WO2019117477A1 - Apparatus for recovering sensible heat of exhaust gas - Google Patents

Apparatus for recovering sensible heat of exhaust gas Download PDF

Info

Publication number
WO2019117477A1
WO2019117477A1 PCT/KR2018/013735 KR2018013735W WO2019117477A1 WO 2019117477 A1 WO2019117477 A1 WO 2019117477A1 KR 2018013735 W KR2018013735 W KR 2018013735W WO 2019117477 A1 WO2019117477 A1 WO 2019117477A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
heat exchanger
exhaust
exhaust gas
heat
Prior art date
Application number
PCT/KR2018/013735
Other languages
French (fr)
Korean (ko)
Inventor
박주형
조한창
오혁진
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170171823A external-priority patent/KR102043025B1/en
Priority claimed from KR1020170178467A external-priority patent/KR102285076B1/en
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Publication of WO2019117477A1 publication Critical patent/WO2019117477A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels

Definitions

  • the present invention relates to an exhaust gas heat recovery apparatus.
  • the heat recovery of the heat recovery heat exchanger can be partially blocked, but the efficiency of heat recovery is low and the investment cost is increased due to installation of a large number of valves, dampers, sensors and IDFs.
  • a flue gas sensible heat recovery apparatus capable of preventing heat damage to a heat exchanger, improving stability, and increasing heat recovery efficiency.
  • the exhaust gas heat recovery apparatus includes a main pipe through which flue gas flows, an outside air supply pipe connected to the main pipe and having a first opening / closing valve, A first temperature sensor disposed in the mixing section or at a rear stage of the mixing section, and a second temperature sensor disposed at a rear stage of the mixing section on the flow path of the flue gas, wherein the flue gas or the mixed gas of the flue gas and the outside air
  • a heat exchanger having a heat exchanger for exchanging heat and a suction fan installed in a main pipe to be disposed at a rear end of the heat exchanger.
  • the exhaust gas heat recovery apparatus may further include a bypass pipe connected to the main pipe to be disposed at a rear end of the first temperature sensor, and the heat exchanger may be connected to the bypass pipe.
  • the main pipe is provided with a second on-off valve installed in the main pipe so as to be disposed between the bypass pipe and the main pipe.
  • the bypass pipe is provided with a bypass pipe 3 opening / closing valve may be provided.
  • the heat exchanger may include a pipe for a heat transfer fluid connected to the heat exchanger.
  • the heat exchange unit may further include a pump installed in the piping for the heat transfer fluid.
  • the heat exchanger may further include a second temperature sensor installed in a pipe for the heat transfer fluid so as to be disposed at a rear end of the heat exchanger.
  • the piping for the heat transfer fluid may be connected to the heat exchanger for the heat pipe.
  • the heat exchanger may be installed in the bypass pipe, and the heat exchanger may include a pipe for the heat transfer fluid connected to the heat exchanger.
  • the heat exchanger may be connected to the bypass pipe, and may be disposed so that a transfer member for transferring the solid passes therethrough.
  • the heat exchanger may further include a third temperature sensor installed in the heat exchanger.
  • the main pipe may be provided with a dust collecting device disposed at a front end of the suction fan.
  • the main pipe may be provided with a pressure sensor disposed at a front end of a connection portion of the outside air supply pipe.
  • the main pipe may be provided with a temperature sensor for the inlet part disposed at the front end of the connection part of the outside air supply pipe.
  • the exhaust gas heat recovery apparatus may further include a controller connected to the first temperature sensor and the first opening / closing valve.
  • the heat exchanger may be connected to the main pipe so as to be disposed at a rear end of the first temperature sensor.
  • the exhaust gas heat recovery apparatus may further include a bypass pipe having one end connected to the main pipe at a front end of the heat exchanger and the other end connected to the main pipe at a rear end of the heat exchanger.
  • the main pipe is provided with a second opening / closing valve disposed at a rear end of the heat exchanger, and the bypass pipe may be provided with a third opening / closing valve.
  • the heat exchanging unit may include a pipe for the heat transfer fluid connected to the heat exchanger and a second temperature sensor installed in the pipe for the heat transfer fluid to be disposed at the rear end of the heat exchanger.
  • the heat exchanger may further include a fourth temperature sensor for measuring a temperature of a solid conveyed through the conveying member, wherein the conveying member for conveying the solid passes through the heat exchanger.
  • an exhaust gas heat recovery apparatus comprising: an exhaust unit connected to a heat facility for exhausting exhaust gas and including an exhaust duct through which exhaust gas discharged from a heat facility flows; A waste heat recovery unit connected to the exhaust duct to recover waste heat from the exhaust gas so that exhaust gas flowing into the exhaust duct bypasses a part of the exhaust duct and then returns to the exhaust duct; An outside air inflow unit connected to the waste heat recovery unit so that outside air flows into the waste heat recovery unit; And a control unit for controlling the exhaust unit, the waste heat recovering unit and the outside air inflow unit so that the temperature of the exhaust gas flowing into the heat exchanger bypassing a part of the exhaust duct is maintained within a predetermined temperature range by the outside air introduced through the outside air inflow unit ; . ≪ / RTI >
  • the waste heat recovering unit may include a first bypass duct connected to the exhaust duct and the heat exchanger so that exhaust gas flows from the exhaust duct to the heat exchanger, and an exhaust gas passing through the heat exchanger is returned to the exhaust duct And a second bypass duct connected to the heat exchanger and the exhaust duct.
  • the outside air inflow unit may include an outside air inflow duct connected to the outside and the first bypass duct, and an outside air duct opening / closing damper provided in the outside air inflow duct to open / close the outside air inflow duct.
  • the exhaust unit may further include an exhaust duct opening / closing damper provided in the exhaust duct to open / close the exhaust duct
  • the waste heat recovering unit may include a first bypass duct provided in the first bypass duct to open / And a second duct opening / closing damper provided in the second bypass duct for opening and closing the second bypass duct.
  • the exhaust duct opening / closing damper is provided at a portion of the exhaust duct between a portion to which the first bypass duct is connected and a portion to which the second bypass duct is connected, and the outside air inlet duct has a flow direction May be connected to a portion of the first bypass duct before the first duct opening / closing damper.
  • the waste heat recovering unit includes a heat exchange medium inlet duct connected to the heat exchanger so that the heat exchange medium flows to the heat exchanger, and a heat exchange medium that has recovered waste heat by heat exchange with the exhaust gas while passing through the heat exchanger, passes through the heat exchanger And a heat exchange medium discharge duct connected to the heat exchanger to be supplied to the waste heat utilization site.
  • a first temperature sensor for sensing the temperature of the exhaust gas flowing into the exhaust duct may be provided at a portion of the exhaust duct before the first bypass duct is connected in the flow direction of the exhaust gas
  • a second temperature sensor may be provided at a portion of the first bypass duct between the duct opening / closing damper and the heat exchanger to sense the temperature of the exhaust gas flowing to the heat exchanger.
  • the control unit opens the first duct opening / closing damper and the second duct opening / closing damper and closes the exhaust duct opening / closing damper so that the exhaust gas flowing into the exhaust duct bypasses the heat exchange medium, Exchanged with the heat exchange medium while passing through the heat exchanger, and then returned to the exhaust duct.
  • the control unit opens the outside air duct opening / closing damper to allow the outside air to flow into the first bypass duct through the outside air inlet duct And the opening degree of the outside air duct opening / closing damper is adjusted so that the temperature of the exhaust gas sensed by the second temperature sensor is within a predetermined temperature range.
  • the control unit controls the exhaust duct by the outside air introduced through the outside air inlet unit It is possible to prevent the temperature of the flowing exhaust gas from exceeding the predetermined allowable temperature.
  • the control unit opens the outside air duct opening / closing damper to open the outside air inlet opening / closing damper and the exhaust duct through the outside air inlet duct and the first bypass duct, So that the outside air can be introduced.
  • the control unit may completely close the exhaust duct opening / closing damper after a predetermined time after completely opening the first duct opening / closing damper and the second duct opening / closing damper.
  • the control unit opens the exhaust duct opening / closing damper and closes the first duct opening / closing damper and the second duct opening / closing damper so that the exhaust gas flowing into the exhaust duct flows through the exhaust duct to be discharged to the outside,
  • the medium can be prevented from passing through the heat exchanger.
  • the control unit may completely open the first duct opening / closing damper and the second duct opening / closing damper so that the exhaust duct opening / closing damper is fully opened after a predetermined time.
  • FIG. 1 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a third embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a sixth embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a seventh embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to an eighth embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention.
  • FIGS 10 to 13 are views showing the operation of the exhaust gas heat recovery apparatus according to the ninth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a first embodiment of the present invention.
  • the flue gas sensible heat recovery apparatus 100 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 160, a suction fan 170, a dust collector 180, and a controller 190.
  • the main pipe 110 may be connected to a thermal facility such as a boiler including a power plant and an industrial furnace such as a combustion furnace, an electric furnace, and the like.
  • a pressure sensor 111 may be installed in the main pipe 110 so that the main pipe 110 is located at the inlet of the flue gas inlet, that is, at the front end of the portion where the outside air supply pipe 120 is connected.
  • the pressure sensor 111 is connected to the control unit 190 and transmits a signal to the control unit 190 about the inflow pressure of the flue gas flowing into the main pipe 110.
  • control unit 190 controls the suction fan 170 to control the pressure of the shearing facility and to control the inflow amount of the flue gas.
  • the inlet pipe temperature sensor 113 may be installed in the main pipe 110 so as to be disposed adjacent to the exhaust gas inlet side of the main pipe 110, that is, adjacent to the pressure sensor 111.
  • the temperature sensor 113 for the inlet portion detects the temperature of the incoming flue gas when the temperature of the flue gas is suddenly raised or lowered and finally detects the temperature of the outside portion of the outside air supplied from the outside air supply pipe 120 to maintain the temperature of the mixing portion 130 at a predetermined temperature.
  • And may be installed in the main pipe 110 to determine the inflow amount in advance.
  • the outside air supply pipe 120 is connected to the main pipe 110 and supplies the outside air to the main pipe 110.
  • the outside air supply pipe 120 is provided with a first opening / closing valve 122.
  • the first on-off valve 122 is also connected to the controller 190 so that the first on-off valve 122 can be opened or closed according to a signal from the first temperature sensor 140.
  • the mixing portion 130 is installed in the main pipe 110 so as to be disposed at the rear end of the portion to which the outside air supply pipe 120 is connected. That is, the mixing unit 130 is a region where the exhaust gas supplied from the main pipe 110 and the outside air supplied from the outside air supply pipe 120 are mixed.
  • the mixing unit 130 may have a chamber shape, a mixer shape, have. Since the mixing unit 130 is disposed in the main pipe 110, even if the inflow amount of the flue gas rapidly increases or the temperature of the flue gas abruptly increases, the flue gas and the outside air are mixed in advance in the mixing unit 130, The thermal shock caused by the heat applied to the heat sink can be mitigated.
  • the first temperature sensor 140 is installed in the main pipe 110 so as to be disposed at the rear end of the mixing unit 130.
  • the first temperature sensor 140 measures the temperature of the gas flowing through the main pipe 110 through the mixing unit 130. Meanwhile, the first temperature sensor 140 may be connected to the controller 190.
  • the control unit 190 operates the first opening / closing valve 122 of the outside air supply pipe 120 according to a signal from the first temperature sensor 140.
  • the first temperature sensor 140 is disposed downstream of the mixing unit 130 installed in the main pipe 110 to measure the temperature of the mixed gas of the exhaust gas and the outside air passing through the mixing unit 130, 130 are controlled.
  • the first temperature sensor 140 is disposed at the rear end of the mixing unit 130 in the present embodiment, the first temperature sensor 140 is not limited to the first temperature sensor 140, It is possible.
  • the bypass pipe 150 is connected to the main pipe 110 so as to be disposed at the rear end of the first temperature sensor 140.
  • the bypass piping 150 includes a first bypass piping 152 for allowing the flue gas to flow from the main piping 110 to the heat exchanging unit 160 and a second bypass piping 152 for allowing the exhaust gas to flow from the heat exchanging unit 160 to the main piping 110 And a second bypass pipe 154 may be provided.
  • the amount of inflow of the flue gas into the bypass piping 150 is controlled by the second on-off valve 112 installed in the main piping 110 and the third on-off valve 112 installed in the second bypass piping 154 of the bypass piping 150. [ And can be adjusted by the opening / closing valve 156.
  • the exhaust gas flows only through the main pipe 110 without flowing along the bypass pipe 150.
  • the second on-off valve 112 is closed and the third on-off valve 156 is opened, the exhaust gas flows along the bypass pipe 150 and does not flow through the main pipe 110.
  • the opening / closing degree of the second and third opening / closing valves 112 and 156 can be adjusted to control the inflow amount of the exhaust gas flowing into the bypass pipe 150.
  • the heat exchanging unit 160 includes a heat exchanger 162 connected to the bypass pipe 150.
  • the heat exchanger 160 is connected to the heat exchanger 162 and passes through the heat transfer fluid pipe 164 through which the heat transfer fluid flows, the pump 166 installed in the heat transfer fluid pipe 164, and the heat exchanger 162 And a second temperature sensor 168 installed in the heat transfer fluid pipe 164 to measure the temperature of one heat transfer fluid.
  • the second temperature sensor 168 is also connected to the control unit 190.
  • the control unit 190 controls the second and third on-off valves 112 and 156 according to a signal from the second temperature sensor 168, It is possible to control the display unit 122. Further, the control unit 190 may control the pump 166 according to the signal from the second temperature sensor 168 to control the inflow amount of the heat transfer fluid.
  • the suction fan 170 may be installed in the main pipe 110 so as to be disposed at the rear end of the bypass pipe 150.
  • the suction fan 170 may control the inflow amount of the flue gas. That is, the inflow amount of the flue gas flowing into the main pipe 110 and the pressure of the shearing equipment can be adjusted by the suction fan 170.
  • the dust collecting facility 180 is installed in the main pipe 110 so as to be disposed at the front end of the suction fan 170, and can remove dust and other components from the exhaust gas.
  • the control unit 190 is connected to the first temperature sensor 140 and the first on-off valve 122 and controls the first on-off valve 122 according to a signal from the first temperature sensor 140. In this way, the inflow amount of the outside air is controlled by controlling the first opening / closing valve 122 according to the temperature of the flue gas sensed by the first temperature sensor 140 or the mixed gas of the exhaust gas and the outside air. Therefore, the temperature of the flue gas mixture passing through the mixing section 130 can be controlled.
  • the temperature of the exhaust gas or the mixed gas supplied to the heat exchanging unit 160 can be controlled by controlling the temperature of the exhaust gas or the mixed gas passing through the mixing unit 130, that is, the amount of recovered heat energy.
  • the control unit 190 is connected to the second temperature sensor 168 and the second and third on-off valves 112 and 156 and controls the second and third on-off valves 112 and 156 according to a signal from the second temperature sensor 168 .
  • the second and third on-off valves 112 and 156 are controlled according to the temperature of the heat transfer fluid sensed by the second temperature sensor 168 to control the inflow amount of the flue gas or the mixed gas flowing through the bypass pipe 150 have.
  • control unit 190 may be connected to the pressure sensor 111, the temperature sensor 113, and the suction fan 170. Accordingly, the inflow amount of the flue gas flowing into the main pipe 110 and the pressure of the shearing equipment can be controlled by controlling the suction fan 170 according to the pressure sensed by the pressure sensor 111.
  • control unit 190 is connected to the plurality of sensors and the plurality of valves, so that the control unit 190 can perform overall and complex control of the exhaust gas heat recovery apparatus 100.
  • the outside air is introduced through the outside air supply pipe 120 and mixed with the flue gas in the mixing part 130 disposed on the main pipe 110 side . Accordingly, since the mixed gas of the exhaust gas and the outside air mixed in the mixing section 130 is provided to the heat exchanging section 160, even if the temperature of the exhaust gas rises sharply, heat damage to the heat exchanger 162 can be prevented .
  • the temperature of the mixed gas supplied to the heat exchanging unit 160 can be adjusted within the set temperature range, thermal damage to the heat exchanger 162 by the exhaust gas can be prevented.
  • the flow rate and the temperature of the exhaust gas flowing to the bypass pipe 150 through the second and third opening / closing valves 112 and 156 can be adjusted to further reduce heat damage to the heat exchanger 162, You can.
  • FIG. 2 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a second embodiment of the present invention.
  • an exhaust gas heat recovery apparatus 200 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 260, a suction fan 170, a dust collector 180, and a controller 190.
  • the main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
  • the heat exchange unit 260 includes a heat exchanger 262 connected to the bypass pipe 150, a heat transfer fluid pipe 264 connected to the heat exchanger, a pump 266 installed in the heat transfer fluid pipe 264, And a second temperature sensor 268 installed in the heat transfer fluid pipe 264 so as to be disposed at the rear end of the heat exchanger 262.
  • the heat exchanger 260 may be provided with a heat exchanger 269 for heat transfer with the heat transfer fluid.
  • the heat pipe heat exchanger 269 may be connected to a fluid pipe 269a for the thermo tube through which the thermo tube fluid flows.
  • FIG. 3 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a third embodiment of the present invention.
  • the exhaust gas heat recovery apparatus 300 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 360, a suction fan 170, a dust collector 180, and a controller 190.
  • the main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
  • the heat exchanging unit 360 includes a heat exchanger 362 arranged to pass the bypass pipe 150 therethrough and a heat transfer fluid pipe 364 passing through the heat exchanger 362 and exchanging heat with the bypass pipe 150, And a third temperature sensor 366 installed in the heat exchanger 362 for measuring the temperature of the heat exchanger 362.
  • the internal temperature of the heat exchanger 362 is measured through the third temperature sensor 366, and the inflow amount of the exhaust gas flowing through the bypass pipe 150 connected to the heat exchanger 360 can be controlled.
  • the heat damage of the heat exchanger 362 can be further reduced, and the heat recovery efficiency can be further increased.
  • FIG. 4 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fourth embodiment of the present invention.
  • the exhaust gas heat recovery apparatus 400 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 460, a suction fan 170, a dust collector 180, and a controller 190.
  • the main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
  • the heat exchanging unit 460 includes a heat exchanger 462 to which the bypass pipe 150 is connected, a transfer member 464 disposed to pass through the heat exchanger 462, and a heat exchanger And a third temperature sensor 466 for measuring the temperature of the second temperature sensor 462.
  • the heat exchanger 462 may be formed to have an internal space, and may be formed of a solid (e.g., coal) and a bypass pipe (not shown) that are transferred through the transfer member 464 in the internal space of the heat exchanger 462 150 may be in direct contact with the exhaust gas.
  • a solid e.g., coal
  • a bypass pipe not shown
  • the conveying member 464 may be provided with a speed adjusting device 464a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 464a may be installed on the conveying member 464 to regulate the amount of the solid conveyed through the conveying member 464 in accordance with the inflow amount of the exhaust gas supplied to the bypass pipe 150.
  • the third temperature sensor 466 is installed in the heat exchanger 462, the internal temperature of the heat exchanger 462 is measured through the third temperature sensor 466 and the bypass pipe 462, which is connected to the heat exchanger 460, The inflow amount of the flue gas introduced into the flue 150 can be controlled.
  • the heat damage of the heat exchanger 462 can be further reduced, and the heat recovery efficiency can be further increased.
  • FIG. 5 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fifth embodiment of the present invention.
  • the exhaust gas heat recovery apparatus 500 includes a main pipe 510, an outside air supply pipe 520, a mixing unit 530, a first temperature sensor 540, A bypass pipe 550, a heat exchanging unit 560, a suction fan 570, a dust collecting unit 580, and a control unit 590.
  • the exhaust gas flows through the inside.
  • the main pipe 510 may be connected to a thermal facility such as a boiler including a power plant and an industrial furnace such as a combustion furnace, an electric furnace, and the like.
  • a pressure sensor 511 may be installed in the main pipe 510 so that the main gas pipe 510 is disposed at the inlet of the flue gas inlet, that is, at the front end of the portion where the outside air supply pipe 520 is connected.
  • the pressure sensor 511 is connected to the control unit 590 and transmits to the controller 590 a signal indicative of the inflow pressure of the flue gas flowing into the main pipe 510.
  • control unit 590 controls the suction fan 570 to control the pressure of the shearing facility, and can control the inflow amount of the flue gas.
  • the inlet pipe temperature sensor 513 may be installed in the main pipe 510 so as to be disposed adjacent to the exhaust gas inlet side of the main pipe 510, that is, adjacent to the pressure sensor 511.
  • the temperature sensor 513 for the inlet portion detects the temperature of the incoming flue gas when the temperature of the flue gas is suddenly raised or lowered and finally detects the temperature of the outside portion of the outside air flowing from the outside air supply pipe 520 to maintain the temperature of the mixing portion 530 at a predetermined temperature
  • the outside air supply pipe 520 is connected to the main pipe 510 and supplies the outside air to the main pipe 510.
  • the outside air supply pipe 520 is provided with a first opening / closing valve 522.
  • the first on-off valve 522 is also connected to the control unit 590 so that the first on-off valve 522 can be opened or closed according to a signal from the first temperature sensor 540.
  • the mixing portion 530 is installed in the main pipe 510 so as to be disposed at the rear end of the portion to which the outside air supply pipe 520 is connected. That is, in the mixing unit 530, the mixed gas of the exhaust gas supplied from the main pipe 510 and the outside air supplied from the outside air supply pipe 520 is mixed with a mixed gas having a chamber shape, a mixer shape, have. Since the mixing unit 530 is disposed in the main pipe 510, even if the inflow amount of the exhaust gas rapidly increases or the temperature of the exhaust gas rises sharply, the exhaust gas and the outside air are mixed in advance in the mixing unit 130, The thermal shock caused by the heat applied to the heat sink can be mitigated.
  • the first temperature sensor 540 is installed in the main pipe 510 so as to be disposed at the rear end of the mixing portion 530.
  • the first temperature sensor 540 passes through the mixing unit 530 and measures the temperature of the fluid flowing through the main pipe 510. Meanwhile, the first temperature sensor 540 may be connected to the controller 590.
  • the control unit 590 operates the first opening / closing valve 522 of the outside air supply pipe 520 in accordance with a signal from the first temperature sensor 540.
  • the first temperature sensor 540 is provided at the rear end of the mixing unit 530 installed in the main pipe 510 to measure the temperature of the mixed gas of the exhaust gas and the outside air passing through the mixing unit 530, 530 to be controlled.
  • the first temperature sensor 140 is disposed at the rear end of the mixing unit 130 in the present embodiment, the first temperature sensor 140 is not limited to the first temperature sensor 140, It is possible.
  • the bypass pipe 550 is connected to the main pipe 510 so as to be disposed at the rear end of the first temperature sensor 540.
  • the bypass pipe 550 may be connected to the main pipe 510 so that the exhaust gas flows without passing through the heat exchanging part 560.
  • bypass pipe 550 may be provided with a second opening / closing valve 512, which will be described later, and a third opening / closing valve 552 for controlling the inflow amount of the exhaust gas flowing into the heat exchanging unit 560.
  • the exhaust gas flows through the main pipe 510 without flowing along the bypass pipe 550. Then, when the third open / close valve 512 is closed and the third open / close valve 552 is opened, the exhaust gas flows only through the bypass pipe 550 and does not flow through the main pipe 510.
  • the amount of inflow of the exhaust gas flowing through the bypass pipe 550 can be adjusted by adjusting the opening and closing degree of the second and third opening / closing valves 512 and 552.
  • the heat exchange unit 560 includes a heat exchanger 562 connected to the main pipe 510.
  • the heat exchanger 560 also includes a heat transfer fluid conduit 564 connected to the heat exchanger 562 for transferring the heat transfer fluid and a heat transfer fluid conduit 564 for measuring the temperature of the heat transfer fluid passing through the heat exchanger 562.
  • a fourth open / close valve 568 installed in the heat transfer fluid pipe 564.
  • the second open / The second temperature sensor 566 is also connected to the control unit 590.
  • the control unit 590 controls the second and third on-off valves 512 and 522 according to a signal from the second temperature sensor 566, (522). Further, the control unit 590 controls the fourth on-off valve 568 in accordance with the signal from the second temperature sensor 566 to control the inflow amount of the heat transfer fluid.
  • the suction fan 570 may be installed in the main pipe 510 so as to be disposed at the rear end of the bypass pipe 550.
  • the suction fan 570 may control the inflow amount of the exhaust gas. That is, the inflow amount of the flue gas flowing into the main pipe 510 and the pressure of the shearing equipment can be adjusted by the suction fan 570.
  • the dust collecting facility 580 is installed in the main pipe 510 so as to be disposed at the front end of the suction fan 570, and can remove dust and other components from the exhaust gas.
  • the control unit 590 is connected to the first temperature sensor 540 and the first on-off valve 522 and controls the first on-off valve 522 according to a signal from the first temperature sensor 540.
  • the inflow amount of the outside air is controlled by controlling the first opening / closing valve 522 according to the temperature of the exhaust gas detected by the first temperature sensor 540 or the temperature of the mixed gas of the exhaust gas and the outside air. Therefore, the temperature of the flue gas mixture passing through the mixing portion 530 can be controlled.
  • the temperature of the exhaust gas or the mixed gas supplied to the heat exchanging unit 560 can be controlled by controlling the temperature of the exhaust gas or the mixed gas passing through the mixing unit 530.
  • the control unit 590 is connected to the second temperature sensor 566 and the second and third on-off valves 512 and 522 and controls the second and third on-off valves 512 and 552 in accordance with a signal from the second temperature sensor 566 .
  • the second and third on-off valves 512 and 522 can be controlled according to the temperature of the heat transfer fluid sensed by the second temperature sensor 566 to control the inflow amount of the flue gas or the mixed gas flowing through the bypass pipe 550 .
  • control unit 590 may be connected to the pressure sensor 511 and the suction fan 570. Accordingly, the inflow amount of the flue gas flowing into the main pipe 510 and the pressure of the shearing facility can be controlled by controlling the suction fan 570 according to the pressure sensed by the pressure sensor 511.
  • control unit 590 is connected to the plurality of sensors and the plurality of valves, so that the control unit 590 can perform overall and complex control of the exhaust gas heat recovery apparatus 100.
  • the outside air is introduced through the outside air supply pipe 520 and mixed with the flue gas in the mixing part 530 disposed on the main pipe 510 side . Accordingly, since the mixed gas of the exhaust gas and the outside air mixed in the mixing section 530 is provided to the heat exchanging section 560, even if the temperature of the exhaust gas rises sharply, heat damage to the heat exchanger 562 can be prevented .
  • the temperature of the mixed gas supplied to the heat exchanging part 560 can be adjusted within the set temperature range, heat damage to the heat exchanger 562 by the exhaust gas can be prevented.
  • the inflow amount of the flue gas flowing into the bypass pipe 550 through the second and third opening / closing valves 512 and 552 can be controlled to further reduce thermal damage of the heat exchanger 562, will be.
  • FIG. 6 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a sixth embodiment of the present invention.
  • the exhaust gas heat recovery apparatus 600 includes a main pipe 510, an outside air supply pipe 520, a mixing unit 530, a first temperature sensor 540, A bypass pipe 550, a heat exchanger 660, a suction fan 570, a dust collector 580, and a controller 590.
  • the main pipe 510, the outside air supply pipe 520, the mixing unit 530, the first temperature sensor 540, the bypass pipe 550, the suction fan 570, and the dust collecting unit 580 are constructed as described above And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
  • the heat exchanging portion 660 includes a heat exchanger 662 connected to the main pipe 510, a conveying member 664 arranged to penetrate the heat exchanger 662, and a conveying member 664 disposed on the conveying member 664, And a third temperature sensor 666 for measuring the temperature.
  • the heat exchanger 662 may be formed to have an internal space and may be connected to a solid (e.g., coal) and a bypass piping (not shown) that is transferred through the transfer member 664 in the interior space of the heat exchanger 662 550 can directly contact the exhaust gas.
  • a solid e.g., coal
  • bypass piping not shown
  • the conveying member 664 may be provided with a speed adjusting device 664a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 664a may be installed on the conveying member 664 to regulate the amount of the solid conveyed through the conveying member 664 in accordance with the inflow amount of the exhaust gas supplied to the main pipe 510.
  • the third temperature sensor 666 is installed on the transfer member 664, the temperature of the solid transferred through the third temperature sensor 666 is measured and the bypass pipe 550 connected to the heat exchanging unit 660 The flow rate of the flowing flue gas can be controlled.
  • the heat damage of the heat exchanger 662 can be further reduced, and the heat recovery efficiency can be further increased.
  • FIG. 7 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a seventh embodiment of the present invention.
  • the exhaust gas heat recovery apparatus 700 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A heat exchange unit 760, a suction fan 170, a dust collecting facility 180, and a control unit 190.
  • the heat exchanger 760 includes a heat exchanger 762 connected to the main pipe 110.
  • Heat exchange portion 760 is also connected to heat exchanger 762 and includes a heat transfer fluid conduit 764 through which heat transfer fluid flows and a heat transfer fluid conduit 764 for measuring the temperature of the heat transfer fluid passing through heat exchanger 762 And a fourth open / close valve 768 installed in the heat transfer fluid pipe 764.
  • the second open / The second temperature sensor 766 is also connected to the controller 190.
  • the controller 190 can control the first open / close valve 122 according to a signal from the second temperature sensor 766. Further, the controller 190 controls the fourth open / close valve 968 in accordance with the signal from the second temperature sensor 766 to control the inflow amount of the heat transfer fluid.
  • FIG. 8 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to an eighth embodiment of the present invention.
  • an exhaust gas heat recovery apparatus 800 includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A heat exchanging unit 860, a suction fan 170, a dust collecting facility 180, and a control unit 190.
  • the heat exchanging portion 860 includes a heat exchanger 862 connected to the main pipe 110, a transfer member 864 arranged to penetrate the heat exchanger 862, and a transfer member 864 disposed on the transfer member 864, And a third temperature sensor 866 for measuring the temperature.
  • the heat exchanger 862 may be formed to have an internal space and may be connected to a solid (such as coal) and a main pipe 110, which are conveyed through a transfer member 864 in the interior space of the heat exchanger 862, Can be directly contacted with the exhaust gas.
  • a solid such as coal
  • main pipe 110 which are conveyed through a transfer member 864 in the interior space of the heat exchanger 862, Can be directly contacted with the exhaust gas.
  • the conveying member 864 may be provided with a speed adjusting device 464a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 864a may be installed on the conveying member 464 to regulate the amount of the solid conveyed through the conveying member 864 in accordance with the inflow amount of the exhaust gas supplied to the main pipe 110.
  • the third temperature sensor 866 is installed on the transfer member 864, the temperature of the solid transferred through the third temperature sensor 866 is measured, and the main pipe 110 connected to the heat exchanging unit 860 It is possible to control the flow rate of the mixed gas of the exhaust gas and the outside air.
  • the heat damage of the heat exchanger 862 can be further reduced, and the heat recovery efficiency can be further increased.
  • FIG. 9 is a schematic configuration diagram of an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention
  • FIGS. 10 to 13 are views showing operation of an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention.
  • One embodiment of the exhaust gas exhaust gas heat recovery apparatus 900 according to the present invention may include an exhaust unit 1000, a waste heat recovery unit 1100, an outside air inflow unit 1200, and a control unit 1300.
  • the exhaust unit 1000 may include an exhaust duct 1010.
  • the exhaust duct 1010 may be connected to a heat facility (not shown) for exhausting the exhaust gas.
  • the exhaust gas discharged from the heat equipment can flow into the exhaust duct 1010 and flow.
  • the heat facility to which the exhaust duct 1010 is connected may be, for example, an industrial plant such as a combustion furnace or an electric furnace, or a boiler included in a power plant.
  • the heat equipment is not particularly limited, and any known means is possible as long as exhaust gas is discharged and the exhaust duct 1010 is connected to allow the exhaust gas to flow into the exhaust duct 1010 to flow.
  • the exhaust unit 1000 may further include an exhaust duct opening / closing damper 1020.
  • the exhaust duct opening / closing damper 1020 is provided in the exhaust duct 1010 to open and close the exhaust duct 1010.
  • the exhaust duct opening / closing damper 1020 is rotatably installed in the exhaust duct 1010 to open and close the exhaust duct 1010.
  • the configuration in which the exhaust duct opening / closing damper 1020 opens and closes the exhaust duct 1010 is not particularly limited, and any known configuration can be employed as long as the exhaust duct 1010 can be opened and closed.
  • the exhaust duct opening / closing damper 1020 may be electrically connected to the controller 1300. Then, the control unit 1300 can actuate, for example, rotate the exhaust duct opening / closing damper 1020 so that the exhaust duct 1010 is opened and closed.
  • the exhaust duct opening and closing damper 1020 is included in the waste heat recovering unit 1100 as shown in FIG. 9 and includes a portion to which a first bypass duct 1120 to be connected, which is connected to the exhaust duct 1010, And may be provided at a portion of the exhaust duct 1010 between the portions to which the pass duct 1130 is connected.
  • the exhaust unit 1000 may further include a fan 1030.
  • the fan 1030 may be provided in the exhaust duct 1010 so that the exhaust gas discharged from the thermal equipment flows into the exhaust duct 1010 and flows.
  • the fan 1030 may be provided at a portion of the exhaust duct 1010 after the portion where the second bypass duct 1130 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas as shown in FIG. .
  • the fan 1030 may be a suction fan.
  • the fan 1030 may be provided at a portion of the exhaust duct 1010 before the portion where the first bypass duct 1120 of the waste heat recovering unit 1100 is connected to the blowing fan in the flow direction of the exhaust gas.
  • the fan 1030 may be electrically connected to the controller 1300.
  • the exhaust gas discharged from the thermal equipment can be introduced into the exhaust duct 1010 as shown in FIGS. 10 to 13, when the exhaust duct opening / closing damper 1020 is opened by the control unit 1300, the exhaust gas flowing into the exhaust duct 1010 flows through the exhaust duct 1010, . 11 and 12, when the exhaust duct opening / closing damper 1020 is closed by the control unit 1300, the exhaust gas flowing into the exhaust duct 1010 bypasses a part of the exhaust duct 1010, After passing through the heat exchanger 1110 included in the recovery unit 1100 and connected to the first bypass duct 1120 and the second bypass duct 1130 and then returned to the exhaust duct 1010, have.
  • control unit 1300 may control the fan 230 to adjust the internal pressure of the heat equipment to which the exhaust duct 1010 is connected.
  • a first temperature sensor ST1 is connected to a portion of the exhaust duct 1010 before the first bypass duct 1120 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas .
  • the first temperature sensor ST1 may be electrically connected to the controller 1300.
  • the temperature of the exhaust gas flowing into the exhaust duct 1010 sensed by the first temperature sensor ST1 may be sent to the controller 1300 in the form of an electric signal, for example.
  • the pressure sensing sensor SP may be provided at a portion of the exhaust duct 1010 before the first bypass duct 1120 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas.
  • the pressure of the exhaust gas flowing into the exhaust duct 1010 can be sensed by the pressure sensor SP. Then, the internal pressure of the heat equipment to which the exhaust duct 1010 is connected can be known.
  • the pressure sensing sensor SP may be electrically connected to the control unit 1300.
  • the pressure of the exhaust gas flowing into the exhaust duct 1010 sensed by the pressure sensor SP may be sent to the controller 1300 in the form of an electric signal, for example.
  • the waste heat recovery unit 1100 may include a heat exchanger 1110.
  • the heat exchanger 1110 can recover the waste heat from the exhaust gas.
  • the heat exchanger 1110 can recover the waste heat of the exhaust gas by heat exchange between the exhaust gas and the heat exchange medium.
  • the heat exchange medium may be air, water, oil, or the like.
  • the heat exchange medium is not particularly limited, and any well-known means may be used as long as heat exchange with the exhaust gas is possible so as to recover waste heat of the exhaust gas.
  • the structure of the heat exchanger 1110 is not particularly limited, and any known structure may be used as long as it is capable of recovering waste heat from the exhaust gas.
  • the heat exchanger 1110 is connected to the exhaust duct 1010 so that the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 bypasses a part of the exhaust duct 1010 and is returned to the exhaust duct 1010 Can be connected.
  • the waste heat recovery unit 1100 may further include a first bypass duct 1120 and a second bypass duct 1130.
  • the first bypass duct 1120 is connected to the exhaust duct 1110 so that the exhaust gas flows from the exhaust duct 1010 of the exhaust unit 1000 to the heat exchanger 1110 as shown in FIGS. 1010 and the heat exchanger 1110.
  • the second bypass duct 1130 may be connected to the heat exchanger 1110 and the exhaust duct 1010 such that the exhaust gas having passed through the heat exchanger 1110 is returned to the exhaust duct 1010.
  • the first bypass duct 1120 and the second bypass duct 1130 may be connected to each other.
  • the first bypass duct 1120 and the second bypass duct 1130 may be integrally connected to each other.
  • the first bypass duct 1120 and the second bypass duct 1130 may be separately connected to each other by welding or the like.
  • the waste heat recovery unit 1100 may further include a first duct opening / closing damper 1140 and a second duct opening / closing damper 1150.
  • the first duct opening / closing damper 1140 is provided in the first bypass duct 1120 to open / close the first bypass duct 1120.
  • the first duct opening / closing damper 1140 is rotatably installed in the first bypass duct 1120 to open / close the first bypass duct 1120.
  • the construction in which the first duct opening / closing damper 1140 opens and closes the first bypass duct 1120 is not particularly limited, and any known structure may be employed as long as the first bypass duct 1120 can be opened and closed Do.
  • the second duct opening / closing damper 1150 is provided in the second bypass duct 1130 to open / close the second bypass duct 1130.
  • the second duct opening / closing damper 1150 is rotatably installed in the second bypass duct 1130 to open and close the second bypass duct 1130.
  • the second duct opening / closing damper 1150 is not particularly limited as long as it can open and close the second bypass duct 1130, Do.
  • the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 may be electrically connected to the control unit 1300, respectively.
  • the controller 1300 operates the first duct opening / closing damper 1140 or the second duct opening / closing damper 1150 to open or close the first bypass duct 1120 or the second bypass duct 1130 .
  • the second temperature sensing sensor ST2 may be provided at a portion of the first bypass duct 1120 between the first duct opening / closing damper 1140 and the heat exchanger 1110 as shown in FIG.
  • the temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 can be sensed by the second temperature sensor ST2.
  • the second temperature sensor ST2 may be electrically connected to the controller 1300. [
  • the temperature of the exhaust gas flowing into the heat exchanger 1110 sensed by the second temperature sensor ST2 may be sent to the controller 1300 in the form of an electric signal, for example.
  • the waste heat recovery unit 1100 may further include a heat exchange medium inlet duct 1160 and a heat exchange medium outlet duct 1170.
  • the heat exchange medium inlet duct 1160 may be connected to the heat exchanger 1110 so that the heat exchange medium may flow to and pass through the heat exchanger 1110.
  • the heat exchange medium discharge duct 1170 can be connected to the heat exchanger 1110 such that the heat exchange medium having passed through the heat exchanger 1110 and recovering the waste heat by heat exchange with the exhaust gas passes through the heat exchanger 1110 and is supplied to the waste heat source .
  • the heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 can be connected to each other.
  • the heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 may be integrally connected to each other.
  • the heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 may be separately connected to each other by welding or the like.
  • the heat exchange medium inlet duct 1160 may be connected to a heat exchange medium source (not shown) in which the heat exchange medium is stored.
  • a pump (not shown) may be provided in the heat exchange medium inlet duct 1160 or the heat exchange medium source. The pump and the like may be electrically connected to the control unit 1300.
  • the heat exchange medium of the heat exchange medium source flows through the heat exchange medium inlet duct 1160 and the heat exchange medium discharge duct 1170 to the heat exchanger 310 ≪ / RTI >
  • the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 are opened by the control unit 1300 and the exhaust duct damper 1020 of the exhaust unit 1000 is closed
  • the exhaust gas flowing into the exhaust duct 1010 can flow to the heat exchanger 1110 by bypassing a part of the exhaust duct 1010 through the first bypass duct 1120.
  • the exhaust gas flowing to the heat exchanger 1110 and passing through the heat exchanger 1110 may be exchanged with the heat exchange medium and then returned to the exhaust duct 1010 through the second bypass duct 1130 to be discharged to the outside.
  • the heat exchange medium discharge duct 1170 may be connected to the waste heat application site.
  • the use of the waste heat can be, for example, an organic Rankine cycle or a carina cycle. However, the place where the waste heat is used is not particularly limited, and any waste heat can be used.
  • the outside air inflow unit 1200 may be connected to the waste heat recovery unit 1100 so that outside air flows into the waste heat recovery unit 1100.
  • the outside air inflow unit 1200 may include an outside air inflow duct 1210 and an outside air duct opening and closing damper 1220.
  • the outside air inlet duct 1210 may be connected to the outside and the first bypass duct 1120 of the waste heat recovery unit 1100.
  • the outside air inflow duct 1210 may be connected to a portion of the first bypass duct 1120 before the first duct opening / closing damper 1140 of the waste heat recovery unit 1100 in the flow direction of the exhaust gas.
  • the outside air duct opening / closing damper 1220 is provided in the outside air inflow duct 1210 to open / close the outside air inflow duct 1210.
  • the outside air duct opening / closing damper 1220 is rotatably installed in the outside air inlet duct 1210 to open and close the outside air inlet duct 1210.
  • the configuration in which the outside-air duct opening / closing damper 1220 opens and closes the outside-air inflow duct 1210 is not particularly limited, and any known structure may be used as long as it can open and close the outside-air inflowing duct 1210.
  • the outdoor duct opening / closing damper 1220 may be electrically connected to the controller 1300.
  • the control unit 1300 can operate, for example, rotate the outside-air duct opening / closing damper 1220 to open and close the outside-air inlet duct 1210.
  • the control unit 1300 can open the outside air duct opening / closing damper 1220.
  • the outdoor air having a lower temperature than the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 flows into the first bypass duct 1120 of the waste heat recovery unit 1100 through the outside air inflow duct 1210 .
  • the temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 of the waste heat recovery unit 1100 can be maintained within a predetermined temperature range.
  • the control unit 1300 can open the outside air duct opening / closing damper 1220 when the temperature of the exhaust gas flowing into the exhaust duct 1010 of the outdoor unit exceeds the predetermined allowable temperature.
  • the outdoor air having a temperature lower than that of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 is exhausted through the first bypass duct 1120 of the outdoor air inlet duct 1210 and the waste heat recovering unit 1100, And may be introduced into the duct 1010.
  • the exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 can be prevented from exceeding the predetermined allowable temperature.
  • the control unit 1300 can control the exhaust unit 1000, the waste heat recovery unit 1100, and the outside air inflow unit 1200.
  • the control unit 1300 controls the exhaust duct opening / closing damper 1020, the fan 1030, the first temperature detecting sensor ST1, the pressure detecting sensor SP, and the waste heat recovering unit 1100 of the exhaust unit 1000, The first duct opening / closing damper 1140, the second duct opening and closing damper 1150, the second temperature detecting sensor ST2 and the outside air duct opening and closing damper 1220 of the outside air inlet unit 1200,
  • the unit 1000, the waste heat recovery unit 1100, and the outdoor unit unit 1200 can be controlled.
  • the control unit 1300 drives the fan 1030 of the exhaust unit 1000 and opens the exhaust duct opening and closing damper 1020 as shown in FIG. 10 and connects the first duct opening and closing damper 1140 of the waste heat recovering unit 1100
  • the second duct opening / closing damper 1150 and the outside air duct opening / closing damper 1220 of the outside air inlet unit 1200 can be closed.
  • the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 from the thermal equipment can be discharged to the outside after flowing through the exhaust duct 1010.
  • the controller 1300 controls the heat exchange medium inlet duct 1160 connected to the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 or the heat exchange medium inlet duct
  • the heat exchange medium of the heat exchange medium source is passed through the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 and the heat exchange medium discharge duct 1170 through the heat exchanger 1110 can do.
  • control unit 1300 opens the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovery unit 1100 and closes the exhaust duct opening / closing damper 1020 of the exhaust unit 1000 .
  • the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 from the thermal equipment bypasses a part of the exhaust duct 1010 and flows through the first bypass duct 1120 and the second bypass duct 1130, Exchanges heat with the heat exchange medium through the heat exchanger 1110, returns to the exhaust duct 1010, and is discharged to the outside.
  • the heat exchange medium can collect the waste heat of the exhaust gas by heat exchange between the exhaust gas in the heat exchanger 1110 and the heat exchange medium.
  • the waste heat recovered by the heat exchange medium may be used by being transferred to the heat exchange medium discharge duct 1170 through a heat exchange medium.
  • the controller 1300 can completely close the exhaust duct opening / closing damper 1020 after a predetermined time since the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 are fully opened. This allows the internal pressure of the thermal equipment, which can be sensed by the pressure sensor SP, to maintain a predetermined pressure range.
  • the control unit 1300 bypasses a part of the exhaust duct 1010 of the exhaust unit 1000 So that the temperature of the exhaust gas flowing into the heat exchanger 1110 can be maintained within a predetermined temperature range with the outside air introduced through the outside air inflow unit 1200.
  • the exhaust gas flowing into the heat exchanger 1110 of the waste heat recovery unit 1100 can be kept within a predetermined temperature range.
  • the heat exchange medium in which the waste heat of the exhaust gas is recovered by the heat exchange with the exhaust gas in the heat exchanger 1110 of the waste heat recovery unit 1100 is supplied to the waste heat utilization source and preheated by the waste heat supplied by the heat exchange medium.
  • the fluctuation of the preheating temperature of air and the production amount of steam can be small, so that the usability of waste heat can be increased.
  • the control unit 1300 controls the outdoor unit
  • the air duct opening / closing damper 1220 of the outdoor unit 1200 can be opened.
  • the outside air having a lower temperature than the exhaust gas flowing into the exhaust duct 1010 flows through the outside air inflow duct 1210 of the outside air inflow unit 1200 to the first bypass duct 1120 of the waste heat recovering unit 1100 And the temperature of the exhaust gas may be lowered.
  • the controller 1300 controls the temperature of the outside air inflow unit 1200 so that the temperature of the exhaust gas flowing into the heat exchanger 1110 of the waste heat recovery unit 1100 sensed by the second temperature sensor ST2 is within a predetermined temperature range.
  • the opening degree of the outside air duct opening / closing damper 1220 of the outside air duct can be adjusted.
  • the temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 of the waste heat recovery unit 1100 can be maintained within a predetermined temperature range.
  • 1300 can prevent the temperature of the exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 from exceeding a predetermined allowable temperature by the outside air flowing through the outside air inflow unit 1200.
  • the outside air duct opening / closing damper 1220 of the outside air inflow unit 1200 can be opened.
  • the outside air having a temperature lower than the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 flows into the outside air inflow duct 1210 of the outside air inflow unit 1200 and the first bypass of the waste heat recovering unit 1100
  • the exhaust gas can flow into the exhaust duct 1010 of the exhaust unit 1000 through the duct 1120 and the temperature of the exhaust gas can be lowered. Therefore, the exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 can be prevented from exceeding the predetermined allowable temperature.
  • the heat exchange medium can be stopped from passing through the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 and the heat exchanger 1110 of the waste heat recovery unit 1100 through the heat exchange medium discharge duct 1170 have.
  • the control unit 1300 controls the flow of the heat exchange medium By stopping the pump or the like, the heat exchange medium can be stopped from passing through the heat exchanger 1110.
  • control unit 1300 opens the exhaust duct opening / closing damper 1020 of the exhaust unit 1000 and closes the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovering unit 1100,
  • the exhaust gas flowing into the exhaust duct 1010 of the unit 1000 flows through the exhaust duct 1010 and is discharged to the outside.
  • the heat exchange medium is heat-exchanged with the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 So that passage through the heat exchanger 1110 through the media discharge duct 1170 can be stopped.
  • the controller 1300 completely closes the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovering unit 1100, and after a predetermined time passes, the exhaust duct opening / (1020) to be fully open. Accordingly, the internal pressure of the thermal equipment, which can be sensed by the pressure sensor SP, can be prevented from suddenly dropping.
  • the temperature of the exhaust gas flowing into the heat exchanger included in the exhaust gas waste heat recovery apparatus for recovering waste heat of the exhaust gas is controlled by the outside air to a predetermined temperature range
  • the utilization efficiency of the waste heat recovered by the exhaust gas waste heat recovery apparatus can be increased.

Abstract

Disclosed is an apparatus for recovering sensible heat of exhaust gas, comprising: a main pipe in which exhaust gas flows through the inside thereof; an external air supply pipe connected to the main pipe, and having a first opening/closing valve; a mixing unit provided at the main pipe so as to be disposed at the rear end of a connecting part of the external air supply pipe on an exhaust gas flow path; a first temperature sensor disposed inside the mixing unit or at the rear end of the mixing unit; a heat exchange unit having a heat exchanger, which is disposed at the rear end of the mixing unit on the exhaust gas flow path so as to exchange heat with the exhaust gas or a mixed gas of the exhaust gas and external air; and a suction fan provided at the main pipe so as to be disposed at the rear end of the heat exchanger.

Description

배가스 현열 회수 장치Flue gas sensible recovery device
본 발명은 배가스 현열 회수 장치에 관한 것이다.The present invention relates to an exhaust gas heat recovery apparatus.
대부분의 산업설비들은 기체, 액체, 고체를 연료 또는 원료로 사용하여 생산품을 제조한 후 열에너지 일부를 대기에 방출하고 있으며, 특히 대표적인 열설비인 연소로, 전기로 등의 공업로와 발전소를 포함한 보일러 등의 열설비에서는 통상 100oC 이상의 배가스를 배출하고 있다. 이들 열설비의 열효율을 향상하고 에너지절감 위해 배열원을 이용하여 공기를 예열하거나 스팀을 생산하기도 한다. Most industrial plants use gas, liquid, and solid as fuel or raw material to produce a product and then release a part of heat energy into the atmosphere. Especially, industrial plants such as combustion furnaces and electric furnaces, which are typical heat equipments, It is usually discharged at 100 o C or higher. In order to improve the thermal efficiency of these thermal equipment and save energy, we use array heaters to preheat the air or produce steam.
그러나 열설비의 운전부하 변동에 의해 배가스 유량 및 온도 변화가 커서 공기 예열온도 및 스팀의 생산량 등의 변동성이 커서 그 활용성이 감소될 수 있다. 이를 해결할 수 있는 일반적인 방법으로는 배열 열교환 시스템에 온도를 측정하여 이를 배열 열교환 시스템의 열회수 유체의 유량을 변화시키는 방법을 사용하거나 By-pass 배관의 유량을 조절하여 배열회수를 수행하는 방법을 사용한다. However, due to the variation of the flow rate and temperature of the flue gas due to the fluctuation of the operation load of the thermal equipment, the volatility of the air preheating temperature and the steam production amount is large, and the utilization thereof may be reduced. As a general method to solve this problem, a method of measuring the temperature in the array heat exchange system and changing the flow rate of the heat recovery fluid of the array heat exchange system is used, or a method of performing the array recovery by adjusting the flow rate of the by- .
하지만, 이러한 방법은 고온의 배가스가 급격하게 배출될 때 배열 열 교환 시스템의 대응이 늦어져 배열 열교환기가 파손되거나 열교환 tube 등의 장기 안정성에 치명적인 악영향을 남기게 된다. However, in this method, when the exhaust gas of high temperature is suddenly discharged, the arrangement heat exchange system is delayed and the array heat exchanger is broken and the long term stability of the heat exchange tube and the like are adversely affected.
또한, By-pass 배관으로 유량을 조절하게 되면 배열회수 열교환기의 열손상은 일부 막을 수 있지만 열회수 효율이 낮아지며 다수의 밸브, 댐프, 센서, IDF 등의 설치로 투자비가 많아지는 문제가 있다.In addition, by controlling the flow rate by the by-pass piping, the heat recovery of the heat recovery heat exchanger can be partially blocked, but the efficiency of heat recovery is low and the investment cost is increased due to installation of a large number of valves, dampers, sensors and IDFs.
열교환기의 열손상 방지, 안정성 제고 및 열회수 효율을 증대시킬 수 있는 배가스 현열 회수 장치가 개시된다.Disclosed is a flue gas sensible heat recovery apparatus capable of preventing heat damage to a heat exchanger, improving stability, and increasing heat recovery efficiency.
본 발명의 일 실시예에 따른 배가스 현열 회수 장치는 배가스가 내부를 통해 흐르는 주배관과, 상기 주배관에 연결되며 제1 개폐밸브가 구비되는 외기공급관과, 배가스의 유동 경로 상 상기 외기공급관의 연결부 후단에 배치되도록 상기 주배관에 설치되는 혼합부와, 상기 혼합부 내 또는 상기 혼합부의 후단에 배치되는 제1 온도센서와, 배가스의 유동 경로 상 상기 혼합부의 후단에 배치되어 배가스 또는 배가스와 외기의 혼합가스와 열교환하는 열교환기를 구비하는 열교환부 및 상기 열교환기의 후단에 배치되도록 주배관에 설치되는 흡입팬을 포함한다.The exhaust gas heat recovery apparatus according to an embodiment of the present invention includes a main pipe through which flue gas flows, an outside air supply pipe connected to the main pipe and having a first opening / closing valve, A first temperature sensor disposed in the mixing section or at a rear stage of the mixing section, and a second temperature sensor disposed at a rear stage of the mixing section on the flow path of the flue gas, wherein the flue gas or the mixed gas of the flue gas and the outside air A heat exchanger having a heat exchanger for exchanging heat and a suction fan installed in a main pipe to be disposed at a rear end of the heat exchanger.
상기한 배가스 현열 회수 장치는 상기 제1 온도센서의 후단에 배치되도록 상기 주배관에 연결되는 바이패스 배관을 더 포함하며, 상기 열교환기는 상기 바이패스 배관에 연결될 수 있다.The exhaust gas heat recovery apparatus may further include a bypass pipe connected to the main pipe to be disposed at a rear end of the first temperature sensor, and the heat exchanger may be connected to the bypass pipe.
상기 주배관에는 상기 바이패스 배관과 상기 주배관의 연결부 사이에 배치되도록 상기 주배관에 설치되는 제2 개폐밸브가 구비되며, 상기 바이패스 배관에는 상기 열교환기의 후단에 배치되도록 상기 바이패스 배관에 설치되는 제3 개폐밸브가 구비될 수 있다.The main pipe is provided with a second on-off valve installed in the main pipe so as to be disposed between the bypass pipe and the main pipe. The bypass pipe is provided with a bypass pipe 3 opening / closing valve may be provided.
상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관을 구비할 수 있다.The heat exchanger may include a pipe for a heat transfer fluid connected to the heat exchanger.
상기 열교환부는 상기 열전달유체용 배관에 설치되는 펌프를 더 구비할 수 있다.The heat exchange unit may further include a pump installed in the piping for the heat transfer fluid.
상기 열교환부는 상기 열교환기의 후단에 배치되도록 열전달유체용 배관에 설치되는 제2 온도센서를 더 구비할 수 있다.The heat exchanger may further include a second temperature sensor installed in a pipe for the heat transfer fluid so as to be disposed at a rear end of the heat exchanger.
상기 열전달유체용 배관은 열기관용 열교환기에 연결될 수 있다.The piping for the heat transfer fluid may be connected to the heat exchanger for the heat pipe.
상기 열교환기는 상기 바이패스 배관에 설치되며, 상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관을 구비할 수 있다.The heat exchanger may be installed in the bypass pipe, and the heat exchanger may include a pipe for the heat transfer fluid connected to the heat exchanger.
상기 열교환기는 상기 바이패스 배관에 연결되며, 고체를 이송하는 이송부재가 관통하도록 배치될 수 있다.The heat exchanger may be connected to the bypass pipe, and may be disposed so that a transfer member for transferring the solid passes therethrough.
상기 열교환부는 상기 열교환기에 설치되는 제3 온도센서를 더 구비할 수 있다.The heat exchanger may further include a third temperature sensor installed in the heat exchanger.
상기 주배관에는 상기 흡입팬의 전단에 배치되는 집진설비가 구비될 수 있다.The main pipe may be provided with a dust collecting device disposed at a front end of the suction fan.
상기 주배관에는 상기 외기공급관의 연결부의 전단에 배치되는 압력센서가 구비될 수 있다.The main pipe may be provided with a pressure sensor disposed at a front end of a connection portion of the outside air supply pipe.
상기 주배관에는 상기 외기공급관의 연결부의 전단에 배치되는 유입부용 온도센서가 구비될 수 있다.The main pipe may be provided with a temperature sensor for the inlet part disposed at the front end of the connection part of the outside air supply pipe.
상기한 배가스 현열 회수 장치는 상기 제1 온도센서 및 제1 개폐밸브에 연결되는 제어부를 더 포함할 수 있다.The exhaust gas heat recovery apparatus may further include a controller connected to the first temperature sensor and the first opening / closing valve.
상기 열교환기는 상기 제1 온도센서의 후단에 배치되도록 상기 주배관에 연결될 수 있다.The heat exchanger may be connected to the main pipe so as to be disposed at a rear end of the first temperature sensor.
상기한 배가스 현열 회수 장치는 일단이 상기 열교환기의 전단에서 상기 주배관에 연결되고 타단이 상기 열교환기의 후단에서 상기 주배관에 연결되는 바이패스 배관을 더 포함할 수 있다.The exhaust gas heat recovery apparatus may further include a bypass pipe having one end connected to the main pipe at a front end of the heat exchanger and the other end connected to the main pipe at a rear end of the heat exchanger.
상기 주배관에는 상기 열교환기의 후단에 배치되도록 제2 개폐밸브가 구비되며, 상기 바이패스 배관에는 제3 개폐밸브가 구비될수 있다.The main pipe is provided with a second opening / closing valve disposed at a rear end of the heat exchanger, and the bypass pipe may be provided with a third opening / closing valve.
상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관과, 상기 열교환기의 후단에 배치되도록 열전달유체용 배관에 설치되는 제2 온도센서를 구비할 수 있다.The heat exchanging unit may include a pipe for the heat transfer fluid connected to the heat exchanger and a second temperature sensor installed in the pipe for the heat transfer fluid to be disposed at the rear end of the heat exchanger.
상기 열교환기는 고체를 이송하는 이송부재가 관통하도록 배치되며, 상기 열교환부는 상기 이송부재를 통해 이송되는 고체의 온도를 측정하기 위한 제4 온도센서를 더 구비할 수 있다.The heat exchanger may further include a fourth temperature sensor for measuring a temperature of a solid conveyed through the conveying member, wherein the conveying member for conveying the solid passes through the heat exchanger.
본 발명의 다른 실시예에 따른 배가스 현열 회수 장치는 배기가스를 배출하는 열설비에 연결되며 열설비로부터 배출된 배기가스가 유입되어 유동하는 배기덕트를 포함하는 배기유닛; 상기 배기덕트에 유입된 배기가스가 상기 배기덕트의 일부를 우회하여 통과한 후 상기 배기덕트로 되돌아가도록 상기 배기덕트에 연결되며 배기가스로부터 폐열을 회수하는 열교환기를 포함하는 폐열회수유닛; 상기 폐열회수유닛에 외기가 유입되도록 상기 폐열회수유닛에 연결되는 외기유입유닛; 및 상기 배기유닛과 폐열회수유닛 및 외기유입유닛을 제어하며 상기 배기덕트의 일부를 우회하여 상기 열교환기로 유동하는 배기가스의 온도가 상기 외기유입유닛을 통해 유입된 외기로 소정의 온도범위 내를 유지하도록 하는 제어부; 를 포함할 수 있다.According to another aspect of the present invention, there is provided an exhaust gas heat recovery apparatus comprising: an exhaust unit connected to a heat facility for exhausting exhaust gas and including an exhaust duct through which exhaust gas discharged from a heat facility flows; A waste heat recovery unit connected to the exhaust duct to recover waste heat from the exhaust gas so that exhaust gas flowing into the exhaust duct bypasses a part of the exhaust duct and then returns to the exhaust duct; An outside air inflow unit connected to the waste heat recovery unit so that outside air flows into the waste heat recovery unit; And a control unit for controlling the exhaust unit, the waste heat recovering unit and the outside air inflow unit so that the temperature of the exhaust gas flowing into the heat exchanger bypassing a part of the exhaust duct is maintained within a predetermined temperature range by the outside air introduced through the outside air inflow unit ; . ≪ / RTI >
이 경우, 상기 폐열회수유닛은 배기가스가 상기 배기덕트로부터 상기 열교환기로 유동하여 통과하도록 상기 배기덕트와 열교환기에 연결되는 제1바이패스덕트와, 상기 열교환기를 통과한 배기가스가 상기 배기덕트로 되돌아가도록 상기 열교환기와 배기덕트에 연결되는 제2바이패스덕트를 더 포함할 수 있다.In this case, the waste heat recovering unit may include a first bypass duct connected to the exhaust duct and the heat exchanger so that exhaust gas flows from the exhaust duct to the heat exchanger, and an exhaust gas passing through the heat exchanger is returned to the exhaust duct And a second bypass duct connected to the heat exchanger and the exhaust duct.
또한, 상기 외기유입유닛은 외부와 상기 제1바이패스덕트에 연결되는 외기유입덕트와, 상기 외기유입덕트에 구비되어 상기 외기유입덕트를 개폐하는 외기덕트개폐댐퍼를 포함할 수 있다.The outside air inflow unit may include an outside air inflow duct connected to the outside and the first bypass duct, and an outside air duct opening / closing damper provided in the outside air inflow duct to open / close the outside air inflow duct.
그리고, 상기 배기유닛은 상기 배기덕트에 구비되어 상기 배기덕트를 개폐하는 배기덕트개폐댐퍼를 더 포함하고, 상기 폐열회수유닛은 상기 제1바이패스덕트에 구비되어 상기 제1바이패스덕트를 개폐하는 제1덕트개폐댐퍼와 상기 제2바이패스덕트에 구비되어 제2바이패스덕트를 개폐하는 제2덕트개폐댐퍼를 더 포함할 수 있다.The exhaust unit may further include an exhaust duct opening / closing damper provided in the exhaust duct to open / close the exhaust duct, and the waste heat recovering unit may include a first bypass duct provided in the first bypass duct to open / And a second duct opening / closing damper provided in the second bypass duct for opening and closing the second bypass duct.
또한, 상기 배기덕트개폐댐퍼는 상기 제1바이패스덕트가 연결되는 부분과 상기 제2바이패스덕트가 연결되는 부분 사이의 상기 배기덕트의 부분에 구비되고, 상기 외기유입덕트는 배기가스의 유동방향으로 상기 제1덕트개폐댐퍼 전의 상기 제1바이패스덕트의 부분에 연결될 수 있다.The exhaust duct opening / closing damper is provided at a portion of the exhaust duct between a portion to which the first bypass duct is connected and a portion to which the second bypass duct is connected, and the outside air inlet duct has a flow direction May be connected to a portion of the first bypass duct before the first duct opening / closing damper.
그리고, 상기 폐열회수유닛은 열교환매체가 상기 열교환기로 유동하여 통과하도록 상기 열교환기에 연결되는 열교환매체유입덕트와, 상기 열교환기를 통과하면서 배기가스와 열교환하여 폐열을 회수한 열교환매체가 상기 열교환기를 통과하여 폐열사용처로 공급되도록 상기 열교환기에 연결되는 열교환매체배출덕트를 더 포함할 수 있다.The waste heat recovering unit includes a heat exchange medium inlet duct connected to the heat exchanger so that the heat exchange medium flows to the heat exchanger, and a heat exchange medium that has recovered waste heat by heat exchange with the exhaust gas while passing through the heat exchanger, passes through the heat exchanger And a heat exchange medium discharge duct connected to the heat exchanger to be supplied to the waste heat utilization site.
또한, 배기가스의 유동방향으로 상기 제1바이패스덕트가 연결되는 부분 전의 상기 배기덕트의 부분에는 상기 배기덕트에 유입되는 배기가스의 온도를 감지하는 제1온도감지센서가 구비되고, 상기 제1덕트개폐댐퍼와 상기 열교환기 사이의 상기 제1바이패스덕트의 부분에는 상기 열교환기로 유동하는 배기가스의 온도를 감지하는 제2온도감지센서가 구비될 수 있다.In addition, a first temperature sensor for sensing the temperature of the exhaust gas flowing into the exhaust duct may be provided at a portion of the exhaust duct before the first bypass duct is connected in the flow direction of the exhaust gas, A second temperature sensor may be provided at a portion of the first bypass duct between the duct opening / closing damper and the heat exchanger to sense the temperature of the exhaust gas flowing to the heat exchanger.
그리고, 상기 제어부는, 열교환매체가 상기 열교환기를 통과하도록 한 후, 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 열고 상기 배기덕트개폐댐퍼를 닫아서 상기 배기덕트에 유입된 배기가스가 우회하여 상기 열교환기를 통과하면서 열교환매체와 열교환한 후 상기 배기덕트로 되돌아가도록 할 수 있다.The control unit opens the first duct opening / closing damper and the second duct opening / closing damper and closes the exhaust duct opening / closing damper so that the exhaust gas flowing into the exhaust duct bypasses the heat exchange medium, Exchanged with the heat exchange medium while passing through the heat exchanger, and then returned to the exhaust duct.
또한, 상기 제어부는, 상기 제1온도감지센서에서 감지된 배기가스의 온도가 소정의 온도범위를 초과하면, 상기 외기덕트개폐댐퍼를 열어서 상기 외기유입덕트를 통해 상기 제1바이패스덕트에 외기가 유입되도록 하며, 상기 제2온도감지센서에서 감지된 배기가스의 온도가 소정의 온도범위 내에 있도록 상기 외기덕트개폐댐퍼의 개방정도를 조절할 수 있다.When the temperature of the exhaust gas sensed by the first temperature sensor exceeds a predetermined temperature range, the control unit opens the outside air duct opening / closing damper to allow the outside air to flow into the first bypass duct through the outside air inlet duct And the opening degree of the outside air duct opening / closing damper is adjusted so that the temperature of the exhaust gas sensed by the second temperature sensor is within a predetermined temperature range.
그리고, 상기 제어부는, 상기 배기덕트에 유입된 배기가스가 우회하여 상기 열교환기를 통과하지 않고 상기 배기덕트를 유동하여 외부로 배출되는 경우에, 상기 외기유입유닛을 통해 유입된 외기로 상기 배기덕트를 유동하는 배기가스의 온도가 소정의 허용온도를 초과하지 않도록 할 수 있다.When the exhaust gas flowing into the exhaust duct flows through the exhaust duct without passing through the heat exchanger and is discharged to the outside, the control unit controls the exhaust duct by the outside air introduced through the outside air inlet unit It is possible to prevent the temperature of the flowing exhaust gas from exceeding the predetermined allowable temperature.
또한, 상기 제어부는, 상기 제1온도감지센서에서 감지된 배기가스의 온도가 소정의 허용온도를 초과하면, 상기 외기덕트개폐댐퍼를 열어서 상기 외기유입덕트와 제1바이패스덕트를 통해 상기 배기덕트에 외기가 유입되도록 할 수 있다.When the temperature of the exhaust gas sensed by the first temperature sensor exceeds a predetermined allowable temperature, the control unit opens the outside air duct opening / closing damper to open the outside air inlet opening / closing damper and the exhaust duct through the outside air inlet duct and the first bypass duct, So that the outside air can be introduced.
그리고, 상기 제어부는 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 완전히 열고 난 후 소정 시간 후에 상기 배기덕트개폐댐퍼가 완전히 닫히도록 할 수 있다.The control unit may completely close the exhaust duct opening / closing damper after a predetermined time after completely opening the first duct opening / closing damper and the second duct opening / closing damper.
또한, 상기 제어부는, 상기 배기덕트개폐댐퍼를 열고 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 닫아서 상기 배기덕트에 유입된 배기가스가 상기 배기덕트를 유동하여 외부로 배출되도록 한 후, 열교환매체가 상기 열교환기를 통과하는 것이 중지되도록 할 수 있다.The control unit opens the exhaust duct opening / closing damper and closes the first duct opening / closing damper and the second duct opening / closing damper so that the exhaust gas flowing into the exhaust duct flows through the exhaust duct to be discharged to the outside, The medium can be prevented from passing through the heat exchanger.
그리고, 상기 제어부는 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 완전히 닫고 난 후 소정 시간 후에 상기 배기덕트개폐댐퍼가 완전히 열리도록 할 수 있다.The control unit may completely open the first duct opening / closing damper and the second duct opening / closing damper so that the exhaust duct opening / closing damper is fully opened after a predetermined time.
열교환기의 열손상 방지, 안정성 제고 및 열회수 효율을 증대시킬 수 있는 효과가 있다.It is possible to prevent heat damage to the heat exchanger, to improve stability, and to improve heat recovery efficiency.
도 1은 본 발명의 제1 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.1 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.2 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.3 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a third embodiment of the present invention.
도 4는 본 발명의 제4 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.4 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fourth embodiment of the present invention.
도 5는 본 발명의 제5 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.5 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fifth embodiment of the present invention.
도 6은 본 발명의 제6 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.6 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a sixth embodiment of the present invention.
도 7은 본 발명의 제7 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.7 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a seventh embodiment of the present invention.
도 8은 본 발명의 제8 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.8 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to an eighth embodiment of the present invention.
도 9는 본 발명의 제9 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.9 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention.
도 10 내지 도 13은 본 발명의 제9 실시예에 따른 배가스 현열 회수 장치의 작동을 나타내는 도면이다.10 to 13 are views showing the operation of the exhaust gas heat recovery apparatus according to the ninth embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art. The shape and size of elements in the drawings may be exaggerated for clarity.
도 1은 본 발명의 제1 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.1 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 배가스 현열 회수 장치(100)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 열교환부(160), 흡입팬(170), 집진설비(180) 및 제어부(190)를 포함하여 구성될 수 있다.1, the flue gas sensible heat recovery apparatus 100 according to the first embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 160, a suction fan 170, a dust collector 180, and a controller 190.
주배관(110)을 통해서는 배가스가 흐른다. 일예로서, 주배관(110)은 대표적인 열설비인 연소로, 전기로 등의 공업로와 발전소를 포함한 보일러 등의 열설비에 연결될 수 있다.An exhaust gas flows through the main pipe (110). As an example, the main pipe 110 may be connected to a thermal facility such as a boiler including a power plant and an industrial furnace such as a combustion furnace, an electric furnace, and the like.
한편, 주배관(110)의 배가스 유입부 측, 즉 외기공급관(120)이 연결된 부분의 전단에 배치되도록 주배관(110)에는 압력센서(111)가 설치될 수 있다. 한편, 압력센서(111)는 제어부(190)에 연결되어 주배관(110)으로 유입되는 배가스의 유입 압력에 대한 신호를 제어부(190)로 전송한다.A pressure sensor 111 may be installed in the main pipe 110 so that the main pipe 110 is located at the inlet of the flue gas inlet, that is, at the front end of the portion where the outside air supply pipe 120 is connected. The pressure sensor 111 is connected to the control unit 190 and transmits a signal to the control unit 190 about the inflow pressure of the flue gas flowing into the main pipe 110.
이를 통해, 제어부(190)는 흡입팬(170)을 제어하여 전단 설비의 압력을 제어할 수 있으며, 배가스의 유입량을 제어할 수 있다.Accordingly, the control unit 190 controls the suction fan 170 to control the pressure of the shearing facility and to control the inflow amount of the flue gas.
또한, 주배관(110)의 배가스 유입부 측, 즉 압력센서(111)에 인접 배치되도록 주배관(110)에는 유입부용 온도센서(113)가 설치될 수 있다. 유입부용 온도센서(113)는 유입되는 배가스의 온도가 급격하게 상승하거나 하강하는 경우 이를 감지하여 최종적으로 혼합부(130)의 온도를 일정온도로 유지시키기 위해 외기공급관(120)으로부터 유입되는 외기의 유입량을 선행하여 결정하기 위하여 주배관(110)에 설치될 수 있다.The inlet pipe temperature sensor 113 may be installed in the main pipe 110 so as to be disposed adjacent to the exhaust gas inlet side of the main pipe 110, that is, adjacent to the pressure sensor 111. The temperature sensor 113 for the inlet portion detects the temperature of the incoming flue gas when the temperature of the flue gas is suddenly raised or lowered and finally detects the temperature of the outside portion of the outside air supplied from the outside air supply pipe 120 to maintain the temperature of the mixing portion 130 at a predetermined temperature. And may be installed in the main pipe 110 to determine the inflow amount in advance.
외기공급관(120)은 주배관(110)에 연결되며 주배관(110)으로 외기가 공급되도록 한다. 한편, 외기공급관(120)에는 제1 개폐밸브(122)가 구비된다. 또한, 제1 개폐밸브(122)도 제어부(190)에 연결되어 제1 온도센서(140)의 신호에 따라 제1 개폐밸브(122)가 개폐될 수 있다.The outside air supply pipe 120 is connected to the main pipe 110 and supplies the outside air to the main pipe 110. On the other hand, the outside air supply pipe 120 is provided with a first opening / closing valve 122. The first on-off valve 122 is also connected to the controller 190 so that the first on-off valve 122 can be opened or closed according to a signal from the first temperature sensor 140.
혼합부(130)는 외기공급관(120)이 연결되는 부분의 후단에 배치되도록 주배관(110)에 설치된다. 즉, 혼합부(130)에서는 주배관(110)으로부터 공급되는 배가스와 외기공급관(120)으로부터 공급되는 외기가 혼합되는 영역으로, 일예로서 챔버 형상, 믹서(mixer) 형상 또는 긴 관 형상 등을 가질 수 있다. 이와 같이, 혼합부(130)가 주배관(110)에 배치되므로, 배가스의 유입량이 급속하게 증가하거나 배가스의 온도가 급격하게 상승하더라도 혼합부(130)에서 미리 배가스와 외기가 혼합됨으로써 열교환부(160)에 가해지는 열에 의한 열충격을 완화시킬 수 있다.The mixing portion 130 is installed in the main pipe 110 so as to be disposed at the rear end of the portion to which the outside air supply pipe 120 is connected. That is, the mixing unit 130 is a region where the exhaust gas supplied from the main pipe 110 and the outside air supplied from the outside air supply pipe 120 are mixed. For example, the mixing unit 130 may have a chamber shape, a mixer shape, have. Since the mixing unit 130 is disposed in the main pipe 110, even if the inflow amount of the flue gas rapidly increases or the temperature of the flue gas abruptly increases, the flue gas and the outside air are mixed in advance in the mixing unit 130, The thermal shock caused by the heat applied to the heat sink can be mitigated.
제1 온도센서(140)는 혼합부(130)의 후단에 배치되도록 주배관(110)에 설치된다. 그리고, 제1 온도센서(140)는 혼합부(130)를 통과하여 주배관(110)을 흐르는 가스의 온도를 측정한다. 한편, 제1 온도센서(140)는 제어부(190)에 연결될 수 있다. 제어부(190)는 제1 온도센서(140)로부터의 신호에 따라 외기공급관(120)의 제1 개폐밸브(122)를 작동시킨다. 이와 같이, 주배관(110)에 설치되는 혼합부(130)의 후단에 제1 온도센서(140)가 설치되어 혼합부(130)를 통과하는 배가스와 외기의 혼합가스의 온도를 측정하여 혼합부(130)로 공급되는 외기의 유입량이 조절되도록 한다.The first temperature sensor 140 is installed in the main pipe 110 so as to be disposed at the rear end of the mixing unit 130. The first temperature sensor 140 measures the temperature of the gas flowing through the main pipe 110 through the mixing unit 130. Meanwhile, the first temperature sensor 140 may be connected to the controller 190. The control unit 190 operates the first opening / closing valve 122 of the outside air supply pipe 120 according to a signal from the first temperature sensor 140. The first temperature sensor 140 is disposed downstream of the mixing unit 130 installed in the main pipe 110 to measure the temperature of the mixed gas of the exhaust gas and the outside air passing through the mixing unit 130, 130 are controlled.
한편, 본 실시예에서는 제1 온도센서(140)가 혼합부(130)의 후단에 배치되는 경우를 설명하고 있으나, 이에 한정되지 않고 제1 온도센서(140)는 혼합부(130)에 설치될 수도 있다.Although the first temperature sensor 140 is disposed at the rear end of the mixing unit 130 in the present embodiment, the first temperature sensor 140 is not limited to the first temperature sensor 140, It is possible.
바이패스 배관(150)은 제1 온도센서(140)의 후단에 배치되도록 주배관(110)에 연결된다. 일예로서, 바이패스 배관(150)은 주배관(110)에서 열교환부(160)로 배가스가 유동되도록 하는 제1 바이패스 배관(152)과, 열교환부(160)로부터 주배관(110)으로 유동되도록 하는 제2 바이패스 배관(154)을 구비할 수 있다.The bypass pipe 150 is connected to the main pipe 110 so as to be disposed at the rear end of the first temperature sensor 140. For example, the bypass piping 150 includes a first bypass piping 152 for allowing the flue gas to flow from the main piping 110 to the heat exchanging unit 160 and a second bypass piping 152 for allowing the exhaust gas to flow from the heat exchanging unit 160 to the main piping 110 And a second bypass pipe 154 may be provided.
한편, 바이패스 배관(150)으로의 배가스의 유입량은 주배관(110)에 설치되는 제2 개폐밸브(112)와, 바이패스 배관(150)의 제2 바이패스 배관(154)에 설치되는 제3 개폐밸브(156)에 의해 조정될 수 있다.The amount of inflow of the flue gas into the bypass piping 150 is controlled by the second on-off valve 112 installed in the main piping 110 and the third on-off valve 112 installed in the second bypass piping 154 of the bypass piping 150. [ And can be adjusted by the opening / closing valve 156.
일예로서, 제3 개폐밸브(156)가 폐쇄되고 제2 개폐밸브(112)가 개방되는 경우 배가스는 바이패스 배관(150)을 따라 흐르지 않고 주배관(110)을 통해서만 흐른다. 그리고, 제2 개폐밸브(112)가 폐쇄되고 제3 개폐밸브(156)가 개방되는 경우 배가스는 바이패스 배관(150)을 따라 흐르고 주배관(110)을 통해서는 흐르지 않는다.For example, when the third on-off valve 156 is closed and the second on-off valve 112 is opened, the exhaust gas flows only through the main pipe 110 without flowing along the bypass pipe 150. When the second on-off valve 112 is closed and the third on-off valve 156 is opened, the exhaust gas flows along the bypass pipe 150 and does not flow through the main pipe 110.
즉, 제2,3 개폐밸브(112,156)의 개폐정도를 조절하여 바이패스 배관(150)로 유입되는 배가스의 유입량을 조절할 수 있는 것이다.That is, the opening / closing degree of the second and third opening / closing valves 112 and 156 can be adjusted to control the inflow amount of the exhaust gas flowing into the bypass pipe 150.
열교환부(160)는 바이패스 배관(150)에 연결되는 열교환기(162)를 구비한다. 또한, 열교환부(160)는 열교환기(162)에 연결되며 열전달유체가 흐르는 열전달유체용 배관(164), 열전달유체용 배관(164)에 설치되는 펌프(166) 및 열교환기(162)를 통과한 열전달유체의 온도를 측정하도록 열전달유체용 배관(164)에 설치되는 제2 온도센서(168)를 구비할 수 있다. 제2 온도센서(168)도 제어부(190)에 연결되며, 제2 온도센서(168)로부터의 신호에 따라 제어부(190)는 제2,3 개폐밸브(112,156)를 제어하는 동시에 제1 개폐밸브(122)를 제어할 수 있다. 나아가, 제어부(190)는 제2 온도센서(168)로부터의 신호에 따라 펌프(166)를 제어하여 열전달유체의 유입량을 제어할 수 있다.The heat exchanging unit 160 includes a heat exchanger 162 connected to the bypass pipe 150. The heat exchanger 160 is connected to the heat exchanger 162 and passes through the heat transfer fluid pipe 164 through which the heat transfer fluid flows, the pump 166 installed in the heat transfer fluid pipe 164, and the heat exchanger 162 And a second temperature sensor 168 installed in the heat transfer fluid pipe 164 to measure the temperature of one heat transfer fluid. The second temperature sensor 168 is also connected to the control unit 190. The control unit 190 controls the second and third on-off valves 112 and 156 according to a signal from the second temperature sensor 168, It is possible to control the display unit 122. Further, the control unit 190 may control the pump 166 according to the signal from the second temperature sensor 168 to control the inflow amount of the heat transfer fluid.
흡입팬(170)은 바이패스 배관(150)의 후단에 배치되도록 주배관(110)에 설치될 수 있다. 흡입팬(170)은 배가스의 유입량을 조절하는 역할을 수행할 수 있다. 즉, 흡입팬(170)에 의해 주배관(110)으로 유입되는 배가스의 유입량 및 전단설비의 압력을 조절할 수 있다.The suction fan 170 may be installed in the main pipe 110 so as to be disposed at the rear end of the bypass pipe 150. The suction fan 170 may control the inflow amount of the flue gas. That is, the inflow amount of the flue gas flowing into the main pipe 110 and the pressure of the shearing equipment can be adjusted by the suction fan 170.
집진설비(180)는 흡입팬(170)의 전단에 배치되도록 주배관(110)에 설치되어 배가스로부터 더스트 및 기타 일정 성분을 제거하는 역할을 수행할 수 있다.The dust collecting facility 180 is installed in the main pipe 110 so as to be disposed at the front end of the suction fan 170, and can remove dust and other components from the exhaust gas.
제어부(190)는 제1 온도센서(140) 및 제1 개폐밸브(122)에 연결되며, 제1 온도센서(140)로부터의 신호에 따라 제1 개폐밸브(122)를 제어한다. 이와 같이, 제1 온도센서(140)에서 감지되는 배가스 또는 배가스와 외기의 혼합가스의 온도에 따라 제1 개폐밸브(122)를 제어하여 외기의 유입량을 조절한다. 따라서, 혼합부(130)를 통과하는 배가스 혼합가스의 온도를 제어할 수 있는 것이다.The control unit 190 is connected to the first temperature sensor 140 and the first on-off valve 122 and controls the first on-off valve 122 according to a signal from the first temperature sensor 140. In this way, the inflow amount of the outside air is controlled by controlling the first opening / closing valve 122 according to the temperature of the flue gas sensed by the first temperature sensor 140 or the mixed gas of the exhaust gas and the outside air. Therefore, the temperature of the flue gas mixture passing through the mixing section 130 can be controlled.
이와 같이, 혼합부(130)를 통과하는 배가스 또는 혼합가스의 온도를 제어하여 열교환부(160)로 제공되는 배가스 또는 혼합가스의 온도, 즉 회수 열에너지량을 조절할 수 있는 것이다.In this way, the temperature of the exhaust gas or the mixed gas supplied to the heat exchanging unit 160 can be controlled by controlling the temperature of the exhaust gas or the mixed gas passing through the mixing unit 130, that is, the amount of recovered heat energy.
또한, 제어부(190)는 제2 온도센서(168) 및 제2,3 개폐밸브(112,156)에 연결되며, 제2 온도센서(168)로부터의 신호에 따라 제2,3 개폐밸브(112,156)를 제어한다. 이와 같이, 제2 온도센서(168)에서 감지되는 열전달유체의 온도에 따라 제2,3 개폐밸브(112,156)를 제어하여 바이패스 배관(150)을 통해 유동하는 배가스 또는 혼합가스의 유입량을 조절할 수 있다.The control unit 190 is connected to the second temperature sensor 168 and the second and third on-off valves 112 and 156 and controls the second and third on-off valves 112 and 156 according to a signal from the second temperature sensor 168 . The second and third on-off valves 112 and 156 are controlled according to the temperature of the heat transfer fluid sensed by the second temperature sensor 168 to control the inflow amount of the flue gas or the mixed gas flowing through the bypass pipe 150 have.
나아가, 제어부(190)는 압력센서(111), 온도센서(113) 및 흡입팬(170)에 연결될 수 있다. 이에 따라, 압력센서(111)로부터 감지되는 압력에 따라 흡입팬(170)을 제어하여 주배관(110)으로 유입되는 배가스의 유입량 및 전단 설비의 압력을 제어할 수 있다.Further, the control unit 190 may be connected to the pressure sensor 111, the temperature sensor 113, and the suction fan 170. Accordingly, the inflow amount of the flue gas flowing into the main pipe 110 and the pressure of the shearing equipment can be controlled by controlling the suction fan 170 according to the pressure sensed by the pressure sensor 111.
이와 같이, 제어부(190)가 복수개의 센서 및 복수개의 밸브에 연결되어 제어부(190)가 배가스 현열 회수 장치(100)의 전반적이고 복합적인 제어를 수행할 수 있다.In this way, the control unit 190 is connected to the plurality of sensors and the plurality of valves, so that the control unit 190 can perform overall and complex control of the exhaust gas heat recovery apparatus 100.
상기한 바와 같이, 주배관(110)을 통해 유동하는 배가스의 온도가 너무 높은 경우 외기공급관(120)을 통해 외기가 유입되도록 하여 주배관(110) 측에 배치되는 혼합부(130)에서 배가스와 혼합시킬 수 있다. 이에 따라, 혼합부(130)에서 혼합된 배가스와 외기의 혼합가스가 열교환부(160)로 제공되므로, 배가스의 온도가 급격하게 상승하는 경우에도 열교환기(162)에 가해지는 열손상을 방지할 수 있다. As described above, when the temperature of the flue gas flowing through the main pipe 110 is excessively high, the outside air is introduced through the outside air supply pipe 120 and mixed with the flue gas in the mixing part 130 disposed on the main pipe 110 side . Accordingly, since the mixed gas of the exhaust gas and the outside air mixed in the mixing section 130 is provided to the heat exchanging section 160, even if the temperature of the exhaust gas rises sharply, heat damage to the heat exchanger 162 can be prevented .
또한, 열교환부(160)로 제공되는 혼합가스의 온도를 설정온도 범위 내로 맞출 수 있으므로, 결국 배가스에 의한 열교환기(162)의 열손상을 방지할 수 있는 것이다.In addition, since the temperature of the mixed gas supplied to the heat exchanging unit 160 can be adjusted within the set temperature range, thermal damage to the heat exchanger 162 by the exhaust gas can be prevented.
나아가, 제2,3 개폐밸브(112,156)를 통해 바이패스 배관(150)으로 유동하는 배가스의 유량 및 온도를 조절하여 열교환기(162)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Further, the flow rate and the temperature of the exhaust gas flowing to the bypass pipe 150 through the second and third opening / closing valves 112 and 156 can be adjusted to further reduce heat damage to the heat exchanger 162, You can.
도 2는 본 발명의 제2 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.2 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a second embodiment of the present invention.
도 2를 참조하면, 본 발명의 제2 실시예에 따른 배가스 현열 회수 장치(200)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 열교환부(260), 흡입팬(170), 집진설비(180) 및 제어부(190)를 포함하여 구성될 수 있다.2, an exhaust gas heat recovery apparatus 200 according to a second embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 260, a suction fan 170, a dust collector 180, and a controller 190.
한편, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 흡입팬(170), 집진설비(180)는 상기에서 설명한 구성요소와 동일한 구성요소에 해당하므로, 여기서는 자세한 설명을 생략하고 상기한 설명에 갈음하기로 한다.The main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
열교환부(260)는 바이패스 배관(150)에 연결되는 열교환기(262)와, 열교환기에 연결되는 열전달유체용 배관(264), 열전달유체용 배관(264)에 설치되는 펌프(266)와, 열교환기(262)의 후단에 배치되도록 열전달유체용 배관(264)에 설치되는 제2 온도센서(268)을 구비할 수 있다.The heat exchange unit 260 includes a heat exchanger 262 connected to the bypass pipe 150, a heat transfer fluid pipe 264 connected to the heat exchanger, a pump 266 installed in the heat transfer fluid pipe 264, And a second temperature sensor 268 installed in the heat transfer fluid pipe 264 so as to be disposed at the rear end of the heat exchanger 262.
또한, 열교환부(260)에는 열전달유체와의 열전달을 위한 열기관용 열교환기(269)가 구비될 수 있다. 열기관용 열교환기(269)에는 열기관용 유체가 유동하는 열기관용 유체 배관(269a)이 연결될 수 있다.The heat exchanger 260 may be provided with a heat exchanger 269 for heat transfer with the heat transfer fluid. The heat pipe heat exchanger 269 may be connected to a fluid pipe 269a for the thermo tube through which the thermo tube fluid flows.
도 3은 본 발명의 제3 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.3 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a third embodiment of the present invention.
도 3을 참조하면, 본 발명의 제3 실시예에 따른 배가스 현열 회수 장치(300)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 열교환부(360), 흡입팬(170), 집진설비(180) 및 제어부(190)를 포함하여 구성될 수 있다.3, the exhaust gas heat recovery apparatus 300 according to the third embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 360, a suction fan 170, a dust collector 180, and a controller 190.
한편, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 흡입팬(170), 집진설비(180)는 상기에서 설명한 구성요소와 동일한 구성요소에 해당하므로, 여기서는 자세한 설명을 생략하고 상기한 설명에 갈음하기로 한다.The main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
열교환부(360)는 바이패스 배관(150)이 내부를 관통하도록 배치되는 열교환기(362)와, 열교환기(362)를 통과하여 바이패스 배관(150)과 열교환하는 열전달유체용 배관(364) 및 열교환기(362)에 설치되어 열교환기(362)의 온도를 측정하기 위한 제3 온도센서(366)를 구비할 수 있다.The heat exchanging unit 360 includes a heat exchanger 362 arranged to pass the bypass pipe 150 therethrough and a heat transfer fluid pipe 364 passing through the heat exchanger 362 and exchanging heat with the bypass pipe 150, And a third temperature sensor 366 installed in the heat exchanger 362 for measuring the temperature of the heat exchanger 362.
이와 같이, 제3 온도센서(366)를 통해 열교환기(362)의 내부 온도를 측정하여 열교환부(360)에 연결되는 바이패스 배관(150)을 통해 유입되는 배가스의 유입량을 조절할 수 있다.In this way, the internal temperature of the heat exchanger 362 is measured through the third temperature sensor 366, and the inflow amount of the exhaust gas flowing through the bypass pipe 150 connected to the heat exchanger 360 can be controlled.
따라서, 열교환기(362)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Therefore, the heat damage of the heat exchanger 362 can be further reduced, and the heat recovery efficiency can be further increased.
도 4는 본 발명의 제4 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.4 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fourth embodiment of the present invention.
도 4를 참조하면, 본 발명의 제4 실시예에 따른 배가스 현열 회수 장치(400)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 열교환부(460), 흡입팬(170), 집진설비(180) 및 제어부(190)를포함하여 구성될 수 있다.Referring to FIG. 4, the exhaust gas heat recovery apparatus 400 according to the fourth embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A bypass pipe 150, a heat exchanger 460, a suction fan 170, a dust collector 180, and a controller 190.
한편, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 바이패스 배관(150), 흡입팬(170), 집진설비(180)는 상기에서 설명한 구성요소와 동일한 구성요소에 해당하므로, 여기서는 자세한 설명을 생략하고 상기한 설명에 갈음하기로 한다.The main pipe 110, the outside air supply pipe 120, the mixing unit 130, the first temperature sensor 140, the bypass pipe 150, the suction fan 170, and the dust collecting unit 180 are constructed as described above. And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
열교환부(460)는 바이패스 배관(150)이 연결되는 열교환기(462)와, 열교환기(462)를 관통하도록 배치되는 이송부재(464) 및 및 열교환기(462)에 설치되어 열교환기(462)의 온도를 측정하기 위한 제3 온도센서(466)를 구비할 수 있다.The heat exchanging unit 460 includes a heat exchanger 462 to which the bypass pipe 150 is connected, a transfer member 464 disposed to pass through the heat exchanger 462, and a heat exchanger And a third temperature sensor 466 for measuring the temperature of the second temperature sensor 462.
일예로서, 열교환기(462)는 내부 공간을 가지도록 형성될 수 있으며, 열교환기(462) 내부 공간에서 이송부재(464)를 통해 이송되는 고체(예를 들어, 석탄 등)와 바이패스 배관(150)을 통해 공급되는 배가스가 직접 접촉할 수 있다.For example, the heat exchanger 462 may be formed to have an internal space, and may be formed of a solid (e.g., coal) and a bypass pipe (not shown) that are transferred through the transfer member 464 in the internal space of the heat exchanger 462 150 may be in direct contact with the exhaust gas.
그리고, 이송부재(464)에는 이송되는 고체의 이송량을 조절하기 위한 속도조절장치(464a)가 구비될 수 있다. 즉, 바이패스 배관(150)으로 공급되는 배가스의 유입량에 맞추어 이송부재(464)를 통해 이송되는 고체의 이송량을 조절하기 위하여 속도조절장치(464a)가 이송부재(464)에 설치될 수 있다.The conveying member 464 may be provided with a speed adjusting device 464a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 464a may be installed on the conveying member 464 to regulate the amount of the solid conveyed through the conveying member 464 in accordance with the inflow amount of the exhaust gas supplied to the bypass pipe 150.
한편, 제3 온도센서(466)가 열교환기(462)에 설치되므로, 제3 온도센서(466)를 통해 열교환기(462)의 내부 온도를 측정하여 열교환부(460)에 연결되는 바이패스 배관(150)로 유입되는 배가스의 유입량을 조절할 수 있다.Since the third temperature sensor 466 is installed in the heat exchanger 462, the internal temperature of the heat exchanger 462 is measured through the third temperature sensor 466 and the bypass pipe 462, which is connected to the heat exchanger 460, The inflow amount of the flue gas introduced into the flue 150 can be controlled.
따라서, 열교환기(462)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Therefore, the heat damage of the heat exchanger 462 can be further reduced, and the heat recovery efficiency can be further increased.
도 5는 본 발명의 제5 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.5 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a fifth embodiment of the present invention.
도 5를 참조하면, 본 발명의 제5 실시예에 따른 배가스 현열 회수 장치(500)는 일예로서, 주배관(510), 외기공급관(520), 혼합부(530), 제1 온도센서(540), 바이패스 배관(550), 열교환부(560), 흡입팬(570), 집진설비(580) 및 제어부(590)를포함하여 구성될 수 있다.5, the exhaust gas heat recovery apparatus 500 according to the fifth embodiment of the present invention includes a main pipe 510, an outside air supply pipe 520, a mixing unit 530, a first temperature sensor 540, A bypass pipe 550, a heat exchanging unit 560, a suction fan 570, a dust collecting unit 580, and a control unit 590.
주배관(510)을 통해서는 배가스가 내부를 통해 흐른다. 일예로서, 주배관(510)은 대표적인 열설비인 연소로, 전기로 등의 공업로와 발전소를 포함한 보일러 등의 열설비에 연결될 수 있다.Through the main pipe (510), the exhaust gas flows through the inside. As an example, the main pipe 510 may be connected to a thermal facility such as a boiler including a power plant and an industrial furnace such as a combustion furnace, an electric furnace, and the like.
한편, 주배관(510)의 배가스 유입부 측, 즉 외기공급관(520)이 연결된 부분의 전단에 배치되도록 주배관(510)에는 압력센서(511)가 설치될 수 있다. 한편, 압력센서(511)는 제어부(590)에 연결되어 주배관(510)으로 유입되는 배가스의 유입 압력에 대한 신호를 제어부(590)로 전송한다.A pressure sensor 511 may be installed in the main pipe 510 so that the main gas pipe 510 is disposed at the inlet of the flue gas inlet, that is, at the front end of the portion where the outside air supply pipe 520 is connected. The pressure sensor 511 is connected to the control unit 590 and transmits to the controller 590 a signal indicative of the inflow pressure of the flue gas flowing into the main pipe 510.
이를 통해, 제어부(590)는 흡입팬(570)을 제어하여 전단 설비의 압력을 제어할 수 있으며, 배가스의 유입량을 제어할 수 있다.Accordingly, the control unit 590 controls the suction fan 570 to control the pressure of the shearing facility, and can control the inflow amount of the flue gas.
또한, 주배관(510)의 배가스 유입부 측, 즉 압력센서(511)에 인접 배치되도록 주배관(510)에는 유입부용 온도센서(513)가 설치될 수 있다. 유입부용 온도센서(513)는 유입되는 배가스의 온도가 급격하게 상승하거나 하강하는 경우 이를 감지하여 최종적으로 혼합부(530)의 온도를 일정온도로 유지시키기 위해 외기공급관(520)으로부터 유입되는 외기의 유입량을 선행하여 결정하기 위하여 주배관(510)에 설치될 수 있다.The inlet pipe temperature sensor 513 may be installed in the main pipe 510 so as to be disposed adjacent to the exhaust gas inlet side of the main pipe 510, that is, adjacent to the pressure sensor 511. The temperature sensor 513 for the inlet portion detects the temperature of the incoming flue gas when the temperature of the flue gas is suddenly raised or lowered and finally detects the temperature of the outside portion of the outside air flowing from the outside air supply pipe 520 to maintain the temperature of the mixing portion 530 at a predetermined temperature And may be installed in the main pipe 510 to determine the inflow amount in advance.
외기공급관(520)은 주배관(510)에 연결되며 주배관(510)으로 외기가 공급되도록 한다. 한편, 외기공급관(520)에는 제1 개폐밸브(522)가 구비된다. 또한, 제1 개폐밸브(522)도 제어부(590)에 연결되어 제1 온도센서(540)의 신호에 따라 제1 개폐밸브(522)가 개폐될 수 있다.The outside air supply pipe 520 is connected to the main pipe 510 and supplies the outside air to the main pipe 510. On the other hand, the outside air supply pipe 520 is provided with a first opening / closing valve 522. The first on-off valve 522 is also connected to the control unit 590 so that the first on-off valve 522 can be opened or closed according to a signal from the first temperature sensor 540.
혼합부(530)는 외기공급관(520)이 연결되는 부분의 후단에 배치되도록 주배관(510)에 설치된다. 즉, 혼합부(530)에서는 주배관(510)으로부터 공급되는 배가스와 외기공급관(520)으로부터 공급되는 외기가 혼합되는 영역으로, 일예로서 챔버 형상, 믹서(mixer) 형상 또는 긴 관 형상 등을 가질 수 있다. 이와 같이, 혼합부(530)가 주배관(510)에 배치되므로, 배가스의 유입량이 급속하게 증가하거나 배가스의 온도가 급격하게 상승하더라도 혼합부(130)에서 미리 배가스와 외기가 혼합됨으로써 열교환부(160)에 가해지는 열에 의한 열충격을 완화시킬 수 있다.The mixing portion 530 is installed in the main pipe 510 so as to be disposed at the rear end of the portion to which the outside air supply pipe 520 is connected. That is, in the mixing unit 530, the mixed gas of the exhaust gas supplied from the main pipe 510 and the outside air supplied from the outside air supply pipe 520 is mixed with a mixed gas having a chamber shape, a mixer shape, have. Since the mixing unit 530 is disposed in the main pipe 510, even if the inflow amount of the exhaust gas rapidly increases or the temperature of the exhaust gas rises sharply, the exhaust gas and the outside air are mixed in advance in the mixing unit 130, The thermal shock caused by the heat applied to the heat sink can be mitigated.
제1 온도센서(540)는 혼합부(530)의 후단에 배치되도록 주배관(510)에 설치된다. 그리고, 제1 온도센서(540)는 혼합부(530)를 통과하여 주배관(510)을 흐르는 유체의 온도를 측정한다. 한편, 제1 온도센서(540)는 제어부(590)에 연결될 수 있다. 제어부(590)는 제1 온도센서(540)로부터의 신호에 따라 외기공급관(520)의 제1 개폐밸브(522)를 작동시킨다. 이와 같이, 주배관(510)에 설치되는 혼합부(530)의 후단에 제1 온도센서(540)가 설치되어 혼합부(530)를 통과하는 배가스와 외기의 혼합가스의 온도를 측정하여 혼합부(530)로 공급되는 외기의 유입량이 조절되도록 한다.The first temperature sensor 540 is installed in the main pipe 510 so as to be disposed at the rear end of the mixing portion 530. The first temperature sensor 540 passes through the mixing unit 530 and measures the temperature of the fluid flowing through the main pipe 510. Meanwhile, the first temperature sensor 540 may be connected to the controller 590. The control unit 590 operates the first opening / closing valve 522 of the outside air supply pipe 520 in accordance with a signal from the first temperature sensor 540. The first temperature sensor 540 is provided at the rear end of the mixing unit 530 installed in the main pipe 510 to measure the temperature of the mixed gas of the exhaust gas and the outside air passing through the mixing unit 530, 530 to be controlled.
한편, 본 실시예에서는 제1 온도센서(140)가 혼합부(130)의 후단에 배치되는 경우를 설명하고 있으나, 이에 한정되지 않고 제1 온도센서(140)는 혼합부(130)에 설치될 수도 있다.Although the first temperature sensor 140 is disposed at the rear end of the mixing unit 130 in the present embodiment, the first temperature sensor 140 is not limited to the first temperature sensor 140, It is possible.
바이패스 배관(550)은 제1 온도센서(540)의 후단에 배치되도록 주배관(510)에 연결된다. 바이패스 배관(550)은 열교환부(560)을 통과하지 않고 배가스가 흐를 수 있도록 주배관(510)에 연결될 수 있다.The bypass pipe 550 is connected to the main pipe 510 so as to be disposed at the rear end of the first temperature sensor 540. The bypass pipe 550 may be connected to the main pipe 510 so that the exhaust gas flows without passing through the heat exchanging part 560.
한편, 바이패스 배관(550)에는 후술할 제2 개폐밸브(512)과 함께 열교환부(560)로 유입되는 배가스의 유입량을 조절하도록 제3 개폐밸브(552)가 구비될 수 있다.On the other hand, the bypass pipe 550 may be provided with a second opening / closing valve 512, which will be described later, and a third opening / closing valve 552 for controlling the inflow amount of the exhaust gas flowing into the heat exchanging unit 560.
일예로서, 제3 개폐밸브(552)가 폐쇄되고 제2 개폐밸브(512)가 개방되는 경우 배가스는 바이패스 배관(550)을 따라 흐르지 않고 주배관(510)을 통해 흐른다.그리고, 제2 개폐밸브(512)가 폐쇄되고 제3 개폐밸브(552)가 개방되는 경우 배가스는 바이패스 배관(550)을 통해서만 흐르고 주배관(510)을 통해서는 흐르지 않는다.For example, when the third on-off valve 552 is closed and the second on-off valve 512 is opened, the exhaust gas flows through the main pipe 510 without flowing along the bypass pipe 550. Then, When the third open / close valve 512 is closed and the third open / close valve 552 is opened, the exhaust gas flows only through the bypass pipe 550 and does not flow through the main pipe 510.
즉, 제2,3 개폐밸브(512,552)의 개폐정도를 조절하여 바이패스 배관(550)을 통해 흐르는 배가스의 유입량을 조절할 수 있는 것이다.That is, the amount of inflow of the exhaust gas flowing through the bypass pipe 550 can be adjusted by adjusting the opening and closing degree of the second and third opening / closing valves 512 and 552.
열교환부(560)는 주배관(510)에 연결되는 열교환기(562)를 구비한다. 또한, 열교환부(560)는 열교환기(562)에 연결되며 열전달유체가 유동하는 열전달유체용 배관(564), 열교환기(562)를 통과한 열전달유체의 온도를 측정하도록 열전달유체용 배관(564)에 설치되는 제2 온도센서(566) 및 열전달유체용 배관(564)에 설치되는 제4 개폐밸브(568)를 구비할 수 있다. 제2 온도센서(566)도 제어부(590)에 연결되며, 제2 온도센서(566)로부터의 신호에 따라 제어부(590)는 제2,3 개폐밸브(512,552)를 제어하는 동시에 제1 개폐밸브(522)를 제어할 수 있다. 나아가, 제어부(590)는 제2 온도센서(566)로부터의 신호에 따라 제4 개폐밸브(568)를 제어하여 열전달유체의 유입량을 제어할 수 있다.The heat exchange unit 560 includes a heat exchanger 562 connected to the main pipe 510. The heat exchanger 560 also includes a heat transfer fluid conduit 564 connected to the heat exchanger 562 for transferring the heat transfer fluid and a heat transfer fluid conduit 564 for measuring the temperature of the heat transfer fluid passing through the heat exchanger 562. [ And a fourth open / close valve 568 installed in the heat transfer fluid pipe 564. The second open / The second temperature sensor 566 is also connected to the control unit 590. The control unit 590 controls the second and third on-off valves 512 and 522 according to a signal from the second temperature sensor 566, (522). Further, the control unit 590 controls the fourth on-off valve 568 in accordance with the signal from the second temperature sensor 566 to control the inflow amount of the heat transfer fluid.
흡입팬(570)은 바이패스 배관(550)의 후단에 배치되도록 주배관(510)에 설치될 수 있다. 흡입팬(570)은 배가스의 유입량을 조절하는 역할을 수행할 수 있다. 즉, 흡입팬(570)에 의해 주배관(510)으로 유입되는 배가스의 유입량 및 전단설비의 압력을 조절할 수 있다.The suction fan 570 may be installed in the main pipe 510 so as to be disposed at the rear end of the bypass pipe 550. The suction fan 570 may control the inflow amount of the exhaust gas. That is, the inflow amount of the flue gas flowing into the main pipe 510 and the pressure of the shearing equipment can be adjusted by the suction fan 570.
집진설비(580)는 흡입팬(570)의 전단에 배치되도록 주배관(510)에 설치되어 배가스로부터 더스트 및 기타 일정 성분을 제거하는 역할을 수행할 수 있다.The dust collecting facility 580 is installed in the main pipe 510 so as to be disposed at the front end of the suction fan 570, and can remove dust and other components from the exhaust gas.
제어부(590)는 제1 온도센서(540) 및 제1 개폐밸브(522)에 연결되며, 제1 온도센서(540)로부터의 신호에 따라 제1 개폐밸브(522)를 제어한다. 이와 같이, 제1 온도센서(540)에서 감지되는 배가스 또는 배가스와 외기의 혼합가스의 온도에 따라 제1 개폐밸브(522)를 제어하여 외기의 유입량을 조절한다. 따라서, 혼합부(530)를 통과하는 배가스 혼합가스의 온도를 제어할 수 있는 것이다.The control unit 590 is connected to the first temperature sensor 540 and the first on-off valve 522 and controls the first on-off valve 522 according to a signal from the first temperature sensor 540. Thus, the inflow amount of the outside air is controlled by controlling the first opening / closing valve 522 according to the temperature of the exhaust gas detected by the first temperature sensor 540 or the temperature of the mixed gas of the exhaust gas and the outside air. Therefore, the temperature of the flue gas mixture passing through the mixing portion 530 can be controlled.
이와 같이, 혼합부(530)를 통과하는 배가스 또는 혼합가스의 온도를 제어하여 열교환부(560)로 제공되는 배가스 또는 혼합가스의 온도, 즉 회수 열에너지량을 조절할 수 있는 것이다.Thus, the temperature of the exhaust gas or the mixed gas supplied to the heat exchanging unit 560, that is, the amount of recovered heat energy, can be controlled by controlling the temperature of the exhaust gas or the mixed gas passing through the mixing unit 530.
또한, 제어부(590)는 제2 온도센서(566) 및 제2,3 개폐밸브(512,552)에 연결되며, 제2 온도센서(566)로부터의 신호에 따라 제2,3 개폐밸브(512,552)를 제어한다. 이와 같이, 제2 온도센서(566)에서 감지되는 열전달유체의 온도에 따라 제2,3 개폐밸브(512,552)를 제어하여 바이패스 배관(550)을 통해 흐르는 배가스 또는 혼합가스의 유입량을 조절할 수 있다.The control unit 590 is connected to the second temperature sensor 566 and the second and third on-off valves 512 and 522 and controls the second and third on-off valves 512 and 552 in accordance with a signal from the second temperature sensor 566 . In this manner, the second and third on-off valves 512 and 522 can be controlled according to the temperature of the heat transfer fluid sensed by the second temperature sensor 566 to control the inflow amount of the flue gas or the mixed gas flowing through the bypass pipe 550 .
나아가, 제어부(590)는 압력센서(511) 및 흡입팬(570)에 연결될 수 있다. 이에 따라, 압력센서(511)로부터 감지되는 압력에 따라 흡입팬(570)을 제어하여 주배관(510)으로 유입되는 배가스의 유입량 및 전단 설비의 압력을 제어할 수 있다.Further, the control unit 590 may be connected to the pressure sensor 511 and the suction fan 570. Accordingly, the inflow amount of the flue gas flowing into the main pipe 510 and the pressure of the shearing facility can be controlled by controlling the suction fan 570 according to the pressure sensed by the pressure sensor 511.
이와 같이, 제어부(590)가 복수개의 센서 및 복수개의 밸브에 연결되어 제어부(590)가 배가스 현열 회수 장치(100)의 전반적이고 복합적인 제어를 수행할 수 있다.In this way, the control unit 590 is connected to the plurality of sensors and the plurality of valves, so that the control unit 590 can perform overall and complex control of the exhaust gas heat recovery apparatus 100.
상기한 바와 같이, 주배관(510)을 통해 유동하는 배가스의 온도가 너무 높은 경우 외기공급관(520)을 통해 외기가 유입되도록 하여 주배관(510) 측에 배치되는 혼합부(530)에서 배가스와 혼합시킬 수 있다. 이에 따라, 혼합부(530)에서 혼합된 배가스와 외기의 혼합가스가 열교환부(560)로 제공되므로, 배가스의 온도가 급격하게 상승하는 경우에도 열교환기(562)에 가해지는 열손상을 방지할 수 있다. As described above, when the temperature of the flue gas flowing through the main pipe 510 is excessively high, the outside air is introduced through the outside air supply pipe 520 and mixed with the flue gas in the mixing part 530 disposed on the main pipe 510 side . Accordingly, since the mixed gas of the exhaust gas and the outside air mixed in the mixing section 530 is provided to the heat exchanging section 560, even if the temperature of the exhaust gas rises sharply, heat damage to the heat exchanger 562 can be prevented .
또한, 열교환부(560)로 제공되는 혼합가스의 온도를 설정온도 범위 내로 맞출 수 있으므로, 결국 배가스에 의한 열교환기(562)의 열손상을 방지할 수 있는 것이다.In addition, since the temperature of the mixed gas supplied to the heat exchanging part 560 can be adjusted within the set temperature range, heat damage to the heat exchanger 562 by the exhaust gas can be prevented.
나아가, 제2,3 개폐밸브(512,552)를 통해 바이패스 배관(550)으로 유동하는 배가스의 유입량을 조절하여 열교환기(562)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Further, the inflow amount of the flue gas flowing into the bypass pipe 550 through the second and third opening / closing valves 512 and 552 can be controlled to further reduce thermal damage of the heat exchanger 562, will be.
도 6은 본 발명의 제6 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.6 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a sixth embodiment of the present invention.
도 6을 참조하면, 본 발명의 제6 실시예에 따른 배가스 현열 회수 장치(600)는 일예로서, 주배관(510), 외기공급관(520), 혼합부(530), 제1 온도센서(540), 바이패스 배관(550), 열교환부(660), 흡입팬(570), 집진설비(580) 및 제어부(590)를 포함하여 구성될 수 있다.6, the exhaust gas heat recovery apparatus 600 according to the sixth embodiment of the present invention includes a main pipe 510, an outside air supply pipe 520, a mixing unit 530, a first temperature sensor 540, A bypass pipe 550, a heat exchanger 660, a suction fan 570, a dust collector 580, and a controller 590.
한편, 주배관(510), 외기공급관(520), 혼합부(530), 제1 온도센서(540), 바이패스 배관(550), 흡입팬(570), 집진설비(580)는 상기에서 설명한 구성요소와 동일한 구성요소에 해당하므로, 여기서는 자세한 설명을 생략하고 상기한 설명에 갈음하기로 한다.The main pipe 510, the outside air supply pipe 520, the mixing unit 530, the first temperature sensor 540, the bypass pipe 550, the suction fan 570, and the dust collecting unit 580 are constructed as described above And therefore, a detailed description thereof will be omitted here and the above description will be omitted.
열교환부(660)는 주배관(510)에 연결되는 열교환기(662)와, 열교환기(662)를 관통하도록 배치되는 이송부재(664) 및 이송부재(664) 상에 배치되어 이송되는 이송물의 온도를 측정하기 위한 제3 온도센서(666)를 구비할 수 있다.The heat exchanging portion 660 includes a heat exchanger 662 connected to the main pipe 510, a conveying member 664 arranged to penetrate the heat exchanger 662, and a conveying member 664 disposed on the conveying member 664, And a third temperature sensor 666 for measuring the temperature.
일예로서, 열교환기(662)는 내부 공간을 가지도록 형성될 수 있으며, 열교환기(662) 내부 공간에서 이송부재(664)를 통해 이송되는 고체(예를 들어, 석탄 등)와 바이패스 배관(550)을 통해 공급되는 배가스가 직접 접촉할 수 있다.For example, the heat exchanger 662 may be formed to have an internal space and may be connected to a solid (e.g., coal) and a bypass piping (not shown) that is transferred through the transfer member 664 in the interior space of the heat exchanger 662 550 can directly contact the exhaust gas.
그리고, 이송부재(664)에는 이송되는 고체의 이송량을 조절하기 위한 속도조절장치(664a)가 구비될 수 있다. 즉, 주배관(510)으로 공급되는 배가스의 유입량에 맞추어 이송부재(664)를 통해 이송되는 고체의 이송량을 조절하기 위하여 속도조절장치(664a)가 이송부재(664)에 설치될 수 있다.The conveying member 664 may be provided with a speed adjusting device 664a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 664a may be installed on the conveying member 664 to regulate the amount of the solid conveyed through the conveying member 664 in accordance with the inflow amount of the exhaust gas supplied to the main pipe 510.
한편, 제3 온도센서(666)가 이송부재(664) 상에 설치되므로, 제3 온도센서(666)를 통해 이송되는 고체의 온도를 측정하여 열교환부(660)에 연결되는 바이패스 배관(550)을 통해 유동하는 배가스의 유입량을 조절할 수 있다.Since the third temperature sensor 666 is installed on the transfer member 664, the temperature of the solid transferred through the third temperature sensor 666 is measured and the bypass pipe 550 connected to the heat exchanging unit 660 The flow rate of the flowing flue gas can be controlled.
따라서, 열교환기(662)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Therefore, the heat damage of the heat exchanger 662 can be further reduced, and the heat recovery efficiency can be further increased.
도 7은 본 발명의 제7 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.7 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to a seventh embodiment of the present invention.
도 7을 참조하면, 본 발명의 제7 실시예에 따른 배가스 현열 회수 장치(700)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 열교환부(760), 흡입팬(170), 집진설비(180) 및 제어부(190)를 포함하여 구성될 수 있다.7, the exhaust gas heat recovery apparatus 700 according to the seventh embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A heat exchange unit 760, a suction fan 170, a dust collecting facility 180, and a control unit 190. [
열교환부(760)는 주배관(110)에 연결되는 열교환기(762)를 구비한다. 또한, 열교환부(760)는 열교환기(762)에 연결되며 열전달유체가 유동하는 열전달유체용 배관(764), 열교환기(762)를 통과한 열전달유체의 온도를 측정하도록 열전달유체용 배관(764)에 설치되는 제2 온도센서(766) 및 열전달유체용 배관(764)에 설치되는 제4 개폐밸브(768)를 구비할 수 있다. 제2 온도센서(766)도 제어부(190)에 연결되며, 제2 온도센서(766)로부터의 신호에 따라 제어부(190)는 제1 개폐밸브(122)를 제어할 수 있다. 나아가, 제어부(190)는 제2 온도센서(766)로부터의 신호에 따라 제4 개폐밸브(968)를 제어하여 열전달유체의 유입량을 제어할 수 있다.The heat exchanger 760 includes a heat exchanger 762 connected to the main pipe 110. Heat exchange portion 760 is also connected to heat exchanger 762 and includes a heat transfer fluid conduit 764 through which heat transfer fluid flows and a heat transfer fluid conduit 764 for measuring the temperature of the heat transfer fluid passing through heat exchanger 762 And a fourth open / close valve 768 installed in the heat transfer fluid pipe 764. The second open / The second temperature sensor 766 is also connected to the controller 190. The controller 190 can control the first open / close valve 122 according to a signal from the second temperature sensor 766. Further, the controller 190 controls the fourth open / close valve 968 in accordance with the signal from the second temperature sensor 766 to control the inflow amount of the heat transfer fluid.
도 8은 본 발명의 제8 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이다.8 is a schematic configuration diagram showing an exhaust gas heat recovery apparatus according to an eighth embodiment of the present invention.
도 8을 참조하면, 본 발명의 제8 실시예에 따른 배가스 현열 회수 장치(800)는 일예로서, 주배관(110), 외기공급관(120), 혼합부(130), 제1 온도센서(140), 열교환부(860), 흡입팬(170), 집진설비(180) 및 제어부(190)를 포함하여 구성될 수 있다.8, an exhaust gas heat recovery apparatus 800 according to an eighth embodiment of the present invention includes a main pipe 110, an outside air supply pipe 120, a mixing unit 130, a first temperature sensor 140, A heat exchanging unit 860, a suction fan 170, a dust collecting facility 180, and a control unit 190.
열교환부(860)는 주배관(110)에 연결되는 열교환기(862)와, 열교환기(862)를 관통하도록 배치되는 이송부재(864) 및 이송부재(864) 상에 배치되어 이송되는 이송물의 온도를 측정하기 위한 제3 온도센서(866)를 구비할 수 있다.The heat exchanging portion 860 includes a heat exchanger 862 connected to the main pipe 110, a transfer member 864 arranged to penetrate the heat exchanger 862, and a transfer member 864 disposed on the transfer member 864, And a third temperature sensor 866 for measuring the temperature.
일예로서, 열교환기(862)는 내부 공간을 가지도록 형성될 수 있으며, 열교환기(862) 내부 공간에서 이송부재(864)를 통해 이송되는 고체(예를 들어, 석탄 등)와 주배관(110)을 통해 공급되는 배가스가 직접 접촉할 수 있다.For example, the heat exchanger 862 may be formed to have an internal space and may be connected to a solid (such as coal) and a main pipe 110, which are conveyed through a transfer member 864 in the interior space of the heat exchanger 862, Can be directly contacted with the exhaust gas.
그리고, 이송부재(864)에는 이송되는 고체의 이송량을 조절하기 위한 속도조절장치(464a)가 구비될 수 있다. 즉, 주배관(110)으로 공급되는 배가스의 유입량에 맞추어 이송부재(864)를 통해 이송되는 고체의 이송량을 조절하기 위하여 속도조절장치(864a)가 이송부재(464)에 설치될 수 있다.The conveying member 864 may be provided with a speed adjusting device 464a for adjusting the conveyance amount of the solid to be conveyed. That is, the speed regulating device 864a may be installed on the conveying member 464 to regulate the amount of the solid conveyed through the conveying member 864 in accordance with the inflow amount of the exhaust gas supplied to the main pipe 110.
한편, 제3 온도센서(866)가 이송부재(864) 상에 설치되므로, 제3 온도센서(866)를 통해 이송되는 고체의 온도를 측정하여 열교환부(860)에 연결되는 주배관(110)을 통해 유동하는 배가스와 외기의 혼합가스 유입량을 조절할 수 있다.Since the third temperature sensor 866 is installed on the transfer member 864, the temperature of the solid transferred through the third temperature sensor 866 is measured, and the main pipe 110 connected to the heat exchanging unit 860 It is possible to control the flow rate of the mixed gas of the exhaust gas and the outside air.
따라서, 열교환기(862)의 열손상을 보다 저감시킬 수 있으며 더하여 열회수 효율을 증대시킬 수 있는 것이다.Accordingly, the heat damage of the heat exchanger 862 can be further reduced, and the heat recovery efficiency can be further increased.
도 9는 본 발명의 제9 실시예에 따른 배가스 현열 회수 장치를 나타내는 개략 구성도이고, 도 10 내지 도 13은 본 발명의 제9 실시예에 따른 배가스 현열 회수 장치의 작동을 나타내는 도면이다.FIG. 9 is a schematic configuration diagram of an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention, and FIGS. 10 to 13 are views showing operation of an exhaust gas heat recovery apparatus according to a ninth embodiment of the present invention.
본 발명에 따른 배기가스 배가스 현열 회수 장치(900)의 일실시예는 배기유닛(1000), 폐열회수유닛(1100), 외기유입유닛(1200) 및, 제어부(1300)를 포함할 수 있다.One embodiment of the exhaust gas exhaust gas heat recovery apparatus 900 according to the present invention may include an exhaust unit 1000, a waste heat recovery unit 1100, an outside air inflow unit 1200, and a control unit 1300.
배기유닛(1000)은 배기덕트(1010)를 포함할 수 있다. 배기덕트(1010)는 배기가스를 배출하는 열설비(도시되지 않음)에 연결될 수 있다. 그리고, 배기덕트(1010)에는 열설비로부터 배출된 배기가스가 유입되어 유동할 수 있다.The exhaust unit 1000 may include an exhaust duct 1010. The exhaust duct 1010 may be connected to a heat facility (not shown) for exhausting the exhaust gas. The exhaust gas discharged from the heat equipment can flow into the exhaust duct 1010 and flow.
배기덕트(1010)가 연결되는 열설비는, 예컨대 연소로나 전기로 등의 공업로 또는 발전소에 포함되는 보일러 등일 수 있다. 그러나, 열설비는 특별히 한정되지 않고 배기가스를 배출하며 배기덕트(1010)가 연결되어 배기가스가 배기덕트(1010)에 유입되어 유동하도록 할 수 있는 것이라면 주지의 어떠한 것이라도 가능하다.The heat facility to which the exhaust duct 1010 is connected may be, for example, an industrial plant such as a combustion furnace or an electric furnace, or a boiler included in a power plant. However, the heat equipment is not particularly limited, and any known means is possible as long as exhaust gas is discharged and the exhaust duct 1010 is connected to allow the exhaust gas to flow into the exhaust duct 1010 to flow.
배기유닛(1000)은 배기덕트개폐댐퍼(1020)를 더 포함할 수 있다. 배기덕트개폐댐퍼(1020)는 배기덕트(1010)에 구비되어 배기덕트(1010)를 개폐할 수 있다. 배기덕트개폐댐퍼(1020)는 배기덕트(1010)에 회전가능하게 구비되어 배기덕트(1010)를 개폐할 수 있다. 그러나, 배기덕트개폐댐퍼(1020)가 배기덕트(1010)를 개폐하는 구성은 특별히 한정되지 않고, 배기덕트(1010)를 개폐할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.The exhaust unit 1000 may further include an exhaust duct opening / closing damper 1020. The exhaust duct opening / closing damper 1020 is provided in the exhaust duct 1010 to open and close the exhaust duct 1010. The exhaust duct opening / closing damper 1020 is rotatably installed in the exhaust duct 1010 to open and close the exhaust duct 1010. However, the configuration in which the exhaust duct opening / closing damper 1020 opens and closes the exhaust duct 1010 is not particularly limited, and any known configuration can be employed as long as the exhaust duct 1010 can be opened and closed.
배기덕트개폐댐퍼(1020)는 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 배기덕트(1010)가 개폐되도록 제어부(1300)가 배기덕트개폐댐퍼(1020)를 작동, 예컨대 회전시킬 수 있다.The exhaust duct opening / closing damper 1020 may be electrically connected to the controller 1300. Then, the control unit 1300 can actuate, for example, rotate the exhaust duct opening / closing damper 1020 so that the exhaust duct 1010 is opened and closed.
배기덕트개폐댐퍼(1020)는 도 9에 도시된 바와 같이 폐열회수유닛(1100)에 포함되며 배기덕트(1010)에 연결되는 후술할 제1바이패스덕트(1120)가 연결되는 부분과 제2바이패스덕트(1130)가 연결되는 부분 사이의 배기덕트(1010)의 부분에 구비될 수 있다.The exhaust duct opening and closing damper 1020 is included in the waste heat recovering unit 1100 as shown in FIG. 9 and includes a portion to which a first bypass duct 1120 to be connected, which is connected to the exhaust duct 1010, And may be provided at a portion of the exhaust duct 1010 between the portions to which the pass duct 1130 is connected.
배기유닛(1000)은 팬(1030)을 더 포함할 수 있다. 팬(1030)은 열설비에서 배출되는 배기가스가 배기덕트(1010)에 유입되어 유동하도록 배기덕트(1010)에 구비될 수 있다.The exhaust unit 1000 may further include a fan 1030. The fan 1030 may be provided in the exhaust duct 1010 so that the exhaust gas discharged from the thermal equipment flows into the exhaust duct 1010 and flows.
팬(1030)은 도 9에 도시된 바와 같이 배기가스의 유동방향으로 폐열회수유닛(1100)의 제2바이패스덕트(1130)가 연결되는 부분 후의 배기덕트(1010)의 부분에 구비될 수 있다. 이 경우, 팬(1030)은 흡입팬일 수 있다.The fan 1030 may be provided at a portion of the exhaust duct 1010 after the portion where the second bypass duct 1130 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas as shown in FIG. . In this case, the fan 1030 may be a suction fan.
그러나, 팬(1030)은 송풍팬으로 배기가스의 유동방향으로 폐열회수유닛(1100)의 제1바이패스덕트(1120)가 연결되는 부분 전의 배기덕트(1010)의 부분에 구비될 수도 있다.However, the fan 1030 may be provided at a portion of the exhaust duct 1010 before the portion where the first bypass duct 1120 of the waste heat recovering unit 1100 is connected to the blowing fan in the flow direction of the exhaust gas.
팬(1030)은 제어부(1300)에 전기적으로 연결될 수 있다.The fan 1030 may be electrically connected to the controller 1300.
제어부(1300)에 의해서 팬(1030)이 구동되면, 도 10 내지 도 13에 도시된 바와 같이 열설비에서 배출된 배기가스가 배기덕트(1010)에 유입될 수 있다. 이러한 상태에서, 도 10 내지 도 13에 도시된 바와 같이 제어부(1300)에 의해서 배기덕트개폐댐퍼(1020)가 열리면, 배기덕트(1010)에 유입된 배기가스는 배기덕트(1010)를 유동하여 외부로 배출될 수 있다. 또한, 도 11과 도 12에 도시된 바와 같이 제어부(1300)에 의해서 배기덕트개폐댐퍼(1020)가 닫히면, 배기덕트(1010)에 유입된 배기가스는 배기덕트(1010)의 일부를 우회하여 폐열회수유닛(1100)에 포함되며 제1바이패스덕트(1120)와 제2바이패스덕트(1130)가 연결되는 열교환기(1110)를 통과한 후 배기덕트(1010)로 되돌아가서 외부로 배출될 수 있다.When the fan 1030 is driven by the control unit 1300, the exhaust gas discharged from the thermal equipment can be introduced into the exhaust duct 1010 as shown in FIGS. 10 to 13, when the exhaust duct opening / closing damper 1020 is opened by the control unit 1300, the exhaust gas flowing into the exhaust duct 1010 flows through the exhaust duct 1010, . 11 and 12, when the exhaust duct opening / closing damper 1020 is closed by the control unit 1300, the exhaust gas flowing into the exhaust duct 1010 bypasses a part of the exhaust duct 1010, After passing through the heat exchanger 1110 included in the recovery unit 1100 and connected to the first bypass duct 1120 and the second bypass duct 1130 and then returned to the exhaust duct 1010, have.
한편, 제어부(1300)는 팬(230)을 제어하여 배기덕트(1010)가 연결되는 열설비의 내압을 조절할 수 있다.Meanwhile, the control unit 1300 may control the fan 230 to adjust the internal pressure of the heat equipment to which the exhaust duct 1010 is connected.
배기가스의 유동방향으로 폐열회수유닛(1100)의 제1바이패스덕트(1120)가 연결되는 부분 전의 배기덕트(1010)의 부분에는 도 9에 도시된 바와 같이 제1온도감지센서(ST1)가 구비될 수 있다. 이에 의해서, 배기덕트(1010)에 유입되는 배기가스의 온도가 제1온도감지센서(ST1)에 의해서 감지될 수 있다. 제1온도감지센서(ST1)는 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 제1온도감지센서(ST1)에 의해서 감지된 배기덕트(1010)에 유입되는 배기가스의 온도는 제어부(1300)로, 예컨대 전기신호의 형태로 보내질 수 있다.9, a first temperature sensor ST1 is connected to a portion of the exhaust duct 1010 before the first bypass duct 1120 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas . Thus, the temperature of the exhaust gas flowing into the exhaust duct 1010 can be sensed by the first temperature sensor ST1. The first temperature sensor ST1 may be electrically connected to the controller 1300. [ The temperature of the exhaust gas flowing into the exhaust duct 1010 sensed by the first temperature sensor ST1 may be sent to the controller 1300 in the form of an electric signal, for example.
한편, 배기가스의 유동방향으로 폐열회수유닛(1100)의 제1바이패스덕트(1120)가 연결되는 부분 전의 배기덕트(1010)의 부분에는 압력감지센서(SP)도 구비될 수 있다. 이에 의해서 배기덕트(1010)에 유입되는 배기가스의 압력이 압력감지센서(SP)에 의해서 감지될 수 있다. 그리고, 배기덕트(1010)가 연결되는 열설비의 내압을 알 수 있다.The pressure sensing sensor SP may be provided at a portion of the exhaust duct 1010 before the first bypass duct 1120 of the waste heat recovery unit 1100 is connected in the flow direction of the exhaust gas. The pressure of the exhaust gas flowing into the exhaust duct 1010 can be sensed by the pressure sensor SP. Then, the internal pressure of the heat equipment to which the exhaust duct 1010 is connected can be known.
압력감지센서(SP)는 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 압력감지센서(SP)에 의해서 감지된 배기덕트(1010)에 유입되는 배기가스의 압력은 제어부(1300)로, 예컨대 전기신호의 형태로 보내질 수 있다.The pressure sensing sensor SP may be electrically connected to the control unit 1300. The pressure of the exhaust gas flowing into the exhaust duct 1010 sensed by the pressure sensor SP may be sent to the controller 1300 in the form of an electric signal, for example.
폐열회수유닛(1100)은 열교환기(1110)를 포함할 수 있다. 열교환기(1110)는 배기가스로부터 폐열을 회수할 수 있다. 예컨대, 열교환기(1110)는 배기가스와 열교환매체와의 열교환에 의해서 배기가스의 폐열을 회수할 수 있다. 이 경우, 열교환매체는 공기나 물 또는 오일 등이 될 수 있으며, 열교환매체는 특별히 한정되지 않고 배기가스와 열교환하여 배기가스의 폐열을 회수할 수 있는 것이라면 주지의 어떠한 것이라도 가능하다. 또한, 열교환기(1110)의 구성은 특별히 한정되지 않고, 배기가스로부터 폐열을 회수할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.The waste heat recovery unit 1100 may include a heat exchanger 1110. The heat exchanger 1110 can recover the waste heat from the exhaust gas. For example, the heat exchanger 1110 can recover the waste heat of the exhaust gas by heat exchange between the exhaust gas and the heat exchange medium. In this case, the heat exchange medium may be air, water, oil, or the like. The heat exchange medium is not particularly limited, and any well-known means may be used as long as heat exchange with the exhaust gas is possible so as to recover waste heat of the exhaust gas. Further, the structure of the heat exchanger 1110 is not particularly limited, and any known structure may be used as long as it is capable of recovering waste heat from the exhaust gas.
열교환기(1110)는 배기유닛(1000)의 배기덕트(1010)에 유입된 배기가스가 배기덕트(1010)의 일부를 우회하여 통과한 후 배기덕트(1010)로 되돌아가도록 배기덕트(1010)에 연결될 수 있다.The heat exchanger 1110 is connected to the exhaust duct 1010 so that the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 bypasses a part of the exhaust duct 1010 and is returned to the exhaust duct 1010 Can be connected.
이를 위해서, 폐열회수유닛(1100)은 제1바이패스덕트(1120)와 제2바이패스덕트(1130)를 더 포함할 수 있다. 제1바이패스덕트(1120)는 배기가스가 도 11과 도 12에 도시된 바와 같이 배기가스가 배기유닛(1000)의 배기덕트(1010)로부터 열교환기(1110)로 유동하여 통과하도록 배기덕트(1010)와 열교환기(1110)에 연결될 수 있다. 또한, 제2바이패스덕트(1130)는 열교환기(1110)를 통과한 배기가스가 배기덕트(1010)로 되돌아가도록 열교환기(1110)와 배기덕트(1010)에 연결될 수 있다. 제1바이패스덕트(1120)와 제2바이패스덕트(1130)는 서로 연결될 수 있다. 예컨대, 제1바이패스덕트(1120)와 제2바이패스덕트(1130)는 일체로 되어 서로 연결될 수 있다. 그러나, 제1바이패스덕트(1120)와 제2바이패스덕트(1130)는 별도로 되어 용접 등으로 서로 연결될 수도 있다.For this purpose, the waste heat recovery unit 1100 may further include a first bypass duct 1120 and a second bypass duct 1130. The first bypass duct 1120 is connected to the exhaust duct 1110 so that the exhaust gas flows from the exhaust duct 1010 of the exhaust unit 1000 to the heat exchanger 1110 as shown in FIGS. 1010 and the heat exchanger 1110. The second bypass duct 1130 may be connected to the heat exchanger 1110 and the exhaust duct 1010 such that the exhaust gas having passed through the heat exchanger 1110 is returned to the exhaust duct 1010. The first bypass duct 1120 and the second bypass duct 1130 may be connected to each other. For example, the first bypass duct 1120 and the second bypass duct 1130 may be integrally connected to each other. However, the first bypass duct 1120 and the second bypass duct 1130 may be separately connected to each other by welding or the like.
폐열회수유닛(1100)은 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)를 더 포함할 수 있다.The waste heat recovery unit 1100 may further include a first duct opening / closing damper 1140 and a second duct opening / closing damper 1150.
제1덕트개폐댐퍼(1140)는 제1바이패스덕트(1120)에 구비되어 제1바이패스덕트(1120)를 개폐할 수 있다. 제1덕트개폐댐퍼(1140)는 제1바이패스덕트(1120)에 회전가능하게 구비되어 제1바이패스덕트(1120)를 개폐할 수 있다. 그러나, 제1덕트개폐댐퍼(1140)가 제1바이패스덕트(1120)를 개폐하는 구성은 특별히 한정되지 않고, 제1바이패스덕트(1120)를 개폐할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.The first duct opening / closing damper 1140 is provided in the first bypass duct 1120 to open / close the first bypass duct 1120. The first duct opening / closing damper 1140 is rotatably installed in the first bypass duct 1120 to open / close the first bypass duct 1120. However, the construction in which the first duct opening / closing damper 1140 opens and closes the first bypass duct 1120 is not particularly limited, and any known structure may be employed as long as the first bypass duct 1120 can be opened and closed Do.
제2덕트개폐댐퍼(1150)는 제2바이패스덕트(1130)에 구비되어 제2바이패스덕트(1130)를 개폐할 수 있다. 제2덕트개폐댐퍼(1150)는 제2바이패스덕트(1130)에 회전가능하게 구비되어 제2바이패스덕트(1130)를 개폐할 수 있다. 그러나, 제2덕트개폐댐퍼(1150)가 제2바이패스덕트(1130)를 개폐하는 구성은 특별히 한정되지 않고, 제2바이패스덕트(1130)를 개폐할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.The second duct opening / closing damper 1150 is provided in the second bypass duct 1130 to open / close the second bypass duct 1130. The second duct opening / closing damper 1150 is rotatably installed in the second bypass duct 1130 to open and close the second bypass duct 1130. However, the second duct opening / closing damper 1150 is not particularly limited as long as it can open and close the second bypass duct 1130, Do.
제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)는 각각 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 제1바이패스덕트(1120)나 제2바이패스덕트(1130)를 개폐하도록 제어부(1300)가 제1덕트개폐댐퍼(1140)나 제2덕트개폐댐퍼(1150)를 작동, 예컨대 회전시킬 수 있다.The first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 may be electrically connected to the control unit 1300, respectively. The controller 1300 operates the first duct opening / closing damper 1140 or the second duct opening / closing damper 1150 to open or close the first bypass duct 1120 or the second bypass duct 1130 .
제1덕트개폐댐퍼(1140)와 열교환기(1110) 사이의 제1바이패스덕트(1120)의 부분에는 도 9에 도시된 바와 같이 제2온도감지센서(ST2)가 구비될 수 있다. 이에 의해서, 제1바이패스덕트(1120)를 통해 열교환기(1110)로 유동하는 배기가스의 온도가 제2온도감지센서(ST2)에 의해서 감지될 수 있다. 제2온도감지센서(ST2)는 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 제2온도감지센서(ST2)에 의해서 감지된 열교환기(1110)로 유동하는 배기가스의 온도는 제어부(1300)로, 예컨대 전기신호의 형태로 보내질 수 있다.The second temperature sensing sensor ST2 may be provided at a portion of the first bypass duct 1120 between the first duct opening / closing damper 1140 and the heat exchanger 1110 as shown in FIG. The temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 can be sensed by the second temperature sensor ST2. The second temperature sensor ST2 may be electrically connected to the controller 1300. [ The temperature of the exhaust gas flowing into the heat exchanger 1110 sensed by the second temperature sensor ST2 may be sent to the controller 1300 in the form of an electric signal, for example.
폐열회수유닛(1100)은 열교환매체유입덕트(1160)와, 열교환매체배출덕트(1170)를 더 포함할 수 있다.The waste heat recovery unit 1100 may further include a heat exchange medium inlet duct 1160 and a heat exchange medium outlet duct 1170.
열교환매체유입덕트(1160)는 열교환매체가 열교환기(1110)로 유동하여 통과하도록 열교환기(1110)에 연결될 수 있다. 열교환매체배출덕트(1170)는 열교환기(1110)를 통과하면서 배기가스와 열교환하여 폐열을 회수한 열교환매체가 열교환기(1110)를 통과하여 폐열사용처로 공급되도록 열교환기(1110)에 연결될 수 있다. 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)는 서로 연결될 수 있다. 예컨대, 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)는 일체로 되어 서로 연결될 수 있다. 그러나, 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)는 별도로 되어 용접 등으로 서로 연결될 수도 있다.The heat exchange medium inlet duct 1160 may be connected to the heat exchanger 1110 so that the heat exchange medium may flow to and pass through the heat exchanger 1110. The heat exchange medium discharge duct 1170 can be connected to the heat exchanger 1110 such that the heat exchange medium having passed through the heat exchanger 1110 and recovering the waste heat by heat exchange with the exhaust gas passes through the heat exchanger 1110 and is supplied to the waste heat source . The heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 can be connected to each other. For example, the heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 may be integrally connected to each other. However, the heat exchange medium inlet duct 1160 and the heat exchange medium outlet duct 1170 may be separately connected to each other by welding or the like.
열교환매체유입덕트(1160)는 열교환매체가 저장된 열교환매체원(도시되지 않음)에 연결될 수 있다. 열교환매체유입덕트(1160)나 열교환매체원에는 펌프(도시되지 않음) 등이 구비될 수 있다. 펌프 등은 제어부(1300)에 전기적으로 연결될 수 있다.The heat exchange medium inlet duct 1160 may be connected to a heat exchange medium source (not shown) in which the heat exchange medium is stored. A pump (not shown) may be provided in the heat exchange medium inlet duct 1160 or the heat exchange medium source. The pump and the like may be electrically connected to the control unit 1300.
제어부(1300)에 의해서 펌프 등이 구동되면, 도 11과 도 12에 도시된 바와 같이 열교환매체원의 열교환매체가 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)를 통해 열교환기(310)를 통과할 수 있다. 이러한 상태에서, 제어부(1300)에 의해서 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)가 열리고 배기유닛(1000)의 배기덕트댐퍼(1020)가 닫히면, 배기유닛(1000)의 배기덕트(1010)에 유입된 배기가스가 제1바이패스덕트(1120)를 통해 배기덕트(1010)의 일부를 우회하여 열교환기(1110)로 유동할 수 있다. 열교환기(1110)로 유동하여 열교환기(1110)를 통과하는 배기가스는 열교환매체와 열교환한 후 제2바이패스덕트(1130)를 통해 배기덕트(1010)로 되돌아가서 외부로 배출될 수 있다.When the pump or the like is driven by the control unit 1300, as shown in FIGS. 11 and 12, the heat exchange medium of the heat exchange medium source flows through the heat exchange medium inlet duct 1160 and the heat exchange medium discharge duct 1170 to the heat exchanger 310 ≪ / RTI > In this state, when the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 are opened by the control unit 1300 and the exhaust duct damper 1020 of the exhaust unit 1000 is closed, The exhaust gas flowing into the exhaust duct 1010 can flow to the heat exchanger 1110 by bypassing a part of the exhaust duct 1010 through the first bypass duct 1120. The exhaust gas flowing to the heat exchanger 1110 and passing through the heat exchanger 1110 may be exchanged with the heat exchange medium and then returned to the exhaust duct 1010 through the second bypass duct 1130 to be discharged to the outside.
열교환매체배출덕트(1170)는 폐열사용처에 연결될 수 있다. 폐열사용처는, 예컨대 유기랭킨사이클이나 카리나사이클 등일 수 있다. 그러나, 폐열사용처는 특별히 한정되지 않고, 폐열을 사용할 수 있는 것이라면 어떠한 것이라도 가능하다.The heat exchange medium discharge duct 1170 may be connected to the waste heat application site. The use of the waste heat can be, for example, an organic Rankine cycle or a carina cycle. However, the place where the waste heat is used is not particularly limited, and any waste heat can be used.
외기유입유닛(1200)은 폐열회수유닛(1100)에 외기가 유입되도록 폐열회수유닛(1100)에 연결될 수 있다.The outside air inflow unit 1200 may be connected to the waste heat recovery unit 1100 so that outside air flows into the waste heat recovery unit 1100.
외기유입유닛(1200)은 외기유입덕트(1210)와, 외기덕트개폐댐퍼(1220)를 포함할 수 있다.The outside air inflow unit 1200 may include an outside air inflow duct 1210 and an outside air duct opening and closing damper 1220.
외기유입덕트(1210)는 외부와 폐열회수유닛(1100)의 제1바이패스덕트(1120)에 연결될 수 있다. 외기유입덕트(1210)는 배기가스의 유동방향으로 폐열회수유닛(1100)의 제1덕트개폐댐퍼(1140) 전의 제1바이패스덕트(1120)의 부분에 연결될 수 있다.The outside air inlet duct 1210 may be connected to the outside and the first bypass duct 1120 of the waste heat recovery unit 1100. The outside air inflow duct 1210 may be connected to a portion of the first bypass duct 1120 before the first duct opening / closing damper 1140 of the waste heat recovery unit 1100 in the flow direction of the exhaust gas.
외기덕트개폐댐퍼(1220)는 외기유입덕트(1210)에 구비되어 외기유입덕트(1210)를 개폐할 수 있다. 외기덕트개폐댐퍼(1220)는 외기유입덕트(1210)에 회전가능하게 구비되어 외기유입덕트(1210)를 개폐할 수 있다. 그러나, 외기덕트개폐댐퍼(1220)가 외기유입덕트(1210)를 개폐하는 구성은 특별히 한정되지 않고, 외기유입덕트(1210)를 개폐할 수 있는 구성이라면 주지의 어떠한 구성이라도 가능하다.The outside air duct opening / closing damper 1220 is provided in the outside air inflow duct 1210 to open / close the outside air inflow duct 1210. The outside air duct opening / closing damper 1220 is rotatably installed in the outside air inlet duct 1210 to open and close the outside air inlet duct 1210. However, the configuration in which the outside-air duct opening / closing damper 1220 opens and closes the outside-air inflow duct 1210 is not particularly limited, and any known structure may be used as long as it can open and close the outside-air inflowing duct 1210.
외기덕트개폐댐퍼(1220)는 제어부(1300)에 전기적으로 연결될 수 있다. 그리고, 외기유입덕트(1210)를 개폐하도록 제어부(1300)가 외기덕트개폐댐퍼(1220)를 작동, 예컨대 회전시킬 수 있다.The outdoor duct opening / closing damper 1220 may be electrically connected to the controller 1300. The control unit 1300 can operate, for example, rotate the outside-air duct opening / closing damper 1220 to open and close the outside-air inlet duct 1210.
도 12에 도시된 바와 같이 폐열회수유닛(1100)의 열교환기(1110)에서 배기가스와 열교환매체가 열교환하여 배기가스의 폐열이 회수되는 상태에서, 제1온도감지센서(ST1)에서 감지된 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 소정의 온도범위를 초과하면, 제어부(1300)는 외기덕트개폐댐퍼(1220)를 열 수 있다.As shown in FIG. 12, in a state where waste heat of the exhaust gas is recovered by exchanging heat between the exhaust gas and the heat exchange medium in the heat exchanger 1110 of the waste heat recovery unit 1100, When the temperature of the exhaust gas flowing into the exhaust duct 1010 of the unit 1000 exceeds a predetermined temperature range, the control unit 1300 can open the outside air duct opening / closing damper 1220.
이에 의해서, 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스보다 온도가 낮은 외기가 외기유입덕트(1210)를 통해 폐열회수유닛(1100)의 제1바이패스덕트(1120)에 유입될 수 있다. 그리고, 폐열회수유닛(1100)의 제1바이패스덕트(1120)를 통해 열교환기(1110)로 유동하는 배기가스의 온도가 소정의 온도범위 내를 유지하도록 할 수 있다.The outdoor air having a lower temperature than the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 flows into the first bypass duct 1120 of the waste heat recovery unit 1100 through the outside air inflow duct 1210 . The temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 of the waste heat recovery unit 1100 can be maintained within a predetermined temperature range.
한편, 도 13에 도시된 바와 같이 배기유닛(1000)의 배기덕트(1010)에 배기가스가 유입되고 유동하여 외부로 배출되는 상태에서, 제1온도감지센서(ST1)에서 감지된 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 소정의 허용온도를 초과하면, 제어부(1300)는 외기덕트개폐댐퍼(1220)를 열 수 있다.13, in a state in which exhaust gas flows into the exhaust duct 1010 of the exhaust unit 1000 and flows and is discharged to the outside, the exhaust unit 1000 detected by the first temperature sensor ST1 The control unit 1300 can open the outside air duct opening / closing damper 1220 when the temperature of the exhaust gas flowing into the exhaust duct 1010 of the outdoor unit exceeds the predetermined allowable temperature.
이에 의해서, 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스보다 온도가 낮은 외기가 외기유입덕트(1210)와 폐열회수유닛(1100)의 제1바이패스덕트(1120)를 통해 배기덕트(1010)에 유입될 수 있다. 그리고, 배기유닛(1000)의 배기덕트(1010)를 유동하는 배기가스가 소정의 허용온도를 초과하지 않도록 할 수 있다.The outdoor air having a temperature lower than that of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 is exhausted through the first bypass duct 1120 of the outdoor air inlet duct 1210 and the waste heat recovering unit 1100, And may be introduced into the duct 1010. The exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 can be prevented from exceeding the predetermined allowable temperature.
제어부(1300)는 배기유닛(1000)과 폐열회수유닛(1100) 및 외기유입유닛(1200)을 제어할 수 있다. 예컨대, 제어부(1300)는 배기유닛(1000)의 배기덕트개폐댐퍼(1020), 팬(1030), 제1온도감지센서(ST1), 압력감지센서(SP), 폐열회수유닛(1100)의 펌프, 제1덕트개폐댐퍼(1140), 제2덕트개폐댐퍼(1150), 제2온도감지센서(ST2) 및, 외기유입유닛(1200)의 외기덕트개폐댐퍼(1220)에 전기적으로 연결되어, 배기유닛(1000)과 폐열회수유닛(1100) 및 외기유닛유닛(1200)을 제어할 수 있다.The control unit 1300 can control the exhaust unit 1000, the waste heat recovery unit 1100, and the outside air inflow unit 1200. [ For example, the control unit 1300 controls the exhaust duct opening / closing damper 1020, the fan 1030, the first temperature detecting sensor ST1, the pressure detecting sensor SP, and the waste heat recovering unit 1100 of the exhaust unit 1000, The first duct opening / closing damper 1140, the second duct opening and closing damper 1150, the second temperature detecting sensor ST2 and the outside air duct opening and closing damper 1220 of the outside air inlet unit 1200, The unit 1000, the waste heat recovery unit 1100, and the outdoor unit unit 1200 can be controlled.
제어부(1300)는 도 10에 도시된 바와 같이 배기유닛(1000)의 팬(1030)을 구동하고 배기덕트개폐댐퍼(1020)를 열며 폐열회수유닛(1100)의 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150) 및 외기유입유닛(1200)의 외기덕트개폐댐퍼(1220)를 닫을 수 있다.The control unit 1300 drives the fan 1030 of the exhaust unit 1000 and opens the exhaust duct opening and closing damper 1020 as shown in FIG. 10 and connects the first duct opening and closing damper 1140 of the waste heat recovering unit 1100 The second duct opening / closing damper 1150 and the outside air duct opening / closing damper 1220 of the outside air inlet unit 1200 can be closed.
이에 의해서, 열설비로부터 배기유닛(1000)의 배기덕트(1010)에 유입된 배기가스는 배기덕트(1010)를 유동한 후 외부로 배출될 수 있다.Accordingly, the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 from the thermal equipment can be discharged to the outside after flowing through the exhaust duct 1010.
또한, 제어부(1300)는, 배기가스의 폐열의 회수가 필요한 경우에, 도 11에 도시된 바와 같이 폐열회수유닛(1100)의 열교환매체유입덕트(1160)에 연결된 열교환매체원 또는 열교환매체유입덕트(1160)에 구비된 펌프 등을 구동하여 열교환매체원의 열교환매체가 폐열회수유닛(1100)의 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)를 통해 열교환기(1110)를 통과하도록 할 수 있다.11, when the waste heat of the exhaust gas is required, the controller 1300 controls the heat exchange medium inlet duct 1160 connected to the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 or the heat exchange medium inlet duct The heat exchange medium of the heat exchange medium source is passed through the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 and the heat exchange medium discharge duct 1170 through the heat exchanger 1110 can do.
이러한 상태에서, 제어부(1300)는 폐열회수유닛(1100)의 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)를 열고 배기유닛(1000)의 배기덕트개폐댐퍼(1020)를 닫을 수 있다.In this state, the control unit 1300 opens the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovery unit 1100 and closes the exhaust duct opening / closing damper 1020 of the exhaust unit 1000 .
이에 의해서, 열설비로부터 배기유닛(1000)의 배기덕트(1010)에 유입된 배기가스는 배기덕트(1010)의 일부를 우회하여 제1바이패스덕트(1120)와 제2바이패스덕트(1130)를 통해 열교환기(1110)를 통과하면서 열교환매체와 열교환한 후 배기덕트(1010)로 되돌아간 후 외부로 배출될 수 있다.The exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 from the thermal equipment bypasses a part of the exhaust duct 1010 and flows through the first bypass duct 1120 and the second bypass duct 1130, Exchanges heat with the heat exchange medium through the heat exchanger 1110, returns to the exhaust duct 1010, and is discharged to the outside.
이와 같이, 열교환기(1110)에서의 배기가스와 열교환매체와의 열교환에 의해서 배기가스의 폐열을 열교환매체가 회수할 수 있다. 열교환매체에 의해서 회수된 폐열은 열교환매체배출덕트(1170)에 연결된 폐열사용처로 열교환매체에 의해서 전달되어 사용될 수 있다.Thus, the heat exchange medium can collect the waste heat of the exhaust gas by heat exchange between the exhaust gas in the heat exchanger 1110 and the heat exchange medium. The waste heat recovered by the heat exchange medium may be used by being transferred to the heat exchange medium discharge duct 1170 through a heat exchange medium.
이 경우, 제어부(1300)는 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)를 완전히 열고 난 후 소정 시간 후에 배기덕트개폐댐퍼(1020)가 완전히 닫히도록 할 수 있다. 이에 의해서, 압력감지센서(SP)에 의해서 감지될 수 있는 열설비의 내압이 소정의 압력 범위를 유지하도록 할 수 있다.In this case, the controller 1300 can completely close the exhaust duct opening / closing damper 1020 after a predetermined time since the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 are fully opened. This allows the internal pressure of the thermal equipment, which can be sensed by the pressure sensor SP, to maintain a predetermined pressure range.
한편, 이와 같이 폐열회수유닛(1100)의 열교환기(1110)에서 배기가스의 폐열을 열교환매체에 의해서 회수하는 동안, 제어부(1300)는 배기유닛(1000)의 배기덕트(1010)의 일부를 우회하여 열교환기(1110)로 유동하는 배기가스의 온도가 외기유입유닛(1200)을 통해 유입된 외기로 소정의 온도범위 내를 유지하도록 할 수 있다.Meanwhile, while the waste heat of the exhaust gas is recovered by the heat exchange medium in the heat exchanger 1110 of the waste heat recovery unit 1100, the control unit 1300 bypasses a part of the exhaust duct 1010 of the exhaust unit 1000 So that the temperature of the exhaust gas flowing into the heat exchanger 1110 can be maintained within a predetermined temperature range with the outside air introduced through the outside air inflow unit 1200.
이에 따라, 열설비의 운전부하가 변동되어 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 변동된다고 하더라도 폐열회수유닛(1100)의 열교환기(1110)로 유동하는 배기가스의 온도는 소정의 온도범위 내를 유지하도록 할 수 있다. 이에 의해서, 폐열회수유닛(1100)의 열교환기(1110)에서 배기가스와의 열교환에 의해서 배기가스의 폐열을 회수한 열교환매체가 폐열사용처에 공급되고 열교환매체에 의해서 공급된 폐열로 공기를 예열하거나 증기를 생산하거나 오일 등을 가열하는 경우, 공기의 예열온도와 증기의 생산량 등의 변동이 작게 될 수 있기 때문에, 폐열의 활용성이 증대될 수 있다.Accordingly, even if the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 fluctuates due to the fluctuation of the operation load of the thermal equipment, the exhaust gas flowing into the heat exchanger 1110 of the waste heat recovery unit 1100 Can be kept within a predetermined temperature range. Thus, the heat exchange medium in which the waste heat of the exhaust gas is recovered by the heat exchange with the exhaust gas in the heat exchanger 1110 of the waste heat recovery unit 1100 is supplied to the waste heat utilization source and preheated by the waste heat supplied by the heat exchange medium In the case of producing steam or heating oil or the like, the fluctuation of the preheating temperature of air and the production amount of steam can be small, so that the usability of waste heat can be increased.
또한, 폐열회수유닛(1100)의 열교환기(1110)가 소정의 온도범위 이상의 배기가스의 통과에 의해서 열화되어 파손되는 것을 방지할 수 있다.Also, it is possible to prevent the heat exchanger 1110 of the waste heat recovery unit 1100 from being deteriorated and damaged by passage of the exhaust gas over a predetermined temperature range.
이를 위해서, 제어부(1300)는 제1온도감지센서(ST1)에서 감지된 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 소정의 온도범위를 초과하면, 외기유입유닛(1200)의 외기덕트개폐댐퍼(1220)를 열수 있다. 이에 따라, 배기덕트(1010)에 유입되는 배기가스보다 온도가 낮은 외기가 외기유입유닛(1200)의 외기유입덕트(1210)를 통해 폐열회수유닛(1100)의 제1바이패스덕트(1120)에 유입되어 배기가스의 온도가 낮아질 수 있다.When the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 sensed by the first temperature sensor ST1 exceeds a predetermined temperature range, the control unit 1300 controls the outdoor unit The air duct opening / closing damper 1220 of the outdoor unit 1200 can be opened. The outside air having a lower temperature than the exhaust gas flowing into the exhaust duct 1010 flows through the outside air inflow duct 1210 of the outside air inflow unit 1200 to the first bypass duct 1120 of the waste heat recovering unit 1100 And the temperature of the exhaust gas may be lowered.
그리고, 제어부(1300)는 제2온도감지센서(ST2)에서 감지된 폐열회수유닛(1100)의 열교환기(1110)로 유동하는 배기가스의 온도가 소정의 온도범위 내에 있도록 외기유입유닛(1200)의 외기덕트개폐댐퍼(1220)의 개방정도를 조절할 수 있다.The controller 1300 controls the temperature of the outside air inflow unit 1200 so that the temperature of the exhaust gas flowing into the heat exchanger 1110 of the waste heat recovery unit 1100 sensed by the second temperature sensor ST2 is within a predetermined temperature range. The opening degree of the outside air duct opening / closing damper 1220 of the outside air duct can be adjusted.
이에 따라, 폐열회수유닛(1100)의 제1바이패스덕트(1120)를 통해 열교환기(1110)로 유동하는 배기가스의 온도가 소정의 온도범위 내를 유지하도록 할 수 있다.The temperature of the exhaust gas flowing into the heat exchanger 1110 through the first bypass duct 1120 of the waste heat recovery unit 1100 can be maintained within a predetermined temperature range.
다른 한편, 도 10에 도시된 바와 같이, 열설비에서 배출되는 배기가스가 배기유닛(1000)의 배기덕트(1010)에 유입된 후 배기덕트(1010)를 유동하여 외부로 배출되는 동안, 제어부(1300)는 외기유입유닛(1200)을 통해 유입된 외기로 배기유닛(1000)의 배기덕트(1010)를 유동하는 배기가스의 온도가 소정의 허용온도를 초과하지 않도록 할 수 있다.On the other hand, as shown in FIG. 10, while the exhaust gas discharged from the thermal equipment flows into the exhaust duct 1010 of the exhaust unit 1000 and then flows through the exhaust duct 1010 and is discharged to the outside, 1300 can prevent the temperature of the exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 from exceeding a predetermined allowable temperature by the outside air flowing through the outside air inflow unit 1200.
이를 위해서, 제어부(1300)는 제1온도감지센서(ST1)에서 감지된, 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 소정의 허용온도를 초과하면, 도 13에 도시된 바와 같이 외기유입유닛(1200)의 외기덕트개폐댐퍼(1220)를 열 수 있다. 이에 따라, 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스보다 온도가 낮은 외기가 외기유입유닛(1200)의 외기유입덕트(1210)와 폐열회수유닛(1100)의 제1바이패스덕트(1120)를 통해 배기유닛(1000)의 배기덕트(1010)에 유입되어 배기가스의 온도가 낮아질 수 있다. 그러므로, 배기유닛(1000)의 배기덕트(1010)를 유동하는 배기가스가 소정의 허용온도를 초과하지 않도록 할 수 있다.13, when the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 detected by the first temperature sensor ST1 exceeds a predetermined allowable temperature, The outside air duct opening / closing damper 1220 of the outside air inflow unit 1200 can be opened. The outside air having a temperature lower than the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 flows into the outside air inflow duct 1210 of the outside air inflow unit 1200 and the first bypass of the waste heat recovering unit 1100 The exhaust gas can flow into the exhaust duct 1010 of the exhaust unit 1000 through the duct 1120 and the temperature of the exhaust gas can be lowered. Therefore, the exhaust gas flowing through the exhaust duct 1010 of the exhaust unit 1000 can be prevented from exceeding the predetermined allowable temperature.
이에 의해서, 배기유닛(1000)의 배기덕트(1010)가 소정의 허용온도 이상의 배기가스의 유동에 의해서 열화되어 파손되는 것을 방지할 수 있다.Thus, it is possible to prevent the exhaust duct 1010 of the exhaust unit 1000 from being deteriorated and broken by the flow of the exhaust gas above the predetermined allowable temperature.
또 다른 한편, 열교환매체가 폐열회수유닛(1100)의 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)를 통해 폐열회수유닛(1100)의 열교환기(1110)를 통과하는 것이 중지될 수 있다. 예컨대, 제1온도감지센서(ST1)에서 감지된, 배기유닛(1000)의 배기덕트(1010)에 유입되는 배기가스의 온도가 소정의 활용온도보다 낮으면 제어부(1300)가 열교환매체를 유동시키는 펌프 등을 중지하는 것으로, 열교환매체가 열교환기(1110)를 통과하는 것이 중지될 수 있다.On the other hand, the heat exchange medium can be stopped from passing through the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 and the heat exchanger 1110 of the waste heat recovery unit 1100 through the heat exchange medium discharge duct 1170 have. For example, when the temperature of the exhaust gas flowing into the exhaust duct 1010 of the exhaust unit 1000 detected by the first temperature sensor ST1 is lower than a predetermined utilization temperature, the control unit 1300 controls the flow of the heat exchange medium By stopping the pump or the like, the heat exchange medium can be stopped from passing through the heat exchanger 1110.
이 경우, 제어부(1300)는 배기유닛(1000)의 배기덕트개폐댐퍼(1020)를 열고 폐열회수유닛(1100)의 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)를 닫아서 배기유닛(1000)의 배기덕트(1010)에 유입된 배기가스가 배기덕트(1010)를 유동하여 외부로 배출되도록 한 후, 열교환매체가 폐열회수유닛(1100)의 열교환매체유입덕트(1160)와 열교환매체배출덕트(1170)를 통해 열교환기(1110)를 통과하는 것이 중지되도록 할 ㅅ 있다.In this case, the control unit 1300 opens the exhaust duct opening / closing damper 1020 of the exhaust unit 1000 and closes the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovering unit 1100, The exhaust gas flowing into the exhaust duct 1010 of the unit 1000 flows through the exhaust duct 1010 and is discharged to the outside. Then, the heat exchange medium is heat-exchanged with the heat exchange medium inlet duct 1160 of the waste heat recovery unit 1100 So that passage through the heat exchanger 1110 through the media discharge duct 1170 can be stopped.
이 경우, 제어부(1300)는 폐열회수유닛(1100)의 제1덕트개폐댐퍼(1140)와 제2덕트개폐댐퍼(1150)를 완전히 닫고 난 후 소정 시간 후에 배기유닛(1000)의 배기덕트개폐댐퍼(1020)가 완전히 열리도록 할 수 있다. 이에 따라, 압력감지센서(SP)에 의해서 감지될 수 있는 열설비의 내압이 갑자기 하강하지 않도록 할 수 있다.In this case, the controller 1300 completely closes the first duct opening / closing damper 1140 and the second duct opening / closing damper 1150 of the waste heat recovering unit 1100, and after a predetermined time passes, the exhaust duct opening / (1020) to be fully open. Accordingly, the internal pressure of the thermal equipment, which can be sensed by the pressure sensor SP, can be prevented from suddenly dropping.
상기한 바와 같이, 본 발명에 따른 배기가스의 폐열회수장치를 사용하면, 배기가스 폐열회수장치에 포함되어 배기가스의 폐열을 회수하는 열교환기로 유동하는 배기가스의 온도가 외기에 의해서 소정의 온도범위 내를 유지할 수 있어서, 배기가스 폐열회수장치에 의해서 회수된 폐열의 활용성이 증대될 수 있다.As described above, when the waste heat recovery apparatus of the present invention is used, the temperature of the exhaust gas flowing into the heat exchanger included in the exhaust gas waste heat recovery apparatus for recovering waste heat of the exhaust gas is controlled by the outside air to a predetermined temperature range The utilization efficiency of the waste heat recovered by the exhaust gas waste heat recovery apparatus can be increased.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be obvious to those of ordinary skill in the art.

Claims (33)

  1. 배가스가 내부를 통해 흐르는 주배관;A main pipe through which flue-gas flows;
    상기 주배관에 연결되며 제1 개폐밸브가 구비되는 외기공급관;An outside air supply pipe connected to the main pipe and having a first opening / closing valve;
    배가스의 유동 경로 상 상기 외기공급관의 연결부 후단에 배치되도록 상기 주배관에 설치되는 혼합부;A mixing part installed in the main pipe so as to be disposed at a rear end of a connection part of the outside air supply pipe on the flow path of the flue gas;
    상기 혼합부 내 또는 상기 혼합부의 후단에 배치되는 제1 온도센서;A first temperature sensor disposed in the mixing section or at a rear stage of the mixing section;
    배가스의 유동 경로 상 상기 혼합부의 후단에 배치되어 배가스 또는 배가스와 외기의 혼합가스와 열교환하는 열교환기를 구비하는 열교환부; 및And a heat exchanger disposed at a downstream end of the mixing section on the flow path of the flue gas and performing heat exchange with the flue gas or a mixed gas of the flue gas and the outside air; And
    상기 열교환기의 후단에 배치되도록 주배관에 설치되는 흡입팬;A suction fan installed in the main pipe so as to be disposed at the rear end of the heat exchanger;
    을 포함하는 배가스 현열 회수 장치.And an exhaust gas recuperation device.
  2. 제1항에 있어서,The method according to claim 1,
    상기 제1 온도센서의 후단에 배치되도록 상기 주배관에 연결되는 바이패스 배관을 더 포함하며,And a bypass pipe connected to the main pipe to be disposed at a rear end of the first temperature sensor,
    상기 열교환기는 상기 바이패스 배관에 연결되는 배가스 현열 회수 장치.And the heat exchanger is connected to the bypass pipe.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 주배관에는 상기 바이패스 배관과 상기 주배관의 연결부 사이에 배치되도록 상기 주배관에 설치되는 제2 개폐밸브가 구비되며,Wherein the main pipe is provided with a second opening / closing valve installed in the main pipe so as to be disposed between the bypass pipe and the connecting portion of the main pipe,
    상기 바이패스 배관에는 상기 열교환기의 후단에 배치되도록 상기 바이패스 배관에 설치되는 제3 개폐밸브가 구비되는 배가스 현열 회수 장치.Wherein the bypass pipe is provided with a third opening / closing valve installed in the bypass pipe so as to be disposed at a rear end of the heat exchanger.
  4. 제3항에 있어서,The method of claim 3,
    상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관을 구비하는 배가스 현열 회수 장치.And the heat exchange unit includes a pipe for a heat transfer fluid connected to the heat exchanger.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 열교환부는 상기 열전달유체용 배관에 설치되는 펌프를 더 구비하는 배가스 현열 회수 장치.Wherein the heat exchanger further comprises a pump installed in the piping for the heat transfer fluid.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 열교환부는 상기 열교환기의 후단에 배치되도록 열전달유체용 배관에 설치되는 제2 온도센서를 더 구비하는 배가스 현열 회수 장치.Wherein the heat exchanger further comprises a second temperature sensor installed in a pipe for a heat transfer fluid so as to be disposed at a rear end of the heat exchanger.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 열전달유체용 배관은 열기관용 열교환기에 연결되는 배가스 현열 회수 장치.And the piping for the heat transfer fluid is connected to the heat exchanger for the heat pipe.
  8. 제3항에 있어서,The method of claim 3,
    상기 열교환기는 상기 바이패스 배관에 설치되며,Wherein the heat exchanger is installed in the bypass pipe,
    상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관을 구비하는 배가스 현열 회수 장치.And the heat exchange unit includes a pipe for a heat transfer fluid connected to the heat exchanger.
  9. 제3항에 있어서,The method of claim 3,
    상기 열교환기는 상기 바이패스 배관에 연결되며, 고체를 이송하는 이송부재가 관통하도록 배치되는 배가스 현열 회수 장치.Wherein the heat exchanger is connected to the bypass pipe and is arranged so that a conveying member for conveying the solid passes through the heat exchanger.
  10. 제8항 또는 제9항에 있어서,10. The method according to claim 8 or 9,
    상기 열교환부는 상기 열교환기에 설치되는 제3 온도센서를 더 구비하는 배가스 현열 회수 장치.And the heat exchanger further comprises a third temperature sensor installed in the heat exchanger.
  11. 제1항에 있어서,The method according to claim 1,
    상기 주배관에는 상기 흡입팬의 전단에 배치되는 집진설비가 구비되는 배가스 현열 회수 장치.Wherein the main pipe is provided with a dust collecting device disposed at a front end of the suction fan.
  12. 제1항에 있어서,The method according to claim 1,
    상기 주배관에는 상기 외기공급관의 연결부의 전단에 배치되는 압력센서가 구비되는 배가스 현열 회수 장치.Wherein the main pipe is provided with a pressure sensor disposed at a front end of a connection part of the outside air supply pipe.
  13. 제1항에 있어서,The method according to claim 1,
    상기 주배관에는 상기 외기공급관의 연결부의 전단에 배치되는 유입부용 온도센서가 구비되는 배가스 현열 회수 장치.Wherein the main pipe is provided with a temperature sensor for the inlet portion disposed at the front end of the connection portion of the outside air supply pipe.
  14. 제1항에 있어서,The method according to claim 1,
    상기 제1 온도센서 및 제1 개폐밸브에 연결되는 제어부를 더 포함하는 배가스 현열 회수 장치.And a control unit connected to the first temperature sensor and the first on-off valve.
  15. 제1항에 있어서,The method according to claim 1,
    상기 열교환기는 상기 제1 온도센서의 후단에 배치되도록 상기 주배관에 연결되는 배가스 현열 회수 장치.And the heat exchanger is connected to the main pipe so as to be disposed at a rear end of the first temperature sensor.
  16. 제15항에 있어서,16. The method of claim 15,
    일단이 상기 열교환기의 전단에서 상기 주배관에 연결되고 타단이 상기 열교환기의 후단에서 상기 주배관에 연결되는 바이패스 배관을 더 포함하는 배가스 현열 회수 장치.And a bypass pipe connected to the main pipe at one end of the heat exchanger and the other end connected to the main pipe at a rear end of the heat exchanger.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 주배관에는 상기 열교환기의 후단에 배치되도록 제2 개폐밸브가 구비되며,The main pipe is provided with a second open / close valve disposed at a rear end of the heat exchanger,
    상기 바이패스 배관에는 제3 개폐밸브가 구비되는 배가스 현열 회수 장치.And the bypass pipe is provided with a third opening / closing valve.
  18. 제17항에 있어서,18. The method of claim 17,
    상기 열교환부는 상기 열교환기에 연결되는 열전달유체용 배관과, 상기 열교환기의 후단에 배치되도록 열전달유체용 배관에 설치되는 제2 온도센서를 구비하는 배가스 현열 회수 장치.Wherein the heat exchanger includes a pipe for a heat transfer fluid connected to the heat exchanger and a second temperature sensor installed in a pipe for a heat transfer fluid to be disposed at a rear end of the heat exchanger.
  19. 제17항에 있어서,18. The method of claim 17,
    상기 열교환기는 고체를 이송하는 이송부재가 관통하도록 배치되며, The heat exchanger is disposed so as to penetrate a conveying member for conveying a solid,
    상기 열교환부는 상기 이송부재를 통해 이송되는 고체의 온도를 측정하기 위한 제4 온도센서를 더 구비하는 배가스 현열 회수 장치.Wherein the heat exchanger further comprises a fourth temperature sensor for measuring a temperature of a solid conveyed through the conveying member.
  20. 배기가스를 배출하는 열설비에 연결되며 열설비로부터 배출된 배기가스가 유입되어 유동하는 배기덕트를 포함하는 배기유닛;An exhaust unit connected to the heat equipment for exhausting the exhaust gas and including an exhaust duct through which exhaust gas discharged from the heat equipment flows and flows;
    상기 배기덕트에 유입된 배기가스가 상기 배기덕트의 일부를 우회하여 통과한 후 상기 배기덕트로 되돌아가도록 상기 배기덕트에 연결되며 배기가스로부터 폐열을 회수하는 열교환기를 포함하는 폐열회수유닛;A waste heat recovery unit connected to the exhaust duct to recover waste heat from the exhaust gas so that exhaust gas flowing into the exhaust duct bypasses a part of the exhaust duct and then returns to the exhaust duct;
    상기 폐열회수유닛에 외기가 유입되도록 상기 폐열회수유닛에 연결되는 외기유입유닛; 및An outside air inflow unit connected to the waste heat recovery unit so that outside air flows into the waste heat recovery unit; And
    상기 배기유닛과 폐열회수유닛 및 외기유입유닛을 제어하며 상기 배기덕트의 일부를 우회하여 상기 열교환기로 유동하는 배기가스의 온도가 상기 외기유입유닛을 통해 유입된 외기로 소정의 온도범위 내를 유지하도록 하는 제어부;And controls the exhaust unit, the waste heat recovery unit, and the outside air inflow unit so that the temperature of the exhaust gas flowing to the heat exchanger bypasses a part of the exhaust duct to be maintained within a predetermined temperature range by the outside air introduced through the outside air inflow unit ;
    를 포함하는 배가스 현열 회수 장치.And an exhaust gas recuperation device.
  21. 제20항에 있어서, 21. The method of claim 20,
    상기 폐열회수유닛은 배기가스가 상기 배기덕트로부터 상기 열교환기로 유동하여 통과하도록 상기 배기덕트와 열교환기에 연결되는 제1바이패스덕트와, 상기 열교환기를 통과한 배기가스가 상기 배기덕트로 되돌아가도록 상기 열교환기와 배기덕트에 연결되는 제2바이패스덕트를 더 포함하는 배가스 현열 회수 장치.The exhaust heat recovery unit may include a first bypass duct connected to the exhaust duct and the heat exchanger so that exhaust gas flows from the exhaust duct to the heat exchanger and a second bypass duct connected to the heat exchanger to return the exhaust gas passed through the heat exchanger to the exhaust duct. And a second bypass duct connected to the tile exhaust duct.
  22. 제21항에 있어서, 22. The method of claim 21,
    상기 외기유입유닛은 외부와 상기 제1바이패스덕트에 연결되는 외기유입덕트와, 상기 외기유입덕트에 구비되어 상기 외기유입덕트를 개폐하는 외기덕트개폐댐퍼를 포함하는 배가스 현열 회수 장치.Wherein the outside air inflow unit includes an outside air inlet duct connected to the outside and the first bypass duct, and an outside air duct opening / closing damper provided in the outside air inlet duct to open / close the outside air inlet duct.
  23. 제22항에 있어서, 23. The method of claim 22,
    상기 배기유닛은 상기 배기덕트에 구비되어 상기 배기덕트를 개폐하는 배기덕트개폐댐퍼를 더 포함하고,Wherein the exhaust unit further includes an exhaust duct opening / closing damper provided in the exhaust duct to open / close the exhaust duct,
    상기 폐열회수유닛은 상기 제1바이패스덕트에 구비되어 상기 제1바이패스덕트를 개폐하는 제1덕트개폐댐퍼와 상기 제2바이패스덕트에 구비되어 제2바이패스덕트를 개폐하는 제2덕트개폐댐퍼를 더 포함하는 배가스 현열 회수 장치.The waste heat recovery unit includes a first duct opening / closing damper provided in the first bypass duct for opening and closing the first bypass duct, a second duct opening / closing damper provided in the second bypass duct for opening and closing the second bypass duct, Further comprising a damper.
  24. 제23항에 있어서, 24. The method of claim 23,
    상기 배기덕트개폐댐퍼는 상기 제1바이패스덕트가 연결되는 부분과 상기 제2바이패스덕트가 연결되는 부분 사이의 상기 배기덕트의 부분에 구비되고,Wherein the exhaust duct opening / closing damper is provided at a portion of the exhaust duct between a portion to which the first bypass duct is connected and a portion to which the second bypass duct is connected,
    상기 외기유입덕트는 배기가스의 유동방향으로 상기 제1덕트개폐댐퍼 전의 상기 제1바이패스덕트의 부분에 연결되는 배가스 현열 회수 장치.Wherein the outside air inlet duct is connected to a portion of the first bypass duct before the first duct opening / closing damper in a flow direction of the exhaust gas.
  25. 제23항에 있어서, 24. The method of claim 23,
    상기 폐열회수유닛은 열교환매체가 상기 열교환기로 유동하여 통과하도록 상기 열교환기에 연결되는 열교환매체유입덕트와, 상기 열교환기를 통과하면서 배기가스와 열교환하여 폐열을 회수한 열교환매체가 상기 열교환기를 통과하여 폐열사용처로 공급되도록 상기 열교환기에 연결되는 열교환매체배출덕트를 더 포함하는 배가스 현열 회수 장치.The waste heat recovering unit includes a heat exchange medium inlet duct connected to the heat exchanger so that the heat exchange medium flows to the heat exchanger and a heat exchange medium that has recovered waste heat by heat exchange with the exhaust gas while passing through the heat exchanger passes through the heat exchanger, And a heat exchange medium discharge duct connected to the heat exchanger so as to be supplied to the heat exchange medium discharge duct.
  26. 제24항에 있어서, 25. The method of claim 24,
    배기가스의 유동방향으로 상기 제1바이패스덕트가 연결되는 부분 전의 상기 배기덕트의 부분에는 상기 배기덕트에 유입되는 배기가스의 온도를 감지하는 제1온도감지센서가 구비되고,A first temperature sensor for sensing the temperature of the exhaust gas flowing into the exhaust duct is provided in a part of the exhaust duct before the first bypass duct is connected in the flow direction of the exhaust gas,
    상기 제1덕트개폐댐퍼와 상기 열교환기 사이의 상기 제1바이패스덕트의 부분에는 상기 열교환기로 유동하는 배기가스의 온도를 감지하는 제2온도감지센서가 구비되는 배가스 현열 회수 장치.And a second temperature sensor for sensing the temperature of the exhaust gas flowing into the heat exchanger is provided in a portion of the first bypass duct between the first duct opening / closing damper and the heat exchanger.
  27. 제26항에 있어서, 27. The method of claim 26,
    상기 제어부는, 열교환매체가 상기 열교환기를 통과하도록 한 후, 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 열고 상기 배기덕트개폐댐퍼를 닫아서 상기 배기덕트에 유입된 배기가스가 우회하여 상기 열교환기를 통과하면서 열교환매체와 열교환한 후 상기 배기덕트로 되돌아가도록 하는 배가스 현열 회수 장치.The control unit opens the first duct opening / closing damper and the second duct opening / closing damper and closes the exhaust duct opening / closing damper so that the exhaust gas flowing into the exhaust duct bypasses the heat exchanger, Exchanges heat with the heat exchange medium while passing through the exhaust duct, and then returns to the exhaust duct.
  28. 제26항에 있어서, 27. The method of claim 26,
    상기 제어부는, 상기 제1온도감지센서에서 감지된 배기가스의 온도가 소정의 온도범위를 초과하면, 상기 외기덕트개폐댐퍼를 열어서 상기 외기유입덕트를 통해 상기 제1바이패스덕트에 외기가 유입되도록 하며, 상기 제2온도감지센서에서 감지된 배기가스의 온도가 소정의 온도범위 내에 있도록 상기 외기덕트개폐댐퍼의 개방정도를 조절하는 배가스 현열 회수 장치.The control unit opens the outside air duct opening / closing damper so that outside air flows into the first bypass duct through the outside air inlet duct when the temperature of the exhaust gas detected by the first temperature sensor exceeds a predetermined temperature range And controls the opening degree of the outside air duct opening / closing damper so that the temperature of the exhaust gas sensed by the second temperature sensor is within a predetermined temperature range.
  29. 제26항에 있어서, 27. The method of claim 26,
    상기 제어부는, 상기 배기덕트에 유입된 배기가스가 우회하여 상기 열교환기를 통과하지 않고 상기 배기덕트를 유동하여 외부로 배출되는 경우에, 상기 외기유입유닛을 통해 유입된 외기로 상기 배기덕트를 유동하는 배기가스의 온도가 소정의 허용온도를 초과하지 않도록 하는 배가스 현열 회수 장치.Wherein the control unit controls the flow of the exhaust gas flowing through the exhaust duct to the outside air introduced through the outside air inflow unit when the exhaust gas flowing into the exhaust duct bypasses the exhaust duct and flows through the exhaust duct without passing through the heat exchanger, And the temperature of the exhaust gas does not exceed a predetermined allowable temperature.
  30. 제29항에 있어서, 30. The method of claim 29,
    상기 제어부는, 상기 제1온도감지센서에서 감지된 배기가스의 온도가 소정의 허용온도를 초과하면, 상기 외기덕트개폐댐퍼를 열어서 상기 외기유입덕트와 제1바이패스덕트를 통해 상기 배기덕트에 외기가 유입되도록 하는 배가스 현열 회수 장치.Wherein the control unit opens the outside air duct opening / closing damper to open the outside air inlet duct and the outside air duct to the outside air duct through the first bypass duct when the temperature of the exhaust gas detected by the first temperature sensor exceeds a predetermined allowable temperature, And the exhaust gas heat recovery device.
  31. 제27항에 있어서, 28. The method of claim 27,
    상기 제어부는 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 완전히 열고 난 후 소정 시간 후에 상기 배기덕트개폐댐퍼가 완전히 닫히도록 하는 배가스 현열 회수 장치.Wherein the control unit completely closes the exhaust duct opening / closing damper after a predetermined time after completely opening the first duct opening / closing damper and the second duct opening / closing damper.
  32. 제27항에 있어서, 28. The method of claim 27,
    상기 제어부는, 상기 배기덕트개폐댐퍼를 열고 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 닫아서 상기 배기덕트에 유입된 배기가스가 상기 배기덕트를 유동하여 외부로 배출되도록 한 후, 열교환매체가 상기 열교환기를 통과하는 것이 중지되도록 하는 배가스 현열 회수 장치.The control unit opens the exhaust duct opening / closing damper and closes the first duct opening / closing damper and the second duct opening / closing damper so that the exhaust gas flowing into the exhaust duct flows through the exhaust duct to be discharged to the outside, And stops passing through the heat exchanger.
  33. 제32항에 있어서, 33. The method of claim 32,
    상기 제어부는 상기 제1덕트개폐댐퍼와 제2덕트개폐댐퍼를 완전히 닫고 난 후 소정 시간 후에 상기 배기덕트개폐댐퍼가 완전히 열리도록 하는 배가스 현열 회수 장치.Wherein the control unit fully opens the exhaust duct opening / closing damper after a predetermined time after completely closing the first duct opening / closing damper and the second duct opening / closing damper.
PCT/KR2018/013735 2017-12-14 2018-11-12 Apparatus for recovering sensible heat of exhaust gas WO2019117477A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0171823 2017-12-14
KR1020170171823A KR102043025B1 (en) 2017-12-14 2017-12-14 Apparatus for recovering waste heat of exhust gas
KR1020170178467A KR102285076B1 (en) 2017-12-22 2017-12-22 Apparatus for recovering waste heat
KR10-2017-0178467 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019117477A1 true WO2019117477A1 (en) 2019-06-20

Family

ID=66819358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013735 WO2019117477A1 (en) 2017-12-14 2018-11-12 Apparatus for recovering sensible heat of exhaust gas

Country Status (1)

Country Link
WO (1) WO2019117477A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828832A (en) * 1994-07-13 1996-02-02 Miyamoto Kogyosho:Kk Exhaust system of crematory
JPH11148625A (en) * 1997-11-20 1999-06-02 Hitachi Ltd Device and method of recovering combustion heat of waste
JP2000111001A (en) * 1998-09-30 2000-04-18 Miura Co Ltd Exhaust heat recovery system
JP3587744B2 (en) * 1999-08-26 2004-11-10 株式会社 日立インダストリイズ Waste heat recovery method and waste heat recovery device for exhaust gas
JP2016205679A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Waste heat recovery system and operation method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828832A (en) * 1994-07-13 1996-02-02 Miyamoto Kogyosho:Kk Exhaust system of crematory
JPH11148625A (en) * 1997-11-20 1999-06-02 Hitachi Ltd Device and method of recovering combustion heat of waste
JP2000111001A (en) * 1998-09-30 2000-04-18 Miura Co Ltd Exhaust heat recovery system
JP3587744B2 (en) * 1999-08-26 2004-11-10 株式会社 日立インダストリイズ Waste heat recovery method and waste heat recovery device for exhaust gas
JP2016205679A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Waste heat recovery system and operation method for the same

Similar Documents

Publication Publication Date Title
WO2010126267A2 (en) Apparatus for automatically controlling a constant flow by considering a heating load
WO2018093064A1 (en) System and method for switching ship fuel oil
WO2016186343A1 (en) Hot water supply method, hot water supply device, and water purifier using same
WO2017034201A1 (en) Induction heater and water dispenser
WO2016204414A1 (en) Clothes-handling apparatus having drying function
WO2021015483A1 (en) Heat management device for vehicle, and heat management method for vehicle
WO2019203391A1 (en) Electrode boiler system
WO2021132866A1 (en) Air conditioning apparatus
WO2017022874A1 (en) Thermoelectric power-generating apparatus, heating apparatus for fuel storage tank, and waste heat recovery system
WO2019143195A1 (en) Multi-type air conditioner
WO2021261741A1 (en) Shoe care apparatus
WO2018066845A1 (en) Hybrid-type generation system
WO2013094859A1 (en) Operation logic of an organic material thermohydrolysis system
WO2019117477A1 (en) Apparatus for recovering sensible heat of exhaust gas
WO2018143553A1 (en) Experimental water tank mounted in mesocosm simulation system
WO2014171642A1 (en) Method for forming redundantly-actuated mechanism and actuator force distribution system
WO2017115966A1 (en) Integrated system of heat exchange device and thermoelectric power generation device, and operating method therefor
WO2016204560A1 (en) Heat recovery apparatus
WO2021172671A1 (en) Air conditioner and water filling method therefor
WO2020226340A1 (en) Water dispensing apparatus and control method therefor
WO2013025018A9 (en) Mobile apparatus for continuously producing asphalt concrete
WO2020235801A1 (en) Air conditioning apparatus
WO2019143198A1 (en) Multi-type air conditioner
WO2022154594A1 (en) Component interface module with enhanced user convenience
WO2023068454A1 (en) Biomass gasification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888696

Country of ref document: EP

Kind code of ref document: A1