WO2019135649A1 - 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치 - Google Patents

무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치 Download PDF

Info

Publication number
WO2019135649A1
WO2019135649A1 PCT/KR2019/000197 KR2019000197W WO2019135649A1 WO 2019135649 A1 WO2019135649 A1 WO 2019135649A1 KR 2019000197 W KR2019000197 W KR 2019000197W WO 2019135649 A1 WO2019135649 A1 WO 2019135649A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
data
sdap
udc
pdcp
Prior art date
Application number
PCT/KR2019/000197
Other languages
English (en)
French (fr)
Inventor
김동건
김성훈
김상범
진승리
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180036079A external-priority patent/KR102596391B1/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP19736168.6A priority Critical patent/EP3706461B1/en
Priority to EP23215224.9A priority patent/EP4333407A3/en
Priority to US16/959,659 priority patent/US11197194B2/en
Publication of WO2019135649A1 publication Critical patent/WO2019135649A1/ko
Priority to US17/543,524 priority patent/US11838797B2/en
Priority to US18/528,559 priority patent/US20240107375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC

Definitions

  • the present invention relates to a next generation wireless communication system.
  • the present invention relates to a terminal and a base station in a mobile communication system.
  • the present invention also relates to a data compression processing header unencrypting method and apparatus in a next generation mobile communication system.
  • a 5G communication system or a pre-5G communication system is referred to as a 4G network (Beyond 4G Network) communication system or a post-LTE system (Post LTE) system.
  • 4G network Beyond 4G Network
  • Post LTE post-LTE system
  • 5G communication systems are being considered for implementation in very high frequency (mmWave) bands (e.g., 60 gigahertz (60GHz) bands).
  • mmWave very high frequency
  • the 5G communication system In order to mitigate the path loss of the radio wave in the very high frequency band and to increase the propagation distance of the radio wave, in the 5G communication system, beamforming, massive MIMO, full-dimension MIMO (FD-MIMO ), Array antennas, analog beam-forming, and large scale antenna technologies are being discussed.
  • the 5G communication system has developed an advanced small cell, an advanced small cell, a cloud radio access network (cloud RAN), an ultra-dense network, (D2D), a wireless backhaul, a moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Have been developed.
  • cloud RAN cloud radio access network
  • D2D ultra-dense network
  • CoMP Coordinated Multi-Points
  • ACM Advanced Coding Modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Sliding Window Superposition Coding
  • FBMC Filter Bank Multi Carrier
  • SCMA subcarrier code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • a technical problem to be solved by the embodiments of the present invention is to provide a method and apparatus for supporting a variety of implementation structures on a base station side in a next generation mobile communication system, and to provide a high data rate and a low transmission delay on a terminal side, It is a way to provide less.
  • a flow-based quality of service is provided differently from the existing LTE, and a flow mapping between AS (Access stratum) and NAS (non-access stratum)
  • a new QoS layer (SDAP, Service Data Adaptation Protocol) is introduced to instruct the change of the rule to the user data packet.
  • SDAP Service Data Adaptation Protocol
  • the BS can not recognize that a new QoS flow has been transmitted until the arrival of the first packet of the new QoS flow transmitted by the UE. If there is a large amount of data buffered in the DRB (data radio bearer) Can be made longer.
  • a technical problem to be solved in the embodiment of the present invention is to provide a method of processing in a terminal so that a scheduler of a base station can quickly receive and process a new QoS flow, and a QoS re- order delivery is guaranteed.
  • a method of operating a terminal comprising: receiving a radio resource control (RRC) message including information indicating whether to use uplink data compression (UDC)
  • RRC radio resource control
  • UDC uplink data compression
  • the method comprising: receiving data from an upper application layer of a terminal; compressing the data; encrypting the compressed data; generating an uplink data compression (UDC) header and a service data adaptation protocol (SDAP) Generating a block in which the UDC header and the SDAP header are combined with the encrypted data, and transferring the block to a lower layer of the terminal.
  • RRC radio resource control
  • UDC uplink data compression
  • SDAP service data adaptation protocol
  • an apparatus for receiving a radio resource control (RRC) message including information indicating whether to use uplink data compression (UDC) from a transmitter / receiver and a base station, Receiving data from an upper application layer of the terminal, compressing the data, encrypting the compressed data, generating an uplink data compression (UDC) header and a service data adaptation protocol (SDAP) header together, And a controller for generating a block in which the UDC header and the SDAP header are concatenated with data and controlling the block to be transferred to a lower layer of the terminal.
  • RRC radio resource control
  • UDC uplink data compression
  • SDAP service data adaptation protocol
  • a method of operating a base station comprising: transmitting a radio resource control (RRC) message including information indicating whether to use uplink data compression (UDC) Receiving an uplink data compression (UDC) header and a service data adaptation protocol (SDAP) header associated with the first data, removing the UDC header and the SDAP header from the terminal, Decrypting and decompressing the decompressed second data, and transferring the decompressed second data to an upper layer of the base station.
  • RRC radio resource control
  • UDC uplink data compression
  • SDAP service data adaptation protocol
  • a base station transmits a radio resource control (RRC) message including information indicating whether uplink data compression (UDC) is used to the transmitter / receiver and the terminal (UDC) header and an SDAP (service data adaptation protocol) header, the UDC header and the SDAP header being removed from the first data, And a controller for decrypting and decompressing the data, and controlling the second data to release the decompressed data to an upper layer of the base station.
  • RRC radio resource control
  • UDC uplink data compression
  • SDAP service data adaptation protocol
  • a method and apparatus for providing improved communication performance in a next generation wireless communication system can be provided.
  • an SDAP layer device and a packet data convergence protocol (PDCP) layer device which are easy to implement various implementations of the base station and can reduce the processing burden of the UE, Method can be provided.
  • PDCP packet data convergence protocol
  • a flow-based QoS is supported in a wireless interface in a next generation mobile communication system, and a structure in which a first packet can be transmitted prior to a new QoS flow is proposed, .
  • in-order delivery is guaranteed when a QoS flow is transmitted to a new DRB due to a terminal operation, frequent QoS flow update operations that may occur during out-order delivery can be reduced, Can be reduced.
  • 1A is a diagram showing a structure of a next generation mobile communication system.
  • 1B is a diagram for explaining a wireless connection state transition in a next generation mobile communication system.
  • 1C is a view for explaining a phenomenon in which a wireless connection state is inconsistent in an LTE system.
  • FIG. 1D is a view for explaining a method for solving the problem of inconsistency of the wireless connection state in the LTE system.
  • FIG. 1E is a flowchart of a process for solving the problem of inconsistency in the wireless connection state according to the embodiment of the present invention.
  • 1F is a flowchart of a terminal operation according to an embodiment of the present invention.
  • 1G is a flowchart of base station operation according to an embodiment of the present invention.
  • 1 H is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • 1I is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a structure of an LTE system according to an embodiment of the present invention.
  • 2B is a diagram illustrating a wireless protocol structure in an LTE system according to an embodiment of the present invention.
  • 2C is a diagram illustrating a structure of a next generation mobile communication system according to an embodiment of the present invention.
  • 2D is a diagram illustrating a radio protocol structure of a next generation mobile communication system according to an embodiment of the present invention. .
  • FIG. 2E is a diagram illustrating a procedure for determining whether or not a BS performs uplink data compression when a UE establishes a connection with a network according to an embodiment of the present invention.
  • FIG. 2F is a diagram illustrating a procedure and data structure for performing uplink data compression according to an embodiment of the present invention. Referring to FIG.
  • FIG. 2G is a diagram illustrating an embodiment of an uplink data compression method according to an embodiment of the present invention. Referring to FIG.
  • FIG. 2H is a diagram illustrating a procedure and data structure for performing ROHC (Robust Header Compression) header compression according to an embodiment of the present invention.
  • ROHC Robot Header Compression
  • 2I is a diagram illustrating a procedure for generating an SDAP header for data received from an upper layer in the PDCP layer apparatus according to an embodiment of the present invention and encrypting the SDAP header in the SDAP header.
  • FIG. 2J is a diagram illustrating a procedure of generating an SDAP header for data received from an upper layer in the PDCP layer apparatus according to an embodiment of the present invention, and not performing encryption in the SDAP header.
  • 2K is a diagram illustrating a gain in a structure of a base station implementation when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • FIG. 21 is a diagram illustrating a processing gain obtainable in a base station and a terminal implementation when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • FIG. 2M is a diagram illustrating a processing gain that can be obtained in a base station and a terminal implementation in which ROHC is set when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • FIG. 2n is a diagram for explaining that a PDCP layer apparatus according to an embodiment of the present invention generates an SDAP header for data received from an upper layer and applies a user data compression procedure (UDC) to the SDAP header.
  • UDC user data compression procedure
  • 2O is a diagram illustrating a method of generating an SDAP header for data received from an upper layer in a PDCP layer apparatus according to an embodiment of the present invention and not applying a user data compression procedure (UDC) to an SDAP header .
  • UDC user data compression procedure
  • 2P illustrates a method of generating an SDAP header for data received from an upper layer in a PDCP layer apparatus according to an embodiment of the present invention and not applying encryption to a UDC header without applying a user data compression procedure (UDC) to an SDAP header And explains this.
  • UDC user data compression procedure
  • FIG. 2Q illustrates a case where an unencrypted UDC header is applied to an SDAP / PDCP layer device, a bearer or a logical channel in which a UDC is set when an SDAP header that is not encrypted and user data compression is applied and an unencrypted UDC header is applied according to an embodiment of the present invention
  • Figure 6 is a diagram illustrating the processing gain available in a terminal implementation.
  • FIG. 2r shows an SDAP / PDCP layer device in which a UDC is set up, a transmission SDAP in a bearer or a logical channel when an unencrypted UDC header is applied according to an embodiment of the present invention, / PDCP layer apparatus and the operation of the receiving SDAP / PDCP layer apparatus.
  • FIG. 2 is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • 2T is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • 3A is a diagram illustrating a structure of an LTE system according to an embodiment of the present invention.
  • 3B is a diagram illustrating a wireless protocol structure in an LTE system according to an embodiment of the present invention.
  • 3C is a diagram illustrating a structure of a next generation mobile communication system according to an embodiment of the present invention.
  • FIG. 3D is a diagram for explaining new functions for handling QoS in an NR system according to an embodiment of the present invention.
  • 3 ea is a diagram illustrating a protocol stack including SDAP in NR according to an embodiment of the present invention.
  • Figure 3eb is a diagram illustrating a protocol stack including SDAP in NR according to an embodiment of the present invention.
  • FIG. 3F is a diagram for explaining a problem and an issue when a first packet of a new QoS flow in a specific DRB is delayed and received according to an embodiment of the present invention.
  • 3G is a diagram for explaining a method for preferentially processing a corresponding SDAP packet when a new QoS flow is received in the receiving SDAP layer of the UE according to the embodiment 3-1 of the present invention.
  • 3H is a diagram for explaining a method for guaranteeing in-order delivery at the receiving end when the QoS flow is re-mapped according to the embodiment 3-2 of the present invention.
  • FIG. 3I is a diagram illustrating a method of transmitting a new QoS flow packet when a QoS flow and a mapping of a DRB are changed according to an embodiment of the present invention.
  • 3J is a diagram illustrating an overall terminal operation according to an embodiment of the present invention.
  • 3K is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • FIG. 31 is a diagram illustrating a configuration of an NR base station according to an embodiment of the present invention.
  • connection node used in the following description, a term referring to network entities, a term referring to messages, a term indicating an interface between network objects, a term indicating various identification information Etc. are illustrated for convenience of explanation. Therefore, the present invention is not limited to the following terms, and other terms referring to objects having equivalent technical meanings can be used.
  • the present invention uses terms and names defined in 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standard.
  • 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
  • the present invention is not limited by the above-mentioned terms and names, and can be equally applied to systems conforming to other standards.
  • eNB can be used in combination with gNB for convenience of explanation. That is, the base station described as an eNB may represent a gNB.
  • FIG. 1A is a diagram illustrating a structure of a next generation mobile communication system according to an embodiment of the present invention.
  • a radio access network of a next-generation mobile communication system includes a next-generation base station (gNB) 1a-10, an AMF 1a- Core Network).
  • gNB next-generation base station
  • AMF 1a- Core Network AMF 1a- Core Network
  • a user terminal (hereinafter referred to as NR UE or UE) 1a-15 accesses the external network through the gNB 1a-10 and the AMF 1a-05.
  • gNBs 1a-10 correspond to eNBs (Evolved Node Bs 1a-30) of the existing LTE system.
  • the gNB 1a-10 is connected to the NR UEs 1a-15 through a radio channel and can provide a better service than the existing Node B (1a-20).
  • a device for collecting and scheduling state information such as buffer status, available transmission power state, and channel state of UEs is required. 1a-10).
  • One gNB typically controls multiple cells.
  • AMF Adaptive Modulation and Coding
  • the AMF (1a-05) performs functions such as mobility support, bearer setup, and QoS setup.
  • the AMF 1a-05 is a device that performs various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations.
  • next generation mobile communication system can be interworked with the existing LTE system, and the AMF 1a-05 is connected to the MME 1a-25 through a network interface.
  • the MMEs 1a-25 are connected to the eNBs 1a-30, which are existing base stations.
  • the terminals 1a-15 supporting the LTE-NR Dual Connectivity can transmit and receive data while maintaining connection to the gNBs 1a-10 as well as the eNBs 1a-30.
  • FIG. 1B is a view for explaining a wireless connection state transition in a next generation mobile communication system according to an embodiment of the present invention.
  • connected mode connected mode or RRC connected mode, 1b-35
  • standby mode idle mode or RRC idle mode 1b-45
  • the two modes transit through the establishment procedure and the release procedure (1b-40).
  • the next generation mobile communication system has three radio connection states (RRC states).
  • the connected mode (connected mode or RRC_CONNECTED, 1b-05) is a wireless connection state in which the terminal can transmit and receive data.
  • the idle mode (RRC_IDLE, 1b-30) is a wireless connection state in which the UE monitors whether paging is transmitted to the UE.
  • the above two modes are wireless connection state applied to the existing LTE system, and the detailed description is the same as that of the existing LTE system.
  • a new non-active mode inactive mode or RRC_INACTIVE, 1b-15 wireless connection state is defined.
  • the wireless connection state the UE context is maintained in the BS and the UE, and RAN based paging is supported. The features of the new wireless connection state are listed below.
  • the UE AS context is stored in at least one gNB and the UE;
  • - RAN-based notification area is managed by NR RAN;
  • - NR RAN knows the RAN-based notification area which belongs to the UE;
  • the new INACTIVE wireless connection state may transition to a connection mode or a standby mode using a specific procedure.
  • connection activation it switches from INACTIVE mode to CONNECT mode, and from CONNECT mode to INACTIVE mode by using Connection inactivation procedure (1b-10).
  • the Connection activation / inactivation procedure is one or more RRC messages transmitted / received between the UE and the BS, and is comprised of one or more steps. It is also possible to switch from INACTIVE mode to standby mode according to a specific procedure (1b-20).
  • a variety of methods, such as a specific message exchange or timer based or event based may be considered as the specific procedures mentioned above. Switching between connection mode and standby mode can follow existing LTE technology. That is, through the connection establishment or release procedure, the mode switching can be performed (1b-25).
  • 1C is a diagram for explaining a phenomenon in which a wireless connection state is inconsistent in an LTE system according to an embodiment of the present invention.
  • the terminal 1c-05 is connected to the base station 1c-10 (1c-15).
  • the base station 1c-10 transmits an RRC connection release message to the terminal 1c-05 to switch the terminal 1c-05 to the standby mode.
  • the terminal 1c-05 may not receive the message (1c-20).
  • the base station 1c-10 does not wait for the hybrid automatic repeat request (HARQ) feedback for the message in the existing standard technology, and immediately assumes that the terminal 1c-05 is switched to the standby mode (1c-30).
  • HARQ hybrid automatic repeat request
  • FIG. 1D is a view for explaining a method for solving the phenomenon that the wireless connection state is inconsistent in the LTE system according to the embodiment of the present invention.
  • one timer is introduced in the LTE system.
  • the timer is provided to the terminal 1d-05 using dedicated signaling.
  • the base station 1d-10 may include the timer information in an RRC connection setup message in the establishment procedure and provide the timer information to the terminal 1d-05 (1d-15).
  • the terminal (1d-05) having received the timer information drives the timer (1d-20).
  • the timer restarts every time data is generated in the uplink and the downlink (1d-25). If the timer expires, the terminal 1d-05 automatically switches to the standby mode (1d-40).
  • both the terminal 1d-05 and the base station 1d-10 are in a standby mode (1d-45, 1d-50).
  • an RRC state or an action to be performed by the UE is set when the timer expires.
  • a terminal in a connection mode can be switched to a standby mode or an inactive mode using an RRC connection release message. Therefore, it may be effective to set the RRC state to be switched according to the intention of the network rather than switching to the fixed RRC state at the expiration of the timer. For example, the idle mode may be switched to the inactive mode rather than the batch mode, thereby minimizing the signaling overhead required when switching back to the connected mode.
  • the RRC state in which the UE should switch is set.
  • the network sets the timer to the terminal and also sets an RRC state to be switched when the timer expires.
  • the network may also provide parameters associated with the inactive mode.
  • the parameters are I-RNTI, paging area configuration, and the like.
  • I-RNTI denotes an indicator for distinguishing between terminals in an inactive mode
  • a paging area configuration is a cell unit or a specific cell group area information in which paging provided to the terminal is transmitted.
  • the RRC state to be switched is the standby mode, the network transmits an RRC connection release message and then switches to the standby mode. After the timer expires, the terminal enters a standby mode.
  • the network transmits an RRC connection release message and then switches to the inactive mode. After the timer expires, the terminal switches to the inactive mode. If the RRC state to be switched is the inactive mode and the parameters related to the inactive mode are not provided from the network, the terminal releases the existing connection and performs RRC connection establishment to obtain the parameter. After transmitting the RRC connection release message, the network switches to the inactive mode and responds to the RRC connection establishment of the UE.
  • an operation to be performed by the terminal is set when the DataInactivityTimer expires.
  • the network sets the timer to the terminal and also sets an operation to be performed when the timer expires. If the action to be performed is a standby mode transition, the network transmits an RRC connection release message and then enters standby mode. After the timer expires, the terminal enters a standby mode. If the operation to be performed is an RRC connection establishment, the UE performs RRC connection establishment after the timer expires. After transmitting the RRC connection release message, the network switches to the inactive mode and responds to the RRC connection establishment of the UE.
  • the DataInactivityTimer setting is applied only to the MAC layer that manages the MeNB (master eNB). That is, if the data transmission connected to the MeNB does not occur until the timer expires, the terminal performs the above operation. On the other hand, if the data transmission connected to the SeNB (secondary eNB) does not affect the start or restart of the timer, or if the data transmission connected to the SeNB does not occur until the timer expires, the terminal does not perform the above- Only the timer is restarted.
  • FIG. 1E is a flowchart of a process for solving the problem that the wireless connection state is inconsistent according to the embodiment of the present invention.
  • the terminal 1e-05 camps on one cell (1e-15).
  • the terminal 1e-05 performs RRC connection establishment with the base station 1e-10 (1e-20).
  • a dedicated control channel (DCCH) 1 and a signaling radio bearer (SRB) 1 are set.
  • the BS 1e-10 sets DCCH 2 and SRB 2 using the RRC connection reconfiguration message to the MS 1e-05, and sets a dedicated traffic channel (DTCH) and a DRB (1e-25).
  • the terminal transmits and receives data to and from the base station through the established logical channel and the radio bearer.
  • a medium access control (MAC) layer receives or transmits a MAC SDU (service data unit) over a DCCH or a DTCH.
  • MAC SDU service data unit
  • the base station 1e-10 sets an RRC state or an operation to be performed by the terminal 1e-05 to be switched by the DataInactivityTimer and the UE 1e-05 using the RRC connection reconfiguration message (1e-35).
  • the setting may be provided not only to the RRC connection reconfiguration but also to the terminal 1e-05 in the RRC connection establishment process.
  • the terminal 1e-05 starts a timer and restarts the timer every time data transmission / reception occurs (1e-45). If the RRC connection release message transmitted from the network is lost (1e-55) in the radio transmission interval and the timer expires, the terminal 1e-05 confirms the set RRC state or an operation to be performed (1e-50). Performs the operations of the above-mentioned 1-1 or 1-2 according to the RRC state to be switched or the operation to be performed. Finally, the terminal 1e-05 and the base station 1e-10 maintain the same RRC state (1e-60, 1e-65)
  • 1F is a flowchart of a terminal operation according to an embodiment of the present invention.
  • step 1f-05 the MS performs RRC connection establishment with the BS.
  • step 1f-10 the MS enters a connection mode.
  • step 1f-15 the UE receives a DataInactivityTimer and an RRC state or an action to be performed by the UE.
  • step 1f-20 the MS starts a timer after the setting, and restarts the timer every time data transmission / reception occurs.
  • step 1f-25 when the timer expires, the UE confirms the set RRC state or an operation to be performed. Performs the operations of the above-mentioned 1-1 or 1-2 according to the RRC state to be switched or the operation to be performed.
  • 1G is a flowchart of base station operation according to an embodiment of the present invention.
  • step g-05 the base station performs RRC connection establishment with the UE.
  • step 1g-10 the BS recognizes that the MS is switched to a connection mode.
  • step 1g-15 the BS sets a DataInactivityTimer and an RRC state or an action to be performed by the UE.
  • step 1g-20 the BS transmits an RRC connection release message to the MS.
  • the BS transitions the UE to a specific RRC state after a predetermined time elapses. If the BS sets the RRC state to be in the RRC state to be switched, the BS transmits the RRC message and switches the UE to the standby mode after a predetermined time elapses. If the BS sets the RRC state to be in the inactive mode, the BS transmits the RRC message and switches the terminal to the inactive mode after a predetermined time elapses.
  • 1 H is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • the terminal includes a radio frequency (RF) processor 1h-10, a baseband processor 1h-20, a storage 1h-30, and a controller 1h-40 .
  • the control unit 1h-40 may include a multiple connection processing unit 1h-42.
  • the RF processor 1h-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 1h-10 up-converts the baseband signal provided from the baseband processor 1h-20 to an RF band signal and transmits the RF band signal through the antenna, To a baseband signal.
  • the RF processor 1h-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter . In the figure, only one antenna is shown, but the terminal may have a plurality of antennas.
  • the RF processor 1h-10 may include a plurality of RF chains.
  • the RF processor 1h-10 may perform beamforming. For the beamforming, the RF processor 1h-10 may adjust the phase and size of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the RF processor may perform MIMO and may receive multiple layers when performing a MIMO operation.
  • the baseband processor 1h-20 performs a function of converting a baseband signal and a bit string according to a physical layer specification of the system. For example, at the time of data transmission, the baseband processing unit (1h-20) generates complex symbols by encoding and modulating transmission bit streams. Also, upon receiving data, the baseband processor 1h-20 demodulates and decodes the baseband signal provided from the RF processor 1h-10 to recover the received bitstream.
  • the baseband processing unit (1h-20) generates complex symbols by encoding and modulating transmission bit streams and transmits the complex symbols to subcarriers And then constructs OFDM symbols by IFFT (Inverse Fast Fourier Transform) operation and CP (cyclic prefix) insertion.
  • IFFT Inverse Fast Fourier Transform
  • CP cyclic prefix
  • the baseband processing unit 1h-20 divides the baseband signal provided from the RF processing unit 1h-10 into OFDM symbol units and performs FFT (fast Fourier transform) operation on the subcarriers Restores the mapped signals, and then restores the received bit stream through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processing unit 1h-20 and the RF processing unit 1h-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 1h-20 and the RF processing unit 1h-10 may be referred to as a transmitting unit, a receiving unit, a transmitting / receiving unit, or a communication unit. Further, at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include a plurality of communication modules to support a plurality of different radio access technologies. Also, at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include different communication modules for processing signals of different frequency bands.
  • the different wireless access technologies may include a wireless LAN (e.g., IEEE 802.11), a cellular network (e.g., LTE), and the like.
  • the different frequency bands may include a super high frequency (SHF) band (e.g., 2. NRHz, NRhz), and a millimeter wave (e.g., 60 GHz) band.
  • SHF super high frequency
  • the storage unit 1h-30 stores data such as a basic program, an application program, and setting information for operating the terminal.
  • the storage unit 1h-30 may store information related to a second access node performing wireless communication using a second wireless access technology.
  • the storage unit 1h-30 provides the stored data at the request of the controller 1h-40.
  • the controller 1h-40 controls overall operations of the terminal according to an embodiment of the present invention.
  • the controller 1h-40 transmits and receives signals through the baseband processor 1h-20 and the RF processor 1h-10.
  • the controller 1h-40 writes data to and reads data from the storage unit 1h-40.
  • the controller 1h-40 may include at least one processor.
  • the controller 1h-40 may include a communication processor (CP) for controlling communication and an application processor (AP) for controlling an upper layer such as an application program.
  • CP communication processor
  • AP application processor
  • 1I is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the base station includes an RF processing unit 1i-10, a baseband processing unit 1i-20, a backhaul communication unit 1i-30, a storage unit 1i-40 and a control unit 1i-50.
  • the RF processor 1i-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 1i-10 up-converts the baseband signal provided from the baseband processor 1i-20 to an RF band signal, and transmits the RF band signal through the antenna, To a baseband signal.
  • the RF processor 1i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas.
  • the RF processor 1i-10 may include a plurality of RF chains.
  • the RF processor 1i-10 may perform beamforming. For the beamforming, the RF processor 1i-10 can adjust the phase and size of signals transmitted and received through a plurality of antennas or antenna elements. The RF processor may perform downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 1i-20 performs a function of converting a baseband signal and a bit string according to a physical layer standard of the first radio access technology. For example, at the time of data transmission, the baseband processing unit 1i-20 generates complex symbols by encoding and modulating transmission bit streams. Also, upon receiving the data, the baseband processing unit (1i-20) demodulates and decodes the baseband signal provided from the RF processing unit (1i-10) to recover the received bit stream. For example, in accordance with the OFDM scheme, when data is transmitted, the baseband processing unit 1i-20 generates complex symbols by encoding and modulating transmission bit streams, maps the complex symbols to subcarriers, And constructs OFDM symbols through operation and CP insertion.
  • the baseband processing unit 1i-20 divides the baseband signal provided from the RF processing unit 1i-10 into OFDM symbol units, and restores the signals mapped to the subcarriers through the FFT operation And then demodulates and decodes the received bit stream.
  • the baseband processing unit 1i-20 and the RF processing unit 1i-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 1i-20 and the RF processing unit 1i-10 may be referred to as a transmitting unit, a receiving unit, a transmitting / receiving unit, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 1i-30 provides an interface for performing communication with other nodes in the network. That is, the backhaul communication unit 1i-30 converts a bit string transmitted from the base station to another node, for example, a sub-base station or a core network, into a physical signal, .
  • the storage unit (1i-40) stores data such as a basic program, an application program, and setting information for the operation of the base station.
  • the storage unit (1i-40) can store bearer information allocated to the connected terminals, measurement results reported from the connected terminals, and the like.
  • the storage unit 1i-40 may provide multiple connections to the terminal or may store information serving as a criterion for determining whether to suspend the terminal.
  • the storage unit 1i-40 provides the stored data at the request of the controller 1i-50.
  • the controller 1i-50 controls the overall operation of the base station according to the embodiment of the present invention.
  • the control unit 1i-50 transmits and receives signals through the baseband processing unit 1i-20 and the RF processing unit 1i-10 or through the backhaul communication unit 1i-30.
  • the controller 1i-50 records and reads data in the storage unit 1i-40.
  • the controller 1i-50 may include at least one processor.
  • FIG. 2A is a diagram illustrating a structure of an LTE system according to an embodiment of the present invention.
  • the radio access network of the LTE system includes an Evolved Node B (hereinafter, referred to as an ENB, a Node B or a base station) 2a-05, 2a-10, 2a-15 and 2a-20, MME 2a-25 (Mobility Management Entity) and S-GW (2a-30, Serving-Gateway).
  • ENB Evolved Node B
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • a user equipment (hereinafter referred to as a UE or a terminal) 2a-35 is connected to an external network through ENBs 2a-05, 2a-10, 2a-15 and 2a-20 and an S- do.
  • ENBs 2a-05, 2a-10, 2a-15, 2a-20 correspond to existing node B of the UMTS system.
  • the ENBs 2a-05 are connected to the UEs 2a-35 over a radio channel and perform a more complex role than the existing Node Bs.
  • a real-time service such as Voice over IP (VoIP) over the Internet protocol is serviced through a shared channel, status information such as buffer status, available transmission power status,
  • VoIP Voice over IP
  • the ENBs 2a-05, 2a-10, 2a-15, and 2a-20 take charge of the scheduling.
  • One ENB normally controls a plurality of cells.
  • an LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology, for example, at a bandwidth of 20 MHz.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC Adaptive Modulation and Coding
  • the S-GW 2a-30 is a device for providing a data bearer and generates or removes a data bearer under the control of the MME 2a-25.
  • the MME 2a-25 includes a plurality of base stations 2a-05, 2a-10, 2a-15, and 2a-20 as mobility management functions for the terminals 2a-35 as well as various control functions. .
  • 2B is a diagram illustrating a wireless protocol structure in an LTE system according to an embodiment of the present invention.
  • the wireless protocol of the LTE system includes PDCP (Packet Data Convergence Protocol 2b-05 and 2b-40), RLC (Radio Link Control 2b-10 and 2b-35) Control 2b-15, 2b-30.
  • Packet Data Convergence Protocol (2b-05, 2b-40) performs operations such as IP header compression / decompression.
  • the main functions of the PDCP are summarized as follows.
  • Radio Link Control (RLC) 2b-10 and 2b-35 reconfigures a PDCP PDU (Packet Data Unit) to an appropriate size to perform an ARQ (automatic repeat request) operation.
  • PDCP PDU Packet Data Unit
  • ARQ automatic repeat request
  • RLC SDU discard function (RLC SDU discard (only for UM and AM data transfer)
  • the MACs 2b-15 and 2b-30 are connected to a plurality of RLC layer devices configured in the UE or the BS, multiplex the RLC PDUs to the MAC PDU, and demultiplex the RLC PDUs from the MAC PDU.
  • the main functions of the MAC are summarized as follows.
  • the physical layers 2b-20 and 2b-25 channel-code and modulate the upper layer data, transmit them in a wireless channel by making them into OFDM symbols, or demodulate and decode OFDM symbols received through a wireless channel, .
  • 2C is a diagram illustrating a structure of a next generation mobile communication system according to an embodiment of the present invention.
  • a radio access network of a next generation mobile communication system includes a next generation base station (NR gNB or NR base station) 2c-10 and an NR CN 2c -05, New Radio Core Network).
  • NR gNB or NR base station next generation base station
  • NR CN next generation CN
  • New Radio Core Network New Radio Core Network
  • a user terminal (New Radio User Equipment) 2c-15 accesses the external network via the NR gNB 2c-10 and the NR CN 2c-05.
  • the NR gNB (2c-10) corresponds to the eNB (Evolved Node B) of the existing LTE system.
  • the NR gNB 2c-10 is connected to the NR UE 2c-15 via a radio channel and can provide a higher level of service than the existing Node B.
  • a device for collecting and scheduling state information such as buffer status, available transmission power state, and channel state of UEs is required. (2c-10).
  • One NR gNB typically controls multiple cells.
  • NR CN (2c-05) performs functions such as mobility support, bearer setup, and QoS setup.
  • the NR CN (2c-05) is a device that performs various control functions as well as a mobility management function for the UE, and is connected to a plurality of base stations.
  • next generation mobile communication system can be interworked with the existing LTE system, and the NR CN (2c-05) is connected to the MME 2c-25 through a network interface.
  • the MME 2c-25 is connected to the eNB 2c-30, which is an existing base station.
  • 2D is a diagram illustrating a radio protocol structure of a next generation mobile communication system according to an embodiment of the present invention.
  • the radio protocol of the next generation mobile communication system includes NR SDAP (2d-01, 2d-45), NR PDCP (2d-05, 2d-40), NR RLC , 2d-35, and NR MACs 2d-15 and 2d-30.
  • the main functions of the NR SDAP (2d-01, 2d-45) may include some of the following functions.
  • mapping of data bearer between uplink and downlink mapping between a QoS flow and a DRB for both DL and UL
  • the UE can be configured to use the header of the SDAP layer device or to use the SDAP layer device function for each PDCP layer device, bearer or logical channel in the RRC message. Is set to '1', the terminal transmits the mapping information for the uplink and downlink QoS flows and the data bearer with the NAS reflective QoS setting 1 bit indicator (AS reflective QoS) of the SDAP header To be renewed or reset.
  • the SDAP header may include QoS flow ID information indicating QoS.
  • the QoS information may be used as a data processing priority, scheduling information, and the like for supporting a desired service.
  • the main functions of the NR PDCP (2d-05, 2d-40) may include some of the following functions.
  • the reordering function of the NR PDCP apparatus refers to a function of rearranging PDCP PDUs received in a lower layer in order based on a PDCP SN (sequence number), and transmitting data to an upper layer in the order of rearrangement And may include a function of directly transmitting PDCP PDUs without considering the order, and may include a function of recording lost PDCP PDUs by rearranging the order, and may include a status report for lost PDCP PDUs To the transmitting side, and may include a function of requesting retransmission of lost PDCP PDUs.
  • the main functions of the NR RLCs (2d-10, 2d-35) may include some of the following functions.
  • the in-sequence delivery function of the NR RLC apparatus refers to a function of delivering RLC SDUs received from a lower layer to an upper layer in order, and an original RLC SDU is divided into a plurality of RLC SDUs And reassembling and delivering the received RLC PDUs when the RLC PDUs are received.
  • the RLC PDUs may include a function of rearranging received RLC PDUs based on a RLC SN (sequence number) or a PDCP SN (sequence number) May include the capability to record lost RLC PDUs and may include the ability to send a status report for lost RLC PDUs to the sender and may include the ability to request retransmission of lost RLC PDUs And may include a function of transferring only the RLC SDUs up to the lost RLC SDU to the upper layer in order of the lost RLC SDU if there is a lost RLC SDU, If all the RLC SDUs received up to the present time have been expired, the RLC SDUs may be transmitted to the upper layer in order, To the upper layer in order.
  • the RLC PDUs may be processed in the order of receiving the RLC PDUs (in the order of arrival of the sequence number and the sequence number), and may be transmitted to the PDCP device in an out-of-sequence delivery manner. It is possible to receive segments that are stored in the buffer or to be received at a later time, reconfigure the received segments into one complete RLC PDU, and transmit the segmented PDCP PDCP device to the PDCP device.
  • the NR RLC layer may not include a concatenation function and may perform the function in the NR MAC layer or in place of the NR MAC layer multiplexing function.
  • the out-of-sequence delivery function of the NR RLC apparatus refers to a function of delivering RLC SDUs received from a lower layer directly to an upper layer regardless of order, SDUs, and reassembling and delivering the RLC PDUs when they are received.
  • the RLC PDU includes a function of storing RLC SN or PDCP SN of the received RLC PDUs and recording the lost RLC PDUs by arranging the order .
  • the NR MACs 2d-15 and 2d-30 may be connected to various NR RLC layer devices configured in the UE or the base station, and the main function of the NR MAC may include some of the following functions.
  • the NR PHY layers 2d-20 and 2d-25 channel-code and modulate the upper layer data, transmit them to the wireless channel by making them into OFDM symbols, or demodulate and decode the OFDM symbols received through the wireless channel, Can be performed.
  • a method is proposed in which a terminal compresses data when the terminal transmits data in the uplink and decompresses the data in the base station, and compresses the data in the transmitting terminal such as a specific header format, And decompresses it at the receiving end.
  • the method proposed by the embodiment of the present invention can be applied to a procedure of compressing and transmitting data when the base station transmits downlink data to the mobile station, and receiving and decompressing the compressed downlink data.
  • data is compressed and transmitted by a transmitter, thereby enabling more data to be transmitted and improving the coverage.
  • FIG. 2E is a diagram illustrating a procedure for determining whether or not a base station performs uplink data compression when a UE establishes a connection with a network according to an embodiment of the present invention.
  • FIG. 2E is a flowchart illustrating a procedure for establishing a connection with a network by switching the terminal from an RRC idle mode or an RRC inactive mode to a RRC connected mode in an RRC inactive mode or a lightly-connected mode
  • UDC uplink data compression
  • the base station may send an RRCConnectionRelease message to the UE to switch the UE to the RRC idle mode (2e-01).
  • a terminal that is not currently connected hereinafter, idle mode UE
  • the MS establishes an uplink transmission synchronization with the BS through a random access procedure and transmits an RRCConnectionRequest message to the BS (2e-05).
  • the message includes an identifier of the terminal and a reason for establishing a connection (establishmentCause).
  • the base station transmits an RRCConnectionSetup message to establish the RRC connection (2e-10).
  • the message may include information indicating whether or not to use the uplink data compression method (UDC) for each logical channel, logical channel configuration, bearer, or PDCP-config. More specifically, each logical channel or bearer, or each PDCP device (or SDAP device), can indicate which IP flow or QoS flow to use for the uplink data compression method (UDC) Information about the IP flow or QoS flow to use or not to use the compression method may be set so that the SDAP apparatus can instruct the PDCP apparatus whether to use the uplink data compression method or not, May self-identify each QoS flow and decide whether or not to apply the uplink compression method).
  • UDC uplink data compression method
  • the message may also include instructions to setup or release to perform uplink decompression.
  • the RLC AM bearer ARQ function, retransmission function, lossless mode
  • the message may indicate whether to use the SDAP layer device function or the SDAP header in each logical channel, logical channel configuration, bearer, or PDCP-config.
  • the message may indicate whether to apply ROHC (IP Packet Header Compression) to each logical channel (logical channel configuration), bearer or PDCP-config (PDCP-config) Respectively, whether ROHC is applied or not.
  • ROHC and UDC can not be configured for a PDCP layer device or a logical channel or bearer at the same time, and UDC can be set for up to two bearers.
  • the message may indicate whether to apply integrity protection to each logical channel, logical channel configuration, bearer or PDCP-config, and the corresponding PDCP layer device, bearer or logical It can be set in consideration of the maximum data rate of the channel.
  • RRC connection configuration information and the like may be stored in the message.
  • the RRC connection is also called a Signaling Radio Bearer (SRB) and is used for transmitting / receiving RRC messages, which are control messages between the UE and the BS.
  • SRB Signaling Radio Bearer
  • the UE having established the RRC connection transmits the RRCConnetionSetupComplete message to the BS (2e-15). If the base station does not know the terminal capabilities for the terminal that is currently establishing a connection, or if it wants to know the terminal capabilities, it can send a message asking for the capabilities of the terminal. The terminal may then send a message reporting its capabilities. In the message, it may indicate whether the UE can use Uplink Data Compression (UDC), ROHC (Robust Header Compression) or Integrity Protection, and includes an indicator indicating the use .
  • UDC Uplink Data Compression
  • ROHC Robot Header Compression
  • Integrity Protection Integrity Protection
  • the base station transmits the SERVICE REQUEST message stored in the RRCConnetionSetupComplete message to the MME (2e-20), and the MME determines whether to provide the service requested by the UE. As a result of the determination, if the UE determines to provide the requested service, the MME transmits an INITIAL CONTEXT SETUP REQUEST message to the BS (2e-25).
  • the INITIAL CONTEXT SETUP REQUEST message includes QoS (Quality of Service) information to be applied when setting up a DRB (Data Radio Bearer) and security related information (e.g., Security Key, Security Algorithm) to be applied to the DRB.
  • QoS Quality of Service
  • DRB Data Radio Bearer
  • security related information e.g., Security Key, Security Algorithm
  • the base station exchanges SecurityModeCommand message (2e-30) and SecurityModeComplete message (2e-35) to establish security with the terminal.
  • the base station transmits an RRCConnectionReconfiguration message to the UE (2e-40).
  • the RRCConnectionReconfiguration message may include information indicating whether the uplink data compression method (UDC) is used in each logical channel, logical channel configuration, bearer, or PDCP-config.
  • each logical channel or bearer, or each PDCP device can indicate which IP flow or QoS flow to use for the uplink data compression method (UDC)
  • UDC uplink data compression method
  • Information about the IP flow or QoS flow to use or not to use the compression method may be set so that the SDAP apparatus can instruct the PDCP apparatus whether to use the uplink data compression method or not, May self-identify each QoS flow and decide whether or not to apply the uplink compression method).
  • it is instructed to use the uplink data compression method it is possible to use an identifier for a predefined library or a dictionary to be used in the uplink data compression method or a buffer for use in the uplink data compression method, Size size, and the like.
  • the message may also include instructions to setup or release to perform uplink decompression.
  • the RLC AM bearer ARQ function, retransmission function, lossless mode
  • the message may indicate whether to use the SDAP layer device function or the SDAP header in each logical channel, logical channel configuration, bearer or PDCP-config.
  • the message may indicate whether to apply ROHC (IP Packet Header Compression) to each logical channel (logical channel configuration), bearer or PDCP-config (PDCP-config) Whether ROHC is applied or not can be set as an indicator.
  • ROHC IP Packet Header Compression
  • ROHC and UDC can not be configured for a PDCP layer device or a logical channel or bearer at the same time, and UDC can be set for up to two bearers.
  • the message may indicate whether to apply integrity protection to each logical channel, logical channel configuration, bearer or PDCP-config, and the corresponding PDCP layer device, bearer or logical It can be set in consideration of the maximum data rate of the channel.
  • the message includes setting information of a DRB to be processed by the user data, and the UE sets DRB by applying the information and transmits an RRCConnectionReconfigurationComplete message to the BS (2e-45).
  • the base station that has completed the DRB setup sends the INITIAL CONTEXT SETUP COMPLETE message to the MME (2e-50).
  • the MME receives the S1 BEARER SETUP message and the S1 BEARER SETUP RESPONSE message to set up the S- (2e-055, 2e-60).
  • the S1 bearer is a data transmission connection established between the S-GW and the base station, and corresponds to the DRB on a one-to-one basis.
  • the terminal transmits and receives data through the S-GW to the base station (2e-65, 2e-70).
  • the general data transmission process consists of three stages: RRC connection setup, security setup, and DRB setup.
  • the base station may transmit the RRCConnectionReconfiguration message (2e-75) in order to renew, add, or change the setting to the UE for a predetermined reason.
  • the message may include information indicating whether or not to use the uplink data compression method (UDC) for each logical channel, logical channel configuration, bearer, or PDCP-config.
  • UDC uplink data compression method
  • each logical channel or bearer, or each PDCP device can indicate which IP flow or QoS flow to use for the uplink data compression method (UDC)
  • UDC uplink data compression method
  • Information about the IP flow or QoS flow to use or not to use the compression method may be set so that the SDAP apparatus can instruct the PDCP apparatus whether to use the uplink data compression method or not, May self-identify each QoS flow and decide whether to apply the uplink compression method).
  • it is instructed to use the uplink data compression method it is possible to use an identifier for a predefined library or a dictionary to be used in the uplink data compression method or a buffer for use in the uplink data compression method, Size size, and the like.
  • the message may also include instructions to setup or release to perform uplink decompression.
  • the RLC AM bearer ARQ function, retransmission function, lossless mode
  • the message may indicate whether to use the SDAP layer device function or the SDAP header in each logical channel, logical channel configuration, bearer or PDCP-config.
  • the message may indicate whether to apply ROHC (IP Packet Header Compression) to each logical channel (logical channel configuration), bearer or PDCP-config (PDCP-config) Whether ROHC is applied or not can be set as an indicator.
  • ROHC IP Packet Header Compression
  • ROHC and UDC can not be configured for a PDCP layer device or a logical channel or bearer at the same time, and UDC can be set for up to two bearers.
  • the message may indicate whether to apply integrity protection to each logical channel, logical channel configuration, bearer or PDCP-config, and the corresponding PDCP layer device, bearer or logical It can be set in consideration of the maximum data rate of the channel.
  • FIG. 2F is a diagram illustrating a procedure and data structure for performing uplink data compression according to an embodiment of the present invention. Referring to FIG.
  • the uplink data 2f-05 may be generated as data corresponding to services such as video transmission, picture transmission, web search, and VoLTE.
  • the data generated in the application layer apparatus is processed through TCP / IP or UDP corresponding to the network data transmission layer, and can be transmitted to the PDCP layer constituting each header 2f-10 and 2f-15 .
  • the PDCP layer receives data (PDCP SDU) from an upper layer, the PDCP layer can perform the following procedure.
  • uplink data compression method is set to be used in the PDCP layer by an RRC message such as 2e-10, 2e-40 or 2e-75 in FIG. 2e, uplink data compression (Header for compressed uplink data, 2f-25) corresponding to the UDC header, and if integrity protection is set, performs integrity protection (integrity protection) And ciphering, and configures the PDCP PDU by configuring the PDCP header 2f-30.
  • the PDCP layer apparatus includes a UDC compression / decompression apparatus.
  • the PDCP layer apparatus determines whether to perform the UDC procedure for each data as set in the RRC message, and uses the UDC compression / decompression apparatus.
  • the transmitting PDCP layer apparatus performs data compression using the UDC compression apparatus
  • the receiving PDCP layer apparatus performs data decompression using the UDC decompression apparatus.
  • the procedure of FIG. 2F described above can be applied not only to the downlink data compression but also to the downlink data compression.
  • the description of the uplink data may be similarly applied to the downlink data.
  • FIG. 2G is a diagram illustrating an embodiment of an uplink data compression method according to an embodiment of the present invention. Referring to FIG.
  • FIG. 2G is a diagram illustrating a DEFLATE-based uplink data compression algorithm, and a DEFLATE based uplink data compression algorithm is a lossless compression algorithm.
  • the DEFLATE-based uplink data compression algorithm basically compresses the uplink data by combining the LZ77 algorithm and Huffman coding.
  • the LZ77 algorithm performs an operation of finding a redundant array of data, and when a duplicate array is searched, a redundant array is searched in a sliding window through a sliding window. If there is a redundant array, The data compression is performed by expressing the degree of redundancy with the position in the form of length.
  • the sliding window is also referred to as a buffer in an uplink data compression method (UDC), and may be set to 8 kilobytes or 32 kilobytes. That is, the sliding window or buffer can record 8,192 or 32,768 characters, find redundant arrays, and express the position and length to perform compression. Therefore, since the LZ algorithm is a sliding window method, the previously coded data is updated in the buffer and the next data is coded again, so that the data is correlated with each other. Therefore, the first data can be normally decoded before the coded data is normally decoded.
  • the compressed codes (position, length, etc.) expressed in position and length by the LZ77 algorithm are further compressed through Huffman coding.
  • the Hoffman coding uses the short notation for the redundant codes and the short notation for the redundant codes to find the redundant codes again.
  • the Hoffman coding is a prefix code and is an optimal coding scheme in which all codes have a distinctive decodable characteristic.
  • the LZ77 algorithm is applied to the original data 2g-05 to perform encoding (2g-10), the buffer is updated (2g-15), and the contents (or data) Checksum bits can be generated and configured in the UDC header.
  • the checksum bits are used to determine whether the buffer state is valid at the receiving end.
  • the codes encoded by the LZ77 algorithm can be further compressed by Hoffman coding and transmitted as uplink data (2g-25).
  • the receiver performs decompression of the received compressed data in the reverse order of the transmitter. That is, Hoffman decoding is performed (2g-30), the buffer is updated (2g-35), and the validity of the updated buffer is confirmed with the checksum bits of the UDC header. If it is determined that the checksum bits are not erroneous, the data can be decompressed (2g-40) by decoding with the LZ77 algorithm, and the original data can be decompressed and transferred to the upper layer (2g-45).
  • the receiving PDCP layer apparatus confirms the PDCP sequence number of the PDCP header, confirms the UDC header (confirms whether the data compression is performed or not), and transmits the PDCP serial number in ascending order of the PDCP serial number And then performs a data decompression procedure in that order.
  • FIG. 2H is a diagram illustrating a procedure and data structure for performing ROHC (Robust Header Compression) header compression according to an embodiment of the present invention.
  • ROHC Robot Header Compression
  • the uplink data 2h-05 may be generated as data corresponding to services such as video transmission, picture transmission, web search, and VoLTE.
  • the data generated in the application layer apparatus is processed through TCP / IP or UDP corresponding to the network data transmission layer, and can be transmitted to the PDCP layer constituting each header 2h-10 and 2h-15 .
  • the PDCP layer receives data (PDCP SDU) from an upper layer, the PDCP layer can perform the following procedure.
  • ROHC header compression
  • the PDCP layer apparatus includes a header compression / decompression apparatus.
  • the header decompression / decompression apparatus determines whether to perform header compression or not for each data as set in the RRC message. At the transmitting end, the transmitting PDCP layer apparatus performs data compression using a header compression apparatus, and at the receiving end, the receiving PDCP layer apparatus performs header decompression using a header decompression apparatus.
  • the procedure of FIG. 2H described above can be applied not only to the downlink header compression but also to the header compression of the downlink data.
  • the description of the uplink data may be similarly applied to the downlink data.
  • 2I is a diagram illustrating a procedure for generating an SDAP header for data received from an upper layer according to an embodiment of the present invention and encrypting the SDAP header in the PDCP layer apparatus.
  • the SDAP layer device is configured to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG. 2e, or to transmit data from an upper layer
  • the SDP header can be generated and configured as in 2i-05 and transmitted to the PDCP layer device.
  • the integrity verification is set on the PDCP SDU (SDAP header and IP packet, 2i-10) received from the upper SDAP layer apparatus, the PDCP layer apparatus performs integrity protection, performs encryption, and generates a PDCP header And transmits the data to the lower layer, so that the data processing can be performed in the RLC layer device and the MAC layer device.
  • FIG. 2J is a diagram illustrating a procedure of generating an SDAP header for data received from an upper layer according to an embodiment of the present invention, and not encrypting the SDAP header in the PDCP layer apparatus.
  • the SDAP layer device when the SDAP layer device is set to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG. 2e, or if it is set to use the SDAP header, Upon receipt, the SDP header can be generated and configured as in 2j-05 and transmitted to the PDCP layer device.
  • the PDCP layer device encrypts only the remaining data (IP packet) except the SDAP header for the PDCP SDU (SDAP header and IP packet, 2j-10) received from the upper SDAP layer device.
  • the PDCP layer device extracts the remaining data (IP packet) excluding the SDAP header for the PDCP SDU (SDAP header and IP packet, 2j-10) received from the upper SDAP layer device, And the like. That is, if the integrity verification is set, the PDCP layer device performs integrity protection for the remaining data (IP packet) except for the SDAP header for the PDCP SDU (SDAP header and IP packet, 2j-10) received from the upper SDAP layer device After performing encryption, the PDCP header is generated, configured and joined, and transferred to the lower layer so that the RLC layer device and the MAC layer device process the data. If the SDAP header is not encrypted as described above, the structure of the base station implementation can be facilitated.
  • the SDU header is not encrypted in the CU in the split structure of the CU (Central Unit) -DU (Distributed Unit) Since QoS information can be checked and applied to scheduling, it can be advantageous to adjust and adjust QoS. In addition, there is an advantage in terms of data processing in terminal and base station implementation.
  • 2K is a diagram illustrating a gain in a structure of a base station implementation when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • the upper layer devices for example, the PDCP layer device and its upper layer devices
  • the CU-DU split structure the SDAP header is not encrypted in the plurality of DUs 2k-15 Therefore, the SDAP header (2k-10) can be read and QoS information can be confirmed and applied to the scheduling of the DU. Therefore, DU can utilize the QoS information of the SDAP header for allocating and scheduling transmission resources, which is advantageous for adjusting and adjusting QoS for each service.
  • FIG. 21 is a diagram illustrating a processing gain obtainable in a base station and a terminal implementation when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • the SDAP layer device and the PDCP layer device can be integrated into one layer device (2l-01). Since the SDAP layer device is logically an upper layer device of the PDCP layer device, when the SDAP layer device receives data (2l-05) from the upper application layer, the SDAP layer device performs RRC If the SDAP layer device function is set to use the message or the SDAP header is set to be used, the SDAP header should be generated and configured as shown in 2j-05 of FIG. However, the ciphering procedure or the integrity protection procedure in the terminal and the base station implementation can be implemented by applying the HW (hardware) accelerator because it is a high-complexity operation. These HW accelerators have high processing gains in repetitive and continuous procedures.
  • HW hardware
  • the SDAP layer apparatus constructs the SDAP header each time data is received from the upper layer apparatus, performs the encryption procedure on the data portion excluding the SDAP header, generates the PDCP header, and attaches the PDCP header to the SDAP header, It may interfere with the HW accelerator due to the procedure of generating the SDAP header before performing the SDAP header.
  • a method of integrating an SDAP layer device and a PDCP layer device together with an unencrypted SDAP header is implemented as a single layer device. That is, when data is received from an upper application layer, the PDCP header and the SDAP header (2l-10) are concurrently generated and transmitted to the lower layer .
  • the generation of the PDCP header and the SDAP header may be performed in parallel with the encryption procedure.
  • an SDAP header, a PDCP header, an RLC header, or a MAC header are generated together, and headers are connected at the head of the data-processed data to prepare for transmission You can prepare.
  • the receiving end separates the SDAP header, the PDCP header, the UDC header or the RLC header or the MAC header from the data all at once, grasps the information corresponding to each layer, and processes the data in the reverse order of the data processing of the transmitting end . Therefore, the HW accelerator can be applied continuously and repeatedly, and the data processing efficiency can be improved because there is no interruption such as generation of the SDAP header in the middle. Also, if integrity protection is set, the integrity protection may be repeatedly performed by applying a hardware accelerator as described in the encryption procedure before performing the encryption procedure. That is, integrity protection can be applied and encryption can be performed.
  • the receiving PDCP layer apparatus may also be implemented as a single layer apparatus by integrating the SDAP layer apparatus and the PDCP layer apparatus as in the case of 2l-01. That is, when data is received from a lower layer (RLC layer), the SDAP layer device function is set to be used by an RRC message such as 2e-10, 2e-40, or 2e-75 in FIG. , The PDCP header and the SDAP header are read at once, the headers are removed, and the deciphering procedure is repeatedly applied to the data. If the integrity protection is set, the integrity verification may be repeatedly performed after the decryption procedure is performed by applying a hardware accelerator as described in the decryption procedure. That is, it can perform decryption and perform integrity verification.
  • FIG. 2M is a diagram illustrating a processing gain obtainable in a base station and a terminal implementation in which ROHC is set when an unencrypted SDAP header according to an embodiment of the present invention is applied.
  • an SDAP layer device and a PDCP layer device may be integrated to realize a single layer device (2m-01). Since the SDAP layer device is logically an upper layer device of the PDCP layer device, when the SDAP layer device receives data (2m-05) from the upper application layer, the SDAP layer device performs RRC If the SDAP layer device function is set to use the message or the SDAP header is set to be used, the SDAP header should be generated and configured as shown in 2j-05 of FIG. However, since the ciphering procedure is a complex operation in the terminal and base station implementation, it can be implemented by applying a hardware accelerator (HW). These HW accelerators have high processing gains in repetitive and continuous procedures.
  • HW hardware accelerator
  • the SDAP layer apparatus constructs the SDAP header each time data is received from the upper layer apparatus, performs the encryption procedure on the data portion excluding the SDAP header, generates the PDCP header, and attaches the PDCP header to the SDAP header, It may interfere with the HW accelerator due to the procedure of generating the SDAP header before performing the SDAP header.
  • a method of integrating an SDAP layer device and a PDCP layer device together with an unencrypted SDAP header is implemented as a single layer device. That is, when data is received from an upper application layer, ROHC is applied every time data is received to compress the upper layer data to generate a compressed header (2m-07), and the encryption procedure is continuously and repeatedly performed. And an SDAP header (2m-10) can be generated at the same time, and the data can be transmitted to the lower layer by connecting to the encrypted data.
  • the generation of the PDCP header and the SDAP header may be performed in parallel with the encryption procedure.
  • an SDAP header, a PDCP header, an RLC header, or a MAC header are generated together, and headers are connected at the head of the data-processed data to prepare for transmission You can prepare.
  • the receiving end separates the SDAP header, the PDCP header, the UDC header or the RLC header or the MAC header from the data all at once, grasps the information corresponding to each layer, and processes the data in the reverse order of the data processing of the transmitting end . Therefore, the HW accelerator can be applied continuously and repeatedly, and the data processing efficiency can be improved because there is no interruption such as generation of the SDAP header in the middle.
  • the integrity protection may be repeatedly performed by applying a hardware accelerator as described in the encryption procedure before performing the encryption procedure. That is, integrity protection can be applied and encryption can be performed.
  • a method of integrating the SDAP layer apparatus and the PDCP layer apparatus in an integrated manner such as 2m-01 and implementing it as a single layer apparatus can be applied when the ROHC is set. That is, when data is received from a lower layer (RLC layer), the SDAP layer device function is set to be used by an RRC message such as 2e-10, 2e-40, or 2e-75 in FIG. , The PDCP header and the SDAP header are read and removed at a time, the decryption process is repeatedly applied to the data, and the decompression procedure is performed on the upper layer header (IP packet header). If the integrity protection is set, the integrity verification may be repeatedly performed after the decryption procedure is performed by applying a hardware accelerator as described in the decryption procedure. That is, it can perform decryption and perform integrity verification.
  • FIG. 2n is a diagram for explaining how to generate an SDAP header for data received from an upper layer according to an embodiment of the present invention and applying a user data compression procedure (UDC) to the SDAP header in the PDCP layer apparatus.
  • UDC user data compression procedure
  • the SDAP layer device is configured to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG. 2e, or to use the SDAP header, data compression (UDC)) is set up, it can generate and configure an SDAP header like 2n-05 and transmit it to the PDCP layer device when it receives data from an upper layer.
  • the PDCP layer device may perform user data compression on the PDCP SDU (SDAP header and IP packet, 2n-06) received from the upper SDAP layer device (2n-07).
  • the UDC header can be generated and attached (2n-10) by computing the checksum field and setting UDC applicability.
  • the UDC header and the compressed UDC block are encrypted and a PDCP header (2n-20) is generated and configured, and the data is transmitted to the lower layer, and the data processing can be performed in the RLC layer device and the MAC layer device.
  • the procedure illustrated in FIG. 2n may be characterized in that a user data compression (UDC) procedure is applied to the SDAP header.
  • UDC user data compression
  • the SDAP header is encrypted because the encryption procedure is applied to the compressed UDC block. Therefore, the advantages of the base station implementation described in FIG. 2k and the processing gains of the base station and the terminal described in FIGS. 21 and 2m can not be obtained. Therefore, in the embodiment of the present invention, the advantage of the base station implementation described above with reference to FIG. 2K and the procedure of applying the user data compression (UDC) procedure to the SDAP header in order to obtain the processing gain of the base station and the terminal, Lt; / RTI >
  • 2O is a diagram illustrating a method of generating an SDAP header for data received from an upper layer according to an embodiment of the present invention and not applying a user data compression procedure (UDC) to the SDAP header in the PDCP layer apparatus .
  • UDC user data compression procedure
  • the SDAP layer device is configured to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG. 2e, or to use the SDAP header, data compression (UDC) is set up, when receiving data from an upper layer, it can generate and configure an SDAP header like 2o-05 and transmit it to the PDCP layer device.
  • the PDCP layer device can perform user data compression on the remaining data parts excluding the SDAP header in the PDCP SDU (SDAP header and IP packet, 2o-06) received from the upper SDAP layer device (2o-07).
  • the UDC header can be generated and attached (2o-10) by calculating the checksum field and setting UDC applicability.
  • integrity protection is set, integrity protection is applied to the UDC header and the compressed UDC block before the encryption procedure is performed. Then, the UDC block and the compressed UDC block are encrypted using the UDC block (2o-15, 2o-20), and encrypts the UDC header separately.
  • the SDAP header is removed, the UDC header and the UDC block are encrypted at once, the unencrypted SDAP header is inserted between the UDC header and the UDC block, the data is composed, and the PDCP header 2o-20) are generated and configured, and the data is transmitted to the lower layer after joining, so that the RLC layer device and the MAC layer device can process the data.
  • the present invention can be an embodiment for enhancing security.
  • the procedure illustrated in FIG. 20 may be characterized in that the user data compression (UDC) procedure is not applied to the SDAP header. Therefore, it is possible to obtain the processing gain of the base station and the terminal described with reference to FIG. 2K and the advantages of the base station implementation described with reference to FIG. 2K.
  • UDC user data compression
  • the user data compression procedure becomes complicated in the terminal and base station implementation, and it may be unnecessarily performed twice when encryption and decryption are performed. Data processing can be complicated even once. Therefore, in the embodiment of the present invention, a method of not performing encryption in the UDC header is proposed.
  • 2P illustrates a method of generating an SDAP header for data received from an upper layer and not applying encryption to a UDC header without applying a user data compression procedure (UDC) to the SDAP header in the PDCP layer apparatus in the embodiment of the present invention Suggesting and explaining this.
  • UDC user data compression procedure
  • the SDAP layer device is configured to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG. 2e, or to use the SDAP header, data compression (UDC)) is established, the SDP header can be generated and configured as shown in 2p-05 and transmitted to the PDCP layer device upon receiving data from the upper layer.
  • the PDCP layer device can perform user data compression on the remaining data parts excluding the SDAP header in the PDCP SDU (SDAP header and IP packet, 2p-06) received from the upper SDAP layer device (2p-07). If the integrity protection is set, the integrity protection may be applied to the UDC block compressed by the user data compression before the encryption procedure is performed.
  • the encryption can be applied to the UDC block compressed by the user data compression (2p-10). Then, the UDC header can be generated and attached by calculating the checksum field and setting whether UDC is applied (2p-15, 2p-20). Then, the PDCP header is generated, configured, joined, and transmitted to the lower layer so that data processing can be performed in the RLC layer device and the MAC layer device.
  • the user data compression procedure and the encryption / decryption procedure are simplified in the terminal and the base station implementation. The processing procedure of the implementation is simplified and the processing burden can be reduced.
  • the procedure illustrated in FIG. 2P may be characterized in that the user data compression (UDC) procedure is not applied to the SDAP header and the UDC header is not encrypted. And the encryption is not performed without applying the integrity protection to the UDC header and the SDAP header. Therefore, it is possible to obtain the processing gain of the base station and the terminal described with reference to FIG. 2K and the advantages of the base station implementation described with reference to FIG. 2K. Also, if encryption is not performed in the UDC header in the above procedure, the validity of the UDC buffer contents can be verified by reading and calculating the checksum field of the UDC header before performing deciphering at the receiving end. Therefore, if a checksum failure occurs, it is possible to perform the checksum failure processing procedure without discarding the data without performing the decoding procedure, thereby reducing the burden of processing processing.
  • UDC user data compression
  • FIG. 2Q illustrates a case where an unencrypted UDC header is applied to an SDAP / PDCP layer device, a bearer or a logical channel in which a UDC is set when an SDAP header that is not encrypted and user data compression is applied and an unencrypted UDC header is applied according to an embodiment of the present invention
  • Figure 6 is a diagram illustrating the processing gain available in a terminal implementation.
  • the SDAP layer device and the PDCP layer device may be integrated into one layer device (2q-01). Since the SDAP layer device is logically an upper layer device of the PDCP layer device, when the SDAP layer device receives data (2q-05) from the upper application layer, the SDAP layer device performs RRC such as 2e-10 or 2e-40 or 2e- If the SDAP layer device function is set to use the message or the SDAP header is set to be used, the SDAP header should be generated and configured as shown in 2j-05 of FIG. However, since the ciphering procedure is a complex operation in the terminal and base station implementation, it can be implemented by applying a hardware accelerator (HW).
  • HW hardware accelerator
  • HW accelerators have high processing gains in repetitive and continuous procedures.
  • the SDAP layer apparatus constructs the SDAP header each time data is received from the upper layer apparatus, performs the encryption procedure on the data portion excluding the SDAP header, generates the PDCP header, and attaches the PDCP header to the SDAP header, It may interfere with the HW accelerator due to the procedure of generating the SDAP header before performing the SDAP header.
  • the UDC block is generated by compressing data of the upper layer by applying user data compression (UDC) every time data is received (2q-05), and continuously
  • UDC user data compression
  • the PDCP header, the UDC header, and the SDAP header (2q-15) may be generated at the same time, and the PDCP header and the SDAP header (2q-15) may be concatenated to the encrypted data and transmitted to the lower layer.
  • the generation of the PDCP header, the UDC header and the SDAP header may be performed in parallel with the encryption procedure.
  • a header When a header is generated in parallel, a SDAP header, a PDCP header, a UDC header, an RLC header, or a MAC header are generated together, and headers are connected at the head of the data processed data to prepare for transmission PDU configuration).
  • the receiving end separates the SDAP header, the PDCP header, the UDC header or the RLC header or the MAC header from the data all at once, grasps the information corresponding to each layer, and processes the data in the reverse order of the data processing of the transmitting end . Therefore, the HW accelerator can be applied continuously and repeatedly, and the data processing efficiency can be improved because there is no interruption such as generation of the SDAP header in the middle.
  • the HW accelerator may also be applied to the user compressed data procedure. Also, if integrity protection is set, the integrity protection may be repeatedly performed by applying a hardware accelerator as described in the encryption procedure before performing the encryption procedure. That is, integrity protection can be applied and encryption can be performed.
  • the receiving PDCP layer apparatus can also be applied to a case where the UDC is set up as a method of integrating the SDAP layer apparatus and the PDCP layer apparatus in an integrated manner, such as 2q-01, as a single layer apparatus. That is, when data is received from a lower layer (RLC layer), the SDAP layer device function is set to be used by an RRC message such as 2e-10, 2e-40, or 2e-75 in FIG. , The PDCP header, the UDC header, and the SDAP header are read and removed at once, a decryption process is repeatedly applied to the data, and a user data decompression procedure is performed.
  • RRC layer lower layer
  • the PDCP header, the UDC header, and the SDAP header are read and removed at once, a decryption process is repeatedly applied to the data, and a user data decompression procedure is performed.
  • the integrity verification may be repeatedly performed after the decryption procedure is performed by applying a hardware accelerator as described in the decryption procedure. That is, it can perform decryption and perform integrity verification.
  • FIG. 2r is a diagram illustrating an SDAP / PDCP layer device in which a UDC is set up, a transmission SDAP in a bearer or a logical channel when an unencrypted UDC header is applied according to an embodiment of the present invention, / PDCP layer apparatus and the operation of the receiving SDAP / PDCP layer apparatus.
  • the SDAP layer device and the PDCP layer device may be integrated into a single layer device (2r-01).
  • a method of integrating SDAP layer device and PDCP layer device together with an unencrypted SDAP header and implementing it as a single layer device is proposed when UDC is set.
  • the transmitting SDAP / PDCP layer device compresses the data of the upper layer by applying user data compression (UDC) every time data is received to generate a compressed UDC block (2r-10), the encryption procedure is continuously and repeatedly performed (2r-15), the PDCP header, the UDC header and the SDAP header 2r-20 are generated at the same time, .
  • the generation of the PDCP header, the UDC header and the SDAP header may be performed in parallel with the encryption procedure.
  • a header When a header is generated in parallel, a SDAP header, a PDCP header, a UDC header, an RLC header, or a MAC header are generated together, and headers are connected at the head of the data processed data to prepare for transmission PDU configuration).
  • the receiving end separates the SDAP header, the PDCP header, the UDC header or the RLC header or the MAC header from the data all at once, grasps the information corresponding to each layer, and processes the data in the reverse order of the data processing of the transmitting end . Therefore, the HW accelerator can be applied continuously and repeatedly, and the data processing efficiency can be improved because there is no interruption such as generation of the SDAP header in the middle.
  • the HW accelerator may also be applied to the user compressed data procedure.
  • a method of integrating an SDAP layer device and a PDCP layer device into one layer device may be applied to a case where UDC is set.
  • UDC lower layer
  • 2r-25 is set to use the SDAP layer device function by an RRC message such as 2e-10 or 2e-40 or 2e-75 in FIG.
  • the receiving SDAP / PDCP layer device reads and removes the PDCP header, the UDC header, and the SDAP header at one time (2r-30), repeatedly applies the deciphering procedure to the data (2r-35)
  • the data decompression procedure can be performed and transferred to an upper layer (2r-40).
  • the SDAP layer and the PDCP layer proposed in the embodiment of the present invention are integrally implemented and data processing of the PDCP layer device is performed to eliminate interruption of the HW accelerator due to generation of the SDAP header for each received data,
  • the proposed method can efficiently perform terminal data processing on the reception side of the terminal in the same manner.
  • Whether the bearer-specific SDAP header is used can be set by the base station as an RRC message as described with reference to FIG. 2E, and whether or not the bearer-specific UDC is applied can be set by the base station as an RRC message.
  • the base station can not use the SDAP header and the UDC for one bearer when the base station sets whether to use the SDAP header or the UDC for each bearer in the RRC message can not be configured for a DRB configured with a UDC or Both SDAP header and UDC can not be configured for a DRB or Either SDB header or UDC configured for a DRB, not both). That is, the base station can prohibit the use of the SDAP header and the UDC application simultaneously for one bearer in the RRC message.
  • the UDC procedure becomes complicated due to the generation and non-encryption of the SDAP header, and the implementation complexity increases.
  • the UDC is applied to the uplink data, and when the SDAP header is set for the uplink data, a remapping between bearer and flow is set. In this case, it may not be appropriate to use UDC. Since the UDC procedure requires synchronization between the transmitter and the receiver for data compression, it is very inefficient to perform the remapping between the bearers and the flows on the UDC-applied bearer. Therefore, if the use of the SDAP header and the UDC setting are not simultaneously set for one bearer to solve the above-described complexity, the above-described complicated problems do not occur. Therefore, another embodiment of the present invention proposes that the base station does not allow the terminal to simultaneously set the use of the SDAP header and the UDC for one bearer.
  • the UDC header can be encrypted for security enhancement. That is, upon receiving the upper layer data, data is compressed by the UDC procedure and a UDC header is generated. Then, the UDC header and the compressed UDC data block are ciphered, and the encrypted UDC header and the UDC data block
  • the PDCP header can be generated in advance and concatenated to be transmitted to the lower layer.
  • the UDC header field can be quickly checked and the UDC data can be quickly discarded, The number of procedures can be reduced. That is, the UDC header may not be encrypted. That is, upon receiving the upper layer data, data compression is performed by a UDC procedure, encryption is performed on the compressed data block, a UDC header and a PDCP header are generated, and the header is concatenated before the encrypted UDC data block and transmitted to a lower layer have.
  • the receiving PDCP layer apparatus can check the UDC header before performing decryption, check the validity of the UDC as a checksum field, and discard the received data immediately without performing decoding if it is not valid. It is possible to decrypt only the data confirmed to be valid as the checksum field and perform the user data decompression procedure.
  • Integrity protection procedures can also cause complex implementation problems when configured for a bearer with SDAP header usage or UDC application. Therefore, SDAP header usage and integrity verification protection may not be allowed to be configured on the same bearer at the same time. It may also not allow for integrity verification and UDC enforcement at the same time for a bearer.
  • FIG. 2S shows a configuration of a terminal according to an embodiment of the present invention.
  • the terminal includes an RF (radio frequency) processing unit 2s-10, a baseband processing unit 2s-20, a storage unit 2s-30, and a control unit 2s-40 .
  • the control unit 2s-40 may further include a multiple connection processing unit 2s-42.
  • the RF processor 2s-10 performs a function for transmitting and receiving a signal through a radio channel such as band conversion and amplification of a signal. That is, the RF processor 2s-10 up-converts the baseband signal provided from the baseband processor 2s-20 to an RF band signal, and transmits the RF band signal through the antenna, To a baseband signal.
  • the RF processor 2s-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter . In the figure, only one antenna is shown, but the terminal may have a plurality of antennas.
  • the RF processor 2s-10 may include a plurality of RF chains.
  • the RF processor 2s-10 may perform beamforming. For the beamforming, the RF processor 2s-10 may adjust the phase and size of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the RF processor may perform MIMO and may receive multiple layers when performing a MIMO operation. The RF processor 2s-10 may perform reception beam sweeping by appropriately setting a plurality of antennas or antenna elements under the control of the controller, or adjust the direction and beam width of the reception beam such that the reception beam is coordinated with the transmission beam have.
  • the baseband processing unit 2s-20 performs a function of converting a baseband signal and a bit string according to a physical layer specification of the system. For example, at the time of data transmission, the baseband processing unit 2s-20 generates complex symbols by encoding and modulating transmission bit streams. Also, upon receiving the data, the baseband processing unit 2s-20 demodulates and decodes the baseband signal provided from the RF processing unit 2s-10 to recover the received bit stream.
  • the baseband processing unit 2s-20 when data is transmitted according to an orthogonal frequency division multiplexing (OFDM) scheme, the baseband processing unit 2s-20 generates complex symbols by encoding and modulating transmission bit streams and outputs the complex symbols to sub- And then constructs OFDM symbols by IFFT (Inverse Fast Fourier Transform) operation and CP (cyclic prefix) insertion.
  • IFFT Inverse Fast Fourier Transform
  • CP cyclic prefix
  • the baseband processing unit 2s-20 and the RF processing unit 2s-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 2s-20 and the RF processing unit 2s-10 may be referred to as a transmitting unit, a receiving unit, a transmitting / receiving unit, or a communication unit.
  • at least one of the baseband processing unit 2s-20 and the RF processing unit 2s-10 may include a plurality of communication modules to support a plurality of different radio access technologies.
  • at least one of the baseband processing unit 2s-20 and the RF processing unit 2s-10 may include different communication modules for processing signals of different frequency bands.
  • the different wireless access technologies may include an LTE network, an NR network, and the like.
  • the different frequency bands may include a super high frequency (SHF) band (eg, 2.5 GHz, 5 GHz), and a millimeter wave (eg, 60 GHz) band.
  • SHF super high frequency
  • 60 GHz millimeter wave
  • the storage unit 2s-30 stores data such as a basic program, an application program, and setting information for operating the terminal.
  • the storage unit 2s-30 provides the stored data at the request of the controller 2s-40.
  • the controller 2s-40 controls overall operations of the terminal according to an embodiment of the present invention.
  • the control unit 2s-40 transmits and receives signals through the baseband processing unit 2s-20 and the RF processing unit 2s-10.
  • the control unit 2s-40 writes data to the storage unit 2s-40 and reads the data.
  • the controller 2s-40 may include at least one processor.
  • the controller 2s-40 may include a communication processor (CP) for controlling communication and an application processor (AP) for controlling an upper layer such as an application program.
  • CP communication processor
  • AP application processor
  • 2T shows a configuration of a base station according to an embodiment of the present invention.
  • the base station includes an RF processor 2t-10, a baseband processor 2t-20, a backhaul communication unit 2t-30, a storage unit 2t-40, .
  • the control unit 2t-50 may further include a multiple connection processing unit 2t-52.
  • the RF processor 2t-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 2t-10 up-converts the baseband signal provided from the baseband processor 2t-20 to an RF band signal, and transmits the RF band signal through the antenna, To a baseband signal.
  • the RF processor 2t-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas.
  • the RF processor 2t-10 may include a plurality of RF chains.
  • the RF processor 2t-10 may perform beamforming.
  • the RF processor 2t-10 can adjust the phase and the size of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 2t-20 performs a function of converting a baseband signal and a bit string according to the physical layer standard of the first radio access technology. For example, at the time of data transmission, the baseband processing unit 2t-20 generates complex symbols by encoding and modulating transmission bit streams. Upon reception of the data, the baseband processor 2t-20 demodulates and decodes the baseband signal provided from the RF processor 2t-10 to recover the received bitstream. For example, according to the OFDM scheme, when data is transmitted, the baseband processing unit 2t-20 generates complex symbols by encoding and modulating transmission bit streams, maps the complex symbols to subcarriers, And constructs OFDM symbols through operation and CP insertion.
  • the baseband processing unit 2t-20 divides the baseband signal provided from the RF processing unit 2t-10 into OFDM symbol units, and restores the signals mapped to the subcarriers through the FFT operation And then demodulates and decodes the received bit stream.
  • the baseband processing unit 2t-20 and the RF processing unit 2t-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 2t-20 and the RF processing unit 2t-10 may be referred to as a transmitting unit, a receiving unit, a transmitting / receiving unit, a communication unit, or a wireless communication unit.
  • the communication unit 2t-30 provides an interface for performing communication with other nodes in the network.
  • the storage unit 2t-40 stores data such as a basic program, an application program, and setting information for the operation of the base station.
  • the storage unit 2t-40 may store bearer information allocated to the connected terminals, measurement results reported from connected terminals, and the like.
  • the storage unit 2t-40 may provide multiple connections to the terminal or may store information serving as a criterion for determining whether to suspend the terminal.
  • the storage unit 2t-40 provides the stored data at the request of the controller 2t-50.
  • the controller 2t-50 controls overall operation of the base station according to the embodiment of the present invention.
  • the control unit 2t-50 transmits and receives signals through the baseband processing unit 2t-20 and the RF processing unit 2t-10 or through the backhaul communication unit 2t-30.
  • the controller 2t-50 writes and reads data in the storage unit 2t-40.
  • the controller 2t-50 may include at least one processor.
  • 3A is a diagram illustrating a structure of an LTE system according to an embodiment of the present invention.
  • the radio access network of the LTE system includes a next-generation base station (eNB, Node B or base station) 3a-05, 3a-10, 3a-15 and 3a-20, MME (Mobility Management Entity) 3a-25 and an S-GW (Serving-Gateway, 3a-30).
  • eNB next-generation base station
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the eNBs 3a-05, 3a-10, 3a-15 and 3a-20 correspond to the existing node B of the UMTS system.
  • the eNB 3a-05 is connected to the UEs 3a-35 over a radio channel and plays a more complex role than the existing NodeB.
  • VoIP Voice over IP
  • status information such as buffer status, available transmission power status
  • the eNB 3a-05, 3a-10, 3a-15, and 3a-20 take charge of the scheduling.
  • One eNB normally controls a plurality of cells.
  • an LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology, for example, at a bandwidth of 20 MHz.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC Adaptive Modulation and Coding
  • the S-GW 3a-30 is a device for providing a data bearer, and generates or removes a data bearer under the control of the MME 3a-25.
  • the MME 3a-25 includes a plurality of base stations 3a-05, 3a-10, 3a-15, and 3a-20 as mobility management functions for the terminals 3a-35 as well as various control functions. .
  • 3B is a diagram illustrating a wireless protocol structure in an LTE system according to an embodiment of the present invention.
  • the wireless protocol of the LTE system includes PDCP (Packet Data Convergence Protocol 3b-05, 3b-40), RLC (Radio Link Control 3b-10, Control 3b-15, 3b-30).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control 3b-10, Control 3b-15, 3b-30.
  • the PDCPs 3b-05 and 3b-40 are responsible for operations such as IP header compression / decompression.
  • the main functions of the PDCP are summarized as follows.
  • Radio Link Control (RLC) 3b-10 and 3b-35 reconfigures a PDCP PDU (Packet Data Unit) to an appropriate size to perform an ARQ operation or the like.
  • PDCP PDU Packet Data Unit
  • RLC SDU discard function (RLC SDU discard (only for UM and AM data transfer)
  • the MACs 3b-15 and 3b-30 are connected to a plurality of RLC layer devices arranged in a terminal, multiplex RLC PDUs into MAC PDUs, and demultiplex RLC PDUs from MAC PDUs.
  • the main functions of the MAC are summarized as follows.
  • the physical layers 3b-20 and 3b-25 channel-code and modulate the upper layer data, transmit them to the wireless channel by making them into OFDM symbols, or demodulate and channel-decode the OFDM symbols received through the wireless channel, .
  • 3C is a diagram illustrating a structure of a next generation mobile communication system according to an embodiment of the present invention.
  • the radio access network of the next generation mobile communication system includes a new radio base station (hereinafter, referred to as NR gNB or NR base station, 3c-10) and a new radio core network ).
  • NR gNB new radio base station
  • 3c-15 new radio core network
  • NR UE or UE, 3c-15 connects to the external network through the NR gNB (3c-10) and the NR CN (3c-05).
  • the NR gNB (3c-10) corresponds to the eNB (Evolved Node B) of the existing LTE system.
  • the NR gNB 3c-10 is connected to the NR UE 3c-15 via a radio channel and can provide a higher level of service than the existing Node B.
  • a device for collecting and scheduling state information such as buffer status, available transmission power state, and channel state of UEs is needed.
  • One NR gNB (3c-10) usually controls a plurality of cells.
  • a beam-forming technique can be applied by using Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology .
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC Adaptive Modulation and Coding
  • the NR CN (3c-05) performs functions such as mobility support, bearer setup, and QoS setup.
  • the NR CN 3c-05 is a device for performing various control functions as well as a mobility management function for the terminal 3c-15, and is connected to a plurality of base stations.
  • next generation mobile communication system can be interworked with the existing LTE system, and the NR CN (3c-05) is connected to the MME 3c-25 through a network interface.
  • the MME 3c-25 is connected to the eNB 3c-30 which is an existing base station.
  • FIG. 3D is a diagram for explaining new functions for handling QoS in an NR system according to an embodiment of the present invention.
  • the NR system should be able to set up a user traffic transmission path or control an IP flow for each service according to a service requiring different quality of service (QoS), that is, a QoS requirement.
  • QoS quality of service
  • the NR core network may establish a plurality of PDU (Packet Data Unit) sessions, and each PDU session may include a plurality of IP flows.
  • PDU Packet Data Unit
  • the NR gNB maps a plurality of QoS flows to a plurality of DRBs (Data Radio Bearers) and can set them simultaneously.
  • DRBs Data Radio Bearers
  • a plurality of QoS flows (3d-01, 3d-02, 3d-03) can be mapped to the same DRB or other DRBs (3d-10, 3d-15, 3d-20) It is necessary to mark the QoS flow ID in the downlink packet.
  • DRB mapping can be explicitly set through the RRC control message. (SDAP) (3d-05, 3d-40, 3d-50, 3d-85) which is in charge of the above functions are not included in the existing LTE PDCP protocol.
  • SDAP (3d-05, 3d-40, 3d-50, 3d-85) which is in charge of the above functions are not included in the existing LTE PDCP protocol.
  • the above indication allows the terminal to implement a reflective QoS for the uplink.
  • the reflective QoS is a method of mapping a DRV to which a UE transmits a downlink packet having a specific flow ID transmitted by a gNB so that the UE can perform uplink transmission.
  • a 1-bit or 2-bit RQI QoS indicator bits may be included in the SDAP header. Displaying the QoS flow ID explicitly in the downlink packet as described above is a simple method in which the Access Stratum (AS) of the terminal provides the information to the NAS of the terminal.
  • AS Access Stratum
  • a method of mapping IP flows to DRBs in the downlink can be performed in the following two steps.
  • QoS flow mapping information and presence / absence of a reflective QoS operation are detected for each received DRB (3d-25, 3d-30, 3d-35) and the corresponding information can be transmitted to the NAS. That is, if the RQI bits are set to '1' in the SDAP header of the received data packet, the UE updates the mapping rule and transmits the uplink packet according to the updated AS and NAS mapping rules. That is, the same two-step mapping can be used for the uplink. First, IP flows are mapped to QoS flows through NAS signaling, and QoS flows are mapped to predetermined DRBs (3d-55, 3d-60, 3d-65) in the AS.
  • the terminal may display the QoS flow ID in the uplink packet or may transmit the packet without displaying the QoS flow ID. This function is performed in the SDAP of the terminal.
  • the base station can display and transmit the QoS flow ID without transmitting the uplink TFT (Traffic Flow Template) to the packet for transmitting the information to the NG-U.
  • TFT Traffic Flow Template
  • Figures 3ea and 3eb are protocol stacks including SDAP in NR considered in the present invention.
  • the following information should be transmitted through the radio interface.
  • the SDAP (3e-05) is not a DRB-based protocol but a packet is delivered according to a DRB (3e-30) mapping rule. That is, when IP traffic occurs, the IP flow is mapped from the SDAP (3e-05) to the QoS flow ID, and then the QoS flow ID is mapped to the DRB.
  • the IP traffic is composed of IP header and payload, and the SDAP header (3e-35, 3e-40, 3e-45) can be located in front of the IP packet.
  • the PDCP 3e-10 compresses the IP header and adds the PDCP header 3e-50, 3e-55, and 3e-60.
  • the RLC header 3e-15 and the MAC 3e-20 sequentially add the respective RLC headers 3e-65, 3e-70, 3e-75 and 3e-80 and the MAC sub-header 3e-65 After adding MAC header, it transmits MAC PDU to PHY.
  • the SDAP When the gNB decides to apply the reflective mechanism (the UE instructs the UE to send the uplink packet to the DRB like the DRB to which the QoS flow ID included in the downlink packet is transmitted), the SDAP (3e-05) It includes the QoS flow ID and reflective QoS indicator in the layer.
  • the SDAP header has a length of 1 byte, and may be configured with a QoS flow ID (7 bits) and an RQI (1 bit). Or a QoS flow ID (6 bits) and an RQI (2 bits).
  • the RQI indicator indicates the reflective QoS of the AS and the NAS, respectively. In the following, it is assumed that the RQI bit is set to one.
  • the UE continues to update the mapping rules through the received QoS flow ID. That is, when the RQI bit is set to 1, the MS updates the NAS mapping rule and the AS mapping rule and transmits the uplink data packet according to the rule, assuming that the NAS and AS mapping rules are all updated.
  • the NAS reflective QoS is triggered when the mapping rule between the IP flow and the QoS flow is updated in the NR core network
  • the AS reflective QoS is triggered when the mapping rule between the QoS flow and the DRB is updated in the wireless base station.
  • the core network sets and delivers the RQI bit indicating the N3 header of the data packet to be transmitted to the base station when the NAS mapping rule is updated.
  • the N3 header is an interface between the core network and the base station. If the RQI bit of the N3 header received from the core network is set to 1, the base station sets the RQI bit of the SDAP header to 1 and transmits the RQI bit to the terminal. Or when the AS mapping rule is changed even if the RQI bit of the N3 header is 0, the RQI bit of the SDAP header is set to 1, and the RQI bit is transmitted to the terminal.
  • the timer is activated in the terminal and the NR core network at the moment when the NAS reflective QoS rule is applied, and the configured NAS reflective QoS mapping information is deleted if the data packet to which the rule is applied is not received during the preset timer. For reference, when a data packet to which the same QoS mapping rule is applied is transmitted and received while the timer is operating, the timer is restarted.
  • the LTE system is 1: 1 mapped between evolved packet system (EPS) and DRB, and the set mapping is maintained until the corresponding service is terminated.
  • EPS evolved packet system
  • the QoS flow and the DRB mapping can be set dynamically, so that a specific QoS flow can be mapped to DRBs other than the DRBs initially set.
  • the BS must receive the first packet of the new QoS flow transmitted by the UE, so that it can recognize that the new QoS flow is transmitted through the specific DRB.
  • the embodiment of the present invention proposes a solution to the following two issues.
  • FIG. 3F is a diagram for explaining a problem and an issue when a first packet of a new QoS flow in a specific DRB is delayed and received, which is considered in the embodiment of the present invention.
  • the UE receives the configuration for DRBs through the RRC message of the base station.
  • the setting includes information on the detailed layers (MAC, RLC, and PDCP) of the DRBs, information on which DRBs the QoS flows will be delivered through, and information on which DRB is the default DRB.
  • the QoS flows 3f-05, 3f-10 and 3f-15 are transferred to the DRBs initially set in the SDAP layer 3g-20, that is, the specific DRBs 3f- 3f-30) are performed for the operation for data transmission to the lower layers.
  • QoS flow # 1 and QoS flow # 2 are set to DRB 2
  • QoS flow # 1 is mapped to DRB 1
  • DRB 1 is set to default DRB.
  • the mapping between the DRB and the QoS flow may be changed even in the case of not handover or handover, and the QoS flow may be changed to the DRB different from the previous DRB due to the change of the mapping rule.
  • the packet of the corresponding QoS flow is transmitted through the default DRB. If the new uplink packet or the packet having a specific QoS flow is changed in the DRB mapping, the UE transmits a packet corresponding to the corresponding QoS flow through the default DRB or the changed DRB.
  • the SDAP layer separates SDAP SDUs from the SDAP layer in step 3f-50, .
  • QoS flow # 2 is changed from DRB 2 (3f-60) to DRB 1 (3f-55) which is the default DRB.
  • the change is performed before the SDAP PDU # 26 in the QoS flow # 2 is delivered and the SDAP PDU # 27 is not delivered.
  • the previous SDAP PDUs will be delivered to the DRB 2.
  • PDUs are delivered.
  • the numbers of the SDAP PDUs are numbers that are created to assist understanding, not actual numbers.
  • the receiver receives the packets transmitted by the terminal at the receiving end of the base station, and the order in which the packets are received depends on how much data is in the buffer for each DRB (3f-65).
  • out-order delivery is generated for the packet of QoS flow # 2, and it can be seen that the received packet is received ping-pong effect between different DRBs.
  • the new QoS flow is interpreted as being continuously mapped through the corresponding DRB, the receiving end of the base station performs unintended QoS reflective operation. A method for solving this will be described in the following embodiments.
  • 3G is a diagram for explaining a method for preferentially processing a corresponding SDAP packet when a new QoS flow is received in the receiving SDAP layer of the UE according to the embodiment 3-1 of the present invention.
  • This embodiment is a method for solving a transmission time delay that may occur when the order of delivering the first packet of the new QoS flow delivered to the changed DRB is slow, that is, when other QoS flow packets are accumulated in the transmission buffer of the DRB .
  • the DRB can be quickly identified at the receiving end so that the scheduler of the base station can quickly schedule and process the QoS flow.
  • a method of transmitting an SDAP PDU to be processed and transmitted first is dealt with.
  • the UE receives the configuration for DRBs through the RRC message of the base station.
  • the setting includes information on the detailed layers (MAC, RLC, and PDCP) of the DRBs, information on which DRBs the QoS flows will be delivered through, and information on which DRB is the default DRB.
  • the QoS flows 3g-05, 3g-10, 3g-15, and 3g-20 are transmitted to the DRBs initially set in the SDAP layer 3g-25, 3g-30, 3g-35, 3g-40) are performed.
  • QoS flow # 1 is set to DRB 3
  • QoS flow # 2 and QoS flow # 5 are set to DRB 2
  • QoS flow # 3 is mapped to DRB 1, Respectively.
  • Phase 2 when the receiving end of the UE correctly receives the SDAP SDU of the new downlink QoS flow from the base station in the receiving SDAP layer of the UE, that is, the QoS flow # 4 is transmitted / received through the DRB 2 (3g-50) However, if a new downlink packet corresponding to the QoS flow # 4 is received in the DRB 1 (3g-45), the terminal updates the mapping rule between the QoS flow and the DRB, and DRB 1 (3g -45). ≪ / RTI >
  • the SDAP layer of the terminal indicates to the PDCP layer whether or not expedite delivery is required for the SDAP PDU. (Message delivery required between SDAP and PDCP layer)
  • a PDCP PDU containing a packet indicated by the SDAP layer is transmitted to a lower layer, and the corresponding PDCP PDU is transmitted before other PDCP PDUs waiting in the buffer.
  • the PDCP header may include an indicator indicating expedite delivery. This is to instruct the receiving end not to trigger the reordering timer, so that the packet can be quickly transmitted to the upper layer of the receiving end.
  • the RLC layer generates an RLC PDU containing a packet received from the PDCP and places the packet in such a manner that the packet can be delivered before other RLC PDUs stored in the RLC buffer.
  • FIG. 3H is a view for explaining a method for guaranteeing in-order delivery at the receiving end when QoS flows are re-mapped according to the embodiment 3-2 of the present invention.
  • the UE receives the configuration for DRBs through the RRC message of the base station.
  • the setting includes information on the detailed layers (MAC, RLC, and PDCP) of the DRBs, information on which DRBs the QoS flows will be delivered through, and information on which DRB is the default DRB.
  • the QoS flows 3h-05, 3h-10 and 3h-15 are transferred to the DRBs initially set in the SDAP layer 3h-20, that is, the specific DRBs 3h- 3h-30) are performed for transmission and transmission for operation for data transmission to the lower layers.
  • QoS flow # 1 and QoS flow # 2 are set to DRB 2 (3h-30), QoS flow # 1 is mapped to DRB 1 (3h-25) Is set to default DRB.
  • the SDAP layer separates SDAP SDUs from the SDAP layer in step 3h-50, .
  • QoS flow # 2 is changed from DRB 2 (3h-60) to DRB 1 (3h-55) which is the default DRB.
  • the time when the change is to be performed is before the SDAP PDU No. 26 in the QoS flow # 2 is delivered and the SDAP PDU No. 27 is delivered.
  • the previous SDAP PDUs will be delivered to the DRB 2 (3h-60).
  • the numbers of the SDAP PDUs are numbers that are created to assist understanding, not actual numbers.
  • the order of delivery to the actual receiver may be different. That is, a new packet (packet 27 of QoS flow # 2) of DRB 2 (3h-60) can be received earlier than packets of previous DRB 1 (3h-55). This can be explained as re-mapping from the previous PDCP A to the new PDCP B of the corresponding QoS flow # 2.
  • the following procedure is proposed.
  • the RRC of the UE instructs the SDAP entity to reset the QoS
  • the SDAP entity When receiving the first packet of the new QoS flow through the new DRB, the SDAP entity performs a filtering operation (that is, discards the SDAP PDU of the corresponding QoS flow received through the previous DRB thereafter)
  • the terminal performs packet transmission to guarantee in-order delivery. That is, filtering is applied to packets # 24, # 25, and # 26 of QoS flow # 2 and discarded from the buffer.
  • the receiving end and more precisely, the receiving end of the base station receives the packets delivered by the terminal. Due to the proposed operation, the out-order delivery of the packet of QoS flow # 2 no longer occurs. That is, it can be seen that the received packet is no longer received with a ping-pong effect between different DRBs. Instead, a loss of data stored in the transmission buffer of the previous DRB occurs, which is conveyed through a retransmission operation.
  • FIG. 3I is a diagram illustrating a method for transferring a new QoS flow packet when a mapping of a QoS flow and a DRB proposed in the embodiment of the present invention is performed.
  • the mapping between the QoS flow and the DRB is changed, the first packet of the new QoS flow transmitted to the new DRB is transmitted first, and the previous DRB Order delivery at the receiving end of the base station due to discarding corresponding QoS flow packets stored in the transmission buffer of the base station.
  • the UE After the UE camps on the serving cell (3i-05), the UE performs RRC connection setup to the cell and transitions to the connection mode (3i-10).
  • the UE receives an RRC connection reconfiguration message from the Node B, and receives DRB configuration, default DRB indication, and mapping information between the QoS flow and DRB.
  • DRB 1, DRB 2 and DRB 3 are set in FIG. 3I, DRB 1 is indicated as a default DRB, and QoS flow mappings corresponding to DRB 1 and DRB 2 can be set.
  • the UE receives the downlink data packet transmitted from the BS.
  • the UE receives the SDAP SDU through the preset DRB x, and decodes the SDAP header of the packet to confirm the QoS flow ID.
  • the UE directly transfers the PDCP of the DRB x to the lower layer without any special operation. That is, no separate expedite delivery operation is set.
  • the above expedite delivery operation is a method in which the terminal notifies the lower layer of the SDAP SDU requiring expedite delivery and notifies the lower layer of the SDAP SDU required for the expedite delivery.
  • the SDAP layer of the terminal transmits the corresponding SDAP PDU including the ED (Expedite) indicator to the PDCP of the default DRB (or the changed DRB).
  • the ED (Expedite) indicator may be included in the PDCP header as 1 bit.
  • the PDCP layer assigns a PDCP sequence number (SN) to the corresponding PDCP SDU, and if an ED indicator is included, transfers the corresponding PDCP PDU to the lower layer.
  • the RLC layer assigns an RLC SN to the RLC SDU, and if an ED indicator is included, the RLC layer prioritizes the RLC PDU to the lower layer.
  • the UE also receives an RRC connection reconfiguration message including a synchronization setting from the BS.
  • An example of the above message is a handover command message.
  • the message may also include re-establishing a specific QoS flow for a particular PDU session from a previous DRB to a new DRB.
  • the UE receiving the RRC message performs a DRB reset indicated by the RRC message. For example, QoS flow 1 may be reset from DRB 2 to DRB 3.
  • the RRC layer of the UE indicates to the SDAP entity that there is a QoS flow and a DRB re-establishment as described above, and when the QoS flow 1 is received in the DRB 2 in the SDAP entity, the packet is delivered to the upper layer. If SDAP receives QoS flow 1 as DRB 3, it forwards the packet to the upper layer and performs filtering operation. That is, after that, packets of QoS flow 1 received from DRB 2 are discarded. This is to achieve in-order delivery.
  • 3J is a diagram illustrating a terminal operation according to an embodiment of the present invention.
  • the UE After the UE camps on the serving cell, the UE establishes RRC connection to the corresponding cell and transitions to the connection mode (3j-05). In step 3j-10, the UE receives the setting for the DRBs through the RRC message of the base station.
  • the setting includes information on the detailed layers (MAC, RLC, and PDCP) of the DRBs, information on which DRBs the QoS flows will be delivered through, and information on which DRB is the default DRB.
  • DRB 1, DRB 2 and DRB 3 are set in FIG. 3J, DRB 1 is indicated as a default DRB, and QoS flow mappings corresponding to DRB 1 and DRB 2 can be set.
  • step 3j-15 the UE receives the downlink data packet transmitted from the BS. More precisely, in the above operation, the UE receives the SDAP SDU through the preset DRB x, and decodes the SDAP header of the packet to confirm the QoS flow ID.
  • step 3j-20 the UE determines whether the SDAP packet received through the DRB x is a new QoS flow packet and operates differently. If the packet received at the SDAP layer is a new QoS flow packet (i.e., the first packet of the new QoS flow is received at DRB x), the terminal performs the first operation.
  • the first operation of step 3j-25 is an operation that allows the first packet of the new QoS flow to be processed and delivered first.
  • the terminal receives the SDAP SDU of the new QoS flow, the QoS of the first packet (SDAP PDU) To expedite the flow, the corresponding SDAP PDU is delivered to PDCP of the default DRB (or changed DRB) including the ED (Expedite) indicator.
  • the ED (Expedite) indicator may be included in the PDCP header as 1 bit. Then, the PDCP layer assigns a PDCP sequence number (SN) to the corresponding PDCP SDU, and if an ED indicator is included, transfers the corresponding PDCP PDU to the lower layer. In addition, the RLC layer assigns an RLC SN to the RLC SDU, and if an ED indicator is included, the RLC layer prioritizes the RLC PDU to the lower layer. If the SDAP SDU received by the UE is received through the preset DRB x, the UE transmits the PDCP of the DRB x directly to the lower layer without performing any special operation in step 3j-30. That is, no separate expedite delivery operation is set.
  • SN PDCP sequence number
  • step 3j-35 the UE receives an RRC connection reconfiguration message including a synchronization setting from the BS.
  • An example of the above message is a handover command message.
  • the message may also include re-establishing a specific QoS flow for a particular PDU session from a previous DRB to a new DRB.
  • step 3j-40 the MS having received the RRC message performs a DRB reset indicated by the RRC message. For example, QoS flow 1 may be reset from DRB 2 to DRB 3.
  • the RRC layer of the UE indicates to the SDAP entity that there is a QoS flow and a DRB re-establishment as described above, and the operation is different depending on whether a new QoS flow packet is received in the changed DRB. If the SDAP receives QoS flow 1 as DRB 3, that is, if a new QoS flow packet is received in the modified DRB, the UE delivers the corresponding packet to the upper layer in step 3j-50 and performs a filtering operation. That is, the DRB 2, that is, the packet of the QoS flow 1 received from the previous DRB is discarded thereafter. This is to achieve in-order delivery.
  • FIG. 3K is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • the terminal includes a radio frequency (RF) processing unit 3k-10, a baseband processing unit 3k-20, a storage unit 3k-30, and a control unit 3k-40 .
  • the control unit 3k-40 may further include a multiple connection processing unit 3k-42.
  • the RF processor 3k-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 3k-10 upconverts the baseband signal provided from the baseband processor 3k-20 to an RF band signal, and transmits the RF band signal through the antenna, To a baseband signal.
  • the RF processor 3k-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter . In the figure, only one antenna is shown, but the terminal may have a plurality of antennas.
  • the RF processor 3k-10 may include a plurality of RF chains.
  • the RF processor 3k-10 may perform beamforming. For the beamforming, the RF processor 3k-10 may adjust the phase and size of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the RF processor may perform MIMO and may receive multiple layers when performing a MIMO operation.
  • the baseband processor 3k-20 performs a function of converting a baseband signal and a bit string according to a physical layer specification of the system. For example, at the time of data transmission, the baseband processing unit 3k-20 generates complex symbols by encoding and modulating transmission bit streams. Also, upon receiving the data, the baseband processor 3k-20 demodulates and decodes the baseband signal provided from the RF processor 3k-10 to recover the received bitstream.
  • the baseband processing unit 3k-20 generates complex symbols by encoding and modulating transmission bit streams and transmits the complex symbols to subcarriers And then constructs OFDM symbols by IFFT (Inverse Fast Fourier Transform) operation and CP (cyclic prefix) insertion.
  • the baseband processing unit 3k-20 divides the baseband signal provided from the RF processor 3k-10 into OFDM symbol units and performs FFT (fast Fourier transform) operation on the subcarriers Restores the mapped signals, and then restores the received bit stream through demodulation and decoding.
  • OFDM orthogonal frequency division multiplexing
  • the baseband processing unit 3k-20 and the RF processing unit 3k-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 3k-20 and the RF processing unit 3k-10 may be referred to as a transmitting unit, a receiving unit, a transmitting / receiving unit, or a communication unit. Further, at least one of the baseband processing unit 3k-20 and the RF processing unit 3k-10 may include a plurality of communication modules to support a plurality of different radio access technologies. Also, at least one of the baseband processing unit 3k-20 and the RF processing unit 3k-10 may include different communication modules for processing signals of different frequency bands.
  • the different wireless access technologies may include a wireless LAN (e.g., IEEE 802.11), a cellular network (e.g., LTE), and the like.
  • the different frequency bands may include a super high frequency (SHF) band (e.g., 2. NRHz, NRhz), and a millimeter wave (e.g., 60 GHz) band.
  • SHF super high frequency
  • the storage unit 3k-30 stores data such as a basic program, an application program, and setting information for operating the terminal.
  • the storage unit 3k-30 may store information related to a second access node performing wireless communication using a second wireless access technology.
  • the storage unit 3k-30 provides the stored data at the request of the controller 3k-40.
  • the controller 3k-40 controls overall operations of the terminal according to an embodiment of the present invention.
  • the control unit 3k-40 transmits and receives signals through the baseband processing unit 3k-20 and the RF processing unit 3k-10.
  • the controller 3k-40 writes and reads data in the storage unit 3k-40.
  • the controller 3k-40 may include at least one processor.
  • the controller 3k-40 may include a communication processor (CP) for controlling communication and an application processor (AP) for controlling an upper layer such as an application program.
  • CP communication processor
  • AP application processor
  • FIG. 31 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the base station includes an RF processing unit 31-10, a baseband processing unit 31-10, a backhaul communication unit 31-10, a storage unit 31-10, a control unit 31-50, .
  • the control unit 31-50 may further include a multiple connection processing unit 31-5.
  • the RF processing unit 31-10 performs a function of transmitting and receiving signals through radio channels such as band conversion and amplification of signals. That is, the RF processor 31- is configured to up-convert the baseband signal provided from the baseband processor 31-1 to an RF band signal, transmit the RF band signal through the antenna, To a baseband signal.
  • the RF processor 31- can include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas. Also, the RF processing units 31 to 10 may include a plurality of RF chains. Further, the RF processor 31- can perform beamforming. For the beamforming, the RF processor 31- can adjust the phase and size of signals transmitted and received through a plurality of antennas or antenna elements. The RF processor may perform downlink MIMO operation by transmitting one or more layers.
  • the baseband processing unit 31 to 20 performs a function of converting a baseband signal and a bit string according to a physical layer standard of the first radio access technology. For example, at the time of data transmission, the baseband processing section 31- 20 generates complex symbols by encoding and modulating transmission bit streams. Also, upon receiving the data, the baseband processing unit 31-10 demodulates and decodes the baseband signal provided from the RF processing unit 31-10 to recover the received bitstream. For example, in accordance with the OFDM scheme, when data is transmitted, the baseband processing unit 31- 20 generates complex symbols by encoding and modulating transmission bit streams, maps the complex symbols to subcarriers, And constructs OFDM symbols through operation and CP insertion.
  • the baseband processing unit 31-10 divides the baseband signal provided from the RF processing unit 31-10 into OFDM symbol units, and restores the signals mapped to the subcarriers through the FFT operation And then demodulates and decodes the received bit stream.
  • the baseband processing unit 31- and the RF processing unit 31- 10 transmit and receive signals as described above. Accordingly, the baseband processing unit 31- and the RF processing unit 31- can be referred to as a transmitter, a receiver, a transmitter / receiver, a communication unit, or a wireless communication unit.
  • the backhaul communication units 31 to 30 provide interfaces for performing communication with other nodes in the network. That is, the backhaul communication unit 31- 30 converts a bit string transmitted from the base station to another node, for example, a sub-base station or a core network, into a physical signal, and transmits a physical signal received from the other node to a bit string .
  • the storage unit 31-40 stores data such as a basic program, an application program, and setting information for the operation of the base station.
  • the storage units 31 to 40 may store bearer information allocated to the connected terminals, measurement results reported from connected terminals, and the like.
  • the storage units 31 to 40 may provide multiple connections to the terminal, or may store information that serves as a criterion for determining whether to suspend the terminal.
  • the storage unit 31-40 provides the stored data at the request of the control unit 31-50.
  • the controllers 31-50 control overall operations of the base station according to the embodiment of the present invention.
  • the control units 31 to 50 transmit and receive signals through the baseband processing unit 31 to 20 and the RF processing unit 31 to 10 or through the backhaul communication unit 31 to 30.
  • the control unit 31-50 records and reads data in the storage unit 31-.
  • the controllers 31-50 may include at least one processor.
  • the third embodiment of the present invention can be summarized as follows.
  • SADP tells the PDCP whether the SDP PDU is to be forwarded quickly (SDAP indicates PDCP whether expedite delivery to the SDAP PDU)
  • PDCP delivers the corresponding PDCP PDU to the lower layer before other PDCP PDUs waiting in the buffer.
  • the fast delivery indicator may be included in the PDCP header, and it is not intended to trigger the reordering timer at the receiving end, and is to be quickly delivered to the upper layer of the receiving end.
  • PDCP submit the corresponding PDCP PDU to the lower layer ahead of the PDCP PDU awaiting in
  • the PDCP header can be used to send the PDCP header to the PDCP header,
  • RLC sends RLC PDUs to the lower layer before the other RLC PDUs waiting in the buffer (RLC submits RLC PDU to the lower layer ahead of RLC PDUs awaiting in the buffer)
  • the simplest solution in this case is to discard such a packet.
  • the sequence may be as follows: (The simplest solution would be just to discard such packets.
  • DRB 1 is the default DRB (DRB 1 is default DRB)
  • the QoS flow mapped to DRB 1 and the QoS flow mapped to DRB 2 are indicated (QoS flows mapped to DRB 1 and QoS mapped to DRB 2 are indicated)
  • SDAP submits SDAP PDU to PDCP of DRB2 without ED indicator (SDAP submit the SDAP PDU to PDCP of the DRB2 w / o ED indication)
  • SDAP SDU for new QoS flow received from SDAP SDAP SDU for a new QoS flow is received by SDAP
  • SDAP submits the SDAP PDU to the PDCP of the default DRB with the ED indicator (SDAP submit the SDAP PDU to the PDCP of default DRB with ED indication)
  • PDCP allocates the PDCP SN to the PDCP SDU. If the ED is indicated, the PDCP PDU is submitted to the lower layer before the PDCP PDUs of the lower COUNT (PDCP allocate the PDCP SN for the PDCP SDU. PDUs with lower COUNT)
  • RRC indicates the SDAP entity whose QoS flow 1 has been relocated from DRB 2 to DRB 3 (RRC indicates the SDAP entity that QoS flow 1 is relocated from DRB 2 to DRB 3)
  • SDAP receives a QoS flow 1 packet from DRB2 and then forwards the packet to the upper layer (SDAP, QoS flow 1 packet from DRB 2, then deliver the packet to the upper layer)
  • SDAP receives the QoS flow 1 packet from DRB3, and then forwards the packet to the upper layer and starts filtering (or discarding) the QoS flow 1 packet from DRB2 (SDAP, QoS flow 1 packet from DRB 3, then deliver the packet to the upper layer and start filtering (or discarding) QoS flow 1 packet from DRB 2)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 단말의 동작 방법에 있어서, 기지국으로부터 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계, 상기 단말의 상위 응용 계층으로부터 데이터를 수신하는 단계, 상기 데이터를 압축하고, 상기 압축된 데이터를 암호화 하는 단계, UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 함께 생성하는 단계, 상기 암호화된 데이터에 상기 UDC 헤더 및 SDAP 헤더가 접합된 블록을 생성하는 단계 및 상기 블록을 상기 단말의 하위 계층으로 전달하는 단계를 포함하는 방법을 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치
본 발명은 차세대 무선 통신 시스템에 관한 것이다. 본 발명은 이동통신 시스템에서의 단말 및 기지국에 관한 것이다. 또한, 본 발명은 차세대 이동 통신 시스템에서 데이터 압축 처리 헤더 비암호화 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
본 발명의 실시 예에서 이루고자 하는 기술적 과제는 차세대 무선 통신 시스템에서 개선된 통신 성능을 제공하기 위한 방법 및 장치를 제공하는 것이다.
또한, 본 발명의 실시 예에서 이루고자 하는 기술적 과제는 차세대 이동 통신 시스템에서 기지국 측면에서 다양한 구현 구조를 지원하고, 단말 측면에서 높은 데이터 전송률과 낮은 전송 지연을 가지는 서비스를 지원하기 위해 단말의 프로세싱 부담을 덜 수 있는 방법을 제공하는 것이다.
차세대 이동통신 시스템에서는 기존 LTE와 다르게 flow 기반의 서비스 품질(Quality of Service, 이하 QoS)을 제공하고, 단말과 기지국의 무선 프로토콜에 AS(Access stratum)와 NAS(Non-access stratum)에서의 flow 매핑 룰의 변경을 사용자 데이터 패킷에 지시하는 새로운 QoS 레이어(SDAP, Service Data Adaption Protocol)를 도입하였다. 하지만 기지국은 단말이 전송하는 새로운 QoS flow의 첫 번째 패킷이 도착하기 전까지는 새로운 QoS flow가 전송되었음을 인지할 수 없고, 이는 DRB(data radio bearer)에 버퍼된 데이터가 많을 경우 첫 번째 패킷의 전송 지연이 더욱 길어질 수 있다. 이를 위해, 본 발명의 실시 예에서 이루고자 하는 기술적 과제는 기지국의 스케쥴러가 새로운 QoS flow의 수신을 빠르게 알아서 처리할 수 있도록 단말에서 처리하는 방법이 필요하고, DRB 변경에 따른 QoS re-mapping시 in-order delivery가 보장되도록 하는 방법을 제공하는 것이다.
본 발명의 일 실시 예는 단말의 동작 방법에 있어서, 기지국으로부터 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계, 상기 단말의 상위 응용 계층으로부터 데이터를 수신하는 단계, 상기 데이터를 압축하고, 상기 압축된 데이터를 암호화 하는 단계, UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 함께 생성하는 단계, 상기 암호화된 데이터에 상기 UDC 헤더 및 SDAP 헤더가 접합된 블록을 생성하는 단계 및 상기 블록을 상기 단말의 하위 계층으로 전달하는 단계를 포함하는 방법을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면 단말에 있어서, 송수신부 및 기지국으로부터 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 수신하고, 상기 단말의 상위 응용 계층으로부터 데이터를 수신하며, 상기 데이터를 압축하고, 상기 압축된 데이터를 암호화 하고, UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 함께 생성하며, 상기 암호화된 데이터에 상기 UDC 헤더 및 SDAP 헤더가 접합된 블록을 생성하고, 상기 블록을 상기 단말의 하위 계층으로 전달하도록 제어하는 제어부를 포함하는 단말을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면, 기지국의 동작 방법에 있어서, 단말에게 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 전송하는 단계, 상기 단말로부터 제1 데이터를 수신하는 단계, 상기 제1 데이터에 접합된 UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 획득하는 단계, 상기 UDC 헤더 및 상기 SDAP 헤더가 제거된 제2 데이터를 복호화하고 압축을 해제하는 단계 및 상기 압축이 해제된 제2 데이터를 상기 기지국의 상위 계층으로 전달하는 단계를 포함하는 방법을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면, 기지국에 있어서, 송수신부 및 단말에게 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 전송하고, 상기 단말로부터 제1 데이터를 수신하며, 상기 제1 데이터에 접합된 UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 획득하고, 상기 UDC 헤더 및 상기 SDAP 헤더가 제거된 제2 데이터를 복호화하고 압축을 해제하며, 상기 압축이 해제된 제2 데이터를 상기 기지국의 상위 계층으로 전달하도록 제어하는 제어부를 포함하는 기지국을 제공할 수 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따르면 차세대 무선 통신 시스템에서 개선된 통신 성능을 제공하기 위한 방법 및 장치를 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면 기지국의 다양한 구현에 용이하며, 단말의 프로세싱 부담을 덜 수 있는 SDAP 계층 장치와 PDCP(packet data convergence protocol) 계층 장치의 헤더들과 사용자 데이터 압축을 위한 헤더의 처리 방법을 제공할 수 있다.
또한, 본 발명의 실시 예에 따르면 차세대 이동통신 시스템에서 flow 기반의 QoS를 무선 인터페이스에서 지원하고, 새로운 QoS flow에 대해 첫 번째 패킷이 우선하여 전송될 수 있는 구조를 제시함으로써, QoS의 변경을 빠르게 파악할 수 있다. 뿐만 아니라 본 발명의 실시 예에 따르면 단말 동작으로 인해 새로운 DRB로 QoS flow가 전송될 경우 in-order delivery를 보장하게 됨으로써, out-order delivery 시 발생할 수 있는 잦은 QoS flow 업데이트 동작을 줄일 수 있게 되어 수신단에서의 연산 복잡도를 줄일 수 있다.
도 1a은 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1b는 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.
도 1c는 LTE 시스템에서 무선 접속 상태가 불일치하는 현상을 설명하기 위한 도면이다.
도 1d는 LTE 시스템에서 무선 접속 상태가 불일치하는 현상을 해결하는 방안을 설명하기 위한 도면이다.
도 1e는 본 발명의 실시 예에 따른 무선 접속 상태가 불일치하는 현상을 해결하는 과정의 흐름도이다.
도 1f는 본 발명의 실시 예에 따른 단말 동작의 순서도이다.
도 1g는 본 발명의 실시 예에 따른 기지국 동작의 순서도이다.
도 1h는 본 발명의 실시 예에 따른 단말의 구성을 나타낸 도면이다.
도 1i는 본 발명의 실시 예에 따른 기지국의 구성을 나타낸 도면이다.
도 2a는 본 발명의 실시 예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 2b는 본 발명의 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2c는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 2d는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다. .
도 2e는 본 발명이 실시 예에 따른 단말이 네트워크와 연결을 설정할 때 기지국이 상향 링크 데이터 압축을 수행할 지 여부를 설정하는 절차를 나타낸 도면이다.
도 2f는 본 발명의 실시 예에 따른 상향 링크 데이터 압축(Uplink Data Compression)을 수행하는 절차와 데이터 구성을 나타낸 도면이다.
도 2g는 본 발명의 실시 예에 따른 상향 링크 데이터 압축 방법의 한 실시 예를 나타낸 도면이다.
도 2h는 본 발명의 실시 예에 따른 ROHC(Robust Header Compression) 헤더 압축을 수행하는 절차와 데이터 구성을 나타낸 도면이다.
도 2i는 본 발명의 실시 예에 따른 PDCP 계층 장치에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 SDAP 헤더에 암호화하는 절차를 나타낸 도면이다.
도 2j는 본 발명의 실시 예에 따른 PDCP 계층 장치에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 SDAP 헤더에 암호화를 수행하지 않는 절차를 제안하는 도면이다.
도 2k는 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 기지국 구현의 구조에서의 이득을 나타낸 도면이다.
도 2l는 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2m는 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 ROHC가 설정된 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2n은 본 발명의 실시 예에 따른 PDCP 계층 장치에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하는 것을 설명한 도면이다.
도 2o은 본 발명의 실시 예에 따른 PDCP 계층 장치에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하지 않는 방법을 제안하고 이를 설명하는 도면이다.
도 2p은 본 발명의 실시 예에 따른 PDCP 계층 장치에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하지 않고 UDC 헤더에 암호화를 적용하지 않는 방법을 제안하고 이를 설명하는 도면이다.
도 2q는 본 발명의 실시 예에 따른 암호화되지 않고 사용자 데이터 압축이 수행되지 않은 SDAP 헤더를 적용하고 암호화되지 않은 UDC 헤더를 적용했을 때 UDC가 설정된 SDAP/PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널에서 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2r는 본 발명의 실시 예에 따른 암호화되지 않고 사용자 데이터 압축이 수행되지 않은 SDAP 헤더를 적용하고 암호화되지 않은 UDC 헤더를 적용했을 때 UDC가 설정된 SDAP/PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널에서 송신 SDAP/PDCP 계층 장치의 동작과 수신 SDAP/PDCP 계층 장치의 동작을 나타낸 도면이다.
도 2s에 본 발명의 실시 예에 따른 단말의 구성을 나타낸 도면이다.
도 2t는 본 발명의 실시 예에 따른 기지국의 구성을 나타낸 도면이다.
도 3a는 본 발명의 실시 예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 3b는 본 발명의 실시 예에 따른 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 3c는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 3d는 본 발명의 실시 예에 따른 NR 시스템에서의 QoS를 다루기 위한 새로운 기능들을 설명하기 위한 도면이다.
도 3ea는 본 발명의 실시 예에 따른 NR에서의 SDAP를 포함한 프로토콜 스택을 나타내는 도면이다.
도 3eb는 본 발명의 실시 예에 따른 NR에서의 SDAP를 포함한 프로토콜 스택을 나타내는 도면이다.
도 3f는 본 발명의 실시 예에 따른 특정 DRB에서의 새로운 QoS flow의 첫번째 패킷이 지연되어 수신될 경우의 문제점 및 이슈를 설명하기 위한 도면이다.
도 3g는 본 발명의 실시 예 3-1에 따른, 단말의 수신 SDAP 레이어에서 새로운 QoS flow를 수신하였을 경우 해당하는 SDAP 패킷을 우선 처리하도록 하는 방법을 설명하는 도면이다.
도 3h는 본 발명의 실시 예 3-2에 따른, QoS flow가 re-mapping 되었을 경우, 수신단에서 in-order delivery를 보장하기 위한 방법을 설명하는 도면이다.
도 3i는 본 발명의 실시 예에 따른 QoS flow와 DRB의 매핑 변경이 수행되었을 경우, 새로운 QoS flow 패킷을 전달하는 방법을 나타내는 도면이다.
도 3j는 본 발명의 실시 예에 따른 전체 단말 동작을 도시하는 도면이다.
도 3k는 본 발명의 실시 예에 따른 단말의 구성을 나타낸 도면이다.
도 3l는 본 발명의 실시 예에 따른 NR 기지국의 구성을 나타낸 도면이다.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하기로 한다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 발명은 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 본 발명에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다.
<제1 실시 예>
도 1a은 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1a을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템 (New Radio, NR)의 무선 액세스 네트워크는 차세대 기지국 (New Radio Node B, 이하 gNB)(1a-10) 과 AMF (1a-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(1a-15)은 gNB (1a-10) 및 AMF (1a-05)를 통해 외부 네트워크에 접속한다.
도 1a에서 gNB(1a-10)는 기존 LTE 시스템의 eNB (Evolved Node B, 1a-30)에 대응된다. gNB(1a-10)는 NR UE(1a-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다 (1a-20). 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 gNB (1a-10)가 담당한다. 하나의 gNB는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 칭한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. AMF (1a-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. AMF(1a-05)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, AMF(1a-05)이 MME (1a-25)와 네트워크 인터페이스를 통해 연결된다. MME(1a-25)는 기존 기지국인 eNB (1a-30)과 연결된다. LTE-NR Dual Connectivity을 지원하는 단말(1a-15)은 gNB(1a-10)뿐 아니라, eNB(1a-30)에도 연결을 유지하면서, 데이터를 송수신할 수 있다 (1a-35).
도 1b는 본 발명의 실시 예에 따른 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.
기존 LTE 시스템에서는 연결 모드 (connected mode 또는 RRC connected mode, 1b-35)와 대기 모드 (idle mode 또는 RRC idle mode1b-45)의 2 가지 무선 접속 상태를 가진다. 상기 두 모드는 establishment 절차와 release 절차를 통해, 천이된다 (1b-40).
반면, 차세대 이동통신 시스템에서는 3 가지의 무선 접속 상태 (RRC state)를 가진다. 연결 모드 (connected mode 또는 RRC_CONNECTED, 1b-05)는 단말이 데이터를 송수신할 수 있는 무선 접속 상태이다. 대기 모드 (idle mode 또는 RRC_IDLE, 1b-30)는 단말이 자신에게 페이징이 전송되는지를 모니터링하는 무선 접속 상태이다. 상기 두 모드는 기존 LTE 시스템에도 적용되는 무선 접속 상태로, 상세 기술은 기존 LTE 시스템의 것과 동일하다. 차세대 이동통신 시스템에서는 신규로 비활성 모드 (inactive mode 또는 RRC_INACTIVE, 1b-15) 무선 접속 상태가 정의되었다. 상기 무선 접속 상태에서는 UE context가 기지국과 단말에 유지되며, RAN 기반 페이징이 지원된다. 상기 신규 무선 접속 상태의 특징을 나열하면 하기와 같다.
- Cell re-selection mobility;
- CN-NR RAN connection (both C/U-planes) has been established for UE;
- The UE AS context is stored in at least one gNB and the UE;
- Paging is initiated by NR RAN;
- RAN-based notification area is managed by NR RAN;
- NR RAN knows the RAN-based notification area which the UE belongs to;
신규 INACTIVE 무선 접속 상태는 특정 절차를 이용하여, 연결 모드 혹은 대기 모드로 천이할 수 있다. Connection activation에 따라 INACTIVE 모드에서 연결 모드로 전환되며, Connection inactivation 절차를 이용하여 연결 모드에서 INACTIVE 모드로 전환된다 (1b-10). 상기 Connection activation/inactivation 절차는 하나 이상의 RRC 메시지를 단말과 기지국 간 송수신되며, 하나 이상의 단계로 구성되는 것을 특징으로 한다. 역시 특정 절차에 따라 INACTIVE 모드에서 대기 모드로 전환 가능하다 (1b-20). 상기 언급된 특정 절차로는 특정 메시지 교환 혹은 타이머 기반 혹은 이벤트 기반 등 다양한 방법이 고려될 수 있다. 연결 모드과 대기 모드 간 전환은 기존의 LTE 기술을 따를 수 있다. 즉, connection establishment 혹은 release 절차를 통해, 상기 모드간 전환이 이루어질 수 있다(1b-25).
도 1c는 본 발명의 실시 예에 따른 LTE 시스템에서 무선 접속 상태가 불 일치하는 현상을 설명하기 위한 도면이다.
단말 (1c-05)은 기지국 (1c-10)과 연결 상태에 있다 (1c-15). 상기 기지국(1c-10)은 상기 단말(1c-05)을 대기 모드로 전환시키기 위해, RRC connection release 메시지를 상기 단말(1c-05)에게 전송한다. 그러나, 무선 채널이 양호하지 못해, 상기 단말(1c-05)은 상기 메시지를 수신하지 못할 수 있다 (1c-20). 기존 표준 기술에서 상기 기지국(1c-10)은 상기 메시지에 대한 HARQ(hybrid automatic repeat request) feedback을 기다리지 않고, 바로 상기 단말(1c-05)이 대기 모드로 전환되었다고 간주한다 (1c-30). 반면, 상기 단말(1c-05)은 상기 release 메시지를 수신하지 못했기 때문에, 여전히 연결 모드를 유지하게 된다 (1c-25).
도 1d는 본 발명의 실시 예에 따른 LTE 시스템에서 무선 접속 상태가 불 일치하는 현상을 해결하는 방안을 설명하기 위한 도면이다.
상기 설명한 문제를 해결하기 위해, LTE 시스템에서는 하나의 타이머, DataInactivityTimer를 도입하였다. 상기 타이머는 dedicated signalling을 이용하여, 단말(1d-05)에게 제공된다. 예를 들어, 기지국 (1d-10)은 establishment 절차에서 RRC connection setup 메시지에 상기 타이머 정보를 포함시켜, 상기 단말 (1d-05)에게 제공할 수 있다 (1d-15). 상기 타이머 정보를 수신한 상기 단말(1d-05)은 상기 타이머를 구동시킨다 (1d-20). 상기 타이머는 상, 하향링크에서 데이터가 발생할 때마다 재시작한다 (1d-25). 만약, 상기 타이머가 만료되면, 상기 단말(1d-05)은 자동적으로 대기 모드로 전환한다 (1d-40). 이는 상기 단말(1d-05)이 상기 release 메시지를 수신하지 못해 발생할 수 있는 무선 접속 상태의 불일치 문제를 해결시켜준다 (1d-35). 따라서, 상기 단말(1d-05)과 기지국(1d-10)은 모두 대기 모드에 있게 된다 (1d-45, 1d-50).
본 발명의 실시 예에서는 기존 DataInactivityTimer와 더불어, 상기 타이머가 만료되었을 때, 단말이 전환해야 하는 RRC state 혹은 수행해야하는 동작을 함께 설정하는 것을 특징으로 한다. 차세대 이동통신 시스템에서는 RRC connection release 메시지를 이용하여, 연결 모드의 단말은 대기모드 혹은 비활성 모드로 전환시킬 수 있다. 따라서, 상기 타이머 만료 시, 고정된 RRC state로 전환되기 보단, 네트워크의 의도에 따라, 전환해야 할 RRC state을 설정하는 것이 효과적일 수 있다. 일례로, 대기 모드로 일괄적인 전환보다는 비활성 모드로 전환시켜, 다시 연결 모드로 전환 시 요구되는 시그널링 오버헤드를 최소화 시킬 수도 있다.
제 1-1 실시 예에서는 DataInactivityTimer 만료 시, 단말이 전환해야 하는 RRC state을 설정하는 것이다.
네트워크는 단말에게 상기 타이머를 설정함과 동시에, 상기 타이머 만료 시 전환해야 할 RRC state도 함께 설정한다. 상기 RRC state가 비활성 모드라면, 상기 네트워크는 비활성 모드와 관련된 파라미터들을 함께 제공할 수도 있다. 상기 파라미터란 I-RNTI, paging area configuration 등이다. 여기서 I-RNTI란 비활성 모드에서 단말간 구별을 위한 지시자를 의미하며, paging area configuration이란, 상기 단말에 제공되는 페이징이 전송되는 셀 단위 혹은 특정 셀 그룹 단위의 지역 정보이다. 전환해야 할 RRC state가 대기모드라면, 네트워크는 RRC connection release 메시지를 전송한 후, 대기 모드로 전환한다. 단말은 상기 타이머가 만료된 후, 대기 모드로 전환한다. 전환해야 할 RRC state가 비활성모드라면, 네트워크는 RRC connection release 메시지를 전송한 후, 비활성 모드로 전환한다. 단말은 상기 타이머 만료된 후, 비활성 모드로 전환한다. 전환해야 할 RRC state가 비활성모드인데, 상기 비활성 모드와 관련된 파라미터들이 네트워크로부터 제공되지 않는다면, 단말은 상기 파라미터를 획득하기 위해, 기존 연결을 해제한 후, RRC connection establishment을 수행한다. 네트워크는 RRC connection release 메시지를 전송한 후, 비활성 모드로 전환하되, 상기 단말의 RRC connection establishment에 대해 응대한다.
제 1-2 실시 예에서는 DataInactivityTimer 만료 시, 단말이 수행해야 하는 동작을 설정하는 것이다.
네트워크는 단말에게 상기 타이머를 설정함과 동시에, 상기 타이머 만료 시 수행해야 할 동작도 함께 설정한다. 수행해야 할 동작이 대기모드 전환이라면, 네트워크는 RRC connection release 메시지를 전송한 후, 대기 모드로 전환한다. 단말은 상기 타이머가 만료된 후, 대기 모드로 전환한다. 수행해야 할 동작이 RRC connection establishment라면, 단말은 상기 타이머가 만료된 후, RRC connection establishment을 수행한다. 네트워크는 RRC connection release 메시지를 전송한 후, 비활성 모드로 전환하되, 상기 단말의 RRC connection establishment에 대해 응대한다.
복수 개의 기지국과 연결하여 데이터를 송수신하는 Dual Connectivity이 설정되어 있을 시, 상기 DataInactivityTimer 설정은 MeNB(master eNB)을 관장하는 MAC 계층에만 적용된다. 즉, MeNB와 연결된 데이터 전송이 상기 타이머 만료 시까지 발생하지 않으면, 단말은 상기 동작을 수행한다. 반면, SeNB(secondary eNB)와 연결된 데이터 전송은 상기 타이머의 시작 혹은 재시작에 영향을 미치지 않거나, 혹은 SeNB와 연결된 데이터 전송이 상기 타이머 만료 시까지 발생하지 않으면, 단말은 상기 동작을 수행하는 것이 아니라, 단지 상기 타이머를 재시작 한다.
도 1e는 본 발명의 실시 예에 따른 무선 접속 상태가 불 일치하는 현상을 해결하는 과정의 흐름도이다.
단말 (1e-05)은 하나의 셀에 camp-on 한다 (1e-15). 상기 단말(1e-05)은 기지국 (1e-10)과 RRC connection establishment을 수행한다 (1e-20). 상기 과정에서 DCCH(dedicated control channel) 1과 SRB(signaling radio bearer) 1 이 설정된다. 상기 기지국(1e-10)은 상기 단말(1e-05)에게 RRC connection reconfiguration 메시지를 이용하여, DCCH 2과 SRB 2을 설정하고, DTCH (dedicated traffic channel)와 DRB을 설정한다 (1e-25). 상기 단말은 상기 설정된 로지컬 채널과 무선 베어러를 통해, 상기 기지국과 데이터를 송수신한다. MAC (medium access control) 계층은 DCCH 혹은 DTCH을 통해, MAC SDU(service data unit)을 수신하거나, 송신한다.
이 때, 상기 기지국(1e-10)은 상기 단말(1e-05)에게 RRC connection reconfiguration 메시지를 이용하여, DataInactivityTimer와 단말(1e-05)이 전환해야 하는 RRC state 혹은 수행해야 하는 동작을 함께 설정한다 (1e-35). 상기 설정은 RRC connection reconfiguration뿐 아니라, 상기 RRC connection establishment 과정에서 상기 단말(1e-05)에게 제공될 수도 있다. 상기 설정 이후, 상기 단말(1e-05)은 타이머를 시작하며, 데이터 송수신이 발생할 때마다 상기 타이머를 재시작 한다 (1e-45). 만일 네트워크가 전송한 RRC connection release 메시지가 무선 전송 구간에서 유실되어 (1e-55), 상기 타이머가 만료되면 상기 단말(1e-05)은 상기 설정된 전환해야 하는 RRC state 혹은 수행해야 하는 동작을 확인한다 (1e-50). 전환해야 하는 RRC state 혹은 수행해야 하는 동작에 따라, 상기 제 1-1 실시 예 혹은 제 1-2 실시 예의 동작을 수행한다. 종국에 상기 단말(1e-05)과 상기 기지국(1e-10)은 동일한 RRC state을 유지한다 (1e-60, 1e-65)
도 1f는 본 발명의 실시 예에 따른 단말 동작의 순서도이다.
1f-05 단계에서 단말은 기지국과 RRC connection establishment을 수행한다.
1f-10 단계에서 상기 단말은 연결 모드로 전환한다.
1f-15 단계에서 상기 단말은 기지국으로부터 DataInactivityTimer와 단말이 전환해야 하는 RRC state 혹은 수행해야 하는 동작을 함께 설정 받는다.
1f-20 단계에서 상기 단말은 상기 설정 이후 타이머를 시작하며, 데이터 송수신이 발생할 때마다 상기 타이머를 재시작 한다.
1f-25 단계에서 상기 타이머가 만료되면 상기 단말은 상기 설정된 전환해야 하는 RRC state 혹은 수행해야 하는 동작을 확인한다. 전환해야 하는 RRC state 혹은 수행해야 하는 동작에 따라, 상기 제 1-1 실시 예 혹은 제 1-2 실시 예의 동작을 수행한다.
도 1g는 본 발명의 실시 예에 따른 기지국 동작의 순서도이다.
1g-05 단계에서 기지국은 단말과 RRC connection establishment을 수행한다.
1g-10 단계에서 상기 기지국은 상기 단말이 연결 모드로 전환됨을 인지한다.
1g-15 단계에서 상기 기지국은 상기 단말에게 DataInactivityTimer와 단말이 전환해야 하는 RRC state 혹은 수행해야 하는 동작을 함께 설정한다.
1g-20 단계에서 상기 기지국은 상기 단말에게 RRC connection release 메시지를 전송한다.
1g-25 단계에서 상기 기지국은 특정 시간이 지난 후, 상기 단말을 특정 RRC state로 전환시킨다. 만약 상기 기지국이 상기 단말이 전환해야 할 RRC state로 대기 모드로 설정했다면, 상기 기지국은 상기 RRC 메시지 전송하고, 특정 시간이 지난 후, 상기 단말을 대기 모드로 전환시킨다. 만약 상기 기지국이 상기 단말이 전환해야 할 RRC state로 비활성 모드로 설정했다면, 상기 기지국은 상기 RRC 메시지 전송하고, 특정 시간이 지난 후, 상기 단말을 비활성 모드로 전환시킨다.
도 1h는 본 발명의 실시 예에 따른 단말의 구성을 나타낸 도면이다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(1h-10), 기저대역(baseband)처리부(1h-20), 저장부(1h-30), 제어부(1h-40)를 포함한다. 제어부(1h-40)는 다중연결 처리부(1h-42)를 포함할 수 있다.
상기 RF처리부(1h-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1h-10)는 상기 기저대역처리부(1h-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(1h-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1h-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1h-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1h-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역처리부(1h-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(1h-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(1h-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(1h-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1h-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(1h-30)는 상기 제어부(1h-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1h-40)는 본 발명의 실시 예에 따른 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1h-40)는 상기 기저대역처리부(1h-20) 및 상기 RF처리부(1h-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(1h-40)는 상기 저장부(1h-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1h-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(1h-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 1i는 본 발명의 실시 예에 기지국의 구성을 나타낸 도면이다.
상기 기지국은 RF처리부(1i-10), 기저대역처리부(1i-20), 백홀통신부(1i-30), 저장부(1i-40), 제어부(1i-50)를 포함하여 구성된다.
상기 RF처리부(1i-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1i-10)는 상기 기저대역처리부(1i-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF처리부(1i-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1i-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1i-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1i-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역처리부(1i-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1i-20)은 상기 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1i-20)은 상기 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀통신부(1i-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀통신부(1i-30)는 상기 기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(1i-40)는 상기 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1i-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(1i-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(1i-40)는 상기 제어부(1i-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(1i-50)는 본 발명의 실시 예에 따른 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1i-50)는 상기 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)을 통해 또는 상기 백홀통신부(1i-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(1i-50)는 상기 저장부(1i-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1i-50)는 적어도 하나의 프로세서를 포함할 수 있다.
<제2 실시 예>
도 2a는 본 발명의 실시 예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 2a을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(2a-05, 2a-10, 2a-15, 2a-20)과 MME (2a-25, Mobility Management Entity) 및 S-GW(2a-30, Serving-Gateway)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(2a-35)은 ENB(2a-05, 2a-10, 2a-15, 2a-20) 및 S-GW(2a-30)를 통해 외부 네트워크에 접속한다.
도 2a에서 ENB(2a-05, 2a-10, 2a-15, 2a-20)는 UMTS 시스템의 기존 노드 B에 대응된다. ENB(2a-05)는 UE(2a-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(2a-05, 2a-10, 2a-15, 2a-20)가 담당한다. 하나의 ENB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(2a-30)는 데이터 베어러를 제공하는 장치이며, MME(2a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME(2a-25)는 단말(2a-35)에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들(2a-05, 2a-10, 2a-15, 2a-20)과 연결된다.
도 2b는 본 발명의 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP (Packet Data Convergence Protocol 2b-05, 2b-40), RLC (Radio Link Control 2b-10, 2b-35), MAC (Medium Access Control 2b-15, 2b-30)으로 이루어진다. PDCP (Packet Data Convergence Protocol)(2b-05, 2b-40)는 IP 헤더 압축/복원 등의 동작을 담당한다. PDCP의 주요 기능은 하기와 같이 요약된다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(2b-10, 2b-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ(automatic repeat request) 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약된다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(2b-15, 2b-30)은 단말 또는 기지국에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약된다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(2b-20, 2b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.
도 2c는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 2c을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템(이하 NR 혹은 5G)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 혹은 NR 기지국)(2c-10) 과 NR CN (2c-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(2c-15)은 NR gNB(2c-10) 및 NR CN (2c-05)를 통해 외부 네트워크에 접속한다.
도 2c에서 NR gNB(2c-10)는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응된다. NR gNB(2c-10)는 NR UE(2c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR NB(2c-10)가 담당한다. 하나의 NR gNB는 통상 다수의 셀들을 제어한다. 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. NR CN (2c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. NR CN(2c-05)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN(2c-05)이 MME (2c-25)와 네트워크 인터페이스를 통해 연결된다. MME(2c-25)는 기존 기지국인 eNB (2c-30)와 연결된다.
도 2d는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 2d를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(2d-01, 2d-45), NR PDCP(2d-05, 2d-40), NR RLC(2d-10, 2d-35), NR MAC(2d-15, 2d-30)으로 이루어진다.
NR SDAP(2d-01, 2d-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (2d-05, 2d-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(2d-10, 2d-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(2d-15, 2d-30)은 단말 또는 기지국에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(2d-20, 2d-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
본 발명의 실시 예에서는 무선 통신 시스템에서 단말이 상향 링크로 데이터를 전송할 때에 데이터를 압축하고 기지국에서 이를 압축 해제하는 절차를 제안하고, 구체적인 헤더 포맷, 압축 해제 실패 시 해결 방법 등 송신단에서 데이터를 압축하고 전송하고 수신단에서 이를 압축해제 하는 데이터 송수신 절차에 대한 지원 방법을 제안한다. 또한 본 발명의 실시 예에서 제안하는 방법은 기지국이 단말에게 하향 링크 데이터를 전송할 때에 데이터를 압축해서 전송하고 단말이 압축된 하향 링크 데이터를 수신하여 압축 해제하는 절차에도 적용될 수 있다. 상기와 같이 본 발명의 실시 예에서는 송신단에서 데이터를 압축하여 전송함으로써, 더 많은 데이터를 전송할 수 있도록 함과 동시에 커버리지를 향상시키는 효과를 가져오도록 한다.
도 2e는 본 발명의 실시 예에 따른 단말이 네트워크와 연결을 설정할 때 기지국이 상향 링크 데이터 압축을 수행할 지 여부를 설정하는 절차를 나타낸 도면이다.
도 2e는 본 발명에서 단말이 RRC 유휴 모드(RRC idle mode) 혹은 RRC 비활성화 모드(RRC Inactive mode 혹은 lightly-connected mode)에서 RRC 연결 모드(RRC connected mode)로 전환하여 네트워크와 연결을 설정하는 절차를 설명하며, 상향 링크 데이터 압축(Uplink Data Compression, UDC)을 수행할 지 여부를 설정하는 절차를 설명한다.
도 2e에서 기지국은 RRC 연결 모드에서 데이터를 송수신하는 단말이 소정의 이유로 혹은 일정 시간 동안 데이터의 송수신이 없으면 RRCConnectionRelease 메시지를 단말에게 보내어 단말을 RRC 유휴모드로 전환하도록 할 수 있다(2e-01). 추후에 현재 연결이 설정되어 있지 않은 단말 (이하 idle mode UE)은 전송할 데이터가 발생하면 기지국과 RRC connection establishment과정을 수행한다. 단말은 랜덤 액세스 과정을 통해서 기지국과 역방향 전송 동기를 수립하고 RRCConnectionRequest 메시지를 기지국으로 전송한다 (2e-05). 상기 메시지에는 단말의 식별자와 연결을 설정하고자 하는 이유(establishmentCause) 등이 수납된다. 기지국은 단말이 RRC 연결을 설정하도록 RRCConnectionSetup 메시지를 전송한다(2e-10). 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 상향 링크 데이터 압축 방법(UDC)의 사용 여부를 지시하는 정보를 포함할 수 있다. 또한 더 구체적으로 각 로지컬 채널 혹은 베어러 혹은 각 PDCP 장치(혹은 SDAP 장치)에서 어떤 IP flow 혹은 어떤 QoS flow에 대해서만 상향 링크 데이터 압축 방법(UDC)을 사용할지를 지시할 수 있다(SDAP 장치에게 상향 링크 데이터 압축 방법을 사용하거나 사용하지 않을 IP flow 혹은 QoS flow에 대한 정보를 설정하여 SDAP 장치가 PDCP 장치에게 상향 링크 데이터 압축 방법을 사용할 지 사용하지 않을 지를 각 QoS flow에 대해서 지시해줄 수도 있다. 혹은 PDCP 장치가 각 QoS flow를 스스로 확인하고, 상향 링크 압축 방법을 적용할 지 하지 않을지를 결정할 수도 있다). 또한 상기에서 상향 링크 데이터 압축 방법을 사용할 것을 지시한다면, 상기 메시지를 통해 상향 링크 데이터 압축 방법에서 사용할 미리 정의된 라이브러리(library) 혹은 사전정보(Dictionary)에 대한 식별자 혹은 상향 링크 데이터 압축 방법에서 사용할 버퍼 사이즈 크기 등을 지시할 수 있다. 또한 상기 메시지는 상향 링크 압축 해제를 수행하도록 셋업(setup)하거나 해제(release)하는 명령을 포함할 수 있다. 또한 상기에서 상향 링크 데이터 압축 방법을 사용하도록 설정할 때는 항상 RLC AM 베어러(ARQ 기능, 재전송 기능이 있어 손실이 없는 모드)로 설정할 수 있으며, 헤더 압축 프로토콜(ROHC)와는 함께 설정하지 않을 수 있다. 또한 상기 메시지에는 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 SDAP 계층 장치의 기능을 사용할지 여부 혹은 SDAP 헤더를 사용할지 여부를 지시할 수 있다. 또한, 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 ROHC(IP 패킷 헤더 압축)를 적용할 지 여부를 지시할 수 있으며 상향 링크와 하향 링크에 대해서 각각 ROHC를 적용할 지 여부를 각각 지시자로 설정할 수 있다. 하지만 ROHC와 UDC를 하나의 PDCP 계층 장치 혹은 로지컬 채널 혹은 베어러에 대해서 동시에 설정할 수는 없으며, UDC 는 최대 2개의 베어러에 대해서 설정할 수 있다. 또한 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 무결성 검증(Integrity protection)을 적용할 지 여부를 지시할 수 있으며 해당 PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널의 최대 데이터 전송율을 고려하여 설정할 수 있다. 또한 상기 메시지에는 RRC 연결 구성 정보 등이 수납될 수 있다. RRC 연결은 SRB (Signaling Radio Bearer)라고도 하며, 단말과 기지국 사이의 제어 메시지인 RRC 메시지 송수신에 사용된다.
RRC 연결을 설정한 단말은 RRCConnetionSetupComplete 메시지를 기지국으로 전송한다 (2e-15). 만약 기지국이 현재 연결을 설정하고 있는 단말에 대한 단말 능력을 모른다면 혹은 단말 능력을 파악하고 싶다면 단말의 능력을 물어보는 메시지를 보낼 수 있다. 그리고 단말은 자신의 능력을 보고하는 메시지를 보낼 수 있다. 상기 메시지에서 단말이 상향 링크 데이터 압축 방법(Uplink Data Compression, UDC) 혹은 ROHC(Robust Header Compression) 혹은 무결성 검증(Integrity Protection)을 사용할 수 있는 지 여부를 나타낼 수 있으며, 이를 지시하는 지시자를 포함하여 보낼 수 있다. 상기 RRCConnetionSetupComplete 메시지에는 단말이 소정의 서비스를 위한 베어러 설정을 MME에게 요청하는 SERVICE REQUEST라는 제어 메시지가 포함되어 있다. 기지국은 RRCConnetionSetupComplete 메시지에 수납된 SERVICE REQUEST 메시지를 MME로 전송하고 (2e-20), MME는 단말이 요청한 서비스를 제공할지 여부를 판단한다. 판단 결과 단말이 요청한 서비스를 제공하기로 결정하였다면 MME는 기지국에게 INITIAL CONTEXT SETUP REQUEST라는 메시지를 전송한다(2e-25). 상기 INITIAL CONTEXT SETUP REQUEST 메시지에는 DRB (Data Radio Bearer) 설정 시 적용할 QoS (Quality of Service) 정보, 그리고 DRB에 적용할 보안 관련 정보 (예를 들어 Security Key, Security Algorithm) 등의 정보가 포함된다. 기지국은 단말과 보안을 설정하기 위해서 SecurityModeCommand 메시지(2e-30)와 SecurityModeComplete 메시지(2e-35)를 교환한다. 보안 설정이 완료되면 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 전송한다(2e-40). 상기 RRCConnectionReconfiguration 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 상향 링크 데이터 압축 방법(UDC)의 사용 여부를 지시하는 정보를 포함할 수 있다. 또한 더 구체적으로 각 로지컬 채널 혹은 베어러 혹은 각 PDCP 장치(혹은 SDAP 장치)에서 어떤 IP flow 혹은 어떤 QoS flow에 대해서만 상향 링크 데이터 압축 방법(UDC)을 사용할지를 지시할 수 있다 (SDAP 장치에게 상향 링크 데이터 압축 방법을 사용하거나 사용하지 않을 IP flow 혹은 QoS flow에 대한 정보를 설정하여 SDAP 장치가 PDCP 장치에게 상향 링크 데이터 압축 방법을 사용할 지 사용하지 않을 지를 각 QoS flow에 대해서 지시해줄 수도 있다. 혹은 PDCP 장치가 각 QoS flow를 스스로 확인하고, 상향 링크 압축 방법을 적용할 지 하지 않을지를 결정할 수도 있다). 또한 상기에서 상향 링크 데이터 압축 방법을 사용할 것을 지시한다면, 상기 메시지를 통해 상향 링크 데이터 압축 방법에서 사용할 미리 정의된 라이브러리(library) 혹은 사전정보(Dictionary)에 대한 식별자 혹은 상향 링크 데이터 압축 방법에서 사용할 버퍼 사이즈 크기 등을 지시할 수 있다. 또한 상기 메시지는 상향 링크 압축 해제를 수행하도록 셋업(setup)하거나 해제(release)하는 명령을 포함할 수 있다. 또한 상기에서 상향 링크 데이터 압축 방법을 사용하도록 설정할 때는 항상 RLC AM 베어러(ARQ 기능, 재전송 기능이 있어 손실이 없는 모드)로 설정할 수 있으며, 헤더 압축 프로토콜(ROHC)와는 함께 설정하지 않을 수 있다. 또한 상기 메시지에는 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 SDAP 계층 장치의 기능을 사용할지 여부 혹은 SDAP 헤더를 사용할지 여부를 지시할 수 있으며, 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 ROHC(IP 패킷 헤더 압축)를 적용할 지 여부를 지시할 수 있으며 상향 링크와 하향 링크에 대해서 각각 ROHC를 적용할 지 여부를 각각 지시자로 설정할 수 있다. 하지만 ROHC와 UDC를 하나의 PDCP 계층 장치 혹은 로지컬 채널 혹은 베어러에 대해서 동시에 설정할 수는 없으며, UDC 는 최대 2개의 베어러에 대해서 설정할 수 있다. 또한 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 무결성 검증(Integrity protection)을 적용할 지 여부를 지시할 수 있으며 해당 PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널의 최대 데이터 전송율을 고려하여 설정할 수 있다. 또한 상기 메시지에는 사용자 데이터가 처리될 DRB의 설정 정보가 포함되며, 단말은 상기 정보를 적용해서 DRB를 설정하고 기지국에게 RRCConnectionReconfigurationComplete 메시지를 전송한다(2e-45).
단말과 DRB 설정을 완료한 기지국은 MME에게 INITIAL CONTEXT SETUP COMPLETE 메시지를 전송하고 (2e-50), 이를 수신한 MME는 S-GW와 S1 베어러를 설정하기 위해서 S1 BEARER SETUP 메시지와 S1 BEARER SETUP RESPONSE 메시지를 교환한다(2e-055, 2e-60). S1 베어러는 S-GW와 기지국 사이에 설정되는 데이터 전송용 연결이며 DRB와 1대 1로 대응된다. 상기 과정이 모두 완료되면 단말은 기지국과 S-GW를 통해 데이터를 송수신한다(2e-65, 2e-70). 이처럼 일반적인 데이터 전송 과정은 크게 RRC 연결 설정, 보안 설정, DRB설정의 3단계로 구성된다.
또한 기지국은 소정의 이유로 단말에게 설정을 새로 해주거나 추가하거나 변경하기 위해서 RRCConnectionReconfiguration 메시지를 전송할 수 있다(2e-75). 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 상향 링크 데이터 압축 방법(UDC)의 사용 여부를 지시하는 정보를 포함할 수 있다. 또한 더 구체적으로 각 로지컬 채널 혹은 베어러 혹은 각 PDCP 장치(혹은 SDAP 장치)에서 어떤 IP flow 혹은 어떤 QoS flow에 대해서만 상향 링크 데이터 압축 방법(UDC)을 사용할지를 지시할 수 있다(SDAP 장치에게 상향 링크 데이터 압축 방법을 사용하거나 사용하지 않을 IP flow 혹은 QoS flow에 대한 정보를 설정하여 SDAP 장치가 PDCP 장치에게 상향 링크 데이터 압축 방법을 사용할 지 사용하지 않을 지를 각 QoS flow에 대해서 지시해줄 수도 있다. 혹은 PDCP 장치가 각 QoS flow를 스스로 확인하고, 상향 링크 압축 방법을 적용할지 하지 않을지를 결정할 수도 있다). 또한 상기에서 상향 링크 데이터 압축 방법을 사용할 것을 지시한다면, 상기 메시지를 통해 상향 링크 데이터 압축 방법에서 사용할 미리 정의된 라이브러리(library) 혹은 사전정보(Dictionary)에 대한 식별자 혹은 상향 링크 데이터 압축 방법에서 사용할 버퍼 사이즈 크기 등을 지시할 수 있다. 또한 상기 메시지는 상향 링크 압축 해제를 수행하도록 셋업(setup)하거나 해제(release)하는 명령을 포함할 수 있다. 또한 상기에서 상향 링크 데이터 압축 방법을 사용하도록 설정할 때는 항상 RLC AM 베어러(ARQ 기능, 재전송 기능이 있어 손실이 없는 모드)로 설정할 수 있으며, 헤더 압축 프로토콜(ROHC)와는 함께 설정하지 않을 수 있다. 또한 상기 메시지에는 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 SDAP 계층 장치의 기능을 사용할지 여부 혹은 SDAP 헤더를 사용할지 여부를 지시할 수 있으며, 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 ROHC(IP 패킷 헤더 압축)를 적용할 지 여부를 지시할 수 있으며 상향 링크와 하향 링크에 대해서 각각 ROHC를 적용할 지 여부를 각각 지시자로 설정할 수 있다. 하지만 ROHC와 UDC를 하나의 PDCP 계층 장치 혹은 로지컬 채널 혹은 베어러에 대해서 동시에 설정할 수는 없으며, UDC 는 최대 2개의 베어러에 대해서 설정할 수 있다. 또한 상기 메시지에는 각 로지컬 채널 별(logicalchannelconfig)로 혹은 베어러 별로 혹은 각 PDCP 장치 별(PDCP-config)로 무결성 검증(Integrity protection)을 적용할 지 여부를 지시할 수 있으며 해당 PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널의 최대 데이터 전송율을 고려하여 설정할 수 있다.
도 2f는 본 발명의 실시 예에 따른 상향 링크 데이터 압축(Uplink Data Compression)을 수행하는 절차와 데이터 구성을 나타낸 도면이다.
도 2f에서 상향 링크 데이터(2f-05)는 비디오 전송, 사진 전송, 웹 검색, VoLTE와 같은 서비스들에 해당하는 데이터로 생성될 수 있다. 응용 계층(application layer) 장치에서 생성된 데이터들은 네트워크 데이터 전송 계층에 해당하는 TCP/IP 혹은 UDP를 통해 처리되고, 각 헤더(2f-10, 2f-15)를 구성하고 PDCP 계층에 전달될 수 있다. 상기 PDCP 계층은 상위 계층으로부터 데이터(PDCP SDU)를 수신하면 다음과 같은 절차를 수행할 수 있다.
만약 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 PDCP 계층에서 상향 링크 데이터 압축 방법을 사용하도록 설정하였다면 2f-20과 같이 PDCP SDU에 대해서 상향 링크 데이터 압축(Uplink Data Compression) 방법을 수행하여 상향 링크 데이터를 압축하고, 그에 상응하는 UDC 헤더(압축된 상향 링크 데이터를 위한 헤더, 2f-25)를 구성하고, 무결성 보호가 설정되었다면 무결성 보호(Integrity protection)을 수행하고, 암호화(ciphering)을 수행하고, PDCP 헤더(2f-30)를 구성하여 PDCP PDU를 구성할 수 있다. 상기에서 PDCP 계층 장치는 UDC 압축/압축해제 장치를 포함하고 있으며, 상기 RRC 메시지에서 설정된 대로 각 데이터에 대해서 UDC 절차를 수행할지 수행하지 않을 지 판단하고, 상기 UDC 압축/압축해제 장치를 사용한다. 송신단에서는 송신 PDCP 계층 장치에서 UDC 압축 장치를 이용하여 데이터 압축을 수행하고, 수신단에서는 수신 PDCP 계층 장치에서 UDC 압축 해제 장치를 사용하여 데이터 압축 해제를 수행한다.
상기에서 설명한 도 2f 절차는 단말이 상향 링크 데이터 압축할 때뿐만 아니라 하향 링크 데이터를 압축하는 데에도 적용할 수 있다. 또한 상기 상향 링크 데이터에 대한 설명은 하향 링크 데이터에 대해서도 동일하게 적용될 수 있다.
도 2g는 본 발명의 실시 예에 따른 상향 링크 데이터 압축 방법의 한 실시 예를 나타낸 도면이다.
도 2g는 DEFLATE 기반 상향 링크 데이터 압축 알고리즘에 대한 설명을 나타낸 도면이며, DEFLATE 기반 상향 링크 데이터 압축 알고리즘은 손실이 없는 압축 알고리즘이다. 상기 DEFLATE 기반 상향 링크 데이터 압축 알고리즘은 기본적으로 LZ77 알고리즘과 호프만(Huffman) 코딩을 결합하여 상향 링크 데이터를 압축한다. 상기 LZ77 알고리즘은 데이터의 중복된 배열을 찾는 동작을 수행하고, 중복된 배열을 찾을 때 슬라이딩 윈도우를 통해 슬라이딩 윈도우 내에서 중복된 배열을 찾아서 중복된 배열이 있는 경우, 슬라이딩 윈도우 내에서 중복된 배열이 있는 위치와 중복된 정도를 길이로 나타내어 표현하여 데이터 압축을 수행한다. 상기 슬라이딩 윈도우는 상향 링크 데이터 압축 방법(UDC)에서 버퍼라고도 불리며, 8킬로바이트 혹은 32킬로바이트로 설정될 수 있다. 즉, 상기 슬라이딩 윈도우 혹은 버퍼는 8192 개 혹은 32768 개의 문자들에 대해서 기록하고 중복된 배열을 찾아서 위치와 길이로 표현하여 압축을 수행할 수 있다. 따라서 상기 LZ 알고리즘은 슬라이딩 윈도우 방식이기 때문에 즉, 이전에 코딩한 데이터들을 버퍼에 업데이트하고, 다시 바로 다음 데이터들에 코딩을 수행하기 때문에 연속되는 데이터들 간에 상관관계를 갖게 된다. 따라서 먼저 코딩한 데이터들이 정상적으로 디코딩되어야만 그 다음 데이터들이 정상적으로 디코딩이 가능하다. 상기에서 LZ77 알고리즘으로 위치와 길이로 표현되어 압축된 코드들(위치, 길이 등의 표현)은 호프만(Huffman) 코딩을 통하여 한번 더 압축이 수행된다. 상기 호프만 코딩은 다시 중복된 코드들을 찾으면서 중복된 정도가 많은 코드에는 짧은 표기를 사용하고, 중복된 정도가 적은 코드에는 긴 표기를 사용하여 다시 한번 압축을 수행한다. 상기 호프만 코딩은 접두사 코딩(prefix code)이고, 모든 코드가 뚜렷이 구분되는 특징(Uniquely decodable)을 가지고 있는 최적의 코딩 방식이다.
송신단에서는 상기에서 설명한 것과 같이 원래 데이터(2g-05)에 LZ77 알고리즘을 적용하여 인코딩을 수행하고(2g-10), 버퍼를 업데이트(2g-15)하고, 상기 버퍼의 컨텐츠(혹은 데이터)에 대한 체크섬(checksum) 비트들을 생성하여 UDC 헤더에 구성할 수 있다. 상기 체크섬 비트들은 수신단에서 버퍼 상태의 유효성 여부를 판단하기 위해 사용된다. 상기 LZ77 알고리즘으로 인코딩된 코드들을 호프만 코딩으로 한번 더 압축하여 상향 링크 데이터로 전송할 수 있다(2g-25). 수신단에서는 상기 수신한 압축된 데이터를 송신단의 반대로 압축 해제 절차를 수행한다. 즉, 호프만 디코딩을 수행하고(2g-30), 버퍼를 업데이트하고(2g-35), 업데이트된 버퍼의 유효성 여부를 UDC 헤더의 체크섬 비트들로 확인한다. 상기 체크섬 비트들이 오류 없다고 판단되면 LZ77 알고리즘으로 디코딩을 수행하여(2g-40) 데이터를 압축 해제하고 원래의 데이터를 복원하여 상위 계층으로 전달할 수 있다(2g-45).
상기에서 설명한 바와 같이 상기 LZ 알고리즘은 슬라이딩 윈도우 방식이기 때문에 즉, 이전에 코딩한 데이터들을 버퍼에 업데이트하고, 다시 바로 다음 데이터들에 코딩을 수행하기 때문에 연속되는 데이터들 간에 상관관계를 갖게 된다. 따라서 먼저 코딩한 데이터들이 정상적으로 디코딩되어야만 그 다음 데이터들이 정상적으로 디코딩이 가능하다. 따라서 수신 PDCP 계층 장치는 PDCP 헤더의 PDCP 일련번호를 확인하고 UDC 헤더를 확인(데이터 압축을 수행했는지 수행하지 않았는지를 지시하는 지시자를 확인)하여 데이터 압축 절차가 적용된 데이터들에 대해서 PDCP 일련번호의 오름차순 순으로 데이터 압축 해제 절차를 수행한다.
도 2h는 본 발명의 실시 예에 따른 ROHC(Robust Header Compression) 헤더 압축을 수행하는 절차와 데이터 구성을 나타낸 도면이다.
도 2h에서 상향 링크 데이터(2h-05)는 비디오 전송, 사진 전송, 웹 검색, VoLTE와 같은 서비스들에 해당하는 데이터로 생성될 수 있다. 응용 계층(application layer) 장치에서 생성된 데이터들은 네트워크 데이터 전송 계층에 해당하는 TCP/IP 혹은 UDP를 통해 처리되고, 각 헤더(2h-10, 2h-15)를 구성하고 PDCP 계층에 전달될 수 있다. 상기 PDCP 계층은 상위 계층으로부터 데이터(PDCP SDU)를 수신하면 다음과 같은 절차를 수행할 수 있다.
만약 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 PDCP 계층에서 헤더 압축(ROHC)을 사용하도록 설정하였다면, 2h-20과 같이 PDCP SDU에 대해서 헤더 압축(ROHC) 방법을 수행하여 수신한 상위 계층 데이터의 헤더(2h-15)를 압축하고, 압축된 헤더(2h-25)를 생성하고, 만약 무결성 검증이 설정되었다면 무결성 보호(Integrity protection)를 수행하고 암호화(ciphering)을 수행하고, PDCP 헤더(2h-30)를 구성하여 PDCP PDU를 구성할 수 있다. 상기에서 PDCP 계층 장치는 헤더 압축/압축해제 장치를 포함하고 있으며, 상기 RRC 메시지에서 설정된 대로 각 데이터에 대해서 헤더 압축을 수행할지 수행하지 않을 지 판단하고, 상기 헤더 압축/압축해제 장치를 사용한다. 송신단에서는 송신 PDCP 계층 장치에서 헤더 압축 장치를 이용하여 데이터 압축을 수행하고, 수신단에서는 수신 PDCP 계층 장치에서 헤더 압축 해제 장치를 사용하여 헤더 압축 해제를 수행한다.
상기에서 설명한 도 2h 절차는 단말이 상향 링크 헤더 압축할 때뿐만 아니라 하향 링크 데이터를 헤더 압축하는 데에도 적용할 수 있다. 또한 상기 상향 링크 데이터에 대한 설명은 하향 링크 데이터에 대해서도 동일하게 적용될 수 있다.
도 2i는 본 발명의 실시 예에 따른 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 PDCP 계층 장치에서 SDAP 헤더에 암호화하는 절차를 나타낸 도면이다.
도 2i 에서 SDAP 계층 장치는 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 상위 계층으로부터 데이터를 수신하면 2i-05와 같이 SDAP 헤더를 생성하고 구성하여 PDCP 계층 장치에게 전달할 수 있다. 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2i-10)에 대해 무결성 검증이 설정되었다면 무결성 보호(Integrity protection)를 수행하고, 암호화를 수행하고 PDCP 헤더를 생성하고 구성하여 접합한 후 하위 계층으로 전달하여 데이터 처리를 RLC 계층 장치와 MAC 계층 장치에서 진행할 수 있다.
도 2j는 본 발명의 실시 예에 따른 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 PDCP 계층 장치에서 SDAP 헤더에 암호화를 수행하지 않는 절차를 제안하는 도면이다.
도 2j 에서 SDAP 계층 장치는 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 상위 계층으로부터 데이터를 수신하면 2j-05와 같이 SDAP 헤더를 생성하고 구성하여 PDCP 계층 장치에게 전달할 수 있다. 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2j-10)에 대해서 SDAP 헤더를 제외하고 나머지 데이터(IP 패킷)에 대해서만 암호화를 수행하는 것을 특징으로 한다. 또한 PDCP 계층 장치는 무결성 검증이 설정되었다면 무결성 보호(Integrity protection)를 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2j-10)에 대해서 SDAP 헤더를 제외하고 나머지 데이터(IP 패킷)에 대해서만 수행하는 것을 특징으로 한다. 즉, 무결성 검증이 설정되었다면 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2j-10)에 대해서 SDAP 헤더를 제외하고 나머지 데이터(IP 패킷)에 대해서 무결성 보호를 적용하고, 암호화를 수행한 후, PDCP 헤더를 생성하고 구성하여 접합한 후 하위 계층으로 전달하여 데이터 처리를 RLC 계층 장치와 MAC 계층 장치에서 진행하도록 한다. 상기와 같이 SDAP 헤더를 암호화하지 않는다면 기지국 구현의 구조를 용이하게 할 수 있으며, 특히 CU(Central Unit)-DU(Distributed Unit) 스플릿 구조에서 CU에서 SDAP 헤더를 암호화하지 않으면 DU에서 SDAP 헤더를 읽어보고 QoS 정보를 확인하여 스케쥴링에 적용할 수 있으므로 QoS 를 맞추고 조절하기에 유리할 수 있다. 또한 단말과 기지국 구현에서 데이터 프로세싱 측면에서도 이득이 있다.
도 2k는 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 기지국 구현의 구조에서의 이득을 나타낸 도면이다.
도 2k에서와 같이 기지국의 구현에서 초기 설비 비용과 유지 비용을 줄이기 위해 CU(Central Unit)에는 상위 계층 장치들(예를 들면 PDCP 계층 장치와 그 상위 계층 장치들)을 구현하고, 상기 CU에 연결된 복수 개의 DU(Distributed Unit)에는 하위 계층 장치들(예를 들면 RLC 계층 장치와 그 하위 계층 장치들)을 구현할 수 있다. 이러한 CU-DU 스플릿 구조에서 상기 본 발명의 도 2j에서 제안한 것처럼 PDCP 계층 장치(2k-05)에서 암호화되지 않은 SDAP 헤더를 적용하게 되면 복수 개의 DU(2k-15)에서도 SDAP 헤더가 암호화되어 있지 않기 때문에 SDAP 헤더(2k-10)를 읽어 들일 수 있고 QoS 정보를 확인하여 DU의 스케쥴링에 적용할 수 있다. 따라서 DU에서 전송 자원을 할당하고 스케쥴링을 하는 데에 SDAP 헤더의 QoS 정보를 활용할 수 있기 때문에 서비스 별 QoS를 맞추고 조절하기에 유리할 수 있다.
도 2l는 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2l 에서 단말과 기지국을 구현할 때 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현할 수 있다(2l-01). 원래 논리적으로 SDAP 계층 장치는 PDCP 계층 장치의 상위 계층 장치이기 때문에 상위 응용 계층으로부터 데이터(2l-05)를 수신하면 SDAP 계층 장치가 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 상위 계층으로부터 데이터를 수신하면 도 2j의 2j-05와 같이 SDAP 헤더를 생성하고 구성해야 한다. 하지만 단말과 기지국 구현에서 암호화(ciphering) 절차 혹은 무결성 보호(integrity protection) 절차는 복잡도가 높은 동작이기 때문에 HW(Hardware) 가속기를 적용하여 구현할 수 있다. 이러한 HW 가속기는 반복적이고 지속적인 절차에 프로세싱 이득이 높다. 하지만 SDAP 계층 장치에서 상위 계층 장치에서 데이터를 수신할 때마다 SDAP 헤더를 구성하고, 암호화 절차를 SDAP 헤더를 제외한 데이터 부분에 수행하고 PDCP 헤더를 생성하여 SDAP 헤더에 붙이는 프로세싱을 수행하면 상기 절차에서 암호화를 수행하기 전에 SDAP 헤더를 생성하는 절차 때문에 HW 가속기에 방해(Interruption)가 될 수 있다.
따라서 본 발명의 실시 예에서는 암호화되지 않은 SDAP 헤더와 함께 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 제안한다. 즉, 상위 응용 계층으로부터 데이터를 수신하면 데이터를 수신할 때마다 지속적으로 그리고 반복적으로 암호화 절차를 수행하고 PDCP 헤더와 SDAP 헤더(2l-10)를 동시에 생성하여 암호화된 데이터에 접합하여 하위 계층으로 전달할 수 있다. 상기 PDCP 헤더와 SDAP 헤더의 생성은 암호화 절차와 병렬적으로 수행(parallel processing)될 수 있다. 상기에서 병렬적으로 헤더를 생성할 때 SDAP 헤더, PDCP 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 함께 생성하고, 데이터 처리가 완료된 데이터의 맨 앞에 한꺼번에 헤더들을 접합하여 전송을 준비할 수 있다(MAC PDU 구성을 준비할 수 있다).
또한 수신단에서는 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 데이터로부터 한 번에 분리하여 모두 읽어 들이고, 각 계층에 해당하는 정보를 파악하고, 송신단의 데이터 처리의 역순서로 데이터를 처리할 수 있다. 따라서 HW 가속기를 지속적이고 반복적으로 적용할 수 있고, 중간에 SDAP 헤더 생성과 같은 방해(interruption)이 없기 때문에 데이터 처리의 효율을 높일 수 있다. 또한 무결성 보호가 설정되었다면 무결성 보호(Integrity protection)를 상기 암호화 절차 수행 전에 상기 암호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 무결성 보호를 적용하고, 암호화를 수행할 수 있다.
수신 PDCP 계층 장치에서도 2l-01과 같이 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 적용할 수 있다. 즉, 하위 계층(RLC 계층)으로부터 데이터를 수신하면 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, PDCP 헤더와 SDAP 헤더를 한꺼번에 읽어 들이고, 헤더들을 제거하고 데이터에 비암호화(deciphering) 절차를 반복적으로 적용할 수 있다. 또한 무결성 보호가 설정되었다면 무결성 검증(Integrity verification)를 상기 복호화 절차 수행 후에 상기 복호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 복호화를 수행하고 무결성 검증을 수행할 수 있다.
도 2m은 본 발명의 실시 예에 따른 암호화되지 않은 SDAP 헤더를 적용했을 때 ROHC가 설정된 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2m 에서 단말과 기지국을 구현할 때 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현할 수 있다(2m-01). 원래 논리적으로 SDAP 계층 장치는 PDCP 계층 장치의 상위 계층 장치이기 때문에 상위 응용 계층으로부터 데이터(2m-05)를 수신하면 SDAP 계층 장치가 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 상위 계층으로부터 데이터를 수신하면 도 2j의 2j-05와 같이 SDAP 헤더를 생성하고 구성해야 한다. 하지만 단말과 기지국 구현에서 암호화(ciphering) 절차는 복잡도가 높은 동작이기 때문에 HW(Hardware) 가속기를 적용하여 구현할 수 있다. 이러한 HW 가속기는 반복적이고 지속적인 절차에 프로세싱 이득이 높다. 하지만 SDAP 계층 장치에서 상위 계층 장치에서 데이터를 수신할 때마다 SDAP 헤더를 구성하고, 암호화 절차를 SDAP 헤더를 제외한 데이터 부분에 수행하고 PDCP 헤더를 생성하여 SDAP 헤더에 붙이는 프로세싱을 수행하면 상기 절차에서 암호화를 수행하기 전에 SDAP 헤더를 생성하는 절차 때문에 HW 가속기에 방해(Interruption)가 될 수 있다.
따라서 본 발명의 실시 예에서는 암호화되지 않은 SDAP 헤더와 함께 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 ROHC가 설정된 경우에 제안한다. 즉, 상위 응용 계층으로부터 데이터를 수신하면 데이터를 수신할 때마다 ROHC를 적용하여 상위 계층의 데이터를 압축하여 압축 헤더를 생성하고(2m-07), 지속적으로 그리고 반복적으로 암호화 절차를 수행하고 PDCP 헤더와 SDAP 헤더(2m-10)를 동시에 생성하여 암호화된 데이터에 접합하여 하위 계층으로 전달할 수 있다. 상기 PDCP 헤더와 SDAP 헤더의 생성은 암호화 절차와 병렬적으로 수행(parallel processing)될 수 있다. 상기에서 병렬적으로 헤더를 생성할 때 SDAP 헤더, PDCP 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 함께 생성하고, 데이터 처리가 완료된 데이터의 맨 앞에 한꺼번에 헤더들을 접합하여 전송을 준비할 수 있다(MAC PDU 구성을 준비할 수 있다). 또한 수신단에서는 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 데이터로부터 한 번에 분리하여 모두 읽어 들이고, 각 계층에 해당하는 정보를 파악하고, 송신단의 데이터 처리의 역순서로 데이터를 처리할 수 있다. 따라서 HW 가속기를 지속적이고 반복적으로 적용할 수 있고, 중간에 SDAP 헤더 생성과 같은 방해(interruption)이 없기 때문에 데이터 처리의 효율을 높일 수 있다. 또한 무결성 보호가 설정되었다면 무결성 보호(Integrity protection)를 상기 암호화 절차 수행 전에 상기 암호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 무결성 보호를 적용하고, 암호화를 수행할 수 있다.
수신 PDCP 계층 장치에서도 2m-01과 같이 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 ROHC가 설정된 경우에 적용할 수 있다. 즉, 하위 계층(RLC 계층)으로부터 데이터를 수신하면 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, PDCP 헤더와 SDAP 헤더를 한꺼번에 읽어 들이고 제거하고 데이터에 비암호화(deciphering) 절차를 반복적으로 적용하고 상위 계층 헤더(IP 패킷 헤더)에 압축 해제 절차를 수행할 수 있다. 또한 무결성 보호가 설정되었다면 무결성 검증(Integrity verification)를 상기 복호화 절차 수행 후에 상기 복호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 복호화를 수행하고 무결성 검증을 수행할 수 있다.
도 2n은 본 발명의 실시 예에 따른 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 PDCP 계층 장치에서 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하는 것을 설명한 도면이다.
도 2n 에서 SDAP 계층 장치는 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우 그리고 사용자 데이터 압축(Uplink data compression, UDC)을 설정한 경우, 상위 계층으로부터 데이터를 수신하면 2n-05와 같이 SDAP 헤더를 생성하고 구성하여 PDCP 계층 장치에게 전달할 수 있다. 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2n-06)에 대해 사용자 데이터 압축을 수행할 수 있다(2n-07). 그리고 체크섬 필드를 계산하고 UDC 적용 여부를 설정하여 UDC 헤더를 생성하고 부착할 수 있다(2n-10). 그리고 상기 UDC 헤더와 압축된 UDC block에 대해 암호화를 수행하고 PDCP 헤더(2n-20)를 생성하고 구성하여 접합한 후 하위 계층으로 전달하여 데이터 처리를 RLC 계층 장치와 MAC 계층 장치에서 진행할 수 있다.
도 2n에서 설명한 절차는 SDAP 헤더에 사용자 데이터 압축(UDC) 절차를 적용한 것을 특징으로 할 수 있다. 하지만 상기 절차처럼 SDAP 헤더에 사용자 데이터 압축 절차를 적용하게 되면 암호화 절차가 압축된 UDC block에 적용되기 때문에 SDAP 헤더가 암호화되게 된다. 따라서 도 2k에서 설명한 기지국 구현의 이점과 도 2l과 도 2m에서 설명한 기지국과 단말의 프로세싱 이득을 얻을 수 없게 된다. 따라서 본 발명의 실시 예에서는 상기에서 설명한 도 2k에서 설명한 기지국 구현의 이점과 도 2l과 도 2m에서 설명한 기지국과 단말의 프로세싱 이득을 얻기 위해서 SDAP 헤더에 사용자 데이터 압축(UDC) 절차를 적용하지 않는 절차를 제안한다.
도 2o은 본 발명의 실시 예에 따른 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 PDCP 계층 장치에서 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하지 않는 방법을 제안하고 이를 설명하는 도면이다.
도 2o 에서 SDAP 계층 장치는 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우 그리고 사용자 데이터 압축(Uplink data compression, UDC)을 설정한 경우, 상위 계층으로부터 데이터를 수신하면 2o-05와 같이 SDAP 헤더를 생성하고 구성하여 PDCP 계층 장치에게 전달할 수 있다. 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2o-06)에서 SDAP 헤더를 제외한 나머지 데이터 부분에 사용자 데이터 압축을 수행할 수 있다(2o-07). 그리고 체크섬 필드를 계산하고 UDC 적용 여부를 설정하여 UDC 헤더를 생성하고 부착할 수 있다(2o-10). 그리고 무결성 보호가 설정되었다면 무결성 보호(Integrity protection)를 암호화 절차 수행 전에 상기 UDC 헤더와 압축된 UDC block에 대해 무결성 보호를 적용하고 나서 상기 UDC 헤더와 압축된 UDC block에 대해 암호화를 수행하기 위해서 UDC block에 대해서 암호화를 수행하고, UDC 헤더에도 암호화를 별도로 수행할 수 있다(2o-15, 2o-20). 만약에 한번 만 암호화를 수행하려면 중간에 SDAP 헤더를 떼어내고 UDC 헤더와 UDC block에 대해 암호화를 한번에 수행하고 다시 UDC 헤더와 UDC block 사이에 암호화되지 않은 SDAP 헤더를 끼워 넣고 데이터를 구성하고 PDCP 헤더(2o-20)를 생성하고 구성하여 접합한 후 하위 계층으로 전달하여 데이터 처리를 RLC 계층 장치와 MAC 계층 장치에서 진행할 수 있다. 이와 같이 상기에서 제안한 바와 같이 SDAP 헤더에 사용자 데이터 압축 헤더를 적용하지 않더라도 UDC 헤더에 암호화를 적용하게 되면 단말과 기지국 구현에서 사용자 데이터 압축 절차가 복잡해지며, 암호화와 복호화를 수행할 때 불필요하게 두 번 수행해야 할 수도 있으며, 한 번을 수행하더라도 데이터 처리가 복잡해질 수 있다. 따라서 본 발명의 실시 예에서는 UDC 헤더에 암호화를 수행하지 않는 방법을 제안한다. 하지만 상기에서와 같이 데이터 처리가 복잡해지더라도 UDC 헤더와 데이터(UDC block)를 별도로 암호화를 수행한다면 해킹의 위험성을 효과적으로 줄일 수 있고 보안성을 높일 수 있다. 따라서 본 발명에서 보안을 강화하기 위한 한 실시 예가 될 수 있다.
도 2o에서 설명한 절차는 SDAP 헤더에 사용자 데이터 압축(UDC) 절차를 적용하지 않는 것을 특징으로 할 수 있다. 따라서 도 2k에서 설명한 기지국 구현의 이점과 도 2l과 도 2m에서 설명한 기지국과 단말의 프로세싱 이득을 얻을 수 있게 된다. 하지만 SDAP 헤더에 사용자 데이터 압축 헤더를 적용하지 않더라도 UDC 헤더에 암호화를 적용하게 되면 단말과 기지국 구현에서 사용자 데이터 압축 절차가 복잡해지며, 암호화와 복호화를 수행할 때 불필요하게 두 번 수행해야 할 수도 있으며, 한 번을 수행하더라도 데이터 처리가 복잡해질 수 있다. 따라서 본 발명의 실시 예에서는 UDC 헤더에 암호화를 수행하지 않는 방법을 제안한다.
도 2p은 본 발명의 실시 예에서 상위 계층으로부터 수신한 데이터에 대해서 SDAP 헤더를 생성하고 PDCP 계층 장치에서 SDAP 헤더에 사용자 데이터 압축 절차(UDC)를 적용하지 않고 UDC 헤더에 암호화를 적용하지 않는 방법을 제안하고 이를 설명하는 도면이다.
도 2p 에서 SDAP 계층 장치는 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우 그리고 사용자 데이터 압축(Uplink data compression, UDC)을 설정한 경우, 상위 계층으로부터 데이터를 수신하면 2p-05와 같이 SDAP 헤더를 생성하고 구성하여 PDCP 계층 장치에게 전달할 수 있다. 상기 PDCP 계층 장치는 상위 SDAP 계층 장치로부터 수신한 PDCP SDU(SDAP 헤더와 IP 패킷, 2p-06)에서 SDAP 헤더를 제외한 나머지 데이터 부분에 사용자 데이터 압축을 수행할 수 있다(2p-07). 그리고 무결성 보호가 설정되었다면 상기 사용자 데이터 압축으로 압축된 UDC block에 무결성 보호(Integrity protection)를 암호화 절차 수행 전에 적용할 수 있다. 즉, UDC 헤더와 SDAP 헤더에 무결성 보호를 적용하지 않는 것을 특징으로 할 수 있다. 그리고 상기 사용자 데이터 압축으로 압축된 UDC block에 암호화를 적용할 수 있다(2p-10). 그리고 체크섬 필드를 계산하고 UDC 적용 여부를 설정하여 UDC 헤더를 생성하고 부착할 수 있다(2p-15, 2p-20). 그리고 PDCP 헤더를 생성하고 구성하여 접합한 후 하위 계층으로 전달하여 데이터 처리를 RLC 계층 장치와 MAC 계층 장치에서 진행할 수 있다. 이와 같이 상기에서 제안한 바와 같이 SDAP 헤더에 사용자 데이터 압축 헤더를 적용하지 않고 UDC 헤더에 암호화를 적용하지 않게 되면 단말과 기지국 구현에서 사용자 데이터 압축 절차와 암호화 혹은 복호화 절차가 간결해지며, 복잡한 절차가 없애지기 때문에 구현의 프로세싱 절차를 간소하고 프로세싱 부담을 줄일 수 있다.
도 2p에서 설명한 절차는 SDAP 헤더에 사용자 데이터 압축(UDC) 절차를 적용하지 않는 것과 UDC 헤더에 암호화를 수행하지 않는 것을 특징으로 할 수 있다. 또한 UDC 헤더와 SDAP 헤더에 무결성 보호를 적용하지 않고 암호화를 수행하지 않는 것을 특징으로 할 수 있다. 따라서 도 2k에서 설명한 기지국 구현의 이점과 도 2l과 도 2m에서 설명한 기지국과 단말의 프로세싱 이득을 얻을 수 있게 된다. 또한 상기 절차에서 UDC 헤더에 암호화를 수행하지 않으면, 수신단에서 복호화(deciphering)를 수행하기 전에 UDC 헤더의 체크섬 필드를 먼저 읽어 들이고 계산하여 UDC 버퍼 컨텐츠의 유효성을 확인할 수 있다. 따라서 만약 체크섬 실패가 발생하면 복호화 절차를 수행하지 않고 해당 데이터를 바로 버리고 체크섬 실패 처리 절차를 수행할 수 있기 때문에 프로세싱 처리 부담을 줄일 수 있다.
도 2q는 본 발명의 실시 예에 따른 암호화되지 않고 사용자 데이터 압축이 수행되지 않은 SDAP 헤더를 적용하고 암호화되지 않은 UDC 헤더를 적용했을 때 UDC가 설정된 SDAP/PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널에서 기지국과 단말 구현에서 얻을 수 있는 프로세싱 이득을 나타낸 도면이다.
도 2q 에서 단말과 기지국을 구현할 때 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현할 수 있다(2q-01). 원래 논리적으로 SDAP 계층 장치는 PDCP 계층 장치의 상위 계층 장치이기 때문에 상위 응용 계층으로부터 데이터(2q-05)를 수신하면 SDAP 계층 장치가 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 상위 계층으로부터 데이터를 수신하면 도 2j의 2j-05와 같이 SDAP 헤더를 생성하고 구성해야 한다. 하지만 단말과 기지국 구현에서 암호화(ciphering) 절차는 복잡도가 높은 동작이기 때문에 HW(Hardware) 가속기를 적용하여 구현할 수 있다. 이러한 HW 가속기는 반복적이고 지속적인 절차에 프로세싱 이득이 높다. 하지만 SDAP 계층 장치에서 상위 계층 장치에서 데이터를 수신할 때마다 SDAP 헤더를 구성하고, 암호화 절차를 SDAP 헤더를 제외한 데이터 부분에 수행하고 PDCP 헤더를 생성하여 SDAP 헤더에 붙이는 프로세싱을 수행하면 상기 절차에서 암호화를 수행하기 전에 SDAP 헤더를 생성하는 절차 때문에 HW 가속기에 방해(Interruption)가 될 수 있다.
따라서 본 발명의 실시 예에서는 암호화되지 않은 SDAP 헤더와 함께 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 UDC가 설정된 경우에 제안한다. 즉, 상위 응용 계층으로부터 데이터를 수신하면 데이터를 수신할 때마다 사용자 데이터 압축(UDC)를 적용하여 상위 계층의 데이터를 압축하여 압축 UDC block을 생성하고(2q-05), 지속적으로 그리고 반복적으로 암호화 절차를 수행하고 PDCP 헤더와 UDC 헤더와 SDAP 헤더(2q-15)를 동시에 생성하여 상기 암호화된 데이터에 접합하여 하위 계층으로 전달할 수 있다. 상기 PDCP 헤더와 UDC 헤더와 SDAP 헤더의 생성은 암호화 절차와 병렬적으로 수행(parallel processing)될 수 있다. 상기에서 병렬적으로 헤더를 생성할 때 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 함께 생성하고, 데이터 처리가 완료된 데이터의 맨 앞에 한꺼번에 헤더들을 접합하여 전송을 준비할 수 있다(MAC PDU 구성을 준비할 수 있다). 또한 수신단에서는 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 데이터로부터 한 번에 분리하여 모두 읽어 들이고, 각 계층에 해당하는 정보를 파악하고, 송신단의 데이터 처리의 역순서로 데이터를 처리할 수 있다. 따라서 HW 가속기를 지속적이고 반복적으로 적용할 수 있고, 중간에 SDAP 헤더 생성과 같은 방해(interruption)이 없기 때문에 데이터 처리의 효율을 높일 수 있다. 상기 사용자 압축 데이터 절차에도 HW 가속기를 적용할 수 있다. 또한 무결성 보호가 설정되었다면 무결성 보호(Integrity protection)를 상기 암호화 절차 수행 전에 상기 암호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 무결성 보호를 적용하고, 암호화를 수행할 수 있다.
수신 PDCP 계층 장치에서도 2q-01과 같이 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 UDC가 설정된 경우에 적용할 수 있다. 즉, 하위 계층(RLC 계층)으로부터 데이터를 수신하면 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, PDCP 헤더와 UDC 헤더와 SDAP 헤더를 한꺼번에 읽어 들이고 제거하고 데이터에 비암호화(deciphering) 절차를 반복적으로 적용하고 사용자 데이터 압축 해제 절차를 수행할 수 있다. 또한 상기 절차에서 UDC 헤더에 암호화를 수행하지 않으면, 수신단에서 복호화(deciphering)를 수행하기 전에 UDC 헤더의 체크섬 필드를 먼저 읽어 들이고 계산하여 UDC 버퍼 컨텐츠의 유효성을 확인할 수 있다. 따라서 만약 체크섬 실패가 발생하면 복호화 절차를 수행하지 않고 해당 데이터를 바로 버리고 체크섬 실패 처리 절차를 수행할 수 있기 때문에 프로세싱 처리 부담을 줄일 수 있다. 또한 무결성 보호가 설정되었다면 무결성 검증(Integrity verification)를 상기 복호화 절차 수행 후에 상기 복호화 절차에 대한 설명과 같이 하드웨어 가속기를 적용하여 반복적으로 수행할 수 있다. 즉, 복호화를 수행하고 무결성 검증을 수행할 수 있다.
도 2r은 본 발명의 실시 예에 따른 암호화되지 않고 사용자 데이터 압축이 수행되지 않은 SDAP 헤더를 적용하고 암호화되지 않은 UDC 헤더를 적용했을 때 UDC가 설정된 SDAP/PDCP 계층 장치 혹은 베어러 혹은 로지컬 채널에서 송신 SDAP/PDCP 계층 장치의 동작과 수신 SDAP/PDCP 계층 장치의 동작을 나타낸 도면이다.
도 2r 에서 단말과 기지국을 구현할 때 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현할 수 있다(2r-01). 본 발명의 실시 예에서는 암호화되지 않은 SDAP 헤더와 함께 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 UDC가 설정된 경우에 제안한다. 즉, 상위 응용 계층으로부터 데이터를 수신하면(2r-05), 송신 SDAP/PDCP 계층 장치는 데이터를 수신할 때마다 사용자 데이터 압축(UDC)를 적용하여 상위 계층의 데이터를 압축하여 압축 UDC block을 생성하고(2r-10), 지속적으로 그리고 반복적으로 암호화 절차를 수행하고(2r-15), PDCP 헤더와 UDC 헤더와 SDAP 헤더(2r-20)를 동시에 생성하여 상기 암호화된 데이터에 접합하여 하위 계층으로 전달할 수 있다. 상기 PDCP 헤더와 UDC 헤더와 SDAP 헤더의 생성은 암호화 절차와 병렬적으로 수행(parallel processing)될 수 있다. 상기에서 병렬적으로 헤더를 생성할 때 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 함께 생성하고, 데이터 처리가 완료된 데이터의 맨 앞에 한꺼번에 헤더들을 접합하여 전송을 준비할 수 있다(MAC PDU 구성을 준비할 수 있다). 또한 수신단에서는 SDAP 헤더, PDCP 헤더, UDC 헤더 혹은 RLC 헤더 혹은 MAC 헤더를 데이터로부터 한 번에 분리하여 모두 읽어 들이고, 각 계층에 해당하는 정보를 파악하고, 송신단의 데이터 처리의 역순서로 데이터를 처리할 수 있다. 따라서 HW 가속기를 지속적이고 반복적으로 적용할 수 있고, 중간에 SDAP 헤더 생성과 같은 방해(interruption)이 없기 때문에 데이터 처리의 효율을 높일 수 있다. 상기 사용자 압축 데이터 절차에도 HW 가속기를 적용할 수 있다.
수신 PDCP 계층 장치에서도 구현적으로 SDAP 계층 장치와 PDCP 계층 장치를 통합하여 하나의 계층 장치로 구현하는 방법을 UDC가 설정된 경우에 적용할 수 있다. 즉, 하위 계층(RLC 계층)으로부터 데이터를 수신하면(2r-25) 도 2e에서 2e-10 혹은 2e-40 혹은 2e-75 와 같은 RRC 메시지에 의해서 SDAP 계층 장치 기능을 사용하도록 설정되었거나 혹은 SDAP 헤더를 사용하도록 설정된 경우, 수신 SDAP/PDCP 계층 장치는 PDCP 헤더와 UDC 헤더와 SDAP 헤더를 한꺼번에 읽어 들이고 제거하고(2r-30) 데이터에 복호화(deciphering) 절차를 반복적으로 적용하고(2r-35) 사용자 데이터 압축 해제 절차를 수행하고 상위 계층으로 전달할 수 있다(2r-40).
상기 본 발명의 실시 예에서 제안한 SDAP 계층과 PDCP 계층을 통합하여 구현하고 매 수신되는 데이터마다 SDAP 헤더 생성으로 인한 HW 가속기의 방해(Interruption)를 없애기 위해서 PDCP 계층 장치의 데이터 처리를 수행하고 PDCP 헤더를 생성할 때 UDC 헤더 혹은 SDAP 헤더를 함께 생성할 수 있는 구현 방법을 제안하였고, 그로 인해 SDAP 헤더를 미리 생성함으로써 발생하는 불필요한 메모리 액세스 횟수를 줄이고, HW 가속기의 효율성을 높일 수 있다는 장점을 설명하였다. 또한 상기 제안한 방법은 같은 방식으로 단말의 수신 측면에서도 단말 데이터 프로세싱을 효율적으로 할 수 있다.
상기 본 발명의 실시 예에서는 SDAP 헤더의 생성과 암호화 절차(ciphering)와 상향 링크 데이터 압축 절자(UDC, Uplink Data Compression)로 인해 발생할 수 있는 구현 복잡도와 문제점들을 설명하였고, 이를 해결 할 수 있는 방안을 제안하였다.
상기에서 베어러 별 SDAP 헤더의 사용 여부는 도 2e에서 설명한 바와 같이 기지국이 RRC 메시지로 설정해줄 수 있으며, 베어러 별 UDC의 적용 여부 또한 상기처럼 기지국이 RRC 메시지로 설정해줄 수 있다.
본 발명의 다음 실시 예에서는 기지국이 RRC 메시지로 베어러 별로 SDAP 헤더의 사용 여부와 UDC의 적용 여부를 설정해줄 때 하나의 베어러에 대해서 SDAP 헤더와 UDC를 동시에 사용할 수 없도록 하는 것을 제안한다(The SDAP header cannot be configured for a DRB configured with UDC or Both SDAP header and UDC cannot be configured for a DRB or Either SDAP header or UDC can be configured for a DRB, not both). 즉, 기지국이 RRC 메시지로 SDAP 헤더 사용과 UDC 적용을 하나의 베어러에 대해 동시에 설정하는 것을 금지할 수 있다. 상기에서 설명한 것처럼 UDC가 설정된 베어러에 대해서 UDC 절차를 수행할 때 SDAP 헤더의 생성과 비암호화로 인해 UDC 절차가 복잡해지고, 구현 복잡도가 증가한다. 상기 UDC는 상향 링크 데이터에 적용이 되는 것이며, SDAP 헤더는 상향 링크 데이터에 대해서 설정하는 경우는 베어러와 flow 간의 재맵핑을 설정하는 경우이다. 이런 경우 UDC를 사용하는 것이 적합한 경우가 아닐 수 있다. UDC 절차에는 송신단과 수신단이 데이터 압축을 위한 동기화가 되어야 하므로 베어러와 flow들 간의 재맵핑을 UDC가 적용된 베어러에 수행하는 것은 매우 비효율적이기 때문이다. 따라서 상기와 같은 복잡도를 해결하기 위해서 SDAP 헤더의 사용과 UDC의 설정을 하나의 베어러에 대해 동시에 설정하지 않는다면 상기에서 설명한 복잡한 문제들이 발생하지 않게 된다. 따라서 본 발명의 또 다른 실시 예는 기지국이 단말에게 하나의 베어러에 대해서 SDAP 헤더의 사용과 UDC의 설정을 동시에 설정하는 것을 허용하지 않는 것을 제안한다.
상기에서 기지국이 단말에게 하나의 베어러에 대해서 SDAP 헤더의 사용과 UDC의 설정을 동시에 설정하지 않을 때 보안 강화를 위해서 UDC 헤더를 암호화할 수 있다. 즉, 상위 계층 데이터를 수신하면 UDC 절차로 데이터 압축을 수행하고 UDC 헤더를 생성한 후, 상기 UDC 헤더와 압축된 UDC 데이터 블록에 대해 암호화(ciphering)을 수행하고, 암호화된 UDC 헤더와 UDC 데이터 블록 앞에 PDCP 헤더를 생성해서 연접하고 하위 계층으로 전달할 수 있다.
또 다른 방법으로 상기에서 기지국이 단말에게 하나의 베어러에 대해서 SDAP 헤더의 사용과 UDC의 설정을 동시에 설정하지 않을 때 UDC 헤더의 체크섬 필드를 빠르게 확인하고 UDC 데이터의 폐기 여부를 빠르게 결정할 수 있도록 하여 복호화 절차의 횟수를 줄일 수 있다. 즉, UDC 헤더를 암호화하지 않을 수 있다. 즉, 상위 계층 데이터를 수신하면 UDC 절차로 데이터 압축을 수행하고 상기 압축된 데이터 블록에 대해 암호화를 수행하고, UDC 헤더와 PDCP 헤더를 생성하여 상기 암호화된 UDC 데이터 블럭 앞에 연접하고 하위 계층으로 전달할 수 있다. 따라서 수신 PDCP 계층 장치는 복호화를 수행하기 전에 UDC 헤더를 확인하고 체크섬 필드로 UDC의 유효성을 확인하고 유효하지 않은 경우, 복호화를 수행하지 않고 상기 수신한 데이터를 바로 폐기할 수 있다. 상기 체크섬 필드로 유효함이 확인된 데이터에 대해서만 복호화를 수행하고 사용자 데이터 압축 해제 절차를 수행할 수 있다.
또한 무결성 검증 보호(Integrity protection) 절차도 마찬가지로 SDAP 헤더 사용 혹은 UDC 적용과 함께 하나의 베어러에 대해서 설정되었을 때 복잡한 구현 문제를 발생시킬 수 있다. 따라서 SDAP 헤더 사용과 무결성 검증 보호를 하나의 베어러에 동시에 설정하는 것을 허용하지 않을 수 있다. 또한 무결성 검증과 UDC 적용을 하나의 베어러에 대해 동시에 설정하는 것을 허용하지 않을 수 있다.
도 2s는 본 발명의 실시 예에 따른 단말의 구성을 나타낸다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(2s-10), 기저대역(baseband)처리부(2s-20), 저장부(2s-30), 제어부(2s-40)를 포함한다. 제어부(2s-40)는 다중연결 처리부(2s-42)를 더 포함할 수 있다.
상기 RF처리부(2s-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(2s-10)는 상기 기저대역처리부(2s-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(2s-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(2s-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(2s-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(2s-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. 상기 RF처리부(2s-10)는 제어부의 제어에 따라 다수의 안테나 또는 안테나 요소들을 적절하게 설정하여 수신 빔 스위핑을 수행하거나, 수신 빔이 송신 빔과 공조되도록 수신 빔의 방향과 빔 너비를 조정할 수 있다.
상기 기저대역처리부(2s-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(2s-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(2s-20)은 상기 RF처리부(2s-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(2s-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(2s-20)은 상기 RF처리부(2s-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역처리부(2s-20) 및 상기 RF처리부(2s-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(2s-20) 및 상기 RF처리부(2s-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역처리부(2s-20) 및 상기 RF처리부(2s-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역처리부(2s-20) 및 상기 RF처리부(2s-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 LTE 망, NR 망 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.5GHz, 5Ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(2s-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 상기 저장부(2s-30)는 상기 제어부(2s-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(2s-40)는 본 발명의 실시 예에 따른 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(2s-40)는 상기 기저대역처리부(2s-20) 및 상기 RF처리부(2s-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(2s-40)는 상기 저장부(2s-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(2s-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(2s-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 2t는 본 발명의 실시 예에 따른 기지국의 구성을 나타낸다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF처리부(2t-10), 기저대역처리부(2t-20), 백홀통신부(2t-30), 저장부(2t-40), 제어부(2t-50)를 포함하여 구성된다. 제어부(2t-50)는 다중연결 처리부(2t-52)를 더 포함할 수 있다.
상기 RF처리부(2t-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(2t-10)는 상기 기저대역처리부(2t-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF처리부(2t-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(2t-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(2t-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(2t-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역처리부(2t-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(2t-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(2t-20)은 상기 RF처리부(2t-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(2t-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(2t-20)은 상기 RF처리부(2t-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역처리부(2t-20) 및 상기 RF처리부(2t-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(2t-20) 및 상기 RF처리부(2t-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 통신부(2t-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다.
상기 저장부(2t-40)는 상기 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(2t-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(2t-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(2t-40)는 상기 제어부(2t-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(2t-50)는 본 발명의 실시 예에 따른 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(2t-50)는 상기 기저대역처리부(2t-20) 및 상기 RF처리부(2t-10)을 통해 또는 상기 백홀통신부(2t-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(2t-50)는 상기 저장부(2t-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(2t-50)는 적어도 하나의 프로세서를 포함할 수 있다.
<제3 실시 예>
도 3a는 본 발명의 실시 예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 3a을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 eNB, Node B 또는 기지국)(3a-05, 3a-10, 3a-15, 3a-20)과 MME(Mobility Management Entity, 3a-25) 및 S-GW(Serving-Gateway, 3a-30)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(3a-35)은 eNB(3a-05~3a-20) 및 S-GW(3a-30)를 통해 외부 네트워크에 접속한다.
도 3a에서 eNB(3a-05, 3a-10, 3a-15, 3a-20)는 UMTS 시스템의 기존 노드 B에 대응된다. eNB(3a-05)는 UE(3a-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 eNB(3a-05, 3a-10, 3a-15, 3a-20)가 담당한다. 하나의 eNB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(3a-30)는 데이터 베어러를 제공하는 장치이며, MME(3a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME(3a-25)는 단말(3a-35)에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들(3a-05, 3a-10, 3a-15, 3a-20)과 연결된다.
도 3b는 본 발명의 실시 예에 따른 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 3b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 eNB에서 각각 PDCP(Packet Data Convergence Protocol 3b-05, 3b-40), RLC(Radio Link Control 3b-10, 3b-35), MAC(Medium Access Control 3b-15, 3b-30)으로 이루어진다. PDCP(3b-05, 3b-40)는 IP header 압축/복원 등의 동작을 담당한다. PDCP의 주요 기능은 하기와 같이 요약된다.
- header 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(3b-10, 3b-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약된다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(3b-15, 3b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약된다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(3b-20, 3b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.
도 3c는 본 발명의 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 3c을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 또는 NR 기지국, 3c-10)과 NR CN(New Radio Core Network, 3c-05)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말, 3c-15)은 NR gNB(3c-10) 및 NR CN(3c-05)를 통해 외부 네트워크에 접속한다.
도 3c에서 NR gNB(3c-10)는 기존 LTE 시스템의 eNB(Evolved Node B)에 대응된다. NR gNB(3c-10)는 NR UE(3c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR gNB(3c-10)가 담당한다. 하나의 NR gNB(3c-10)는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. NR CN(3c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. NR CN(3c-05)는 단말(3c-15)에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN(3c-05)이 MME(3c-25)와 네트워크 인터페이스를 통해 연결된다. MME(3c-25)는 기존 기지국인 eNB(3c-30)과 연결된다.
도 3d는 본 발명의 실시 예에 따른 NR 시스템에서의 QoS를 다루기 위한 새로운 기능들을 설명하기 위한 도면이다.
NR 시스템에서는 서로 다른 서비스 품질(Quality of Service, 이하 QoS)을 요구하는 서비스, 즉 QoS 요구사항에 따라 사용자 트래픽 전송 경로를 설정하거나 서비스 별 IP flow를 제어할 수 있어야 한다. NR 코어 네트워크는 복수 개의 PDU(Packet Data Unit) 세션을 설정할 수 있고, 각각의 PDU 세션은 복수의 IP flow를 포함할 수 있다. NR gNB는 복수 개의 QoS flow를 복수 개의 DRB(Data Radio Bearer)에 매핑하고, 이를 동시에 설정할 수 있다. 즉, 하향링크에 대해서는 복수 개의 QoS flow(3d-01, 3d-02, 3d-03)가 같은 DRB 혹은 다른 DRB(3d-10, 3d-15, 3d-20)로 매핑될 수 있으므로, 이를 구분하기 위해 하향링크 패킷에 QoS flow ID를 표시(marking)하는 것이 필요하다. 혹은 RRC 제어 메시지를 통해 명시적으로 DRB 매핑을 설정할 수 있다. 상기와 같은 기능은 기존의 LTE PDCP 프로토콜에 없던 기능이므로 이를 담당하는 새로운 프로토콜(Service Data Adaptation Protocol, 이하 SDAP)(3d-05, 3d-40, 3d-50, 3d-85)이 도입되었다. 또한, 상기의 표시는 단말이 상향링크에 대해 반영식(reflective) QoS를 구현하는 것을 허용한다. 상기의 reflective QoS는 gNB가 전송한 특정 flow ID를 가지는 하향링크 패킷이 전달된 DRB를 통해 단말이 상향링크 전송을 수행할 수 있도록 매핑하는 방법을 의미하고 이를 지시하기 위해 1bit 혹은 2bit의 RQI (reflective QoS indicator) 비트가 SDAP 헤더에 포함될 수 있다. 상기와 같이 하향링크 패킷에 명시적으로 QoS flow ID를 표시하는 것은 단말의 AS(Access Stratum)가 상기 정보를 단말의 NAS에 제공하는 간단한 방법이다. 하향링크에서 IP flow들을 DRB들에 매핑하는 방법은 아래의 두 단계로 이루어 질 수 있다.
1. NAS level mapping: IP flow -> QoS flow
2. AS level mapping: QoS flow -> DRB
하향링크 수신에서는 수신한 DRB(3d-25, 3d-30, 3d-35) 별로 QoS flow 매핑 정보 및 반영식 QoS 동작의 유무를 파악하고, 해당 정보를 NAS에 전달할 수 있다. 즉, 단말은 수신한 데이터 패킷의 SDAP 헤더에 RQI bits가 1로 세팅되어 있으면 상기의 AS와 NAS 매핑룰이 업데이트 되었다는 것이므로 매핑 룰을 업데이트하고 상향링크 패킷을 그에 따라 전달할 수 있다. 즉, 상향링크에 대해서도 마찬가지로 2 단계의 매핑을 사용할 수 있다. 먼저 NAS 시그날링을 통해 IP flow들을 QoS flow로 매핑하고, AS에서 QoS flow들을 정해진 DRB(3d-55, 3d-60, 3d-65)에 매핑한다. 단말은 상향링크 패킷에 QoS flow ID를 표시할 수도 있고, QoS flow ID를 표시하지 않고 패킷을 그대로 전달할 수도 있다. 상기 기능은 단말의 SDAP에서 수행된다. 상향링크 패킷에 QoS flow ID가 표시되어 있을 경우, 기지국은 상기 정보를 NG-U로 전달하는 패킷에 상향링크 TFT(Traffic Flow Template)없이 QoS flow ID를 표시하여 전달할 수 있다.
도 3ea 및 도 3eb는 본 발명에서 고려하는 NR에서의 SDAP를 포함한 프로토콜 스택이다.
NR 시스템의 새로운 QoS 기능을 다루기 위해, 하기와 같은 정보가 무선 인터페이스를 통해 전달되어야 한다.
- 하향링크: QOS flow ID + Reflective QOS processing required indicator
- 상향링크: QOS flow ID
NR에서는 상기와 같은 새로운 정보를 Uu로 전달하는 인터페이스가 필요하고, PDCP(3e-10) 레이어 위에 상기 기능을 담당하는 새로운 프로토콜을 정의한다. 상기의 SDAP(3e-05)는 DRB 기반의 프로토콜이 아니고, 설정된 DRB(3e-30) 매핑 룰에 따라 패킷이 전달된다. 즉, IP 트래픽이 발생하면 SDAP(3e-05)에서 IP flow를 QoS flow ID로 매핑한 후 QoS flow ID를 DRB로 매핑한다. 여기서 IP 트래픽은 IP header와 payload로 구성되고, SDAP header(3e-35, 3e-40, 3e-45)는 IP 패킷 앞에 위치할 수 있다. PDCP(3e-10)에서는 IP header 압축을 하고 PDCP header(3e-50, 3e-55, 3e-60)를 추가한다. RLC(3e-15)와 MAC(3e-20)에서도 각각의 RLC header(3e-65, 3e-70, 3e-75, 3e-80)와 MAC sub-header(3e-65)를 순차적으로 추가하고 MAC header를 추가한 뒤 PHY로 MAC PDU를 전달한다.
gNB가 단말에게 reflective 매카니즘 (단말이 하향링크 패킷에 포함된 QoS flow ID가 전달된 DRB와 같은 DRB로 상향링크 패킷을 보내도록 지시)을 적용하기로 결정하면 하향링크 패킷의 SDAP(3e-05) 레이어에 QoS flow ID와 reflective QoS indicator를 포함해서 전달한다. 상기의 SDAP 헤더는 1byte 길이를 가지며, QoS flow ID(7bit)와 RQI(1bit)로 구성될 수 있다. 혹은 QoS flow ID(6bit)와 RQI(2bit)로 구성될 수 있고, 이 경우 RQI 지시자는 각각 AS와 NAS의 reflective QoS를 지시한다. 하기에서는 RQI bit가 1개로 설정되는 경우를 가정하여 정리하였다.
상기의 과정을 수행함에 있어, gNB가 모든 데이터 패킷에 QoS flow ID를 포함해서 전달하게 되면 단말이 수신한 QoS flow ID를 통해 매핑 룰을 업데이트하는 동작을 계속 수행하게 한다. 즉, RQI bit가 1로 세팅되었을 경우, NAS와 AS의 매핑 룰이 모두 업데이트 되었다는 가정하에 단말은 상기 NAS 매핑룰과 AS 매핑룰을 업데이트 하고 상향링크 데이터 패킷을 해당 룰에 맞춰서 전송한다. 기본적으로 NAS reflective QoS는 NR 코어 네트워크에서 IP flow와 QoS flow 사이의 매핑 룰이 업데이트 되면 트리거되고, AS reflective QoS는 무선 기지국에서 QoS flow와 DRB 사이의 매핑 룰이 업데이트 되면 트리거 된다.
하지만 기지국과 코어 네트워크 사이에서의 시그널링 기준으로 생각해보면 코어 네트워크는 NAS 매핑 룰이 업데이트 되면 기지국에게 전달하는 데이터 패킷의 N3 헤더에 이를 지시하는 RQI bit를 설정하고 전달한다. 상기에서 N3 헤더는 코어 네트워크와 기지국 사이의 인터페이스이다. 기지국은 코어네트워크로부터 수신한 N3 헤더의 RQI bit가 1로 세팅되어 있으면 SDAP 헤더의 RQI bit를 1로 세팅하고 단말에게 전달한다. 혹은 N3 헤더의 RQI bit가 0으로 되어 있더라도, AS 매핑 룰이 변경되었을 경우, SDAP 헤더의 RQI bit를 1로 세팅하고 단말에게 전달한다. 하지만 상기의 동작이 수행될 경우 단말 측면에서는 NAS 매핑과 AS 매핑에 대한 매핑정보 테이블 (TFT 테이블)을 계속 저장하고 있어야 함으로 인해 단말이 저장해야하는 정보가 증가할 수 있고, 제대로 관리가 되지 않을 경우 중복된 매핑으로 인한 혼선이 생길 수 있다. 이를 해결하기 위해, NAS reflective QoS 룰이 적용되는 순간 단말과 NR 코어 네트워크에서 타이머를 동작시키고, 해당 룰이 적용되는 데이터 패킷이 미리 설정된 타이머 동안 수신되지 않으면 설정된 NAS reflective QoS 매핑 정보를 제거한다. 참고로 타이머가 동작하는 동안 같은 QoS 매핑 룰이 적용되는 데이터 패킷이 송수신되는 경우, 타이머를 재시작 한다.
본 발명의 실시 예에서는 LTE 시스템과 달라지는 NR 시스템에서의 QoS flow와 DRB 매핑 동작으로 인한 문제점과 이슈를 알아보고 이를 해결하고자 한다. 기본적으로 LTE 시스템은 EPS(evolved packet system)와 DRB간에 1:1 매핑이 되어 있고, 설정된 매핑은 해당 서비스가 종료될 때까지 유지된다. 반면에 NR 시스템에서는 QoS flow와 DRB 매핑이 동적으로 설정될 수 있어서, 특정 QoS flow가 초기에 설정된 DRB와 다른 DRB로 매핑될 수 있다. 또한, 상기에 설명했듯이 기지국에서는 단말이 전송한 새로운 QoS flow의 첫번째 패킷을 수신해야 특정 DRB를 통해 새로운 QoS flow가 전송되었다는 것을 인지할 수 있다. 하지만 해당 DRB에 버퍼된 다른 QoS flow의 데이터가 많을 경우, 새로운 QoS flow가 전송되었음을 인지하는데 지연이 발생하게 된다. 본 발명의 실시 예에서는 이런 문제점을 해결하기 위해 아래의 두 가지 이슈에 대한 해결책을 제안하도록 한다.
1. 기지국의 스케쥴러가 특정 DRB로 수신되는 새로운 QoS flow의 첫번째 패킷을 빠르게 인지할 수 있도록 하는 단말 동작 제안
2. DRB 변경에 다른 QoS re-mapping시 변경된 DRB와 이전 DRB에서의 데이터 패킷의 in-order deliver를 보장하여, 수신단에서의 잦은 QoS flow 매핑 업데이트 동작을 방지하는 동작 제안
도 3f는 본 발명의 실시 예에서 고려하는, 특정 DRB에서의 새로운 QoS flow의 첫번째 패킷이 지연되어 수신될 경우의 문제점 및 이슈를 설명하기 위한 도면이다.
Phase 1에서 단말은 기지국의 RRC 메시지를 통해 DRB들에 대한 설정을 수신한다. 상기 설정에는 DRB들의 세부 레이어(MAC, RLC, PDCP) 설정 정보, 각 QoS flow들이 어떤 DRB를 통해 전달될 지에 대한 정보와 어떤 DRB가 default DRB인지에 대한 정보가 포함된다. 단말의 전송단을 살펴보면, 각각의 QoS flow들(3f-05, 3f-10, 3f-15)은 SDAP 레이어(3g-20)에서 초기에 설정된 DRB로 전달되고, 즉 특정 DRB(3f-25, 3f-30)의 하위 레이어들로 데이터 전송을 위한 동작을 위한 패킷 전달 및 전송이 수행된다. 도 3f에서는 QoS flow #1과 QoS flow #2는 DRB 2로 설정이 되고, QoS flow #1은 DRB 1로 매핑되어 있고, 여기서 DRB 1이 default DRB로 설정되었다.
NR에서는 핸드오버 혹은 핸드오버가 아닌 경우에도 DRB와 QoS flow간의 매핑이 바뀔 수 있으며, 이와 같은 매핑 룰의 변화로 인해 QoS flow 가 이전 DRB와 다른 DRB로 바뀌는 경우가 발생한다. 혹은 새로 발생한 상향링크 패킷이 RRC로 설정된 매핑 룰 혹은 reflective QoS 매핑 룰을 만족하지 않는 경우에는 해당 QoS flow 의 패킷에 대해서는 default DRB를 통해 전달된다. 이와 같이 새로운 상향링크 패킷 혹은 특정 QoS flow를 가지는 패킷이 DRB 매핑이 달라질 경우에는 단말은 해당 QoS flow에 해당하는 패킷을 default DRB 혹은 변경된 DRB를 통해 전달한다.
Phase 2에서, 3f-35, 3f-40, 3f-45와 같은 QoS flow들이 새로운 DRB로 매핑이 되면, 3f-50 단계에서 SDAP 레이어에서 해당 SDAP SDU를 구분하고, SDAP PDU를 해당 DRB 및 하위 계층으로 전달한다. 본 예에서는 QoS flow #2가 DRB 2(3f-60) 에서 default DRB인 DRB 1(3f-55)으로 변경되는 경우를 나타내고 있다. 변경이 수행되는 시점은 QoS flow #2의 26번 SDAP PDU가 전달되고 27번 SDAP PDU가 전달되기 전이며, 이전 SDAP PDU들은 DRB 2로 전달될 것이고, 매핑 룰이 변경된 이후에는 DRB 1으로 해당 SDAP PDU들이 전달된다. 여기서 SDAP PDU의 번호들은 실제로 존재하는 번호가 아닌 이해를 돕기 위해 작성된 번호이다. 하지만 DRB 마다 전송 버퍼에 저장되어 있는 패킷의 차이로 인해 실제 수신단에 전달되는 순서는 다를 수 있다. 즉, DRB 2의 새로운 패킷(QoS flow #2의 27번 패킷)이 이전 DRB 1의 패킷들 보다 먼저 수신될 수 있다.
Phase 3에서 수신단, 정확하게는 기지국의 수신단에서는 단말이 전달하는 패킷들을 수신하고, 그 패킷들이 수신되는 순서는 DRB들 마다 버퍼에 데이터가 얼마나 있는지에 따라 달라진다(3f-65). 본 예에서는 QoS flow #2의 패킷에 대해 out-order delivery가 발생하여, 수신 패킷이 서로 다른 DRB들 사이에서 ping-pong 효과를 내며 수신되는 것을 알 수 있다. 이럴 경우에는 해당 DRB를 통해 새로운 QoS flow가 계속 매핑되는 것으로 해석되기 때문에 기지국의 수신단에서 의도치 않은 QoS reflective 동작을 수행하게 된다. 이를 해결하기 위한 방법에 대해 하기의 실시 예들에서 다루도록 한다.
도 3g는 본 발명의 3-1 실시 예에 따른 단말의 수신 SDAP 레이어에서 새로운 QoS flow를 수신하였을 경우 해당하는 SDAP 패킷을 우선 처리하도록 하는 방법을 설명하는 도면이다.
본 실시 예는 변경된 DRB로 전달되는 새로운 QoS flow의 첫번째 패킷이 전달되는 순서가 느릴 경우, 즉 이미 DRB의 전송 버퍼에 다른 QoS flow 패킷들이 쌓여 있는 경우에 발생할 수 있는 전송 시간 지연을 해결하기 위한 방법을 다룬다. 기본적으로 특정 QoS flow를 이전 DRB에서 다른 DRB로 변경한다고 하면 변경된 DRB를 수신단에서 빨리 파악해서 기지국의 스케쥴러가 해당 QoS flow에 대한 스케쥴링 및 처리를 신속히 해야 한다. 이를 위해 본 실시 예에서는 우선 처리되어 전달되어야 하는 SDAP PDU를 전달하는 방법을 다룬다.
Phase 1에서 단말은 기지국의 RRC 메시지를 통해 DRB들에 대한 설정을 수신한다. 상기 설정에는 DRB들의 세부 레이어(MAC, RLC, PDCP) 설정 정보, 각 QoS flow들이 어떤 DRB를 통해 전달될 지에 대한 정보와 어떤 DRB가 default DRB인지에 대한 정보가 포함된다. 단말의 전송단을 살펴보면, 각각의 QoS flow들(3g-05, 3g-10, 3g-15, 3g-20)은 SDAP 레이어(3g-25)에서 초기에 설정된 DRB로 전달되고, 즉 특정 DRB(3g-30, 3g-35, 3g-40)의 하위 레이어들로 데이터 전송을 위한 동작을 위한 패킷 전달 및 전송이 수행된다. 도 3g에서는 QoS flow #1은 DRB 3으로 설정되고 QoS flow #2와 QoS flow #5는 DRB 2으로 설정이 되고, QoS flow #3은 DRB 1로 매핑되어 있다가 가정하였고, DRB 1이 default DRB로 설정되었다.
Phase 2에서 단말의 수신단은 정확하게는 단말의 수신 SDAP 레이어에서 기지국으로부터의 새로운 하향리읔 QoS flow의 SDAP SDU를 수신하게 되면, 즉 이전에는 QoS flow #4가 DRB 2(3g-50)를 통해 송수신되고 있었지만, QoS flow #4에 해당하는 새로운 하향링크 패킷이 DRB 1(3g-45)으로 수신되는 경우에는 단말은 QoS flow와 DRB간의 매핑 룰을 업데이트하고 이후의 QoS flow #4에 대해서는 DRB 1(3g-45)으로 송수신을 수행하게 된다.
Phase 3, 즉 단말의 송신단에서는 이전 단계에서 결정된 QoS flow와 DRB와의 매핑 룰 업데이트에 따라 새로운 QoS flow #4에 대한 첫번째 패킷(3g-75)을 DRB 1(3g-70)으로 빨리 전달할 필요가 있다. 만약 DRB 1(3g-70)의 전송 버퍼에 다른 QoS flow에 해당하는 패킷이 많이 쌓여 있는 경우, 새로운 QoS flow #4 패킷의 업데이트가 느리게 수행될 수 있기 때문에 이 동작이 필요하며 아래와 같은 절차로 해결될 수 있다.
1. 단말의 SDAP 레이어에서는 SDAP PDU에 대해 expedite delivery (신속 전달)의 필요 여부를 PDCP 레이어에 지시한다. (SDAP와 PDCP 레이어 간의 메시지 전달 필요)
2. PDCP 레이어에서는 SDAP 레이어에서 지시한 패킷을 포함하는 PDCP PDU를 하위 계층에 전달하고, 해당 PDCP PDU가 버퍼에서 기다리고 있는 다른 PDCP PDU들보다 먼저 전달되도록 한다. 이를 위해 PDCP 헤더에 expedite delivery를 지시하는 지시자가 포함될 수 있다. 이는 수신단에서 reordering timer를 트리거하지 않도록 지시하는 역할을 하며, 해당 패킷을 수신단의 상위 레이어로 신속히 전달할 수 있도록 하기 위함이다.
3. RLC 레이어에서는 PDCP로부터 수신한 패킷을 포함하는 RLC PDU를 생성하고 해당 패킷이 RLC 버퍼에 저장되어 있는 다른 RLC PDU들 보다 먼저 전달 될 수 있도록 위치 시킨다.
도 3h는 본 발명의 3-2 실시 예에 따른 QoS flow가 re-mapping 되었을 경우, 수신단에서 in-order delivery를 보장하기 위한 방법을 설명하는 도면이다.
도 3f에서 설명했듯이, 새로운 QoS flow가 DRB가 변경되었을 경우에는 out-order delivery가 발생하여, 수신 패킷이 서로 다른 DRB들 사이에서 ping-pong 효과를 내며 수신될 수 있고, 이 경우에는 해당 DRB를 통해 새로운 QoS flow가 계속 매핑되는 것으로 해석되기 때문에 기지국의 수신단에서 의도치 않은 QoS reflective 동작을 수행하게 된다. 본 실시 예에서는 이를 해결하기 위한 방법을 제안한다.
Phase 1에서 단말은 기지국의 RRC 메시지를 통해 DRB들에 대한 설정을 수신한다. 상기 설정에는 DRB들의 세부 레이어(MAC, RLC, PDCP) 설정 정보, 각 QoS flow들이 어떤 DRB를 통해 전달될 지에 대한 정보와 어떤 DRB가 default DRB인지에 대한 정보가 포함된다. 단말의 전송단을 살펴보면, 각각의 QoS flow들(3h-05, 3h-10, 3h-15)은 SDAP 레이어(3h-20)에서 초기에 설정된 DRB로 전달되고, 즉 특정 DRB(3h-25, 3h-30)의 하위 레이어들로 데이터 전송을 위한 동작을 위한 패킷 전달 및 전송이 수행된다. 도 3h에서는 QoS flow #1과 QoS flow #2는 DRB 2(3h-30)로 설정이 되고, QoS flow #1은 DRB 1(3h-25)로 매핑되어 있고, 여기서 DRB 1(3h-25)이 default DRB로 설정되었다.
Phase 2에서, 3h-35, 3h-40, 3h-45와 같은 QoS flow들이 새로운 DRB로 매핑이 되면, 3h-50 단계에서 SDAP 레이어에서 해당 SDAP SDU를 구분하고, SDAP PDU를 해당 DRB 및 하위 계층으로 전달한다. 본 예에서는 QoS flow #2가 DRB 2(3h-60) 에서 default DRB인 DRB 1(3h-55)으로 변경되는 경우를 나타내고 있다. 변경이 수행되는 시점은 QoS flow #2의 26번 SDAP PDU가 전달되고 27번 SDAP PDU가 전달되기 전이며, 이전 SDAP PDU들은 DRB 2(3h-60)로 전달될 것이고, 매핑 룰이 변경된 이후에는 DRB 1(3h-55)으로 해당 SDAP PDU들이 전달된다. 여기서 SDAP PDU의 번호들은 실제로 존재하는 번호가 아닌 이해를 돕기 위해 작성된 번호이다. 하지만 DRB 마다 전송 버퍼에 저장되어 있는 패킷의 차이로 인해 실제 수신단에 전달되는 순서는 다를 수 있다. 즉, DRB 2(3h-60)의 새로운 패킷(QoS flow #2의 27번 패킷)이 이전 DRB 1(3h-55)의 패킷들 보다 먼저 수신될 수 있다. 이는 해당 QoS flow #2의 이전 PDCP A에서 새로운 PDCP B로 re-mapping 되는 것으로 설명할 수도 있다. 상기의 out-order delivery 문제를 해결하기 위해, 하기의 절차를 제안한다.
1. 특정 PDU 세션의 특정 QoS flow를 이전 DRB에서 새로운 DRB로 재설정하는 RRC 메시지를 수신
2. 단말의 RRC에서 QoS의 재설정을 SDAP entity에 지시
3. SDAP entity는 새로운 DRB를 통해 새로운 QoS flow의 첫번째 패킷을 수신할 경우, 필터링 동작을 수행 (즉, 이후에는 이전 DRB를 통해 수신되는 해당 QoS flow의 SDAP PDU를 버림)
상기의 동작으로 인해 단말에서는 in-order delivery를 보장하는 패킷 전송을 수행한다. 즉, QoS flow #2의 패킷 24번, 25번, 26번에 대해서는 필터링이 적용되어 버퍼에서 버려지게 된다. Phase 3에서 수신단, 정확하게는 기지국의 수신단에서는 단말이 전달하는 패킷들을 수신하는데, 제안하는 동작으로 인해 QoS flow #2의 패킷에 대한 out-order delivery는 더이상 발생하지 않는다. 즉, 수신 패킷이 더 이상 서로 다른 DRB들 사이에서 ping-pong 효과를 내며 수신되지 않는 것을 알 수 있다. 대신에 이전 DRB의 전송 버퍼에 저장된 데이터의 손실이 발생하고, 이는 재전송 동작을 통해 전달된다.
도 3i는 본 발명의 실시 예에서 제안하는 QoS flow와 DRB의 매핑 변경이 수행되었을 경우, 새로운 QoS flow 패킷을 전달하는 방법을 나타내는 도면이다.
여기서는 상기의 실시 예 3-1과 3-2에서 제안하는 방법을 적용하며, 이를 통해 QoS flow와 DRB의 매핑이 바뀌게 될 경우 새로운 DRB로 전송되는 새로운 QoS flow의 첫번째 패킷이 우선 전송되고, 이전 DRB의 전송 버퍼에 저장되어 있는 해당 QoS flow 패킷들을 버림으로 인해, 기지국 수신단에서의 in-order delivery를 보장하는 전체 동작을 나타낸다.
단말은 서빙 셀에 캠프 온(3i-05) 한 뒤 해당 셀에 RRC 연결 설정을 수행하고 연결 모드로 천이한다(3i-10). 3i-15 단계에서 단말은 기지국으로부터 RRC connection reconfiguration 메시지를 수신하고, DRB들에 대한 설정, default DRB 지시, QoS flow와 DRB간의 매핑 정보를 설정 받는다. 상기 설정의 예시로 도 3i에서는 DRB 1, DRB 2, DRB 3이 설정되고, DRB 1이 default DRB로 지시되며, DRB 1과 DRB 2에 해당하는 QoS flow mapping이 설정될 수 있다. 3i-20 단계에서는 단말이 기지국이 전달하는 하향링크 데이터 패킷을 수신하게 된다. 정확하게는 상기의 동작에서 단말은 미리 설정된 DRB x를 통해 SDAP SDU를 수신하게 되고, 해당 패킷의 SDAP 헤더를 디코딩하여 QoS flow ID를 확인할 수 있다. 3i-25 단계에서 단말은 해당 SDAP SDU가 미리 설정된 DRB x를 통해 수신하였기 때문에 특별한 동작 없이 DRB x의 PDCP를 그대로 하위 레이어로 전달한다. 즉, 별도의 expedite delivery 동작을 설정하지 않는다. 상기의 expedite delivery 동작이란, 도 3g에서 제안한 내용으로 단말이 expedite delivery가 필요한 SDAP SDU에 대해 하위 계층에게 표시를 하여 알리는 방법이다.
만약 3i-30 단계에서 단말의 SDAP에서 특정 DRB를 통해 새로운 QoS flow의 SDAP SDU를 수신하게 되면, 해당 첫번째 패킷이 지시하는 QoS flow들을 신속히 처리할 필요가 있다. 즉, 3i-35 단계에서 단말의 SDAP 레이어에서는 해당하는 SDAP PDU를 default DRB (혹은 변경된 DRB)의 PDCP로 ED(Expedite) 지시자를 포함하여 전달한다. 여기서 ED(Expedite) 지시자는 PDCP 헤더에 1bit로 포함될 수 있다. 이후 PDCP 계층에서는 해당 PDCP SDU에 대해 PDCP sequence number(SN)를 할당하고, 만약 ED 지시자가 포함되어 있다면 해당 PDCP PDU를 우선하여 하위 계층에 전달한다. 또한, RLC 계층에서는 해당 RLC SDU에 대해 RLC SN를 할당하고, 만약 ED 지시자가 포함되어 있다면 해당 RLC PDU를 우선하여 하위 계층에 전달한다.
3i-40 단계에서 단말은 또한 기지국으로부터 동기 설정이 포함된 RRC connection reconfiguration 메시지를 수신한다. 상기의 메시지의 예는 핸드오버 명령 메시지이다. 또한 상기 메시지에는 특정 PDU 세션의 특정 QoS flow를 이전 DRB에서 새로운 DRB로 재설정하는 내용이 포함될 수 있다. 3i-45 단계에서 상기의 RRC 메시지를 수신한 단말은 RRC 메시지에서 지시하는 DRB 재설정을 수행한다. 일예로 QoS flow 1이 DRB 2에서 DRB 3으로 재설정된다는 내용이 포함될 수 있다. 또한 단말의 RRC 계층에서 SDAP entity로 상기와 같은 QoS flow와 DRB 재설정이 있음을 지시하고, 이후 SDAP entity에서 QoS flow 1을 DRB 2로 수신하면, 상위 계층으로 해당 패킷을 전달한다. 만약, SDAP가 QoS flow 1을 DRB 3로 수신하면, 상위 계층으로 해당 패킷 전달하고 필터링 동작을 수행한다. 즉, 이후부터는 DRB 2로부터 수신하는 QoS flow 1의 패킷을 폐기한다. 이는 in-order delivery를 달성하기 위함이다.
도 3j는 본 발명의 실시 예에 따른 단말 동작을 도시하는 도면이다.
단말은 서빙 셀에 캠프 온 한 뒤 해당 셀에 RRC 연결 설정을 수행하고 연결 모드로 천이한다(3j-05). 3j-10 단계에서 단말은 기지국의 RRC 메시지를 통해 DRB들에 대한 설정을 수신한다. 상기 설정에는 DRB들의 세부 레이어(MAC, RLC, PDCP) 설정 정보, 각 QoS flow들이 어떤 DRB를 통해 전달될 지에 대한 정보와 어떤 DRB가 default DRB인지에 대한 정보가 포함된다. 상기 설정의 예시로 도 3j에서는 DRB 1, DRB 2, DRB 3이 설정되고, DRB 1이 default DRB로 지시되며, DRB 1과 DRB 2에 해당하는 QoS flow mapping이 설정될 수 있다. 3j-15 단계에서는 단말이 기지국이 전달하는 하향링크 데이터 패킷을 수신하게 된다. 정확하게는 상기의 동작에서 단말은 미리 설정된 DRB x를 통해 SDAP SDU를 수신하게 되고, 해당 패킷의 SDAP 헤더를 디코딩하여 QoS flow ID를 확인할 수 있다.
3j-20 단계에서 단말은 DRB x를 통해 수신한 SDAP 패킷이 새로운 QoS flow 패킷인지 여부를 판별하고 동작을 달리한다. 만약 SDAP 계층에서 수신한 패킷이 새로운 QoS flow 패킷이라면(즉, DRB x에 새로운 QoS flow의 첫번째 패킷이 수신된다면), 단말은 제 1 동작을 수행한다. 3j-25 단계의 제 1 동작은 새로운 QoS flow의 첫번째 패킷을 우선 처리하여 전달할 수 있도록 하는 동작으로써, 단말이 새로운 QoS flow의 SDAP SDU를 수신하게 되면, 해당 첫번째 패킷(SDAP PDU)이 지시하는 QoS flow를 신속히 처리하기 위해 해당하는 SDAP PDU를 default DRB (혹은 변경된 DRB)의 PDCP로 ED(Expedite) 지시자를 포함하여 전달한다. 여기서 ED(Expedite) 지시자는 PDCP 헤더에 1bit로 포함될 수 있다. 이후 PDCP 계층에서는 해당 PDCP SDU에 대해 PDCP sequence number(SN)를 할당하고, 만약 ED 지시자가 포함되어 있다면 해당 PDCP PDU를 우선하여 하위 계층에 전달한다. 또한, RLC 계층에서는 해당 RLC SDU에 대해 RLC SN를 할당하고, 만약 ED 지시자가 포함되어 있다면 해당 RLC PDU를 우선하여 하위 계층에 전달한다. 만약 단말이 수신하는 SDAP SDU가 미리 설정된 DRB x를 통해 수신한다면, 3j-30 단계에서 단말은 특별한 동작 없이 DRB x의 PDCP를 그대로 하위 레이어로 전달한다. 즉, 별도의 expedite delivery 동작을 설정하지 않는다.
3j-35 단계에서 단말은 기지국으로부터 동기 설정이 포함된 RRC connection reconfiguration 메시지를 수신한다. 상기의 메시지의 예는 핸드오버 명령 메시지이다. 또한 상기 메시지에는 특정 PDU 세션의 특정 QoS flow를 이전 DRB에서 새로운 DRB로 재설정하는 내용이 포함될 수 있다. 3j-40 단계에서 상기의 RRC 메시지를 수신한 단말은 RRC 메시지에서 지시하는 DRB 재설정을 수행한다. 일예로 QoS flow 1이 DRB 2에서 DRB 3으로 재설정된다는 내용이 포함될 수 있다. 또한 단말의 RRC 계층에서 SDAP entity로 상기와 같은 QoS flow와 DRB 재설정이 있음을 지시하고, 변경된 DRB로 새로운 QoS flow 패킷이 수신되는지 여부에 따라 동작을 달리한다. 만약, SDAP가 QoS flow 1을 DRB 3로 수신하면, 즉 새로운 QoS flow 패킷이 변경된 DRB로 수신된다면, 단말은 3j-50 단계에서 상위 계층으로 해당 패킷 전달하고 필터링 동작을 수행한다. 즉, 이후부터는 DRB 2, 즉 이전 DRB로부터 수신하는 QoS flow 1의 패킷을 폐기한다. 이는 in-order delivery를 달성하기 위함이다. 반면에 새로운 QoS flow 패킷이 변경된 DRB로 수신되기 이전에 이전 DRB로 수신된다면, 즉, SDAP entity에서 QoS flow 1을 DRB 2로 수신하면, 상위 계층으로 해당 패킷을 전달한다.
도 3k은 본 발명의 실시 예에 따른 단말의 구성을 나타낸 도면이다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(3k-10), 기저대역(baseband)처리부(3k-20), 저장부(3k-30), 제어부(3k-40)를 포함한다. 상기 제어부(3k-40)는 다중연결 처리부(3k-42)를 더 포함할 수 있다.
상기 RF처리부(3k-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(3k-10)는 상기 기저대역처리부(3k-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(3k-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(3k-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(3k-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(3k-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역처리부(3k-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(3k-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(3k-20)은 상기 RF처리부(3k-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(3k-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(3k-20)은 상기 RF처리부(3k-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역처리부(3k-20) 및 상기 RF처리부(3k-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(3k-20) 및 상기 RF처리부(3k-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역처리부(3k-20) 및 상기 RF처리부(3k-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역처리부(3k-20) 및 상기 RF처리부(3k-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(3k-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(3k-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(3k-30)는 상기 제어부(3k-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(3k-40)는 본 발명의 실시 예에 따른 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(3k-40)는 상기 기저대역처리부(3k-20) 및 상기 RF처리부(3k-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(3k-40)는 상기 저장부(3k-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(3k-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(3k-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 3l는 본 발명의 실시 예에 따른 기지국의 구성을 나타낸 도면이다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF처리부(3l-10), 기저대역처리부(3l-20), 백홀통신부(3l-30), 저장부(3l-40), 제어부(3l-50)를 포함하여 구성된다. 상기 제어부(3l-50)는 다중연결 처리부(3l-52)를 더 포함할 수 있다.
상기 RF처리부(3l-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(3l-10)는 상기 기저대역처리부(3l-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(3l-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(3l-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(3l-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(3l-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역처리부(3l-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(3l-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(3l-20)은 상기 RF처리부(3l-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(3l-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(3l-20)은 상기 RF처리부(3l-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역처리부(3l-20) 및 상기 RF처리부(3l-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(3l-20) 및 상기 RF처리부(3l-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀통신부(3l-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀통신부(3l-30)는 상기 기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(3l-40)는 상기 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(3l-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(3l-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(3l-40)는 상기 제어부(3l-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(3l-50)는 본 발명의 실시 예에 따른 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(3l-50)는 상기 기저대역처리부(3l-20) 및 상기 RF처리부(3l-10)을 통해 또는 상기 백홀통신부(3l-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(3l-50)는 상기 저장부(3l-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(3l-50)는 적어도 하나의 프로세서를 포함할 수 있다.
하기와 같이 본 발명의 제3 실시 예를 요약할 수 있다.
1. 요점(Main points)
> 새로운 QoS flow의 첫번째 패킷에 우선순위를 지정(Prioritizing the first packet of new QoS flow)
>> SADP는 SDAP PDU에 신속 전달이 적용되는지 여부를 PDCP에 지시(SDAP indicates PDCP whether expedite delivery shall be applied to the SDAP PDU)
>> PDCP는 버퍼에서 기다리고 있는 다른 PDCP PDU들 보다 먼저 해당 PDCP PDU를 하위 계층으로 전달한다. 신속 전달 지시자는 PDCP 헤더에 포함될 수 있고, 이는 수신단에서 reordering timer를 트리거하지 않도록 하며, 수신단의 상위 레이어로 신속히 전달하기 위함이다.(PDCP submit the corresponding PDCP PDU to the lower layer ahead of PDCP PDUs awaiting in the buffer. an expedite delivery indication can be introduced in PDCP header so that the receiver does not trigger reordering timer and deliver it to the upper layer immediately)
>> RLC는 버퍼에서 기다리고 있는 다른 RLC PDU들보다 먼저 해당 RLC PDU를 하위 계층으로 전달(RLC submit the corresponding RLC PDU to the lower layer ahead of RLC PDUs awaiting in the buffer)
> QoS flow 재 맵핑 동안 순차 전달 유지(Preserving in-order delivery during QoS flow remapping)
>> PDCP A로부터 PDCP B로 (또는 DRB A에서 DRB B로) QoS flow x 가 재맵핑 된다고 가정할 때, PDCP B로부터의 패킷이 전달된 이후 PDCP A로부터의 QoS flow x 패킷이 전달되면 순차 전달은 깨어짐 (Assuming that QoS flow x is remapped from PDCP A to PDCP B (or from DRB A to DRB B), in-order delivery is broken if QoS flow x packet from PDCP A is delivered to the upper layer after packet from PDCP B is delivered.)
>> 이러한 경우 가장 간단한 해결책은 그러한 패킷을 버리는 것이다. 순서는 다음과 같을 수 있음 (Then the simplest solution would be just to discard such packets The sequence would be like below.)
>> 1: PDU 세션에서 QoS 흐름을 DRB_old 에서 DRB_new로 재배치하기 위해 RRC 메시지를 수신(RRC message is received to relocate a QoS flow from DRB_old to DRB_new in a PDU session)
>> 2: RRC는 SDAP entity에 QoS 재배치를 지시(RRC indicates the QoS relocation to the SDAP entity)
>> 3: QoS flow의 첫번째 패킷이 새로운 DRB로부터 수신되면(즉, 이전 DRB로부터의 QoS flow의 SDAP PDU를 폐기한 후), SDAP entity는 QoS flow에 대한 필터링을 시작 (SDAP entity starts filtering for the QoS flow once the first packet of the QoS flow is received from the new DRB (i.e after then, discard the SDAP PDUs of the QoS flow from the old DRB).)
2. 동작 (Operations)
> UE: 캠프 온 NR 셀 (Camp on NR cell)
> UE <-> GNB: RRC 연결 설립(RRC connection establishment)
> UE <- GNB: RRC 연결 재설정(RRC connection reconfiguration)
>> DRB 1, DRB 2, DRB 3 설립(DRB1, DRB 2 and DRB 3 are established.)
>> DRB 1은 디폴트 DRB (DRB 1 is default DRB)
>> DRB 1에 맵핑된 QoS flow와 DRB 2에 맵핑된 QoS flow가 지시됨(QoS flows mapped to DRB 1 and QoS flow mapped to DRB 2 are indicated)
> UE: DRB 2에 맵핑된 QoS flow를 위한 SDAP SDU 수신 (SDAP SDU for QoS flow mapped to DRB 2 is received)
>> SDAP는 SDAP PDU를 ED 지시자가 없는 DRB2의 PDCP로 제출 (SDAP submit the SDAP PDU to the PDCP of the DRB2 w/o ED indication)
> UE: 새로운 QoS flow를 위한 SDAP SDU가 SDAP에서 수신됨(SDAP SDU for a new QoS flow is received by SDAP)
>> SDAP는 SDAP PDU를 ED 지시자가 있는 디폴트 DRB의 PDCP에 제출 (SDAP submit the SDAP PDU to the PDCP of default DRB with ED indication)
>> PDCP 는 PDCP SDU에 PDCP SN을 할당. ED가 지시되면, 낮은 COUNT의 PDCP PDU들 이전에 하위 레이어로 PDCP PDU를 제출 (PDCP allocate the PDCP SN for the PDCP SDU. If ED is indicated, submit the PDCP PDU to the lower layer with ED indication ahead of PDCP PDUs with lower COUNT)
>> RLC는 RLC SDU를 위해 RLC SN 할당. ED가 지시되면, 낮은 RLC SN을 갖는 RLC PDU들 이전에 상기 RLC SDU를 제출 (RLC allocate RLC SN for the RLC SDU. If ED is indicated, submit the RLC SDU to the lower layer ahead of RLC PDUs with lower RLC SNs)
> UE <- GNB: 동기 재설정 지시와 함께 RRC 연결 재설정 (RRC connection reconfiguration with synchronous reconfiguration indication (i.e. HO command))
>> QoS flow 1에 대한 재배치가 DRB 2에서 DRB 3으로 지시 (QoS relocation is indicated for QoS flow 1 from DRB 2 to DRB 3)
>> RRC는 QoS flow 1이 DRB 2에서 DRB 3으로 재배치된 SDAP entity를 지시 (RRC indicate the SDAP entity that QoS flow 1 is relocated from DRB 2 to DRB 3)
>> SDAP는 DRB2로부터 QoS flow 1 패킷을 수신한 다음 상위 계층으로 패킷을 전달 (SDAP receives QoS flow 1 packet from DRB 2, then deliver the packet to the upper layer)
>> SDAP는 DRB3로부터 QoS flow 1 패킷을 수신한 후, 상위 계층으로 패킷을 전달하고, DRB2로부터 QoS flow 1 패킷을 필터링 (또는 폐기)하기 시작 (SDAP receives QoS flow 1 packet from DRB 3, then deliver the packet to the upper layer and start filtering (or discarding) QoS flow 1 packet from DRB 2)
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 특징을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 단말의 동작 방법에 있어서,
    기지국으로부터 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계;
    상기 단말의 상위 응용 계층으로부터 데이터를 수신하는 단계;
    상기 데이터를 압축하고, 상기 압축된 데이터를 암호화 하는 단계;
    UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 함께 생성하는 단계;
    상기 암호화된 데이터에 상기 UDC 헤더 및 SDAP 헤더가 접합된 블록을 생성하는 단계; 및
    상기 블록을 상기 단말의 하위 계층으로 전달하는 단계를 포함하는 방법.
  2. 제1항에 있어서,
    상기 UDC 헤더에 암호화를 수행하지 않고, 상기 SDAP 헤더에 압축을 수행하지 않는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 단말의 SDAP 계층과 PDCP(packet data convergence protocol) 계층은 하나의 제1 계층 장치로 구성되고,
    상기 데이터의 압축, 암호화, UDC 헤더 및 SDAP 헤더는 상기 제1 계층 장치에서 수행되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 RRC 메시지는 상기 상향링크 데이터 압축이 적용될 PDCP 장치, 베어러, IP flow 또는 QoS(quality of service) flow 중 적어도 하나를 지시하는 정보를 더 포함하는 것을 특징으로 하는 방법.
  5. 단말에 있어서,
    송수신부; 및
    기지국으로부터 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 수신하고, 상기 단말의 상위 응용 계층으로부터 데이터를 수신하며, 상기 데이터를 압축하고, 상기 압축된 데이터를 암호화 하고, UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 함께 생성하며, 상기 암호화된 데이터에 상기 UDC 헤더 및 SDAP 헤더가 접합된 블록을 생성하고, 상기 블록을 상기 단말의 하위 계층으로 전달하도록 제어하는 제어부를 포함하는 단말.
  6. 제5항에 있어서,
    상기 UDC 헤더에 암호화를 수행하지 않고, 상기 SDAP 헤더에 압축을 수행하지 않는 것을 특징으로 하는 방법.
  7. 제5항에 있어서, 상기 단말의 SDAP 계층과 PDCP(packet data convergence protocol) 계층은 하나의 제1 계층 장치로 구성되고,
    상기 데이터의 압축, 암호화, UDC 헤더 및 SDAP 헤더는 상기 제1 계층 장치에서 수행되는 것을 특징으로 하는 단말.
  8. 제5항에 있어서,
    상기 RRC 메시지는 상기 상향링크 데이터 압축이 적용될 PDCP 장치, 베어러, IP flow 또는 QoS(quality of service) flow 중 적어도 하나를 지시하는 정보를 더 포함하는 것을 특징으로 하는 방법.
  9. 기지국의 동작 방법에 있어서,
    단말에게 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 전송하는 단계;
    상기 단말로부터 제1 데이터를 수신하는 단계;
    상기 제1 데이터에 접합된 UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 획득하는 단계;
    상기 UDC 헤더 및 상기 SDAP 헤더가 제거된 제2 데이터를 복호화하고 압축을 해제하는 단계; 및
    상기 압축이 해제된 제2 데이터를 상기 기지국의 상위 계층으로 전달하는 단계를 포함하는 방법.
  10. 제9항에 있어서,
    상기 제1 데이터의 상기 UDC 헤더에는 암호화가 수행되어 있지 않고, 상기 SDAP 헤더에는 압축을 수행되지 않은 것을 특징으로 하는 방법.
  11. 제9항에 있어서, 상기 기지국의 SDAP 계층과 PDCP(packet data convergence protocol) 계층은 하나의 제1 계층 장치로 구성되고,
    상기 제2 데이터의 압축 해제, 복호화 및 상기 UDC 헤더와 SDAP 헤더의 제거는 상기 제1 계층 장치에서 수행되는 것을 특징으로 하는 방법.
  12. 제9항에 있어서,
    상기 RRC 메시지는 상기 상향링크 데이터 압축이 적용될 PDCP 장치, 베어러, IP flow 또는 QoS (quality of service) flow 중 적어도 하나를 지시하는 정보를 더 포함하는 것을 특징으로 하는 방법.
  13. 기지국에 있어서,
    송수신부; 및
    단말에게 상향링크 데이터 압축(uplink data compression, UDC)의 사용 여부를 지시하는 정보를 포함하는 RRC (radio resource control) 메시지를 전송하고, 상기 단말로부터 제1 데이터를 수신하며, 상기 제1 데이터에 접합된 UDC(uplink data compression) 헤더 및 SDAP(service data adaption protocol) 헤더를 획득하고, 상기 UDC 헤더 및 상기 SDAP 헤더가 제거된 제2 데이터를 복호화하고 압축을 해제하며, 상기 압축이 해제된 제2 데이터를 상기 기지국의 상위 계층으로 전달하도록 제어하는 제어부를 포함하는 기지국.
  14. 제13항에 있어서,
    상기 제1 데이터의 상기 UDC 헤더에는 암호화가 수행되어 있지 않고, 상기 SDAP 헤더에는 압축을 수행되지 않은 것을 특징으로 하는 기지국.
  15. 제13항에 있어서, 상기 기지국의 SDAP 계층과 PDCP(packet data convergence protocol) 계층은 하나의 제1 계층 장치로 구성되고,
    상기 제2 데이터의 압축 해제, 복호화 및 상기 UDC 헤더와 SDAP 헤더의 제거는 상기 제1 계층 장치에서 수행되고,
    상기 RRC 메시지는 상기 상향링크 데이터 압축이 적용될 PDCP 장치, 베어러, IP flow 또는 QoS (quality of service) flow 중 적어도 하나를 지시하는 정보를 더 포함하는 것을 특징으로 하는 기지국.
PCT/KR2019/000197 2018-01-05 2019-01-07 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치 WO2019135649A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19736168.6A EP3706461B1 (en) 2018-01-05 2019-01-07 Method and device for improved communication performance in wireless communication system
EP23215224.9A EP4333407A3 (en) 2018-01-05 2019-01-07 Method and device for improved communication performance in wireless communication system
US16/959,659 US11197194B2 (en) 2018-01-05 2019-01-07 Method and device for improved communication performance in wireless communication system
US17/543,524 US11838797B2 (en) 2018-01-05 2021-12-06 Method and device for improved communication performance in wireless communication system
US18/528,559 US20240107375A1 (en) 2018-01-05 2023-12-04 Method and device for improved communication performance in wireless communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180001821 2018-01-05
KR10-2018-0001821 2018-01-05
KR1020180036079A KR102596391B1 (ko) 2018-01-05 2018-03-28 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치
KR10-2018-0036079 2018-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/959,659 A-371-Of-International US11197194B2 (en) 2018-01-05 2019-01-07 Method and device for improved communication performance in wireless communication system
US17/543,524 Continuation US11838797B2 (en) 2018-01-05 2021-12-06 Method and device for improved communication performance in wireless communication system

Publications (1)

Publication Number Publication Date
WO2019135649A1 true WO2019135649A1 (ko) 2019-07-11

Family

ID=67144453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000197 WO2019135649A1 (ko) 2018-01-05 2019-01-07 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치

Country Status (4)

Country Link
US (2) US11838797B2 (ko)
EP (1) EP4333407A3 (ko)
KR (1) KR20230151976A (ko)
WO (1) WO2019135649A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027786A1 (zh) * 2019-08-14 2021-02-18 华为技术有限公司 一种ue上报udc信息方法及设备
WO2021091224A1 (en) * 2019-11-06 2021-05-14 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
CN113396607A (zh) * 2019-11-06 2021-09-14 三星电子株式会社 用于在无线通信系统中执行切换的方法和设备
WO2021232201A1 (en) * 2020-05-18 2021-11-25 Nec Corporation Methods, devices, and computer readable medium for communication
CN114845322A (zh) * 2021-01-15 2022-08-02 华硕电脑股份有限公司 无线通信系统中用于控制用户设备状态转变的方法和设备
WO2023130452A1 (en) * 2022-01-10 2023-07-13 Mediatek Singapore Pte. Ltd. Methods and apparatus for sdap based xr packets inspection and classification at radio access layer
US12127039B2 (en) 2019-08-14 2024-10-22 Huawei Technologies Co., Ltd. Method for reporting UDC information by UE, and device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333407A3 (en) * 2018-01-05 2024-03-20 Samsung Electronics Co., Ltd. Method and device for improved communication performance in wireless communication system
CN114727290A (zh) * 2019-04-28 2022-07-08 华为技术有限公司 通信方法及其装置
CN114158040B (zh) * 2020-08-18 2024-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
US11576078B2 (en) * 2021-03-15 2023-02-07 International Business Machines Corporation Selective compression of data for uplink to a telecommunication network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142518A1 (en) * 2014-11-14 2016-05-19 Qualcomm Incorporated Evolved data compression scheme signaling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510358A (en) * 2013-01-31 2014-08-06 Eip Configuring layer 2 data compression between a UE and base station in LTE.
US20170257796A1 (en) * 2016-03-07 2017-09-07 Mediatek Inc. Selective Uplink Only Header Compression Mechanism
BR112019015657B1 (pt) 2017-02-01 2023-03-28 Lg Electronics Inc Método para executar qualidade de serviço (qos) reflexiva em sistema de comunicação sem fio e um dispositivo para o mesmo
US11272391B2 (en) * 2017-02-03 2022-03-08 Apple Inc. Concatenation of service data units above a packet data convergence protocol layer
CN107094142B (zh) * 2017-04-28 2020-11-27 电信科学技术研究院 一种上行数据解压缩、压缩的方法和装置
US10951533B2 (en) 2017-09-27 2021-03-16 Qualcomm Incorporated Header formats in wireless communication
US10855814B2 (en) 2017-10-20 2020-12-01 Comcast Cable Communications, Llc Non-access stratum capability information
US20190141567A1 (en) 2017-11-06 2019-05-09 Mediatek Inc. Uplink Data Compression Transaction Flow
EP3707940A4 (en) * 2017-11-10 2021-08-18 Telefonaktiebolaget LM Ericsson (publ) TRANSMISSION DEVICE, RECEPTION DEVICE AND PROCESSES PERFORMED THEREIN TO MANAGE A BUFFER MEMORY RESTART
KR102509070B1 (ko) 2017-11-24 2023-03-10 삼성전자주식회사 무선 통신 시스템에서 데이터 처리 방법 및 장치
EP4333407A3 (en) * 2018-01-05 2024-03-20 Samsung Electronics Co., Ltd. Method and device for improved communication performance in wireless communication system
KR102596391B1 (ko) * 2018-01-05 2023-11-01 삼성전자 주식회사 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160142518A1 (en) * 2014-11-14 2016-05-19 Qualcomm Incorporated Evolved data compression scheme signaling

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; E-UTRA and NR; Service Data Adaptation Protocol (SDAP) Specification (Release 15", 3GPP TS 37.324, no. V1.1.1, 16 November 2017 (2017-11-16), XP051391739, Retrieved from the Internet <URL:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3282> *
"3GPP; TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) Specification (Release 14", 3GPP TS 36.323, no. V14.4.0, 25 September 2017 (2017-09-25), XP051337315, Retrieved from the Internet <URL:https://portal.3gpp.org/desktopmodules/Specilications/SpecificationDetails.aspx?specificationId=2439> *
CATT: "Introduction of DEFLATE Based UDC Solution", R2-1714278, 3GPP TSG-RAN2 MEETING #100, 15 December 2017 (2017-12-15), Reno, USA, XP051372869, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_100/Docs> *
HUAWEI ET AL.: "Discussion on UDC Functionality in PDCP Layer", R2-1712722, 3GPP TSG RAN2 MEETING #100, 17 November 2017 (2017-11-17), Reno, Nevada. USA, XP051371628, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/TSG_RAN/WG2RL2/TSGR2_100/Docs> *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027786A1 (zh) * 2019-08-14 2021-02-18 华为技术有限公司 一种ue上报udc信息方法及设备
US12127039B2 (en) 2019-08-14 2024-10-22 Huawei Technologies Co., Ltd. Method for reporting UDC information by UE, and device
WO2021091224A1 (en) * 2019-11-06 2021-05-14 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
CN113396607A (zh) * 2019-11-06 2021-09-14 三星电子株式会社 用于在无线通信系统中执行切换的方法和设备
US11356904B2 (en) 2019-11-06 2022-06-07 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
US11882486B2 (en) 2019-11-06 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for performing handover in wireless communication system
WO2021232201A1 (en) * 2020-05-18 2021-11-25 Nec Corporation Methods, devices, and computer readable medium for communication
CN114845322A (zh) * 2021-01-15 2022-08-02 华硕电脑股份有限公司 无线通信系统中用于控制用户设备状态转变的方法和设备
WO2023130452A1 (en) * 2022-01-10 2023-07-13 Mediatek Singapore Pte. Ltd. Methods and apparatus for sdap based xr packets inspection and classification at radio access layer

Also Published As

Publication number Publication date
US20220095161A1 (en) 2022-03-24
KR20230151976A (ko) 2023-11-02
EP4333407A3 (en) 2024-03-20
US20240107375A1 (en) 2024-03-28
US11838797B2 (en) 2023-12-05
EP4333407A2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2019135649A1 (ko) 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치
WO2019225888A1 (ko) 차세대 이동통신 시스템에서 sdap 제어 pdu를 구분해서 처리하는 방법 및 장치
WO2021066466A1 (en) Method and apparatus for performing handover in wireless communication system
WO2020197295A1 (en) Method and apparatus for processing pdcp control data in system supporting high-reliability low-latency service
WO2020263028A1 (en) Device and method for performing handover in wireless communication system
WO2020197361A1 (en) Method and apparatus for handover without interruption of transmission and reception of data in next-generation mobile communication system
WO2020060352A1 (en) Methods and apparatuses for transmitting and receiving data in wireless communication system
WO2019093835A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2019054830A1 (en) METHOD AND APPARATUS FOR PROCESSING A PACKET IN A WIRELESS COMMUNICATION SYSTEM
WO2019031883A1 (ko) 무선 통신 시스템에서 pdcp 재수립 방법 및 장치
WO2019017583A1 (ko) 차세대 이동 통신 시스템에서 효율적으로 통신을 위한 방법 및 장치
WO2019066588A1 (en) METHOD AND SYSTEM FOR MANAGING PDCP OPERATION IN A WIRELESS COMMUNICATION SYSTEM
WO2021066532A1 (ko) 무선 통신 시스템에서 핸드오버 절차를 수행하는 방법 및 장치
WO2018182366A1 (ko) Tcp/ip를 고려한 데이터 처리 방법
WO2022025528A1 (ko) 차세대 이동 통신 시스템에서 무결성 보호 또는 검증 절차로 인한 단말 프로세싱 부하를 줄이는 방법 및 장치
WO2020027508A1 (en) Wireless node communication method and apparatus in wireless communication system
WO2020209541A1 (ko) 무선 통신 시스템에서 단말 능력 보고 방법 및 장치
WO2018230964A1 (ko) 차세대 이동 통신 시스템에서 네트워크 요청 기반 버퍼 상태 보고를 처리하는 방법 및 장치
WO2020166906A1 (en) Methods and apparatuses for transmitting and receiving data in wireless communication system
WO2020022849A1 (en) Method and apparatus for wireless communication of wireless node in wireless communication system
EP3665973A1 (en) Method and apparatus for wireless communication in wireless communication system
WO2020009414A1 (ko) 이동 통신 시스템에서 통신 방법 및 장치
WO2021025504A1 (ko) 고신뢰 저지연 서비스를 지원하는 시스템에서 무결성 검증 실패를 처리하는 방법 및 장치
WO2020060245A1 (en) Method and apparatus for identifying security key in next generation mobile communication system
EP3669573A1 (en) Method and apparatus for processing a packet in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019736168

Country of ref document: EP

Effective date: 20200605

NENP Non-entry into the national phase

Ref country code: DE