WO2019107375A1 - Hydroelectric system and control method - Google Patents

Hydroelectric system and control method Download PDF

Info

Publication number
WO2019107375A1
WO2019107375A1 PCT/JP2018/043646 JP2018043646W WO2019107375A1 WO 2019107375 A1 WO2019107375 A1 WO 2019107375A1 JP 2018043646 W JP2018043646 W JP 2018043646W WO 2019107375 A1 WO2019107375 A1 WO 2019107375A1
Authority
WO
WIPO (PCT)
Prior art keywords
stall
power
generator
rotational speed
value
Prior art date
Application number
PCT/JP2018/043646
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 隆志
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020207018028A priority Critical patent/KR102639063B1/en
Publication of WO2019107375A1 publication Critical patent/WO2019107375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric system and control method having a function of determining a stall state of a hydroelectric generator and returning it to a normal state.
  • a hydroelectric generator is a system that uses kinetic energy of flowing water for power generation.
  • the hydroelectric power generation device mainly includes: a water turbine that receives a flow of water; a generator that is connected to the water turbine and converts the rotation energy into electrical energy; and a controller that controls the output of the generator and the water turbine. Prepare.
  • the controller Since the power extracted from the generator changes with the flow velocity, the controller measures the flow velocity, the rotational speed of the water turbine, or the generated voltage of the generator to determine the optimal power extracted from the generator, and generates the power of the generator. Control to match the power and the optimum value.
  • MPPT control In order to eliminate the prior measurement and the setting operation of the optimum value, there has been proposed a method of controlling hydroelectric power generation by maximum power point tracking control called MPPT control according to hill climbing or the like (for example, Patent Document 1). MPPT control is also used in wind power generation (for example, Patent Document 2).
  • the present invention solves the above-mentioned problems, and an object thereof is to perform appropriate output power control without performing prior measurement, and to reduce or release the load of the generator even in a stall state. It is an object of the present invention to provide a hydroelectric power generation system and control method which makes it possible to return from a stalled state to a normal power generation state, obtain a large amount of generated power, and prevent hunting of power control.
  • the hydroelectric power system comprises a water turbine 1 rotating in water, a generator 3 converting the rotational energy of the water turbine 1 into electrical energy, and adjusting the load power of the generator 3 to adjust the rotational speed of the water turbine 1
  • a hydraulic power generation system comprising a control device 4 for controlling The control device 4 is Power past present value detecting means 16 for detecting the output power past value and the output power present value of the generator 3; Power past present value storage means 17 for storing the detected output power past value and the output power present value; Rotational speed past present value detecting means 18 for detecting the rotational speed past value and rotational speed present value of the generator 3; Rotational speed past current value storage means 19 for storing the detected rotational speed past value and the rotational speed current value; Difference power calculating means 20 for calculating a difference power between the output power past value and the output power present value; Differential rotation number calculation means 21 for calculating a difference rotation number between the output rotation number past value and the output rotation number current value; Stall determination means 22 for determining the
  • the judgment curves a and b are classified according to a and b, and when the differential power decreases with the stall judgment curve a for determining a stall state when the differential power increases and / or the differential rotational speed decreases. And / or a return determination curve b for determining a non-stall state when the differential rotation speed increases, and a stall boundary area C is configured as a hysteresis area between the curves a and b.
  • the control device 4 basically monitors the generated power and the like, and controls the number of rotations of the water turbine 1 by controlling the output power in accordance with a defined control rule.
  • the stall determination unit 22 determines the stall state or the non-stall state of the water turbine 1 from the differential power and the differential rotation speed, and when it is determined that the stall state is present, the load reducing / releasing means 23 The load power of the generator 3 is reduced or released. As described above, when the stall of the water turbine 1 occurs, the load power can be reduced or released, so that the stall state can be returned to the normal power generation state, and a large generated power can be obtained.
  • the rotational speed is a rotational speed per unit time, in other words, a rotational speed.
  • the control device 4 includes an MPPT control means 6 for controlling the maximum power operating point following the output fluctuation of the generator 3, and the stall judging means 22 controls the water wheel every time the maximum power operating point is searched.
  • the stall condition or non-stall condition of 1 may be determined, and the load reducing / releasing means 23 may reduce or release the load of the generator 3 as necessary.
  • MPPT control in which the maximum power operating point is followed and controlled, efficient power generation can be performed even if the preliminary measurement work of the flow velocity and the turbine rotational speed at the site where the turbine 1 is installed is omitted.
  • MPPT control when MPPT control is applied to a hydroelectric power generation system, it can not be restored to the normal state when it is in a stall state where the rotational speed of the water turbine 1 is reduced and the generated power is also reduced. is there.
  • the stall condition is determined, and the load power is reduced or stopped during the stall condition, so that recovery from the stall condition can be performed, and the generated power reduction due to the stall does not occur largely. , MPPT control can be performed efficiently.
  • the control method of the hydroelectric power generation system includes a hydraulically rotating water turbine 1, a generator 3 for converting rotational energy of the water turbine 1 into electric energy, and adjustment of load power of the generator 3 to rotate the water turbine 1
  • a method of controlling a hydroelectric power generation system comprising a controller 4 for controlling the number of A difference power calculation process (S6) for obtaining a difference power between the past value and the current value of the output power of the generator 3;
  • a differential rotation number calculating step (S5) for obtaining a differential rotation number between a past value and a current value of the rotation number of the generator 1;
  • a stall determination step (S6) of determining a stall state or a non-stall state depending on whether or not the relationship between the differential power and the differential rotational speed satisfies a predetermined stall boundary condition;
  • a load reducing / releasing process (S7) for reducing or releasing the load of the generator (3) when it is determined in the stall determination process (S6) that the vehicle is in a stall state
  • the stall boundary condition is determined by determination curves a and b indicating the relationship between the difference power and the difference rotational speed, and a stall determination region A determined to be a stall condition and a non-stall determination region determined to be a non-stall condition B is divided by the determination curves a and b, and the determination curve decreases the difference between the stall determination curve a determined as a stall condition when the difference power increases and / or the difference rotational speed decreases and the difference power decreases And a return determination curve b for determining a non-stall state when the differential rotational speed increases, and a stall boundary area C is formed as a hysteresis area between the curves a and b.
  • the control device 4 includes an MPPT control means 6 for following and controlling the maximum power operating point with respect to the output fluctuation of the generator 3, and the difference power calculation process every time the operating point is searched for by the following control. (S6), the differential rotation speed calculation process (S5), the stall determination process (S7), and the load reduction / release process (S8) may be repeated as necessary.
  • the MPPT control efficient power generation can be performed even if the advance measurement work of the flow velocity and the turbine rotational speed on site is omitted.
  • the control may not be able to return to the normal state when the engine is stalled.
  • the stall condition is determined, and the load power is reduced or stopped in the stall condition, so that the stall condition can be recovered and MPPT control is performed without causing a large reduction in generated power due to stall. Efficient control can be performed.
  • region It is a flowchart which shows the procedure of the control method which the hydraulic power generation system of FIG. 1 performs. It is a schematic explanatory drawing of the other example of the hydraulic power generator used with the hydraulic power generation system of FIG.
  • This hydroelectric power generation system is an example of a horizontal axis (propeller type) hydroelectric generator.
  • the water turbine 1 is rotated by the kinetic energy of the water flowing through the water channel (not shown), and the main shaft 2 of the water turbine 1 rotates the generator 3.
  • the generator 3 is a three-phase synchronous generator using, for example, a permanent magnet, and is connected to the main shaft 2 by a coupling (not shown) or the like.
  • a speed increaser 25 may be provided between the main shaft 2 and the generator 3 as in the example of FIG.
  • a load circuit is connected as a load of the generator 3 via the control device 4.
  • the control device 4 increases or decreases the torque of the generator 3 according to the flow velocity, and controls the water turbine to rotate at an optimal rotation speed.
  • a DC / DC converter, an inverter or the like is used for the control device 4.
  • the load circuit 5 is an electrical device or a load system.
  • FIG. 2 shows a specific example of the control device 4.
  • the control device 4 includes a main circuit unit 6 that supplies the generated power of the generator 3 to the load circuit 5 and a control circuit unit 7 that controls the main circuit unit 6 and further includes a battery 8 that stores the generated power. ing.
  • the main circuit portion 6 includes a rectifier 9, a converter 10, an ammeter 11, a voltmeter 24, and a switching means 12 sequentially interposed between the battery 8 and the generator 3.
  • the rectifier 9 is a device that rectifies the three-phase AC power generated by the generator 3 into a direct current, and is configured by a half bridge circuit of a semiconductor switching element.
  • Converter 10 comprises, for example, a boost chopper.
  • converter 10 may be a buck chopper.
  • the switching means 12 is means for switching whether or not the rectified DC power is supplied to the battery 8 by turning on and off.
  • the switching means 12 may be a semiconductor switching element or a contact switch.
  • the switching means 12 can be switched on and off by a control signal output from the gate circuit 15.
  • the battery 8 and the load circuit 5 are in parallel, and can charge the load circuit 5 while charging the power generated by the generator 3 to the battery 8.
  • the battery 8 and the load circuit 5 are connected in parallel to the output side of the generator 3, so the output voltage becomes substantially constant. Therefore, the output power of the generator 3 can be adjusted by adjusting the duty ratio of the output current of the converter 10 by opening and closing the switching means 12.
  • the control circuit unit 7 is composed of a computer or the like, and in this example, performs basic control by the MPPT control means 13 which is a basic control means, and performs control for the stall of the water wheel 1 by the stall response control means 14.
  • the MPPT control means 13 and the stall correspondence control means 14 both control the switching means 12 under the control of the gate circuit 15 to adjust the output power.
  • the control circuit unit 7 may perform basic control by basic control means that adopts a control method different from the MPPT control means 13.
  • the MPPT control means 13 changes the operating point of the generator 3 so as to always follow the maximum output operating point in control with respect to the fluctuation of the output power of the generator 3, thereby the maximum output from the generator 3 It is a means to control taking out.
  • the maximum output operating point is an operating point at which the output to the load circuit 5 is maximum among the operating points obtained for each sampling by the MPPT control means 13.
  • the power at the operating point is detected from the measurement values of the ammeter 11 and the voltmeter 24.
  • the stall handling control means 14 includes a power past present value detecting means 16, a power past present value storage means 17, a rotational speed past present value detecting means 18, a rotational speed past present value storage means 19, a difference power calculating means 20, a difference rotational speed
  • the calculation unit 21, the stall determination unit 22, and the load reduction / release unit 23 are provided.
  • the stall handling control means 14 repeatedly performs a series of stall determination processing. In this embodiment, whenever the operating point is searched for in the MPPT control, the determination of the stall by the stall determining unit 22 and the processing by the load reducing / opening unit 23 as necessary are performed.
  • the power past present value detecting means 16 detects the output power past value and the output power present value of the generator 3.
  • the output power present value is the output power at the time of sampling for each of the series of stall determinations, that is, in this example, the most recent sampling among sampling performed every time the operating point is searched by the MPPT control.
  • the output power past value is, for example, the output power at the time of sampling one time before the most recent sampling.
  • the output power past value may be an average value of output powers of a plurality of recent samplings.
  • the output power to be sampled is, for example, a value obtained by multiplying the current obtained by the ammeter 11 by the voltage obtained by the voltmeter 24.
  • the current obtained by the ammeter 11 may be multiplied by a constant voltage which is the voltage of the battery 8.
  • a power past present value storage means 16 may be provided with a power meter (not shown) for detection, and is means for storing the detected output power past value and output power present value of the generator 3.
  • the rotational speed past present value detection means 18 is a means for detecting the rotational speed past value and the rotational speed current value of the generator 3 from a rotation detector (not shown) provided in the generator 3.
  • the rotational speed past value and the rotational speed current value may be the rotational speed at the time of the most recent sampling and the previous sampling, as with the output voltage past value and the output voltage current value.
  • the rotational speed past present value storage means 19 is means for storing the detected rotational speed past value and rotational speed current value of the generator 3.
  • the difference power calculation means 20 is a means for calculating the difference power ⁇ P of the output power past value of the generator 3 and the output power present value stored in the power past present value storage means 19.
  • the differential rotational speed computing means 13 is a means for computing the differential rotational speed ⁇ N of the output rotational speed past value of the generator 3 and the output rotational speed present value stored in the rotational speed past present value storage means 19.
  • the stall determination unit 22 is a unit that determines whether or not the vehicle is in a stall condition based on whether or not a stall boundary condition defined by the difference power ⁇ P and the difference rotational speed ⁇ N is satisfied. Specifically, as shown in FIG. 4, a judgment curve a showing the relationship between the difference power ⁇ P and the difference rotation speed ⁇ N, as shown in FIG. It is divided by b. The determination curves a and b are not one determination curve d as in the example of FIG. The stall determination curve a is a curve determined to determine that a stall occurs when the difference power ⁇ P is increased and / or when the differential rotation speed ⁇ N is decreased.
  • the return determination curve b is a curve that is determined to determine non-stall when the difference power ⁇ P decreases and / or when the difference rotation speed ⁇ N increases.
  • a stall boundary region C of the hysteresis region is a region between the two curves a and b.
  • the load reducing / releasing means 23 is means for reducing or releasing the load power of the generator 3 when the stall determining means 22 determines that the vehicle is stalled. Specifically, the load reducing / releasing means 23 reduces the duty of the converter 10 by opening / closing the switching means 12 through the gate circuit 15, or keeps the switching means 12 open to reduce or release the load power. Do.
  • FIG. 5 shows the flow of the stall corresponding control in the hydraulic power generation system of the above configuration.
  • This figure shows the flow of control processing performed by the stall corresponding control means 14 of FIG.
  • the control process of FIG. 6 is repeated each time the MPPT control goes to search for an operating point.
  • the rotational speed past value and rotational speed current value of the generator 3 are detected in the rotational speed detection process (S1), and the output electric power past value and output electric power current value of the generator 3 are detected in the power detection process (S2) I do.
  • the detected rotational speed past value (previous value N0) and rotational speed present value (N1), and output power past value (previous value P0) and output power present value (P1) are respectively the rotational speed storing process ( In the step S3) and the power storage process (S4), the rotational speed past present value storage means 19 and the power past present value storage means 17 are stored. The stored contents are updated every control cycle.
  • the stall determination means 22 determines whether or not the calculated differential rotation speed ⁇ N and the difference power ⁇ satisfy the predetermined stall boundary condition.
  • the control process ends.
  • the load reducing / releasing process (S8), the load reducing / releasing means 23 extends the time for opening the switching means 12 via the gate circuit 15 or keeps the opening open. Reduce or release the load power of machine 3
  • the water turbine 1 When the maximum power point is followed by the MPPT control by the control device 4 in the hydroelectric power generation system, the water turbine 1 may be in a stalled state, which causes a significant decrease in the generated power.
  • the control device 4 by determining the stall condition with the control device 4 and reducing or releasing the load power, it is possible to bring about the normal power generation state. This makes it possible to obtain a large amount of generated power.
  • a stall judgment area A for judging as stall and a non-stall judging area B for judging as non-stall is divided by two judgment curves a and b which show the relation of. That is, when the differential power decreases and / or the differential rotational speed increases, the determination curve determines that the vehicle is in the stall state when the differential power increases and / or the differential rotational speed decreases. And a return determination curve b for determining a non-stall state.
  • a stall boundary area C is formed as a hysteresis area between these curves.
  • the stall determination is performed even if the stall boundary area C is again exceeded the stall determination curve a due to reduction or release of the load power.
  • the return judgment curve b is exceeded to enter the non-stall judgment region B, it is judged that the vehicle is in the non-stall state. Therefore, hunting of the stall determination is prevented and control is stabilized.

Abstract

A hydroelectric system is provided which can perform suitable output power control without prior measurement, and which, even when a stall state has occurred, allows recovery from the stall state to a normal power generating state by reducing or releasing the generator load, and which can generate a large amount of power and can prevent hunting of power control. This hydroelectric system is provided with a water wheel (1), a generator (3), and a control device (4). The control device (4) performs basic control with MPPT control, etc. The control device (4) determines a stall state of the water wheel (1) with a stall determination means (22), and, at the time of a stall state, reduces or releases the load power of the generator (3) by means of a load reducing/releasing means (23). In order to determine stalling, a stalling determination curve (A) which determines a stall state when the differential power has risen and/or the differential rotation speed has decreased, and a recovery determination curve (B) which determines a non-stall state when the differential power has decreased and/or the differential rotation speed has risen, and the area between the curves (a, b) is a stall boundary region (C) which constitutes a hysteresis region.

Description

水力発電システムおよび制御方法HYDRO POWER GENERATION SYSTEM AND CONTROL METHOD 関連出願Related application
 本出願は、2017年11月28日出願の特願2017-227737の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-227737 filed on November 28, 2017, which is incorporated by reference in its entirety.
 この発明は、水力発電装置の失速状態を判定して正常状態に復帰させる機能を備えた水力発電システムおよび制御方法に関する。 The present invention relates to a hydroelectric system and control method having a function of determining a stall state of a hydroelectric generator and returning it to a normal state.
 水力発電装置は、流水が持つ運動エネルギーを発電に利用するシステムである。水力発電装置は、水の流れを受け回転する水車と、水車と連結され回転エネルギーを電気エネルギーに変換する発電機と、発電機の出力および水車を制御する制御装置とを、主な構成要素として備える。 A hydroelectric generator is a system that uses kinetic energy of flowing water for power generation. The hydroelectric power generation device mainly includes: a water turbine that receives a flow of water; a generator that is connected to the water turbine and converts the rotation energy into electrical energy; and a controller that controls the output of the generator and the water turbine. Prepare.
 発電機より取り出す電力は流速により変化するため、前記制御装置は、流速、水車の回転速度、あるいは発電機の発電電圧を計測して、発電機より取り出す最適な電力を決定し、発電機の発電電力と最適値が一致するように制御する。 Since the power extracted from the generator changes with the flow velocity, the controller measures the flow velocity, the rotational speed of the water turbine, or the generated voltage of the generator to determine the optimal power extracted from the generator, and generates the power of the generator. Control to match the power and the optimum value.
 このためには、事前に水路に水力発電機設置して、流速、発電電力、および発電特性を計測して最適値を設定し、制御マップ等によってテーブル特性を作成する必要がある。そのため、水力発電システムの稼働までに、計測作業などのコストアップの要因が生じる。 For this purpose, it is necessary to install a hydroelectric generator in the water channel in advance, measure the flow velocity, the generated power, and the power generation characteristics, set optimum values, and create the table characteristics by a control map or the like. Therefore, cost increase factors such as measurement work occur until the operation of the hydroelectric system.
 事前の計測、および最適値の設定作業を無くすために、山登り方等によるMPPT制御と呼ばれる最大電力点追従制御で水力発電を制御する方法が提案されている(例えば、特許文献1)。MPPT制御は、風力発電でも用いられている(例えば、特許文献2)。 In order to eliminate the prior measurement and the setting operation of the optimum value, there has been proposed a method of controlling hydroelectric power generation by maximum power point tracking control called MPPT control according to hill climbing or the like (for example, Patent Document 1). MPPT control is also used in wind power generation (for example, Patent Document 2).
特開2016-185006号公報JP, 2016-185006, A 特開2010-200533号公報Unexamined-Japanese-Patent No. 2010-200533
 しかし、水車の回転数が低下し発電電力も低下してしまう失速状態に陥ることが有るため、MPPT制御を水力発電制御装置に適用することは困難である。 However, it may be difficult to apply the MPPT control to the hydroelectric power generation control device, since the rotational speed of the water turbine may decrease and the power generation may also decrease.
 前記特許文献2では、風力発電におけるMPPT制御ではあるが、失速に対処する制御が提案されている。すなわち、MPPT制御によって発電機の最適な動作点を探しにいく毎に、出力電圧の時間微分または出力電流の時間微分を算出して、前記動作点における出力電力と算出した出力電力の時間微分との関係が失速境界条件を満たすか否かによって失速を判定する。失速と判定されたときは、発電機の負荷を開放または軽減する。 In the Patent Document 2, although MPPT control in wind power generation, control to cope with a stall is proposed. That is, every time when the optimum operating point of the generator is sought by MPPT control, the time derivative of the output voltage or the time derivative of the output current is calculated, and the output power at the operating point and the time derivative of the calculated output power Stall is determined based on whether or not the relation of (1) satisfies the stall boundary condition. When it is determined that a stall occurs, the load on the generator is released or reduced.
 しかし、発電機の負荷を開放または軽減することで、前記失速境界条件を満たさなくなったときに、負荷を元の値に戻すと、また直ぐに失速境界条件を満たすことになり、電力制限のオンオフの繰り返し状態となるハンチングが生じることがある。 However, when the stall boundary condition is not satisfied by releasing or reducing the generator load, when the load returns to the original value, the stall boundary condition is immediately met, and the power limit is turned on and off. Hunting may occur, which is repeated.
 この発明は、上記課題を解消するものであり、その目的は、事前測定を行うことなく適切な出力電力の制御が行え、かつ失速状態となっても、発電機の負荷を軽減または開放することで失速状態から正常な発電状態に復帰させ、大きな発電電力を得ることが可能となり、かつ電力制御のハンチングを防止することができる水力発電システムおよび制御方法を提供することである。 The present invention solves the above-mentioned problems, and an object thereof is to perform appropriate output power control without performing prior measurement, and to reduce or release the load of the generator even in a stall state. It is an object of the present invention to provide a hydroelectric power generation system and control method which makes it possible to return from a stalled state to a normal power generation state, obtain a large amount of generated power, and prevent hunting of power control.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, for convenience, reference will be made to the reference numerals of the embodiments.
 この発明の水力発電システムは、水力で回転する水車1と、この水車1の回転エネルギーを電気エネルギーに変換する発電機3と、この発電機3の負荷電力を調整して水車1の回転数を制御する制御装置4とを備えた水力発電システムであって、
 前記制御装置4は、
  前記発電機3の出力電力過去値および出力電力現在値を検出する電力過去現在値検出手段16と、
  検出された前記出力電力過去値および前記出力電力現在値を記憶する電力過去現在値記憶手段17と、
  前記発電機3の回転数過去値および回転数現在値を検出する回転数過去現在値検出手段18と、
  検出された前記回転数過去値および前記回転数現在値を記憶する回転数過去現在値記憶手段19と、
  前記出力電力過去値と前記出力電力現在値の差電力を演算する差電力演算手段20と、
  前記出力回転数過去値と前記出力回転数現在値の差回転数を演算する差回転数演算手段21と、
  前記差電力および前記差回転数から、前記水車の失速状態または非失速状態を判定する失速判定手段22と、
  前記失速判定手段22により失速状態と判定されると、前記発電機3の負荷を軽減または開放する負荷軽減・開放手段23とを備え、
 前記失速判定手段22が失速状態と判定する失速判定領域Aと前記失速判定手段22が非失速状態と判定する非失速判定領域Bとが、前記差電力と前記差回転数の関係を示す判定曲線a,bによって区分され、前記判定曲線a,bは、差電力が上昇したときおよび/または差回転数が低下したときに失速状態と判定するための失速判定曲線aと差電力が低下したときおよび/または差回転数が上昇したときに非失速状態と判定するための復帰判定曲線bとを含み、これら曲線a,b間にはヒステリシス領域として失速境界領域Cが構成されている。
The hydroelectric power system according to the present invention comprises a water turbine 1 rotating in water, a generator 3 converting the rotational energy of the water turbine 1 into electrical energy, and adjusting the load power of the generator 3 to adjust the rotational speed of the water turbine 1 A hydraulic power generation system comprising a control device 4 for controlling
The control device 4 is
Power past present value detecting means 16 for detecting the output power past value and the output power present value of the generator 3;
Power past present value storage means 17 for storing the detected output power past value and the output power present value;
Rotational speed past present value detecting means 18 for detecting the rotational speed past value and rotational speed present value of the generator 3;
Rotational speed past current value storage means 19 for storing the detected rotational speed past value and the rotational speed current value;
Difference power calculating means 20 for calculating a difference power between the output power past value and the output power present value;
Differential rotation number calculation means 21 for calculating a difference rotation number between the output rotation number past value and the output rotation number current value;
Stall determination means 22 for determining the stall state or non-stall state of the water turbine from the differential power and the differential rotation speed;
A load reducing / releasing means 23 for reducing or releasing the load of the generator 3 when the stall determining means 22 determines that the vehicle is in a stall state;
A determination curve indicating the relationship between the difference power and the difference rotational speed between a stall determination region A in which the stall determination unit 22 determines that the vehicle is in a stalled state and a non-stall determination region B in which the stall determination unit 22 determines that the vehicle is not in a stalled state. The judgment curves a and b are classified according to a and b, and when the differential power decreases with the stall judgment curve a for determining a stall state when the differential power increases and / or the differential rotational speed decreases. And / or a return determination curve b for determining a non-stall state when the differential rotation speed increases, and a stall boundary area C is configured as a hysteresis area between the curves a and b.
 この構成によると、前記制御装置4は、基本的には発電電力等を監視し、定められた制御規則に従って出力電力を制御することで水車1の回転数を制御する。この間、前記失速判定手段22により、前記前記差電力および前記差回転数から、水車1の失速状態または非失速状態を判定し、失速状態と判定されると、負荷軽減・開放手段23により、前記発電機3の負荷電力を軽減または開放する。このように水車1の失速が生じると、負荷電力を軽減し、または開放するため、失速状態から正常な発電状態に復帰させることができ、大きな発電電力を得ることが可能となる。失速状態の判定は、現在と過去の差電力および差回転数により行うため、適切な判定が行える。また、ヒステリシス領域として失速境界領域Cを設けたため、失速判定による電力制御のハンチングが防止される。前記回転数は単位時間当たりの回転数であり、換言すれば回転速度である。 According to this configuration, the control device 4 basically monitors the generated power and the like, and controls the number of rotations of the water turbine 1 by controlling the output power in accordance with a defined control rule. During this time, the stall determination unit 22 determines the stall state or the non-stall state of the water turbine 1 from the differential power and the differential rotation speed, and when it is determined that the stall state is present, the load reducing / releasing means 23 The load power of the generator 3 is reduced or released. As described above, when the stall of the water turbine 1 occurs, the load power can be reduced or released, so that the stall state can be returned to the normal power generation state, and a large generated power can be obtained. Since the determination of the stall condition is performed based on the difference power and the difference rotational speed between the present and the past, appropriate determination can be performed. Further, since the stall boundary area C is provided as the hysteresis area, hunting of the power control by the stall determination is prevented. The rotational speed is a rotational speed per unit time, in other words, a rotational speed.
 前記制御装置4は、前記発電機3の出力変動対して最大電力動作点を追従制御するMPPT制御手段6を備え、前記最大電力動作点を探しに行く毎に、前記失速判定手段22が前記水車1の失速状態または非失速状態を判定し、必要に応じて前記負荷軽減・開放手段23が前記発電機3の負荷を軽減または開放してもよい。 The control device 4 includes an MPPT control means 6 for controlling the maximum power operating point following the output fluctuation of the generator 3, and the stall judging means 22 controls the water wheel every time the maximum power operating point is searched. The stall condition or non-stall condition of 1 may be determined, and the load reducing / releasing means 23 may reduce or release the load of the generator 3 as necessary.
 最大電力動作点を追従制御するMPPT制御によると、水車1が設置される現地での流速や水車回転数の事前計測作業を省略しても効率の良い発電が行える。しかし、水力発電システムにMPPT制御を適用すると、その制御だけでは、水車1の回転数が低下し、発電電力も低下してしまう失速状態になった場合に正常状態に復帰させることができないことがある。これにつき、この水力発電システムによると、前記失速状態を判定し、失速状態時は負荷電力を低減または停止させるため、失速状態からの復帰が行えて、失速による発電電力低減を大きく生じさせることなく、MPPT制御による効率的な制御が行える。 According to the MPPT control in which the maximum power operating point is followed and controlled, efficient power generation can be performed even if the preliminary measurement work of the flow velocity and the turbine rotational speed at the site where the turbine 1 is installed is omitted. However, when MPPT control is applied to a hydroelectric power generation system, it can not be restored to the normal state when it is in a stall state where the rotational speed of the water turbine 1 is reduced and the generated power is also reduced. is there. According to this hydroelectric power generation system, the stall condition is determined, and the load power is reduced or stopped during the stall condition, so that recovery from the stall condition can be performed, and the generated power reduction due to the stall does not occur largely. , MPPT control can be performed efficiently.
 この発明の水力発電システムの制御方法は、水力で回転する水車1と、この水車1の回転エネルギーを電気エネルギーに変える発電機3と、この発電機3の負荷電力を調整して水車1の回転数を制御する制御装置4とを備えた水力発電システムを制御する方法であって、
 前記発電機3の出力電力の過去値と現在値との差電力を求める差電力演算過程(S6)と、
 前記発電機1の回転数値の過去値と現在値との差回転数を求める差回転数演算過程(S5)と、
 前記差電力と差回転数との関係が、予め定められた失速境界条件を満たすか否かによって失速状態または非失速状態を判定する失速判定過程(S6)と、
 前記失速判定過程(S6)において失速状態であると判定されると、前記発電機(3)の負荷を軽減または開放する負荷軽減・開放過程(S7)とを備え、
 これら過程は、前記制御装置4の制御サイクル毎に繰り返され、
 前記失速境界条件は前記差電力と前記差回転数の関係を示す判定曲線a,bによって定められており、失速状態と判定される失速判定領域Aと非失速状態と判定される非失速判定領域Bとが、前記判定曲線a,bによって区分され、前記判定曲線は、差電力が上昇したときおよび/または差回転数が低下したときに失速状態と判定する失速判定曲線aと差電力が低下したときおよび/または差回転数が上昇したときに非失速状態と判定する復帰判定曲線bとを含み、これら曲線a,b間にはヒステリシス領域として失速境界領域Cが構成されている。
The control method of the hydroelectric power generation system according to the present invention includes a hydraulically rotating water turbine 1, a generator 3 for converting rotational energy of the water turbine 1 into electric energy, and adjustment of load power of the generator 3 to rotate the water turbine 1 A method of controlling a hydroelectric power generation system comprising a controller 4 for controlling the number of
A difference power calculation process (S6) for obtaining a difference power between the past value and the current value of the output power of the generator 3;
A differential rotation number calculating step (S5) for obtaining a differential rotation number between a past value and a current value of the rotation number of the generator 1;
A stall determination step (S6) of determining a stall state or a non-stall state depending on whether or not the relationship between the differential power and the differential rotational speed satisfies a predetermined stall boundary condition;
And a load reducing / releasing process (S7) for reducing or releasing the load of the generator (3) when it is determined in the stall determination process (S6) that the vehicle is in a stall state.
These processes are repeated for each control cycle of the control device 4,
The stall boundary condition is determined by determination curves a and b indicating the relationship between the difference power and the difference rotational speed, and a stall determination region A determined to be a stall condition and a non-stall determination region determined to be a non-stall condition B is divided by the determination curves a and b, and the determination curve decreases the difference between the stall determination curve a determined as a stall condition when the difference power increases and / or the difference rotational speed decreases and the difference power decreases And a return determination curve b for determining a non-stall state when the differential rotational speed increases, and a stall boundary area C is formed as a hysteresis area between the curves a and b.
 この制御方法によると、前記水力発電システムにつき前述したと同様に、失速状態が生じても正常な発電状態に復帰させることができ、大きな発電電力を得ることが可能となる。また、ヒステリシス領域として失速境界領域Cを設けたため、失速判定による電力制御のハンチングが防止される。 According to this control method, as described above for the hydroelectric power generation system, even if a stall state occurs, the normal power generation state can be restored, and it is possible to obtain large generated power. Further, since the stall boundary area C is provided as the hysteresis area, hunting of the power control by the stall determination is prevented.
 前記制御装置4は、前記発電機3の出力変動に対して最大電力動作点を追従制御するMPPT制御手段6を備え、前記追従制御で前記動作点を探しに行く毎に、前記差電力演算過程(S6)、前記差回転数演算過程(S5)、前記失速判定過程(S7)、および必要に応じて前記負荷軽減・開放過程(S8)が繰り返されてもよい。 The control device 4 includes an MPPT control means 6 for following and controlling the maximum power operating point with respect to the output fluctuation of the generator 3, and the difference power calculation process every time the operating point is searched for by the following control. (S6), the differential rotation speed calculation process (S5), the stall determination process (S7), and the load reduction / release process (S8) may be repeated as necessary.
 MPPT制御によると、現地での流速や水車回転数の事前計測作業を省略しても効率の良い発電が行える。しかし、その制御だけでは、失速状態になった場合に正常状態に復帰させることができないことがある。これにつき、この方法によると、前記失速状態を判定し、失速状態では負荷電力を低減または停止させるため、失速状態の復帰が行えて、失速による発電電力低減を大きく生じさせることなく、MPPT制御による効率的な制御が行える。 According to the MPPT control, efficient power generation can be performed even if the advance measurement work of the flow velocity and the turbine rotational speed on site is omitted. However, the control may not be able to return to the normal state when the engine is stalled. In this regard, according to this method, the stall condition is determined, and the load power is reduced or stopped in the stall condition, so that the stall condition can be recovered and MPPT control is performed without causing a large reduction in generated power due to stall. Efficient control can be performed.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る水力発電システムの概略を示す説明図である。 図1の水力発電システムの概念構成を示すブロック図である。 失速判定領域と非失速判定領域の参考例となる失速閾値制御グラフである。 図1の水力発電システムで用いられる失速判定領域、非失速判定領域、および失速境界領域を示す失速閾値制御グラフである。 図1の水力発電システムが実行する制御方法の手順を示す流れ図である。 図1の水力発電システムで用いる水力発電機の他の例の概略説明図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the outline of the hydraulic power generation system which concerns on one Embodiment of this invention. It is a block diagram which shows the conceptual structure of the hydraulic power generation system of FIG. It is a stall threshold value control graph which becomes a reference example of a stall judging field and a non-stall judging field. It is the stall threshold value control graph which shows the stall determination area | region used by the hydraulic power generation system of FIG. 1, a non-stall determination area | region, and a stall boundary area | region. It is a flowchart which shows the procedure of the control method which the hydraulic power generation system of FIG. 1 performs. It is a schematic explanatory drawing of the other example of the hydraulic power generator used with the hydraulic power generation system of FIG.
 この発明の一実施形態を図面と共に説明する。この水力発電システムは、水平軸型(プロペラ型)水力発電機の例である。水路(図示せず)を流れる水の運動エネルギーにより水車1が回転し、水車1の主軸2が発電機3を回転させる。発電機3は、例えば永久磁石を使用した三相同期発電機であり、主軸2にカップリング(図示せず)等で連結されている。主軸2と発電機3の間に、図6の例のように増速機25が設けられていてもよい。 An embodiment of the present invention will be described with reference to the drawings. This hydroelectric power generation system is an example of a horizontal axis (propeller type) hydroelectric generator. The water turbine 1 is rotated by the kinetic energy of the water flowing through the water channel (not shown), and the main shaft 2 of the water turbine 1 rotates the generator 3. The generator 3 is a three-phase synchronous generator using, for example, a permanent magnet, and is connected to the main shaft 2 by a coupling (not shown) or the like. A speed increaser 25 may be provided between the main shaft 2 and the generator 3 as in the example of FIG.
 発電機2に負荷を接続して出力を消費させると、水車1に発電機3からトルクがかかり、水車1の回転が制動される。負荷電力を重くすると水車3の回転速度は遅くなり、負荷電力を軽くすると水車3の回転速度は速くなる。発電機3の負荷として、制御装置4を介して負荷回路が接続される。制御装置4は、流速に応じて発電機3のトルクを増減させ、水車が最適な回転数で回転するように制御している。制御装置4には、DC/DCコンバータやインバータ等が使用される。負荷回路5は電気機器や負荷系統である。 When a load is connected to the generator 2 to consume the output, torque is applied to the water turbine 1 from the generator 3, and the rotation of the water turbine 1 is braked. When the load power is increased, the rotation speed of the water wheel 3 is decreased, and when the load power is decreased, the rotation speed of the water wheel 3 is increased. A load circuit is connected as a load of the generator 3 via the control device 4. The control device 4 increases or decreases the torque of the generator 3 according to the flow velocity, and controls the water turbine to rotate at an optimal rotation speed. A DC / DC converter, an inverter or the like is used for the control device 4. The load circuit 5 is an electrical device or a load system.
 図2は、制御装置4の具体例を示す。制御装置4は、発電機3の発電電力を負荷回路5に供給する主回路部6と、この主回路部6を制御する制御回路部7とを備え、さらに、発電電力を蓄えるバッテリー8を備えている。主回路部6は、バッテリー8と発電機3との間に順に介在した、整流器9、コンバータ10、電流計11、電圧計24、およびスイッチング手段12を有する。 FIG. 2 shows a specific example of the control device 4. The control device 4 includes a main circuit unit 6 that supplies the generated power of the generator 3 to the load circuit 5 and a control circuit unit 7 that controls the main circuit unit 6 and further includes a battery 8 that stores the generated power. ing. The main circuit portion 6 includes a rectifier 9, a converter 10, an ammeter 11, a voltmeter 24, and a switching means 12 sequentially interposed between the battery 8 and the generator 3.
 整流器9は、発電機3の発電した三相交流の電力を直流に整流する機器であり、半導体スイッチング素子のハーフブリッジ回路で構成されている。コンバータ10は、例えば昇圧チョッパからなる。代わりに、コンバータ10は降圧チョッパとしてもよい。スイッチング手段12は、前記整流がなされた直流電力をオンオフしてバッテリー8に供給するか否かを切り換える手段である。スイッチング手段12は、半導体スイッチング素子であっても、有接点スイッチであってもよい。スイッチング手段12は、ゲート回路15が出力する制御信号によってオンオフの切換が可能である。 The rectifier 9 is a device that rectifies the three-phase AC power generated by the generator 3 into a direct current, and is configured by a half bridge circuit of a semiconductor switching element. Converter 10 comprises, for example, a boost chopper. Alternatively, converter 10 may be a buck chopper. The switching means 12 is means for switching whether or not the rectified DC power is supplied to the battery 8 by turning on and off. The switching means 12 may be a semiconductor switching element or a contact switch. The switching means 12 can be switched on and off by a control signal output from the gate circuit 15.
 バッテリー8と負荷回路5とは並列であり、発電機3の発電電力をバーテリー8へ充電しながら、負荷回路5に給電することができる。前記主回路部6は、発電機3の出力側にバッテリー8と負荷回路5とを並列に接続しているため、出力電圧は略一定になる。したがって、スイッチング手段12の開閉でコンバータ10の出力電流のデューティー比を調整することによって、発電機3の出力電力を調整することができる。 The battery 8 and the load circuit 5 are in parallel, and can charge the load circuit 5 while charging the power generated by the generator 3 to the battery 8. In the main circuit unit 6, the battery 8 and the load circuit 5 are connected in parallel to the output side of the generator 3, so the output voltage becomes substantially constant. Therefore, the output power of the generator 3 can be adjusted by adjusting the duty ratio of the output current of the converter 10 by opening and closing the switching means 12.
 制御回路部7は、コンピュータ等からなり、この例では、基本制御手段であるMPPT制御手段13で基本制御を行い、水車1の失速に対する制御を失速対応制御手段14で行う。MPPT制御手段13および失速対応制御手段14は、いずれも、ゲート回路15の制御により前記スイッチング手段12を開閉制御することで、出力電力を調整する。なお、制御回路部7は、MPPT制御手段13とは別の制御方法を採る基本制御手段で基本制御を行うようにしてもよい。 The control circuit unit 7 is composed of a computer or the like, and in this example, performs basic control by the MPPT control means 13 which is a basic control means, and performs control for the stall of the water wheel 1 by the stall response control means 14. The MPPT control means 13 and the stall correspondence control means 14 both control the switching means 12 under the control of the gate circuit 15 to adjust the output power. The control circuit unit 7 may perform basic control by basic control means that adopts a control method different from the MPPT control means 13.
 MPPT制御手段13は、発電機3の出力電力の変動に対して、発電機3の動作点が常に制御上の最大出力動作点を追従するように変化させることで、発電機3から最大の出力を取り出す制御を行う手段である。前記最大出力動作点は、MPPT制御手段13でサンプリング毎に得られる動作点のうち、負荷回路5への出力最大となる動作点である。動作点の電力は、電流計11および電圧計24の測定値から検出される。 The MPPT control means 13 changes the operating point of the generator 3 so as to always follow the maximum output operating point in control with respect to the fluctuation of the output power of the generator 3, thereby the maximum output from the generator 3 It is a means to control taking out. The maximum output operating point is an operating point at which the output to the load circuit 5 is maximum among the operating points obtained for each sampling by the MPPT control means 13. The power at the operating point is detected from the measurement values of the ammeter 11 and the voltmeter 24.
 失速対応制御手段14は、電力過去現在値検出手段16、電力過去現在値記憶手段17、回転数過去現在値検出手段18、回転数過去現在値記憶手段19、差電力演算手段20、差回転数演算手段21、失速判定手段22、および負荷軽減・開放手段23を有する。失速対応制御手段14は、一連の失速判定の処理を繰り返して行う。この実施形態では、MPPT制御で前記動作点を探しに行く毎に、失速判定手段22による失速の判定、および必要に応じて前記負荷軽減・開放手段23による処理を行う。 The stall handling control means 14 includes a power past present value detecting means 16, a power past present value storage means 17, a rotational speed past present value detecting means 18, a rotational speed past present value storage means 19, a difference power calculating means 20, a difference rotational speed The calculation unit 21, the stall determination unit 22, and the load reduction / release unit 23 are provided. The stall handling control means 14 repeatedly performs a series of stall determination processing. In this embodiment, whenever the operating point is searched for in the MPPT control, the determination of the stall by the stall determining unit 22 and the processing by the load reducing / opening unit 23 as necessary are performed.
 電力過去現在値検出手段16は、前記発電機3の出力電力過去値および出力電力現在値を検出する。出力電力現在値は、前記一連の失速判定毎のサンプリング時、つまり、この例では前記MPPT制御で動作点を探しに行く毎にサンプリングを行ったうちの直近のサンプリング時の出力電力である。出力電力過去値は、例えば、直近のサンプリングの1回前のサンプリング時における出力電力である。出力電力過去値は、最近の複数回のサンプリングの出力電力の平均値としてもよい。前記サンプリングされる出力電力は、例えば前記電流計11で得られた電流に、電圧計24で得られた電圧を掛けた値とされる。前記電流計11で得られた電流に、バッテリー8の電圧となる一定の電圧を掛けた値としてもよい。電力計(図示せず)を設けて検出してもよい、電力過去現在値記憶手段16は、検出された前記発電機3の出力電力過去値および出力電力現在値を記憶する手段である。 The power past present value detecting means 16 detects the output power past value and the output power present value of the generator 3. The output power present value is the output power at the time of sampling for each of the series of stall determinations, that is, in this example, the most recent sampling among sampling performed every time the operating point is searched by the MPPT control. The output power past value is, for example, the output power at the time of sampling one time before the most recent sampling. The output power past value may be an average value of output powers of a plurality of recent samplings. The output power to be sampled is, for example, a value obtained by multiplying the current obtained by the ammeter 11 by the voltage obtained by the voltmeter 24. The current obtained by the ammeter 11 may be multiplied by a constant voltage which is the voltage of the battery 8. A power past present value storage means 16 may be provided with a power meter (not shown) for detection, and is means for storing the detected output power past value and output power present value of the generator 3.
 回転数過去現在値検出手段18は、発電機3に備えられた回転検出器(図示せず)から、発電機3の回転数過去値および回転数現在値を検出する手段である。回転数過去値および回転数現在値は、出力電圧過去値、出力電圧現在値と同じく、直近のサンプリングおよびその1回前のサンプリング時における回転数であってもよい。回転数過去現在値記憶手段19は、検出された前記発電機3の回転数過去値および回転数現在値を記憶する手段である。 The rotational speed past present value detection means 18 is a means for detecting the rotational speed past value and the rotational speed current value of the generator 3 from a rotation detector (not shown) provided in the generator 3. The rotational speed past value and the rotational speed current value may be the rotational speed at the time of the most recent sampling and the previous sampling, as with the output voltage past value and the output voltage current value. The rotational speed past present value storage means 19 is means for storing the detected rotational speed past value and rotational speed current value of the generator 3.
 差電力演算手段20は、電力過去現在値記憶手段19に記憶された発電機3の出力電力過去値と出力電力現在値の差電力ΔPを演算する手段である。差回転数演算手段13は、回転数過去現在値記憶手段19に記憶された発電機3の出力回転数過去値と出力回転数現在値の差回転数ΔNを演算する手段である。 The difference power calculation means 20 is a means for calculating the difference power ΔP of the output power past value of the generator 3 and the output power present value stored in the power past present value storage means 19. The differential rotational speed computing means 13 is a means for computing the differential rotational speed ΔN of the output rotational speed past value of the generator 3 and the output rotational speed present value stored in the rotational speed past present value storage means 19.
 失速判定手段22は、前記差電力ΔPおよび差回転数ΔNより定められた失速境界条件を満たすか否かによって、失速状態であるか否かを判定する手段である。具体的には、図4に示すように、失速と判定する失速判定領域Aと非失速と判定する非失速判定領域Bとが、差電力ΔPと差回転数ΔNの関係を示す判定曲線a,bによって区分されている。判定曲線a,bは、図3の例のような1本の判定曲線dではない。失速判定曲線aは、差電力ΔPが上昇したときおよび/または差回転数ΔNが低下したときに失速と判定するために定められた曲線である。復帰判定曲線bは、差電力ΔPが低下したときおよび/または差回転数ΔNが上昇したときに非失速と判定するために定められた曲線である。両曲線a,b間がヒステリシス領域の失速境界領域Cとなる。 The stall determination unit 22 is a unit that determines whether or not the vehicle is in a stall condition based on whether or not a stall boundary condition defined by the difference power ΔP and the difference rotational speed ΔN is satisfied. Specifically, as shown in FIG. 4, a judgment curve a showing the relationship between the difference power ΔP and the difference rotation speed ΔN, as shown in FIG. It is divided by b. The determination curves a and b are not one determination curve d as in the example of FIG. The stall determination curve a is a curve determined to determine that a stall occurs when the difference power ΔP is increased and / or when the differential rotation speed ΔN is decreased. The return determination curve b is a curve that is determined to determine non-stall when the difference power ΔP decreases and / or when the difference rotation speed ΔN increases. A stall boundary region C of the hysteresis region is a region between the two curves a and b.
 負荷軽減・開放手段23は、失速判定手段22によって失速と判定されたときに、発電機3の負荷電力を軽減または開放する手段である。負荷軽減・開放手段23は、具体的には、ゲート回路15を介してスイッチング手段12の開閉によりコンバータ10のデューティーを低減し、またはスイッチング手段12を開き続けることで、負荷電力の軽減または開放を行う。 The load reducing / releasing means 23 is means for reducing or releasing the load power of the generator 3 when the stall determining means 22 determines that the vehicle is stalled. Specifically, the load reducing / releasing means 23 reduces the duty of the converter 10 by opening / closing the switching means 12 through the gate circuit 15, or keeps the switching means 12 open to reduce or release the load power. Do.
 図5を参照して、上記構成の水力発電システムにおける失速対応制御の流れを説明する。同図は、図2の失速対応制御手段14が行う制御処理の流れを示す。同図の制御処理は、MPPT制御で動作点を探しに行く毎に繰り返される。 With reference to FIG. 5, the flow of the stall corresponding control in the hydraulic power generation system of the above configuration will be described. This figure shows the flow of control processing performed by the stall corresponding control means 14 of FIG. The control process of FIG. 6 is repeated each time the MPPT control goes to search for an operating point.
 まず、回転数検出過程(S1)で発電機3の回転数過去値および回転数現在値の検出を行い、電力検出過程(S2)で発電機3の出力電力過去値および出力電力現在値の検出を行う。これらの検出された回転数過去値(前回値N0)および回転数現在値(N1)、ならびに出力電力過去値(前回値P0)および出力電力現在値(P1)は、それぞれ、回転数記憶過程(S3)および電力記憶過程(S4)で、回転数過去現在値記憶手段19および電力過去現在値記憶手段17に記憶される。記憶内容は、制御サイクル毎に更新される。 First, the rotational speed past value and rotational speed current value of the generator 3 are detected in the rotational speed detection process (S1), and the output electric power past value and output electric power current value of the generator 3 are detected in the power detection process (S2) I do. The detected rotational speed past value (previous value N0) and rotational speed present value (N1), and output power past value (previous value P0) and output power present value (P1) are respectively the rotational speed storing process ( In the step S3) and the power storage process (S4), the rotational speed past present value storage means 19 and the power past present value storage means 17 are stored. The stored contents are updated every control cycle.
 記憶された回転数過去値(前回値N0)と回転数現在値(N1)の差回転数ΔNを、差回転数演算過程(S5)が演算する。すなわち、ΔN=N0-N1を演算する。記憶された出力電力過去値(前回値P0)と出力電力現在値(P1)との差電力ΔPを、差電力演算過程(S6)が演算する。すなわち、ΔP=P0-P1を演算する。 A differential rotational speed calculation step (S5) calculates the differential rotational speed ΔN between the stored rotational speed past value (previous value N0) and the rotational speed current value (N1). That is, ΔN = N0−N1 is calculated. A difference power calculation step (S6) calculates the difference power ΔP between the stored output power past value (previous value P0) and the output power present value (P1). That is, ΔP = P0−P1 is calculated.
 失速判定過程(S7)では、演算された差回転数ΔNと差電力Δが、予め定められた失速境界条件を満たすか否かによって失速であるか否かを、失速判定手段22で判定する。 In the stall determination step (S7), the stall determination means 22 determines whether or not the calculated differential rotation speed ΔN and the difference power Δ satisfy the predetermined stall boundary condition.
 失速していないと判定された場合は、制御処理を終了する。失速と判定された場合は、負荷軽減・開放過程(S8)で、負荷軽減・開放手段23によって、ゲート回路15を介してスイッチング手段12を開く時間を長くし、または開き続けさせることで、発電機3の負荷電力を低減しまたは開放する。 If it is determined that the vehicle has not stalled, the control process ends. When it is determined that the engine is stalled, in the load reducing / releasing process (S8), the load reducing / releasing means 23 extends the time for opening the switching means 12 via the gate circuit 15 or keeps the opening open. Reduce or release the load power of machine 3
 水力発電システムで制御装置4によるMPPT制御で最大電力点に追従していると、水車1が失速状態に陥ることが有り、発電電力の大幅な低下を招くこととなる。これに対して、上記のように、失速状態を制御装置4にて判定し、負荷電力を低減または開放することで、正常な発電状態とすることが出来る。これにより、大きな発電電力を得ることが可能となる。 When the maximum power point is followed by the MPPT control by the control device 4 in the hydroelectric power generation system, the water turbine 1 may be in a stalled state, which causes a significant decrease in the generated power. On the other hand, as described above, by determining the stall condition with the control device 4 and reducing or releasing the load power, it is possible to bring about the normal power generation state. This makes it possible to obtain a large amount of generated power.
 上記のように失速状態を判定する場合に、図3のように失速判定領域Aと非失速と判定する非失速判定領域Bとが1本の判定曲線dで区分されていると、失速と判定して負荷電力を低減または開放し、非失速状態となった後、水流の流速等は大きな変化がないため、再び失速し、失速判定のオンオフの繰り返し状態となるハンチングを生じることがある。 When the stall condition is determined as described above, if the stall determination region A and the non-stall determination region B determined to be non-stall are divided by one determination curve d as shown in FIG. Then, after the load power is reduced or released and the non-stall state is reached, there is no significant change in the flow velocity of the water flow and the like.
 これに対して、この実施形態では、前記失速境界条件として、図4のように、失速と判定する失速判定領域Aと非失速と判定する非失速判定領域Bとが、差電力と差回転数の関係を示す2本の判定曲線a,bによって区分されている。すなわち、前記判定曲線は、差電力が上昇したときおよび/または差回転数が低下したときに失速状態と判定する失速判定曲線aと差電力が低下したときおよび/または差回転数が上昇したときに非失速状態と判定する復帰判定曲線bとを含む。これら曲線間にはヒステリシス領域として失速境界領域Cが構成されている。 On the other hand, in this embodiment, as the stall boundary condition, as shown in FIG. 4, a stall judgment area A for judging as stall and a non-stall judging area B for judging as non-stall It is divided by two judgment curves a and b which show the relation of. That is, when the differential power decreases and / or the differential rotational speed increases, the determination curve determines that the vehicle is in the stall state when the differential power increases and / or the differential rotational speed decreases. And a return determination curve b for determining a non-stall state. A stall boundary area C is formed as a hysteresis area between these curves.
 失速判定曲線aで判定するか、復帰判定曲線bで判定するかは、前回の判定(前回の制御サイクル)において、非失速状態と失速状態のいずれであったかをフラグ等を用いて記憶しておき、前回が非失速状態であったときは失速判定曲線aを用いて判定し、前回が失速状態であったときは復帰判定曲線bを用いて判定する。 Whether it is judged by the stall judgment curve a or by the return judgment curve b is stored in the previous judgment (previous control cycle) using a flag etc. If the previous time is a non-stall state, the determination is made using the stall determination curve a, and if the previous time is a stall state, it is determined using the return determination curve b.
 失速判定曲線aを超えて失速判定領域Aに入って一旦失速と判定された場合、前記負荷電力の低減または開放で前記失速判定曲線aを再び超えて失速境界領域Cに入っても、失速判定状態を維持し、復帰判定曲線bを超えて非失速判定領域Bに入ると、非失速状態であると判定する。そのため、失速判定のハンチングが防止され、制御が安定する。 If it is determined that the vehicle has entered the stall determination area A after the stall determination curve a and is once determined to be stalled, the stall determination is performed even if the stall boundary area C is again exceeded the stall determination curve a due to reduction or release of the load power. When the state is maintained and the return judgment curve b is exceeded to enter the non-stall judgment region B, it is judged that the vehicle is in the non-stall state. Therefore, hunting of the stall determination is prevented and control is stabilized.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications or deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
1…水車
3…発電機
4…制御装置
16…電力過去現在値検出手段
17…電力過去現在値記憶手段
18…回転数過去現在値検出手段
19…回転数過去現在値記憶手段
20…差電力演算手段
21…差回転数演算手段
22…失速判定手段
23…負荷軽減・開放手段
DESCRIPTION OF SYMBOLS 1 ... Water wheel 3 ... Generator 4 ... Control apparatus 16 ... Electric power past present value detection means 17 ... Electric power past present value storage means 18 ... Rotation speed past present value detection means 19 ... Rotation speed past present value storage means 20 ... Difference electric power calculation Means 21 ... Differential rotational speed calculation means 22 ... Stall determination means 23 ... Load reduction / release means

Claims (4)

  1.  水力で回転する水車と、
     この水車の回転エネルギーを電気エネルギーに変換する発電機と、
     この発電機の負荷電力を調整して水車の回転数を制御する制御装置とを備えた水力発電システムであって、
     前記制御装置は、
      前記発電機の出力電力過去値および出力電力現在値を検出する電力過去現在値検出手段と、
      検出された前記出力電力過去値および前記出力電力現在値を記憶する電力過去現在値記憶手段と、
      前記発電機の回転数過去値および回転数現在値を検出する回転数過去現在値検出手段と、
      検出された前記回転数過去値および前記回転数現在値を記憶する回転数過去現在値記憶手段と、
      前記出力電力過去値と前記出力電力現在値の差電力を演算する差電力演算手段と、
      前記出力回転数過去値と前記出力回転数現在値の差回転数を演算する差回転数演算手段と、
      前記差電力および前記差回転数から、前記水車の失速状態または非失速状態を判定する失速判定手段と、
      前記失速判定手段により失速状態と判定されると、前記発電機の負荷を軽減または開放する負荷軽減・開放手段とを備え、
     前記失速判定手段が失速状態と判定する失速判定領域と前記失速判定手段が非失速状態と判定する非失速判定領域とが、前記差電力と前記差回転数の関係を示す判定曲線によって区分され、前記判定曲線は、差電力が上昇したときに失速状態と判定するための失速判定曲線と差電力が低下したときに非失速状態と判定するための復帰判定曲線とを含み、これら曲線間にはヒステリシス領域として失速境界領域が構成されている、
     水力発電システム。
    With a hydraulically rotating water turbine,
    A generator that converts the rotational energy of this water turbine into electrical energy,
    And a control device for adjusting the load power of the generator to control the rotational speed of the water turbine,
    The controller is
    Power past present value detecting means for detecting the output power past value and the output power present value of the generator;
    Power past present value storage means for storing the detected output power past value and the output power present value;
    Revolution number past present value detecting means for detecting the revolution number past value and revolution number present value of the generator;
    Rotational speed past current value storage means for storing the detected rotational speed past value and the rotational speed current value;
    Difference power calculating means for calculating a difference power between the output power past value and the output power present value;
    Differential rotation number calculation means for calculating a difference rotation number between the output rotation number past value and the output rotation number current value;
    Stall determination means for determining a stall state or a non-stall state of the water turbine from the differential power and the differential rotational speed;
    A load reducing / releasing means for reducing or releasing the load of the generator when the stall determining means determines that the vehicle is in a stall state;
    A stall determination region in which the stall determination unit determines that the vehicle is in a stall state and a non-stall determination region in which the stall determination unit determines that the vehicle is not in a stall state are divided by a determination curve that indicates the relationship between the differential power and the differential rotation speed. The judgment curve includes a stall judgment curve for judging as a stall state when the difference power rises, and a return judgment curve for judging as a non-stall state when the difference power falls, A stall boundary area is configured as a hysteresis area,
    Hydroelectric system.
  2.  請求項1に記載の水力発電システムにおいて、前記制御装置は、前記発電機の出力変動対して最大電力動作点を追従制御するMPPT制御手段を備え、前記最大電力動作点を探しに行く毎に、前記失速判定手段が前記水車の失速状態または非失速状態を判定し、必要に応じて前記負荷軽減・開放手段が前記発電機の負荷を軽減または開放する水力発電システム。 The hydroelectric power generation system according to claim 1, wherein the control device comprises an MPPT control means for following and controlling the maximum power operating point with respect to the output fluctuation of the generator, each time the maximum power operating point is searched, The hydroelectric power generation system, wherein the stall determination means determines the stall state or non-stall state of the water turbine, and the load reducing / releasing means reduces or releases the load of the generator as necessary.
  3.  水力で回転する水車と、
     この水車の回転エネルギーを電気エネルギーに変える発電機と、
     この発電機の負荷電力を調整して水車の回転数を制御する制御装置とを備えた水力発電システムを制御する方法であって、
     前記発電機の出力電力の過去値と現在値との差電力を求める差電力演算過程と、
     前記発電機の回転数値の過去値と現在値との差回転数を求める差回転数演算過程と、
     前記差電力と差回転数との関係が、予め定められた失速境界条件を満たすか否かによって失速状態または非失速状態を判定する失速判定過程と、
     前記失速判定過程において失速状態であると判定されると、前記発電機の負荷を軽減または開放する負荷軽減・開放過程とを備え、
     これら過程は、前記制御装置の制御サイクル毎に繰り返され、
     前記失速境界条件は前記差電力と前記差回転数の関係を示す判定曲線によって定められており、失速状態と判定される失速判定領域と非失速状態と判定される非失速判定領域とが、前記判定曲線によって区分され、前記判定曲線は、差電力が上昇したときに失速状態と判定する失速判定曲線と差電力が低下したときに非失速状態と判定する復帰判定曲線とを含み、これら曲線間にはヒステリシス領域として失速境界領域が構成されている、
     水力発電システムの制御方法。
    With a hydraulically rotating water turbine,
    A generator that converts the rotational energy of this water turbine into electrical energy,
    And a controller for adjusting the load power of the generator to control the rotational speed of the water turbine.
    A difference power calculation process for obtaining a difference power between a past value and a current value of output power of the generator;
    A differential rotational speed calculation process of obtaining a differential rotational speed between a past value and a current value of the rotational speed value of the generator;
    A stall determination step of determining a stall state or a non-stall state depending on whether or not the relationship between the difference power and the difference rotational speed satisfies a predetermined stall boundary condition;
    And a load reducing / releasing process for reducing or releasing the load of the generator when it is determined in the stall determination process that the vehicle is in a stall state.
    These processes are repeated for each control cycle of the control device,
    The stall boundary condition is determined by a determination curve indicating the relationship between the difference power and the difference rotational speed, and a stall determination area determined to be a stall state and a non-stall determination area determined to be a non-stall state are the The judgment curve is divided by a judgment curve, and the judgment curve includes a stall judgment curve which judges as a stall state when the difference power rises, and a return judgment curve which judges as a non-stalling state when the difference power falls. The stall boundary area is configured as a hysteresis area in
    Control method of hydroelectric power generation system.
  4.  請求項3に記載の水力発電システムの制御方法において、前記制御装置は、前記発電機の出力変動に対して最大電力動作点を追従制御するMPPT制御手段を備え、前記追従制御で前記動作点を探しに行く毎に、前記差電力演算過程、前記差回転数演算過程、前記失速判定過程、および必要に応じて前記負荷軽減・開放過程が繰り返される水力発電システムの制御方法。 4. The control method of a hydroelectric power generation system according to claim 3, wherein said control device comprises an MPPT control means for following and controlling a maximum power operating point with respect to an output fluctuation of said generator, and said operating point is controlled by said tracking control. A control method of a hydroelectric power generation system, in which the difference power calculation process, the difference rotation speed calculation process, the stall determination process, and the load reduction / release process are repeated as needed each time a search is made.
PCT/JP2018/043646 2017-11-28 2018-11-27 Hydroelectric system and control method WO2019107375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207018028A KR102639063B1 (en) 2017-11-28 2018-11-27 Hydroelectric power system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017227737A JP6955978B2 (en) 2017-11-28 2017-11-28 Hydropower system and control method
JP2017-227737 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019107375A1 true WO2019107375A1 (en) 2019-06-06

Family

ID=66664907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043646 WO2019107375A1 (en) 2017-11-28 2018-11-27 Hydroelectric system and control method

Country Status (3)

Country Link
JP (1) JP6955978B2 (en)
KR (1) KR102639063B1 (en)
WO (1) WO2019107375A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062942A (en) * 2000-08-22 2002-02-28 Sanyo Electric Industries Co Ltd Control device for independent power source by wind power generator
JP2003239843A (en) * 2002-02-20 2003-08-27 Toyo Electric Mfg Co Ltd Maximum output control method of generator driven by wind mill
JP2006034038A (en) * 2004-07-20 2006-02-02 Toyo Electric Mfg Co Ltd Generating apparatus for distributed power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483901B2 (en) 2009-02-26 2014-05-07 シンフォニアテクノロジー株式会社 Wind power generation system and stall control method for wind power generation system
WO2011158351A1 (en) * 2010-06-16 2011-12-22 三菱重工業株式会社 Wind power generator control device and control method
JP2016185006A (en) 2015-03-26 2016-10-20 株式会社明電舎 Changeover device of hydraulic power generating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062942A (en) * 2000-08-22 2002-02-28 Sanyo Electric Industries Co Ltd Control device for independent power source by wind power generator
JP2003239843A (en) * 2002-02-20 2003-08-27 Toyo Electric Mfg Co Ltd Maximum output control method of generator driven by wind mill
JP2006034038A (en) * 2004-07-20 2006-02-02 Toyo Electric Mfg Co Ltd Generating apparatus for distributed power supply

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIRASAKA, TAKASHI: "The stall control method for the Small Scale Wind Power Generation System", MASTER'S THESIS, 2008 *

Also Published As

Publication number Publication date
JP6955978B2 (en) 2021-10-27
KR20200092993A (en) 2020-08-04
KR102639063B1 (en) 2024-02-20
JP2019097367A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US10063177B2 (en) Method and apparatus for optimizing efficiency of induction motor in electric vehicle
US9641113B2 (en) System and method for controlling a power generation system based on PLL errors
CN113346822B (en) Motor control method, motor control device, motor system, and storage medium
WO2019117114A1 (en) Hydroelectric system and control method
JP5483901B2 (en) Wind power generation system and stall control method for wind power generation system
WO2019107375A1 (en) Hydroelectric system and control method
KR20110024149A (en) The wind turbine individual blade pitch controlling method and controlling system
CN103107555B (en) Photovoltaic DC-to-AC converter and low voltage ride through control method thereof
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
JP2008005663A (en) Wind-power generator
Padmanabham et al. A new MPPT control algorithm for wind energy conversion system
CN108087209B (en) Detection method for super capacitor module of wind generating set
JP4725841B2 (en) Generator control device and generator system.
JP4299767B2 (en) Water turbine power generation system and inverter
Meiqin et al. Sensorless control of PMSG for a wind power system based on CSC
JP2019193513A (en) Hydraulic power generation system interconnection system
WO2022196517A1 (en) Control device for power generation system
KR102285033B1 (en) Inverter for enabling islanding detection and operation method thereof
JP4595398B2 (en) Generator control device and control method thereof
JP2005176496A (en) Generating device
Krvadivelu An Control MPPT Algorithm for Wind Energy Conversion System
JP2024042342A (en) Control device
JP5861152B2 (en) Power generation control device, power generation control method, and program
CN103684155A (en) Conversion device for wind power generation, and control device and control method for wind power generation
JP2512414Y2 (en) Control device for main shaft drive generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018028

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18882987

Country of ref document: EP

Kind code of ref document: A1