WO2019114385A1 - 一种利用城镇生活污泥制备生物质燃料的方法 - Google Patents

一种利用城镇生活污泥制备生物质燃料的方法 Download PDF

Info

Publication number
WO2019114385A1
WO2019114385A1 PCT/CN2018/109387 CN2018109387W WO2019114385A1 WO 2019114385 A1 WO2019114385 A1 WO 2019114385A1 CN 2018109387 W CN2018109387 W CN 2018109387W WO 2019114385 A1 WO2019114385 A1 WO 2019114385A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass fuel
sludge
urban domestic
drying
preparing
Prior art date
Application number
PCT/CN2018/109387
Other languages
English (en)
French (fr)
Inventor
冉启洋
毛永强
邹先军
李晶
Original Assignee
湖南恒凯环保科技投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南恒凯环保科技投资有限公司 filed Critical 湖南恒凯环保科技投资有限公司
Publication of WO2019114385A1 publication Critical patent/WO2019114385A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • C10L9/12Oxidation means, e.g. oxygen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0272Silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/029Salts, such as carbonates, oxides, hydroxides, percompounds, e.g. peroxides, perborates, nitrates, nitrites, sulfates, and silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a method for treating urban biological sludge, in particular to a process for making biomass fuel by using sewage from urban sewage treatment plant to realize resource utilization, harmlessness, stabilization and reduction treatment of sludge It belongs to the technical field of sludge treatment and disposal.
  • Sludge is an inevitable product of sewage treatment. It is a fixed semi-solid waste produced by municipal wastewater treatment plants after treating domestic wastewater and industrial wastewater. With the continuous improvement of the level of urbanization in China, the urban population has expanded rapidly, and the construction of corresponding sewage treatment facilities has developed rapidly. As of September 2016, 3,976 urban sewage treatment plants have been built, and the sewage treatment capacity has reached 1.7 ⁇ 10 8 m 3 /d.
  • the municipal sewage treatment plant sludge is an additional product after sewage treatment, and its production amount is affected by factors such as sewage treatment volume and treatment process. With the popularization of sewage treatment facilities and the improvement of treatment degree, the amount of sludge production will increase day by day. At present, the problem of sludge outlets almost plagues all sewage treatment plants in the country.
  • the conventional sludge drying method adopts the form of a sludge drying field, and the sludge is piled up in an outdoor drying field, and the sludge is dried by natural ventilation and gravity.
  • the modern drying process is mainly a heat drying process, that is, a process of evaporating water in the sludge by an external heating source, which has the advantages of small footprint, obvious reduction, and flexible product use.
  • problems in the thermal drying process mainly due to high investment and operating costs, high energy consumption for equipment operation, and safety hazards of dust explosion, which are difficult to promote and apply in large areas in China. Therefore, the development of a more economical and energy-saving drying technology has become an urgent need for urban sludge treatment in China.
  • the bio-drying technology is developed based on the composting method, which has the advantages of low energy consumption, short reaction cycle, high system safety, low equipment investment and low operating cost.
  • the main mechanism of sludge bio-drying is convective evaporation, and the moisture in the sludge is removed by the combined action of microorganisms on aerobic biodegradation and heat generation of forced sludge and forced ventilation.
  • the purpose of bio-drying is to remove as much moisture as possible in the shortest possible time to achieve dewatering and depletion of the sludge.
  • the product can make full use of the calorific value of the sludge to achieve real resource reduction, reduction, harmless and stable sludge treatment and disposal requirements.
  • the Chinese patent discloses that sludge is added to quicklime stirring, and the second batch of sludge is uniformly stirred as low-layer sludge and added to raw
  • the material fermentation material is finally added with the third batch of sludge, the biomass fermentation material and the sludge starter, and the fermented upper layer sludge is planted with the fast-growing plant; the planted plant and the sludge are stirred together to be added to the biomass fermentation material; fermentation Obtaining a fermentation sludge biomass mixture; adding coking coal powder and quicklime to form a biofuel block; the method involves multiple fermentations with low efficiency, and uses planting plants to improve sludge biomass, has a long treatment cycle, and has a large area.
  • Chinese patent (CN103387324A) discloses a sludge drying biomass fuel technology, which specifically mixes biochemical sludge, plant waste and appropriate amount of biological compound bacteria; after several days of fermentation and evaporation at room temperature, Biomass fuel, the biomass fuel produced by it is not high, only 1500kcal/kg.
  • Chinese patent (CN106281560A) discloses an environmentally friendly fuel for sludge, which is mainly composed of industrial sludge as raw material, mixed with sulfur powder and carbonaceous material, and the sludge is uniformly stirred and accumulated for fermentation for several days, and then dried and air-dried. Drying treatment. This method uses a large amount of sulfur, which is not conducive to environmental protection.
  • the object of the present invention is to provide a method for preparing biomass fuel by using bio-drying technology for urban domestic sludge, which is simple, efficient and capable.
  • the environmentally-friendly biomass fuel with fast fire, strong firepower, low dust, high calorific value and no secondary pollution is realized, which realizes the resource utilization, harmlessness, stabilization and reduction of sludge.
  • the present invention provides a method for preparing a biomass fuel using urban domestic sludge, the method comprising the steps of:
  • the mixture material is subjected to biological drying treatment by using a multi-layer vertical mixed fermentation tower to obtain a biologically dried material
  • the biologically dried material is mixed with a combustion improver, granulated, and dried to obtain biomass fuel particles.
  • the mass ratio of the municipal sewage sludge, the chaff and the sawdust is 75 to 85:12 to 20:3 to 5; and the moisture content of the municipal sewage sludge is 75 to 85%.
  • the invention uses a combination of chaff and sawdust to provide organic matter for microbial fermentation.
  • the low moisture content and high calorific value of the chaff can provide good initial fermentation conditions for sludge bio-drying, increase the free airspace inside the sludge, reduce the initial moisture content of the sludge, and increase the calorific value of the biofuel.
  • the composition is mainly cellulose
  • the carbon source inside is difficult to be used by the sludge, and the use of sawdust can make up for the defects of the chaff.
  • the sawdust can not only reduce the moisture content of the sludge, but also adjust the mixture.
  • the material is effective C/N, providing sufficient carbon source for the microorganisms.
  • the quality of the pumice is 5-15% of the quality of the municipal sewage sludge.
  • the amount of the microbial agent is 0.05 to 0.1% of the quality of the municipal sewage sludge.
  • the microbial agent is composed of a high temperature actinomycete, Bacillus subtilis, brewer's yeast, white rot fungus, Bacillus licheniformis, and a high-yield amylase Bacillus subtilis.
  • white rot fungi, high temperature actinomycetes, Bacillus subtilis, brewer's yeast, Bacillus licheniformis and high-yield amylase are all commercially available products, which can be purchased from China Institute of Microbiology and Luoyang Ouke. Bayer Biotechnology Co., Ltd., General Microbial Culture Collection Center, etc.).
  • the microbial agent of the present invention separately cultures various strains through a culture solution (with rapeseed cake as the sole carbon source), and the inoculum amount is about 10% of the culture solution. Inoculation of each strain was carried out two or two, and it was found that the strains could coexist, and there was no phenomenon of niche overlap; finally, the bacterial liquids were mixed in a certain weight ratio to prepare a composite microbial agent.
  • the composition ratio of the high temperature actinomycetes, Bacillus subtilis, white rot fungi, brewer's yeast, Bacillus licheniformis and the high-yield amylase Bacillus subtilis is 0.5 ⁇ 1.5 : 2.5 ⁇ 3.5 : 0.5 ⁇ 1.5 : 0.5 ⁇ 1.5 : 0.5 ⁇ 1.5 : 0.5 ⁇ 1.5.
  • the high-temperature actinomycetes, Bacillus licheniformis and high-yield amylase Bacillus subtilis are high-temperature bacteria, which can prolong the drying high temperature time; white rot fungus can accelerate the degradation of organic matter in the heap, release more heat and improve drying.
  • Efficiency, and white rot fungus has no effect on the degradation of hemicellulose and cellulose in the chaff, and does not respond to the calorific value of biomass fuel; the production of odor in the process of controlled drying of Bacillus subtilis and Saccharomyces cerevisiae The amount of odor generated. Synergistic synergy between various strains can greatly improve the available organic matter content in the sludge, increase the calorific value, and improve the combustion performance.
  • the pumice has a porosity of 73 to 82% and a particle diameter of 10 to 20 mm.
  • the main component of pumice is SiO 2 .
  • the use of pumice is mainly used to increase the porosity of the heap, and the pumice is porous structure with high porosity, which can increase the gas permeability of the heap, ensure the rapid growth of microorganisms in the early stage, and improve the drying efficiency.
  • the proportion of pumice in the drying process is preferably 10% of the weight of the wet sludge. After the pumice is dried, it can be screened and reused.
  • the combustion improver comprises 3 to 5 Torr of the weight of the biomass fuel particles.
  • the combustion improver is composed of carbon powder, potassium permanganate, sodium hypochlorite and cerium nitrate.
  • the invention aims at the problem that the solidification molding fuel has high density and is not easy to ignite, and the carbon powder pulverized by the carbon rod is used as a main raw material, and is supplemented with potassium permanganate, sodium hypochlorite and cerium nitrate, and the combustion-supporting agent is disposed, and is uniformly grounded by a long time. When added to biomass fuel, it can effectively improve its combustion performance.
  • the combined combustion improver can promote the fuel to fully burn and play the role of combustion and energy increase.
  • the combustion aid is prepared by using carbon powder, potassium permanganate, sodium hypochlorite and lanthanum nitrate.
  • the cost is low and the effect is obvious, and only the biomass needs to be added when used.
  • the fuel weight is about 3 ⁇ 5 ⁇ , and the experimental results show that the boiler burning for biomass fuel can save 20%.
  • the mass ratio of the carbon powder, the potassium permanganate, the sodium hypochlorite and the cerium nitrate is 10:1 to 3:1 to 3:0.5 to 1.5.
  • the mixture is made into a 1.2-1.8 m high stack in a multi-layer vertical mixing fermentation tower, and the biological drying treatment is 64-84 hours.
  • the biological drying technology of the invention solves the key technical problems of slow fermentation rate, long cycle and low thermal efficiency of the traditional aerobic fermentation device.
  • Traditional aerobic fermentation equipment has many problems such as slow drying rate, low thermal efficiency, large floor space and serious odor pollution of the site.
  • the technical scheme of the invention adopts a multi-layer vertical mixed fermentation tower (CN 103387324) A)
  • the use of the fermentation bed for surface ventilation solves the key technical problems such as slow drying rate, low thermal efficiency, large floor space and serious odor pollution.
  • the drying time is shortened by 1 time, the thermal efficiency is increased by 20%, the floor space is reduced by 50%, and the site has no obvious odor.
  • Another feature of bio-drying is the addition of precise, artificial process control strategies.
  • the heat balance model is established.
  • the ventilation quantity satisfies the ventilation required by organic matter oxidation (microbial oxygen supply) and removes moisture.
  • the advantages of using bio-drying technology are as follows. 1) The heat energy generated by microbial growth and metabolism can fully reduce the moisture content of the sludge (gap water, capillary bound water and surface adhesion water); 2) microbial metabolism can reduce the internal water in the sludge during bio-drying; 3) bio-dry The viscosity of the sludge is reduced, the agglomerated sludge becomes loose, and the low-temperature heat drying of the subsequent moisture is utilized.
  • the biological drying material is mixed with the combustion improver, granulated, and dried at a temperature of 70-80 ° C until the moisture content of the material is below 30%, that is, the biomass fuel particles are obtained.
  • the bio-drying material and the combustion-supporting agent are viscous after being ground by the stirring wheel, and the sludge itself has strong cohesiveness, so that the fuel particles can be prepared without the addition of the binder, the preparation cost is reduced, and the prepared product is prepared. It has high crushing strength and is easy to ship and store.
  • the drying temperature is between 70 and 80 °C. The low temperature drying can maximize the retention of organic matter in the biomass fuel and increase the unit heat value of the material.
  • the invention provides a method for preparing environment-friendly biomass fuel by using sewage from urban sewage treatment plants.
  • the method realizes the requirements of harmlessness, stabilization, reduction and resource treatment of the sludge, and the final biomass fuel product has the advantages of quick fire, strong firepower and less dust.
  • the entire process is shown in Figure 1, including: raw material preparation, bio-drying, reagent conditioning and granulation drying process.
  • Raw and auxiliary materials required urban living sludge (80% moisture content) 75 ⁇ 85 parts, chaff 12 ⁇ 20 parts, sawdust 3 ⁇ 5 parts, proper amount of microbial agents and pumice.
  • the raw and auxiliary materials are added to the coulter mixer in a certain proportion, and the mixture is discharged after 5 ⁇ 8 minutes;
  • Step 2 Sludge biological drying
  • the mixed material was sent to a biological drying tower to make a 1.5 m tall pile.
  • the biological drying tower adopts multi-layer, vertical and over-mixing devices, and is quickly dried for 72 hours and discharged;
  • the biologically dried mixture material is added with a certain proportion of combustion-supporting agent, and the mixing wheel is milled for 30-45 minutes, so that the combustion-supporting agent and the material are thoroughly mixed, and the raw materials such as cellulose and plasmin are promoted, and then the next step is entered;
  • Step 4 Granulation drying process
  • the conditioned material has a moisture content of about 50%, and is made into small particles (average particle size less than 8 mm) and then sent to a low-temperature drying equipment. After the moisture content is reduced to less than 30%, the package is made into biomass fuel particles. .
  • the sewage sludge of urban sewage treatment plants has a high organic matter content (accounting for more than 30% of the total dry matter of sludge, and even up to 70% in some areas), and the calorific value is high, but due to its high water content and difficulty in water Removal removes the calorific value of the sludge.
  • the technical solution of the invention utilizes the biological drying technology to dry the sludge, which solves the problems in the prior art well, and can realize the drying of the sludge by high-temperature fermentation by adopting suitable fermentation raw materials and microbial agents.
  • the bio-drying material with high calorific value can be further used together with the combustion-supporting agent to obtain biomass fuel with high calorific value, fast fire, strong combustion fire, less dust and no secondary pollution, realizing sludge. Recycling, harmless, stabilizing and reducing.
  • the invention adopts a special microbial agent to biologically dry the sludge, and the synergistic effect between the bacteria agents is obvious, the biological drying efficiency is high, the obtained biological drying sludge has high calorific value, and can be used for preparing good combustion performance. Biomass fuel.
  • FIG. 1 is a process flow chart of the present invention
  • FIG. 2 is the throughput change curve (dynamic heat balance model simulation) in the biological drying process of Example 1;
  • FIG. 3 is a temperature change curve during the biological drying process of Example 1;
  • FIG. 4 is a water content change curve during the biological drying process of Example 1;
  • FIG. 5 is a variation law of the number of bacteria in the biological drying process of each group in Comparative Example 1.
  • the initial raw materials include 75 municipal sludges with a water content of 80%, 20 shells, 5 sawdust, 7.5 parts of pumice and 0.08 parts of compound microbial agents (high temperature actinomycetes, Bacillus subtilis, white rot fungi, beer). Yeast, Bacillus licheniformis and high-yield amylase Bacillus subtilis by mass ratio 1: 3 : 1: 1: 1: 1 composition).
  • Pumice does not participate in the biochemical reaction of the drying process, and after the fermentation is completed, it is screened and reused.
  • the raw materials are separately mixed into the coulter mixer for about 6 minutes.
  • the mixed material was sent to a multi-layer vertical mixing fermentation tower by a screw conveyor to make a 1.5 m high pile.
  • the multi-layer vertical mixing and fermentation tower adopts continuous forced ventilation, and the air is sent to the pile through the fermentation bed at the bottom, and is quickly dried for 72 hours and then discharged.
  • the ventilation is simulated according to the thermal dynamic thermal equilibrium model, and the range is 0.1 ⁇ 0.21m 3 /kg dry sludge.
  • the simulation results are shown in Figure 2. During the biological drying process, the temperature rises rapidly, the temperature of the bio-drying 5h rises to 55 °C, and the temperature rises to 70 °C in 12 hours.
  • the temperature change curve is shown in Fig. 3.
  • the biologically dried sludge has a high free space (>50%), is brown, has no odor, and has a pH of 7.1.
  • the bio-dried mixture is added with a combustion improver (3 ⁇ ), and the combustion improver is prepared from carbon powder, potassium permanganate, sodium hypochlorite and lanthanum nitrate in a mass ratio of 10:2:2:1.
  • the mixture is stirred for 40 minutes, so that the combustion improver and the stabilizer are thoroughly mixed with the materials to promote the production of raw materials such as cellulose and sizing, and then granulated and dried.
  • the average particle size of the particles is less than 8 mm, and the drying temperature is 70- Between 80 ° C, the water content is reduced to 30%, and then packaged to make a product.
  • the biomass fuel prepared by the invention has better performance than ordinary lignite, and the comprehensive calorific value per kilogram of biomass fuel is 5000 ⁇ 5200 kcal, and has the advantages of quick fire, strong combustion fire, less dust and no secondary pollution.
  • this comparative example is used as a control experiment for different microbial preparations.
  • the variation of the number of bacteria in the process of bio-drying represents the active strength of the microorganisms, and the bio-drying efficiency is verified by the active strength of the microorganisms. The greater the intensity, the higher the efficiency of biological drying.
  • the same batch of test sludge was used, and the respective operation steps and conditions were carried out in accordance with Example 1, except that different microbial agents were used for comparative tests.
  • test results are shown in Figure 5.
  • A sterile agent
  • B high temperature actinomycetes, Bacillus licheniformis and high-yield amylase Bacillus subtilis, ratio 1:1:1
  • C high temperature actinomycetes, White rot fungi, Bacillus licheniformis and high-yield amylase Bacillus subtilis, ratio 1:1:1:1
  • D high temperature actinomycetes, Bacillus subtilis, white rot fungi, brewer's yeast, Bacillus licheniformis and high yield Amylase Bacillus subtilis, the ratio is 1:3:1:1:1:1).
  • the test results are shown in Figure 5.
  • the number of microorganisms in the process of drying is D>B>A>C, and the number of microorganisms in group D is much higher than the other three groups. It is indicated that the synergistic effect between the microbial agents of the present invention is obvious, and the microorganisms are active and active during the high-temperature fermentation process, which greatly promotes the biological drying of the sludge and is beneficial to improve the drying efficiency.

Abstract

一种利用城镇生活污泥制备生物质燃料的方法,其包括将城镇生活污泥、谷壳、锯末、浮石及微生物菌剂采用犁刀混粉机搅拌均匀,得到混合物料;对混合物料采用多层立式混翻发酵塔进行生物干化处理,得到生物干化物料;生物干化物料与助燃剂混合,造粒,干燥,即得生物质燃料颗粒。该方法简单、成本低,制备的生物质燃料具有起火快、燃烧火力强和耐烧时间长等优点。

Description

一种利用城镇生活污泥制备生物质燃料的方法 技术领域
本发明涉及一种城镇生物污泥处理方法,具体涉及一种利用城镇污水处理厂污泥制成生物质燃料,以实现污泥的资源化、无害化、稳定化和减量化处理的工艺;属于污泥处理处置技术领域。
背景技术
污泥是污水处理的必然产物,它是城市污水处理厂将生活废水、工业废水等进行处理后产生的固定半固态的废弃物。随着我国城镇化水平的不断提高,城市人口快速膨胀,相应的污水处理设施建设高速发展。截止2016年9月,城镇污水处理厂已建成3976座,污水处理能力已达到1.7×10 8m 3/d。城镇污水处理厂污泥是污水处理后附加产物,其产生量受污水处理量、处理工艺等因素的影响,随着污水处理设施的普及、处理程度的提高,污泥产生量将与日俱增。目前,污泥的出路问题几乎困扰着全国所有的污水处理厂。
由于城市污泥通常含水率较高,经浓缩脱水处理后仍高达80%左右,具有体积庞大、不利运输、性质不稳定等特点。直接填埋将会占用大量土地,同时会产生渗滤液污染地下水;土地利用则因运输量大、分散困难、容易污染地下水而受到很大限制;直接焚烧也会因为含固率低而导致热值太低,无法维持有效自燃而需耗费大量辅助燃料,使处置成本明显增加。因此,对城市污泥进行干化处理、降低污泥含水率,是解决目前在污泥处置过程中所遇到的许多问题的关键。
传统的污泥干化法采用污泥干化场的形式,将污泥堆积在室外的干化场,通过自然通风和重力作用对污泥进行干化。现代化的干化工艺主要为热干化,即通过外加热源将污泥中水分蒸发的一种工艺,它具有占地面积小、减量化明显、产品用途灵活等优点。但是热干化工艺也存在很多问题,主要是投资和运行费用高、设备运行能耗高,并且具有粉尘爆炸安全隐患,难以在我国进行大面积推广应用。因此,发展一种更经济、更节能的干化技术成为我国城市污泥处理的迫切需要。
生物干化技术基于堆肥化方法发展而来,具有能耗低、反应周期短、系统安全性高、设备投资和运行费用少等优点。污泥生物干化的主要机制为对流蒸发,通过微生物对污泥自身的好氧生物降解产热和强制通风等多因素的综合作用脱除污泥中水分。生物干化的目的是在尽可能短的时间内去除尽可能多的水分,实现污泥的脱水干化和减容减量。其产物作为生物质燃料,能充分利用污泥的热值,做到真正的资源化、减量化、无害化和稳定化的污泥处理处置要求。
目前有报道污水处理中产生的污泥用于制造生物质燃料的方法,如中国专利( CN105695033A)公开了将污泥加入生石灰搅拌,再加第二批污泥搅拌均匀作为低层污泥并加入生物质发酵料,最后再加入第三批污泥、生物质发酵料和污泥发酵剂,发酵后的上层污泥种植速生植物;将所种植的植物和污泥一起搅拌加入生物质发酵料;发酵得到发酵污泥生物质混合物;再加入焦煤粉、生石灰制成生物燃料块;该方法涉及多次发酵效率低,且利用种植植物来提高污泥生物质,处理周期长,占地面积大,不利于推广应用。中国专利(CN103387324A)公开了一种污泥干化生物质燃料技术,具体是把生化污泥、植物性废弃物与适量生物复合菌种进行均匀混合;在常温下经过若干天发酵和蒸发,得到生物质燃料,其制备的生物质燃料热值不高,仅为1500kcal/kg。中国专利( CN106281560A)公开了一种污泥环保燃料,具体以工业污泥为主要原料,混入硫磺粉和碳质材料,将污泥均匀搅拌后堆积发酵数天,然后通过烘干、风干方式进行干燥处理。该方法采用了大量的硫磺,不利于环保。
技术问题
针对现有技术中城镇污泥在制备生物质燃料存在的缺陷,本发明的目的是在于提供一种利用城镇生活污泥采用生物干化技术制备生物质燃料的方法,该方法简单、高效,能获得起火快、燃烧火力强、灰尘少、高热值、无二次污染的环保型生物质燃料,真正实现了污泥的资源化、无害化、稳定化和减量化。
技术解决方案
为了实现上述技术目的,本发明提供了一种利用城镇生活污泥制备生物质燃料的方法,该方法包括以下步骤:
1)将城镇生活污泥、谷壳、锯末、浮石及微生物菌剂采用犁刀混粉机搅拌均匀,得到混合物料;
2)所述混合物料采用多层立式混翻发酵塔进行生物干化处理,得到生物干化物料;
3)所述生物干化物料与助燃剂混合,造粒,干燥,即得生物质燃料颗粒。
优选的方案,城镇生活污泥、谷壳与锯末的质量比为75~85:12~20:3~5;所述城镇生活污泥的含水率为75~85%。本发明采用谷壳和锯末搭配使用来为微生物发酵提供有机质。谷壳含水率低、热值较高,可为污泥生物干化提供良好的初始发酵条件,增加污泥内部自由空域、降低污泥初始含水率、提高生物燃料热值。但由于谷壳存在的缺陷是其成分主要为纤维素,其内碳源较难被污泥利用,而采用锯末可以弥补谷壳存在的缺陷,锯末不但可以降低污泥含水率,而且可以调节混合物料有效C/N,为微生物提供足够碳源。
优选的方案,所述浮石质量为城镇生活污泥质量的5~15%。
优选的方案,所述微生物菌剂的用量为城镇生活污泥质量的0.05~0.1%。
较优选的方案,所述微生物菌剂由高温放线菌、枯草芽孢杆菌、啤酒酵母菌、白腐菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌组成。微生物菌剂中白腐菌、高温放线菌、枯草芽孢杆菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌均为常规的市售产品,可以购买至中国微生物研究所、洛阳欧科拜克生物技术股份有限公司、普通微生物菌种保存中心等单位)。本发明的微生物菌剂将各种菌株通过培养液(以菜籽饼为唯一碳源)进行分别培养,接种量为培养液的10%左右。将各菌株两两接种,发现菌株间可以共存,不存在生态位重叠的现象;最后将各菌液按一定的重量比例混合制成复合微生物菌剂。
进一步优选的方案,高温放线菌、枯草芽孢杆菌、白腐菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌的组成质量比例为0.5~1.5 : 2.5~3.5 : 0.5~1.5 : 0.5~1.5 : 0.5~1.5 : 0.5~1.5。复合菌剂中高温放线菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌为高温菌,可以延长干化高温时间;白腐菌可以加快堆体中有机质的降解,释放更多热量,提高干化效率,且白腐菌对谷壳中半纤维素、纤维素的降解没有影响,不响应生物质燃料的燃烧热值;枯草芽孢杆菌和啤酒酵母菌可控干化肥过程中臭气的产生,减少臭气产生量。各种菌种之间起到协同增效作用,可以大大提高污泥中可利用有机质含量,提高热值,改善燃烧性能。
优选的方案,所述浮石的孔隙率为73~82%,粒径在10~20mm之间。浮石的主要成分为 SiO 2。浮石的使用主要用于提高堆体孔隙率,且浮石为多孔结构,孔隙率高,可增加堆体的透气性,保证前期微生物的迅速生长,提高干化效率。干化过程中浮石投加比例最好为湿污泥重量的10%,浮石干化完成后可以过筛重复利用。
优选的方案,所述助燃剂占生物质燃料颗粒重量的3~5‰。
较优选的方案,所述助燃剂由碳粉、高锰酸钾、次氯酸钠和硝酸钡组成。本发明针对固化成型燃料密度大,不易点燃的问题,利用碳棒粉碎后的碳粉作为主要原料,并辅以高锰酸钾、次氯酸钠和硝酸钡,配置助燃剂,并通过长时间轮碾均匀加入生物质燃料中,能够有效提高其燃烧性能。采用的组合助燃剂可促使燃料充分燃烧,起到助燃、增能的作用,采用碳粉、高锰酸钾、次氯酸钠和硝酸钡配制助燃剂,成本低、效果明显,使用时仅需添加生物质燃料重量的3~5‰左右,实验结果证明用于生物质燃料的锅炉燃烧可节约20%。
进一步优选的方案,碳粉、高锰酸钾、次氯酸钠和硝酸钡组成质量比例为10:1~3:1~3:0.5~1.5。
优选的方案,所述生物干化过程中混合物料在多层立式混翻发酵塔内制成1.2~1.8米高堆体,生物干化处理64~84h。
本发明的生物干化技术解决了传统好氧发酵装置发酵速率慢、周期长、热效率低等关键技术难题。传统好氧发酵装置存在干化速率慢、热效率低、占地面积大和场地臭气污染严重等多种问题。本发明技术方案采用多层立式混翻发酵塔(CN 103387324 A),利用发酵床进行面通风,解决了干化速率慢、热效率低、占地面积大和臭气污染严重等关键技术难题。使干化时间缩短1倍,热效率提高20%、占地面积减少了50%,场地无明显臭气。采用生物干化的另一个特点是加入了精准的人为的过程控制策略。根据微生物生化活动产生的反应热、料堆升温吸热、空气升温吸热、水分蒸发潜热和辐射损失热建立热量平衡模型,通风量同时满足有机物氧化(微生物供氧)所需通风量、去除水分所需通风量和除热需气量,并且与微生物产热达到动态的热平衡。
Figure 290105dest_path_image001
式中: m OM 有机质降解量, kgm物料的质量, KgH c 生化反应放热, KJ kg -1
Figure 357418dest_path_image002
空气密度, Kg m 3 w 0 出口单位干空气中饱和空气含湿量, Kg kg -1 C v 温度 T 0 时水蒸气定压比热, KJ kg -1 •℃C s 堆体比热容, KJ kg -1 •℃C g 空气比热容, KJ kg -1 •℃T s 堆体温度µ装置总传热系数, KJ m -2 •℃ -1 A传热面积, m 2 H w 温度 T 0 时水的汽化潜热, KJ kg -1 。采用生物干化技术的优势表现在以下几方面。1)利用微生物生长代谢产生的热能充分降低污泥含水率(间隙水、毛细结合水和表面粘附水);2)生物干化过程中微生物代谢可降低污泥中内部水;3)生物干化降低污泥的粘性,使成团的污泥变得松散,利用后续水分的低温热干化。
优选的方案,所述生物干化物料与助燃剂混合,造粒,在70~80℃温度下干燥至物料含水率在30%以下,即得生物质燃料颗粒。生物干化物料与助燃剂经过搅拌轮碾后粘性增强,且污泥本身具有较强的粘结性,因此无需外加粘合剂,便可制成燃料颗粒,减少了制备成本,且所制备产品具有抗碎强度高、易于装运储存等特点。干燥温度在70~80℃之间,采用低温干化可最大程度的保留生物质燃料中有机质成分,提高物料的单位热值。
本发明提供一种利用城镇污水处理厂污泥制备环保型生物质燃料的方法。该方法实现了污泥的无害化、稳定化、减量化和资源化处理要求,最终的生物质燃料产品具有起火快、燃烧火力强、灰尘少等优点。整个工艺过程见图1,包括:原料制备、生物干化、试剂调理和造粒干燥工艺。
步骤一:原料制备
所需原辅材料:城镇生活污泥(80%含水率)75~85份、谷壳12~20份、锯末3~5份、适量微生物菌剂和浮石。将原辅材料按一定比例加入犁刀混粉机中,搅拌5~8min后出料;
步骤二:污泥生物干化
将混合后的物料送入生物干化塔,制成1.5米高堆体。生物干化塔采用多层、立式和翻混装置,快速干化72h后出料;
步骤三:试剂调理
生物干化后的混合物料加入一定比例的助燃剂,搅拌轮碾30-45min,使得助燃剂与物料充分混合,促进原料纤维素及浆素等物质产生,其后进入下一步工序;
步骤四:造粒干燥工艺
调理后的物料,水分含量约50%左右,将其制成小颗粒(平均粒径小于8mm)后送入低温干燥设备中,待水分含量降至30%以下后装包制成生物质燃料颗粒。
有益效果
相对现有技术,本发明的技术方案带来的有益技术效果:
现有技术中的城镇污水处理厂污泥有机质含量较高(占污泥干物质总量的30%以上,部分地区甚至高达70%),热值较高,但由于其含水率高、水分难以脱除,限制了污泥的热值利用。本发明的技术方案利用生物干化技术来干化污泥,很好地解决了现有技术中的问题,并且通过采用合适的发酵原料及微生物菌剂,能够通过高温发酵来实现污泥的干化处理,同时获得高热值的生物干化物料,可以进一步与助燃剂等配合使用,获得高热值、起火快、燃烧火力强、灰尘少、无二次污染的生物质燃料,真正实现了污泥的资源化、无害化、稳定化和减量化。
本发明采用特殊的微生物菌剂对污泥进行生物干化,各菌剂之间协同作用明显,生物干化效率高,获得的生物干化污泥热值高,可以用于制备燃烧性能好的生物质燃料。
附图说明
【图 1 为本发明的工艺流程图;
【图2】为实施例1生物干化过程中通过量变化曲线(动态热平衡模型模拟);
【图3】为实施例1生物干化过程中温度变化曲线;
【图4】为实施例1生物干化过程中含水率变化曲线;
【图5】为对比实施例1各组生物干化过程中细菌数量变化规律。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。
实施例1
初始原料包括含水率为80%的城市生活污泥75份、谷壳20份、锯末5份、浮石7.5份和复合微生物菌剂0.08份(高温放线菌、枯草芽孢杆菌、白腐菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌按质量比例1 : 3 : 1: 1: 1: 1组成)。浮石其不参与干化过程的生物化学反应,发酵完成后过筛重复利用。
原料分别进入犁刀混粉机混合,时间约6min。通过螺旋输送机将混合后的物料送入多层立式混翻发酵塔中,制成1.5米高堆体。多层立式混翻发酵塔采用连续强制通风,空气通过底部的发酵床逆向上将空气送入堆体,快速干化72h后出料。通风量根据热动态热平衡模型模拟得出,范围在0.1~0.21m 3/kg干污泥,模拟结果如图2所示。生物干化过程中升温迅速,生物干化5h堆体温度升至55℃,12h温度升至70℃,温度变化曲线见图3。经过72h生物干化,含水率降至54%,生物干化过程中含水率变化规律见图4。生物干化后的污泥自由空域高(>50%)、呈褐色,无臭味,pH值为7.1。
生物干化后的混合物料加入助燃剂(3‰),助燃剂由碳粉、高锰酸钾、次氯酸钠和硝酸钡按质量配比为10:2:2:1配制而成。将混合物料搅拌轮碾40min,使得助燃剂和稳定剂与物料充分混合,促进原料纤维素及浆素等物质产生,其后进行造粒干燥,物料颗粒平均粒径小于8mm,干燥温度在70-80℃之间,含水率降至30%后进行包装,制成产品。本发明制备的生物质燃料性能优于普通褐煤,每千克生物质燃料综合热值为5000~5200大卡,且具有起火快、燃烧火力强、灰尘少、无二次污染等优点。
对比实施例1
由于生物化过程中细菌起主导作用,本对比实例针对不同的微生物制剂作对照实验,以生物干化过程中细菌数量变化规律代表微生物活跃强度,通过微生物活跃强度来验证生物干化效率,生物活跃强度越大,生物干化效率越高。使用同一批试验污泥,各操作步骤及条件均按实施例1进行,只是采用不同的微生物菌剂作对比试验。试验共分为4组,分别是A(无菌剂)、B(高温放线菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌,比例为1:1:1)、C(高温放线菌、白腐菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌,比例为1:1:1:1)、D(高温放线菌、枯草芽孢杆菌、白腐菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌,比例为1:3:1:1:1:1)。试验结果如图5所示,干化过程中微生物数量关系为D>B>A>C,且D组微生物数量远高于其他三组。说明本发明的微生物菌剂各菌剂之间协同作用明显,高温发酵过程中微生物活跃强大,对污泥生物干化有较大的促进作用,有利于提高干化效率。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:包括以下步骤:
    1)将城镇生活污泥、谷壳、锯末、浮石及微生物菌剂采用犁刀混粉机搅拌均匀,得到混合物料;
    2)所述混合物料采用多层立式混翻发酵塔进行生物干化处理,得到生物干化物料;
    3)所述生物干化物料与助燃剂混合,造粒,干燥,即得生物质燃料颗粒。
  2. 根据权利要求1所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:
    城镇生活污泥、谷壳与锯末的质量比为75~85 : 12~20 : 3~5;所述城镇生活污泥的含水率为75~85%;
    所述浮石质量为城镇生活污泥质量的5~15%;
    所述微生物菌剂的用量为城镇生活污泥、谷壳、锯末和浮石总质量的0.05~0.1%。
  3. 根据权利要求2所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述微生物菌剂由高温放线菌、枯草芽孢杆菌、白腐菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌组成。
  4. 根据权利要求3所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:高温放线菌、枯草芽孢杆菌、白腐菌、啤酒酵母菌、地衣芽孢杆菌和高产淀粉酶枯草芽孢杆菌的组成质量比例为0.5~1.5:2.5~3.5:0.5~1.5:0.5~1.5:0.5~1.5: 0.5~1.5。
  5. 根据权利要求2所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述浮石的孔隙率为73~82%,粒径在10~20mm之间。
  6. 根据权利要求1所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述助燃剂占生物质燃料颗粒重量的0.3~0.5%。
  7. 根据权利要求6所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述助燃剂由碳粉、高锰酸钾、次氯酸钠和硝酸钡组成。
  8. 根据权利要求7所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:碳粉、高锰酸钾、次氯酸钠和硝酸钡组成质量比例为10:1~3:1~3: 0.5~1.5。
  9. 根据权利要求1~8任一项所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述生物干化过程中混合物料在多层立式混翻发酵塔内制成
    1.2~1.8米高堆体,生物干化处理64~84h。
  10. 根据权利要求1~8任一项所述的一种利用城镇生活污泥制备生物质燃料的方法,其特征在于:所述生物干化物料与助燃剂混合,造粒,在70~80℃温度下干燥至物料含水率在30%以下,即得生物质燃料颗粒。
PCT/CN2018/109387 2017-12-14 2018-10-09 一种利用城镇生活污泥制备生物质燃料的方法 WO2019114385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711342124.8A CN107880968A (zh) 2017-12-14 2017-12-14 一种利用城镇生活污泥制备生物质燃料的方法
CN201711342124.8 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019114385A1 true WO2019114385A1 (zh) 2019-06-20

Family

ID=61770656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109387 WO2019114385A1 (zh) 2017-12-14 2018-10-09 一种利用城镇生活污泥制备生物质燃料的方法

Country Status (2)

Country Link
CN (1) CN107880968A (zh)
WO (1) WO2019114385A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292213A (zh) * 2021-04-30 2021-08-24 西安交通大学 一种污泥直接干化和焚烧一体化系统及其工作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107880968A (zh) * 2017-12-14 2018-04-06 湖南恒凯环保科技投资有限公司 一种利用城镇生活污泥制备生物质燃料的方法
CN110255765B (zh) * 2019-06-27 2021-12-10 长沙紫宸科技开发有限公司 一种垃圾沥滤液资源化能源化利用方法
CN110846097A (zh) * 2019-12-02 2020-02-28 上海环境工程设计研究院有限公司 餐厨垃圾处理系统及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376557A (zh) * 2008-09-28 2009-03-04 哈尔滨工业大学水资源国家工程研究中心有限公司 一种污泥的人工强化预干化的方法
CN101544922A (zh) * 2009-04-30 2009-09-30 陈胜保 一种生物质、微生物质复合燃料及其制造方法
WO2010070328A1 (en) * 2008-12-20 2010-06-24 Solsys Limited Fuel product and process
KR101024447B1 (ko) * 2010-12-16 2011-03-23 이행석 미생물제재를 이용한 유기성 폐기물의 고형연료 제조방법
CN106495945A (zh) * 2016-11-01 2017-03-15 湖南恒凯环保科技投资有限公司 一种利用城市污泥快速制备土壤改良剂的方法
CN107880968A (zh) * 2017-12-14 2018-04-06 湖南恒凯环保科技投资有限公司 一种利用城镇生活污泥制备生物质燃料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367678B (zh) * 2008-09-27 2011-09-21 哈尔滨工业大学 一种调理剂在污泥堆肥中的应用
CN101880564A (zh) * 2010-06-28 2010-11-10 聂晓明 一种污泥生物质合成燃料及其制备方法
CN105884158B (zh) * 2016-06-06 2017-02-08 上海睿岛节能环保科技有限公司 一种基于调质技术的含油污泥处理方法
CN106566588A (zh) * 2016-11-08 2017-04-19 湖南万容科技股份有限公司 一种利用污泥制备成型燃料的方法
CN106746400A (zh) * 2016-12-16 2017-05-31 广州市威士环保科技有限公司 一种污泥能源化的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376557A (zh) * 2008-09-28 2009-03-04 哈尔滨工业大学水资源国家工程研究中心有限公司 一种污泥的人工强化预干化的方法
WO2010070328A1 (en) * 2008-12-20 2010-06-24 Solsys Limited Fuel product and process
CN101544922A (zh) * 2009-04-30 2009-09-30 陈胜保 一种生物质、微生物质复合燃料及其制造方法
KR101024447B1 (ko) * 2010-12-16 2011-03-23 이행석 미생물제재를 이용한 유기성 폐기물의 고형연료 제조방법
CN106495945A (zh) * 2016-11-01 2017-03-15 湖南恒凯环保科技投资有限公司 一种利用城市污泥快速制备土壤改良剂的方法
CN107880968A (zh) * 2017-12-14 2018-04-06 湖南恒凯环保科技投资有限公司 一种利用城镇生活污泥制备生物质燃料的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292213A (zh) * 2021-04-30 2021-08-24 西安交通大学 一种污泥直接干化和焚烧一体化系统及其工作方法

Also Published As

Publication number Publication date
CN107880968A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107216126B (zh) 以城市污泥为原料的陶粒的制备方法
WO2019114385A1 (zh) 一种利用城镇生活污泥制备生物质燃料的方法
CN101746941B (zh) 一种城市污水厂脱水污泥生物干化处理方法
Lu et al. Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production
CN107365593A (zh) 一种抗生素菌渣制备生物炭的方法
CN104370582B (zh) 一种有机垃圾无臭好氧堆肥方法
WO2021208544A1 (zh) 一种污泥自维持阴燃与高温好氧发酵复合处置工艺及设备
CN101618934B (zh) 一种污泥干粉及其制备方法
CN101597532B (zh) 一种污泥燃料及其制备方法
CN103496834B (zh) 一种利用微生物发酵来降低污泥含水率的脱水方法
CN102942978B (zh) 一种污泥生物质燃料的制造方法
CN107880967A (zh) 一种污泥生物质混合燃料的生产方法
CN104529112A (zh) 污泥生物干化处理
CN102320854A (zh) 城市污水处理厂污泥处置及资源化利用的方法
CN103184086B (zh) 一种固体燃料及其制备方法
CN102093098A (zh) 生活污泥制肥方法
CN104276858A (zh) 一种微生物肥料及其制备方法
CN103896641B (zh) 食物源有机垃圾降解菌剂载体
CN111269729A (zh) 一种利用污泥和废轮胎共热解制备生物炭的方法及系统
CN102503061B (zh) 一种污泥堆肥用无机-有机复合调理剂
CN104129898B (zh) 太阳能污泥恒温干化无害化处理装置及方法
CN114105688A (zh) 一种高效增热型堆肥自热颗粒及其制备方法和应用
CN104862026A (zh) 生物干化污泥制备燃煤锅炉固型燃料的工艺
CN104445611B (zh) 一种垃圾渗滤液的资源化处理方法
CN109622572A (zh) 一种生产建材协同处理生活垃圾的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888668

Country of ref document: EP

Kind code of ref document: A1