WO2019131564A1 - Measurement instrument for chemical/physical phenomena and method for manufacturing same - Google Patents

Measurement instrument for chemical/physical phenomena and method for manufacturing same Download PDF

Info

Publication number
WO2019131564A1
WO2019131564A1 PCT/JP2018/047398 JP2018047398W WO2019131564A1 WO 2019131564 A1 WO2019131564 A1 WO 2019131564A1 JP 2018047398 W JP2018047398 W JP 2018047398W WO 2019131564 A1 WO2019131564 A1 WO 2019131564A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
constant potential
unit
chemical
sensing unit
Prior art date
Application number
PCT/JP2018/047398
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 和明
達哉 岩田
直也 新名
Original Assignee
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学 filed Critical 国立大学法人豊橋技術科学大学
Priority to JP2019561679A priority Critical patent/JP6709423B2/en
Publication of WO2019131564A1 publication Critical patent/WO2019131564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to the improvement of a measuring apparatus for chemical and physical phenomena.
  • a so-called Sawada unit using floating diffusion is known as a measuring device of chemical and physical phenomena.
  • the Sawada unit 1 has the following basic structure. For example, as shown in FIG. 1, a sensing unit 10, a charge supply unit 20, a charge transfer / storage unit 30, a charge amount detection unit 40 and a charge removal unit 50 are formed on the surface of a silicon substrate.
  • the sensing unit 10 is provided with a sensing film 12 and a standard electrode 13 that change the potential according to the detection target.
  • the depth of the potential well 15 of the sensing unit 10 (p diffusion region 72) changes according to the potential change of the sensitive film 12.
  • the charge supply unit 20 includes an injection diode unit (sometimes abbreviated as “ID unit” in this specification) 21 and an input control gate unit (sometimes abbreviated as “ICG unit” in this specification) 23.
  • the charge of the ID unit 21 is supplied to the potential well 15 of the sensing unit 10 by charging the ID unit 21 with a charge and controlling the potential of the ICG unit 23.
  • the charge transfer / accumulation unit 30 includes a transfer gate unit (sometimes abbreviated as "TG unit” in this specification) 31 and a floating diffusion unit (sometimes abbreviated as “FD unit” in this specification) 33. .
  • TG unit transfer gate unit
  • FD unit floating diffusion unit
  • the charge accumulated in the FD unit 33 is detected by the charge amount detection unit 40.
  • a source follower type signal amplifier can be used as the charge amount detection unit 40.
  • the charge removal unit 50 includes a reset gate unit (sometimes abbreviated as "RG unit” in this specification) 51 and a reset drain unit (sometimes abbreviated as "RD unit” in this specification) 53. .
  • RG unit reset gate unit
  • RD unit reset drain unit
  • the detection device and the operation thereof will be described by taking a pH sensor for detecting a hydrogen ion concentration as an example.
  • a pH sensor for detecting a hydrogen ion concentration as an example.
  • an electron is employed as the charge, and the target portion of the substrate 71 is appropriately doped so as to be suitable for the transfer of the electron.
  • the detection device 1 as a pH sensor includes an n-type silicon substrate 71, and a portion corresponding to the sensing unit 10 is a p-type diffusion layer 72.
  • the surface of the p-type diffusion layer 72 is n-type doped (n region 73).
  • n + regions 74, 75 and 77 are formed in the ID portion 21, the FD portion 33 and the RD portion 53, respectively.
  • a protective film 81 made of silicon oxide is formed on the surface of the silicon substrate 71, and the electrode of the ICG portion 23, the electrode of the TG portion 31, and the electrode of the RG portion 51 are stacked thereon. When a voltage is applied to each electrode, the potential of the silicon substrate 71 in the portion opposite to it changes.
  • the sensitive film 12 made of silicon nitride is stacked on the protective film 81.
  • step (A) When the sensing unit 10 is brought into contact with the aqueous solution to be detected, the depth of the potential well 15 of the sensing unit 10 changes according to the hydrogen ion concentration of the aqueous solution (step (A)). That is, as the hydrogen ion concentration increases, the potential well 15 becomes deeper (the bottom potential increases).
  • step (B) the potential of the ID unit 21 is lowered to charge the charge here (see step (B)). At this time, the charge stored in the ID unit 21 exceeds the ICG unit 23 and fills the potential well 15 of the sensing unit 10.
  • the potential of the TG portion 31 is lower than that of the ICG portion 23, and the charge filled in the potential well 15 does not reach the FD portion 33 over the TG portion 31.
  • the charge that has been cut off by the ICG section 23 is left in the potential well 15 (see step (C)).
  • the amount of charge left in the potential well 15 corresponds to the depth of the potential well 15, that is, the hydrogen ion concentration to be detected.
  • the potential of the TG unit 31 is raised to transfer the charge left in the potential well 15 to the FD unit 33 (see step (D)).
  • the charge amount accumulated in the FD unit 33 is detected by the charge amount detection unit 40 (see step (E)).
  • the potential of the RG unit 51 is raised to discharge the charge of the FD unit 33 to the RD unit 53 (see step (F)).
  • the RD unit 53 is connected to the VDD and absorbs the negatively charged charge.
  • the Sawada unit described in FIGS. 1 and 2 measures the hydrogen ion concentration, so the object to be measured is a conductive liquid. Therefore, even in an array in which a plurality of Sawada units are two-dimensionally arranged, the standard electrode may be disposed in a part of the array and may be contacted with the liquid. This is because when the standard electrode comes in contact with the measurement target which is a conductive liquid, the potential of the measurement target becomes constant over the entire area.
  • the sensitive film in the configuration of FIG. 1 the concentration of any chemical component can be measured. For example, when a polyaniline sensitive film is formed on a sensitive film made of a silicon nitride film, the potential of the polyaniline sensitive film changes according to the concentration of ethanol or ammonia.
  • the inventors of the present invention have made intensive studies to suitably measure the gas component of a gas using a chemical / physical measurement apparatus comprising an array of Sawada units, and have conceived the present invention having the following constitution. That is, the first aspect of the present invention is defined as follows.
  • a sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit.
  • An array of measuring units for chemical and physical phenomena A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
  • Measurement equipment for chemical and physical phenomena equipped with
  • the constant potential portion is disposed in proximity to the array along the arrangement rule of the array of measuring units, and the reference of this constant potential portion The point and the reference point of the array coincide.
  • the constant potential portion may be disposed on top of the sensitive membrane covering the array, or may be disposed on the same plane as the array, ie below the polyaniline membrane.
  • the constant potential portion following the arrangement rule of the array means that there is a predetermined relationship between the two-dimensional arrangement direction of the array and its pitch and the two-dimensional shape of the constant potential portion and its pitch.
  • matching the reference point of the constant potential portion with the reference point of the array means that the positional relationship between the two is defined with some intention.
  • the positional relationship between the sensing unit and the constant potential unit of the measurement unit can be accurately controlled. This facilitates control of the potential of the sensing film in contact with the sensing unit of each measurement unit.
  • a sensitive film sensitive to changes in chemical and physical phenomena a change in carrier density occurs, and as a result, it is considered that material characteristics (such as conductivity) change at a constant rate. Therefore, if the sensitive film in the default state is kept at the standard potential before the chemical / physical phenomenon is sensed, that is, when it is sensitive to the chemical / physical phenomenon (for example, the sensitive film made of polyaniline)
  • the outputs of all measurement units of the array show values according to the chemical and physical phenomena.
  • the potentials of the sensitive film in contact with the sensing unit can be controlled to align them, the output of each measurement unit can be accurately reflected on the chemical and physical phenomena to be measured.
  • the variation in the potential of the sensitive film in contact with the sensing unit of each measuring unit is also allowed, and the error of the distance from each sensing unit to the constant potential unit is specified. From the viewpoint of the sensitivity required of the measuring device, it can be said that the potentials of the sensing films contacting the respective sensing parts were substantially constant.
  • the measurement units are generally arranged in a grid pattern in plan view, that is, at the same pitch in the XY direction.
  • the constant potential portion is also arranged along the XY direction.
  • the reference point of the constant potential portion and the reference point of the array of measurement units are made to coincide in plan view.
  • the reference point refers to the position of (0, 0) in the element extending in two dimensions (X, Y).
  • the constant potential part is positioned as close as possible to the sensing part of the measuring unit, preferably immediately above.
  • the constant potential portion has a mesh structure with the same pitch. That is, one continuous element (member) of mesh structure may be provided to a plurality of measurement units constituting the array. Therefore, the burden of wiring to the integrated circuit hardly occurs. From the viewpoint of securing the opening area of the sensing unit, this mesh may surround each of the sensing units one by one or collectively.
  • the constant potential portions can be arranged in parallel.
  • the position of each measurement unit constituting the array with respect to the sensing unit is stabilized.
  • the potential of the sensing film in contact with the sensing unit is equalized, and the depth of the potential well of the sensing unit of the measurement unit changes according to the amount of chemical and physical phenomenon to be measured based on this potential.
  • An electrical signal corresponding to the depth of the potential well is output from the detection region.
  • the electric signal from the measuring unit corresponds to the chemical amount or physical amount of the object to be measured by adopting the measuring device of the first aspect.
  • the constant potential parts are arranged along the arrangement rule of the array of measurement units, they can be one continuous element (member). As a result, the load on the wiring can be reduced compared to the structure in which independent standard electrodes are disposed in each of the sensing units of each measurement unit.
  • the second aspect of the present invention is defined as follows. That is, in the measurement apparatus defined in the first aspect, the constant potential portion is disposed on the array of the measurement units. According to the measuring apparatus of the second aspect defined as described above, the distance between the sensing unit of the measuring unit and the constant potential unit can be made as close as possible. As a result, the potential of the sensing film in contact with the sensing unit becomes more stable. In order to make the distance between the sensing unit and the constant potential unit of the measurement unit closest to each other, the constant potential unit is positioned immediately above the sensing unit. Thereby, the potential of the sensing film in contact with the sensing unit is most stabilized. In order to secure a larger opening area of the sensing unit, a constant potential unit is disposed between the adjacent measurement units above the array. This improves the sensitivity.
  • the third aspect of the present invention is defined as follows. That is, in the measuring device of the first or second aspect, the constant potential portion is made of metal wiring. According to the measuring apparatus of the third aspect defined in this manner, the apparatus configuration can be simplified by using the metal wiring, and this can be provided at low cost.
  • the fourth aspect of the present invention is defined as follows. That is, in the measurement apparatus defined in the first or second aspect, the first electric signal from the measurement unit not covered by the constant potential part and the second electric signal from the measurement unit covered by the constant potential part A comparison unit that compares the signal with And an output unit that outputs the comparison result of the comparison unit.
  • the first electric signal output from the measuring unit covered by the constant potential part is dominated by the potential of the constant potential part.
  • the second electric signal output from the measurement unit not covered with the constant potential portion changes in accordance with the gas component contained in the gas to be observed. Therefore, by comparing the first electrical signal and the second electrical signal, the concentration change of the gas component, in particular, the temporal change can be observed.
  • the fifth aspect of the present invention is defined as follows.
  • a sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit.
  • An array of measuring units for chemical and physical phenomena A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
  • a method of manufacturing a chemical / physical phenomenon measuring apparatus comprising An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit; Forming the constant potential portion on the sensitive film of the array of measurement units.
  • the manufacturing method of the measuring device of the fifth aspect defined as above not only the manufacturing of the array of measuring units but also the manufacturing of the constant potential portion formed on the array is the same as the manufacturing process of the semiconductor integrated circuit. It becomes applicable.
  • the entire apparatus can be manufactured in large quantities at low cost. Following the fabrication of the array of measurement units, the same process equipment can be used to form the potentiostat. As a result, it is possible to easily and accurately place the constant potential part along the arrangement rule of the array and to match the reference point of the array with the reference point of the constant potential part.
  • the sixth aspect of the present invention is defined as follows.
  • a sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit.
  • An array of measuring units for chemical and physical phenomena A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
  • a method of manufacturing a chemical / physical phenomenon measuring apparatus comprising An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit; Forming an array of the measurement units and forming a sensitive film on the constant potential portion.
  • the constant potential portion is formed simultaneously with the array in the manufacturing process of the semiconductor integrated circuit. Therefore, the manufacturing process is simplified, and a cheaper apparatus can be provided.
  • the seventh aspect of the present invention is defined as follows. That is, a sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit.
  • An array of measurement units for chemical and physical phenomena comprising A constant potential portion made of metal wiring disposed in proximity to the array of measurement units;
  • a method of manufacturing a chemical / physical phenomenon measuring apparatus comprising A constant potential portion mounting step of mounting the constant potential portion made of the metal wiring on the surface of the array of the measurement units;
  • the polymer material constituting the sensitive film is supplied in a fluid state to the surface of the array of the measurement unit on which the constant potential portion is mounted to cover the surface of the array, and the constant potential is applied onto the polymer material.
  • a curing step of curing the polymeric material According to the measuring apparatus of the seventh aspect defined as described above, the apparatus can be manufactured by a simple operation. Therefore, the measuring device can be provided simply and inexpensively.
  • FIG. 1 is a schematic view showing the configuration of a basic unit of a measurement unit of chemical and physical phenomena.
  • FIG. 2 is a view showing the operation of the measurement unit of FIG.
  • FIG. 3 is a plan view of a measuring device of a trial example of the present invention.
  • FIG. 4 shows an output result of the measuring apparatus of the trial example shown in FIG.
  • FIG. 5 shows the main part of the measuring device of the embodiment of the present invention.
  • FIG. 6 shows an output result of the measuring apparatus of the embodiment shown in FIG.
  • FIG. 8 (b) is a cross-sectional view showing a measuring apparatus 300 according to a modification of the measuring apparatus 200. Shows a measuring device 400 of a variant of the measuring device 300.
  • FIG. 3 shows the structure of the measuring device 100 of the trial example.
  • reference numeral 101 denotes an array of Sawada units (measuring units) shown in FIG. 1, for example, having a square face of 7.3 mm ⁇ 7.3 mm, and about 16000 Sawada units are accumulated therein .
  • a polyaniline film 103 (about 15 ⁇ l) covers the entire area of the array 101 as a sensitive film on the sensitive film made of a silicon nitride film. It is considered that the carrier density of the conductive polymer such as polyaniline changes depending on the acid or alkali contained in the measurement object, and as a result, the conductivity, the dielectric constant and the shielding distance change.
  • reference numeral 105 denotes an electrode made of gold paste, which is applied to a position away from the array 101 in the polyaniline film 103, to which a constant potential (standard potential) is applied.
  • a constant potential standard potential
  • FIG. 3 An image obtained after 9 minutes is shown in FIG.
  • the voltage applied to the electrode 105 is 1.094V.
  • Each pixel of the image shown in FIG. 4 corresponds to each Sawada unit constituting the array 101, and the value of the pixel is specified from the electric signal output from the corresponding Sawada unit.
  • each Sawada unit of the array 101 has variations. Specifically, the potential decreases as the distance from the electrode 105 increases. This is considered to be due to the fact that the reference potential varies and high precision measurement is inhibited.
  • the present inventors adopted the mesh electrode 110 shown in FIG. 5 in place of the gold paste 5.
  • the mesh electrode 110 covers the entire area of the polyaniline film 103 and is connected to a constant voltage source (1.473 V) at a position away from the array 101.
  • the mesh electrode 110 is formed by depositing gold on both sides of a polymer mesh filter (MILLIPORE, NY1H4700) having square pores (100 ⁇ m ⁇ 100 ⁇ m).
  • MILLIPORE, NY1H4700 polymer mesh filter having square pores (100 ⁇ m ⁇ 100 ⁇ m).
  • the metal wire 112 of the mesh electrode 110 is disposed directly above some of the Sawada units constituting the array 101 via the sensitive film (polyaniline film 103).
  • the portion of the polyaniline film 103 covered with the metal wiring 112 is difficult to react with ethanol gas.
  • the output of the Sawada unit facing the metal wire 112 is controlled by the voltage of the metal wire 112.
  • the mesh electrode 110 is laminated on the polyaniline film 103 without being particularly aligned.
  • mesh electrode 110 was placed on the array, and then polyaniline before curing was supplied on the array.
  • polyaniline by adjusting the viscosity and specific gravity of polyaniline before curing, it was possible to make the mesh electrode float in a state of being entangled with polyaniline.
  • the polyaniline After leaving to stand for a while to make the polyaniline layer uniform in thickness, the polyaniline is cured. Thereby, the mesh electrode 110 is stably attached in parallel and mechanically to the array.
  • how to attach the mesh electrode 103 is not limited to the above. After the polyaniline film 103 is formed, the mesh electrode 110 can be stacked.
  • the mesh electrode is selected using mask technology of a general integrated circuit process. Molding is preferred.
  • FIG. 6 is an image obtained after 5 minutes. Each pixel of this image corresponds to the output of each Sawada unit.
  • an influence factor (electrons) caused by the ethanol gas diffuses in the polyaniline film 103. Therefore, the output of the part covered with the metal wiring 112 of the mesh electrode 110 and the part (pore part) which is not covered becomes the same.
  • FIG. 7 shows the change with time of the output of the measuring device shown in FIG. It can be seen that ethanol gas reacts with the polyaniline film through the pore portion 114, and as a result, the material characteristics change due to the change of the carrier density of the polyaniline film, and the potential changes accordingly. Note that, after 60 seconds, it can be seen that the influence of the reaction between ethanol gas and the polyaniline film in the pore portion 114 diffuses under the metal wire 112.
  • the array of Sawada units can be manufactured by the process of a general purpose semiconductor integrated circuit.
  • the sensitive film to be stacked on the sensing unit of the Sawada unit is appropriately selected according to the chemical and physical quantities to be measured.
  • the present invention is suitable when the object to be measured is insulating or conductive but has very small conductivity.
  • the present invention can be suitably used when the object to be measured is a gas.
  • any material can be selected as a material for forming the sensitive film, as long as it is used in a gas sensor, that is, a conductive material that reacts with gas components to cause a change in conductivity.
  • semiconductor materials such as tin oxide and indium oxide can be used.
  • the sensitive film is in contact with the constant potential portion.
  • FIG. 1 Another measuring apparatus 200 is shown in FIG. Elements having the same effects as those in FIG. 1 are given the same reference numerals, and the description thereof is omitted.
  • This measuring device 200 laminates a layer of polyaniline as a sensitive film 103 on the surface of the array 101 of the measuring unit 1. The structure so far is the same as the chip (measuring device) of FIGS. 3 and 5.
  • the constant potential portion 212 is formed immediately above the sensing unit 10 of each measurement unit 1.
  • the constant potential portion 212 crosses the position immediately above the sensing unit 10 of the measurement unit 1 in the direction perpendicular to the sheet, and similarly crosses the sensing unit 10 of the adjacent measurement units 1 in the same direction.
  • a uniform potential is applied from the reference power supply 215 to the constant potential portion 212 having such a structure. Therefore, the potentials of the sensitive films in contact with the sensing portions of the respective measurement units 1 are uniformly equalized.
  • the constant potential portion 212 of the measuring device 200 can be formed on the sensitive film 103 using a so-called lift-off method. That is, a resist is laminated on the sensitive film 103. Next, an opening is provided at a position where the constant potential portion 212 is to be formed in the laminated resist by etching or other known method. This opening is continuous.
  • a metal material is deposited as a conductive material.
  • a metal material is vapor-deposited on the sensitive film through the opening of the resist to form a constant potential portion 212.
  • the alignment of the measurement unit 1 and the constant potential unit 212 is based on the predetermined position of the substrate due to the limitation of the manufacturing apparatus. Based on the predetermined position of the substrate, an array of measurement units 1 is created, and a lift-off method is performed to form a constant potential portion. That is, in plan view, the predetermined position of the substrate is the reference point of the array of the measurement units 1 and the reference point of the constant potential portion 212.
  • FIG. 8 (b) A modified embodiment of the measuring device 200 is shown in FIG.
  • elements having the same function as in FIG. 8 (a) are assigned the same reference numerals, and the description thereof is omitted.
  • a constant potential unit 312 formed on the sensitive film 103 is disposed between the measuring units 1.
  • the opening area of the sensing unit 10 in each measurement unit 1 becomes wider than that in the configuration of FIG. 8A.
  • the measuring device 300 is formed in the same procedure as the measuring device 200.
  • FIG. 8C A modified embodiment of the measuring apparatus 300 is shown in FIG.
  • a constant potential portion 412 is disposed between the measuring units 1 on the surface of the array 101 without any sensitive film.
  • an insulating film SiO2 is interposed between the two.
  • the constant potential portion 412 is formed at the same timing as other electrodes (gate electrode etc.) in the semiconductor process of the array.
  • the shape of the constant potential portion can be arbitrarily selected as long as the sensitive film in contact with the sensing portion of each measurement unit has an equal potential over the entire area.
  • openings pores
  • the shape of the opening is not limited to a rectangle, and can be, for example, a circle.
  • the conductivity of the sensitive film is relatively high, it is possible to use one in which metal wires are arranged in parallel, one in which the metal wires are arranged at equal intervals, one in which the metal wires are arranged in an offset comb shape.
  • a constant potential part does not prevent that a measurement object contacts the sensitive film which coats the sensing part of a measurement unit.
  • the object to be measured can contact the sensitive film covering the sensing part of the measurement unit, if the object to be measured is a gas, it has no opening by selecting a material that can permeate it, ie It is also possible to adopt a constant potential part in a bulk state.
  • the material of the sensitive film can be arbitrarily selected according to the object of measurement.
  • a piezo material, a pyroelectric material, or a magnetic semiconductor material having a magnetoresistive effect can be applied to the sensitive film.
  • a conductive polymer such as polyaniline

Abstract

In the present invention, the components of a gas are suitably measured using a chemical/physical measuring instrument comprising a measurement unit array for chemical/physical phenomena that includes: a sensing unit that varies the potential well depth in accordance with the surface potential; a sensitivity film that covers the sensing unit; and a detection region that outputs electrical signals in accordance with the potential well depth of the sensing unit. A fixed potential section is disposed in proximity of the measurement unit array. This fixed potential section is, in a plan view, disposed in accordance with the arrangement rule of the measurement unit array, and the reference point of the array and the reference point of the fixed potential section coincide.

Description

化学・物理現象の測定装置及びその製造方法Apparatus for measuring chemical and physical phenomena and method of manufacturing the same
 本発明は化学・物理現象の測定装置の改良に関する。 The present invention relates to the improvement of a measuring apparatus for chemical and physical phenomena.
 化学・物理現象の測定装置として、フローティングディフュージョンを利用したいわゆる澤田ユニットが知られている。
 この澤田ユニット1は次のような基本構造を有する。
 例えば図1に示すように、センシング部10、電荷供給部20、電荷移動・蓄積部30、電荷量検出部40及び電荷除去部50がシリコン基板の表面に形成される。センシング部10には検出対象に応じて電位を変化させる感応膜12と標準電極13が設けられる。感応膜12の電位変化に応じセンシング部10(p拡散領域72)の電位井戸15の深さが変化する。
A so-called Sawada unit using floating diffusion is known as a measuring device of chemical and physical phenomena.
The Sawada unit 1 has the following basic structure.
For example, as shown in FIG. 1, a sensing unit 10, a charge supply unit 20, a charge transfer / storage unit 30, a charge amount detection unit 40 and a charge removal unit 50 are formed on the surface of a silicon substrate. The sensing unit 10 is provided with a sensing film 12 and a standard electrode 13 that change the potential according to the detection target. The depth of the potential well 15 of the sensing unit 10 (p diffusion region 72) changes according to the potential change of the sensitive film 12.
 電荷供給部20はインジェクションダイオード部(この明細書で「ID部」と略することがある)21、インプットコントロールゲート部(この明細書で「ICG部」と略することがある)23を備える。ID部21を電荷でチャージし、かつICG部23の電位を制御することでID部21の電荷をセンシング部10の電位井戸15へ供給する。
 電荷移動・蓄積部30はトランスファーゲート部(この明細書で「TG部」と略することがある)31、フローティングディフュージョン部(この明細書で「FD部」と略することがある)33を備える。TG部31の電圧を変化させることでシリコン基板71において対向する領域のポテンシャルを変化させ、もって、センシング部10の電位井戸15に充填された電荷をFD部33へ移送し、そこに蓄積する。
The charge supply unit 20 includes an injection diode unit (sometimes abbreviated as "ID unit" in this specification) 21 and an input control gate unit (sometimes abbreviated as "ICG unit" in this specification) 23. The charge of the ID unit 21 is supplied to the potential well 15 of the sensing unit 10 by charging the ID unit 21 with a charge and controlling the potential of the ICG unit 23.
The charge transfer / accumulation unit 30 includes a transfer gate unit (sometimes abbreviated as "TG unit" in this specification) 31 and a floating diffusion unit (sometimes abbreviated as "FD unit" in this specification) 33. . By changing the voltage of the TG portion 31, the potential of the opposing region in the silicon substrate 71 is changed, whereby the charge filled in the potential well 15 of the sensing portion 10 is transferred to the FD portion 33 and accumulated there.
 FD部33に蓄積された電荷は電荷量検出部40で検出される。かかる電荷量検出部40としてソースフォロア型の信号増幅器を用いることができる。
 電荷除去部50はリセットゲート部(この明細書で、「RG部」と略することがある)51、リセットドレイン部(この明細書で、「RD部」と略することがある)53を備える。RG部51の電圧を変化させることでシリコン基板71において対向する領域のポテンシャルを変化させ、もって、FD部33に蓄積された電荷をRD部53へ移送し、そこから排出する。
The charge accumulated in the FD unit 33 is detected by the charge amount detection unit 40. A source follower type signal amplifier can be used as the charge amount detection unit 40.
The charge removal unit 50 includes a reset gate unit (sometimes abbreviated as "RG unit" in this specification) 51 and a reset drain unit (sometimes abbreviated as "RD unit" in this specification) 53. . By changing the voltage of the RG unit 51, the potential of the opposing region of the silicon substrate 71 is changed, and the charge accumulated in the FD unit 33 is transferred to the RD unit 53 and discharged therefrom.
 この検出装置の詳細構造及びその動作を、水素イオン濃度を検出対象とするpHセンサを例に採り説明する。以下の説明では電荷として電子を採用し、この電子の移送に適するように基板71の対象部分を適宜ドープしている。 The detailed structure of the detection device and the operation thereof will be described by taking a pH sensor for detecting a hydrogen ion concentration as an example. In the following description, an electron is employed as the charge, and the target portion of the substrate 71 is appropriately doped so as to be suitable for the transfer of the electron.
 pHセンサとしての検出装置1はn型のシリコン基板71を備え、そのセンシング部10に対応する部分はp型拡散層72とされる。p型拡散層72の表面はn型にドープされる(n領域73)。
 シリコン基板71においてID部21、FD部33及びRD部53にはn+領域74、75及び77が形成される。
 シリコン基板71の表面には酸化シリコンからなる保護膜81が形成され、その上にICG部23の電極、TG部31の電極及びRG部51の電極が積層される。各電極へ電圧が印加されるとそれに対向する部分のシリコン基板71のポテンシャルが変化する。
 センシング部10においては保護膜81の上に窒化シリコン製の感応膜12が積層される。
The detection device 1 as a pH sensor includes an n-type silicon substrate 71, and a portion corresponding to the sensing unit 10 is a p-type diffusion layer 72. The surface of the p-type diffusion layer 72 is n-type doped (n region 73).
In the silicon substrate 71, n + regions 74, 75 and 77 are formed in the ID portion 21, the FD portion 33 and the RD portion 53, respectively.
A protective film 81 made of silicon oxide is formed on the surface of the silicon substrate 71, and the electrode of the ICG portion 23, the electrode of the TG portion 31, and the electrode of the RG portion 51 are stacked thereon. When a voltage is applied to each electrode, the potential of the silicon substrate 71 in the portion opposite to it changes.
In the sensing unit 10, the sensitive film 12 made of silicon nitride is stacked on the protective film 81.
 このように構成された澤田ユニット1の基本動作を以下に説明する(図2参照)。
 検出対象である水溶液にセンシング部10を接触させると、水溶液の水素イオン濃度に応じてセンシング部10のポテンシャル井戸15の深さが変化する(ステップ(A))。即ち、水素イオン濃度が大きくなればポテンシャル井戸15が深くなる(底のポテンシャルが高くなる)。
 一方、ID部21の電位を下げてここへ電荷をチャージする(ステップ(B)参照)。このとき、ID部21へチャージされた電荷はICG部23を超えてセンシング部10のポテンシャル井戸15を充填する。なお、TG部31のポテンシャルはICG部23より低く、ポテンシャル井戸15へ充填される電荷がTG部31を乗り越えてFD部33へ達することはない。
The basic operation of the Sawada unit 1 configured in this way will be described below (see FIG. 2).
When the sensing unit 10 is brought into contact with the aqueous solution to be detected, the depth of the potential well 15 of the sensing unit 10 changes according to the hydrogen ion concentration of the aqueous solution (step (A)). That is, as the hydrogen ion concentration increases, the potential well 15 becomes deeper (the bottom potential increases).
On the other hand, the potential of the ID unit 21 is lowered to charge the charge here (see step (B)). At this time, the charge stored in the ID unit 21 exceeds the ICG unit 23 and fills the potential well 15 of the sensing unit 10. The potential of the TG portion 31 is lower than that of the ICG portion 23, and the charge filled in the potential well 15 does not reach the FD portion 33 over the TG portion 31.
 次に、ID部21の電位を上げてID部21から電荷を引き抜くことで、ICG部23ですりきられた電荷がポテンシャル井戸15に残される(ステップ(C)参照)。ここに、ポテンシャル井戸15に残された電荷量は、ポテンシャル井戸15の深さ、即ち検出対象の水素イオン濃度に対応している。
 次に、TG部31の電位を上げて、ポテンシャル井戸15に残された電荷をFD部33へ移送する(ステップ(D)参照)。このようにしてFD部33に蓄積された電荷量を電荷量検出部40で検出する(ステップ(E)参照)。その後、RG部51の電位を上げてFD部33の電荷をRD部53へ排出する(ステップ(F)参照)。このRD部53はVDDに接続され、負にチャージされた電荷を吸い上げる。
Next, by raising the potential of the ID section 21 and extracting the charge from the ID section 21, the charge that has been cut off by the ICG section 23 is left in the potential well 15 (see step (C)). Here, the amount of charge left in the potential well 15 corresponds to the depth of the potential well 15, that is, the hydrogen ion concentration to be detected.
Next, the potential of the TG unit 31 is raised to transfer the charge left in the potential well 15 to the FD unit 33 (see step (D)). Thus, the charge amount accumulated in the FD unit 33 is detected by the charge amount detection unit 40 (see step (E)). Thereafter, the potential of the RG unit 51 is raised to discharge the charge of the FD unit 33 to the RD unit 53 (see step (F)). The RD unit 53 is connected to the VDD and absorbs the negatively charged charge.
特許第6083753号公報Patent No. 6083753 特開2008-145128号公報JP 2008-145128 A 特開2006-084417号公報JP, 2006-084417, A 特開平05-332989号公報Japanese Patent Application Laid-Open No. 05-332989 特開2016-066745号公報JP, 2016-066745, A 特開平11-295255号公報Japanese Patent Application Laid-Open No. 11-295255
 図1及び図2で説明した澤田ユニットは、水素イオン濃度を測定するものであるので、測定対象は導電性の液体である。従って、複数の澤田ユニットを二次元的に配列したアレイにおいても、標準電極はアレイの一部に配置され、当該液体に接触されればよい。導電性の液体である測定対象に標準電極が接触すれば、当該測定対象は全域においてその電位が一定となるからである。
 図1の構成において感応膜を選択することにより、任意の化学成分の濃度を測定できる。例えば、シリコン窒化膜からなる感応膜上にポリアニリン感応膜を形成すると、エタノールやアンモニアの濃度に応じてポリアニリン感応膜の電位が変化する。
The Sawada unit described in FIGS. 1 and 2 measures the hydrogen ion concentration, so the object to be measured is a conductive liquid. Therefore, even in an array in which a plurality of Sawada units are two-dimensionally arranged, the standard electrode may be disposed in a part of the array and may be contacted with the liquid. This is because when the standard electrode comes in contact with the measurement target which is a conductive liquid, the potential of the measurement target becomes constant over the entire area.
By selecting the sensitive film in the configuration of FIG. 1, the concentration of any chemical component can be measured. For example, when a polyaniline sensitive film is formed on a sensitive film made of a silicon nitride film, the potential of the polyaniline sensitive film changes according to the concentration of ethanol or ammonia.
 このような澤田ユニットのアレイを気体の測定に適応したとき、次の課題があった。
 標準電極がアレイに対して1つしか配置されていないので、各アレイのセンシング部を被覆する感応膜に接触する測定対象(気体)の電位が一定であるという保証が得られない。即ち、測定対象である気体は実質的に絶縁性であるし、感応膜の構成材料(ポリアニリン)が導電性高分子材料といえども、その導電率は限定されているので、その一部に標準電極が接触していても、アレイの全体において各澤田ユニットのセンシング部に接触する感応膜の電位を揃えられない。
When such an array of Sawada units is applied to the measurement of gas, there are the following problems.
Since only one standard electrode is arranged with respect to the array, there is no guarantee that the potential of the measurement object (gas) in contact with the sensitive film covering the sensing part of each array is constant. That is, the gas to be measured is substantially insulating, and even if the constituent material (polyaniline) of the sensitive film is a conductive polymer material, its conductivity is limited. Even if the electrodes are in contact, the potentials of the sensitive films contacting the sensing units of the respective Sawada units can not be aligned throughout the array.
 本発明者らは、澤田ユニットのアレイからなる化学・物理測定装置を用い、気体のガス成分を好適に測定すべく鋭意検討を重ねてきたところ、下記の構成の本願発明に想到した。
 即ち、この発明の第1の局面は次のように規定される。
 表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
 該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
 を備える化学・物理現象の測定装置。
The inventors of the present invention have made intensive studies to suitably measure the gas component of a gas using a chemical / physical measurement apparatus comprising an array of Sawada units, and have conceived the present invention having the following constitution.
That is, the first aspect of the present invention is defined as follows.
A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
Measurement equipment for chemical and physical phenomena equipped with
 このように規定されるこの発明の第1の局面の測定装置によれば、測定ユニットのアレイの配列規則に沿って、アレイに近接して定電位部が配置され、かつこの定電位部の基準点とアレイの基準点とが一致している。ここに、定電位部はアレイを被覆する感応膜を介してその上に配置されてもよいし、またアレイと同一平面上に、即ちポリアニリン膜の下に、配置されてもよい。定電位部がアレイの配列規則に沿うとは、アレイの二次元的な配列方向及びそのピッチトと定電位部の二次元的な形状及びそのピッチとの間に所定の関係があることを意味する。また、定電位部の基準点とアレイの基準点とを一致させるとは、何らかの意図をもって両者の位置関係が規定されることを意味する。 According to the measuring apparatus of the first aspect of the present invention thus defined, the constant potential portion is disposed in proximity to the array along the arrangement rule of the array of measuring units, and the reference of this constant potential portion The point and the reference point of the array coincide. Here, the constant potential portion may be disposed on top of the sensitive membrane covering the array, or may be disposed on the same plane as the array, ie below the polyaniline membrane. The constant potential portion following the arrangement rule of the array means that there is a predetermined relationship between the two-dimensional arrangement direction of the array and its pitch and the two-dimensional shape of the constant potential portion and its pitch. . Further, matching the reference point of the constant potential portion with the reference point of the array means that the positional relationship between the two is defined with some intention.
 以上より、測定ユニットのセンシング部と定電位部との位置関係を正確に制御できる。これにより、各測定ユニットのセンシング部に接触する感応膜の電位の制御が容易になる。
 化学・物理現象の変化を感応した感応膜ではキャリア密度の変化が生じ、その結果、材料特性(導電率等)が一定の割合で変化すると考えられる。従って、化学・物理現象を感応する前の、即ち、デフォルト状態の感応膜がその全域で標準電位に維持されておれば、これが化学・物理現象に感応したとき(例えば、ポリアニリン製の感応膜をエタノールガスへ接触させたとき)、アレイの全測定ユニットの出力は当該化学・物理現象に応じた値を示す。
 かかる前提のもと、センシング部に接触する感応膜の電位を制御してこれらを揃わせることができれば、測定すべき化学・物理現象に対して各測定ユニットの出力を正確に反映させられる。
 なお、測定装置に要求される感度に応じて、各測定ユニットのセンシング部に接触する感応膜の電位にもバラツキが許容されるところ、当該各センシング部から定電位部までの距離の誤差を所定範囲に収めれば、測定装置に要求される感度の見地からは、各センシング部に接触する感応膜の電位はこれを実質的に一定に揃えられたといえる。
As described above, the positional relationship between the sensing unit and the constant potential unit of the measurement unit can be accurately controlled. This facilitates control of the potential of the sensing film in contact with the sensing unit of each measurement unit.
In the case of a sensitive film sensitive to changes in chemical and physical phenomena, a change in carrier density occurs, and as a result, it is considered that material characteristics (such as conductivity) change at a constant rate. Therefore, if the sensitive film in the default state is kept at the standard potential before the chemical / physical phenomenon is sensed, that is, when it is sensitive to the chemical / physical phenomenon (for example, the sensitive film made of polyaniline) When contacting with ethanol gas, the outputs of all measurement units of the array show values according to the chemical and physical phenomena.
Under such an assumption, if the potentials of the sensitive film in contact with the sensing unit can be controlled to align them, the output of each measurement unit can be accurately reflected on the chemical and physical phenomena to be measured.
In addition, according to the sensitivity required of the measuring apparatus, the variation in the potential of the sensitive film in contact with the sensing unit of each measuring unit is also allowed, and the error of the distance from each sensing unit to the constant potential unit is specified. From the viewpoint of the sensitivity required of the measuring device, it can be said that the potentials of the sensing films contacting the respective sensing parts were substantially constant.
 ここに、測定ユニットは、一般的に平面視において、碁盤の目状に、即ち、XY方向へ同じピッチで配置される。この場合、定電位部も当該XY方向に沿って配置されることとなる。更に、定電位部の基準点と測定ユニットのアレイの基準点とを平面視において一致させる。ここに、基準点とは、二次元的(X,Y)に広がる要素において、(0,0)の位置を指す。これにより、測定ユニットと定電位部とが正確に位置合わせされ、もって、各測定ユニットのセンシング部の電位が一定に揃えられる。 Here, the measurement units are generally arranged in a grid pattern in plan view, that is, at the same pitch in the XY direction. In this case, the constant potential portion is also arranged along the XY direction. Furthermore, the reference point of the constant potential portion and the reference point of the array of measurement units are made to coincide in plan view. Here, the reference point refers to the position of (0, 0) in the element extending in two dimensions (X, Y). As a result, the measurement unit and the constant potential unit are accurately aligned, and the potential of the sensing unit of each measurement unit is uniformly aligned.
 上記において、測定装置に要求される感度が高くかつ感応膜の導電率が小さい場合は、定電位部を測定ユニットのセンシング部にできるだけ近づけて、好ましくはその直上に位置させる。測定ユニットが碁盤の目状に配置されておれば、定電位部は同じピッチのメッシュ構造となる。即ち、アレイを構成する複数の測定ユニットに対してメッシュ構造という連続した1つの要素(部材)を提供すればよい。よって、集積回路への配線の負担が殆ど生じない。センシング部の開口面積を確保する見地から、このメッシュは各センシング部の1つ1つを、又はまとめて複数を囲繞する形にしてもよい。
 また、測定装置に要求される感度が比較的低い場合には、定電位部を平行に並べたものとすることができる。
In the above, when the sensitivity required of the measuring apparatus is high and the conductivity of the sensitive film is small, the constant potential part is positioned as close as possible to the sensing part of the measuring unit, preferably immediately above. If the measurement units are arranged in a grid pattern, the constant potential portion has a mesh structure with the same pitch. That is, one continuous element (member) of mesh structure may be provided to a plurality of measurement units constituting the array. Therefore, the burden of wiring to the integrated circuit hardly occurs. From the viewpoint of securing the opening area of the sensing unit, this mesh may surround each of the sensing units one by one or collectively.
In addition, when the sensitivity required for the measurement device is relatively low, the constant potential portions can be arranged in parallel.
 第1の局面に規定の測定装置によれば、アレイを構成する各測定ユニットのセンシング部に対する位置が安定する。これにより、当該センシング部に接触する感応膜の電位が揃えられ、この電位を基準にして、測定対象の化学・物理現象量に応じて測定ユニットのセンシング部の電位井戸の深さが変化する。この電位井戸の深さに応じた電気信号が検出領域から出力される。
 なお、測定対象が絶縁性の液体や固体の場合においても、第1の局面の測定装置を採用することにより、測定ユニットからの電気信号は、当該測定対象の化学量や物理量に対応したものとなる。
 定電位部は測定ユニットのアレイの配列規則に沿って配置されるので、これを1つの連続した要素(部材)とすることができる。これにより、各測定ユニットのセンシング部のそれぞれに独立した標準電極を配置する構造と比べて、配線の負荷が小さくて済む。
According to the measurement apparatus defined in the first aspect, the position of each measurement unit constituting the array with respect to the sensing unit is stabilized. As a result, the potential of the sensing film in contact with the sensing unit is equalized, and the depth of the potential well of the sensing unit of the measurement unit changes according to the amount of chemical and physical phenomenon to be measured based on this potential. An electrical signal corresponding to the depth of the potential well is output from the detection region.
Even when the object to be measured is an insulating liquid or solid, the electric signal from the measuring unit corresponds to the chemical amount or physical amount of the object to be measured by adopting the measuring device of the first aspect. Become.
Since the constant potential parts are arranged along the arrangement rule of the array of measurement units, they can be one continuous element (member). As a result, the load on the wiring can be reduced compared to the structure in which independent standard electrodes are disposed in each of the sensing units of each measurement unit.
 この発明の第2の局面は次のように規定される。即ち、第1の局面に規定の測定装置において、前記測定ユニットのアレイの上に前記定電位部が配置される。
 このように規定される第2の局面の測定装置によれば、測定ユニットのセンシング部と定電位部との距離を可及的に近づけることができる。これにより、センシング部に接触する感応膜の電位がより安定する。
 測定ユニットのセンシング部と定電位部との距離を最も近づけるには、センシング部の直上に定電位部が位置するようにする。これにより、センシング部に接触する感応膜の電位が最も安定する。
 センシング部の開口面積をより大きく確保するには、アレイの上であって、隣り合う測定ユニットの間に定電位部を配置する。これにより感度が向上する。
The second aspect of the present invention is defined as follows. That is, in the measurement apparatus defined in the first aspect, the constant potential portion is disposed on the array of the measurement units.
According to the measuring apparatus of the second aspect defined as described above, the distance between the sensing unit of the measuring unit and the constant potential unit can be made as close as possible. As a result, the potential of the sensing film in contact with the sensing unit becomes more stable.
In order to make the distance between the sensing unit and the constant potential unit of the measurement unit closest to each other, the constant potential unit is positioned immediately above the sensing unit. Thereby, the potential of the sensing film in contact with the sensing unit is most stabilized.
In order to secure a larger opening area of the sensing unit, a constant potential unit is disposed between the adjacent measurement units above the array. This improves the sensitivity.
 この発明の第3の局面は次のように規定される。即ち、第1又は第2の局面の測定装置において、前記定電位部は金属配線からなる。
 このように規定される第3の局面の測定装置によれば、金属配線を用いることで装置構成が簡素化され、これを安価に提供可能となる。
The third aspect of the present invention is defined as follows. That is, in the measuring device of the first or second aspect, the constant potential portion is made of metal wiring.
According to the measuring apparatus of the third aspect defined in this manner, the apparatus configuration can be simplified by using the metal wiring, and this can be provided at low cost.
 この発明の第4の局面は次のように規定される。即ち、第1又は2の局面に規定の測定装置において、前記定電位部で被覆されていない測定ユニットからの第1の電気信号と前記定電位部で被覆された測定ユニットからの第2の電気信号とを比較する比較部と、
 該比較部の比較結果を出力する出力部とを更に備える。
 このように規定される第4の局面の測定装置において、定電位部で被覆されている測定ユニットから出力される第1の電気信号は定電位部の電位に支配される。他方、定電位部で被覆されていない測定ユニットから出力される第2の電気信号は観察対象である気体に含まれるガス成分に応じて変化する。よって、第1の電気信号と第2の電気信号とを比較することにより、ガス成分の濃度変化、特に経時的な変化が観察できる。
The fourth aspect of the present invention is defined as follows. That is, in the measurement apparatus defined in the first or second aspect, the first electric signal from the measurement unit not covered by the constant potential part and the second electric signal from the measurement unit covered by the constant potential part A comparison unit that compares the signal with
And an output unit that outputs the comparison result of the comparison unit.
In the measuring device of the fourth aspect defined as described above, the first electric signal output from the measuring unit covered by the constant potential part is dominated by the potential of the constant potential part. On the other hand, the second electric signal output from the measurement unit not covered with the constant potential portion changes in accordance with the gas component contained in the gas to be observed. Therefore, by comparing the first electrical signal and the second electrical signal, the concentration change of the gas component, in particular, the temporal change can be observed.
 この発明の第5の局面は次のように規定される。
 表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
 該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
 を備える化学・物理現象の測定装置の製造方法であって、
 前記測定ユニットのアレイを半導体集積回路の製造プロセスを用いて製造するアレイ製造ステップと、
 前記測定ユニットのアレイの前記感応膜の上に前記定電位部を形成するステップと、を含む測定装置の製造方法。
The fifth aspect of the present invention is defined as follows.
A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit;
Forming the constant potential portion on the sensitive film of the array of measurement units.
 このように規定される第5局面の測定装置の製造方法によれば、測定ユニットのアレイの製造のみならず、アレイの上に形成される定電位部の製造も半導体集積回路の製造プロセスをそのまま適用可能となる。
 このように規定される第5の局面の製造方法によれば、装置全体を大量にかつ安価に製造できる。
 測定ユニットのアレイの製造に引き続き、同じプロセス装置を使って定電位部を形成できる。これにより、アレイの配列規則に沿って定電位部を配置すること、及びアレイの基準点と定電位部の基準点とを一致させることが容易かつ正確に行える。
According to the manufacturing method of the measuring device of the fifth aspect defined as above, not only the manufacturing of the array of measuring units but also the manufacturing of the constant potential portion formed on the array is the same as the manufacturing process of the semiconductor integrated circuit. It becomes applicable.
According to the manufacturing method of the fifth aspect defined as described above, the entire apparatus can be manufactured in large quantities at low cost.
Following the fabrication of the array of measurement units, the same process equipment can be used to form the potentiostat. As a result, it is possible to easily and accurately place the constant potential part along the arrangement rule of the array and to match the reference point of the array with the reference point of the constant potential part.
 この発明の第6の局面は次のように規定される。
 表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
 該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
 を備える化学・物理現象の測定装置の製造方法であって、
 前記測定ユニットのアレイを半導体集積回路の製造プロセスを用いて製造するアレイ製造ステップと、
 前記測定ユニットのアレイおよび前記定電位部上に感応膜を形成するステップと、を含む測定装置の製造方法。
 このように規定される第6の局面に規定の製造方法によれば、定電位部が、アレイと同時に、半導体集積回路の製造プロセスにおいて形成される。よって、製造プロセスが簡易化され、より安価な装置の提供が可能となる。
The sixth aspect of the present invention is defined as follows.
A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit;
Forming an array of the measurement units and forming a sensitive film on the constant potential portion.
According to the manufacturing method defined in the sixth aspect thus defined, the constant potential portion is formed simultaneously with the array in the manufacturing process of the semiconductor integrated circuit. Therefore, the manufacturing process is simplified, and a cheaper apparatus can be provided.
 この発明の第7の局面は次のように規定される。
 即ち、表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
 該測定ユニットのアレイに近接して配置される金属配線からなる定電位部と、
 を備える化学・物理現象の測定装置の製造方法であって、
 前記測定ユニットのアレイの表面に前記金属配線からなる定電位部を載置する定電位部載置ステップと、
 前記定電位部を載置した前記測定ユニットのアレイの表面に前記感応膜を構成する高分子材料を流動状態で供給して該アレイの表面を被覆するとともに、該高分子材料上に前記定電位部を形成する感応膜材料供給ステップと、
 前記高分子材料を硬化する硬化ステップと、を含む測定装置の製造方法。
 このように規定される第7の局面の測定装置によれば、装置の製造を簡単な作業で行える。よって、簡易かつ安価に測定装置を提供可能となる。
The seventh aspect of the present invention is defined as follows.
That is, a sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measurement units for chemical and physical phenomena comprising
A constant potential portion made of metal wiring disposed in proximity to the array of measurement units;
A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
A constant potential portion mounting step of mounting the constant potential portion made of the metal wiring on the surface of the array of the measurement units;
The polymer material constituting the sensitive film is supplied in a fluid state to the surface of the array of the measurement unit on which the constant potential portion is mounted to cover the surface of the array, and the constant potential is applied onto the polymer material. A sensitive membrane material supply step of forming a portion;
And a curing step of curing the polymeric material.
According to the measuring apparatus of the seventh aspect defined as described above, the apparatus can be manufactured by a simple operation. Therefore, the measuring device can be provided simply and inexpensively.
図1は化学・物理現象の測定ユニットの基本単位の構成を示す模式図である。FIG. 1 is a schematic view showing the configuration of a basic unit of a measurement unit of chemical and physical phenomena. 図2は図1の測定ユニットの動作を示す図である。FIG. 2 is a view showing the operation of the measurement unit of FIG. 図3はこの発明の試行例の測定装置の平面図である。FIG. 3 is a plan view of a measuring device of a trial example of the present invention. 図4は図3に示す試行例の測定装置の出力結果を示す。FIG. 4 shows an output result of the measuring apparatus of the trial example shown in FIG. 図5はこの発明の実施の形態の測定装置の要部を示す。FIG. 5 shows the main part of the measuring device of the embodiment of the present invention. 図6は図5に示す実施の形態の測定装置の出力結果を示す。FIG. 6 shows an output result of the measuring apparatus of the embodiment shown in FIG. 図7は図5に示す実施の形態の測定装置の出力結果の経時変化を示す。FIG. 7 shows the change over time of the output result of the measuring apparatus of the embodiment shown in FIG. 図8(a)は他の実施形態の測定装置200の構成を示す断面図であり、図8(b)は測定装置200の変形態様の測定装置300を示す断面図であり、図8(c)は測定装置300の変形態様の測定装置400を示す。8 (a) is a cross-sectional view showing the configuration of a measuring apparatus 200 according to another embodiment, and FIG. 8 (b) is a cross-sectional view showing a measuring apparatus 300 according to a modification of the measuring apparatus 200. Shows a measuring device 400 of a variant of the measuring device 300.
 以下、この発明の実施の形態を、図面を参照しながら、説明する。
 図3は試行例の測定装置100の構造を示す。図3において符号101は図1に示した澤田ユニット(測定ユニット)のアレイであって、例えば7.3mm×7.3mmの正方形面を備えてそこに約16000個の澤田ユニットが集積されている。シリコン窒化膜からなる感応膜上に更に感応膜としてポリアニリン膜103(約15μl)がアレイ101の全域を被覆している。ポリアニリンなどの導電性高分子は測定対象に含まれる酸又はアルカリによりそのキャリア密度が変化し、その結果、導電率、誘電率及び遮蔽距離が変化すると考えられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 3 shows the structure of the measuring device 100 of the trial example. In FIG. 3, reference numeral 101 denotes an array of Sawada units (measuring units) shown in FIG. 1, for example, having a square face of 7.3 mm × 7.3 mm, and about 16000 Sawada units are accumulated therein . A polyaniline film 103 (about 15 μl) covers the entire area of the array 101 as a sensitive film on the sensitive film made of a silicon nitride film. It is considered that the carrier density of the conductive polymer such as polyaniline changes depending on the acid or alkali contained in the measurement object, and as a result, the conductivity, the dielectric constant and the shielding distance change.
 図3において符号105は金ペーストからなる電極であり、ポリアニリン膜103において、アレイ101から外れた位置に塗布されて、ここへ定電位(標準電位)が印加される。
 エタノール(濃度100ppm)を含む空気(以下、エタノールガス)へかかる測定装置100を曝したとき、9分後に得られた画像を図4に示す。電極105に印加する電圧は1.094Vである。図4に示される画像の各画素は、アレイ101を構成する各澤田ユニットに対応し、画素の値は対応する澤田ユニットから出力される電気信号から特定される。
In FIG. 3, reference numeral 105 denotes an electrode made of gold paste, which is applied to a position away from the array 101 in the polyaniline film 103, to which a constant potential (standard potential) is applied.
When the measuring apparatus 100 is exposed to air (hereinafter, ethanol gas) containing ethanol (concentration 100 ppm), an image obtained after 9 minutes is shown in FIG. The voltage applied to the electrode 105 is 1.094V. Each pixel of the image shown in FIG. 4 corresponds to each Sawada unit constituting the array 101, and the value of the pixel is specified from the electric signal output from the corresponding Sawada unit.
 図4から、アレイ101の各澤田ユニットの出力にバラツキがあることがわかる。具体的には、電極105からの距離が遠くなるにつれ、電位が低下している。これは、基準電位がばらつくので高精度な測定が阻害されるためと考えられる。 It can be seen from FIG. 4 that the output of each Sawada unit of the array 101 has variations. Specifically, the potential decreases as the distance from the electrode 105 increases. This is considered to be due to the fact that the reference potential varies and high precision measurement is inhibited.
 そこで、本発明者らは、金ペースト5に代えて、図5に示すメッシュ電極110を採用した。このメッシュ電極110はポリアニリン膜103の全領域を被覆して、アレイ101から外れた位置で定電圧源(1.473V)に接続される。
 メッシュ電極110は正方形のポア(100μm×100μm)を有する高分子製のメッシュフィルタ(MILLIPORE, NY1H4700)の両面に金を堆積したものである。
 図5の拡大図で示されるように、メッシュ電極110の金属配線112が、感応膜(ポリアニリン膜103)を介して、アレイ101を構成する一部の澤田ユニットの直上に配置される。ポリアニリン膜103において金属配線112で被覆された部分はエタノールガスとは反応し難い。また、ポリアニリン膜103は薄いので、金属配線112に対向する澤田ユニットの出力は、金属配線112の電圧に支配される。
Therefore, the present inventors adopted the mesh electrode 110 shown in FIG. 5 in place of the gold paste 5. The mesh electrode 110 covers the entire area of the polyaniline film 103 and is connected to a constant voltage source (1.473 V) at a position away from the array 101.
The mesh electrode 110 is formed by depositing gold on both sides of a polymer mesh filter (MILLIPORE, NY1H4700) having square pores (100 μm × 100 μm).
As shown in the enlarged view of FIG. 5, the metal wire 112 of the mesh electrode 110 is disposed directly above some of the Sawada units constituting the array 101 via the sensitive film (polyaniline film 103). The portion of the polyaniline film 103 covered with the metal wiring 112 is difficult to react with ethanol gas. Further, since the polyaniline film 103 is thin, the output of the Sawada unit facing the metal wire 112 is controlled by the voltage of the metal wire 112.
 図5の例では、ポリアニリン膜103の上にメッシュ電極110が、特に位置合わせすることなく、積層されている。この場合、アレイ上にメッシュ電極110を載置し、その後、硬化前のポリアニリンをアレイ上に供給した。このとき、硬化前のポリアニリンの粘度や比重を調整することで、ポリアニリンに絡まれた状態でメッシュ電極を浮き上がらせることができた。暫く静置してポリアニリン層を均一厚さにした後、ポリアニリンを硬化する。これにより、メッシュ電極110はアレイに対して平行にかつ機械的に安定して取り付けられる。
 勿論、メッシュ電極103の取り付け方は上記に限定されるわけではない。ポリアニリン膜103を形成した後、メッシュ電極110を積層することができる。
In the example of FIG. 5, the mesh electrode 110 is laminated on the polyaniline film 103 without being particularly aligned. In this case, mesh electrode 110 was placed on the array, and then polyaniline before curing was supplied on the array. At this time, by adjusting the viscosity and specific gravity of polyaniline before curing, it was possible to make the mesh electrode float in a state of being entangled with polyaniline. After leaving to stand for a while to make the polyaniline layer uniform in thickness, the polyaniline is cured. Thereby, the mesh electrode 110 is stably attached in parallel and mechanically to the array.
Of course, how to attach the mesh electrode 103 is not limited to the above. After the polyaniline film 103 is formed, the mesh electrode 110 can be stacked.
 メッシュ電極110のポア部分114に対向する澤田ユニットの各センシング部とメッシュ電極の金属配線112との距離とを厳密に制御するには、汎用的な集積回路プロセスのマスク技術を用いてメッシュ電極を成形することが好ましい。 In order to strictly control the distance between each sensing unit of the Sawada unit facing the pore portion 114 of the mesh electrode 110 and the metal wire 112 of the mesh electrode, the mesh electrode is selected using mask technology of a general integrated circuit process. Molding is preferred.
 メッシュ電極110のポア部分114を介してエタノールガスは感応膜(ポリアニリン膜)103のキャリア密度の変化による材料特性の変化を与える。他方、ポア部分114に対向する各澤田ユニットに対して、メッシュ電極110の金属配線112は極めて近い位置に存在し、更に、それぞれの澤田ユニットからみると、これを囲む4つ金属配線112との距離の総和がほぼ等しくなる。よって、各澤田ユニットを被覆する感応膜103のデフォルトでの電位もほぼ等しくなる。 Through the pore portion 114 of the mesh electrode 110, ethanol gas gives rise to a change in material properties due to a change in carrier density of the sensing film (polyaniline film) 103. On the other hand, with respect to each Sawada unit facing pore portion 114, metal wire 112 of mesh electrode 110 exists at a very close position, and further, when viewed from each Sawada unit, four metal wires 112 surrounding it. The sum of the distances is approximately equal. Therefore, the default potentials of the sensing films 103 covering the respective Sawada units are substantially equal.
 かかる測定装置をエタノールガス(濃度:100ppm)へ接触させると、ポア部分114に位置するポリアニリン膜103のキャリア密度が変化し、もって材料特性が変化して、その電位が変わる。図6は5分後に得られた画像である。この画像の各画素は各澤田ユニットの出力に対応している。なお、測定装置をエタノールガスに長時間接触させておくと、ポリアニリン膜103内をエタノールガスに起因する影響因子(電子)が拡散する。よって、メッシュ電極110の金属配線112で被覆された部分と被覆されていない部分(ポア部分)との出力が同じものとなる。 When the measuring apparatus is brought into contact with ethanol gas (concentration: 100 ppm), the carrier density of the polyaniline film 103 located in the pore portion 114 changes, which changes the material properties and changes the potential. FIG. 6 is an image obtained after 5 minutes. Each pixel of this image corresponds to the output of each Sawada unit. When the measuring apparatus is kept in contact with ethanol gas for a long time, an influence factor (electrons) caused by the ethanol gas diffuses in the polyaniline film 103. Therefore, the output of the part covered with the metal wiring 112 of the mesh electrode 110 and the part (pore part) which is not covered becomes the same.
 図7は、図5に示した測定装置の出力の経時変化を示す。ポア部分114を介してエタノールガスがポリアニリン膜と反応し、その結果、ポリアニリン膜のキャリア密度の変化による材料特性が変化し、もってその電位が変化していく様子がわかる。なお、60秒を過ぎると、ポア部分114におけるエタノールガスとポリアニリン膜との反応の影響が金属配線112下まで拡散していくことがわかる。 FIG. 7 shows the change with time of the output of the measuring device shown in FIG. It can be seen that ethanol gas reacts with the polyaniline film through the pore portion 114, and as a result, the material characteristics change due to the change of the carrier density of the polyaniline film, and the potential changes accordingly. Note that, after 60 seconds, it can be seen that the influence of the reaction between ethanol gas and the polyaniline film in the pore portion 114 diffuses under the metal wire 112.
 上記において、澤田ユニットのアレイは汎用的な半導体集積回路のプロセスで製造できる。澤田ユニットのセンシング部に積層される感応膜は、測定対象である化学・物理量に応じて適宜選択される。
 この発明は、測定対象が絶縁性であるか、若しくは導電性を有しても極めて小さい導電率しか持たないときに好適である。特に、測定対象が気体であるときに本発明は好適に利用できる。この場合、感応膜の形成材料として、ガスセンサに用いられるもの、即ちガス成分と反応して導電率に変化をもたらす導電性材料であれば、任意のものを選択できる。既述のポリアニリンやポリイミド等の導電性高分子材料の他、酸化スズや酸化インジウム等の半導体材料を用いることができる。
 感応膜は定電位部に接触させる。
In the above, the array of Sawada units can be manufactured by the process of a general purpose semiconductor integrated circuit. The sensitive film to be stacked on the sensing unit of the Sawada unit is appropriately selected according to the chemical and physical quantities to be measured.
The present invention is suitable when the object to be measured is insulating or conductive but has very small conductivity. In particular, the present invention can be suitably used when the object to be measured is a gas. In this case, any material can be selected as a material for forming the sensitive film, as long as it is used in a gas sensor, that is, a conductive material that reacts with gas components to cause a change in conductivity. In addition to the conductive polymer materials such as polyaniline and polyimide described above, semiconductor materials such as tin oxide and indium oxide can be used.
The sensitive film is in contact with the constant potential portion.
 図8(a)に他の測定装置200を示す。図1と同一の作用を奏する要素には同一の符号を付してその説明を省略する。
 この測定装置200は、測定ユニット1のアレイ101の表面に感応膜103としてポリアニリンの層を積層する。ここまでの構造は図3及び図5のチップ(測定装置)と同じである。
Another measuring apparatus 200 is shown in FIG. Elements having the same effects as those in FIG. 1 are given the same reference numerals, and the description thereof is omitted.
This measuring device 200 laminates a layer of polyaniline as a sensitive film 103 on the surface of the array 101 of the measuring unit 1. The structure so far is the same as the chip (measuring device) of FIGS. 3 and 5.
 この例では、各測定ユニット1のセンシング部10の真上に定電位部212が形成されている。この定電位部212は測定ユニット1のセンシング部10の直上の位置を、紙面垂直方向に横切って、同方向に隣り合う測定ユニット1のセンシング部10を同じく横切る。
 かかる構造の定電位部212には参照電源215より均一の電位が付与される。よって、各測定ユニット1のセンシング部に接触する感応膜の電位が均一に揃えられる。
In this example, the constant potential portion 212 is formed immediately above the sensing unit 10 of each measurement unit 1. The constant potential portion 212 crosses the position immediately above the sensing unit 10 of the measurement unit 1 in the direction perpendicular to the sheet, and similarly crosses the sensing unit 10 of the adjacent measurement units 1 in the same direction.
A uniform potential is applied from the reference power supply 215 to the constant potential portion 212 having such a structure. Therefore, the potentials of the sensitive films in contact with the sensing portions of the respective measurement units 1 are uniformly equalized.
 測定装置200の定電位部212は所謂リフトオフ法を用いて感応膜103の上に形成できる。
 即ち、感応膜103の上にレジストを積層する。次に、積層されたレジストにおいて定電位部212を形成する位置にエッチングその他の周知の方法で、開口を設ける。この開口は連続している。
The constant potential portion 212 of the measuring device 200 can be formed on the sensitive film 103 using a so-called lift-off method.
That is, a resist is laminated on the sensitive film 103. Next, an opening is provided at a position where the constant potential portion 212 is to be formed in the laminated resist by etching or other known method. This opening is continuous.
 次に、導電性材料として金属材料を蒸着する。レジストの開口を介して感応膜の上に金属材料が蒸着され、定電位部212となる。ここに、測定装置に求められる使用環境において安定な材質を選択する必要がある。例えば、金や銅などが挙げられる。
 開口が連続しているので、定電位部212は連続体(一つの要素)となる。従って、そこに参照電源215からの電位が均等に行き渡り、もって、各測定ユニットのセンシング部に接触する感応膜の電位が均等に保たれる。
Next, a metal material is deposited as a conductive material. A metal material is vapor-deposited on the sensitive film through the opening of the resist to form a constant potential portion 212. Here, it is necessary to select a stable material in the use environment required for the measuring device. For example, gold and copper can be mentioned.
Since the openings are continuous, the constant potential portion 212 is a continuum (one element). Therefore, the potential from the reference power supply 215 is evenly spread there, so that the potential of the sensitive film in contact with the sensing portion of each measurement unit is kept uniform.
 上記において、測定ユニット1及び定電位部212の位置合わせは、製造装置の制約上、基板の所定の位置を基準とする。この基板の所定の位置に基づき、測定ユニット1のアレイを作成し、かつ、リフトオフ法を実行して定電位部を形成する。つまり、平面視において、上記基板の所定の位置が測定ユニット1のアレイの基準点となり、かつ定電位部212の基準点となる。 In the above, the alignment of the measurement unit 1 and the constant potential unit 212 is based on the predetermined position of the substrate due to the limitation of the manufacturing apparatus. Based on the predetermined position of the substrate, an array of measurement units 1 is created, and a lift-off method is performed to form a constant potential portion. That is, in plan view, the predetermined position of the substrate is the reference point of the array of the measurement units 1 and the reference point of the constant potential portion 212.
 測定装置200の変形態様を図8(b)に示す。図8(b)に示す測定装置300において、図8(a)と同一の作用をする要素には同一の符号を付してその説明を省略する。
 この測定装置300では感応膜103の上に形成される定電位部312が各測定ユニット1の間に配置されている。このような構成を採用することにより、図8(a)の構成に比べて、各測定ユニット1におけるセンシング部10の開口面積が広くなる。
 この測定装置300は、測定装置200と同様な手順で形成される。
A modified embodiment of the measuring device 200 is shown in FIG. In the measuring apparatus 300 shown in FIG. 8 (b), elements having the same function as in FIG. 8 (a) are assigned the same reference numerals, and the description thereof is omitted.
In the measuring apparatus 300, a constant potential unit 312 formed on the sensitive film 103 is disposed between the measuring units 1. By adopting such a configuration, the opening area of the sensing unit 10 in each measurement unit 1 becomes wider than that in the configuration of FIG. 8A.
The measuring device 300 is formed in the same procedure as the measuring device 200.
 測定装置300の変形態様を図8(c)に示す。図8(c)に示す測定装置400において、図8(b)と同一の作用をする要素には同一の符号を付してその説明を省略する。
 この測定装置400では、アレイ101の表面において各測定ユニット1の間に、何ら感応膜を介することなく、定電位部412が配置されている。定電位部412とアレイ101の絶縁性とを確保するため、両者の間に絶縁膜(SiO2)が介在されている。
 この測定装置400においてその定電位部412は、アレイの半導体プロセスにおいて、他の電極(ゲート電極等)と同じタイミングで形成される。定電位部412を形成する前に、その形成予定位置に、絶縁層(SiO)を積層しておくことが好ましい。
A modified embodiment of the measuring apparatus 300 is shown in FIG. In the measuring apparatus 400 shown in FIG. 8C, the elements having the same functions as those in FIG.
In the measuring apparatus 400, a constant potential portion 412 is disposed between the measuring units 1 on the surface of the array 101 without any sensitive film. In order to secure the insulation between the constant potential portion 412 and the array 101, an insulating film (SiO2) is interposed between the two.
In the measuring apparatus 400, the constant potential portion 412 is formed at the same timing as other electrodes (gate electrode etc.) in the semiconductor process of the array. Before forming the constant potential portion 412, it is preferable to stack an insulating layer (SiO 2 ) at the planned formation position.
 上記において、定電位部の形状は各測定ユニットのセンシング部に接触する感応膜をその全域において均等な電位となるようにすれば、任意に選択できる。
 例えば、既述のメッシュ電極110のように開口部(ポア)を規則的に配置したものが挙げられる。ここに、開口部の形状は矩形に限らず、例えば円形にできる。また、感応膜の導電性が比較的高い場合は、金属配線を平行に並べたもの、等間隔に並べたもの、オフセットの櫛状に並べたもの等、を採用できる。
In the above, the shape of the constant potential portion can be arbitrarily selected as long as the sensitive film in contact with the sensing portion of each measurement unit has an equal potential over the entire area.
For example, one in which openings (pores) are regularly arranged as in the mesh electrode 110 described above can be mentioned. Here, the shape of the opening is not limited to a rectangle, and can be, for example, a circle. In addition, in the case where the conductivity of the sensitive film is relatively high, it is possible to use one in which metal wires are arranged in parallel, one in which the metal wires are arranged at equal intervals, one in which the metal wires are arranged in an offset comb shape.
 なお、測定対象の化学量又は物理量を測定するには、測定対象が測定ユニットのセンシング部を被覆する感応膜に接触することを定電位部が妨げてはならない。換言すれば、測定対象が測定ユニットのセンシング部を被覆する感応膜に接触可能であれば、測定対象が気体の場合はこれを透過可能な材料を選択することにより、開口部を持たない、即ち、バルクの状態の定電位部の採用も可能である。
 感応膜の材料は測定対象に応じて任意に選択できる。例えば、圧力、温度、磁場などの物理現象を測定対象とするときは、ピエゾ材料、焦電材料、磁気抵抗効果を有する磁性半導体材料を感応膜に適用できる。
 ポリアニリン等の導電性高分子の官能基を修飾することで、特定の分子に反応する感応膜を調製することができる。
In addition, in order to measure the chemical quantity or physical quantity of measurement object, a constant potential part does not prevent that a measurement object contacts the sensitive film which coats the sensing part of a measurement unit. In other words, if the object to be measured can contact the sensitive film covering the sensing part of the measurement unit, if the object to be measured is a gas, it has no opening by selecting a material that can permeate it, ie It is also possible to adopt a constant potential part in a bulk state.
The material of the sensitive film can be arbitrarily selected according to the object of measurement. For example, when physical phenomena such as pressure, temperature, and magnetic field are to be measured, a piezo material, a pyroelectric material, or a magnetic semiconductor material having a magnetoresistive effect can be applied to the sensitive film.
By modifying the functional group of a conductive polymer such as polyaniline, it is possible to prepare a sensitive film that reacts with a specific molecule.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求に範囲の記載の趣旨を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments and examples of the above-mentioned invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
1 測定ユニット
100、200、300、400 測定装置
10 センシング部
40 電荷量検出部
101 測定ユニットのアレイ
103 ポリアニリン膜(感応膜)
110 メッシュ電極
112 金属配線
114 ポア部分
212,312,412 定電位部
215 参照電源
1 measuring unit 100, 200, 300, 400 measuring device 10 sensing unit 40 charge amount detecting unit 101 array of measuring units 103 polyaniline film (sensitive film)
DESCRIPTION OF SYMBOLS 110 mesh electrode 112 metal wiring 114 pore part 212, 312, 412 constant potential part 215 reference power supply

Claims (7)

  1.  表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
     該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
     を備える化学・物理現象の測定装置。
    A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
    A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
    Measurement equipment for chemical and physical phenomena equipped with
  2.  前記測定ユニットのアレイの上に前記定電位部が配置される、請求項1に記載の化学・物理現象の測定装置。 The chemical / physical phenomenon measuring apparatus according to claim 1, wherein the constant potential unit is disposed on the array of the measurement units.
  3.  前記定電位部は金属配線からなる、請求項1又は2に記載の化学・物理現象の測定装置The apparatus for measuring a chemical or physical phenomenon according to claim 1, wherein the constant potential portion is made of metal wiring.
  4.  前記定電位部で被覆されていない測定ユニットからの第1の電気信号と前記定電位部で被覆された測定ユニットからの第2の電気信号とを比較する比較部と、
     該比較部の比較結果を出力する出力部とを更に備える、請求項1~3のいずれかに記載の化学・物理現象の測定装置
    A comparison unit that compares a first electrical signal from a measurement unit not covered by the constant potential unit with a second electrical signal from a measurement unit covered by the constant potential unit;
    The apparatus for measuring a chemical or physical phenomenon according to any one of claims 1 to 3, further comprising: an output unit for outputting the comparison result of the comparison unit .
  5.  表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
     該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
     を備える化学・物理現象の測定装置の製造方法であって、
     前記測定ユニットのアレイを半導体集積回路の製造プロセスを用いて製造するアレイ製造ステップと、
     前記測定ユニットのアレイの感応膜の上に前記定電位部を形成するステップと、を含む測定装置の製造方法。
    A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
    A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
    A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
    An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit;
    Forming the constant potential portion on the sensitive film of the array of measurement units.
  6.  表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
     該測定ユニットのアレイに近接して配置される定電位部であって、該定電位部は、平面視において、前記測定ユニットのアレイの配列規則に沿って配置され、かつ前記アレイの基準点と該定電位部の基準点とが一致する定電位部と、
     を備える化学・物理現象の測定装置の製造方法であって、
     前記測定ユニットのアレイを半導体集積回路の製造プロセスを用いて製造するアレイ製造ステップと、
     前記測定ユニットのアレイおよび前記定電位部上に感応膜を形成するステップと、を含む測定装置の製造方法。
    A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
    A constant potential portion disposed in the vicinity of the array of measurement units, the constant potential portion being disposed along the arrangement rule of the array of the measurement units in plan view, and the reference point of the array A constant potential portion which coincides with the reference point of the constant potential portion;
    A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
    An array manufacturing step of manufacturing the array of measurement units using a manufacturing process of a semiconductor integrated circuit;
    Forming an array of the measurement units and forming a sensitive film on the constant potential portion.
  7.  表面電位に応じて電位井戸の深さを変化させるセンシング部と、該センシング部を被覆する感応膜と、該センシング部の電位井戸の深さに応じた電気信号を出力する検出領域と、を備えてなる化学・物理現象の測定ユニットのアレイと、
     該測定ユニットのアレイに近接して配置される金属配線からなる定電位部と、
     を備える化学・物理現象の測定装置の製造方法であって、
     前記測定ユニットのアレイの表面に前記金属配線からなる定電位部を載置する定電位部載置ステップと、
     前記定電位部を載置した前記測定ユニットのアレイの表面に前記感応膜を構成する高分子材料を流動状態で供給して該アレイの表面を被覆するとともに、該高分子材料上に前記定電位部を形成する感応膜材料供給ステップと、
     前記高分子材料を硬化する硬化ステップと、を含む測定装置の製造方法。
    A sensing unit that changes the depth of the potential well according to the surface potential, a sensitive film that covers the sensing unit, and a detection region that outputs an electrical signal according to the depth of the potential well of the sensing unit. An array of measuring units for chemical and physical phenomena,
    A constant potential portion made of metal wiring disposed in proximity to the array of measurement units;
    A method of manufacturing a chemical / physical phenomenon measuring apparatus comprising
    A constant potential portion mounting step of mounting the constant potential portion made of the metal wiring on the surface of the array of the measurement units;
    The polymer material constituting the sensitive film is supplied in a fluid state to the surface of the array of the measurement unit on which the constant potential portion is mounted to cover the surface of the array, and the constant potential is applied onto the polymer material. A sensitive membrane material supply step of forming a portion;
    And a curing step of curing the polymeric material.
PCT/JP2018/047398 2017-12-25 2018-12-22 Measurement instrument for chemical/physical phenomena and method for manufacturing same WO2019131564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019561679A JP6709423B2 (en) 2017-12-25 2018-12-22 Apparatus for measuring chemical/physical phenomenon and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247522 2017-12-25
JP2017-247522 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131564A1 true WO2019131564A1 (en) 2019-07-04

Family

ID=67067282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047398 WO2019131564A1 (en) 2017-12-25 2018-12-22 Measurement instrument for chemical/physical phenomena and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6709423B2 (en)
WO (1) WO2019131564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240942A1 (en) * 2019-05-31 2020-12-03 浜松ホトニクス株式会社 Odor sensor and odor sensing method
WO2021019871A1 (en) * 2019-07-26 2021-02-04 浜松ホトニクス株式会社 Ion detection device and ion detection method
WO2021019870A1 (en) * 2019-07-26 2021-02-04 浜松ホトニクス株式会社 Smell detection device and smell detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502149A (en) * 1987-10-29 1991-05-16 マサチューセッツ インスティテュート オブ テクノロジー Ultra-small electrochemical devices based on inorganic redox-active materials
JP2012207991A (en) * 2011-03-29 2012-10-25 Rohm Co Ltd Image sensor
WO2016035752A1 (en) * 2014-09-02 2016-03-10 国立大学法人京都大学 Element for reference electrodes and ion sensor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502149A (en) * 1987-10-29 1991-05-16 マサチューセッツ インスティテュート オブ テクノロジー Ultra-small electrochemical devices based on inorganic redox-active materials
JP2012207991A (en) * 2011-03-29 2012-10-25 Rohm Co Ltd Image sensor
WO2016035752A1 (en) * 2014-09-02 2016-03-10 国立大学法人京都大学 Element for reference electrodes and ion sensor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240942A1 (en) * 2019-05-31 2020-12-03 浜松ホトニクス株式会社 Odor sensor and odor sensing method
JP7391540B2 (en) 2019-05-31 2023-12-05 浜松ホトニクス株式会社 Odor sensor and odor detection method
WO2021019871A1 (en) * 2019-07-26 2021-02-04 浜松ホトニクス株式会社 Ion detection device and ion detection method
WO2021019870A1 (en) * 2019-07-26 2021-02-04 浜松ホトニクス株式会社 Smell detection device and smell detection method
CN114174815A (en) * 2019-07-26 2022-03-11 浜松光子学株式会社 Odor detection device and odor detection method
CN114207422A (en) * 2019-07-26 2022-03-18 浜松光子学株式会社 Ion detection device and ion detection method
US20220260519A1 (en) * 2019-07-26 2022-08-18 Hamamatsu Photonics K.K. Smell detection device and smell detection method

Also Published As

Publication number Publication date
JP6709423B2 (en) 2020-06-17
JPWO2019131564A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US9239310B2 (en) Capacitive sensor integrated onto semiconductor circuit
WO2019131564A1 (en) Measurement instrument for chemical/physical phenomena and method for manufacturing same
EP2568282B1 (en) Ion sensitive detector
JP6494438B2 (en) Method for manufacturing gas sensor package
CN112400108A (en) Odor sensor and method for manufacturing odor sensor
US9506885B2 (en) Sensor chip
JP4458135B2 (en) Liquid property sensor
US20110100810A1 (en) Chip integrated ion sensor
KR101322354B1 (en) Humidity sensor, humidity sensing method and transistor therefor
US20160313375A1 (en) Chip scale current sensor package and method of producing a current sensor package
WO2018180107A1 (en) Humidity sensor
US20080238449A1 (en) Fluid sensor and impedance sensor
US10520457B2 (en) Sensor of volatile substances with integrated heater and process for manufacturing a sensor of volatile substances
US20190195825A1 (en) Electrochemical sensor, and a method of forming an electrochemical sensor
JP7391540B2 (en) Odor sensor and odor detection method
US20240060930A1 (en) Ion sensor and ion sensor manufacturing method
US20220146449A1 (en) Electrochemical sensor, and a method of forming an electrochemical sensor
US11175162B2 (en) Integrated circuit sensor package and method of manufacturing the same
JP2024004089A (en) Odor sensor element array
KR20190035989A (en) Gas sensor package
JPWO2019225660A1 (en) Chemical sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894241

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019561679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894241

Country of ref document: EP

Kind code of ref document: A1