WO2019111920A1 - Device for calculating normal vector, method, and program - Google Patents

Device for calculating normal vector, method, and program Download PDF

Info

Publication number
WO2019111920A1
WO2019111920A1 PCT/JP2018/044648 JP2018044648W WO2019111920A1 WO 2019111920 A1 WO2019111920 A1 WO 2019111920A1 JP 2018044648 W JP2018044648 W JP 2018044648W WO 2019111920 A1 WO2019111920 A1 WO 2019111920A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
circle
normal
point
acquisition
Prior art date
Application number
PCT/JP2018/044648
Other languages
French (fr)
Japanese (ja)
Inventor
増谷 佳孝
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Publication of WO2019111920A1 publication Critical patent/WO2019111920A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • the present invention relates to an apparatus, method and program for calculating a normal.
  • Disclosed is a technique for estimating the original three-dimensional surface shape using radial basis functions (RBF) based on the coordinates of a point group on the three-dimensional surface and the normal of the surface at each point.
  • RBF radial basis functions
  • the surface normal is calculated at each point. If this normal calculation is not made correctly, accurate surface shape estimation can not be performed. In order to estimate the surface shape correctly, it is an issue to improve the accuracy of the normal calculation.
  • the present invention has been made from this point of view, and an object thereof is to provide a technique for calculating a normal with high accuracy based on a point cloud on a surface.
  • the apparatus selects a plurality of points from among the point acquisition unit for acquiring a plurality of acquisition points on a surface and the acquisition points, and centers the selected points.
  • a plurality of external points are selected from among the acquisition points other than the center of the circle, and virtual attraction is established between each of the selected external points and the nearest point on the circle's circumference
  • a normal line calculation unit that calculates a normal line in a direction in which the circle is directed by attractive force as a normal line at the center of the surface circle.
  • the normal line calculation unit may select all acquisition points when selecting a plurality of points from among the acquisition points.
  • the normal line calculation unit may select all acquisition points other than the center of the circle as external points for each of the circles.
  • the normal calculation unit replaces the virtual attractive force between each of the selected external points and the nearest point on the circumference of the circle with the force acting on the apex of the rigid body right cone whose base is the circle. , Normals may be calculated.
  • the normal line calculation unit may calculate the normal line again with the calculated normal line as an initial state.
  • the apparatus may further include a positive / negative direction unifying unit that aligns the positive / negative direction of the calculated normal.
  • the apparatus may further include a surface shape estimation unit that estimates a surface shape based on the calculated normal.
  • the surface may be a membrane on a medical image.
  • the apparatus further includes an image reconstructing unit configured to create a reconstructed image obtained by reconstructing a medical image based on the surface shape estimated by the surface shape estimating unit, and an image output unit configured to output the reconstructed image.
  • the image reconstruction unit recuts the range of the film based on the surface shape estimated by the surface shape estimation unit and identification information indicating whether each point is inside or at the end of the film. Configuration images may be created.
  • the identification information may be a label indicating an anatomical type according to the site of the membrane.
  • the apparatus selects a plurality of acquisition points, and selects a plurality of points from among the acquisition points, and relates to each of the circles centered on the selected points.
  • an inclination calculation unit that calculates an inclination of a circle.
  • the method according to another aspect of the present invention relates to each of a point acquisition step of acquiring a plurality of acquisition points on a surface, and selecting each of a plurality of points from among the acquisition points, each of which is centered on the selected point.
  • a virtual attractive force acts between each of the selected external points and the nearest point on the circle's circumference, Calculating a normal to the direction in which the circle is directed as a normal at the center of the surface circle.
  • the program according to still another aspect of the present invention relates to each of a point acquiring step of acquiring a plurality of acquisition points on a surface, a plurality of points selected from among the acquisition points, and a circle centered on each of the selected points.
  • a point acquiring step of acquiring a plurality of acquisition points on a surface, a plurality of points selected from among the acquisition points, and a circle centered on each of the selected points.
  • any combination of the above-described constituent elements, one obtained by converting the expression of the present invention between an apparatus, a method, a system, a recording medium, a computer program and the like is also effective as an aspect of the present invention.
  • the surface shape can be accurately estimated based on a point group given on the surface.
  • FIG. 6 illustrates the attraction of acting on the circle from all external points. It is a figure which shows the circle
  • FIG. 6 shows a point cloud labeled indicating the anatomic type of the mesentery.
  • FIG. 1 shows a normal line calculation process according to the technique described in Patent Document 1.
  • the normal to the surface at the point of interest is calculated using three neighboring points near the point of interest. That is, the normal calculation is performed based on the local point distribution for each focus point.
  • the accuracy of the calculated normal is greatly influenced by how to give and select the three nearby points. For example, in a portion with a large curvature on the surface, the normal should be calculated from sufficiently close proximity points. That is, the point cloud needs to be provided at a higher density as the curvature is larger. If the density of the point cloud is not high enough for the curvature, the calculated normal direction will not be accurate.
  • the present inventors can realize normal calculation based on the whole point distribution on the surface by using the following virtual physical model, and calculate the normal from the limited point group with high accuracy I found out what I could do.
  • FIG. 2 shows the configuration of an apparatus 100 according to an embodiment.
  • the apparatus 100 includes a point acquisition unit 10 and a normal calculation unit 20.
  • the point acquisition unit 10 acquires three-dimensional position coordinates of a plurality of points on the surface (hereinafter, the acquired points will be referred to as “acquisition points”). Hereinafter, the point acquisition unit 10 acquires n acquisition points. In one embodiment, the point acquisition unit 10 may directly acquire a point cloud plotted outside the device 100 via an input interface (not shown). In another embodiment, a point cloud database (not shown) for accumulating point cloud data plotted externally is additionally provided in the apparatus 100, and the point acquiring unit 10 acquires acquisition points from the point cloud database. You may get it. The point acquisition unit 10 transmits the position coordinates of each acquisition point to the normal calculation unit 20.
  • the normal line calculation unit 20 selects m points from the n acquisition points received from the point acquisition unit 10 (m ⁇ n). The normal line calculation unit 20 sets m virtual circles centered on the selected m points in the three-dimensional space. The normal line calculation unit 20 calculates a normal vector of the surface at the center of each circle using a virtual physical model based on the center coordinates of each circle and the normal vector of each circle.
  • FIG. 3 shows an example of a circle set by the normal line calculation unit 20.
  • the normal line calculation unit 20 selects m points P 1 ,... From the n acquisition points received from the point acquisition unit 10. . . , P m (m ⁇ n).
  • m points P 1 ,. . . , P m are represented by four points P i , P h , P j and P k (the same applies to FIG. 4 and the like).
  • the normal calculation unit 20 selects the selected points P 1 ,. . . , M number of the virtual circle C 1 centered on P m respectively. . . , C m in a three-dimensional space.
  • the normal line calculation unit 20 calculates the normal vector of the surface, with the direction of these normal vectors, that is, the direction in which each circle set here is directed, as the initial state.
  • the calculation process of the normal line by the normal line calculation unit 20 will be specifically described with reference to FIGS. 4 and 5.
  • Normal calculation is performed when virtual attraction is applied between the circle set above and an acquisition point outside the center of the circle (hereinafter referred to as “external point”) among acquisition points. It is performed based on the direction in which the circle is turned due to the attractive force.
  • all acquisition points are fixed in space and do not move.
  • all circles are rigid and all circles can freely rotate around the center of the circle.
  • the radius of the circle may be set to any size.
  • the radius of the circle may be determined based on the distance between the external point and the center of the circle. In this case, the radius of the circle is preferably set such that the distance between all the external points and the center of the circle is larger than the radius of the circle.
  • point P 1 Focusing on the circle C i whose center P m points extracted randomly from P i, and the point P i.
  • the normal line calculation unit 20 selects p external points from among n ⁇ 1 acquisition points other than the attention point P i (p ⁇ n ⁇ 1). Next, it is considered that virtual attraction acts on the circle C i from each of the selected external points.
  • the attractive force may be a central force that is inversely proportional to the power of ⁇ between the two points ( ⁇ is a real number of 1 or more).
  • FIG. 4 shows a state in which an attractive force acts on the circle C i from a point P j which is one of external points.
  • this attraction acts only on the point R ij on the circle C i where the distance to the point P j is minimum.
  • the circle C i rotates around the fixed center P i to change its direction due to the moment N ij (x represents a vector product).
  • FIG. 5 shows a state where an attractive force is applied to each corresponding point on the circle C i from all the external points.
  • the circle C i turns around the fixed center P i by the sum of the moments about the point P i of the attractive forces from these external points.
  • the circle C i comes to a stand in such a direction that the sum of these moments is balanced, that is, the direction in which the sum of j of the moment N ij is zero.
  • FIG. 6 shows how the moments of attraction from all external points are balanced as a result of the rotation of the circle C i .
  • the unit normal vector of the circle C i in this state is represented by n i .
  • the normal line calculation unit 20 calculates this unit normal vector n i as a surface normal vector at the point P i .
  • the normal vector calculated using this virtual physical model is based on the global point distribution on the surface, and it has been confirmed that it matches the actual surface normal vector with high accuracy .
  • the normal line calculating unit 20 may select all n acquisition points when selecting a plurality of points from the acquisition points. That is, n may be m. In this case, a circle is set at all n acquisition points. That is, the normal is calculated at all n acquisition points.
  • the estimation accuracy improves. Therefore, according to the present embodiment, the surface shape can be estimated with the highest accuracy for a given acquisition point.
  • the normal line calculation unit 20 may perform this selection according to the distance from the point P i .
  • the normal calculation unit 20, starting from the point closest to the point of interest P i may be selected p number of up to a point close to the p-th as an external point. In the case of this example, all the selected p external points are closer to the attention point P i than the non-selected np ⁇ 1 acquisition points.
  • the virtual attraction of this embodiment decreases as the distance between the two points increases. That is, the attractive force acting on the circle C i is larger as it is exerted from a point closer to the point P i . Therefore, by selecting a point closer to the point P i as the external point, it is possible to use a stronger one of the attractive forces acting on the circle C i for the normal calculation. This improves the accuracy of the calculated normal. That is, according to the present embodiment, when a fixed number of external points are selected for a given target point, the normal can be calculated with higher accuracy.
  • the calculation of the normal is more accurate because the point distribution on the surface is comprehensively considered as the number of points considering the relationship with the point of interest, ie, the number of external points interacting with the circle of interest, increases. improves. Therefore, according to the present embodiment, the normal can be estimated with the highest accuracy for a given target point.
  • the normal line calculation unit 20 sets the virtual attractive force between each of the selected external points and the nearest point on the circumference of the circle to the vertex of the rigid body right cone whose bottom surface is the circle.
  • the normal force may be calculated by replacing the force acting on the FIG. 7 shows how the attraction is applied to the circle C i from the point P j which is one of the external points under the same setting as FIG. Figure 7 is a circle C i and bottom, rigid straight cone D i to vertex point A i is added.
  • the force g ij acting on the vertex A i of the rigid rigid cone D i is defined as a force that generates the same moment N ij around the point P i .
  • the normal line calculation unit 20 calculates the normal line by replacing the force f ij with the force g ij .
  • FIG. 8 shows how attraction is applied to all the corresponding points on the circle C i from all the external points under the same setting as FIG.
  • the force f ij acting on corresponding point R ij on the circle C i from the external point P j instead of the force f ij acting on corresponding point R ij on the circle C i from the external point P j, using the force g ij acting on vertex A i of the rigid right cone D i Perform the calculation.
  • the sum of force g ij with respect to j that is, the resultant force of force g ij is represented by g i . Due to this resultant force g i , the same moment around the center point P i as in the case of FIG. 5 acts on the vertex A i .
  • Rigid right circular cone D i is the moment of the resultant force g i, changing the direction by rotating around a fixed center P i. Consequently rigid straight cone D i is still facing orientation as the moment
  • FIG. 9 shows the situation when the moment of the resultant force g i becomes zero as a result of the rotation of the rigid body straight cone D i .
  • the direction facing the bottom surface of the rigid right circular cone D i is consistent with the direction facing the circle C i in FIG. Therefore, the same vector n i as in the case of FIG. 6 is obtained as the surface normal vector.
  • the calculation of the moment around each attractive point P i shown in FIG. 5 results in a vector sum g i of forces at the apex A i of the rigid body right cone D i . Therefore, the calculation can be simplified as compared with the case where the points of attraction of each attractive force are dispersed on the circle C i as shown in FIG.
  • the normal line calculation unit 20 may calculate the normal line again with the calculated normal line as an initial state.
  • the normal calculated by the normal calculation unit 20 is an approximate value, and may include a constant error although the accuracy is higher than that of the prior art. This error can generally be reduced by re-executing the normal calculation described above. Therefore, the accuracy of the calculated normal can be gradually improved by repeatedly performing the normal calculation with the normal calculated once as the initial state.
  • the apparatus may further include a positive / negative direction unifying unit that aligns the positive / negative direction of the calculated normal.
  • FIG. 10 shows the configuration of an apparatus 110 according to the present embodiment. The difference from the configuration shown in FIG. 1 is that a positive / negative direction unifying unit 30 is provided.
  • the configurations and operations of the point acquisition unit 10 and the normal line calculation unit 20 are basically the same as those described above, so the following description focuses on different parts, in particular the positive / negative direction unifying unit 30.
  • the normal vectors calculated by the normal calculation unit 20 are not unified in positive and negative directions. That is, the calculated normal vector is a mixture of one that faces the front side of the surface and one that faces the back side.
  • the positive / negative direction unifying unit 30 is for aligning the direction of this normal.
  • the normal line calculating unit 20 transmits the calculated unit normal vector set n i to the positive / negative direction unifying unit 30.
  • the positive / negative direction unifying unit 30 unifies the direction of the unit normal vector set n i received from the normal calculating unit 20.
  • a known algorithm may be used as a specific method of normal direction unification.
  • a minimum spanning tree approach may be applied.
  • a minimum spanning tree is first created from a set of acquisition points on the surface, and starting from the start point, the inner product of unit normal vectors between two points close in distance becomes positive, We will unify the positive and negative directions sequentially. Thereby, the positive and negative directions are unified in the entire normal vector.
  • FIG. 11 b shows a normal vector in which the positive and negative directions are unified.
  • the positive and negative directions of the normal can be unified.
  • this By applying this to estimation of the surface shape, it is possible to estimate the surface shape with higher accuracy.
  • the apparatus may further include a surface shape estimation unit that estimates a surface shape based on the calculated normal.
  • FIG. 12 shows the configuration of an apparatus 120 according to the present embodiment. The difference from the configuration shown in FIG. 1 is that the plane shape estimation unit 40 is provided.
  • the configurations and operations of the point acquisition unit 10 and the normal line calculation unit 20 are basically the same as those described above, so the following description focuses on different parts, in particular, the surface shape estimation unit 40.
  • the normal calculation unit 20 transmits the center coordinates of each circle and the calculated normal vectors to the surface shape estimation unit 40.
  • the surface shape estimation unit 40 estimates the surface shape based on the center coordinates of each circle received from the normal calculation unit 20 and the calculated normal vectors.
  • the technique using the RBF disclosed in Patent Document 1 may be used to estimate the surface shape, and thus the description thereof is omitted here.
  • the configuration of one embodiment of the present invention has been described above in several embodiments.
  • An example of the operation viewed from the user of the device 100 according to the present embodiment is as follows.
  • the user obtains a limited number of point clouds distributed on the surface based on some information or preliminary knowledge about the surface shape that can not be directly viewed.
  • the three-dimensional coordinates of the point group are input to the point acquisition unit 10.
  • the normal line calculation unit 20 selects an appropriate number of points from the point group input to the point acquisition unit 10, and sets a circle centered on each of the selected points.
  • the normal of the surface at the center of the circle is calculated by the physical model on which the attractive force works.
  • the user can obtain the surface shape that could not be recognized originally by executing the RBF calculation using the calculated normal.
  • the shape of the surface can be estimated with high accuracy based on a finite point group on the surface.
  • One useful application of the present invention is medical imaging.
  • techniques for grasping the shape and structure inside the human body such as X-ray CT and MRI have been developed, but some human tissues can not be directly visualized even using these techniques.
  • the mesentery is an example of such a tissue.
  • Fig. 13 schematically shows the human mesentery M.
  • the mesentery is a tissue with a two-layered structure that supports the intestinal tract in the abdominal cavity. Understanding the shape and structure of the mesentery is important for safe and rapid abdominal surgery.
  • the mesentery has a similar X-ray absorption rate to nearby tissue. Therefore, in CT images, it is very difficult to distinguish the surrounding tissue and to clearly grasp the whole image.
  • the blood vessels run inside the dual structure of the membrane, and the terminal end of the membrane contacts the large intestine and the main blood vessels, it is possible to confirm the rough membrane structure based on the blood vessel shape based on the contrast CT image It is. That is, a user with anatomical knowledge can estimate the positions of a plurality of points on the membrane with respect to the mesentery that is not directly reflected in the contrast CT image.
  • FIG. 14 shows a point cloud in which a user such as a specialist having anatomic knowledge as described above estimates and plots the position of mesentery on a contrast-enhanced CT image.
  • FIG. 15a shows the shape of the mesentery estimated using the prior art described in Patent Document 1 based on the point cloud of FIG. As can be read from FIG. 15a, an error has occurred, such as the appearance of a hole that does not exist in the right part of the image.
  • FIG. 15b shows the shape of the mesentery estimated using the device according to the present embodiment based on the point cloud of FIG. It can be seen from FIG. 15 b that the estimation accuracy is greatly improved, and an image that more faithfully reproduces the actual shape of the mesentery can be obtained.
  • the shape of the film can be estimated with high accuracy based on the point group on the film on the medical image plotted by the user.
  • the present apparatus re-creates a reconstructed image in which a medical image is reconstructed based on the surface shape estimated by the surface shape estimation unit 40 of the apparatus shown in FIG. And an image output unit that outputs the configuration image.
  • FIG. 16 shows the configuration of an apparatus 130 according to this embodiment. The difference from the configuration shown in FIG. 12 is that an image reconstruction unit 50 and an image output unit 60 are provided.
  • the image reconstruction unit 50 receives the estimated surface shape from the surface shape estimation unit 40, and based on this, creates a reconstructed image reconstructed as a medical image.
  • an appropriate existing technique may be used according to the purpose of use such as a clinic or a research.
  • polygon data may be created using rendering techniques such as the marching cube method to create a three-dimensional reconstructed image.
  • the image reconstruction unit 50 transmits the created reconstructed image to the image output unit 60.
  • the image output unit 60 outputs the reconstructed image received from the image reconstruction unit 50 to the outside.
  • the image output unit 60 may be, for example, an image output device such as a display.
  • a user such as a medical professional can monitor a medical image reconstructed from a point cloud.
  • the image reconstruction unit 50 may create a reconstructed image in which the range of the film is cut out based on the surface shape estimated by the surface shape estimation unit 40.
  • the surface shape estimated by the surface shape estimation unit 40 generally continues to infinity beyond this end.
  • the boundary is used as a cutting line by giving information indicating that a specific point is a point on the boundary, in addition to the position coordinates of each point, with respect to the point group on the film. The membrane can be cut out of the shape.
  • a user such as a specialist who has the above-described anatomical knowledge estimates the position of mesentery on a contrast-enhanced CT image and plots a point cloud.
  • information hereinafter referred to as “identification information” indicating whether each point is inside the film or on the boundary of the film is given.
  • the point acquisition unit 10 of the device 130 of FIG. 16 acquires position coordinates and identification information of an acquisition point.
  • the point acquisition unit 10 transmits the position coordinates of the acquisition point to the normal line calculation unit 20 and transmits identification information of the acquisition point to the image reconstruction unit 50.
  • the image reconstruction unit 50 cuts out the range of the target film to create a reconstructed image.
  • the process described in Patent Document 1 may be used.
  • practicability is improved by cutting out and reconstructing only the target film.
  • the identification information may be a label indicating an anatomical type according to the site of the membrane. That is, in the present embodiment, this label is used as identification information.
  • FIG. 17 shows an example of a point cloud labeled with an anatomical type of mesentery.
  • four types of labels from type 1 to type 4 are given on the CT image of the mesentery.
  • Type 1 points are points on the line tangent to the large intestine and on the membrane border.
  • the point of type 2 is a point on the iliac artery and on the border of the membrane.
  • the point of type 3 is a point on the inferior mesenteric vein to the inferior mesenteric artery, which is on the membrane boundary.
  • the point of type 4 is the point inside the membrane. In this case, since the points labeled with types 1, 2 and 3 are on the boundary of the membrane, these points can be used as cut lines to cut out the range of the target membrane.
  • the point acquisition unit 10 of the device 130 of FIG. 16 transmits the position coordinates of the acquisition point to the normal line calculation unit 20 and transmits the label of the acquisition point to the image reconstruction unit 50.
  • the image reconstruction unit 50 uses the points given the labels of types 1, 2 and 3 received from the point acquisition unit 10 from the surface shape received from the surface shape estimation unit 40 as a cutting line, and the range of the target film To create a reconstructed image.
  • efficient extraction processing can be realized because identification information in a simple format such as a label is used.
  • an apparatus includes a point acquisition unit and a slope calculation unit.
  • the point acquisition unit acquires a plurality of acquisition points from among the point cloud distributed in the three-dimensional space.
  • the inclination calculation unit selects a plurality of points from among the acquired points, and selects and selects a plurality of external points from among the acquired points other than the center of the circle for each of the circles centered on the selected points.
  • virtual attraction acts between each of the external points and the nearest point on the circumference of the circle, the inclination of the circle is calculated based on the attraction.
  • the inclination of the circle calculated in this manner is considered to globally represent the spatial relationship between the point at the center of the circle and the other point group.
  • Various applications are possible by combining the information on the overall relationship between the points with, for example, the information on the spatial density distribution of the point cloud.
  • the normal line calculating process may be repeated a predetermined number of times. Generally, by repeating the normal calculation, the calculated normal converges to a constant value. The normal calculation process may be repeated until the calculated normal converges. Alternatively, means may be provided to compare the calculated normal line with the previously calculated normal line, and the calculation process may be repeated until the difference between the two is smaller than a predetermined threshold value. According to this modification, a target accuracy is provided in advance, and it is possible to calculate a normal of accuracy that satisfies the target.
  • the image output unit 60 may output the reconstructed image as it is, but is not limited to this, and may output another image data superimposed on the reconstructed image.
  • the texture of the original CT image data including blood vessels may be superimposed and output. According to this modification, the user can simultaneously monitor blood vessels traveling along the mesentery in addition to the reconstructed mesentery.
  • the same polygon representation as the reconstructed mesentery image may be given to the CT image data of the blood vessel.
  • the user can monitor the blood vessel while dynamically deforming with the mesentery.
  • the image reconstruction unit 50 cuts out the reconstructed image separated by a predetermined distance or more from the portion where the point group ends. It may be removed. If the number of point clouds is not sufficient for the curvature of the boundary portion of the target film, the identification information alone may not be sufficiently extracted, and an unnecessary part of the image may be left. According to this modification, it is possible to completely realize the cutout of the range of the target film by removing the unnecessary image that can not be cut off only by the identification information.
  • a variety of means may be used when a user with specialized knowledge as described above estimates the position on the surface and plots a point cloud. For example, points may be input using a mouse or the like, and plotting may be performed for each point. Alternatively, as a modification, a line may be input using a touch panel or the like, and a point group may be sampled and plotted from this line. According to this modification, the accuracy of plotting can be improved.
  • the points plotted on the previous tomographic screen may be displayed dimly on the current tomographic screen.
  • points plotted on the two or more previous tomographic screens may be displayed while sequentially decreasing the density as the tomographic screens are traced back one by one.
  • the plotted points may be three-dimensionally displayed according to the depth of the tomographic screen using a technique such as holography.
  • points plotted on each tomographic image may be connected to create a schematic image of a film having a wire frame structure.
  • the surface shape that can not be directly viewed in addition to human tissue that does not appear in X-ray CT, articles and natural objects that appear in photographs with unclear contrast, samples to be subjected to nondestructive inspection, objects that are buried in the ground or in water There are ultrasound images and the like.
  • the point cloud on the surface can be estimated by supplementing the expert's knowledge and the like with respect to these surfaces not directly visualized, and the original surface shape can be estimated and reconstructed by using the technique of the present invention. .
  • 10 point acquisition unit 20 normal calculation unit, 30 positive / negative direction unification unit, 40 plane shape estimation unit, 50 image reconstruction unit, 60 image output unit, 100 devices, 110 devices, 120 devices
  • the present invention is applicable to the industrial field that requires estimating and reconstructing the surface shape that can not be directly viewed.

Abstract

A point acquisition unit 10 of a device 100 acquires a plurality of acquisition points on a surface. A normal vector calculation unit 20: selects a plurality of points from among the acquisition points; selects a plurality of external points from among acquisition points outside of the center of a circle in relation to circles around each of the selected points; and, when a virtual attraction acts between each of the selected external points and points that are closest to the circumference of the circles, calculates a normal vector in a direction toward the circle due to the attraction as a normal vector at the center of the circle on the surface.

Description

法線を算出するための装置、方法およびプログラムDevice, method and program for calculating normal
 本発明は、法線を算出するための装置、方法およびプログラムに関する。 The present invention relates to an apparatus, method and program for calculating a normal.
 3次元面上の点群の座標と各点における該面の法線とに基づき、放射基底関数(RBF:Radial Basis Function)を用いて、元の3次元面形状を推定する技術が開示されている(例えば、特許文献1参照)。 Disclosed is a technique for estimating the original three-dimensional surface shape using radial basis functions (RBF) based on the coordinates of a point group on the three-dimensional surface and the normal of the surface at each point. (See, for example, Patent Document 1).
国際公開第2017/043503号International Publication No. 2017/043503
 面上の点群から元の面形状を推定するとき、各点において面の法線が算出される。この法線算出が正確になされない場合、正確な面形状の推定ができない。面形状を正しく推定するためには、法線算出の精度を改善することが課題となる。 When estimating the original surface shape from the point group on the surface, the surface normal is calculated at each point. If this normal calculation is not made correctly, accurate surface shape estimation can not be performed. In order to estimate the surface shape correctly, it is an issue to improve the accuracy of the normal calculation.
 本発明はこの観点からなされたものであり、その目的は、面上の点群を基に法線を高精度に算出する技術を提供することにある。 The present invention has been made from this point of view, and an object thereof is to provide a technique for calculating a normal with high accuracy based on a point cloud on a surface.
 上記課題を解決するために、本発明のある態様の装置は、面上の複数の取得点を取得する点取得部と、取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、円の円周上の最も近い点との間で仮想的な引力が働いたときに、引力により円が向く方向の法線を、面の円の中心における法線をとして算出する法線算出部と、を備える。 In order to solve the above problems, the apparatus according to an aspect of the present invention selects a plurality of points from among the point acquisition unit for acquiring a plurality of acquisition points on a surface and the acquisition points, and centers the selected points. With respect to each of the circles, a plurality of external points are selected from among the acquisition points other than the center of the circle, and virtual attraction is established between each of the selected external points and the nearest point on the circle's circumference And a normal line calculation unit that calculates a normal line in a direction in which the circle is directed by attractive force as a normal line at the center of the surface circle.
 法線算出部は、取得点の中から複数の点を選択するときに、すべての取得点を選択してもよい。 The normal line calculation unit may select all acquisition points when selecting a plurality of points from among the acquisition points.
 法線算出部は、円の各々に関し、円の中心以外のすべての取得点を外部点として選択してもよい。 The normal line calculation unit may select all acquisition points other than the center of the circle as external points for each of the circles.
 法線算出部は、選択した外部点の各々と、円の円周上の最も近い点との間の仮想的な引力を、円を底面とする剛体直円錐の頂点に働く力に置換して、法線を算出してもよい。 The normal calculation unit replaces the virtual attractive force between each of the selected external points and the nearest point on the circumference of the circle with the force acting on the apex of the rigid body right cone whose base is the circle. , Normals may be calculated.
 法線算出部は、法線を算出した後、算出された法線を初期状態として、再度法線を算出してもよい。 After calculating the normal line, the normal line calculation unit may calculate the normal line again with the calculated normal line as an initial state.
 本装置は、算出された法線の正負方向を揃える正負方向統一部をさらに備えてもよい。 The apparatus may further include a positive / negative direction unifying unit that aligns the positive / negative direction of the calculated normal.
 本装置は、算出した法線に基づいて面形状を推定する面形状推定部をさらに備えてもよい。 The apparatus may further include a surface shape estimation unit that estimates a surface shape based on the calculated normal.
 面は、医用画像上の膜であってもよい。 The surface may be a membrane on a medical image.
 本装置は、面形状推定部により推定された面形状に基づいて、医用画像を再構成した再構成画像を作成する画像再構成部と、再構成画像を出力させる画像出力部と、をさらに備えてもよい。 The apparatus further includes an image reconstructing unit configured to create a reconstructed image obtained by reconstructing a medical image based on the surface shape estimated by the surface shape estimating unit, and an image output unit configured to output the reconstructed image. May be
 画像再構成部は、面形状推定部により推定された面形状と、各点が膜の内側にあるか膜の終端部にあるかを示す識別情報とに基づいて、膜の範囲を切り出した再構成画像を作成してもよい。 The image reconstruction unit recuts the range of the film based on the surface shape estimated by the surface shape estimation unit and identification information indicating whether each point is inside or at the end of the film. Configuration images may be created.
 識別情報は、膜の部位に応じた解剖学上のタイプを示すラベルであってもよい。 The identification information may be a label indicating an anatomical type according to the site of the membrane.
 本発明の別の態様の装置は、複数の取得点を取得する点取得部と、取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、円の円周上の最も近い点との間で仮想的な引力が働いたときに、引力に基づいて円の傾きを算出する傾き算出部と、を備える。 The apparatus according to another aspect of the present invention selects a plurality of acquisition points, and selects a plurality of points from among the acquisition points, and relates to each of the circles centered on the selected points. Select external points from among the non-acquired acquisition points, and based on the attractive force when virtual attractive force acts between each of the selected external points and the nearest point on the circle's circumference And an inclination calculation unit that calculates an inclination of a circle.
 本発明の別の態様の方法は、面上の複数の取得点を取得する点取得ステップと、取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、円の円周上の最も近い点との間で仮想的な引力が働いたときに、引力により円が向く方向の法線を、面の円の中心における法線をとして算出する法線算出ステップと、を含む。 The method according to another aspect of the present invention relates to each of a point acquisition step of acquiring a plurality of acquisition points on a surface, and selecting each of a plurality of points from among the acquisition points, each of which is centered on the selected point. When multiple virtual points are selected from among the acquisition points other than the center of the circle, and a virtual attractive force acts between each of the selected external points and the nearest point on the circle's circumference, Calculating a normal to the direction in which the circle is directed as a normal at the center of the surface circle.
 本発明のさらに別の態様のプログラムは、面上の複数の取得点を取得する点取得ステップと、取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、円の円周上の最も近い点との間で仮想的な引力が働いたときに、引力により円が向く方向の法線を、面の円の中心における法線をとして算出する法線算出ステップと、をコンピュータに実行させる。 The program according to still another aspect of the present invention relates to each of a point acquiring step of acquiring a plurality of acquisition points on a surface, a plurality of points selected from among the acquisition points, and a circle centered on each of the selected points. , When a plurality of external points are selected from among the acquisition points other than the center of the circle, and when virtual attraction is exerted between each of the selected external points and the nearest point on the circumference of the circle, The computer is caused to execute a normal calculation step of calculating the normal to the direction in which the circle is directed by the attractive force as the normal at the center of the surface circle.
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It is to be noted that any combination of the above-described constituent elements, one obtained by converting the expression of the present invention between an apparatus, a method, a system, a recording medium, a computer program and the like is also effective as an aspect of the present invention.
 本発明によれば、面上に与えられた点群を基に、該面形状を精度よく推定することができる。 According to the present invention, the surface shape can be accurately estimated based on a point group given on the surface.
従来技術による法線算出処理を示す図である。It is a figure which shows the normal line calculation process by a prior art. 一実施形態に係る本装置の構成を示す図である。It is a figure which shows the structure of this apparatus which concerns on one Embodiment. 法線算出部が選択した選択点を中心とする円を示す図である。It is a figure which shows the circle | round | yen centering on the selection point which the normal line calculation part selected. 1つの外部点から円に働く引力とそのモーメントを示す図である。It is a figure which shows the attraction which acts on a circle from one external point, and its moment. すべての外部点から円に働く引力を示す図である。FIG. 6 illustrates the attraction of acting on the circle from all external points. すべての外部点からの引力のモーメントにより向きを変えた円を示す図である。It is a figure which shows the circle | round | yen changed direction by the moment of the attraction from all the external points. 1つの外部点から円に働く引力を、該円を底面とする剛体直円錐の頂点に働く力に置換したものを示す図である。It is a figure which shows what substituted the attraction which acts on a circle from one external point to the force which acts on the vertex of the rigid body right cone which makes this circle a base. すべての外部点から円に働いた引力を、該円を底面とする剛体直円錐の頂点に働く力の合力に置換したものを示す図である。It is a figure which shows what substituted the attraction which acted on the circle from all the external points to the resultant force of the force which acts on the vertex of the rigid body right cone which makes this circle a base. 頂点に働いた合力のモーメントにより向きを変えた剛体直円錐を示す図である。It is a figure which shows the rigid straight cone changed direction by the moment of the resultant which acted on the vertex. 一実施形態に係る本装置の構成を示す図である。It is a figure which shows the structure of this apparatus which concerns on one Embodiment. 正負方向統一前の法線を示す図である。It is a figure which shows the normal line before positive / negative direction unification. 正負方向統一後の法線を示す図である。It is a figure which shows the normal line after positive / negative direction unification. 一実施形態に係る本装置の構成を示す図である。It is a figure which shows the structure of this apparatus which concerns on one Embodiment. 人間の腸間膜を模式的に示す図である。It is a figure which shows a human mesentery typically. 腸間膜の位置が推定されてプロットされた点群を示す図である。It is a figure which shows the point cloud where the position of the mesentery was estimated and plotted. 従来技術により推定された腸間膜の形状を示す図である。It is a figure which shows the shape of the mesentery estimated by the prior art. 本実施形態に係る本装置を用いて推定された腸間膜の形状を示す図である。It is a figure which shows the shape of the mesentery estimated using this apparatus which concerns on this embodiment. 一実施形態に係る本装置の構成を示す図である。It is a figure which shows the structure of this apparatus which concerns on one Embodiment. 腸間膜の解剖学上のタイプを示すラベルが付された点群を示す図である。FIG. 6 shows a point cloud labeled indicating the anatomic type of the mesentery.
 本発明の実施例を具体的に説明する前に、基礎となった知見を説明する。
 図1は、特許文献1に記載の技術による法線算出処理を示す。この従来技術では、注目点における面の法線を、該注目点の近傍にある3つの近傍点を用いて算出する。すなわち法線算出は、注目点ごとの局所的な点分布に基づいて行われる。この場合算出される法線の精度は、近傍3点の与え方や選び方に大きく影響される。例えば面上で曲率の大きい部分では、法線は十分接近した近傍点から算出されなければならない。すなわち曲率の大きい部分ほど、点群は高い密度で与える必要がある。曲率に対して点群の密度が十分高くないと、算出される法線の向きは正確なものとならない。その結果、この法線を用いて推定される面には、穴があくとか形が崩れるなどといったエラーが生じ得る。しかしながら対象とする元の面は、そのコントラストが明瞭でないなど、人間の目に直接認識できない場合もある。このような場合、面上の点群は、ユーザが予備知識などを基に、その存在位置を予測するなどした上で与えなければならない。従って、正確な法線算出のために十分な点群を与えることは、一般に困難である。
Before specifically describing the embodiments of the present invention, the underlying knowledge will be described.
FIG. 1 shows a normal line calculation process according to the technique described in Patent Document 1. In this prior art, the normal to the surface at the point of interest is calculated using three neighboring points near the point of interest. That is, the normal calculation is performed based on the local point distribution for each focus point. In this case, the accuracy of the calculated normal is greatly influenced by how to give and select the three nearby points. For example, in a portion with a large curvature on the surface, the normal should be calculated from sufficiently close proximity points. That is, the point cloud needs to be provided at a higher density as the curvature is larger. If the density of the point cloud is not high enough for the curvature, the calculated normal direction will not be accurate. As a result, in the surface estimated using this normal, errors may occur such as holes or broken shapes. However, there are cases where the original surface of interest can not be recognized directly by the human eye, for example, because the contrast is not clear. In such a case, the point cloud on the surface has to be given after the user predicts its location based on prior knowledge and the like. Therefore, it is generally difficult to provide sufficient points for accurate normal calculation.
 本発明者は研究の結果、以下の仮想的な物理モデルを用いることにより、面上の全域的な点分布に基づく法線算出を実現でき、限られた点群から高精度に法線を算出できることを見出した。 As a result of research, the present inventors can realize normal calculation based on the whole point distribution on the surface by using the following virtual physical model, and calculate the normal from the limited point group with high accuracy I found out what I could do.
(実施例)
 図2は、一実施形態に係る装置100の構成を示す。装置100は、点取得部10および法線算出部20を含む。
(Example)
FIG. 2 shows the configuration of an apparatus 100 according to an embodiment. The apparatus 100 includes a point acquisition unit 10 and a normal calculation unit 20.
 点取得部10は、面上の複数の点の3次元位置座標を取得する(以下、この取得した点を「取得点」と呼ぶ)。以下、点取得部10は、n個の取得点を取得するものとする。一実施形態では、点取得部10は、装置100の外部でプロットされた点群を、入力インタフェース(図示しない)を経由して直接取得してもよい。別の実施形態では、外部でプロットされた点群データを蓄積するための点群データベース(図示しない)を装置100内に併設しておき、点取得部10は、この点群データベースから取得点を取得してもよい。点取得部10は、各取得点の位置座標を法線算出部20に伝達する。 The point acquisition unit 10 acquires three-dimensional position coordinates of a plurality of points on the surface (hereinafter, the acquired points will be referred to as “acquisition points”). Hereinafter, the point acquisition unit 10 acquires n acquisition points. In one embodiment, the point acquisition unit 10 may directly acquire a point cloud plotted outside the device 100 via an input interface (not shown). In another embodiment, a point cloud database (not shown) for accumulating point cloud data plotted externally is additionally provided in the apparatus 100, and the point acquiring unit 10 acquires acquisition points from the point cloud database. You may get it. The point acquisition unit 10 transmits the position coordinates of each acquisition point to the normal calculation unit 20.
 法線算出部20は、点取得部10から受信したn個の取得点の中からm個の点を選択する(m≦n)。法線算出部20は、選択したm個の点をそれぞれ中心とするm個の仮想的な円を、3次元空間内に設定する。法線算出部20は、各円の中心座標、および各円の法線ベクトルを基に、仮想的な物理モデルを用いて、各円の中心における面の法線ベクトルを算出する。 The normal line calculation unit 20 selects m points from the n acquisition points received from the point acquisition unit 10 (m ≦ n). The normal line calculation unit 20 sets m virtual circles centered on the selected m points in the three-dimensional space. The normal line calculation unit 20 calculates a normal vector of the surface at the center of each circle using a virtual physical model based on the center coordinates of each circle and the normal vector of each circle.
 図3は、法線算出部20により設定された円の一例を示す。前述のように法線算出部20は、点取得部10から受信したn個の取得点の中からm個の点P、...、Pを選択する(m≦n)。説明のため図3では、m個の点P、...、Pを、4個の点P、P、PおよびPで代表させて示す(図4以下も同様)。続けて法線算出部20は、選択した点P、...、Pをそれぞれ中心とするm個の仮想的な円C、...、Cを、3次元空間内に設定する。設定されたm個の円C、...、Cの単位法線ベクトルをそれぞれN、...、Nとする。法線算出部20は、これらの法線ベクトルの向き、すなわちここで設定された各円が向く向きを初期状態として、面の法線ベクトルを算出する。 FIG. 3 shows an example of a circle set by the normal line calculation unit 20. As shown in FIG. As described above, the normal line calculation unit 20 selects m points P 1 ,... From the n acquisition points received from the point acquisition unit 10. . . , P m (m ≦ n). For illustration purposes, in FIG. 3, m points P 1 ,. . . , P m are represented by four points P i , P h , P j and P k (the same applies to FIG. 4 and the like). Subsequently, the normal calculation unit 20 selects the selected points P 1 ,. . . , M number of the virtual circle C 1 centered on P m respectively. . . , C m in a three-dimensional space. The set m circles C 1 ,. . . , C m unit normal vectors N 1 ,. . . , N m . The normal line calculation unit 20 calculates the normal vector of the surface, with the direction of these normal vectors, that is, the direction in which each circle set here is directed, as the initial state.
 図4および図5を参照して、法線算出部20による法線の算出処理を具体的に説明する。法線算出は、上記で設定した円と、取得点のうち該円の中心以外の点(以下「外部点」という)外部の取得点との間に仮想的な引力が働いたときに、この引力に起因して該円が向く向きに基づいて行われる。以下、すべての取得点は空間内に固定されており動かないものとする。また、すべての円は剛体であり、かつすべての円は該円の中心の周りを自由回転できるものとする。ここで円の半径は任意の大きさに定めてよい。一例として円の半径は、外部点と円の中心との距離に基づいて定めてもよい。この場合円の半径は、すべての外部点と円の中心との距離が、該円の半径より大きくなるように定めることが好ましい。 The calculation process of the normal line by the normal line calculation unit 20 will be specifically described with reference to FIGS. 4 and 5. Normal calculation is performed when virtual attraction is applied between the circle set above and an acquisition point outside the center of the circle (hereinafter referred to as “external point”) among acquisition points. It is performed based on the direction in which the circle is turned due to the attractive force. Hereinafter, all acquisition points are fixed in space and do not move. Also, all circles are rigid and all circles can freely rotate around the center of the circle. Here, the radius of the circle may be set to any size. As an example, the radius of the circle may be determined based on the distance between the external point and the center of the circle. In this case, the radius of the circle is preferably set such that the distance between all the external points and the center of the circle is larger than the radius of the circle.
 先ず点P、...、Pから無作為に抽出した点P、および点Pを中心とする円Cに注目する。法線算出部20は、注目点P以外のn-1個の取得点の中から、p個の外部点を選択する(p≦n-1)。次に円Cに対して、選択された外部点の各々から仮想的な引力が働くと考える。 First, point P 1 ,. . . , Focusing on the circle C i whose center P m points extracted randomly from P i, and the point P i. The normal line calculation unit 20 selects p external points from among n−1 acquisition points other than the attention point P i (p ≦ n−1). Next, it is considered that virtual attraction acts on the circle C i from each of the selected external points.
 この仮想的な引力の大きさは、2点間の距離が増大するにつれて減少するものであるとする。例えばこの引力は、2点間の距離のγ乗に反比例する中心力であってよい(γは1以上の実数)。 The magnitude of this virtual attraction is assumed to decrease as the distance between the two points increases. For example, the attractive force may be a central force that is inversely proportional to the power of γ between the two points (γ is a real number of 1 or more).
 図4は、円Cに対し、外部点の1つである点Pから引力が働いたときの様子を示す。ここでこの引力は、円C上で点Pとの距離が最小となる点Rijにのみ働くものとする。このとき円Cには、点Pと点Rijとの間の引力fijの、点P周りのモーメントNij=(Rij-P)×fijが働く。円CはこのモーメントNijにより、固定中心Pの周りを回転して向きを変える(×はベクトル積を表す)。 FIG. 4 shows a state in which an attractive force acts on the circle C i from a point P j which is one of external points. Here, it is assumed that this attraction acts only on the point R ij on the circle C i where the distance to the point P j is minimum. At this time, a moment N ij = (R ij -P i ) × f ij around the point P i acts on the circle C i in the attractive force f ij between the point P j and the point R ij . The circle C i rotates around the fixed center P i to change its direction due to the moment N ij (x represents a vector product).
 同様にすべての外部点から円Cに引力が働くと考えることにより、円Cに対する外部点全体の影響が反映される。図5は、すべての外部点から、円C上の対応する各点に引力が働いたときの様子を示す。円Cは、これら外部点からの引力の、点P周りのモーメントの和により、固定中心Pの周りを回転して向きを変える。その結果円Cは、これらのモーメントの和が釣り合うような向き、すなわちモーメントNijのjに関する総和が0となるような向きを向いて静止する。 Similarly, by considering the attraction of the circle C i from all the external points, the effect of the entire external point on the circle C i is reflected. FIG. 5 shows a state where an attractive force is applied to each corresponding point on the circle C i from all the external points. The circle C i turns around the fixed center P i by the sum of the moments about the point P i of the attractive forces from these external points. As a result, the circle C i comes to a stand in such a direction that the sum of these moments is balanced, that is, the direction in which the sum of j of the moment N ij is zero.
 図6は、円Cが回転した結果、すべての外部点からの引力のモーメントが釣り合ったときの様子を示す。この状態における円Cの単位法線ベクトルをnで表す。法線算出部20は、この単位法線ベクトルnを、点Pにおける面の法線ベクトルとして算出する。 FIG. 6 shows how the moments of attraction from all external points are balanced as a result of the rotation of the circle C i . The unit normal vector of the circle C i in this state is represented by n i . The normal line calculation unit 20 calculates this unit normal vector n i as a surface normal vector at the point P i .
 この仮想的な物理モデルを用いて算出された法線ベクトルは、面上の全域的な点分布に基づくものであり、実際の面の法線ベクトルと高い精度で一致することが確認されている。 The normal vector calculated using this virtual physical model is based on the global point distribution on the surface, and it has been confirmed that it matches the actual surface normal vector with high accuracy .
 一実施形態では、法線算出部20は、前記取得点の中から複数の点を選択するときに、n個の取得点をすべて選択してもよい。すなわちn=mであってもよい。この場合、n個の取得点すべてにおいて円が設定される。すなわち、n個の取得点すべてにおいて法線が算出される。 In one embodiment, the normal line calculating unit 20 may select all n acquisition points when selecting a plurality of points from the acquisition points. That is, n may be m. In this case, a circle is set at all n acquisition points. That is, the normal is calculated at all n acquisition points.
 一般に面形状の推定は、推定に使用する点の数、すなわち算出される法線の数が多いほど、その推定精度が向上する。従って本実施形態によれば、与えられた取得点に対し、最も高い精度で面形状を推定することができる。 In general, in the estimation of the surface shape, as the number of points used for estimation, that is, the number of normals calculated, the estimation accuracy improves. Therefore, according to the present embodiment, the surface shape can be estimated with the highest accuracy for a given acquisition point.
 一実施形態では、法線算出部20は、注目点Pに対する外部点を選択するとき、点Pからの距離に応じてこの選択を行ってもよい。一例として、法線算出部20は、注目点Pに最も近い点から開始して、p番目に近い点までのp個を外部点として選択してもよい。この例の場合、選択したp個の外部点はすべて、選択しなかったn-p-1個の取得点よりも注目点Pに近い。 In one embodiment, when selecting the external point with respect to the attention point P i , the normal line calculation unit 20 may perform this selection according to the distance from the point P i . As an example, the normal calculation unit 20, starting from the point closest to the point of interest P i, may be selected p number of up to a point close to the p-th as an external point. In the case of this example, all the selected p external points are closer to the attention point P i than the non-selected np−1 acquisition points.
 前述のように、本実施例の仮想的な引力は、2点間の距離が増大するにつれて減少する。すなわち円Cに働く引力は、点Pに近い点から及ぼされるのものほど大きい。従って、点Pにより近い点を外部点として選択することにより、円Cに働く引力のうち、より強いものを法線算出に用いることができる。これにより、算出される法線の精度は向上する。すなわち本実施形態によれば、与えられた注目点に対し一定数の外部点を選択する場合、より高い精度で法線を算出することができる。 As mentioned above, the virtual attraction of this embodiment decreases as the distance between the two points increases. That is, the attractive force acting on the circle C i is larger as it is exerted from a point closer to the point P i . Therefore, by selecting a point closer to the point P i as the external point, it is possible to use a stronger one of the attractive forces acting on the circle C i for the normal calculation. This improves the accuracy of the calculated normal. That is, according to the present embodiment, when a fixed number of external points are selected for a given target point, the normal can be calculated with higher accuracy.
 一実施形態では、法線算出部20は、注目点P以外のn-1個のすべての取得点を外部点として選択してもよい。すなわち、p=n-1であってもよい。この場合、注目円Cには、注目点P以外のすべての取得点から仮想的な引力が働く。 In one embodiment, the normal line calculation unit 20 may select all n−1 acquisition points other than the attention point P i as the external points. That is, p may be n = 1. In this case, virtual attraction acts on the attention circle C i from all acquisition points other than the attention point P i .
 一般に法線の算出は、注目点との関係を考慮する点の数、すなわち注目円と相互作用する外部点の数が多いほど面上の点分布が全域的に考慮されるため、その精度が向上する。従って本実施形態によれば、与えられた注目点に対し、最も高い精度で法線を推定することができる。 In general, the calculation of the normal is more accurate because the point distribution on the surface is comprehensively considered as the number of points considering the relationship with the point of interest, ie, the number of external points interacting with the circle of interest, increases. improves. Therefore, according to the present embodiment, the normal can be estimated with the highest accuracy for a given target point.
 一実施形態では、法線算出部20は、選択した外部点の各々と、円の円周上の最も近い点との間の仮想的な引力を、該円を底面とする剛体直円錐の頂点に働く力に置換して、法線を算出してもよい。図7は、図4と同じ設定の下で、円Cに対し、外部点の1つである点Pから引力が働いたときの様子を示す。図7には、円Cを底面とし、点Aを頂点とする剛体直円錐Dが付加されている。前述のように円Cには、点Pと点Rijとの間の引力fijの、点P周りのモーメントNij=(Rij-P)×fijが働く。本実施形態では、剛体直円錐Dの頂点Aに働く力gijを、点Pの周りに同じモーメントNijを発生させる力として定義する。本実施例では、法線算出部20は、力fijをこの力gijに置換して法線を算出する。 In one embodiment, the normal line calculation unit 20 sets the virtual attractive force between each of the selected external points and the nearest point on the circumference of the circle to the vertex of the rigid body right cone whose bottom surface is the circle. The normal force may be calculated by replacing the force acting on the FIG. 7 shows how the attraction is applied to the circle C i from the point P j which is one of the external points under the same setting as FIG. Figure 7 is a circle C i and bottom, rigid straight cone D i to vertex point A i is added. As described above, a moment N ij = (R ij -P i ) × f ij around the point P i acts on the circle C i in the attractive force f ij between the point P j and the point R ij . In the present embodiment, the force g ij acting on the vertex A i of the rigid rigid cone D i is defined as a force that generates the same moment N ij around the point P i . In the present embodiment, the normal line calculation unit 20 calculates the normal line by replacing the force f ij with the force g ij .
 図8は、図5と同じ設定の下で、すべての外部点から、円C上の対応する各点に引力が働いたときの様子を示す。前述のように本実施例では、各外部点Pから円C上の対応する点Rijに働く力fijに代えて、剛体直円錐Dの頂点Aに働く力gijを用いて計算を実行する。力gijのjに関する和、すなわち力gijの合力をgで表す。この合力gにより、図5の場合と同一の、中心点Pの周りのモーメントが頂点Aに働く。剛体直円錐Dは、この合力gのモーメントにより、固定中心Pの周りを回転して向きを変える。その結果剛体直円錐Dは、この合力gのモーメントが0となるような向きを向いて静止する。 FIG. 8 shows how attraction is applied to all the corresponding points on the circle C i from all the external points under the same setting as FIG. In the present embodiment as described above, instead of the force f ij acting on corresponding point R ij on the circle C i from the external point P j, using the force g ij acting on vertex A i of the rigid right cone D i Perform the calculation. The sum of force g ij with respect to j, that is, the resultant force of force g ij is represented by g i . Due to this resultant force g i , the same moment around the center point P i as in the case of FIG. 5 acts on the vertex A i . Rigid right circular cone D i is the moment of the resultant force g i, changing the direction by rotating around a fixed center P i. Consequently rigid straight cone D i is still facing orientation as the moment of the resultant force g i is 0.
 図9は、剛体直円錐Dが回転した結果、合力gのモーメントが0となったときの様子を示す。このとき剛体直円錐Dの底面が向く向きは、図6で円Cが向く向きと一致する。従って、図6の場合と同じベクトルnが、面の法線ベクトルとして得られる。 FIG. 9 shows the situation when the moment of the resultant force g i becomes zero as a result of the rotation of the rigid body straight cone D i . At this time the direction facing the bottom surface of the rigid right circular cone D i is consistent with the direction facing the circle C i in FIG. Therefore, the same vector n i as in the case of FIG. 6 is obtained as the surface normal vector.
 本実施形態によれば、図5に示される各引力の点Pの周りのモーメントの計算は、剛体直円錐Dの頂点Aにおける力のベクトル和gに帰着する。従って、図5のように各引力の力点が円C上に分散しているときと比べ、計算を簡略化できる。 According to this embodiment, the calculation of the moment around each attractive point P i shown in FIG. 5 results in a vector sum g i of forces at the apex A i of the rigid body right cone D i . Therefore, the calculation can be simplified as compared with the case where the points of attraction of each attractive force are dispersed on the circle C i as shown in FIG.
 一実施形態では、法線算出部20は、法線を算出した後、算出された法線を初期状態として、再度法線を算出してもよい。 In one embodiment, after calculating the normal line, the normal line calculation unit 20 may calculate the normal line again with the calculated normal line as an initial state.
 一般に法線算出部20により算出される法線は近似値であるため、従来技術と比較して精度が高いとはいえ、一定の誤差を含み得る。この誤差は、一般に前述の法線算出を再度実行することにより、低減させることができる。従って、一旦算出された法線を初期状態として、法線算出を反復して実行することにより、算出された法線の精度を漸進的に向上させることができる。 In general, the normal calculated by the normal calculation unit 20 is an approximate value, and may include a constant error although the accuracy is higher than that of the prior art. This error can generally be reduced by re-executing the normal calculation described above. Therefore, the accuracy of the calculated normal can be gradually improved by repeatedly performing the normal calculation with the normal calculated once as the initial state.
 本実施形態によれば、法線算出の精度をさらに改善することができる。これを面形状の推定に適用することにより、高い精度で面形状を推定することができる。 According to this embodiment, it is possible to further improve the accuracy of the normal line calculation. By applying this to estimation of the surface shape, it is possible to estimate the surface shape with high accuracy.
 一実施形態では、本装置は、算出された法線の正負方向を揃える正負方向統一部をさらに備えてもよい。図10は、本実施形態に係る装置110の構成を示す。図1に示される構成との相違は、正負方向統一部30を備える点である。点取得部10および法線算出部20の構成および動作は基本的に前述と同一であるため、相違する部分、特に正負方向統一部30に焦点を当てて説明する。 In one embodiment, the apparatus may further include a positive / negative direction unifying unit that aligns the positive / negative direction of the calculated normal. FIG. 10 shows the configuration of an apparatus 110 according to the present embodiment. The difference from the configuration shown in FIG. 1 is that a positive / negative direction unifying unit 30 is provided. The configurations and operations of the point acquisition unit 10 and the normal line calculation unit 20 are basically the same as those described above, so the following description focuses on different parts, in particular the positive / negative direction unifying unit 30.
 図11aに示されるように、一般に法線算出部20によって算出された法線ベクトルは、正負の方向が統一されていない。すなわち算出された法線ベクトルは、面の表側を向くものと裏側を向くものとが混在している。正負方向統一部30は、この法線の向きを揃えるものである。 As shown in FIG. 11a, in general, the normal vectors calculated by the normal calculation unit 20 are not unified in positive and negative directions. That is, the calculated normal vector is a mixture of one that faces the front side of the surface and one that faces the back side. The positive / negative direction unifying unit 30 is for aligning the direction of this normal.
 法線算出部20は、算出した単位法線ベクトルの組nを、正負方向統一部30に伝達する。正負方向統一部30は、法線算出部20から受信した単位法線ベクトルの組nの方向を統一する。 The normal line calculating unit 20 transmits the calculated unit normal vector set n i to the positive / negative direction unifying unit 30. The positive / negative direction unifying unit 30 unifies the direction of the unit normal vector set n i received from the normal calculating unit 20.
 法線方向統一の具体的な方法として、既知のアルゴリズムが用いられてよい。例えば最小全域木の手法が適用されてもよい。この手法によれば、最初に面上の取得点の集合から最小全域木を作成し、始点から開始して、距離の近い点2点間における単位法線ベクトルの内積が正となるように、順次正負方向を統一していく。これにより、法線ベクトル全体で正負方向が統一される。図11bに、正負方向が統一された法線ベクトルを示す。 A known algorithm may be used as a specific method of normal direction unification. For example, a minimum spanning tree approach may be applied. According to this method, a minimum spanning tree is first created from a set of acquisition points on the surface, and starting from the start point, the inner product of unit normal vectors between two points close in distance becomes positive, We will unify the positive and negative directions sequentially. Thereby, the positive and negative directions are unified in the entire normal vector. FIG. 11 b shows a normal vector in which the positive and negative directions are unified.
 本実施形態によれば、法線の正負方向を統一することができる。これを面形状の推定に適用することにより、より高い精度で面形状を推定することができる。 According to the present embodiment, the positive and negative directions of the normal can be unified. By applying this to estimation of the surface shape, it is possible to estimate the surface shape with higher accuracy.
 一実施形態では、本装置は、算出した法線に基づいて面形状を推定する面形状推定部をさらに備えてもよい。図12は、本実施形態に係る装置120の構成を示す。図1に示される構成との相違は、面形状推定部40を備える点である。点取得部10および法線算出部20の構成および動作は基本的に前述と同一であるため、相違する部分、特に面形状推定部40に焦点を当てて説明する。 In one embodiment, the apparatus may further include a surface shape estimation unit that estimates a surface shape based on the calculated normal. FIG. 12 shows the configuration of an apparatus 120 according to the present embodiment. The difference from the configuration shown in FIG. 1 is that the plane shape estimation unit 40 is provided. The configurations and operations of the point acquisition unit 10 and the normal line calculation unit 20 are basically the same as those described above, so the following description focuses on different parts, in particular, the surface shape estimation unit 40.
 法線算出部20は、各円の中心座標、および算出した各法線ベクトルを、面形状推定部40に伝達する。面形状推定部40は、法線算出部20から受信した各円の中心座標、および算出された各法線ベクトルに基づいて面形状を推定する。面形状の推定には、例えば特許文献1に開示されたRBFを用いた技術が使用されればよいので、ここでは説明を省略する。 The normal calculation unit 20 transmits the center coordinates of each circle and the calculated normal vectors to the surface shape estimation unit 40. The surface shape estimation unit 40 estimates the surface shape based on the center coordinates of each circle received from the normal calculation unit 20 and the calculated normal vectors. For example, the technique using the RBF disclosed in Patent Document 1 may be used to estimate the surface shape, and thus the description thereof is omitted here.
 本実施形態によれば、本装置単体で、高い精度で面形状を推定することができる。 According to the present embodiment, it is possible to estimate the surface shape with high accuracy by the present device alone.
 以上、本発明の一実施態様の構成を、いくつかの実施形態で説明した。本実施形態に係る装置100の、ユーザから見た動作の一例は以下の通りである。ユーザは、直接視認できない面形状について、何らかの情報や予備知識に基づいて、その面上に分布する限られた数の点群を入手する。この点群の3次元座標が、点取得部10に入力される。法線算出部20は、点取得部10に入力された点群の中から適当な数の点を選択し、選択した各点を中心に円を設定し、該円に対し、外部点から仮想的な引力が働くとした物理モデルにより、該円の中心における該面の法線を算出する。ユーザは、算出した法線を用いてRBFによる計算を実行することにより、元来は認識できなかった面形状を得ることができる。 The configuration of one embodiment of the present invention has been described above in several embodiments. An example of the operation viewed from the user of the device 100 according to the present embodiment is as follows. The user obtains a limited number of point clouds distributed on the surface based on some information or preliminary knowledge about the surface shape that can not be directly viewed. The three-dimensional coordinates of the point group are input to the point acquisition unit 10. The normal line calculation unit 20 selects an appropriate number of points from the point group input to the point acquisition unit 10, and sets a circle centered on each of the selected points. The normal of the surface at the center of the circle is calculated by the physical model on which the attractive force works. The user can obtain the surface shape that could not be recognized originally by executing the RBF calculation using the calculated normal.
 以上説明したように、本実施態様の構成により、面上の有限の点群を基に、該面の形状を高い精度で推定することができる。 As described above, according to the configuration of the present embodiment, the shape of the surface can be estimated with high accuracy based on a finite point group on the surface.
(医用画像への応用)
 本発明の別の実施形態として、前述の構成において、対象とする面が医用画像上の膜である場合について説明する。
(Application to medical image)
As another embodiment of the present invention, the case where a target surface is a film on a medical image in the above-described configuration will be described.
 本発明の有用な応用の1つとして医用画像がある。医療分野では、X線CTやMRI等、人体内部の形状や構造を把握するための技術が進展している一方、人体組織の中にはこれらの技術を用いても直接可視化できないものがある。腸間膜は、そのような組織の一例である。 One useful application of the present invention is medical imaging. In the medical field, techniques for grasping the shape and structure inside the human body such as X-ray CT and MRI have been developed, but some human tissues can not be directly visualized even using these techniques. The mesentery is an example of such a tissue.
 図13に、人間の腸間膜Mを模式的に示す。腸間膜は腹腔内で腸管を支える、2枚が重なった構造を持つ組織である。腸間膜の形状や構造を把握することは、安全で迅速な腹部手術のために重要である。しかしながら腸間膜は、そのX線吸収率が付近の組織と近い。そのためCT画像において、付近の組織と見分けて、全体像を明確に把握することは非常に難しい。ただし、膜の二重構造の内部を血管が走行し、膜の終端が大腸や主要血管に接することから、造影CT画像を基に、血管形状を手掛かりに大まかな膜構造を確認することは可能である。すなわち、解剖学的知見を持つユーザは、造影CT画像で直接画像に写り込んでいない腸間膜に関し、膜上の複数の点の位置を推定することができる。 Fig. 13 schematically shows the human mesentery M. The mesentery is a tissue with a two-layered structure that supports the intestinal tract in the abdominal cavity. Understanding the shape and structure of the mesentery is important for safe and rapid abdominal surgery. However, the mesentery has a similar X-ray absorption rate to nearby tissue. Therefore, in CT images, it is very difficult to distinguish the surrounding tissue and to clearly grasp the whole image. However, since the blood vessels run inside the dual structure of the membrane, and the terminal end of the membrane contacts the large intestine and the main blood vessels, it is possible to confirm the rough membrane structure based on the blood vessel shape based on the contrast CT image It is. That is, a user with anatomical knowledge can estimate the positions of a plurality of points on the membrane with respect to the mesentery that is not directly reflected in the contrast CT image.
 図14に、前述のような解剖学的知見を持つ専門医師等のユーザが、造影CT画像上に腸間膜の位置を推定してプロットした点群を示す。図15aに、図14の点群を基に、特許文献1に記載の従来技術を用いて推定した腸間膜の形状を示す。図15aから読み取れるように、画像の右側部分に本来存在しない穴が現れるなどエラーが発生している。図15bに、同じ図14の点群を基に、本実施形態に係る装置を用いて推定した腸間膜の形状を示す。図15bにより、推定精度が大きく改善され、実際の腸間膜形状をより忠実に再現した画像が得られることが分かる。 FIG. 14 shows a point cloud in which a user such as a specialist having anatomic knowledge as described above estimates and plots the position of mesentery on a contrast-enhanced CT image. FIG. 15a shows the shape of the mesentery estimated using the prior art described in Patent Document 1 based on the point cloud of FIG. As can be read from FIG. 15a, an error has occurred, such as the appearance of a hole that does not exist in the right part of the image. FIG. 15b shows the shape of the mesentery estimated using the device according to the present embodiment based on the point cloud of FIG. It can be seen from FIG. 15 b that the estimation accuracy is greatly improved, and an image that more faithfully reproduces the actual shape of the mesentery can be obtained.
 本実施形態によれば、ユーザがプロットした医用画像上の膜上の点群に基づき、該膜の形状を高い精度で推定することができる。 According to the present embodiment, the shape of the film can be estimated with high accuracy based on the point group on the film on the medical image plotted by the user.
 一実施形態では、本装置は、図12の装置の面形状推定部40により推定された面形状を基に、これを医用画像として再構成した再構成画像を作成する画像再構成部と、再構成画像を出力する画像出力部と、をさらに備えてもよい。図16は、本実施形態に係る装置130の構成を示す。図12に示される構成との相違は、画像再構成部50および画像出力部60を備える点である。 In one embodiment, the present apparatus re-creates a reconstructed image in which a medical image is reconstructed based on the surface shape estimated by the surface shape estimation unit 40 of the apparatus shown in FIG. And an image output unit that outputs the configuration image. FIG. 16 shows the configuration of an apparatus 130 according to this embodiment. The difference from the configuration shown in FIG. 12 is that an image reconstruction unit 50 and an image output unit 60 are provided.
 画像再構成部50は、推定された面形状を面形状推定部40より受信し、これを基に、医用画像として再構成した再構成画像を作成する。再構成画像の作成には、臨床や研究等の利用目的に応じて、適切な既存の技術が用いられてよい。例えば、マーチングキューブ法などのレンダリング技術を用いてポリゴンデータを作成し、これにより3次元的な再構成画像を作成してよい。画像再構成部50は、作成した再構成画像を、画像出力部60に伝達する。 The image reconstruction unit 50 receives the estimated surface shape from the surface shape estimation unit 40, and based on this, creates a reconstructed image reconstructed as a medical image. In order to create a reconstructed image, an appropriate existing technique may be used according to the purpose of use such as a clinic or a research. For example, polygon data may be created using rendering techniques such as the marching cube method to create a three-dimensional reconstructed image. The image reconstruction unit 50 transmits the created reconstructed image to the image output unit 60.
 画像出力部60は、画像再構成部50から受信した再構成画像を外部に出力する。画像出力部60は、例えばディスプレイ等の画像出力装置であってよい。 The image output unit 60 outputs the reconstructed image received from the image reconstruction unit 50 to the outside. The image output unit 60 may be, for example, an image output device such as a display.
 本実施形態によれば、医療専門家等のユーザが、点群から再構成された医用画像をモニタすることができる。 According to this embodiment, a user such as a medical professional can monitor a medical image reconstructed from a point cloud.
 一実施形態では、画像再構成部50は、面形状推定部40により推定された面形状に基づいて、膜の範囲を切り出した再構成画像を作成してもよい。例えば腸間膜は大腸や血管などの周辺組織に接することから、これら周辺組織との境界を基にその終端部が画定される。しかしながら面形状推定部40により推定された面形状は、一般にこの終端部を超えて無限遠まで連続する。実用上は、この連続する面形状から、対象とする膜のみが切り出されることが望ましい。この目的のために、膜上の点群に関し、各点の位置座標に加えて、特定の点が境界上の点であることを示す情報を与えることにより、境界を切り取り線として利用し、面形状から膜を切り出すことができる。 In one embodiment, the image reconstruction unit 50 may create a reconstructed image in which the range of the film is cut out based on the surface shape estimated by the surface shape estimation unit 40. For example, since the mesentery is in contact with surrounding tissues such as the large intestine and blood vessels, the end is defined based on the boundary with these surrounding tissues. However, the surface shape estimated by the surface shape estimation unit 40 generally continues to infinity beyond this end. In practice, it is desirable that only the target film be cut out from this continuous surface shape. For this purpose, the boundary is used as a cutting line by giving information indicating that a specific point is a point on the boundary, in addition to the position coordinates of each point, with respect to the point group on the film. The membrane can be cut out of the shape.
 図16を参照しながら、本実施形態を説明する。前述のような解剖学的知見を持つ専門医師等のユーザは、造影CT画像上で腸間膜の位置を推定して点群をプロットする。このとき、各点の位置座標に加えて、各点が膜の内側にあるか膜の境界上にあるかを示す情報(以下「識別情報」と呼ぶ)を与える。図16の装置130の点取得部10は、取得点の位置座標および識別情報を取得する。点取得部10は、取得点の位置座標を法線算出部20に伝達するとともに、取得点の識別情報を画像再構成部50に伝達する。画像再構成部50は、面形状推定部40より受信した面形状と、点取得部10から受信した識別情報とを基に、対象とする膜の範囲を切り出して再構成画像を作成する。膜の範囲を切り出す具体的な方法として、例えば特許文献1に記載された処理を用いてよい。 This embodiment will be described with reference to FIG. A user such as a specialist who has the above-described anatomical knowledge estimates the position of mesentery on a contrast-enhanced CT image and plots a point cloud. At this time, in addition to the position coordinates of each point, information (hereinafter referred to as “identification information”) indicating whether each point is inside the film or on the boundary of the film is given. The point acquisition unit 10 of the device 130 of FIG. 16 acquires position coordinates and identification information of an acquisition point. The point acquisition unit 10 transmits the position coordinates of the acquisition point to the normal line calculation unit 20 and transmits identification information of the acquisition point to the image reconstruction unit 50. Based on the surface shape received from the surface shape estimation unit 40 and the identification information received from the point acquisition unit 10, the image reconstruction unit 50 cuts out the range of the target film to create a reconstructed image. As a specific method of cutting out the range of the film, for example, the process described in Patent Document 1 may be used.
 本実施形態によれば、対象とする膜のみが切り出されて再構成されることにより、実用性が向上する。 According to the present embodiment, practicability is improved by cutting out and reconstructing only the target film.
 一実施形態では、識別情報は、前記膜の部位に応じた解剖学上のタイプを示すラベルであってもよい。すなわち本実施形態では、このラベルを識別情報として利用する。 In one embodiment, the identification information may be a label indicating an anatomical type according to the site of the membrane. That is, in the present embodiment, this label is used as identification information.
 図17に、腸間膜の解剖学上のタイプを示すラベルを付した点群の例を示す。本例では、腸間膜のCT画像上で、タイプ1からタイプ4までの4種類のラベルを与える。タイプ1の点は、大腸に接するライン上の点であり、膜の境界上にある。タイプ2の点は、回結腸動脈上の点であり、膜の境界上にある。タイプ3の点は、下腸間膜静脈上から下腸間膜動脈上の点であり、膜の境界上にある。タイプ4の点は、膜の内側にある点である。この場合、タイプ1、2および3のラベルの付された点が膜の境界上にあるため、これらの点を切り取り線として、対象とする膜の範囲を切り出すことができる。 FIG. 17 shows an example of a point cloud labeled with an anatomical type of mesentery. In this example, four types of labels from type 1 to type 4 are given on the CT image of the mesentery. Type 1 points are points on the line tangent to the large intestine and on the membrane border. The point of type 2 is a point on the iliac artery and on the border of the membrane. The point of type 3 is a point on the inferior mesenteric vein to the inferior mesenteric artery, which is on the membrane boundary. The point of type 4 is the point inside the membrane. In this case, since the points labeled with types 1, 2 and 3 are on the boundary of the membrane, these points can be used as cut lines to cut out the range of the target membrane.
 図16の装置130の点取得部10は、取得点の位置座標を法線算出部20に伝達するとともに、取得点のラベルを画像再構成部50に伝達する。画像再構成部50は、面形状推定部40より受信した面形状から、点取得部10から受信したタイプ1、2および3のラベルが与えられた点を切り取り線として、対象とする膜の範囲を切り出して再構成画像を作成する。 The point acquisition unit 10 of the device 130 of FIG. 16 transmits the position coordinates of the acquisition point to the normal line calculation unit 20 and transmits the label of the acquisition point to the image reconstruction unit 50. The image reconstruction unit 50 uses the points given the labels of types 1, 2 and 3 received from the point acquisition unit 10 from the surface shape received from the surface shape estimation unit 40 as a cutting line, and the range of the target film To create a reconstructed image.
 本実施形態によれば、ラベルという簡易な形式の識別情報を利用するため、効率的な切り出し処理を実現することができる。 According to the present embodiment, efficient extraction processing can be realized because identification information in a simple format such as a label is used.
(他の実施形態)
 本発明の別の実施形態として、前述の構成において、点取得部が、3次元空間内に分布する任意の点群から点を取得する場合について説明する。
(Other embodiments)
As another embodiment of the present invention, a case where the point acquiring unit acquires points from an arbitrary point group distributed in the three-dimensional space will be described in the above-described configuration.
 本発明の仮想的な物理モデルは、面上に分布する点に限らず、種々の点群に対して適用可能である。例えば本発明のある態様の装置は、点取得部と、傾き算出部と、を備える。点取得部は、3次元空間内に分布する点群に関し、これらの中から複数の取得点を取得する。傾き算出部は、取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、円の円周上の最も近い点との間で仮想的な引力が働いたときに、引力に基づいて円の傾きを算出する。 The virtual physical model of the present invention is applicable not only to points distributed on a surface but also to various point groups. For example, an apparatus according to an aspect of the present invention includes a point acquisition unit and a slope calculation unit. The point acquisition unit acquires a plurality of acquisition points from among the point cloud distributed in the three-dimensional space. The inclination calculation unit selects a plurality of points from among the acquired points, and selects and selects a plurality of external points from among the acquired points other than the center of the circle for each of the circles centered on the selected points. When virtual attraction acts between each of the external points and the nearest point on the circumference of the circle, the inclination of the circle is calculated based on the attraction.
 このようにして算出された円の傾きは、該円の中心にある点と、その他の点群との空間的関係を全域的に表すと考えられる。この点同士の全域的な関係に関する情報を、例えば点群の空間密度分布に関する情報などと組み合わせることにより、種々の応用が可能となる。 The inclination of the circle calculated in this manner is considered to globally represent the spatial relationship between the point at the center of the circle and the other point group. Various applications are possible by combining the information on the overall relationship between the points with, for example, the information on the spatial density distribution of the point cloud.
 以上、本発明を実施例を基に説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the examples. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to the combination of each component and each processing process, and such a modification is also within the scope of the present invention. .
 前述の法線算出部20が一旦法線を算出した後、この算出した法線を初期状態として再度法線を算出する実施形態では、法線算出処理は所定の回数反復してもよい。一般に法線算出を反復することにより、算出される法線は一定値に収束していく。法線算出処理は、算出された法線が収束するまで反復してもよい。あるいは、算出された法線と、前回算出された法線とを比較する手段を設け、両者の差分が所定の閾値より小さくなるまで算出処理を反復してもよい。本変形例によれば、予め目標精度を設けておき、この目標を満足する精度の法線を算出することができる。 In the embodiment in which the normal line calculating unit 20 calculates the normal line once and then calculates the normal line again with the calculated normal line as the initial state, the normal line calculating process may be repeated a predetermined number of times. Generally, by repeating the normal calculation, the calculated normal converges to a constant value. The normal calculation process may be repeated until the calculated normal converges. Alternatively, means may be provided to compare the calculated normal line with the previously calculated normal line, and the calculation process may be repeated until the difference between the two is smaller than a predetermined threshold value. According to this modification, a target accuracy is provided in advance, and it is possible to calculate a normal of accuracy that satisfies the target.
 画像出力部60は、再構成画像をそのまま出力してもよいがこれに限らず、他の画像データを再構成画像に重畳して出力してもよい。例えば再構成画像が腸間膜である場合、血管を含めた元のCT画像データのテクスチャを重畳して出力してもよい。本変形例によれば、ユーザは、再構成された腸間膜に加えて、腸間膜に沿って走行する血管を同時にモニタすることができる。 The image output unit 60 may output the reconstructed image as it is, but is not limited to this, and may output another image data superimposed on the reconstructed image. For example, when the reconstructed image is the mesentery, the texture of the original CT image data including blood vessels may be superimposed and output. According to this modification, the user can simultaneously monitor blood vessels traveling along the mesentery in addition to the reconstructed mesentery.
 さらにこの場合、血管のCT画像データに対し、再構成した腸間膜画像と同じポリゴン表現を与えてもよい。本変形例によれば、ユーザは、血管を腸間膜とともに動的に変形等させながらモニタすることができる。 Furthermore, in this case, the same polygon representation as the reconstructed mesentery image may be given to the CT image data of the blood vessel. According to this modification, the user can monitor the blood vessel while dynamically deforming with the mesentery.
 前述の、対象とする膜の範囲を切り出して再構成画像を作成する実施形態において、画像再構成部50は、点群が終端している部分から所定の距離以上離れた再構成画像を切り取って除去してもよい。対象とする膜の境界部分の曲率に対し点群の数が十分でない場合、識別情報のみでは切り出しが十分になされず、不要な画像の一部が残存してしまう場合がある。本変形例によれば、識別情報だけでは切り取れない不要な画像を除去することにより、対象とする膜の範囲の切り出しを完全に実現することができる。 In the above-described embodiment in which the range of the target film is cut out to create a reconstructed image, the image reconstruction unit 50 cuts out the reconstructed image separated by a predetermined distance or more from the portion where the point group ends. It may be removed. If the number of point clouds is not sufficient for the curvature of the boundary portion of the target film, the identification information alone may not be sufficiently extracted, and an unnecessary part of the image may be left. According to this modification, it is possible to completely realize the cutout of the range of the target film by removing the unnecessary image that can not be cut off only by the identification information.
 前述のような専門的知見を持つユーザが、面上の位置を推定して点群をプロットするときに、種々の手段が用いられてよい。例えば、マウス等を用いて点が入力され、点ごとにプロットがされてよい。あるいは変形例として、タッチパネル等を用いて線が入力され、この線から点群がサンプリングされてプロットされてもよい。本変形例によれば、プロットの精度を改善することができる。 A variety of means may be used when a user with specialized knowledge as described above estimates the position on the surface and plots a point cloud. For example, points may be input using a mouse or the like, and plotting may be performed for each point. Alternatively, as a modification, a line may be input using a touch panel or the like, and a point group may be sampled and plotted from this line. According to this modification, the accuracy of plotting can be improved.
 別の変形例では、専門医師等が造影CT画像上の膜の位置をプロットするとき、現在の断層画面上に、1枚前の断層画面上でプロットした点を淡く表示してもよい。これに加えて、2枚以上前の断層画面上でプロットした点を、断層画面を1枚ずつ遡るにつれて順次濃度を落としながら表示してもよい。さらにこの場合、ホログラフィ等の技術を用いて、断層画面の深度に応じて、プロットした点を立体的に表示してもよい。さらに、各断層画像上でプロットされた点同士を連結し、ワイヤフレーム構造の膜の模式画像を作成してもよい。 In another variation, when the expert doctor or the like plots the position of the film on the contrast CT image, the points plotted on the previous tomographic screen may be displayed dimly on the current tomographic screen. In addition to this, points plotted on the two or more previous tomographic screens may be displayed while sequentially decreasing the density as the tomographic screens are traced back one by one. Furthermore, in this case, the plotted points may be three-dimensionally displayed according to the depth of the tomographic screen using a technique such as holography. Furthermore, points plotted on each tomographic image may be connected to create a schematic image of a film having a wire frame structure.
 一般に腸間膜などCT画像上のコントラストが著しく不鮮明な面形状の場合、プロットの困難さや得られる点群の精度は、プロットを行うユーザの知見や技量に大きく依存する。プロットを行うときに、それより前の断層画面上ですでにプロットした点が表示されていれば、この点を補助的な手掛かりとして利用することにより、プロットをより正確かつ容易なものとすることができる。この場合、一般に以前にプロットした点に近い点がプロットされることが多くなるため、点同士を連結したワイヤフレーム構造の模式画像などを容易に作成することもできる。本変形例によれば、プロットを容易にするとともに、プロットの精度を改善することができる。 In general, in the case of a surface shape such as the mesentery where the contrast on the CT image is extremely unclear, the difficulty of plotting and the accuracy of the obtained point group largely depend on the knowledge and skill of the user who performs plotting. Make the plot more accurate and easier by making use of this point as an auxiliary clue, if you have already displayed the point you plotted on the previous tomographic screen when doing the plot Can. In this case, in general, points close to the points plotted before are often plotted, so it is also possible to easily create a schematic image of a wire frame structure in which the points are connected. According to this modification, it is possible to facilitate plotting and to improve the accuracy of plotting.
 直接視認できない面形状としては、X線CTに写り込まない人体組織の他、コントラストが不明瞭な写真に映る物品や自然物、非破壊検査の対象となるサンプル、地中や水中に没した物体の超音波映像などがある。これらの直接可視化されていない面について、専門家の知見等を補うことで面上の点群を推定し、本発明の技術を用いることにより、元の面形状を推定し再構成することができる。 As the surface shape that can not be directly viewed, in addition to human tissue that does not appear in X-ray CT, articles and natural objects that appear in photographs with unclear contrast, samples to be subjected to nondestructive inspection, objects that are buried in the ground or in water There are ultrasound images and the like. The point cloud on the surface can be estimated by supplementing the expert's knowledge and the like with respect to these surfaces not directly visualized, and the original surface shape can be estimated and reconstructed by using the technique of the present invention. .
 10 点取得部、 20 法線算出部、 30 正負方向統一部、 40 面形状推定部、 50 画像再構成部、 60 画像出力部、 100 装置、110 装置、120 装置 10 point acquisition unit, 20 normal calculation unit, 30 positive / negative direction unification unit, 40 plane shape estimation unit, 50 image reconstruction unit, 60 image output unit, 100 devices, 110 devices, 120 devices
 本発明は、直接視認できない面形状を推定し再構成することを必要とする産業分野に利用可能である。 The present invention is applicable to the industrial field that requires estimating and reconstructing the surface shape that can not be directly viewed.

Claims (14)

  1.  面上の複数の取得点を取得する点取得部と、
     前記取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、前記円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、前記円の円周上の最も近い点との間で仮想的な引力が働いたときに、前記引力により前記円が向く方向の法線を、前記面の前記円の中心における法線をとして算出する法線算出部と、を備えたことを特徴とする装置。
    A point acquisition unit that acquires a plurality of acquisition points on the surface;
    A plurality of points are selected from among the acquisition points, a plurality of external points are selected from among acquisition points other than the center of the circle for each of the circles centered on the selected points, and the selected external points When virtual attraction is exerted between each and the nearest point on the circumference of the circle, the normal to the direction in which the circle is directed by the attraction is taken as the normal at the center of the circle of the surface An apparatus comprising: a normal line calculation unit for calculating as
  2.  前記法線算出部は、前記取得点の中から複数の点を選択するときに、すべての前記取得点を選択することを特徴とする、請求項1に記載の装置。 The apparatus according to claim 1, wherein the normal line calculation unit selects all the acquisition points when selecting a plurality of points from the acquisition points.
  3.  前記法線算出部は、前記円の各々に関し、前記円の中心以外のすべての取得点を前記外部点として選択することを特徴とする、請求項1乃至2のいずれかに記載の装置。 The apparatus according to any one of claims 1 to 2, wherein the normal line calculation unit selects, for each of the circles, all acquisition points other than the center of the circle as the external points.
  4.  前記法線算出部は、前記選択した外部点の各々と、前記円の円周上の最も近い点との間の仮想的な引力を、前記円を底面とする剛体直円錐の頂点に働く力に置換して、前記法線を算出することを特徴とする、請求項1乃至3のいずれか一項に記載の装置。 The normal calculation unit is configured to apply a virtual attractive force between each of the selected external points and the nearest point on the circumference of the circle to a force acting on the apex of a rigid body cone whose bottom surface is the circle. The apparatus according to any one of claims 1 to 3, characterized in that the normal is calculated by replacing.
  5.  前記法線算出部は、法線を算出した後、該算出された法線を初期状態として、再度法線を算出することを特徴とする、請求項1乃至4のいずれか一項に記載の装置。 The normal line calculating unit according to any one of claims 1 to 4, wherein after calculating the normal line, the normal line is calculated again with the calculated normal line as an initial state. apparatus.
  6.  前記算出された法線の正負方向を揃える正負方向統一部をさらに備える、請求項1乃至5のいずれか一項に記載の装置。 The device according to any one of claims 1 to 5, further comprising a positive / negative direction unifying unit that aligns the positive / negative direction of the calculated normal.
  7.  前記算出した法線に基づいて面形状を推定する面形状推定部をさらに備える、請求項1乃至6のいずれか一項に記載の装置。 The apparatus according to any one of claims 1 to 6, further comprising: a surface shape estimation unit configured to estimate a surface shape based on the calculated normal.
  8.  前記面は、医用画像上の膜であることを特徴とする、請求項7に記載の装置。 8. The apparatus of claim 7, wherein the surface is a membrane on a medical image.
  9.  前記面形状推定部により推定された前記面形状に基づいて、前記医用画像を再構成した再構成画像を作成する画像再構成部と、前記再構成画像を出力させる画像出力部と、をさらに備える、請求項8に記載の装置。 An image reconstructing unit that creates a reconstructed image obtained by reconstructing the medical image based on the surface shape estimated by the surface shape estimating unit, and an image output unit that outputs the reconstructed image An apparatus according to claim 8.
  10.  前記画像再構成部は、
     前記面形状推定部により推定された面形状と、各点が膜の内側にあるか膜の終端部にあるかを示す識別情報とに基づいて、前記膜の範囲を切り出した前記再構成画像を作成することを特徴とする、請求項9に記載の装置。
    The image reconstruction unit
    Based on the surface shape estimated by the surface shape estimation unit and identification information indicating whether each point is inside or at the end of the film, the reconstructed image obtained by cutting out the range of the film is obtained. The device according to claim 9, characterized in that it is made.
  11.  前記識別情報は、前記膜の部位に応じた解剖学上のタイプを示すラベルであることを特徴とする、請求項10に記載の装置。 The apparatus according to claim 10, wherein the identification information is a label indicating an anatomical type according to the site of the membrane.
  12.  複数の取得点を取得する点取得部と、
     前記取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、前記円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、前記円の円周上の最も近い点との間で仮想的な引力が働いたときに、前記引力に基づいて前記円の傾きを算出する傾き算出部と、を備えたことを特徴とする装置。
    A point acquisition unit for acquiring a plurality of acquisition points,
    A plurality of points are selected from among the acquisition points, a plurality of external points are selected from among acquisition points other than the center of the circle for each of the circles centered on the selected points, and the selected external points The apparatus further comprises: an inclination calculation unit that calculates an inclination of the circle based on the attraction when a virtual attraction is exerted between each and the closest point on the circumference of the circle. Equipment to be.
  13.  面上の複数の取得点を取得する点取得ステップと、
     前記取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、前記円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、前記円の円周上の最も近い点との間で仮想的な引力が働いたときに、前記引力により前記円が向く方向の法線を、前記面の前記円の中心における法線をとして算出する法線算出ステップと、を備えたことを特徴とする方法。
    A point acquisition step of acquiring a plurality of acquisition points on the surface;
    A plurality of points are selected from among the acquisition points, a plurality of external points are selected from among acquisition points other than the center of the circle for each of the circles centered on the selected points, and the selected external points When virtual attraction is exerted between each and the nearest point on the circumference of the circle, the normal to the direction in which the circle is directed by the attraction is taken as the normal at the center of the circle of the surface Calculating a normal line calculation step as:.
  14.  面上の複数の取得点を取得する点取得ステップと、
     前記取得点の中から複数の点を選択し、選択した点をそれぞれ中心とする円の各々に関し、前記円の中心以外の取得点の中から複数の外部点を選択し、選択した外部点の各々と、前記円の円周上の最も近い点との間で仮想的な引力が働いたときに、前記引力により前記円が向く方向の法線を、前記面の前記円の中心における法線をとして算出する法線算出ステップと、をコンピュータに実行させるためのプログラム。
    A point acquisition step of acquiring a plurality of acquisition points on the surface;
    A plurality of points are selected from among the acquisition points, a plurality of external points are selected from among acquisition points other than the center of the circle for each of the circles centered on the selected points, and the selected external points When virtual attraction is exerted between each and the nearest point on the circumference of the circle, the normal to the direction in which the circle is directed by the attraction is taken as the normal at the center of the circle of the surface A program for making a computer execute a normal line calculation step of calculating as
PCT/JP2018/044648 2017-12-08 2018-12-05 Device for calculating normal vector, method, and program WO2019111920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017236423A JP2021028574A (en) 2017-12-08 2017-12-08 Device, method and program for calculating normal line
JP2017-236423 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019111920A1 true WO2019111920A1 (en) 2019-06-13

Family

ID=66750220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044648 WO2019111920A1 (en) 2017-12-08 2018-12-05 Device for calculating normal vector, method, and program

Country Status (2)

Country Link
JP (1) JP2021028574A (en)
WO (1) WO2019111920A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067461A1 (en) * 2001-09-24 2003-04-10 Fletcher G. Yates Methods, apparatus and computer program products that reconstruct surfaces from data point sets
JP2006331177A (en) * 2005-05-27 2006-12-07 Dainippon Printing Co Ltd Apparatus and method for creating three-dimensional shape data for object provided with pipe on its surface
JP2011209055A (en) * 2010-03-29 2011-10-20 Saki Corp:Kk Inspection device
WO2017043503A1 (en) * 2015-09-11 2017-03-16 国立研究開発法人科学技術振興機構 Structure estimation device, structure estimation method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067461A1 (en) * 2001-09-24 2003-04-10 Fletcher G. Yates Methods, apparatus and computer program products that reconstruct surfaces from data point sets
JP2006331177A (en) * 2005-05-27 2006-12-07 Dainippon Printing Co Ltd Apparatus and method for creating three-dimensional shape data for object provided with pipe on its surface
JP2011209055A (en) * 2010-03-29 2011-10-20 Saki Corp:Kk Inspection device
WO2017043503A1 (en) * 2015-09-11 2017-03-16 国立研究開発法人科学技術振興機構 Structure estimation device, structure estimation method, and program

Also Published As

Publication number Publication date
JP2021028574A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US11547499B2 (en) Dynamic and interactive navigation in a surgical environment
KR101700847B1 (en) Method for Providing Training of Image Guided Surgery and Computer-readable Recording Medium for the same
JP5572470B2 (en) Diagnosis support apparatus, method, and program
AU2013317201A1 (en) Device and method for displaying three-dimensional image, and program
US8149237B2 (en) Information processing apparatus and program
JP7038377B2 (en) Biological model generator, biological model generation method, and biological model generation program
Saito et al. [POSTER] deformation estimation of elastic bodies using multiple silhouette images for endoscopic image augmentation
TW202105406A (en) System and method for recommending parameters for a surgical procedure
WO2022219631A1 (en) Systems and methods for reconstruction of 3d images from ultrasound and camera images
US9092666B2 (en) Method and apparatus for estimating organ deformation model and medical image system
US20130195323A1 (en) System for Generating Object Contours in 3D Medical Image Data
WO2019111920A1 (en) Device for calculating normal vector, method, and program
Kolagunda et al. A mixed reality guidance system for robot assisted laparoscopic radical prostatectomy
CN110689080A (en) Planar atlas construction method of blood vessel structure image
CN116993805A (en) Intraoperative residual organ volume estimation system oriented to operation planning assistance
EP3432310A1 (en) Method and system for a preoperative surgical intervention simulation
JP2015136480A (en) Three-dimensional medical image display control device and operation method for the same, and three-dimensional medical image display control program
US20170018079A1 (en) Image processing device, method, and recording medium having stored therein program
US20200234494A1 (en) Structure estimating apparatus, structure estimating method, and computer program product
JP2019010382A (en) Image positioning apparatus, method, and program
Liu et al. Optimization of reconstruction of 2D medical images based on computer 3D reconstruction technology
CN109147035B (en) Three-dimensional model display method and system
Dangi et al. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data
Bohak et al. Neck veins: an interactive 3D visualization of head veins
EP2725546B1 (en) Display processing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP