WO2019127011A1 - Arch structure for multi-band base station antenna - Google Patents

Arch structure for multi-band base station antenna Download PDF

Info

Publication number
WO2019127011A1
WO2019127011A1 PCT/CN2017/118603 CN2017118603W WO2019127011A1 WO 2019127011 A1 WO2019127011 A1 WO 2019127011A1 CN 2017118603 W CN2017118603 W CN 2017118603W WO 2019127011 A1 WO2019127011 A1 WO 2019127011A1
Authority
WO
WIPO (PCT)
Prior art keywords
snap
fits
arch structure
arch
reflector
Prior art date
Application number
PCT/CN2017/118603
Other languages
French (fr)
Inventor
Bo Zhao
Jie Zhou
Jianhong CHEN
Chang Wang
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Rfs Radio Frequency System (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Rfs Radio Frequency System (Shanghai) Co., Ltd. filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201780097883.4A priority Critical patent/CN111542965B/en
Priority to US16/957,602 priority patent/US11283159B2/en
Priority to PCT/CN2017/118603 priority patent/WO2019127011A1/en
Publication of WO2019127011A1 publication Critical patent/WO2019127011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1228Supports; Mounting means for fastening a rigid aerial element on a boom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1242Rigid masts specially adapted for supporting an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/427Flexible radomes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to the field of antenna technology, and more specifically, to an arch structure for multi-band base station antenna.
  • arch In the field of antenna technology, arch is a general part in Base Station Antenna (BSA) products, its main function is to support radome.
  • BSA Base Station Antenna
  • an arch In general, an arch is installed in a reflector to support radome to prevent antenna internal radiated parts from being damaged.
  • the arch comprises a plurality of snap-fits for fixing with the bottom of the reflector, the plurality of snap-fits are arranged horizontally in a straight line (the straight line is considered as the medial axis of the projection of the arch on a horizontal plane which the plurality of snap-fits are located in, the straight line is defined as the "projection mid-axis" in here) .
  • the two sides of the arch are connected to the two side edges of the reflector via plastic rivet.
  • Fig. 1 shows an assembly diagram of an arch and a reflector according to an example of the prior art, wherein, an arch 101 comprises four snap-fits 1011, which are arranged horizontally in a straight line, the two sides of the arch 101 are connected to the two side edges of the reflector 103 via plastic rivet 102.
  • low/high band dipoles are stagger arrangement, as all snap-fits are arranged horizontally in a straight line, which can easily interfere with dipole or dipole isolation wall, as shown in Fig. 1, there is interference between the rightmost snap-fit 1011 and metal sheet 104.
  • Fig. 2-1 shows an assembly diagram of an arch and a reflector according to another example of the prior art
  • Fig. 2-2 shows the partial cross-sectional view of Fig. 2-1, wherein, both sides of the arch have a clip 201, the side edge of the reflector has a through hole 202.
  • a clip 201 on one side of arch can be easily inserted into the corresponding through hole 202 directly, and a clip 201 on the other side of arch need to be pressed into the corresponding through holes 202.
  • the clips are more likely to break, and the fit clearance between reflector and arch lead to the frequency of clip broken.
  • An objective of the invention is to provide an optimized arch structure for multi-band base station antenna.
  • an arch structure for multi-band base station antenna comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure.
  • the number of the plurality of snap-fits is not less than 3, and the plurality of snap-fits are arranged in at least two straight lines.
  • the layout of the plurality of snap-fits is a triangular structure.
  • the number of the plurality of snap-fits is not less than 4, the layout of the plurality of snap-fits is a parallelogram or trapezoidal structure.
  • the interface unit adopts an I-shaped structure, and the I-shaped structure matches the U-shaped groove on the side edge of the reflector.
  • an arch structure for multi-band base station antenna comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein the interface unit adopts I-shaped structure, and the I-shaped structure matches U-shaped groove on the side edge of the reflector.
  • the present disclosure has the following advantages: it can effectively avoid the interference between the arch structure and the dipole or dipole isolation wall, and enhance the stability of arch structure since at least two snap-fits in the plurality of snap-fits are not arranged on the projection mid-axis of the arch structure.
  • the enhanced stability of the arch structure making it possible to reduce the width of the arch structure, and slender structure makes the product weight smaller, thereby reducing production materials and saving manufacturing costs.
  • the arch structure in this invention can save about 46%of the cost, the longer the antenna length is, the more arches are needed, thus the more cost can be saved.
  • the interface unit of the arch structure as a I-shaped structure and designing the side edge of the reflector as a U-shaped groove that matches the I-shape structure, it does not need extra rivet to fix reflector, and can reduce assembly time, material cost and labor costs.
  • Fig. 1 shows an assembly diagram of an arch and a reflector according to an example of the prior art
  • Fig. 2-1 shows an assembly diagram of an arch and a reflector according to another example of the prior art
  • Fig. 2-2 shows the partial cross-sectional view of Fig. 2-1;
  • Fig. 3 shows a schematic diagram of an arch structure according to a preferred embodiment of the present invention
  • Fig. 4 shows a bottom view of the arch structure shown in Fig. 3;
  • Fig. 5 shows a cross-sectional view of the arch structure along A-Ashown in Fig. 3;
  • Fig. 6 shows a schematic diagram of the interface unit shown in Fig. 3 during assembly
  • Fig. 7 shows a schematic diagram of the interface unit shown in Fig. 3 after assembly
  • Fig. 8 shows an assembly diagram of the arch structure shown in Fig. 3 and a reflector.
  • the present invention provides an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure.
  • the projection mid-axis represents the medial axis of the projection of the arch structure on a horizontal plane which the plurality of snap-fits are located in.
  • a snap-fit is not arranged on the projection mid-axis of the arch structure, indicating that the snap-fit is located outside the projection mid-axis.
  • the arch structure comprises two snap-fits, one snap-fit is located in front of the projection mid-axis and the other snap-fit is located behind the projection mid-axis, and the vertical distance from the two snap-fits to the projection mid-axis are equal.
  • the arch structure comprises three snap-fits, from left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located on the projection mid-axis, and the third snap-fit is located behind the projection mid-axis, the three snap-fits are arranged in a straight line that intersects with the projection mid-axis.
  • the number of the plurality of snap-fits is not less than 3, and the plurality of snap-fits are arranged in at least two straight lines.
  • the layout of the plurality of snap-fits is a triangular structure.
  • an arch structure comprises three snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, and the third snap-fit is located in front of the projection mid-axis, the three snap-fits are arranged in a triangular structure.
  • the number of the plurality of snap-fits is not less than 4, the layout of the plurality of snap-fits is a parallelogram or trapezoidal structure.
  • an arch structure comprises four snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, the third snap-fit is located in front of the projection mid-axis, and the fourth snap-fit is located behind the projection mid-axis.
  • the four snap-fits are arranged in a parallelogram structure.
  • an arch structure comprises four snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, the third snap-fit is located behind the projection mid-axis, and the fourth snap-fit is located in front of the projection mid-axis.
  • the four snap-fits are arranged in a trapezoidal structure.
  • an arch structure comprises four snap-fits, and the four snap-fits are arranged in a parallelogram structure, since the arch structure is symmetrical, the installer does not need to consider the specific positions of each snap-fit and the direction of holding the arch structure. They can install the arch structure directly without errors in the installation direction, which makes the installation process more flexible, then can effectively save installation time and improve installation efficiency.
  • the layout of the plurality of snap-fits is not limited to the triangular structure, parallelogram structure, and trapezoidal structure.
  • the 4 snap-fits may be arranged as an irregular quadrangle.
  • an arch structure comprises 5 snap-fits, from left to right, the first and the fourth snap-fits are located in front of the projection mid-axis, the second and the fifth snap-fits are located behind the projection mid-axis, and the third snap-fit is located on the projection mid-axis, wherein the first, second, fourth and fifth snap-fits are arranged in a parallelogram structure.
  • the interface unit adopts an I-shaped structure, and the I-shaped structure matches the U-shaped groove on the side edge of the reflector.
  • the I-shaped structure includes a rib plate in the middle for inserting into the U-shaped groove, so that the arch structure can be fixedly connected to the side edge of the reflector.
  • the rib plat play a guiding role, and after the installation is completed, it can avoid the sloshing of the interface unit in the U-shaped groove, and the interface unit will not be disengaged.
  • Fig. 3 shows a schematic diagram of an arch structure according to a preferred embodiment of the present invention.
  • Fig. 4 shows a bottom view of the arch structure shown in Fig. 3.
  • Fig. 5 shows a cross-sectional view of the arch structure along A-A shown in Fig. 3.
  • the arch structure comprises two interface unit 301 respectively located at two sides and four snap-fits 302. From left to right, the first snap-fit 302 is located in front of the projection mid-axis, the second snap-fit 302 is located behind the projection mid-axis, the third snap-fit 302 is located in front of the projection mid-axis, the fourth snap-fit 302 is located behind the projection mid-axis, and the four snap-fits 302 are arranged in a parallelogram structure.
  • the interface unit 301 is an I-shaped structure.
  • Fig. 6 shows a schematic diagram of the interface unit shown in Fig. 3 during assembly
  • Fig. 7 shows a schematic diagram of the interface unit shown in Fig. 3 after assembly.
  • the side edge of the reflector includes a U-shaped groove 401, and two protrusions 402 respectively located at two sides of the U-shaped groove 401.
  • the rib plat in the interface unit 301 is inserted into the U-shaped groove 401.
  • the height of the U-shaped groove can be increased by setting the protrusion on both sides of the U-shaped groove, so as to reduce the length of the side of the arch structure and save the manufacturing cost of the arch structure.
  • Fig. 8 shows an assembly diagram of the arch structure shown in Fig. 3 and a reflector. It can be seen from Fig. 8, there is no interference between the arch structure and the metal plate on the reflector.
  • the present invention also provides an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein the interface unit adopts I-shaped structure, and the I-shaped structure matches U-shaped groove on the side edge of the reflector.
  • the interface unit has been described in detail above, which will not be detailed here.
  • the arch structure of the present invention can effectively avoid the interference between the arch structure and the dipole or dipole isolation wall, and enhance the stability of arch structure since at least two snap-fits in the plurality of snap-fits are not arranged on the projection mid-axis of the arch structure.
  • the enhanced stability of the arch structure making it possible to reduce the width of the arch structure, and slender structure makes the product weight smaller, thereby reducing production materials and saving manufacturing costs.
  • the arch structure in this invention can save about 46%of the cost, the longer the antenna length is, the more arches are needed, thus the more cost can be saved.
  • the interface unit of the arch structure as a I-shaped structure and designing the side edge of the reflector as a U-shaped groove that matches the I-shape structure, it does not need extra rivet to fix reflector, and can reduce assembly time, material cost and labor costs.

Abstract

The present invention provides an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure. According to the arch structure of the present invention, it can effectively avoid the interference between the arch structure and the dipole or dipole isolation wall, and enhance the stability of arch structure, so that the width of the arch structure can be reduced and the manufacturing cost can be saved.

Description

ARCH STRUCTURE FOR MULTI-BAND BASE STATION ANTENNA FIELD OF THE INVENTION
The present invention relates to the field of antenna technology, and more specifically, to an arch structure for multi-band base station antenna.
BACKGROUND OF THE INVENTION
In the field of antenna technology, arch is a general part in Base Station Antenna (BSA) products, its main function is to support radome. In general, an arch is installed in a reflector to support radome to prevent antenna internal radiated parts from being damaged. In the prior art, the arch comprises a plurality of snap-fits for fixing with the bottom of the reflector, the plurality of snap-fits are arranged horizontally in a straight line (the straight line is considered as the medial axis of the projection of the arch on a horizontal plane which the plurality of snap-fits are located in, the straight line is defined as the "projection mid-axis" in here) . In addition, the two sides of the arch are connected to the two side edges of the reflector via plastic rivet. Fig. 1 shows an assembly diagram of an arch and a reflector according to an example of the prior art, wherein, an arch 101 comprises four snap-fits 1011, which are arranged horizontally in a straight line, the two sides of the arch 101 are connected to the two side edges of the reflector 103 via plastic rivet 102.
The above solution in the prior art has the following defects:
1) During assembly, there need two extra rivets to connect the arch to both side edges of the reflector, which on the one hand increases the assembly time and labor costs, and on the other hand presents a risk in mass production lines.
2) In the multi-band base station antenna application, low/high band  dipoles are stagger arrangement, as all snap-fits are arranged horizontally in a straight line, which can easily interfere with dipole or dipole isolation wall, as shown in Fig. 1, there is interference between the rightmost snap-fit 1011 and metal sheet 104.
3) The arch sway easily after installed on the reflector, it makes the arch less stable.
In view of the above defects, the following solutions exist in the prior art:
1) Fix the side edge of the reflector with clip instead of rivet. For example, Fig. 2-1 shows an assembly diagram of an arch and a reflector according to another example of the prior art, and Fig. 2-2 shows the partial cross-sectional view of Fig. 2-1, wherein, both sides of the arch have a clip 201, the side edge of the reflector has a through hole 202. During assembly, a clip 201 on one side of arch can be easily inserted into the corresponding through hole 202 directly, and a clip 201 on the other side of arch need to be pressed into the corresponding through holes 202. However, based on this solution, the clips are more likely to break, and the fit clearance between reflector and arch lead to the frequency of clip broken.
2) The arch is placed between two dipoles. But if there has small metal sheet part also need to place on the same location, it have to remove the arch or the metal sheet part to avoid interference, or remove the bottom support part from the arch to make the arch overpass the metal sheet part. However, if lacking of the support of reflector bottom surface, the arch will more easily shaking during wind load test.
SUMMARY OF THE INVENTION
An objective of the invention is to provide an optimized arch structure for multi-band base station antenna.
According to one aspect of the present invention, there is provided an  arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure.
Preferably, the number of the plurality of snap-fits is not less than 3, and the plurality of snap-fits are arranged in at least two straight lines.
As a preferred solution, the layout of the plurality of snap-fits is a triangular structure.
As another preferred solution, the number of the plurality of snap-fits is not less than 4, the layout of the plurality of snap-fits is a parallelogram or trapezoidal structure.
Preferably, the interface unit adopts an I-shaped structure, and the I-shaped structure matches the U-shaped groove on the side edge of the reflector.
According to another aspect of the present invention, there is provided an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein the interface unit adopts I-shaped structure, and the I-shaped structure matches U-shaped groove on the side edge of the reflector.
Compared with the prior art, the present disclosure has the following advantages: it can effectively avoid the interference between the arch structure and the dipole or dipole isolation wall, and enhance the stability of arch structure since at least two snap-fits in the plurality of snap-fits are not arranged on the projection mid-axis of the arch structure. In addition, because of the enhanced stability of the arch structure, making it possible to reduce the width of the arch structure, and slender structure makes the product weight smaller, thereby reducing production materials and saving manufacturing costs.  Taking an arch structure with four snap-fits as an example, compared with the prior art, the arch structure in this invention can save about 46%of the cost, the longer the antenna length is, the more arches are needed, thus the more cost can be saved. Moreover, it is easier to assemble in the mass production line by designing the interface unit of the arch structure as a I-shaped structure and designing the side edge of the reflector as a U-shaped groove that matches the I-shape structure, it does not need extra rivet to fix reflector, and can reduce assembly time, material cost and labor costs.
DESCRIPTION OF ACCOMPANIED DRAWINGS
Through reading the following detailed depiction on the non-limiting embodiments with reference to the accompanying drawings, the other features, objectives, and advantages of the present invention will become clearer.
Fig. 1 shows an assembly diagram of an arch and a reflector according to an example of the prior art;
Fig. 2-1 shows an assembly diagram of an arch and a reflector according to another example of the prior art;
Fig. 2-2 shows the partial cross-sectional view of Fig. 2-1;
Fig. 3 shows a schematic diagram of an arch structure according to a preferred embodiment of the present invention;
Fig. 4 shows a bottom view of the arch structure shown in Fig. 3;
Fig. 5 shows a cross-sectional view of the arch structure along A-Ashown in Fig. 3;
Fig. 6 shows a schematic diagram of the interface unit shown in Fig. 3 during assembly;
Fig. 7 shows a schematic diagram of the interface unit shown in Fig. 3 after assembly;
Fig. 8 shows an assembly diagram of the arch structure shown in Fig. 3 and a reflector.
Same or like reference numerals in the accompanying drawings indicate the same or corresponding components.
EMBODIMENT OF INVENTION
Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings.
The present invention provides an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure. The projection mid-axis represents the medial axis of the projection of the arch structure on a horizontal plane which the plurality of snap-fits are located in.
Wherein a snap-fit is not arranged on the projection mid-axis of the arch structure, indicating that the snap-fit is located outside the projection mid-axis.
As an example, the arch structure comprises two snap-fits, one snap-fit is located in front of the projection mid-axis and the other snap-fit is located behind the projection mid-axis, and the vertical distance from the two snap-fits to the projection mid-axis are equal.
As another example, the arch structure comprises three snap-fits, from left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located on the projection mid-axis, and the third snap-fit is located behind the projection mid-axis, the three snap-fits are arranged in a straight line that intersects with the projection mid-axis.
Preferably, the number of the plurality of snap-fits is not less than 3, and the plurality of snap-fits are arranged in at least two straight lines.
As a preferred solution, the layout of the plurality of snap-fits is a triangular structure.
For example, an arch structure comprises three snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, and the third snap-fit is located in front of the projection mid-axis, the three snap-fits are arranged in a triangular structure.
As another preferred solution, the number of the plurality of snap-fits is not less than 4, the layout of the plurality of snap-fits is a parallelogram or trapezoidal structure.
For example, an arch structure comprises four snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, the third snap-fit is located in front of the projection mid-axis, and the fourth snap-fit is located behind the projection mid-axis. The four snap-fits are arranged in a parallelogram structure.
For another example, an arch structure comprises four snap-fits, form left to right, the first snap-fit is located in front of the projection mid-axis, the second snap-fit is located behind the projection mid-axis, the third snap-fit is located behind the projection mid-axis, and the fourth snap-fit is located in front of the projection mid-axis. The four snap-fits are arranged in a trapezoidal structure.
It should be noted that, when an arch structure comprises four snap-fits, and the four snap-fits are arranged in a parallelogram structure, since the arch structure is symmetrical, the installer does not need to consider the specific positions of each snap-fit and the direction of holding the arch structure. They can install the arch structure directly without errors in the installation direction, which makes the installation process more flexible, then can effectively save installation time and improve installation efficiency.
It should be noted that, the layout of the plurality of snap-fits is not limited to the triangular structure, parallelogram structure, and trapezoidal  structure. Those skilled in the art should understand that, other possible layout solutions should also be included in the protection scope of the present application. For example, when an arch structure comprises 4 snap-fits, the 4 snap-fits may be arranged as an irregular quadrangle. For another example, an arch structure comprises 5 snap-fits, from left to right, the first and the fourth snap-fits are located in front of the projection mid-axis, the second and the fifth snap-fits are located behind the projection mid-axis, and the third snap-fit is located on the projection mid-axis, wherein the first, second, fourth and fifth snap-fits are arranged in a parallelogram structure.
Preferably, the interface unit adopts an I-shaped structure, and the I-shaped structure matches the U-shaped groove on the side edge of the reflector. Wherein the I-shaped structure includes a rib plate in the middle for inserting into the U-shaped groove, so that the arch structure can be fixedly connected to the side edge of the reflector. In the installation process, the rib plat play a guiding role, and after the installation is completed, it can avoid the sloshing of the interface unit in the U-shaped groove, and the interface unit will not be disengaged.
Fig. 3 shows a schematic diagram of an arch structure according to a preferred embodiment of the present invention. Fig. 4 shows a bottom view of the arch structure shown in Fig. 3. Fig. 5 shows a cross-sectional view of the arch structure along A-A shown in Fig. 3. Wherein, the arch structure comprises two interface unit 301 respectively located at two sides and four snap-fits 302. From left to right, the first snap-fit 302 is located in front of the projection mid-axis, the second snap-fit 302 is located behind the projection mid-axis, the third snap-fit 302 is located in front of the projection mid-axis, the fourth snap-fit 302 is located behind the projection mid-axis, and the four snap-fits 302 are arranged in a parallelogram structure. Wherein, the interface unit 301 is an I-shaped structure.
Fig. 6 shows a schematic diagram of the interface unit shown in Fig. 3  during assembly, Fig. 7 shows a schematic diagram of the interface unit shown in Fig. 3 after assembly. Wherein, the side edge of the reflector includes a U-shaped groove 401, and two protrusions 402 respectively located at two sides of the U-shaped groove 401. As shown in Fig. 7, after the installation is completed, the rib plat in the interface unit 301 is inserted into the U-shaped groove 401. It should be noted that, the height of the U-shaped groove can be increased by setting the protrusion on both sides of the U-shaped groove, so as to reduce the length of the side of the arch structure and save the manufacturing cost of the arch structure.
Fig. 8 shows an assembly diagram of the arch structure shown in Fig. 3 and a reflector. It can be seen from Fig. 8, there is no interference between the arch structure and the metal plate on the reflector.
The present invention also provides an arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein the interface unit adopts I-shaped structure, and the I-shaped structure matches U-shaped groove on the side edge of the reflector. Wherein, the interface unit has been described in detail above, which will not be detailed here.
According to the arch structure of the present invention, it can effectively avoid the interference between the arch structure and the dipole or dipole isolation wall, and enhance the stability of arch structure since at least two snap-fits in the plurality of snap-fits are not arranged on the projection mid-axis of the arch structure. In addition, because of the enhanced stability of the arch structure, making it possible to reduce the width of the arch structure, and slender structure makes the product weight smaller, thereby reducing production materials and saving manufacturing costs. Taking an arch structure with four snap-fits as an example, compared with the prior art, the arch structure in this invention can save about 46%of the cost, the longer the  antenna length is, the more arches are needed, thus the more cost can be saved.
Moreover, it is easier to assemble in the mass production line by designing the interface unit of the arch structure as a I-shaped structure and designing the side edge of the reflector as a U-shaped groove that matches the I-shape structure, it does not need extra rivet to fix reflector, and can reduce assembly time, material cost and labor costs.
To those skilled in the art, it is apparent that the present invention is not limited to the details of the above exemplary embodiments, and the present invention may be implemented with other embodiments without departing from the spirit or basic features of the present invention. Thus, in any way, the embodiments should be regarded as exemplary, not limitative; the scope of the present invention is limited by the appended claims instead of the above description, and all variations intended to fall into the meaning and scope of equivalent elements of the claims should be covered within the present invention. No reference signs in the claims should be regarded as limiting of the involved claims. Besides, it is apparent that the term “comprise” does not exclude other units or steps, and singularity does not exclude plurality. A plurality of units or modules stated in a system claim may also be implemented by a single unit or module through software or hardware. Terms such as the first and the second are used to indicate names, but do not indicate any particular sequence.

Claims (6)

  1. An arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein at least two snap-fits in the plurality of snap-fits are not arranged on a projection mid-axis of the arch structure.
  2. The arch structure according to claim 1, wherein the number of the plurality of snap-fits is not less than 3, and the plurality of snap-fits are arranged in at least two straight lines.
  3. The arch structure according to claim 2, wherein the layout of the plurality of snap-fits is a triangular structure.
  4. The arch structure according to claim 2, wherein the number of the plurality of snap-fits is not less than 4, the layout of the plurality of snap-fits is a parallelogram or trapezoidal structure.
  5. The arch structure according to any one of claim 1 to 4, wherein the interface unit adopts an I-shaped structure, and the I-shaped structure matches the U-shaped groove on the side edge of the reflector.
  6. An arch structure for multi-band base station antenna, the arch structure comprises two interface units for connecting with the side edge of a reflector, and a plurality of snap-fits for fixing with the bottom of the reflector, wherein the interface unit adopts I-shaped structure, and the I-shaped structure matches U-shaped groove on the side edge of the reflector.
PCT/CN2017/118603 2017-12-26 2017-12-26 Arch structure for multi-band base station antenna WO2019127011A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780097883.4A CN111542965B (en) 2017-12-26 2017-12-26 Arch structure for multiband base station antenna
US16/957,602 US11283159B2 (en) 2017-12-26 2017-12-26 Arch structure for multi-band base station antenna
PCT/CN2017/118603 WO2019127011A1 (en) 2017-12-26 2017-12-26 Arch structure for multi-band base station antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118603 WO2019127011A1 (en) 2017-12-26 2017-12-26 Arch structure for multi-band base station antenna

Publications (1)

Publication Number Publication Date
WO2019127011A1 true WO2019127011A1 (en) 2019-07-04

Family

ID=67064342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118603 WO2019127011A1 (en) 2017-12-26 2017-12-26 Arch structure for multi-band base station antenna

Country Status (3)

Country Link
US (1) US11283159B2 (en)
CN (1) CN111542965B (en)
WO (1) WO2019127011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793025A1 (en) * 2019-09-11 2021-03-17 CommScope Technologies LLC Base station antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201584496U (en) * 2009-11-20 2010-09-15 京信通信系统(中国)有限公司 Encapsulating device of ultra-wide antenna
CN202817163U (en) * 2012-09-21 2013-03-20 苏州市大富通信技术有限公司 Base station antenna
CN205231248U (en) * 2015-12-04 2016-05-11 深圳国人通信股份有限公司 Exhaust cast embellished antenna
CN105591207A (en) * 2014-10-21 2016-05-18 上海贝尔股份有限公司 Antenna reflecting plate and base station antenna comprising same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815120A (en) * 1996-02-28 1998-09-29 International Business Machines Corporation Radio frequency local area network adapter card structure and method of manufacture
CN200953381Y (en) * 2006-06-21 2007-09-26 华为技术有限公司 Base station antenna
CN2935504Y (en) * 2006-08-18 2007-08-15 华为技术有限公司 Base station array antenna
US8860625B2 (en) * 2011-10-07 2014-10-14 Laird Technologies Ab Antenna assemblies having transmission lines suspended between ground planes with interlocking spacers
CN202523848U (en) * 2012-02-10 2012-11-07 摩比天线技术(深圳)有限公司 Ultrawide-band dual-polarized electrically-tunable antenna
CN204905441U (en) * 2014-10-21 2015-12-23 上海贝尔股份有限公司 Antenna reflecting plate and base station antenna
CN205355238U (en) * 2015-12-04 2016-06-29 东莞市云通通讯科技有限公司 High isolation double polarization base station antenna
CN107293837B (en) * 2016-03-31 2023-06-09 上海诺基亚贝尔股份有限公司 Arch-shaped supporting device
CN205609728U (en) * 2016-03-31 2016-09-28 安弗施无线射频系统(上海)有限公司 Arch strutting arrangement
CN106099394B (en) * 2016-06-28 2019-01-29 武汉虹信通信技术有限责任公司 A kind of closely spaced array antenna for 5G system
CN205960179U (en) * 2016-08-17 2017-02-15 安弗施无线射频系统(上海)有限公司 Antennal interface structure
CN205911420U (en) * 2016-08-19 2017-01-25 安弗施无线射频系统(上海)有限公司 Support device of antenna
CN106961010A (en) * 2017-04-27 2017-07-18 深圳国人通信股份有限公司 A kind of three frequency Bipolarization antenna for base station
CN207611854U (en) * 2017-12-26 2018-07-13 安弗施无线射频系统(上海)有限公司 A kind of arch structure for multiband base station antenna
WO2020142353A2 (en) * 2019-01-03 2020-07-09 Commscope Technologies Llc End plate assemblies for base station antennas, methods for manufacturing the same and related base station antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201584496U (en) * 2009-11-20 2010-09-15 京信通信系统(中国)有限公司 Encapsulating device of ultra-wide antenna
CN202817163U (en) * 2012-09-21 2013-03-20 苏州市大富通信技术有限公司 Base station antenna
CN105591207A (en) * 2014-10-21 2016-05-18 上海贝尔股份有限公司 Antenna reflecting plate and base station antenna comprising same
CN205231248U (en) * 2015-12-04 2016-05-11 深圳国人通信股份有限公司 Exhaust cast embellished antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793025A1 (en) * 2019-09-11 2021-03-17 CommScope Technologies LLC Base station antenna
US11271289B2 (en) 2019-09-11 2022-03-08 Commscope Technologies Llc Base station antenna

Also Published As

Publication number Publication date
US11283159B2 (en) 2022-03-22
US20210057801A1 (en) 2021-02-25
CN111542965A (en) 2020-08-14
CN111542965B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
CN102809132B (en) Liquid crystal display device and backlight module and back plate assembly thereof
CN101802324B (en) Fixing structure of solar battery module, frame for the solar battery module, and fixing member
US11283159B2 (en) Arch structure for multi-band base station antenna
CN103818657B (en) Liquid-crystalline glasses panel packing
TW201345377A (en) Expansion module and fixing frame thereof
US8277240B2 (en) Connector for backlight and having a member restricting movement of another member
CN103953874A (en) Straight down type backlight module and liquid crystal display device
US8570743B2 (en) Mounting apparatus for fans
US10928852B2 (en) Mounting structure for rear housing of display device and display device
CN102944953A (en) Display device
CN204903917U (en) Backlight module and display device
JP2017011889A (en) Solar cell panel support frame and solar power generator
CN207611854U (en) A kind of arch structure for multiband base station antenna
US20210211789A1 (en) Bracket for speaker, frame for speaker, and speaker
KR101243678B1 (en) Repeater mounting bracket
US10429018B2 (en) Recessed light fixure
CN205137929U (en) Evaporimeter support frame and hot water machine
CN207309797U (en) A kind of fixing device
CN207474538U (en) A kind of battery case
CN206041208U (en) Overlap joint structure side crossbeam
CN102869238B (en) A kind of fixture of fan
US9632341B2 (en) Liquid crystal panel fixing assembly and display device
CN103376844A (en) Fan fixing device
CN212625748U (en) Battery management system installation device and battery pack with same
CN215675548U (en) Outdoor unit and box body thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936712

Country of ref document: EP

Kind code of ref document: A1