmitted in the same message, or may be transmitted in different messages. Specifically limited.
  • the base station can also determine the configuration information by itself without receiving it from other network devices.
  • Another embodiment of the present application provides a resource mapping method, which may include steps 101-106 in the foregoing embodiment.
  • steps 101-106 may include steps 101-106 in the foregoing embodiment.
  • the n resource resource block groups written into the interlace matrix are n physical resource block groups constituting the carrier bandwidth portion.
  • the interleaving matrix in the embodiment of the present application may be in the form of matrix 3 as follows:
  • the elements in the matrix 3 represent the indexes of the physical resource block groups written in the interleaving matrix;
  • C represents the number of columns of the interlacing matrix, or * indicates a null value, the null value is located in the last N column of the last row of the interleaving matrix, and the number of N is 0 or 1, that is, the null value is located at the end of the last row of the interleaving matrix.
  • the interleave matrix is written row by row according to the order of the physical resource block groups.
  • the network device writes n physical resource block groups according to the index corresponding to each element of the matrix 3.
  • a null value is inserted at the end of the last row of the interleaving matrix, thereby filling the interleaving matrix.
  • the network device may interleave the order of the left-to-right columns in each row of the matrix according to the index corresponding to each element of the matrix 3, in the order of the top-to-bottom rows in the interlace matrix, and the n physical resources.
  • the block group is written to the interleave matrix.
  • the carrier bandwidth portion includes 9 PRBs with an index of 0 to 8, the index of the PRB group is 0 to 4, and a total of 5 PRB groups; visible
  • the manner in which the physical resource block group is written into the interlace matrix in the embodiment of the present application may also be understood as: the order of the row from top to bottom in the interleaving matrix according to the order of the index numbers of the physical resource block groups.
  • n physical resource block groups are written into the interleaving matrix, and if the interleaving matrix is not filled, a null value is inserted at the end of the last row of the interleaving matrix, thereby interleaving the matrix Fill up. Then, the physical resource block group in the last column of the first row is exchanged with the physical resource block group in the last column of the last row.
  • the result of writing the interleaving matrix row by row according to the index order from small to large may be the following matrix 5:
  • the group of the physical resource block group and the virtual resource block group in the carrier bandwidth portion are grouped by using the first determining manner.
  • the network device can determine the virtual resource block group corresponding thereto without pre-computing the interlace. Therefore, the complex value symbol can be mapped on the virtual resource block with the same number of physical resource blocks in the target physical resource block group in the virtual resource block group, so that the complex value symbol of the virtual resource block mapping in the virtual resource block group can be The corresponding physical resource block in the target physical resource block group is correctly transmitted.
  • the virtual resource block group i is mapped to the physical resource block group j, and satisfies:
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • L represents a reference value.
  • mod represents the modulo operation
  • ⁇ 0,1,...,R-1 ⁇ r',r" ⁇ means remove from the set ⁇ 0,1,...,R-1 ⁇
  • the set of remaining elements after the set ⁇ r',r" ⁇ , ⁇ 0,1,...,C-1 ⁇ c',c" ⁇ represents the set ⁇ 0,1,...,C-1 ⁇
  • the set of remaining elements after the collection ⁇ c',c" ⁇ is removed.
  • R represents the number of rows of the interleaving matrix
  • C represents the number of columns of the interleaving matrix
  • N represents the number of null values.
  • L represents a reference value. Indicates that the value is up.
  • Another embodiment of the present application provides a resource mapping method.
  • Physical resource blocks are divided into Physical resource block group, where The physical resource block group includes L physical resource blocks, and the last physical resource block group includes Physical resource blocks.
  • Virtual resource blocks are divided into Virtual resource block group, where The virtual resource block group includes L virtual resource blocks, and one virtual resource block group includes Physical resource blocks.
  • the n physical resource block groups are arranged in ascending order according to the index, and the n physical resource block groups are A subset of physical resource block groups.
  • n physical resource block groups include the last physical resource block group of the carrier bandwidth portion
  • the remaining virtual resource block group includes L virtual resource blocks
  • the penultimate virtual resource block group of the n virtual resource block groups includes One virtual resource block
  • the remaining virtual resource block groups include L virtual resource blocks.
  • the second-to-last virtual resource block group refers to the second largest (next-largest) virtual resource block group in the n virtual resource block groups.
  • the specific frequency may be the corresponding frequency.
  • the last physical resource block group of the carrier bandwidth portion is not included in the n physical resource block groups
  • the last virtual resource block group in the n virtual resource block groups includes One virtual resource block
  • the remaining virtual resource block groups include L virtual resource blocks.
  • Physical resource blocks are divided into Or Physical resource block group, wherein the first physical resource block group includes Physical resource blocks, the last physical resource block group includes One physical resource block, and the remaining physical resource block groups include L physical resource blocks.
  • Virtual resource blocks are divided into Or a virtual resource block group, wherein the first virtual resource block group includes Virtual resource blocks, one virtual resource block group includes One virtual resource block, and the remaining virtual resource block group includes L virtual resource blocks.
  • n physical resource block groups include the last physical resource block group of the carrier bandwidth portion
  • the remaining virtual resource block group includes L virtual resource blocks
  • the penultimate virtual resource block group of the n virtual resource block groups includes One virtual resource block
  • the remaining virtual resource block groups include L virtual resource blocks.
  • the last physical resource block group of the carrier bandwidth portion is not included in the n physical resource block groups
  • the last virtual resource block group in the n virtual resource block groups includes One virtual resource block
  • the remaining virtual resource block groups include L virtual resource blocks.
  • the resource mapping method provided by the embodiment of the present application may include the steps 101-106 in the foregoing embodiment.
  • steps 101-106 For details, refer to the related descriptions in the foregoing steps 101-106. Only differences are explained herein.
  • the number of rows of the interleaving matrix in the embodiment of the present application may be 2, and the number N of null values may be 0 or 1.
  • the last row shown in FIG. 13 may be used.
  • the last N columns are inserted with N null interleaving matrices, where N is a natural number.
  • the reference value L is 2, and only one physical resource block 8 is included in the physical resource block group 4.
  • the correspondence between the virtual resource block group and the virtual resource block is as shown in the first column and the second column of Table 5.
  • the virtual resource block group 3 includes only one virtual resource block.
  • the correspondence between the virtual resource block index and the physical resource block index refer to Table 5 below.
  • Another embodiment of the present application provides a resource mapping method.
  • the carrier bandwidth portion corresponds to Virtual resource blocks Virtual resource block group, where The virtual resource block group includes L virtual resource blocks, and the last virtual resource block group includes Virtual resource blocks.
  • Physical resource blocks are divided into Physical resource block group, where The physical resource block group includes L physical resource blocks, and one physical resource block group includes Physical resource blocks.
  • the n physical resource block groups are arranged in ascending order according to the index, and the n physical resource block groups are A subset of physical resource block groups.
  • n physical resource block groups include the last physical resource block group of the carrier bandwidth portion
  • the remaining physical resource block group includes L physical resource blocks
  • the Cth physical resource block group of the n physical resource blocks includes One physical resource block
  • the remaining physical resource block groups include L physical resource blocks.
  • the last physical resource block group of the carrier bandwidth portion is not included in the n physical resource block groups
  • the last physical resource block group of the n physical resource block groups includes One physical resource block
  • the remaining physical resource block groups include L physical resource blocks.
  • the carrier bandwidth portion corresponds to Virtual resource blocks Or a virtual resource block group, wherein the first virtual resource block group includes Virtual resource blocks, the last virtual resource block group includes One virtual resource block, and the remaining virtual resource block groups include L virtual resource blocks.
  • Part of the carrier bandwidth Physical resource blocks are divided into Or Physical resource block group, wherein the first physical resource block group includes Physical resource blocks, one physical resource block group includes One physical resource block, and the remaining physical resource block group includes L physical resource blocks.
  • the n physical resource block groups are arranged in ascending order according to the index, and the n physical resource block groups are A subset of physical resource block groups.
  • n physical resource block groups include the last physical resource block group of the carrier bandwidth portion
  • the remaining physical resource block group includes L physical resource blocks.
  • n ⁇ RC the Cth physical resource block group in the n physical resource block groups includes One physical resource block
  • the remaining physical resource block groups include L physical resource blocks.
  • the last physical resource block group of the carrier bandwidth portion is not included in the n physical resource block groups
  • the last physical resource block group of the n physical resource block groups includes One physical resource block
  • the remaining physical resource block groups include L physical resource blocks.
  • the resource mapping method may include the steps 101-106 in the foregoing embodiment.
  • steps 101-106 in the foregoing embodiment.
  • the related descriptions in the foregoing steps 101-106 Only differences are explained herein.
  • the number of rows of the interleaving matrix in the embodiment of the present application may be 2, and the number N of null values may be 0 or 1.
  • the last row shown in FIG. 13 may be used.
  • the last N columns are inserted with N null interleaving matrices, where N is a natural number.
  • Another embodiment of the present application provides a resource mapping method, which may include steps 101-106 in the foregoing embodiment.
  • steps 101-106 may include steps 101-106 in the foregoing embodiment.
  • the interleaving matrix in the embodiment of the present application may include, but is not limited to, the interleaving matrix provided in step 101 of the present application and the interleaving matrix shown in matrix 3. For example, N of the last N columns of the last row shown in FIG. 13 may be inserted. A null-valued interleaving matrix, where N is a natural number.
  • n physical resource block groups written in the interlace matrix in the embodiment of the present application may correspond to different physical resource block groups in different situations, or the n virtual resource block groups written in the interlace matrix may correspond to different in different situations.
  • Virtual resource block group :
  • the last physical resource group includes L physical resource blocks.
  • the first virtual resource block group includes L virtual resource blocks smaller than the reference value
  • the last virtual resource group includes L virtual resource blocks
  • the n physical resource block groups do not include the first one of the carrier bandwidth portions.
  • This method can be applied to scenarios grouped according to the second determination method described above.
  • only one first physical resource block group includes less than the reference value L physical resource blocks
  • only one first virtual resource block group includes less than the reference value L virtual resource blocks
  • the first physical resource block group directly corresponds to the first virtual resource block group
  • the virtual resource block group including the L virtual resource blocks does not appear to be mapped to include less than L physical groups.
  • the network device may be calculated according to a calculation formula. Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the network device may be based on a calculation formula. Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the n physical resource block groups do not include the last part of the carrier bandwidth portion.
  • This method can be applied to scenarios grouped according to the first or second determination manner described above.
  • the last physical resource block group directly corresponds to the last virtual resource block group, regardless of the first physical resource block.
  • the first physical resource block group corresponds to the first virtual resource block group
  • the virtual resource block group containing L virtual resource blocks does not contain less than L physical resources.
  • a physical resource block group of a block there is no case where a virtual resource block is mapped to a physical resource block other than the carrier bandwidth portion, so that the complex value symbol can be correctly transmitted on the physical resource block.
  • the network device may be calculated according to a calculation formula. Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the network device may be calculated according to a calculation formula. Determining whether the virtual resource block included in the first virtual resource block group is less than L; Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the n physical resource block groups do not include the physical resource block group whose number of physical resource blocks included in the carrier bandwidth portion is smaller than the reference value L, including the carrier bandwidth portion.
  • the number of physical resource blocks is smaller than the other physical resource block groups other than the reference value L.
  • This method can be applied to scenarios grouped according to the first or second determination manner described above.
  • the network device writes the physical resource block group (the first and/or the last one) whose number of physical resource blocks included in the carrier bandwidth portion is smaller than the reference value L to the interleave matrix, writes the physical resource block in the interleave matrix
  • Each of the groups includes L physical resource blocks, or the network device does not write the virtual resource block group (the first and/or the last one) whose number of virtual resource blocks included in the carrier bandwidth portion is less than the reference value L to the interleave matrix.
  • Each of the virtual resource block groups in the write interleave matrix includes L virtual resource blocks, and neither of the virtual resource block groups including the L virtual resource blocks are mapped to the physical resource block group including less than L physical resource blocks. Therefore, there is no case where the virtual resource block is mapped to a physical resource block other than the carrier bandwidth portion, so the complex value symbol can be correctly transmitted on the physical resource block.
  • the network device may be calculated according to a calculation formula. Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the network device may be calculated according to a calculation formula. Determining whether the virtual resource block included in the first virtual resource block group is less than L; Determine if the virtual resource block included in the last virtual resource block group is less than L.
  • the n physical resource block groups do not include the carrier bandwidth portion.
  • the first physical resource block grouping and/or the last physical resource block grouping includes a first physical resource block group and/or a last physical resource block group other than the last physical resource block group in the carrier bandwidth portion.
  • This method can be applied to scenarios grouped according to the second determination method described above.
  • the number group of virtual resource block groups in the carrier bandwidth portion is larger than the number of elements in the interleave matrix, the number of physical resource blocks included in the first physical resource block group and the last physical resource block group in the carrier bandwidth portion Both are less than L.
  • the number of virtual resource block groups in the carrier bandwidth portion is greater than the number of elements in the interlace matrix, if the first physical resource block group or the last physical resource block group in the carrier bandwidth portion is not written into the interlace matrix, or The first virtual resource block group or the last virtual resource block group in the carrier bandwidth portion is not written into the interlace matrix, and the elements written in the interleave matrix are full, there is no null value, and no virtual resource block mapping to the carrier occurs.
  • the complex value symbol can be correctly transmitted on the physical resource block.
  • the number of virtual resource block groups in the carrier bandwidth portion is greater than the number of elements in the interlace matrix, if the first physical resource block group and the last physical resource block group in the carrier bandwidth portion are not written into the interlace matrix, Then, a null value is inserted in the interleaving matrix, but the physical resource block group written in the interleaving matrix includes L physical resource blocks, or the first virtual resource block group and the last virtual resource block group in the carrier bandwidth portion are not included.
  • the null value is inserted into the interleaving matrix, but the virtual resource block groups in the interleaving matrix include L virtual resource blocks, and no virtual resource blocks are mapped to the physical resource blocks except the carrier bandwidth portion. In this case, complex value symbols can be correctly transmitted on physical resource blocks.
  • the number of elements in the interleaving matrix may be the product of the number of rows R and the number of columns C.
  • the method may include:
  • the network device maps the virtual resource blocks in the n virtual resource block groups to the physical resource blocks.
  • the virtual resource block corresponding to the resource block that is not in the carrier bandwidth portion is remapped to other physical resource blocks in the carrier bandwidth portion.
  • each virtual resource block can be mapped onto a physical resource block within the carrier bandwidth portion, such that the complex valued symbols on the virtual resource block can be correctly transmitted on the physical resource block.
  • the method may further include:
  • the network device maps the complex value symbol on the subset of the virtual resource blocks in the n virtual resource block groups.
  • step 104 For details, refer to step 104 above for the description in step 203, and details are not described herein again.
  • the method may further include:
  • the network device transmits the complex value symbol according to the physical resource block corresponding to the subset of the virtual resource blocks in the n virtual resource block groups and the remapped physical resource block.
  • the physical resource blocks corresponding to the subset of the virtual resource blocks may be determined, so that the physical resource blocks corresponding to the subset of the virtual resource blocks are Transmit the complex-valued symbols mapped on a subset of the virtual resource blocks.
  • the network device may transmit the complex value symbol on the physical resource block mapped by the virtual resource block, and the mapped physical resource block is not in the carrier bandwidth portion.
  • the step 201 may specifically include:
  • the network device writes n physical resource block groups row by row into the interlace matrix, or the network device writes n virtual resource block groups into the interleave matrix column by column.
  • the network device reads n physical resource block groups from the interleaving matrix column by column, and the read n physical resource block groups are mapped with n virtual resource block groups, or the network device reads from the interlace matrix row by row.
  • n virtual resource block groups, the read n virtual resource block groups are mapped to n physical resource block groups.
  • the network device determines, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups.
  • the interleaving matrix in steps 2011-2013 may include but is not limited to the interleaving matrix provided in step 101 (for example, the interleaving matrix shown in FIG. 6 to FIG. 9), and may also be other interlacing matrices.
  • the interleaving matrix employed in step 2011 inserts a null value elsewhere than the first column of the first row or the first column of the last row.
  • the interleaving matrix used in step 2011 can be inserted with N null values in the last N columns of the last row of the interleaving matrix as shown in FIG.
  • step 202 may specifically include: the network device re-mapping the first virtual resource block to another physical resource block within the preset carrier bandwidth portion.
  • the PRB group is written row by row into the interleave matrix:
  • * indicates a null value
  • the five PRB groups in the interleaving matrix are read out column by column, that is, the elements in the interleaving matrix are 0, 3, 1, 4, 2, and the VRB group and the PRB determined in step 201 are determined.
  • the correspondence of groups can be seen in Table 6 below.
  • the VRB group with the index of 3 corresponds to the PRB group with the index of 4, the VRB group with the index of 3 includes 2 VRBs, and the mapping has 2 complex-valued symbols, and the PRB group with the index of 4 includes only one carrier bandwidth.
  • a PRB with an index of 8 in the part
  • VRB group index VRB index Interleaved PRB group index PRB index 0 0, 1 0 0, 1 1 2, 3 3 6,7 2 4, 5 1 2, 3 3 6,7 4 8 4 8 2 4, 5
  • the resource blocks corresponding to the virtual resource block 7 are outside the carrier bandwidth portion, and the network device may remap the virtual resource block 7 to another physical resource in the carrier bandwidth portion.
  • the mapping between the virtual resource block and the physical resource block can be referred to the following Table 7.
  • VRB group index VRB index Interleaved PRB group index PRB index 2 4, 5 1 2, 3 3 6,7 4 8, 0 4 8 2 4, 5
  • another physical resource block in the preset carrier bandwidth portion is determined according to a frequency domain location of the carrier bandwidth portion, a size of the carrier bandwidth portion, and/or a reference value L.
  • another physical resource block in the preset carrier bandwidth portion is an unmapped physical resource block in the physical resource block group corresponding to the most indexed virtual resource block group.
  • the resource block corresponding to the virtual resource block 7 is outside the carrier bandwidth portion, and the network
  • the device may remap the virtual resource block 7 to the unmapped physical resource block in the physical resource block group corresponding to the largest index of the virtual resource block group, that is, to the physical resource block group 2 corresponding to the virtual resource block group 4.
  • the correspondence between the virtual resource block and the physical resource block at this time can be referred to Table 8 below.
  • VRB group index VRB index Interleaved PRB group index PRB index 0 0, 1 0 0, 1 1 2, 3 3 6,7 2 4, 5 1 2, 3 3 6,7 4 8, 5 4 8 2 4
  • the step 202 may specifically include: the network device re-mapping the virtual resource block group corresponding to the first virtual resource block to another physical resource block group in the preset carrier bandwidth portion.
  • the corresponding relationship between the virtual resource block and the physical resource block determined in step 201 is as shown in Table 6, and the reference value L is 2, and the allocated virtual resource block is the virtual resource block 4-8, the virtual resource block is 7
  • the corresponding resource block is outside the carrier bandwidth portion, and the network device may remap the virtual resource block group 3 to the physical resource block group in the carrier bandwidth portion, for example, to the physical resource block group 0, that is, the virtual resource block 6
  • the mapping between the virtual resource block and the physical resource block is shown in Table 9 below.
  • VRB group index VRB index Interleaved PRB group index PRB index 2 4, 5 1 2, 3 3 6,7 0 0, 1 4 8 2 4, 5
  • another physical resource block group in the preset carrier bandwidth portion is determined according to a frequency domain location of the carrier bandwidth portion, a size of the carrier bandwidth portion, and/or a reference value L.
  • another physical resource block group in the preset carrier bandwidth portion is the physical resource block group corresponding to the virtual resource block group with the largest index.
  • the resource block corresponding to the virtual resource block 7 is outside the carrier bandwidth portion, and the network
  • the device may remap the virtual resource block group 3 to the physical resource block group corresponding to the largest virtual resource block group, that is, to the physical resource block group 2 corresponding to the virtual resource block group 4, and the virtual resource blocks 6 and 7 respectively. Mapping to the physical resource blocks 4 and 5, optionally mapping the virtual resource block group 4 to the physical resource block group 4 corresponding to the virtual resource block group 3, and mapping the virtual resource block 8 to the physical resource block 8, For the correspondence between the virtual resource block and the physical resource block, see Table 10 below.
  • VRB group index VRB index Interleaved PRB group index PRB index 0 0, 1 0 0, 1 1 2, 3 3 6,7 2 4, 5 1 2, 3 3 6,7 2 4, 5 4 8 4 8
  • the step 202 may include: determining, by the network device, another physical resource block according to the preset offset and the physical resource block corresponding to the first virtual resource block, and weighting the first virtual resource block Map to another physical resource block.
  • the step 202 may specifically include: determining, by using a network device carrier bandwidth portion and a reference value L, determining another physical resource block according to the offset and the physical resource block corresponding to the first virtual resource block, And remapping the first virtual resource block onto another physical resource block.
  • the n virtual resource block groups are n virtual resource block groups corresponding to the carrier bandwidth portion. This implementation can be applied to scenarios grouped according to the first determination described above.
  • the n virtual resource block groups are true subsets of the m virtual resource block groups corresponding to the carrier bandwidth portion, and the n virtual resource block groups include the last virtual resource of the m virtual resource block groups.
  • Block group. The method may be applied to the scenario in which the number of virtual resource blocks included in the first virtual resource block group and the last virtual resource block group in the carrier bandwidth portion is smaller than L according to the second determining manner.
  • the n virtual resource block groups may be the second virtual resource block group to the last virtual resource block group of the m virtual resource block groups.
  • the method may further include:
  • the network device determines, by interleaving, a mapping relationship between the virtual resource block group and the physical resource block group.
  • the network device maps the complex value symbol on the virtual resource block according to the mapping relationship between the virtual resource block group and the physical resource block group.
  • the step 301 may specifically include:
  • the network device writes n physical resource block groups into the interlace matrix row by row, or the network device writes n virtual resource block groups into the interleave matrix column by column.
  • the network device reads n physical resource block groups from the interlace matrix column by column, and the read n physical resource block groups are mapped with n virtual resource block groups, or the network device reads from the interlace matrix row by row.
  • n virtual resource block groups, the read n virtual resource block groups are mapped to n physical resource block groups.
  • the interleaving matrix in step 3011 may include, but is not limited to, the interleaving matrix provided in step 101.
  • the interleaving matrix represented by the matrix 3 may be, for example, an interleaving matrix or the like as shown in FIG.
  • Step 301 specifically includes:
  • the network device determines, by interleaving, a mapping relationship between the virtual resource block group and the physical resource block group, and a physical resource block corresponding to the virtual resource block.
  • the method may further include:
  • the network device transmits the complex value symbol on the physical resource block.
  • the network device may determine, according to the mapping relationship between the virtual resource block group and the physical resource block group, the first virtual resource block in the allocated virtual resource block, where the terminal is in the allocated virtual resource block.
  • the complex value symbol is mapped on the virtual resource block except the first virtual resource block, and the virtual resource block group corresponding to the first virtual resource block maps the physical resource block group with the largest index in the carrier bandwidth portion.
  • the allocated virtual resource block may be a virtual resource block in the allocated carrier bandwidth portion of the base station.
  • a network device maps a complex value symbol on an allocated virtual resource block
  • a certain allocated virtual resource block corresponds to a resource block outside the carrier bandwidth portion
  • the network device may not be in the network device.
  • a complex value symbol is mapped in the virtual resource block, and a complex value symbol is mapped on the virtual resource block in the allocated virtual resource block. That is, the network device maps the complex value symbol on the virtual resource block group according to the mapping relationship between the virtual resource block group and the physical resource block group.
  • the network device does not map the complex value symbol on the virtual resource block 7, and the virtual resource block group 3 may include only one virtual resource block, and the virtual resource block group and For the correspondence between virtual resource block indexes, see Table 5 above.
  • the terminal determines a first virtual resource block in the allocated virtual resource block, and the terminal remaps the complex value symbol on the first virtual resource block to the second virtual resource block,
  • the virtual resource block group corresponding to the first virtual resource block maps the largest physical resource block group in the carrier bandwidth portion.
  • a network device maps a complex value symbol on an allocated virtual resource block
  • a certain virtual resource block corresponds to a physical resource block outside the carrier bandwidth portion
  • the network device may not be in the network device.
  • the complex value symbol is mapped in the virtual resource block
  • the complex value symbol corresponding to the L resource blocks is mapped in the virtual resource block group with the largest index. For example, if the corresponding relationship between the virtual resource block and the physical resource block determined in step 303 is as shown in Table 6, and the reference value L is 2, and the allocated virtual resource block is the virtual resource block 4-8, then in step 302.
  • the network device does not map the complex value symbol on the virtual resource block 7, and assumes that the virtual resource block group 4 includes two virtual resource blocks, and the complex value symbols corresponding to the two resource blocks are mapped in the virtual resource block 4.
  • the virtual resource block group and the virtual resource block group index refer to the following Table 11, wherein the complex value symbol is not mapped on the virtual resource block 7, and the virtual resource block 9 can be understood as a virtual resource block other than the second carrier bandwidth portion.
  • mapping on the virtual resource block of the resource block other than the corresponding carrier bandwidth portion may be adjusted, such as the complex value symbol originally mapped to the virtual resource block 7 Mapping to the virtual resource block 9; or, mapping on all subsequent virtual resource blocks starting from the virtual resource block of the resource block other than the corresponding carrier bandwidth portion, such as the complex value originally mapped to the virtual resource block 7
  • the symbols are mapped onto the virtual resource block 8, and the complex-valued symbols that were originally mapped onto the virtual resource block 8 are mapped onto the virtual resource block 9.
  • the virtual resource block group in which the virtual resource block mapped with the complex value symbol is located can be matched with the number of resource blocks included in the corresponding physical resource block group, thereby ensuring virtual The complex value symbols on the resource block can be correctly transmitted on the physical resource block.
  • the network device includes corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may perform the division of the function module on the network device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 16 is a schematic diagram showing a possible composition of the device involved in the foregoing method embodiment, which is a network device or a chip such as a terminal or a base station in the foregoing embodiment.
  • the apparatus 400 may include a writing unit 41, a reading unit 42, and a determining unit 43.
  • the writing unit 41 may be configured to write n physical resource block groups row by row into the interleave matrix, or to write n virtual resource block groups into the interleave matrix column by column, the interlacing matrix
  • the intersection of one row and the last N columns or the intersection of the last row and the first N columns is inserted with N null values, n is a positive integer, and N is a natural number.
  • the reading unit 42 can be configured to read n physical resource block groups from the interleaving matrix column by column, and the read n physical resource block groups are mapped to n virtual resource block groups, or used for row-by-row interleaving.
  • the n virtual resource block groups are read in the matrix, and the read n virtual resource block groups are mapped to the n physical resource block groups.
  • the determining unit 43 is configured to determine, according to the n physical resource block groups mapped to the n virtual resource block groups, the physical resource blocks mapped by the virtual resource blocks in the n virtual resource block groups.
  • the apparatus 400 may further include a mapping unit 44, a transmission unit 45, and a receiving unit 46.
  • the mapping unit 44 can be used to support the device 400 to perform step 104 in FIG. 12; the transmitting unit can be used to support the device 400 to perform step 105 in FIG. 12, and the receiving unit 46 can be used to support the device 400 to perform the steps in FIG. 106.
  • the various units in Figure 16 can also be used in other processes of the techniques described herein.
  • the apparatus provided in this embodiment of the present application is configured to perform the foregoing resource mapping method, so that the same effect as the foregoing resource mapping method can be achieved.
  • FIG. 17 is a schematic diagram showing another possible configuration of the device 500 involved in the foregoing embodiment.
  • the device 500 is a network device such as a terminal or a base station in the foregoing embodiment. Or chip.
  • the apparatus 500 may include a determining unit 51, a mapping unit 52, and a transmission unit 53.
  • the determining unit 51 can be configured to perform step 301 in FIG. 15, and the determining unit 52 can be configured to perform step 302 in FIG.
  • the determining unit 51 is further configured to perform the steps 3010-3012 in the foregoing method embodiment, and the transmitting unit 53 can be used to perform step 303 in the foregoing embodiment.
  • the various elements in Figure 17 can also be used in other processes of the techniques described herein.
  • the apparatus 500 provided by the embodiment of the present application is configured to perform the foregoing resource mapping method, so that the same effect as the resource mapping method described above can be achieved.
  • FIG. 18 is a schematic diagram showing another possible configuration of the device 600 involved in the foregoing embodiment, where the device 600 is a network device such as a terminal or a base station in the foregoing embodiment. Or chip. As shown in FIG. 18, the apparatus 600 can include at least one mapping unit.
  • the first mapping unit 61 may be configured to perform step 201 in FIG. 14; the second mapping unit 62 may be configured to perform the method in FIG. Step 202:
  • the first mapping unit 61 is specifically configured to perform steps 2011-2013 in the foregoing method embodiments.
  • mapping unit may perform the functions of the first mapping unit 61 and the second mapping unit 62 described above.
  • the apparatus 600 provided by the embodiment of the present application is configured to perform the foregoing resource mapping method, so that the same effect as the resource mapping method described above can be achieved.
  • modules in devices 16 through 18 correspond to the components of FIG. 3, and any of devices 16 through 18 may pass the structure shown in FIG. achieve.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to a plurality of different places. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit can be stored in a readable storage medium if it is implemented as a software functional unit and sold or used as a standalone product.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in the form of a software product in essence or in the form of a contribution to the prior art, and the software product is stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源映射方法及设备,涉及通信技术领域,能够保证VRB上映射的数据在PRB上的正确传输。具体方案为:网络设备将n个物理资源块组逐行写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数;逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射;根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。本申请实施例用于资源映射。

Description

一种资源映射方法及设备
本申请要求于2018年1月12日提交中国国家知识产权局、申请号为201810032421.0、申请名称为“一种资源映射方法及设备”的中国专利申请和2018年1月23日提交中国国家知识产权局、申请号为201810065051.0、申请名称为“一种资源映射方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源映射方法及设备。
背景技术
在空口系统中,资源分配是基于虚拟资源块(virtual resource block,VRB)的,而实际的数据传输是基于物理资源块(physical resource block,PRB)的。参见图1,终端可以通过下行控制信道传输的指示信息确定给定传输时间单元中用于传输数据的VRB;将数据映射至VRB,再通过交织确定VRB组与PRB组的对应关系,从而在PRB组中的PRB上传输数据。
其中,上述做法可能无法保证VRB上映射的数据在PRB上的正确传输。
发明内容
本申请实施例提供一种资源映射方法及设备,能够保证VRB上映射的数据在PRB上的正确传输。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种资源映射方法,可以包括:网络设备将n个物理资源块组逐行写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数。而后,网络设备逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射。之后,网络设备根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
第二方面,本申请实施例提供了一种资源映射方法,可以包括:网络设备将n个虚拟资源块组逐列写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数。而后,网络设备逐行从交织矩阵中读取n个虚拟资源块组,读取出的n个虚拟资源块组与n个物理资源块组相映射。之后,网络设备根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
基于第一方面或第二方面,网络设备可以确定目标物理资源块组对应的虚拟资源块组,目标物理资源块组为包括的物理资源块的数量小于L的物理资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保 证该虚拟资源块组中这些虚拟资源块映射的复值符号,能够在目标物理资源块组中对应的物理资源块上正确传输。
在第一方面或第二方面的一种可能的实现方式中,在网络设备将n个物理资源块组逐行写入交织矩阵中之前或在网络设备将n个虚拟资源块组逐列写入交织矩阵中之前,该方法还包括:网络设备在n个虚拟资源块组中虚拟资源块的子集上映射复值符号。在网络设备确定n个虚拟资源块组中虚拟资源块映射的物理资源块之后,该方法还包括:网络设备在n个虚拟资源块组中虚拟资源块的子集对应的物理资源块上传输复值符号。
这样,网络设备可以在不预先计算交织的情况下确定目标物理资源块组对应的虚拟资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保证该虚拟资源块组中这些虚拟资源块映射的复值符号能够在目标物理资源块组中对应的物理资源块上正确传输。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,n个物理资源块组构成载波带宽部分。
这样,网络设备可以将载波带宽部分包括的全部物理资源块组写入交织矩阵。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,n个物理资源块组中索引最大的物理资源块组包括的物理资源块的数量小于参考值,n个虚拟资源块组中索引最大的虚拟资源块组包括的虚拟资源块的数量小于参考值。具体的,当载波带宽部分包括的物理资源块的数量为参考值的非整数倍时,n个物理资源块组中索引最大的物理资源块组包括的物理资源块的数量小于参考值,n个虚拟资源块组中索引最大的虚拟资源块组包括的虚拟资源块的数量小于参考值
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,n个物理资源块组是载波带宽部分对应的m个物理资源块组的真子集,n个物理资源块组包括m个物理资源块组中索引最大的物理资源块组,m为大于n的正整数。
这样,载波带宽部分中索引最大的物理资源块组被写入交织矩阵,索引最大的物理资源块组交织后映射载波带宽部分中索引最大的虚拟资源块组。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,交织矩阵的行数为2,N为0或1。
这样,交织矩阵中未插入有空值,或者交织矩阵插入有1个空值。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,虚拟资源块组i映射到物理资源块组j,其中,
j=rC+c-Δ
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
Δ=(r-max{c-1,0}·(C-1))·N
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000001
Figure PCTCN2019071364-appb-000002
或者
Figure PCTCN2019071364-appb-000003
Figure PCTCN2019071364-appb-000004
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000005
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示虚拟资源块组包括的物理资源块的数量的参考值,
Figure PCTCN2019071364-appb-000006
表示向上取整,max表示求最大 值。
这样,交织矩阵第一行的最后N列插入有N个空值。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,虚拟资源块组i映射到物理资源块组j,其中,
j=rC+c-Δ
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
Figure PCTCN2019071364-appb-000007
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000008
Figure PCTCN2019071364-appb-000009
或者
Figure PCTCN2019071364-appb-000010
Figure PCTCN2019071364-appb-000011
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000012
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示虚拟资源块组包括的物理资源块的数量的参考值
Figure PCTCN2019071364-appb-000013
表示向上取整。
这样,交织矩阵最后一行的前N列插入有N个空值。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,在网络设备在n个虚拟资源块组中虚拟资源块的子集上映射复值符号之前,该方法还包括:网络设备接收其它网络设备发送的载波带宽部分和在载波带宽部分中分配的虚拟资源块。
这样,网络设备可以根据接收的载波带宽部分和载波带宽部分中分配的虚拟资源块进行资源映射。
结合上述可能的实现方式,在第一方面或第二方面的另一种可能的实现方式中,在网络设备将n个物理资源块组逐行写入交织矩阵中之前或者在网络设备将n个虚拟资源块组逐列写入交织矩阵中之前,网络设备还可以接收其它网络设备发送的参考值,该参考值为资源块组中包括的资源块的参考数量。以便于,网络设备根据参考值确定交织矩阵的列数,从而将n个物理资源块组逐行写入交织矩阵中或将n个虚拟资源块组逐列写入交织矩阵中。
结合上述可能的实现方式,在一种可能的实现方式中,n个物理资源块组构成载波带宽部分,交织矩阵的为:
Figure PCTCN2019071364-appb-000014
其中,
Figure PCTCN2019071364-appb-000015
Figure PCTCN2019071364-appb-000016
Figure PCTCN2019071364-appb-000017
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000018
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示物理资源块组包括的物理资源块的数量的参考值,C表示交织矩阵的列数,R表示交织矩阵的行数。网络设备逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相对应。之后,网络设备根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。这样,无论目标物理资源块组为载波带宽部分中索引最小的物理资源块组还是索引最大的物理资源块组,网络设备都可以在不预先计算交织的情况下确定与之对应的虚拟资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保证该虚拟资源块组中这些虚拟资源块映射的复值符号能够在目标物理资源块组中对应的物理资源块上正确传输。
第三方面,本申请实施例提供一种资源映射方法,包括:网络设备将n个虚拟资源块组中的虚拟资源块映射至物理资源块。当上述虚拟资源块中的至少一个对应不在载波带宽部分内的资源块时,将该对应不在载波带宽部分内的资源块的虚拟资源块重映射到载波带 宽部分内的其它物理资源块上。
这样,可以使得每个虚拟资源块都能够映射到载波带宽部分内的物理资源块上,从而可以使得虚拟资源块上的复值符号能够在物理资源块上正确传输。
第四方面,本申请实施例提供一种资源映射方法,包括:网络设备通过交织确定虚拟资源块组和物理资源块组的映射关系。网络设备根据虚拟资源块组和物理资源块组的映射关系,在虚拟资源块上映射复值符号。
在第四方面的一种可能的实现方式中,网络设备根据虚拟资源块组和物理资源块组的映射关系,确定分配的虚拟资源块中的第一虚拟资源块,终端在分配的虚拟资源块中除第一虚拟资源块以外的虚拟资源块上映射复值符号,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
在第四方面的另一种可能的实现方式中,终端确定分配的虚拟资源块中的第一虚拟资源块,终端将第一虚拟资源块上的复值符号重映射在第二虚拟资源块上,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
这样,可以使得映射有复值符号的虚拟资源块所在的虚拟资源块组与对应的物理资源块组中包括的资源块的数量相匹配,从而保证虚拟资源块上的复值符号能够在物理资源块上正确传输。
第五方面,本申请实施例提供了一种装置,包括:写入单元,用于将n个物理资源块组逐行写入交织矩阵中或将n个虚拟资源块组逐列写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数。读取单元,用于逐列从交织矩阵中读取n个物理资源块组或逐列从交织矩阵中读取n个虚拟资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射或读取出的n个虚拟资源块组与n个物理资源块组相映射。确定单元,用于根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
在第五方面的一种可能的实现方式中,装置还包括:映射单元,用于在写入单元在将n个物理资源块组逐行写入交织矩阵中之前或将n个虚拟资源块组逐列写入交织矩阵中之前,在n个虚拟资源块组中虚拟资源块的子集上映射复值符号。传输单元,用于在确定单元确定确定n个虚拟资源块组中虚拟资源块映射的物理资源块之后,在n个虚拟资源块组中虚拟资源块的子集对应的物理资源块上传输复值符号。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,n个物理资源块组构成载波带宽部分。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,当载波带宽部分包括的物理资源块的数量为参考值的非整数倍时,n个物理资源块组中索引最大的物理资源块组包括的物理资源块的数量小于参考值,n个虚拟资源块组中索引最大的虚拟资源块组包括的虚拟资源块的数量小于参考值。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,n个虚拟资源块组是载波带宽部分对应的m个虚拟资源块组的真子集,n个虚拟资源块组包括m个虚拟资源块组的索引最大的虚拟资源块组。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,交织矩阵的行数为2,N为0或1。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,虚拟资源块组i映 射到物理资源块组j,其中,
Figure PCTCN2019071364-appb-000019
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000020
Figure PCTCN2019071364-appb-000021
或者
Figure PCTCN2019071364-appb-000022
Figure PCTCN2019071364-appb-000023
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000024
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示虚拟资源块组包括的物理资源块的数量的参考值。
结合上述可能的实现方式,在第五方面的另一种可能的实现方式中,虚拟资源块组i映射到物理资源块组j,其中,
Figure PCTCN2019071364-appb-000025
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000026
Figure PCTCN2019071364-appb-000027
或者
Figure PCTCN2019071364-appb-000028
Figure PCTCN2019071364-appb-000029
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000030
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示虚拟资源块组包括的物理资源块的数量的参考值。
结合上述可能的实现方式,在第六方面的另一种可能的实现方式中,装置还包括:接收单元,用于在映射单元在n个虚拟资源块组中虚拟资源块的子集上映射复值符号之前,接收其它网络设备发送的载波带宽部分和在载波带宽部分中分配的虚拟资源块。
第六方面,本申请实施例提供一种装置,包括:写入单元,用于将n个物理资源块组逐行写入交织矩阵中,n个物理资源块组构成载波带宽部分,交织矩阵为:
Figure PCTCN2019071364-appb-000031
其中,
Figure PCTCN2019071364-appb-000032
Figure PCTCN2019071364-appb-000033
Figure PCTCN2019071364-appb-000034
Figure PCTCN2019071364-appb-000035
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000036
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示物理资源块组包括的物理资源块的数量的参考值,C表示交织矩阵的列数,R表示交织矩阵的行数。网络设备逐列从交织矩阵中读取n个物理资源块组,获得n个虚拟资源块组交织后映射的n个物理资源块组。读取单元,用于逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相对应。确定单元,用于根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
第七方面,本申请实施例提供一种装置,包括:第一映射单元,用于将n个虚拟资源块组中的虚拟资源块映射至物理资源块。第二映射单元,用于当上述虚拟资源块中的至少一个对应不在载波带宽部分内的资源块时,将该对应不在载波带宽部分内的资源块的虚拟资源块重映射到载波带宽部分内的其它物理资源块上。
第八方面,本申请实施例提供一种装置,包括:确定单元,用于通过交织确定虚拟资源块组和物理资源块组的映射关系。映射单元,用于根据虚拟资源块组和物理资源块组的映射关系,在虚拟资源块上映射复值符号。
在第八方面的一种可能的实现方式中,网络设备根据虚拟资源块组和物理资源块组的映射关系,确定分配的虚拟资源块中的第一虚拟资源块,终端在分配的虚拟资源块中除第一虚拟资源块以外的虚拟资源块上映射复值符号,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
在第八方面的另一种可能的实现方式中,终端确定分配的虚拟资源块中的第一虚拟资源块,终端将第一虚拟资源块上的复值符号重映射在第二虚拟资源块上,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
第九方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,处理器用于执行上述第一方面至第四方面任一项中的资源映射方法,存储器与处理器耦合。
第十方面,本申请实施例提供了一种装置,包括至少一个处理器和至少一个存储器,至少一个存储器与至少一个处理器耦合,至少一个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,装置执行上述第一至第四方面任一项中的资源映射方法。
第十一方面,本申请实施例提供了一种装置,包括至少一个处理器,处理器用于执行上述第一至第四方面任一项中的资源映射方法。
第十二方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在网络设备上运行时,使得网络设备执行上述第一方面至第四方面任一项中的资源映射方法。
第十三方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面任一项中的数据传输方法。
第十四方面,本申请实施例提供了一种芯片,该芯片以装置的形式存在,该芯片可以为上述第五方面至第十三方面中的任意一种装置。
其中,上述第五方面至第十四方面对应的有益效果可以参见上述第一方面至第四方面中有益效果的相关描述,这里不再赘述。
附图说明
图1为现有技术提供的一种资源映射方法示意图;
图2为本申请实施例提供的一种载波带宽部分的示意图;
图3为本申请实施例提供的一种通信装置的结构示意图;
图4为本申请实施例提供的一种资源映射方法流程图;
图5为本申请实施例提供的一种交织矩阵示意图;
图6为本申请实施例提供的另一种交织矩阵示意图;
图7为本申请实施例提供的另一种交织矩阵示意图;
图8为本申请实施例提供的另一种交织矩阵示意图;
图9为本申请实施例提供的另一种交织矩阵示意图;
图10为本申请实施例提供的一种分组方式示意图;
图11为本申请实施例提供的另一种分组方式示意图;
图12为本申请实施例提供的另一种资源映射方法流程图;
图13为本申请实施例提供的另一种交织矩阵示意图;
图14为本申请实施例提供的另一种资源映射方法流程图;
图15为本申请实施例提供的另一种资源映射方法流程图;
图16为本申请实施例提供的一种装置的结构示意图;
图17为本申请实施例提供的另一种装置的结构示意图;
图18为本申请实施例提供的另一种装置的结构示意图。
具体实施方式
为了便于理解,示例的给出了部分与本申请实施例相关概念的说明以供参考。如下所示:
系统频率资源:基站管理和分配的频率资源,还可以为用于进行基站和终端间的通信的频率资源。在本申请实施例中,系统频率资源还可以称为载波资源、系统资源或传输资源。在频率,系统频率资源的宽度可以称为系统频率资源的带宽,还可以称为载波带宽、系统带宽或传输带宽。
载波带宽部分:系统载波的部分或全部。载波带宽部分的配置包括该载波带宽部分的频率起始资源块、带宽(bandwidth,BW)和对应的参数(numerology)。其中的带宽是指该载波带宽部分包括的RB数量,参数包括子载波间隔或循环前缀(cyclic prefix,CP)中至少一个。
示例性地,图2所示为载波带宽部分的频率起始RB和带宽的配置示意图。如图2所示,载波带宽部分可以为载波(carrier)带宽内的部分或全部资源,载波带宽部分的带宽为W,中心频点的频率为F。其中,载波带宽部分的边界点的频率分别为F-W/2和F+W/2;还可以描述为,载波带宽部分中最高频点的频率为F+W/2,载波带宽部分中最低频点的频率为F-W/2。
其中,Numerology为通信系统所采用的参数。通信系统(例如5G)可以支持多种numerologies。numerology可以通过以下参数信息中的一个或多个定义:子载波间隔,循环前缀(cyclic prefix,CP),时间单位,带宽等。例如,numerology可以由子载波间隔和CP来定义。
子载波间隔可以为大于等于0的整数。例如可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。例如,不同子载波间隔可以为2的整数倍。可以理解,也可以设计为其他的值。
CP信息可以包括CP长度和/或者CP类型。例如,CP可以为正常CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。
时间单位用于表示时域内的时间单元,例如可以为采样点,符号,微时隙,时隙,子帧,或者无线帧等等。时间单位信息可以包括时间单位的类型,长度,或者结构等。
带宽(bandwidth)可以为频率上一段连续的资源。带宽有时可称为带宽部分(bandwidth part,BWP),载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽、或者其他的名称,本申请对名称并不做限定。例如,一个BWP包含连续的K(K>0) 个子载波;或者,一个BWP为N个不重叠的连续的资源块(resource block,RB)所在的频率资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的连续的资源块组(resource block group,RBG)所在的频率资源,一个RBG包括P个连续的RB,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
需要注意的是,在本申请实施例中,虚拟资源块VRB和物理资源块PRB可以统称为资源块(resource block,RB);虚拟资源块组VRB组和物理资源块组PRB组可以统称为资源块组RB组。
本申请实施例涉及载波带宽部分中的资源分配和数据传输。下文中,若无特殊说明,则传输既可以指上行发送也可以指下行接收。
本申请实施例涉及的网络设备可以为通信系统中进行数据传输的网络设备。例如,网络设备可以是终端,具体可以是用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进的PLMN网络中的终端等。
再例如,网络设备可以是基站、中继站或接入点等。基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是5G网络中的gNB或未来演进的PLMN网络中的网络设备等。
示例性的,图3给出了一种通信装置300的结构示意图,该通信装置300可以是本申请实施例涉及的网络设备,具体可以是芯片,基站,终端或者其他网络设备。
通信装置300包括一个或多个处理器301。处理器301可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,网络设备可以包括一个或者多个模块,该一个或多个模块可能由一个或者多个处理器来实现,或者一个或者多个处理器和存储器来实现。
在一种可能的设计中,通信装置300包括一个或多个处理器301,一个或多个处理器301可实现交织、映射功能。在另一种可能的设计中,处理器301除了实现交织、映射功能, 还可以实现其他功能。
可选的,在一种设计中,处理器301可以包括指令303(有时也可以称为代码或程序),指令可以在处理器上被运行,使得通信装置300执行上述实施例中描述的方法。在又一种可能的设计中,通信装置300也可以包括电路,电路可以实现前述实施例中的交织、调制等功能。
可选的,在一种设计中,通信装置300中可以包括一个或多个存储器302,其上存有指令304,指令可在处理器上被运行,使得通信装置300执行上述方法实施例中描述的方法。
可选的,存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置300还可以包括收发器305以及天线306。处理器301可以称为处理单元,对通信装置(终端或者基站)进行控制。收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线306实现通信装置的收发功能.
可选的,通信装置300还可以包括用于交织的交织器或者用于调制处理的调制器等。可以通过一个或多个处理器301实现这些器件的功能。
可选的,通信装置300还可以包括,用于解调操作的解调器、用于解交织的解交织器等。可以通过一个或多个处理器301实现这些器件的功能。
在第5代移动通信(the 5th generation,5G)新空口(new radio,NR)中,讨论并支持通过两步资源分配方式进行基站和终端间的数据传输,即基站先为终端指示一个载波带宽部分(bandwidth part,BWP),再在该载波带宽部分中为UE分配资源和传输数据。具体的,UE和基站可以在载波带宽部分内的VRB上映射复值符号,并在VRB对应的PRB上传输该复值符号。
示例性的,当终端为UE时,两步资源分配方式可以应用但不限于以下三种场景中,基站可以为UE分配载波带宽部分,从而使得UE通过载波带宽部分内的资源进行数据传输。
场景一:大带宽场景
在通信系统中,随着UE业务量的增加和UE数量的增加,系统业务量显著增加,因此,现有通信系统中提出了系统带宽为大带宽的设计,用于提供较多的系统资源,从而可以提供较高的数据传输速率。在系统带宽为大带宽的通信系统中,考虑到UE的成本以及UE的业务量,UE支持的带宽可能小于系统带宽。其中,UE支持的带宽越大,UE的处理能力越强,UE的数据传输速率可能越高,UE的设计成本可能越高。UE支持的带宽还可以称为UE的带宽能力,载波带宽部分在UE的带宽能力范围内。示例性地,在5G系统中,系统带宽最大可能为400MHz,UE的带宽能力可能为20MHz、50MHz或100MHz等。在无线通信系统中,不同UE的带宽能力可以相同也可以不同,本申请实施例不做限制。
在系统带宽为大带宽的通信系统中,由于UE的带宽能力小于系统带宽,基站可以从系统频率资源中为UE配置载波带宽部分,该载波带宽部分的带宽例如小于等于UE的带宽能力。当UE和基站进行通信时,基站可以将为UE配置的载波带宽部分中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
场景二:多参数场景
在无线通信系统中,例如5G系统中,为了支持更多的业务类型和/或通信场景,提出了支持多种参数的设计。对于不同的业务类型和/或通信场景,可以独立设置参数。
在一种可能的配置中,基站可以在系统频率资源中配置多个载波带宽部分,为该多个载波带宽部分中的每个载波带宽部分独立配置参数,用于在系统频率资源中支持多种业务类型和/或通信场景。其中,不同载波带宽部分的numerology可以相同,也可以不相同,本申请不做限制。
当UE和基站进行通信时,基站可以基于该通信对应的业务类型和/或通信场景确定用于进行通信的numerology A,从而可以基于numerology A为UE配置相应的载波带宽部分。其中,该相应的载波带宽部分的numerology被配置为numerology A。当UE和基站进行通信时,基站可以将为UE配置的载波带宽部分中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
场景三:带宽回退场景
当UE和基站进行通信时,基站可以基于UE的业务量为UE配置载波带宽部分,用于节省UE的功耗。示例性地,如果UE没有业务,UE可以只在较小的载波带宽部分中接收控制信息,可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较少,基站可以为UE配置带宽较小的载波带宽部分,可以降低UE的射频处理的任务量和基带处理的任务量,从而可以减少UE的功耗。如果UE的业务量较多,基站可以为UE配置带宽较大的载波带宽部分,从而可以提供更高的数据传输速率。当UE和基站进行通信时,基站可以将为UE配置的载波带宽部分中的部分或全部资源分配给UE,用于进行基站和UE间的通信。
示例性地,该载波带宽部分可以是下行载波带宽部分,用于UE下行接收,此时该载波带宽部分的带宽不超过UE的接收带宽能力;该载波带宽部分也可以是上行载波带宽部分,用于UE上行发送,此时该载波带宽部分的带宽不超过UE的发送带宽能力。
基站和UE利用载波带宽部分进行无线通信时,基站管理系统频率资源,从系统频率资源中为UE分配载波带宽部分,使得基站和UE可以利用该分配的载波带宽部分进行通信。
其中,载波带宽部分是一个自包含的结构,即UE不期望在下行载波带宽部分之外进行下行接收,不期望在上行载波带宽部分之外进行上行发送。
需要说明的是,以上三个场景中的相关参数可以相互引用,这里不再一一说明。
现有技术中提供的资源映射方案通过交织确定VRB组与PRB组的对应关系,从而在PRB组中的PRB上传输数据,可能无法保证VRB上映射的数据在PRB上的正确传输。而本申请实施例提供的资源映射方案能够保证VRB上映射的数据在PRB上的正确传输。以下将通过详细实施例对本申请提供的资源映射方案进行详细描述。
参见图4,本申请实施例提供一种资源映射方法,可以包括:
101、网络设备将n个物理资源块组逐行写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数。
其中,交织矩阵的行数R可以根据协议或从其它设备获知,例如R可以为2。交织矩阵的列数C可以根据BWP内包括的RB的数量
Figure PCTCN2019071364-appb-000037
BWP内的虚拟资源块组和/或物理资源块组的数量
Figure PCTCN2019071364-appb-000038
交织矩阵的行数R以及参考值L计算获得,即
Figure PCTCN2019071364-appb-000039
Figure PCTCN2019071364-appb-000040
其中,
Figure PCTCN2019071364-appb-000041
表示向上取整。交织矩阵中共有R×C个元素。
在本申请实施例中,交织矩阵第一行的最后N列插入有N个空值;或者,交织矩阵最后一行的前N列插入有N个空值。交织矩阵的前N列包括交织矩阵的第一列以及依次往后 递增的N-1列,交织矩阵的最后N列包括交织矩阵的最后一列以及依次往前递减的N-1列。交织矩阵中插入的空值可以理解为写入null值、null元或null元素;或者,可以理解为不插入、不填写或不读出;或者,可以理解为在写入和读取物理资源块组时被跳过。
交织矩阵的第i(i为正整数)行按照交织矩阵中的行从上到下的顺序排列得到。参见图5,第一行是指交织矩阵中最上方的一行,最后一行是指交织矩阵中最下方的一行。交织矩阵的第i(i为正整数)列按照交织矩阵中的列从左到右的顺序排列得到。参见图5,交织矩阵的前N列是指最左边的N列,包括最左边的第一列;交织矩阵的最后N列是指最右边的N列,包括最右边的一列。
示例性的,交织矩阵第一行与最后N列的交集位置位于如图6所示的椭圆内,椭圆内每个行与列的交集位置插入有一个空值,空值以*表示。交织矩阵最后一行与前N列的交集位置位于如图7所示的椭圆内,椭圆内每个行与列的交集位置插入有空值,空值以*表示。
示例性的,当N为1时,交织矩阵第一行与最后N列的交集为第一行与最后一列的交集,位于如图8所示的A位置,A位置插入有空值,空值以*表示。当N为1时,交织矩阵最后一行与前N列的交集为最后一行于第一列的交集,位于如图9所示的B位置,且B位置插入有空值,空值以*表示。
其中,逐行写入是指,按照交织矩阵中从上到下的行的顺序,以及交织矩阵的每行中从左到右的列的顺序,将n个物理资源块组写入交织矩阵的每一行中。在写入交织矩阵时,当遇到交织矩阵中的空值时,则跳过该空值位置,在空值位置不写入物理资源块组。
具体的,网络设备可以按照物理资源块组的索引从小到大的顺序,将n个物理资源块组逐行写入交织矩阵。也就是说,网络设备可以按照物理资源块组的索引从小到大的顺序,交织矩阵中从上到下的行的顺序,以及交织矩阵的每行中从左到右的列的顺序,将n个物理资源块组逐行写入交织矩阵的每一行中。
其中,物理资源块组中的物理资源块的索引可以按照物理资源块对应的频率由小到大的顺序编序,或者根据物理资源块对应的频率由小到大的顺序编序。虚拟资源块组中的虚拟资源块的索引可以按照虚拟资源块对应的频率由小到大的顺序编序,或者根据虚拟资源块对应的频率由小到大的顺序编序。
示例性的,若交织矩阵的行数R=2,载波带宽部分包括索引为0~8的9个VRB,参考值L=2,VRB组的索引为0~4;载波带宽部分包括索引为0~8的9个PRB,PRB组的索引为0~4;则交织矩阵的列数C=3。当n个物理资源块组包括物理资源块组0~4,交织矩阵为如图6所示的形式时,按照物理资源块组的索引从小到大的顺序,即按照物理资源块组0-物理资源块组1-物理资源块组2-物理资源块组3-物理资源块组4的顺序,逐行将n个物理资源块组写入交织矩阵后得到的结果可以为如下矩阵1;当交织矩阵为如图7所示的形式时,按照物理资源块组的索引从小到大的顺序,即按照物理资源块组0-物理资源块组1-物理资源块组2-物理资源块组3-物理资源块组4的顺序,逐行将n个物理资源块组写入交织矩阵后得到的结果可以为如下矩阵2。
Figure PCTCN2019071364-appb-000042
Figure PCTCN2019071364-appb-000043
需要注意的是,以上矩阵1和矩阵2是按照物理资源块组的索引从小到大的顺序,将n个物理资源块组写入交织矩阵的,还可以通过其它方式将n个物理资源块组写入交织矩阵,本申请实施例不作具体限定。
或者,在本申请实施例中,交织矩阵第一行与最后N/2列的交集和交织矩阵最后一行与前N/2列的交集插入有N/2个空值,N为0或N为2的正整数倍;或者,在本申请实施例中,交织矩阵第一行与最后a列的交集插入有a个空值,交织矩阵最后一行与前b列的交集插入有b个空值,a与b的和等于N,N为自然数。
其中,每个物理资源块组可以包括至少一个物理资源块。写入交织矩阵的n个物理资源块组中的物理资源块,具体可以是频率上连续的物理资源块,也可以是频率上不连续的物理资源块,本申请实施例不予限定。
102、网络设备逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射。
其中,逐列从交织矩阵中读取是指,按照交织矩阵中从左到右的列的顺序,读取交织矩阵每列中的元素;对于交织矩阵的每一列,按照从上到下的顺序读取该列中的元素,从而读取交织矩阵中写入的n个物理资源块组。在读取过程中,当遇到交织矩阵中的空值时,则跳过该空值位置继续读取下一个位置中的元素。示例性的,当从矩阵1中读取这5个物理资源块组时,读取到的结果可以为物理资源块组0、2、1、3、4。网络设备逐列从交织矩阵中读取的n个物理资源块组的索引,分别为n个虚拟资源块组交织后映射的物理资源块组的索引。其中,每个虚拟资源块组包括至少一个虚拟资源块。
具体地,n个虚拟资源块组按照索引由小到大的顺序排列。虚拟资源块组i与物理资源块组j相映射,物理资源块组j是在读取中第x个读出的,则虚拟资源块组i为索引第x个的虚拟资源块,其中i、j均为大于等于0且小于等于n-1的整数,x为大于等于1且小于等于n的整数。
需要说明的是,在本申请实施例中,第i(i为正整数)个物理资源块组是指按照物理资源块组的索引从小到大的顺序确定的物理资源块组;第i(i为正整数)个虚拟资源块组是指按照虚拟资源块组的索引从小到大的顺序确定的虚拟资源块组。第i(i为正整数)个物理资源块是指按照物理资源块的索引从小到大的顺序确定的物理资源块;第i(i为正整数)个虚拟资源块是指按照虚拟资源块的索引从小到大的顺序确定的虚拟资源块。
示例性的,参见如下表1-1,在上述矩阵1所示场景中,当从交织矩阵中读取到物理资源块组0、2、1、3、4时,读取出的n个物理资源块组与n个虚拟资源块组相映射,即虚拟资源块组0~4依次映射物理资源块组0、2、1、3、4。
表1-1
VRB组索引 交织后映射的PRB组索引
0 0
1 2
2 1
3 3
4 4
示例性的,参见如下表1-2,在上述矩阵2所示场景中,当从交织矩阵中读取到物理资 源块组0、1、3、2、4时,读取出的n个物理资源块组与n个虚拟资源块组相映射,即虚拟资源块组0~4依次映射物理资源块组0、1、3、2、4。
表1-2
VRB组索引 交织后映射的PRB组索引
0 0
1 1
2 3
3 2
4 4
在另外一种实现方式中,网络设备可以在步骤101中将虚拟资源块组的索引逐列写入交织,并在步骤102中逐行读取交织矩阵中虚拟资源块组的索引,从而获得n个虚拟资源块组交织后映射的n个物理资源块组。
其中,逐列写入是指,按照交织矩阵中从左到右的列的顺序,以及交织矩阵的每列中从上到下的行的顺序,将n个虚拟资源块组写入交织矩阵的每一行中。在写入交织矩阵时,当遇到交织矩阵中的空值时,则跳过该空值位置,在空值位置不写入虚拟资源块组。
具体的,网络设备可以按照虚拟资源块组的索引从小到大的顺序,将n个虚拟资源块组逐列写入交织矩阵。也就是说,网络设备可以按照虚拟资源块组的索引从小到大的顺序,交织矩阵中从左到右的列的顺序,以及交织矩阵的每列中从上到下的行的顺序,将n个虚拟资源块组逐列写入交织矩阵的每一列中。
其中,每个虚拟资源块组可以包括至少一个虚拟资源块。写入交织矩阵的n个虚拟资源块组中的虚拟资源块,具体可以是索引连续的虚拟资源块,也可以是索引不连续的虚拟资源块,本申请实施例不予限定。
网络设备逐行从交织矩阵中读取n个虚拟资源块组,读取出的n个虚拟资源块组与n个物理资源块组相映射。
其中,逐行从交织矩阵中读取是指,按照交织矩阵中从上到下的行的顺序,读取交织矩阵每行中的元素;对于交织矩阵的每一行,按照从左到右的顺序读取该行中的元素,从而读取交织矩阵中写入的n个虚拟资源块组。在读取过程中,当遇到交织矩阵中的空值时,则跳过该空值位置继续读取下一个位置中的元素。
具体地,n个物理资源块组按照索引由小到大的顺序排列。虚拟资源块组i与物理资源块组j相映射,虚拟资源块组j是在读取中第x个读出的,则物理资源块组i为索引第x个的物理资源块,其中i、j均为大于等于0且小于等于n-1的整数,x为大于等于1且小于等于n的整数。
此时,获得n个虚拟资源块组交织后映射的n个物理资源块组是指,确定虚拟资源块组i对应物理资源块组j,其确定方法同上,这里不再赘述。
需要说明的是,通过本申请实施例提供的交织矩阵,可以使得写入交织矩阵的n个物理资源块组中,索引最大的物理资源块组对应相同索引的虚拟资源块组,或者可以使得写入交织矩阵的n个虚拟资源块组中,索引最大的虚拟资源块组对应相同索引的物理资源块组。
103、网络设备根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资 源块组中虚拟资源块映射的物理资源块。
网络设备可以根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块,从而根据确定的物理资源块传输复值符号。
其中,对于相对应的虚拟资源块组和物理资源块组,虚拟资源块组中的虚拟资源块与物理资源块组中的物理资源块对应。可选地,虚拟资源块组中虚拟资源块与物理资源块组中的物理资源块一一对应,且虚拟资源块组中的第x个虚拟资源块对应物理资源块组中的第x个物理资源块,其中x为大于等于1且小于等于L的整数,L为虚拟资源块组中虚拟资源块的个数,也为物理资源块组中物理资源块的个数。可选地,虚拟资源块组中虚拟资源块与物理资源块组中的物理资源块一一对应,且虚拟资源块组中的第x个虚拟资源块对应物理资源块组中的第L-x+1个物理资源块,其中x为大于1且小于等于L的整数,L为虚拟资源块组中虚拟资源块的个数,也为物理资源块组中物理资源块的个数。示例性的,在矩阵1所示场景下,虚拟资源块组、虚拟资源块、物理资源块组和物理资源块之间的对应关系可以参见如下表2或表3。其中,在表2中,虚拟资源块组中第x个虚拟资源块对应物理资源块组中第x个物理资源块;在表2中,虚拟资源块组中的第x个虚拟资源块对应物理资源块组中的第L-x+1个物理资源块。
表2
Figure PCTCN2019071364-appb-000044
表3
Figure PCTCN2019071364-appb-000045
具体的,在本申请实施例中,网络设备写入交织矩阵的可以是物理资源块组的索引,从交织矩阵读取的也可以是物理资源块的索引,或者网络设备写入交织矩阵的可以是虚拟资源块组的索引,从交织矩阵读取的也可以是虚拟资源块组的索引,该索引还可以称为编号、序号等。
其中,物理资源块组和虚拟资源块组主要有以下两种确定方式:
在第一种确定方式中,参见图10,载波带宽部分由
Figure PCTCN2019071364-appb-000046
个物理资源块构成,物理资源块的索引按照频率由小到大的顺序确定。物理资源块组可以根据载波带宽部分中物理资源 块的索引进行分组和编号。在该方式中,在载波带宽部分内,物理资源块的索引和物理资源块组的索引都从0开始编号。物理资源块根据参考值L按照索引由小到大的顺序进行分组,分组得到的物理资源块组也按照索引由小到大的顺序进行编号,则载波带宽部分包含
Figure PCTCN2019071364-appb-000047
个物理资源块组。其中,
Figure PCTCN2019071364-appb-000048
表示向上取整。参考值L的大小可以与信道质量相关,当信道质量较好时,L可以较大,例如可以为4;当信道质量较差时,L可以较小,例如可以为2。
在第一种确定方式中,按照物理资源块组的索引从小到大的顺序,载波带宽部分内的前
Figure PCTCN2019071364-appb-000049
个物理资源块组,也即第一个至倒数第二个物理资源块组中包含L个物理资源块,最后一个物理资源块组中可能包含L个或小于L个物理资源块。具体的,最后一个物理资源块组中物理资源块的数量为
Figure PCTCN2019071364-appb-000050
其中,
Figure PCTCN2019071364-appb-000051
表示向下取整。
在第一种确定方式中,载波带宽部分对应
Figure PCTCN2019071364-appb-000052
个虚拟资源块,虚拟资源块组可以根据虚拟资源块的索引进行分组和编号。在该方式中,虚拟资源块的索引和虚拟资源块组的索引都从0开始编号。虚拟资源块根据参考值L按照索引由小到大的顺序进行分组,分组得到的虚拟资源块组也按照索引由小到大的顺序进行编号,则载波带宽部分对应
Figure PCTCN2019071364-appb-000053
个虚拟资源块组。
在第一种确定方式中,按照虚拟资源块组的索引从小到大的顺序,载波带宽部分对应的前
Figure PCTCN2019071364-appb-000054
个虚拟资源块组,也即第一个至倒数第二个虚拟资源块组中包含L个虚拟资源块,最后一个虚拟资源块组中可能包含L个或小于L个虚拟资源块。具体的,最后一个虚拟资源块组中虚拟资源块的数量为
Figure PCTCN2019071364-appb-000055
在第二种确定方式中,参见图11,载波带宽部分由
Figure PCTCN2019071364-appb-000056
个物理资源块构成,物理资源块的索引按照频率由小到大的顺序确定。物理资源块组可以根据公共资源块的索引进行分组和编号。在该方式中,在载波带宽部分内,物理资源块的索引和物理资源块组的索引都从0开始编号。物理资源块根据参考值L按照索引从小到大的顺序进行分组,分组得到的物理资源块组也按照索引由小到大的顺序进行编号,则载波带宽部分包含
Figure PCTCN2019071364-appb-000057
Figure PCTCN2019071364-appb-000058
个物理资源块组。其中,载波带宽部分内的第一个和最后一个物理资源块组中都可能包括小于L个物理资源块,第二个至倒数第二个物理资源块组中包括L个物理资源块。具体地,第一个物理资源块组中包含的物理资源块数为
Figure PCTCN2019071364-appb-000059
最后一个物理资源块组中包含的物理资源块数为
Figure PCTCN2019071364-appb-000060
其中
Figure PCTCN2019071364-appb-000061
表示载波带宽部分的起始物理资源块在公共资源块中的位置,mod表示求余。
在第二种确定方式中,载波带宽部分的起始物理资源块是根据公共资源块配置的。具体地,公共资源块从公共资源块0按频率增大的方向编号,载波带宽部分的起始物理资源块为索引为
Figure PCTCN2019071364-appb-000062
的公共资源块;或者,载波带宽部分的起始物理资源块在频率上的位置相对于公共资源块0在频率上的位置的偏移为
Figure PCTCN2019071364-appb-000063
个资源块。其中,公共资源块0通过参考频率位置和相对于该参考频率位置的偏移确定,具体的:
1)对于主小区下行载波,参考频率位置根据终端接入的同步信号块的频率最低的物理资源块确定;
2)对于非配对频谱主小区上行载波,参考频率位置根据终端接入的同步信号块的频率最低的物理资源块确定;
3)对于配对频谱主小区上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号(absolute radio frequency channel number,ARFCN);
4)对于辅小区,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号ARFCN;
5)对于增补上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号ARFCN。
在第二种确定方式中,载波带宽部分对应
Figure PCTCN2019071364-appb-000064
个虚拟资源块。虚拟资源块组可以根据公共资源块的索引进行分组和编号。在该种方式中,在载波带宽部分内,虚拟资源块的索引和虚拟资源块组的索引都从0开始编号。虚拟资源块根据参考值L按照索引从小到大的顺序进行分组,分组得到的虚拟资源块组也按照索引由小到大的顺序进行编号,则载波带宽部分包含
Figure PCTCN2019071364-appb-000065
Figure PCTCN2019071364-appb-000066
个虚拟资源块组。其中,载波带宽部分内的第一个和最后一个虚拟资源块组中都可能包括小于L个虚拟资源块,第二个至倒数第二个物理资源块组中包括L个虚拟资源块。具体地,第一个虚拟资源块组中包含的虚拟资源块数为
Figure PCTCN2019071364-appb-000067
最后一个虚拟资源块组中包含的虚拟资源块数为
Figure PCTCN2019071364-appb-000068
因此,当载波带宽部分包括包含的物理资源块的数量小于参考值L的目标物理资源块组时,该目标物理资源块组可能为载波带宽部分中索引最小的物理资源块组和/或索引最大的物理资源块组。
当目标物理资源块组为载波带宽部分中索引最小的物理资源块组时,索引最小的虚拟资源块组也包含小于L个数量的虚拟资源块。具体的,当PRB逐行写入时,若该n个物理资源块组包括该索引最小的物理资源块组,则该索引最小的物理资源块组被写入交织矩阵第一行与第一列的交集(即交织矩阵的左上角)对应的位置,该索引最小的物理资源块组是第一个被读出的,这样得到的索引最小的虚拟资源块组对应载波带宽部分中索引最小的物理资源块组。或者,当VRB逐列写入时,若该n个虚拟资源块组包括该索引最小的虚拟资源块组,则该索引最小的虚拟资源块组被写入交织矩阵第一行与第一列的交集(即交织矩阵的左上角)对应的位置,该索引最小的虚拟资源块组是第一个被读出的,这样也得到的索引最小的虚拟资源块组对应载波带宽部分中索引最小的物理资源块组。若该n个物理资源块组不包括索引最小的物理资源块组或该n个虚拟资源块组不包括索引最小的虚拟资源块组,则索引最小的虚拟资源块组直接(不通过交织)对应载波带宽部分中索引最小的物理资源块组。
当目标物理资源块组为载波带宽部分中索引最大的物理资源块组时,索引最大的虚拟资源块组也包含小于L个数量的虚拟资源块。具体的,当PRB逐行写入时,若该n个物理资源块组包括该索引最大的物理资源块组,则该索引最大的物理资源块组被写入交织矩阵最后一行与最后一列的交集(即交织矩阵的右下角)对应的位置,该索引最大的物理资源块是最后一个被读出的,这样得到的索引最大的虚拟资源块组对应载波带宽部分中索引最大的物理资源块组。或者,当VRB逐列写入时,若该n个虚拟资源块组包括该索引最大的虚拟资源块组,则该索引最大的虚拟资源块组被写入交织矩阵最后一行与最后一列的交集(即交织矩阵的右下角)对应的位置,该索引最大的虚拟资源块组是最后一个被读出的,这样也得到的索引最大的虚拟资源块组对应载波带宽部分中索引最大的物理资源块组;若该n个物理资源块组不包括索引最大的物理资源块组或该n个虚拟资源块组不包括索引最大的虚拟资源块组,则索引最大的虚拟资源块组直接(不通过交织)对应载波带宽部分中索引最大的物理资源块组。
这样,无论目标物理资源块组为载波带宽部分中索引最小的物理资源块组还是索引最大的物理资源块组,网络设备都可以确定与之对应的虚拟资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保证虚拟资源块组与物理资源块组中包括的资源块的数量相匹配,从而保证VRB上映射的数据在PRB上能够正确传输。
需要注意的是,在本申请实施例中,第k个物理资源块组是指按照索引从小到大的顺序确定的物理资源块组,最后一个物理资源块组是指索引最大的物理资源块组;第一个物理资源块组是指索引最小的物理资源块组。
进一步地,参见图12,在上述步骤101之前,该方法还可以包括:
104、网络设备在n个虚拟资源块组中虚拟资源块的子集上映射复值符号。
其中,子集可以包括真子集和全集。n个虚拟资源块组中虚拟资源块的子集为n个虚拟资源块组中包括的部分虚拟资源块或全部虚拟资源块。在本申请实施例中,网络设备可以先在n个虚拟资源块组中虚拟资源块的子集上映射复值符号,而后再通过交织确定n个虚拟资源块组中虚拟资源块映射的物理资源块,从而确定n个虚拟资源块组中虚拟资源块的子集中的虚拟资源块映射的物理资源块。
实际上,该虚拟资源块的子集可以为待映射虚拟资源块中的一部分。示例性的,当网络设备为终端或基站时,待映射虚拟资源块可以为基站在载波带宽部分内为终端分配的虚拟资源块。待映射的虚拟资源块可以为频率上连续的虚拟资源块,也可以为频率上不连续的虚拟资源块。网络设备可以先在待映射虚拟资源块上映射复值符号,而后再通过交织确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
其中,分配的虚拟资源块可以是频域上连续的虚拟资源块,也可以是频域上非连续的虚拟资源块。当分配的虚拟资源块是频域上连续的虚拟资源块时,通过交织可以使得频域上连续的虚拟资源块映射到频域上非连续的物理资源块上,从而可以信道传输过程中所突发产生集中的错误分散化,降低信道产生的影响。
在上述步骤103之后,该方法还可以包括:
105、网络设备在n个虚拟资源块组中虚拟资源块的子集对应的物理资源块上传输复值符号。
网络设备确定n个虚拟资源块组中虚拟资源块映射的物理资源块之后,可以确定该虚拟资源块的子集对应的物理资源块,从而在该虚拟资源块的子集对应的物理资源块上传输该虚拟资源块的子集上映射的复值符号。实际上,网络设备可以在待映射虚拟资源块对应的物理资源块上传输复值符号。对于待映射资源块中未根据交织矩阵确定对应的物理资源块的虚拟资源块,直接对应于所在虚拟资源块组具有相同索引的物理资源块组中的物理资源块。
这样,网络设备可以在不预先计算交织的情况下确定与之对应的虚拟资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保证该虚拟资源块组中这些虚拟资源块映射的复值符号能够在目标物理资源块组中对应的物理资源块上正确传输。具体的,当目标物理资源块包括s个物理资源块时,网络设备可以在对应的虚拟资源块组中对应的s个虚拟资源块组上映射复值符号,s为小于L的正整数。
在一些实施例中,n个物理资源块组构成载波带宽部分,网络设备在上述步骤102中可 以将载波带宽部分包括的全部物理资源块组写入交织矩阵,或将载波带宽部分对应的全部虚拟资源块组写入交织矩阵,从而获得载波带宽部分对应的n个虚拟资源块组交织后映射的n个物理资源块组,以及载波带宽部分对应的虚拟资源块映射的物理资源块。其中,该n个物理资源块组构成了载波带宽部分,并按照载波带宽部分内频率由低到高顺序编排物理资源块的索引和n个物理资源块组的索引。
示例性的,若参考值L为2,交织矩阵的行数为2,载波带宽部分包括物理资源块0~8共9个物理资源块,该载波带宽部分对应虚拟资源块0~8共9个虚拟资源块。采用第一种确定方式,载波带宽部分包括的5个物理资源块组为物理资源块组0~4,物理资源块组与物理资源块的对应关系可以参见表2中的第三列和第四列;载波带宽部分对应的5个虚拟资源块组为虚拟资源块组0~4,虚拟资源块组与虚拟资源块的对应关系可以参见表2中的第一列和第二列。
由表2中的第一列和第二列可知,载波带宽部分对应的虚拟资源块的数量为9,是参考值2的非整数倍,载波带宽部分内的最后一个虚拟资源块组,即虚拟资源块组4包括的虚拟资源块的数量小于参考值2,虚拟资源块组4包括1个虚拟资源块;由表4中的第三列和第四列可知,载波带宽部分包括的物理资源块的数量为9,是参考值2的非整数倍,载波带宽部分内的最后一个物理资源块组,即物理资源块组4包括的物理资源块的数量小于参考值2,物理资源块组4包括1个物理资源块。
交织矩阵的列数
Figure PCTCN2019071364-appb-000069
其中,
Figure PCTCN2019071364-appb-000070
表示载波带宽部分包括的物理资源块的数量9,L表示参考值2,R表示交织矩阵的行数2,
Figure PCTCN2019071364-appb-000071
表示向上取整。将物理资源块组逐行写入本申请实施例提供的一种交织矩阵中,再逐列读出,可以得到表2所示的对应关系。
由表2可知,虚拟资源块组4对应物理资源块组4,且均包括1(小于参考值2)个资源块;虚拟资源块组0、1、2、3分别对应物理资源块组0、2、1、3,且均包括2(等于参考值2)个资源块。载波带宽部分内的虚拟资源块组与交织后映射的物理资源块组中包括的资源块的数量相等。
在载波带宽部分内的虚拟资源块组上映射复值符号时,可以在虚拟资源块组0、1、2、3上分别映射对应2个资源块的复值符号,而在虚拟资源块组4上映射对应1个资源块的复值符号,可以使得虚拟资源块组上映射的复值符号可以在物理资源块组中的物理资源块上正确传输。
当载波带宽部分包括的物理资源块的数量为参考值的整数倍时,载波带宽部分中最后一个物理资源块组包括的物理资源块的数量和载波带宽部分对应的最后一个虚拟资源块组包括的虚拟资源块的数量都等于参考值,虚拟资源块组与交织后映射的物理资源块组中包括的资源块的数量相等,可以使得虚拟资源块上映射的复值符号能够在物理资源块上正确传输。
在另一些实施例中,n个物理资源块组是载波带宽部分包括的m个物理资源块组的真子集,n个物理资源块组包括m个物理资源块组的最后一个物理资源块组。
其中,n个物理资源块组是载波带宽部分包括的m个物理资源块组的真子集是指,n个物理资源块组是m个物理资源块组的一部分。
m个物理资源块组的最后一个物理资源块组是指m个物理资源块组中索引最大的物理 资源块组。通过本申请实施例提供的交织矩阵,将n个物理资源块按索引由小到大的顺序逐行写入交织矩阵,并逐列读出,可以使得写入交织矩阵的n个物理资源块组中,索引最大的物理资源块组对应相同索引的虚拟资源块组;而当n个物理资源块组是载波带宽部分包括的m个物理资源块组的真子集,n个物理资源块组包括m个物理资源块组的最后一个物理资源块组时,写入交织矩阵的载波带宽部分的最后一个物理资源块组与载波带宽部分的最后一个虚拟资源块组对应。
在一种具体场景中,载波带宽部分包括的物理资源块和对应的虚拟资源块采用上述第二种确定方式,载波带宽部分内第一个虚拟资源块组和最后一个虚拟资源块组中包括的虚拟资源块数量小于L。在该场景中,n个物理资源块组是载波带宽部分对应的m个物理资源块组的真子集,n个物理资源块组定义在载波带宽部分内,可以包括载波带宽部分中的最后一个物理资源块组,m为大于n的正整数;n个物理资源块组对应的n个虚拟资源块组是载波带宽部分对应的m个虚拟资源块组的真子集。示例性地,该n个物理资源块组可以是m个物理资源块组中的第二个物理资源块组至最后一个物理资源块组,通过本申请实施例提供的交织矩阵可以确定m个虚拟资源块组中第二个虚拟资源块组至最后一个虚拟资源块组中虚拟资源块对应的物理资源块,且载波带宽部分内包括少于L个虚拟资源块的最后一个虚拟资源块组对应载波带宽部分内最后一个物理资源块组。又由于载波带宽部分内包括少于L个虚拟资源块的第一个虚拟资源块组为写入交织矩阵,因而可以直接对应载波带宽部分内第一个物理资源块组,因此,网络设备可以确定包含的虚拟资源块数量小于L的虚拟资源块组和物理资源块组,从而可以保证虚拟资源块上映射的复值符号能够在物理资源块上正确传输。
示例性的,若交织矩阵的行数R=2,载波带宽部分包括索引为0~7的8个VRB,参考值L=2,VRB组的索引为0~4;载波带宽部分包括索引为0~7的8个PRB,PRB组的索引为0~4;物理资源块组和物理资源块的对应关系如表4中的第三列和第四列所示,虚拟资源块组和虚拟资源块的对应关系如表4中的第一列和第二列所示,则交织矩阵的列数C=2,将PRB组1-PRB组4(第二个至最后一个PRB组)写入交织矩阵后,得到PRB组与VRB组,PRB与VRB的对应关系可以参见如下表4。
表4
Figure PCTCN2019071364-appb-000072
由表4可知,仅有VRB组1(第一个VRB组)和VRB组4(最后一个VRB组)包括1(小于L)个VRB,PRB组1(第一个PRB组)和PRB组4(第一个PRB组)包括1(小于L)个PRB,且VRB组1对应PRB组1,VRB组4对应PRB组4。
在另一些实施例中,例如针对VRB逐列写入的方案,n个虚拟资源块组是载波带宽部 分对应的m个虚拟资源块组的真子集,n个虚拟资源块组包括m个虚拟资源块组的最后一个虚拟资源块组。
其中,n个虚拟资源块组是载波带宽部分对应的m个虚拟资源块组的真子集是指,n个虚拟资源块组是m个虚拟资源块组的一部分。
m个虚拟资源块组的最后一个虚拟资源块组是指m个虚拟资源块组中索引最大的虚拟资源块组。通过本申请实施例提供的交织矩阵,将n个虚拟资源块按索引由小到大的顺序逐列写入交织矩阵,并逐行读出,可以使得写入交织矩阵的n个虚拟资源块组中,索引最大的虚拟资源块组对应相同索引的物理资源块组;而当n个虚拟资源块组是载波带宽部分包括的m个虚拟资源块组的真子集,n个虚拟资源块组包括m个虚拟资源块组的最后一个虚拟资源块组时,写入交织矩阵的载波带宽部分的最后一个虚拟资源块组与载波带宽部分的最后一个物理资源块组对应。
在本申请实施例中,交织矩阵的行数可以为2,空值的数量N可以为0或1,n个物理资源块组构成载波带宽部分,物理资源块组和虚拟资源块组的分组采用第一种确定方式或第二种确定方式。在此基础上,如下给出步骤101至步骤102的另一种描述。虚拟资源块组i映射到物理资源块组j,且满足:
Figure PCTCN2019071364-appb-000073
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
或者,
Figure PCTCN2019071364-appb-000074
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000075
Figure PCTCN2019071364-appb-000076
或者
Figure PCTCN2019071364-appb-000077
Figure PCTCN2019071364-appb-000078
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000079
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示参考值。
在本申请实施例中,交织矩阵的行数可以为2,空值的数量N可以为0或1,n个物理资源块组构成载波带宽部分,物理资源块组和虚拟资源块组的分组采用第一种确定方式或第二种确定方式。在此基础上,如下给出步骤101至步骤102的另一种描述。虚拟资源块组i映射到物理资源块组j,且满足:
j=rC+c-Δ
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
其中,Δ=(r-max{c-1,0}·(C-1))·N或Δ=(r-max{c-1,0}·c)·N,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000080
或者
Figure PCTCN2019071364-appb-000081
Figure PCTCN2019071364-appb-000082
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000083
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示参考值,max表示求最大值。
或者,
j=rC+c-Δ
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
其中,
Figure PCTCN2019071364-appb-000084
Figure PCTCN2019071364-appb-000085
Figure PCTCN2019071364-appb-000086
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000087
Figure PCTCN2019071364-appb-000088
或者
Figure PCTCN2019071364-appb-000089
Figure PCTCN2019071364-appb-000090
表示载波带宽部分包括的物理资源块的数量,
Figure PCTCN2019071364-appb-000091
表示该载波带宽部分中虚拟资源块组和/或物理资源块组的个数,L表示参考值。
进一步地,在步骤104之前,该方法还可以包括:
106、网络设备接收其它网络设备发送的载波带宽部分和在载波带宽部分中分配的虚拟资源块。
其中,当网络设备为终端时,其它网络设备可以为基站。终端在虚拟资源块上映射复值符号之前,还可以接收基站发送的配置信息,该配置信息是为终端分配的相关资源信息,可以包括载波带宽部分和在载波带宽部分中分配的虚拟资源块,还可以包括参考值L等。
需要注意的是,配置信息中的载波带宽部分、在载波带宽部分中分配的虚拟资源块以及参考值L等可以在同一条消息中传输,也可以在不同条消息中传输,本申请实施例不作具体限定。
此外,当网络设备为基站时,基站也可以自己确定配置信息,而不需要从其它网络设备接收。
本申请另一实施例提供一种资源映射方法,可以包括上述实施例中的步骤101-106,具体可以参见上文关于步骤101-106中的相关描述,这里仅对区别之处进行说明。
在本申请实施例中,当载波带宽部分由n个物理资源块组构成,写入交织矩阵的n个资源资源块组为构成载波带宽部分的n个物理资源块组。
与步骤101中提供的交织矩阵不同,本申请实施例中的交织矩阵可以为如下矩阵3所 示的形式:
Figure PCTCN2019071364-appb-000092
其中,矩阵3中的元素表示写入交织矩阵的物理资源块组的索引;C表示交织矩阵的列数,
Figure PCTCN2019071364-appb-000093
Figure PCTCN2019071364-appb-000094
*表示空值,空值位于交织矩阵最后一行的最后N列,N的数量为0或1,即空值位于交织矩阵最后一行的末尾。
与上述实施例中按照物理资源块组从小到大的顺序逐行写入交织矩阵不同,在本申请实施例中,网络设备根据矩阵3每个元素对应的索引,将n个物理资源块组写入交织矩阵。若交织矩阵未被填满,则在交织矩阵最后一行的末尾插入空值,从而将交织矩阵补满。
具体的,网络设备可以根据矩阵3每个元素对应的索引,按照交织矩阵中从上到下的行的顺序,交织矩阵的每行中从左到右的列的顺序,以及将n个物理资源块组写入交织矩阵。
示例性的,若交织矩阵的行数R=2,载波带宽部分包括索引为0~8的9个VRB,参考值L=2,VRB组的索引为0~4,共n=5个VRB组;载波带宽部分包括索引为0~8的9个PRB,PRB组的索引为0~4,共=5个PRB组;则交织矩阵的列数
Figure PCTCN2019071364-appb-000095
可见
Figure PCTCN2019071364-appb-000096
当根据矩阵3每个元素对应的索引,将n个物理资源块组逐行写入交织矩阵后得到的结果可以为如下矩阵4:
Figure PCTCN2019071364-appb-000097
或者,本申请实施例中将物理资源块组写入交织矩阵的方式也可以理解为,按照物理资源块组的索引编号从小到大的顺序,交织矩阵中从上到下的行的顺序,交织矩阵的每行中从左到右的列的顺序,将n个物理资源块组写入交织矩阵,若交织矩阵未被填满,则在交织矩阵最后一行的末尾插入空值,从而将交织矩阵补满。而后,将第一行最后一列中的物理资源块组与最后一行倒数第二列的物理资源块组相交换。
示例性的,对于载波带宽部分包括的物理资源块组0~4,按照从小到大的索引顺序,逐行写入交织矩阵后的结果可以为如下矩阵5:
Figure PCTCN2019071364-appb-000098
将第一行的最后一列与最后一行的倒数第二列交换后可以得到如下矩阵6:
Figure PCTCN2019071364-appb-000099
并且,本申请实施例中,载波带宽部分内的物理资源块组和虚拟资源块组的分组采用第一种确定方式分组。
这样,无论目标物理资源块组为载波带宽部分中索引最小的物理资源块组还是索引最大的物理资源块组,网络设备都可以在不预先计算交织的情况下确定与之对应的虚拟资源块组,从而可以在该虚拟资源块组中与目标物理资源块组中物理资源块数量相同的虚拟资源块上映射复值符号,保证该虚拟资源块组中这些虚拟资源块映射的复值符号能够在目标物理资源块组中对应的物理资源块上正确传输。
在本申请实施例中,虚拟资源块组i映射到物理资源块组j,且满足:
j=rC+C
i=cR+r
r={0,1,...,R-1}\{r',r”}
c={0,1,...,C-1}\{c',c”}
Figure PCTCN2019071364-appb-000100
f(c'R+r')=r”C+c”
f(c”R+r”)=r'C+c'
R=2
Figure PCTCN2019071364-appb-000101
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000102
表示载波带宽部分包括的物理资源块的数量,L表示参考值,
Figure PCTCN2019071364-appb-000103
表示向上取值,mod表示取模运算,{0,1,...,R-1}\{r',r”}表示从集合{0,1,...,R-1}中除去集合{r',r”}后剩余元素构成的集合,{0,1,...,C-1}\{c',c”}表示集合{0,1,...,C-1}中除去集合{c',c”}后剩余元素构成的集合。
上述公式也可以只适用于
Figure PCTCN2019071364-appb-000104
的情况,此时,对于
Figure PCTCN2019071364-appb-000105
j=rC+C
i=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
R=2
Figure PCTCN2019071364-appb-000106
其中,R表示交织矩阵的行数,C表示交织矩阵的列数,N表示空值的数量,
Figure PCTCN2019071364-appb-000107
表示载波带宽部分包括的物理资源块的数量,L表示参考值,
Figure PCTCN2019071364-appb-000108
表示向上取值。
本申请另一实施例提供一种资源映射方法。
在物理资源块组按照上述第一种确定方式分组的情况下,即构成载波带宽部分的
Figure PCTCN2019071364-appb-000109
个物理资源块共分为
Figure PCTCN2019071364-appb-000110
个物理资源块组,其中,前
Figure PCTCN2019071364-appb-000111
个物理资源块组包括L个物理资源块,最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000112
个物理资源块。
载波带宽部分对应的
Figure PCTCN2019071364-appb-000113
个虚拟资源块被分为
Figure PCTCN2019071364-appb-000114
个虚拟资源块组,其中,
Figure PCTCN2019071364-appb-000115
个虚拟资源块组包括L个虚拟资源块,一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000116
个物理资源块。
n个物理资源块组按照索引由小到大的顺序排列,n个物理资源块组为
Figure PCTCN2019071364-appb-000117
个物理资源块组的子集。
在一种可能的情况下,若n个物理资源块组中包括载波带宽部分的最后一个物理资源块组,则当n=RC时,n个虚拟资源块组中最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000118
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块,当n<RC时,n个虚拟资源块组中倒数第二个虚拟资源块组包括
Figure PCTCN2019071364-appb-000119
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块。
其中,倒数第二个虚拟资源块组是指,n个虚拟资源块组中索引第二大(次大)的虚拟 资源块组,当按照频率由小到大编排索引是,具体可以是对应频率第二高(次高)的虚拟资源块组。
在另一种可能的情况下,若n个物理资源块组中不包括载波带宽部分的最后一个物理资源块组,则n个虚拟资源块组中最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000120
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块。
在物理资源块组按照上述第二种确定方式分组的情况下,即构成载波带宽部分的
Figure PCTCN2019071364-appb-000121
个物理资源块共分为
Figure PCTCN2019071364-appb-000122
个或
Figure PCTCN2019071364-appb-000123
个物理资源块组,其中,第一个物理资源块组包括
Figure PCTCN2019071364-appb-000124
个物理资源块,最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000125
个物理资源块,其余物理资源块组包括L个物理资源块。
载波带宽部分对应的
Figure PCTCN2019071364-appb-000126
个虚拟资源块被分为
Figure PCTCN2019071364-appb-000127
个或
Figure PCTCN2019071364-appb-000128
个虚拟资源块组,其中,第一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000129
个虚拟资源块,一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000130
个虚拟资源块,剩余虚拟资源块组包括L个虚拟资源块。
在一种可能的情况下,若n个物理资源块组中包括载波带宽部分的最后一个物理资源块组,则当n=RC时,n个虚拟资源块组中最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000131
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块,当n<RC时,n个虚拟资源块组中倒数第二个虚拟资源块组包括
Figure PCTCN2019071364-appb-000132
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块。
在另一种可能的情况下,若n个物理资源块组中不包括载波带宽部分的最后一个物理资源块组,则n个虚拟资源块组中最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000133
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块。
在此基础上,本申请实施例提供的资源映射方法可以包括上述实施例中的步骤101-106,具体可以参见上文关于步骤101-106中的相关描述,这里仅对不同之处进行说明。
与步骤101中提供的交织矩阵不同,本申请实施例中的交织矩阵的行数可以为2,空值的数量N可以为0或1,示例性的,可以采用图13所示的最后一行的最后N列插入有N个空值的交织矩阵,N为自然数。
举例来说,参考值L为2,物理资源块组4中只包括1个物理资源块8,虚拟资源块组和虚拟资源块的对应关系如表5第一列和第二列所示,其中虚拟资源块组3中只包括1个虚拟资源块,虚拟资源块索引与物理资源块索引的对应关系可以参见如下表5。
表5
Figure PCTCN2019071364-appb-000134
本申请另一实施例提供一种资源映射方法。
在虚拟资源块组按照上述第一种确定方式分组的情况下,即载波带宽部分对应
Figure PCTCN2019071364-appb-000135
个虚拟资源块,共分为
Figure PCTCN2019071364-appb-000136
个虚拟资源块组,其中,前
Figure PCTCN2019071364-appb-000137
个虚拟资源块组包括L个虚拟资源块,最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000138
个虚拟资源块。
构成载波带宽部分的
Figure PCTCN2019071364-appb-000139
个物理资源块被分为
Figure PCTCN2019071364-appb-000140
个物理资源块组,其中,
Figure PCTCN2019071364-appb-000141
个物理资源块组包括L个物理资源块,一个物理资源块组包括
Figure PCTCN2019071364-appb-000142
个物理资源块。
n个物理资源块组按照索引由小到大的顺序排列,n个物理资源块组为
Figure PCTCN2019071364-appb-000143
个物理资源块组的子集。
在一种可能的情况下,若n个物理资源块组中包括载波带宽部分的最后一个物理资源块组,则当n=RC时,n个物理资源块组中最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000144
个物理资源块,其余物理资源块组包括L个物理资源块,当n<RC时,n个物理资源块中第C个物理资源块组包括
Figure PCTCN2019071364-appb-000145
个物理资源块,其余物理资源块组包括L个物理资源块。
在另一种可能的情况下,若n个物理资源块组中不包括载波带宽部分的最后一个物理资源块组,则n个物理资源块组中最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000146
个物理资源块,其余物理资源块组包括L个物理资源块。
在虚拟资源块组按照上述第二种确定方式分组的情况下,即载波带宽部分对应
Figure PCTCN2019071364-appb-000147
个虚拟资源块,共分为
Figure PCTCN2019071364-appb-000148
个或
Figure PCTCN2019071364-appb-000149
个虚拟资源块组,其中,第一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000150
个虚拟资源块,最后一个虚拟资源块组包括
Figure PCTCN2019071364-appb-000151
个虚拟资源块,其余虚拟资源块组包括L个虚拟资源块。
构成载波带宽部分的
Figure PCTCN2019071364-appb-000152
个物理资源块被分为
Figure PCTCN2019071364-appb-000153
个或
Figure PCTCN2019071364-appb-000154
个物理资源块组,其中,第一个物理资源块组包括
Figure PCTCN2019071364-appb-000155
个物理资源块,一个物理资源块组包括
Figure PCTCN2019071364-appb-000156
个物理资源块,剩余物理资源块组包括L个物理资源块。
n个物理资源块组按照索引由小到大的顺序排列,n个物理资源块组为
Figure PCTCN2019071364-appb-000157
个物理资源块组的子集。
在一种可能的情况下,若n个物理资源块组中包括载波带宽部分的最后一个物理资源块组,则当n=RC时,n个物理资源块组中最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000158
个物理资源块,其余物理资源块组包括L个物理资源块,当n<RC时,n个物理资源块组中第C个物理资源块组包括
Figure PCTCN2019071364-appb-000159
个物理资源块,其余物理资源块组包括L个物理资源块。
在另一种可能的情况下,若n个物理资源块组中不包括载波带宽部分的最后一个物理资源块组,则n个物理资源块组中最后一个物理资源块组包括
Figure PCTCN2019071364-appb-000160
个物理资源块,其余物理资源块组包括L个物理资源块。
本实施例中,资源映射方法可以包括上述实施例中的步骤101-106,具体可以参见上文关于步骤101-106中的相关描述,这里仅对不同之处进行说明。
与步骤101中提供的交织矩阵不同,本申请实施例中的交织矩阵的行数可以为2,空值的数量N可以为0或1,示例性的,可以采用图13所示的最后一行的最后N列插入有N个空值的交织矩阵,N为自然数。
本申请另一实施例提供一种资源映射方法,可以包括上述实施例中的步骤101-106,具体可以参见上文关于步骤101-106中的相关描述,这里仅对不同之处进行说明。
本申请实施例中的交织矩阵可以包括但不限于本申请步骤101中提供的交织矩阵和矩 阵3所示的交织矩阵,例如,可以采用图13所示的最后一行的最后N列插入有N个空值的交织矩阵,N为自然数。
并且,本申请实施例写入交织矩阵的n个物理资源块组在不同情况下可以对应不同的物理资源块组,或写入交织矩阵的n个虚拟资源块组在不同情况下可以对应不同的虚拟资源块组:
在一种可能的方式中,在上述步骤101中,若载波带宽部分中的第一个物理资源块组中包括小于参考值L个物理资源块,最后一个物理资源组中包括L个物理资源块。对应地,第一个虚拟资源块组中包括小于参考值L个虚拟资源块,最后一个虚拟资源组中包括L个虚拟资源块,则n个物理资源块组不包括载波带宽部分的第一个物理资源块组,包括载波带宽部分中第一个物理资源块组以外的其它物理资源块组,n个虚拟资源块组不包括载波带宽部分的第一个虚拟资源块组,包括载波带宽部分中第一个虚拟资源块组以外的其它虚拟资源块组。
该种方式可以应用于根据上述第二种确定方式分组的场景。该种情况下只有一个第一物理资源块组中包括小于参考值L个物理资源块,且只有一个第一虚拟资源块组中包括小于参考值L个虚拟资源块,当第一物理资源块组或第一虚拟资源块组不写入交织矩阵时,第一物理资源块组直接对应第一虚拟资源块组,不会出现包含L个虚拟资源块的虚拟资源块组映射到包含小于L个物理资源块的资源块组的情况,因而不会出现虚拟资源块映射到载波带宽部分之外资源块的情况,从而可以使得虚拟资源块组与物理资源块组中包含的资源块的数量相匹配,从而可以在物理资源块上正确传输复值符号。
具体的,在根据第一种确定方式分组的场景下,网络设备可以根据计算式
Figure PCTCN2019071364-appb-000161
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
具体的,在根据第二种确定方式分组的场景下,网络设备可以根据以计算式
Figure PCTCN2019071364-appb-000162
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
在另一种可能的方式中,在上述步骤101中,若载波带宽部分中的最后一个物理资源块组中包括小于L个物理资源块,则n个物理资源块组不包括载波带宽部分的最后一个物理资源块组,包括载波带宽部分中最后一个物理资源块组以外的其它物理资源块组。
该种方式可以应用于根据上述第一种或第二种确定方式分组的场景。当网络设备将载波带宽部分内最后一个物理资源块组或最后一个虚拟资源块组不写入交织矩阵时,最后一个物理资源块组直接对应最后一个虚拟资源块组,无论第一个物理资源块组包含的虚拟资源块的数量是否小于L,第一个物理资源块组都对应第一个虚拟资源块组,不会出现包含L个虚拟资源块的虚拟资源块组对应包含小于L个物理资源块的物理资源块组的情况,因而不会出现虚拟资源块映射到载波带宽部分之外物理资源块的情况,因此可以在物理资源块上正确传输复值符号。
具体的,在根据第一种确定方式分组的场景下,网络设备可以根据计算式
Figure PCTCN2019071364-appb-000163
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
具体的,在根据第二种确定方式分组的场景下,网络设备可以根据计算式
Figure PCTCN2019071364-appb-000164
确定第一个虚拟资源块组包括的虚拟资源块是否小于L;可以根据以计算式
Figure PCTCN2019071364-appb-000165
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
在另一种可能的方式中,在上述步骤101中,n个物理资源块组不包括载波带宽部分中 包括的物理资源块的数量小于参考值L的物理资源块组,包括载波带宽部分中包括的物理资源块的数量小于参考值L的物理资源块组以外的其它物理资源块组。
该种方式可以应用于根据上述第一种或第二种确定方式分组的场景。当网络设备将载波带宽部分中包括的物理资源块的数量小于参考值L的物理资源块组(第一个和/或最后一个)不写入交织矩阵时,写入交织矩阵中的物理资源块组均包括L个物理资源块,或者网络设备将载波带宽部分中包括的虚拟资源块的数量小于参考值L的虚拟资源块组(第一个和/或最后一个)不写入交织矩阵时,写入交织矩阵中的虚拟资源块组均包括L个虚拟资源块,均不会出现包含L个虚拟资源块的虚拟资源块组映射到包含小于L个物理资源块的物理资源块组的情况,因而不会出现虚拟资源块映射到载波带宽部分之外物理资源块的情况,因此可以在物理资源块上正确传输复值符号。
具体的,在根据第一种确定方式分组的场景下,网络设备可以根据计算式
Figure PCTCN2019071364-appb-000166
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
具体的,在根据第二种确定方式分组的场景下,网络设备可以根据计算式
Figure PCTCN2019071364-appb-000167
确定第一个虚拟资源块组包括的虚拟资源块是否小于L;可以根据以计算式
Figure PCTCN2019071364-appb-000168
确定最后一个虚拟资源块组包括的虚拟资源块是否小于L。
在另一种可能的方式中,在上述步骤101中,若载波带宽部分中的虚拟资源块组的数量组大于交织矩阵中的元素个数,则n个物理资源块组不包括载波带宽部分中第一个物理资源块分组和/或最后一个物理资源块分组,包括载波带宽部分中第一个物理资源块分组和/或最后一个物理资源块分组以外的其它物理资源块组。
该种方式可以应用于根据上述第二种确定方式分组的场景。当载波带宽部分中的虚拟资源块组的数量组大于交织矩阵中的元素个数时,载波带宽部分中的第一个物理资源块组和最后一个物理资源块组中包含的物理资源块的数量均小于L。
当载波带宽部分中的虚拟资源块组的数量组大于交织矩阵中的元素个数时,若载波带宽部分中的第一个物理资源块组或最后一个物理资源块组不写入交织矩阵,或载波带宽部分中的第一个虚拟资源块组或最后一个虚拟资源块组不写入交织矩阵,则交织矩阵中写入的元素是满的,没有空值,不会出现虚拟资源块映射到载波带宽部分之外物理资源块的情况,因此可以在物理资源块上正确传输复值符号。
当载波带宽部分中的虚拟资源块组的数量组大于交织矩阵中的元素个数时,若载波带宽部分中的第一个物理资源块组和最后一个物理资源块组都不写入交织矩阵,则交织矩阵中插入有空值,但写入交织矩阵中的物理资源块组均包括L个物理资源块,或者载波带宽部分中的第一个虚拟资源块组和最后一个虚拟资源块组都不写入交织矩阵,则交织矩阵中插入有空值,但写入交织矩阵中的虚拟资源块组均包括L个虚拟资源块,均不会出现虚拟资源块映射到载波带宽部分之外物理资源块的情况,因此可以在物理资源块上正确传输复值符号。其中,交织矩阵中的元素个数可以为行数R与列数C的乘积。
本申请另一实施例提供一种资源映射方法,参见图14,该方法可以包括:
201、网络设备将n个虚拟资源块组中的虚拟资源块映射至物理资源块。
202、当上述虚拟资源块中的至少一个对应不在载波带宽部分内的资源块时,将该对应不在载波带宽部分内的资源块的虚拟资源块重映射到载波带宽部分内的其它物理资源块上。
这样,可以使得每个虚拟资源块都能够映射到载波带宽部分内的物理资源块上,从而 可以使得虚拟资源块上的复值符号能够在物理资源块上正确传输。
在步骤201之前,该方法还可以包括:
203、网络设备在n个虚拟资源块组中虚拟资源块的子集上映射复值符号。
具体的,关于步骤203中的描述可以参见上述步骤104,这里不再赘述。
在步骤203之后,该方法还可以包括:
204、网络设备根据n个虚拟资源块组中虚拟资源块的子集对应的物理资源块和重映射的物理资源块传输复值符号。
网络设备确定n个虚拟资源块组中虚拟资源块映射的物理资源块之后,可以确定该虚拟资源块的子集对应的物理资源块,从而在该虚拟资源块的子集对应的物理资源块上传输该虚拟资源块的子集上映射的复值符号。具体的,关于步骤204中的描述可以参见上述步骤105,这里不再赘述。
具体的,对于映射的物理资源块在载波带宽部分内的虚拟资源块,网络设备可以在这些虚拟资源块映射的物理资源块上传输复值符号,对于映射的物理资源块不在载波带宽部分内的虚拟资源块,网络设备可以在重映射的物理资源块上传输复值符号。
其中,步骤201具体可以包括:
2011、网络设备将n个物理资源块组逐行写入交织矩阵中,或者网络设备将n个虚拟资源块组逐列写入交织矩阵中。
2012、网络设备逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射,或者网络设备逐行从交织矩阵中读取n个虚拟资源块组,读取出的n个虚拟资源块组与n个物理资源块组相映射。
2013、网络设备根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
其中,网络设备在步骤2011-2013中通过交织方式确定n个虚拟资源块组中虚拟资源块映射的物理资源块的过程,可以参见上述步骤101-103中的描述,这里不再赘述。与上述步骤101-103不同的是,步骤2011-2013中的交织矩阵可以包括但不限于步骤101中提供的交织矩阵(例如图6-图9所示的交织矩阵),还可以为其它交织矩阵。例如,步骤2011中所采用的交织矩阵在第一行的最后一列或最后一行的第一列以外的其它地方插入有空值。示例性的,步骤2011中所采用的交织矩阵可以如图13所示,在交织矩阵最后一行的最后N列插入有N个空值。
在一种可能的实现方式中,步骤202具体可以包括:网络设备将第一虚拟资源块重映射到预设的载波带宽部分内的另一物理资源块上。
示例性的,假设交织矩阵的行数R=2,载波带宽部分包括索引为0~8的9个VRB,参考值L=2,VRB组的索引为0~4;载波带宽部分包括索引为0~8的9个PRB,PRB组的索引为0~4;则交织矩阵的列数C=3。在步骤201中将PRB组逐行写入交织矩阵有:
Figure PCTCN2019071364-appb-000169
其中,*表示空值;逐列读出交织矩阵中5个PRB组,即逐列读出交织矩阵中的元素有0、3、1、4、2,则步骤201中确定的VRB组与PRB组的对应关系可以参见如下表6。其中,索引为3的VRB组对应的索引为4的PRB组,索引为3的VRB组中包括2个VRB,且映射有2个复值符 号,索引为4的PRB组中仅包括一个载波带宽部分内索引为8的一个PRB。
表6
VRB组索引 VRB索引 交织后的PRB组索引 PRB索引
0 0、1 0 0、1
1 2、3 3 6、7
2 4、5 1 2、3
3 6、7 4 8
4 8 2 4、5
若分配的虚拟资源块为虚拟资源块4~8,则虚拟资源块7对应的资源块在载波带宽部分之外,网络设备可以将虚拟资源块7重映射到载波带宽部分内的另一物理资源块上,例如映射到物理资源块0上,此时虚拟资源块与物理资源块的对应关系可以参见如下表7。
表7
VRB组索引 VRB索引 交织后的PRB组索引 PRB索引
2 4、5 1 2、3
3 6、7 4 8、0
4 8 2 4、5
可选的,预设的载波带宽部分内的另一个物理资源块根据载波带宽部分的频域位置、载波带宽部分的大小和/或参考值L确定。
可选的,预设的载波带宽部分内的另一个物理资源块为索引最大的虚拟资源块组对应的物理资源块组中未被映射的物理资源块。
示例性的,若步骤201中确定的虚拟资源块与物理资源块的对应关系如表6所示,且参考值L为2,则虚拟资源块7对应的资源块在载波带宽部分之外,网络设备可以将虚拟资源块7重映射到索引最大的虚拟资源块组对应的物理资源块组中未被映射的物理资源块上,即映射到虚拟资源块组4对应的物理资源块组2中的物理资源块5上,此时虚拟资源块与物理资源块的对应关系可以参见如下表8。
表8
VRB组索引 VRB索引 交织后的PRB组索引 PRB索引
0 0、1 0 0、1
1 2、3 3 6、7
2 4、5 1 2、3
3 6、7 4 8、5
4 8 2 4
在一种可能的实现方式中,步骤202具体可以包括:网络设备将第一虚拟资源块对应的虚拟资源块组重映射到预设的载波带宽部分内的另一物理资源块组上。
示例性的,若步骤201中确定的虚拟资源块与物理资源块的对应关系如表6所示,且参考值L为2,分配的虚拟资源块为虚拟资源块4~8,则虚拟资源块7对应的资源块在载波带宽部分之外,网络设备可以将虚拟资源块组3重映射到载波带宽部分内的物理资源块组 上,例如映射到物理资源块组0上,即将虚拟资源块6和7分别映射到物理资源块0和1上,此时虚拟资源块与物理资源块的对应关系可以参见如下表9。
表9
VRB组索引 VRB索引 交织后的PRB组索引 PRB索引
2 4、5 1 2、3
3 6、7 0 0、1
4 8 2 4、5
可选的,预设的载波带宽部分内的另一个物理资源块组根据载波带宽部分的频域位置、载波带宽部分的大小和/或参考值L确定。
可选的,预设的载波带宽部分内的另一个物理资源块组为索引最大的虚拟资源块组对应的物理资源块组中。
示例性的,若步骤201中确定的虚拟资源块与物理资源块的对应关系如表6所示,且参考值L为2,则虚拟资源块7对应的资源块在载波带宽部分之外,网络设备可以将虚拟资源块组3重映射到索引最大的虚拟资源块组对应的物理资源块组,即映射到虚拟资源块组4对应的物理资源块组2上,将虚拟资源块6和7分别映射到物理资源块4和5上,可选地,将虚拟资源块组4映射到虚拟资源块组3对应的物理资源块组4上,将虚拟资源块8映射到物理资源块8上,此时虚拟资源块与物理资源块的对应关系可以参见如下表10。
表10
VRB组索引 VRB索引 交织后的PRB组索引 PRB索引
0 0、1 0 0、1
1 2、3 3 6、7
2 4、5 1 2、3
3 6、7 2 4、5
4 8 4 8
在另一种可能的实现方式中,步骤202具体可以包括:网络设备根据预设的偏置和第一虚拟资源块对应的物理资源块确定另一物理资源块,并将第一虚拟资源块重映射到另一物理资源块上。
在另一种可能的实现方式中,步骤202具体可以包括:网络设备载波带宽部分和参考值L确定偏置,根据偏置和第一虚拟资源块对应的物理资源块确定另一物理资源块,并将第一虚拟资源块重映射到另一物理资源块上。
在一种可能的实现方式中,n个虚拟资源块组是载波带宽部分对应的n个虚拟资源块组。该种实现方式可以应用于根据上述第一种确定方式分组的场景。
在另一种可能的实现方式中,n个虚拟资源块组是载波带宽部分对应的m个虚拟资源块组的真子集,n个虚拟资源块组包括m个虚拟资源块组的最后一个虚拟资源块组。该种方式可以应用于根据上述第二种确定方式分组,且载波带宽部分中第一个虚拟资源块组与最后一个虚拟资源块组中包含的虚拟资源块的数量均小于L的场景。具体的,在该场景中,n个虚拟资源块组可以为m个虚拟资源块组中的第二个虚拟资源块组至最后一个虚拟资源块组。
本申请另一实施例提供一种资源映射方法,参见图15,主要可以包括:
301、网络设备通过交织确定虚拟资源块组和物理资源块组的映射关系。
302、网络设备根据虚拟资源块组和物理资源块组的映射关系,在虚拟资源块上映射复值符号。
其中,步骤301具体可以包括:
3011、网络设备将n个物理资源块组逐行写入交织矩阵中,或者网络设备将n个虚拟资源块组逐列写入交织矩阵中。
3012、网络设备逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射,或者网络设备逐行从交织矩阵中读取n个虚拟资源块组,读取出的n个虚拟资源块组与n个物理资源块组相映射。
其中,步骤3011与步骤3012可以参见上述步骤101-102中的相关描述,这里不再赘述。
需要说明的是,步骤3011中的交织矩阵可以包括但不限于步骤101提供的交织矩阵,上述矩阵3表示的交织矩阵,例如还可以是图13所示的交织矩阵等。
步骤301具体可以包括:
3010、网络设备通过交织确定虚拟资源块组和物理资源块组的映射关系,以及虚拟资源块对应的物理资源块。
在步骤302之后,该方法还可以包括:
303、网络设备在物理资源块上传输复值符号。
在步骤302的一种可能的实现方式中,网络设备可以根据虚拟资源块组和物理资源块组的映射关系,确定分配的虚拟资源块中的第一虚拟资源块,终端在分配的虚拟资源块中除第一虚拟资源块以外的虚拟资源块上映射复值符号,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
其中,当网络设备为终端或基站时,分配的虚拟资源块可以为基站为中的分配的载波带宽部分内的虚拟资源块。
例如,当网络设备在分配的虚拟资源块上映射复值符号时,若某一分配的虚拟资源块对应在载波带宽部分外的资源块,则在一种可能的实现方式中,网络设备可以不在该虚拟资源块中映射复值符号,而在分配的虚拟资源块中的虚拟资源块上映射复值符号。即网络设备根据虚拟资源块组和物理资源块组的映射关系,在虚拟资源块组上映射复值符号。举例来说,若步骤301中虚拟资源块组和物理资源块组的映射关系如表6所示,且参考值L为2,分配的虚拟资源块为虚拟资源块4~8,物理资源块组4中只包括1个物理资源块8,则在步骤302中,网络设备不在虚拟资源块7上映射复值符号,虚拟资源块组3中可以只包括1个虚拟资源块,虚拟资源块组与虚拟资源块索引的对应关系可以参见如上表5。
在步骤302的另一种可能的实现方式中,终端确定分配的虚拟资源块中的第一虚拟资源块,终端将第一虚拟资源块上的复值符号重映射在第二虚拟资源块上,第一虚拟资源块对应的虚拟资源块组映射在载波带宽部分中索引最大的物理资源块组。
例如,当网络设备在分配的虚拟资源块上映射复值符号时,若某一虚拟资源块对应在载波带宽部分外的物理资源块,则在另一种可能的实现方式中,网络设备可以不在该虚拟资源块中映射复值符号,而在索引最大的虚拟资源块组中映射对应L个资源块的复值符号。举例来说,若步骤303中确定的虚拟资源块与物理资源块的对应关系如表6所示,且参考 值L为2,分配的虚拟资源块为虚拟资源块4~8,则在步骤302中,网络设备不在虚拟资源块7上映射复值符号,同时假设虚拟资源块组4中包含2个虚拟资源块,将对应2个资源块的复值符号映射在虚拟资源块4中。虚拟资源块组与虚拟资源块组索引的对应关系可以参见如下表11,其中,虚拟资源块7上不映射复值符号,虚拟资源块9可以理解为借调载波带宽部分之外的虚拟资源块。
表11
Figure PCTCN2019071364-appb-000170
其中,将复值符号映射到分配的虚拟资源块上时,可以仅调整对应载波带宽部分之外资源块的虚拟资源块上的映射,如将原先需要映射到虚拟资源块7上的复值符号映射到虚拟资源块9上;或者,可以调整从对应载波带宽部分之外资源块的虚拟资源块开始的后续所有虚拟资源块上的映射,如将原先需要映射到虚拟资源块7上的复值符号映射到虚拟资源块8上,将原先需要映射到虚拟资源块8上的复值符号映射到虚拟资源块9上。
可见,通过本申请实施例提供的资源映射方法,可以使得映射有复值符号的虚拟资源块所在的虚拟资源块组与对应的物理资源块组中包括的资源块的数量相匹配,从而保证虚拟资源块上的复值符号能够在物理资源块上正确传输。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图16示出了上述方法实施例中涉及的装置的一种可能的组成示意图,该装置为上述实施例中的终端、基站等网络设备或芯片。如图16所示,该装置400可以包括:写入单元41、读取单元42和确定单元43。
在一些实施例中,写入单元41,可以用于将n个物理资源块组逐行写入交织矩阵中,或用于将n个虚拟资源块组逐列写入交织矩阵中,交织矩阵第一行与最后N列的交集或交织矩阵最后一行与前N列的交集插入有N个空值,n为正整数,N为自然数。读取单元42,可以用于逐列从交织矩阵中读取n个物理资源块组,读取出的n个物理资源块组与n个虚拟资源块组相映射,或用于逐行从交织矩阵中读取n个虚拟资源块组,读取出的n个虚拟 资源块组与n个物理资源块组相映射。确定单元43,可以用于根据与n个虚拟资源块组相映射的n个物理资源块组,确定n个虚拟资源块组中虚拟资源块映射的物理资源块。
进一步地,装置400还可以包括映射单元44,传输单元45和接收单元46。其中,映射单元44可以用于支持装置400执行图12中的步骤104;传输单元可以用于支持装置400执行图12中的步骤105,接收单元46可以用于支持装置400执行图12中的步骤106。此外,图16中的各个单元还可以用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的装置,用于执行上述资源映射方法,因此可以达到与上述资源映射方法相同的效果。
在采用对应各个功能划分各个功能模块的情况下,图17示出了上述实施例中涉及的装置500的另一种可能的组成示意图,该装置500为上述实施例中的终端、基站等网络设备或芯片。如图17所示,该装置500可以包括:确定单元51、映射单元52和传输单元53。
在一些实施例中,确定单元51,可以用于执行图15中的步骤301,确定单元52可以用于执行图15中的步骤302。
进一步地,确定单元51还可以用于执行上述方法实施例中的步骤3010-3012,传输单元53可以用于执行上述实施例中的步骤303。此外,图17中的各个单元还可以用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的装置500,用于执行上述资源映射方法,因此可以达到与上述资源映射方法相同的效果。
在采用对应各个功能划分各个功能模块的情况下,图18示出了上述实施例中涉及的装置600的另一种可能的组成示意图,该装置600为上述实施例中的终端、基站等网络设备或芯片。如图18所示,该装置600可以包括至少一个映射单元。
其中,当至少一个映射单元包括第一映射单元单元61和第二映射单元62时,第一映射单元61可以用于执行图14中的步骤201;第二映射单元62可以用于执行图14中的步骤202;第一映射单元61具体还可以用于执行上述方法实施例中的步骤2011-2013。
当至少一个映射单元为一个映射单元时,该映射单元可以执行上述第一映射单元61和第二映射单元62的功能。
此外,图18中的各个单元还可以用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的装置600,用于执行上述资源映射方法,因此可以达到与上述资源映射方法相同的效果。
在另一个实施例中,本领域的技术人员可以想到将装置16~装置18中的模块与图3中的部件相对应,装置16~装置18中的任一个可以通过如图3所示的结构实现。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配 由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种资源映射方法,其特征在于,包括:
    将n个虚拟资源块组写入交织矩阵中,所述n个虚拟资源块组不包括载波带宽部分最后一个虚拟资源块组;
    从所述交织矩阵中读取所述n个虚拟资源块组,所述读取出的n个虚拟资源块组与n个物理资源块组相映射;
    其中,所述载波带宽部分最后一个虚拟资源块组对应所述载波带宽部分最后一个物理资源块组。
  2. 根据权利要求1所述的方法,其特征在于:
    载波带宽部分的第一个物理资源块组中包含的物理资源块数为
    Figure PCTCN2019071364-appb-100001
    第二个至倒数第二个物理资源块组中包括L个物理资源块,最后一个物理资源块组中包含的物理资源块数为
    Figure PCTCN2019071364-appb-100002
    其中,载波带宽部分包含
    Figure PCTCN2019071364-appb-100003
    Figure PCTCN2019071364-appb-100004
    个物理资源块组,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100005
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100006
    个虚拟资源块,所述
    Figure PCTCN2019071364-appb-100007
    表示所述载波带宽部分的起始物理资源块在公共资源块中的位置;mod表示求余。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    按照所述公共资源块的索引顺序,对所述物理资源块进行分组和对所述物理资源块组进行编号。
  4. 根据权利要求1至3任一项所述的方法,其特征在于:
    载波带宽部分的第一个虚拟资源块组中包含的虚拟资源块数为
    Figure PCTCN2019071364-appb-100008
    第二个至倒数第二个物理资源块组中包括L个虚拟资源块,最后一个虚拟资源块组中包含的虚拟资源块数为
    Figure PCTCN2019071364-appb-100009
    其中,所述载波带宽部分包含
    Figure PCTCN2019071364-appb-100010
    Figure PCTCN2019071364-appb-100011
    个虚拟资源块组,,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100012
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100013
    个虚拟资源块,所述
    Figure PCTCN2019071364-appb-100014
    表示所述载波带宽部分的起始物理资源块在公共资源块中的位置;mod表示求余。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    按照所述公共资源块的索引顺序,对所述虚拟资源块进行分组和对所述虚拟资源块组进行编号。
  6. 根据权利要求1所述的方法,其特征在于:
    载波带宽部分的第一个至倒数第二个物理资源块组中包含L个物理资源块,最后一个物理资源块组中物理资源块的数量为
    Figure PCTCN2019071364-appb-100015
    其中,
    Figure PCTCN2019071364-appb-100016
    表示向下取整;
    其中,载波带宽部分包含
    Figure PCTCN2019071364-appb-100017
    个物理资源块组,其中,
    Figure PCTCN2019071364-appb-100018
    表示向上取整,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100019
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100020
    个虚拟资源块。
  7. 根据权利要求1或6所述的方法,其特征在于,还包括:
    按照所述物理资源块的索引顺序,对所述物理资源块进行分组和对所述物理资源块组进行编号。
  8. 根据权利要求1、6、7任一项所述的方法,其特征在于:
    载波带宽部分的第一个至倒数第二个虚拟资源块组中包含L个虚拟资源块,最后一个虚拟资源块组中虚拟资源块的数量为
    Figure PCTCN2019071364-appb-100021
    其中,所述载波带宽部分对应
    Figure PCTCN2019071364-appb-100022
    个虚拟资源块组,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100023
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100024
    个虚拟资源块。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    按照所述虚拟资源块的索引顺序,对所述虚拟资源块进行分组和对所述虚拟资源块组进行编号。
  10. 一种装置,其特征在于,包括:
    写入单元,用于将n个虚拟资源块组写入交织矩阵中,所述n个虚拟资源块组不包括载波带宽部分最后一个虚拟资源块组;和
    读取单元,用于从所述交织矩阵中读取所述n个虚拟资源块组,所述读取出的n个虚拟资源块组与n个物理资源块组相映射;
    其中,所述载波带宽部分最后一个虚拟资源块组对应所述载波带宽部分最后一个物理资源块组。
  11. 根据权利要求10所述的装置,其特征在于:
    载波带宽部分的第一个物理资源块组中包含的物理资源块数为
    Figure PCTCN2019071364-appb-100025
    第二个至倒数第二个物理资源块组中包括L个物理资源块,最后一个物理资源块组中包含的物理资源块数为
    Figure PCTCN2019071364-appb-100026
    其中,载波带宽部分包含
    Figure PCTCN2019071364-appb-100027
    Figure PCTCN2019071364-appb-100028
    个物理资源块组,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100029
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100030
    个虚拟资源块,所述
    Figure PCTCN2019071364-appb-100031
    表示所述载波带宽部分的起始物理资源块在公共资源块中的位置;mod表示求余。
  12. 根据权利要求10或11所述的装置,其特征在于,还包括:
    确定单元,用于按照所述公共资源块的索引顺序,对所述物理资源块进行分组和对所述物理资源块组进行编号。
  13. 根据权利要求10至12任一项所述的装置,其特征在于:
    载波带宽部分的第一个虚拟资源块组中包含的虚拟资源块数为
    Figure PCTCN2019071364-appb-100032
    第二个至倒数第二个物理资源块组中包括L个虚拟资源块,最后一个虚拟资源块组中包含的虚拟资源块数为
    Figure PCTCN2019071364-appb-100033
    其中,所述载波带宽部分包含
    Figure PCTCN2019071364-appb-100034
    Figure PCTCN2019071364-appb-100035
    个虚拟资源块组,所述载波带 宽部分由所述
    Figure PCTCN2019071364-appb-100036
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100037
    个虚拟资源块,所述
    Figure PCTCN2019071364-appb-100038
    表示所述载波带宽部分的起始物理资源块在公共资源块中的位置;mod表示求余。
  14. 根据权利要求13所述的装置,其特征在于:
    所述确定单元,还用于按照所述公共资源块的索引顺序,对所述虚拟资源块进行分组和对所述虚拟资源块组进行编号。
  15. 根据权利要求10所述的装置,其特征在于:
    载波带宽部分的第一个至倒数第二个物理资源块组中包含L个物理资源块,最后一个物理资源块组中物理资源块的数量为
    Figure PCTCN2019071364-appb-100039
    其中,
    Figure PCTCN2019071364-appb-100040
    表示向下取整;
    其中,载波带宽部分包含
    Figure PCTCN2019071364-appb-100041
    个物理资源块组,其中,
    Figure PCTCN2019071364-appb-100042
    表示向上取整,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100043
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100044
    个虚拟资源块。
  16. 根据权利要求10或15所述的装置,其特征在于,还包括:
    确定单元,用于按照所述物理资源块的索引顺序,对所述物理资源块进行分组和对所述物理资源块组进行编号。
  17. 根据权利要求10、15、16任一项所述的装置,其特征在于:
    载波带宽部分的第一个至倒数第二个虚拟资源块组中包含L个虚拟资源块,最后一个虚拟资源块组中虚拟资源块的数量为
    Figure PCTCN2019071364-appb-100045
    其中,所述载波带宽部分对应
    Figure PCTCN2019071364-appb-100046
    个虚拟资源块组,所述载波带宽部分由所述
    Figure PCTCN2019071364-appb-100047
    个物理资源块构成,且对应
    Figure PCTCN2019071364-appb-100048
    个虚拟资源块。
  18. 根据权利要求17所述的装置,其特征在于:
    所述确定单元,还用于按照所述虚拟资源块的索引顺序,对所述虚拟资源块进行分组和对所述虚拟资源块组进行编号。
  19. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得所述装置执行如权利要求1-9中任一项所述的方法。
  20. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1-9中任一项所述的方法的指令。
  21. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现上述权利要求1-9中任一项所述的方法。
  22. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求1-9中任一项所述的方法。
PCT/CN2019/071364 2018-01-12 2019-01-11 一种资源映射方法及设备 WO2019137475A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19738253.4A EP3723431B1 (en) 2018-01-12 2019-01-11 Resource mapping method and device
US16/925,380 US11470610B2 (en) 2018-01-12 2020-07-10 Resource mapping method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810032421.0 2018-01-12
CN201810032421 2018-01-12
CN201810065051.0 2018-01-23
CN201810065051.0A CN110035533B (zh) 2018-01-12 2018-01-23 一种资源映射方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/925,380 Continuation US11470610B2 (en) 2018-01-12 2020-07-10 Resource mapping method and device

Publications (1)

Publication Number Publication Date
WO2019137475A1 true WO2019137475A1 (zh) 2019-07-18

Family

ID=67219349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071364 WO2019137475A1 (zh) 2018-01-12 2019-01-11 一种资源映射方法及设备

Country Status (1)

Country Link
WO (1) WO2019137475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168687A1 (en) * 2020-02-26 2021-09-02 Qualcomm Incorporated Interleaving techniques for wireless communications systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412951A (zh) * 2011-11-17 2012-04-11 武汉邮电科学研究院 Lte中分布式虚拟资源块映射到物理资源块的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412951A (zh) * 2011-11-17 2012-04-11 武汉邮电科学研究院 Lte中分布式虚拟资源块映射到物理资源块的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT ET AL.: "DVRB Mapping in DwPTS and Draft CR for 36.211", 3GPP TSG RAN WGI MEETING #54 R1-082960, 22 August 2008 (2008-08-22), XP050316426 *
CATT ET AL.: "DVRB Mapping in DwPTS and TP for 36.211", 3GPP TSG RAN WGI MEETING #53BIS RI -082562, 4 July 2008 (2008-07-04), XP050110822 *
See also references of EP3723431A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168687A1 (en) * 2020-02-26 2021-09-02 Qualcomm Incorporated Interleaving techniques for wireless communications systems

Similar Documents

Publication Publication Date Title
JP7449974B2 (ja) ダウンリンク制御情報伝送方法
CN110035533B (zh) 一种资源映射方法及设备
CN110663205B (zh) 一种数据处理方法及数据处理装置
CN111386736B (zh) 一种通信方法、装置以及系统
CN110769508B (zh) 信号传输方法、装置、终端设备、网络设备及系统
CN108632011B (zh) 用于进行数据传输的方法和装置
TWI746708B (zh) 傳輸信息的方法、網絡設備和終端設備
TW201415840A (zh) 用於在無線通訊系統中將虛擬資源映射到實體資源的方法和裝置
US20210337428A1 (en) Transport Block Size Determining Method and Apparatus
JP7319363B2 (ja) データ伝送方法及び通信装置
JP7047083B2 (ja) ダウンリンクppdu送信方法及び装置、並びにダウンリンクppdu受信方法及び装置
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
EP3488650B1 (en) Network node and user device for wireless communication system
WO2019137402A1 (zh) 一种无线通信装置及无线通信方法
US11212789B2 (en) Information sending method and device
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2014019283A1 (zh) 传输控制信息的方法、装置及系统
CN111770577A (zh) 确定传输资源的方法及装置
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
CN109995492B (zh) 一种通信方法、装置以及系统
CN113517946A (zh) 一种通信方法及装置
CN115529116A (zh) 一种通信方法、装置以及系统
WO2019137475A1 (zh) 一种资源映射方法及设备
WO2021212286A1 (zh) 物理下行控制信道传输方法、装置及存储介质
EP3905819A1 (en) Method for determining transport block size, and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019738253

Country of ref document: EP

Effective date: 20200708

NENP Non-entry into the national phase

Ref country code: DE