WO2019104454A1 - 药箱流量检测方法、装置和农用无人机 - Google Patents

药箱流量检测方法、装置和农用无人机 Download PDF

Info

Publication number
WO2019104454A1
WO2019104454A1 PCT/CN2017/113246 CN2017113246W WO2019104454A1 WO 2019104454 A1 WO2019104454 A1 WO 2019104454A1 CN 2017113246 W CN2017113246 W CN 2017113246W WO 2019104454 A1 WO2019104454 A1 WO 2019104454A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
medicine box
pressure
pressure sensor
liquid
Prior art date
Application number
PCT/CN2017/113246
Other languages
English (en)
French (fr)
Inventor
潘国秀
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/113246 priority Critical patent/WO2019104454A1/zh
Priority to CN201780027939.9A priority patent/CN109152353B/zh
Publication of WO2019104454A1 publication Critical patent/WO2019104454A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • A01M7/0032Pressure sprayers
    • A01M7/0042Field sprayers, e.g. self-propelled, drawn or tractor-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the embodiment of the invention relates to the technical field of pesticide spraying of a drone, in particular to a method and a device for detecting a flow rate of a medicine box and an agricultural drone.
  • agricultural drones have been put on the market, which can cultivate land, spray pesticides and harvest crops, which brings great benefits to the agricultural sector, such as saving user time, improving work efficiency, increasing operating income and improving the utilization efficiency of agricultural machinery. Wait.
  • the precision of pesticide spraying is very important for precision agriculture.
  • the spraying accuracy of pesticides can be controlled by the change of the flow rate (ie the liquid level in the medicine box containing the pesticide).
  • the detection of traffic is especially important.
  • the prior art can calculate the flow rate by the peristaltic pump, because the volume of the liquid per squeezed by the peristaltic pump is fixed, so the flow rate can be known according to the number of times of extrusion.
  • the pipe of the peristaltic pump is easily deformed after being squeezed many times, and the volume of the liquid per squeeze is reduced after the deformation, so that the calculated flow rate does not match the actual flow rate, resulting in inaccurate flow detection.
  • the embodiment of the invention provides a medicine box flow detecting method and device and an agricultural drone for improving the accuracy of the flow detection.
  • an embodiment of the present invention provides a method for detecting a flow rate of a medicine box, including:
  • the current flow rate of the liquid medicine flowing out of the medicine box is determined according to the current liquid medicine volume, the current time, the volume of the liquid medicine obtained last time, and the time of the last time the medicine liquid volume is obtained.
  • an embodiment of the present invention provides a medicine box flow detecting device, including: a memory and a processor;
  • a memory for storing program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement:
  • the current flow rate of the liquid medicine flowing out of the medicine box is determined according to the current liquid medicine volume, the current time, the volume of the liquid medicine obtained last time, and the time of the last time the medicine liquid volume is obtained.
  • an embodiment of the present invention provides an agricultural drone, comprising: a body, a medicine box, and a medicine box flow detecting device according to the first aspect of the present invention; the medicine box and the medicine box flow The detecting device is connected to the body;
  • the medicine box flow detecting device is configured to detect a flow rate of the medicine liquid flowing out of the medicine box.
  • an embodiment of the present invention provides a chip, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement the medicine box flow detecting method according to the first aspect of the present invention.
  • the present invention provides a storage medium, comprising: a readable storage medium and a computer program, wherein the computer program is used to implement the medicine box flow rate detecting method according to the first aspect of the present invention.
  • the medicine box flow detecting method and device and the agricultural drone provided by the embodiment of the present invention obtain the current liquid level of the current liquid level in the medicine box, and then obtain the current liquid volume corresponding to the current height, and then according to the current liquid volume and current
  • the flow rate in this embodiment is determined according to the current height of the current flow surface, is not affected by the pipeline, and is not affected by the density of the chemical liquid, thereby improving the accuracy of the flow detection and detecting the flow rate in real time.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for detecting a flow rate of a medicine box according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a position between a first pressure sensor, a second pressure sensor, and a medicine box according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing another position between a first pressure sensor, a second pressure sensor, and a medicine box according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a medicine box flow detecting device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a medicine box flow detecting device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a medicine box flow detecting device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a medicine box flow detecting device according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an agricultural drone according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an agricultural drone according to another embodiment of the present invention.
  • Embodiments of the present invention provide a method and apparatus for detecting a flow rate of a medicine box and an agricultural drone.
  • the agricultural drone may be a rotorcraft, for example, a multi-rotor aircraft driven by air by a plurality of pushing devices, and embodiments of the present invention are not limited thereto.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention. This embodiment is described by taking a rotorcraft unmanned aerial vehicle as an example.
  • the unmanned aerial vehicle system 100 can include an unmanned aerial vehicle 110, a pan/tilt head 120, a display device 130, and a control device 140.
  • the unmanned aerial vehicle 110 may include a power system 150, a flight control system 160, and a rack.
  • the UAV 110 can be in wireless communication with the control device 140 and the display device 130.
  • the rack can include a fuselage and a tripod (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the stand is coupled to the fuselage for supporting when the UAV 110 is landing.
  • Power system 150 may include one or more electronic governors (referred to as ESCs) 151, one or more propellers 153, and one or more electric machines 152 corresponding to one or more propellers 153, wherein motor 152 is coupled Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the arm of the unmanned aerial vehicle 110; the electronic governor 151 is configured to receive the driving signal generated by the flight control system 160 and provide driving according to the driving signal. Current is supplied to the motor 152 to control the rotational speed of the motor 152. Motor 152 is used to drive propeller rotation to power the flight of unmanned aerial vehicle 110, which enables unmanned aerial vehicle 110 to achieve one or more degrees of freedom of motion.
  • ESCs electronic governors
  • the UAV 110 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 152 can be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the UAV 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system can be a global positioning system (English: Global Positioning System, referred to as: GPS) or.
  • the flight controller 161 is used to control the flight of the unmanned aerial vehicle 110, for example, the flight of the unmanned aerial vehicle 110 can be controlled based on the attitude information measured by the sensing system 162. It should be understood that the flight controller 161 may control the UAV 110 in accordance with pre-programmed program instructions, or may control the UAV 110 in response to one or more control commands from the control device 140.
  • the pan/tilt 120 can include a motor 122.
  • the pan/tilt is used to carry the imaging device 123.
  • the flight controller 161 can control the motion of the platform 120 via the motor 122.
  • the platform 120 may further include a controller for controlling the motion of the platform 120 by controlling the motor 122.
  • the platform 120 can be independent of the UAV 110 or a portion of the UAV 110.
  • the motor 122 can be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the pan/tilt can be located at the top of the UAV or at the bottom of the UAV.
  • the imaging device 123 may be, for example, a device for capturing an image such as a camera or a video camera, and imaging The device 123 can communicate with the flight controller and take a picture under the control of the flight controller.
  • the imaging device 123 of the present embodiment includes at least a photosensitive element, such as a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • Display device 130 is located at the ground end of unmanned aerial vehicle system 100, can communicate with unmanned aerial vehicle 110 wirelessly, and can be used to display attitude information for unmanned aerial vehicle 110. In addition, an image taken by the imaging device can also be displayed on the display device 130. It should be understood that the display device 130 may be a stand-alone device or may be integrated in the control device 140.
  • the control device 140 is located at the ground end of the unmanned aerial vehicle system 100 and can communicate with the unmanned aerial vehicle 110 in a wireless manner for remote manipulation of the unmanned aerial vehicle 110.
  • FIG. 2 is a flowchart of a method for detecting a flow rate of a medicine box according to an embodiment of the present invention. As shown in FIG. 2, the method of this embodiment may include:
  • the current height of the current liquid level in the medicine box is obtained, and the current height refers to the height difference between the current liquid level and the bottom of the medicine box.
  • the current height may be acquired by a liquid level detector, or obtained by human eye recognition, or obtained by other means (refer to the following).
  • the present embodiment can determine the current liquid medicine volume of the current high corresponding medicine box according to the current height. For example, the larger the current height is, the larger the corresponding current liquid volume is, and the smaller the current height is, the smaller the corresponding current liquid volume is.
  • the present embodiment is based on the current liquid volume, the current time, the last obtained medicine liquid, and the time of the last time the medicine liquid volume was obtained. Determine the current flow of the drug solution in the kit.
  • the volume change of the liquid in the unit time can be confirmed as the current flow rate of the medicine liquid in the medicine box.
  • the medicine box by obtaining the current height of the current liquid level in the medicine box, and then obtaining the current liquid volume corresponding to the current height, according to the current liquid volume, the current time, the volume of the liquid medicine obtained last time, and the last time obtaining the medicine.
  • the volume of the liquid is determined by the flow rate of the liquid medicine in the medicine box.
  • the flow rate in this embodiment is determined according to the current height of the current flow surface, is not affected by the pipeline, and is not affected by the density of the chemical liquid, thereby improving the accuracy of the flow detection and detecting the flow rate in real time.
  • one implementation of S201 includes: S2011 and S2012.
  • S2011 Acquire a current pressure between the current liquid level and the bottom portion by using a first pressure sensor.
  • the current pressure between the current liquid level and the bottom of the medicine box can be obtained in the embodiment, wherein the first pressure sensor is provided in the embodiment, and the first pressure sensor can detect the current liquid level to the medicine box. The pressure between the bottoms is then obtained by the pressure detected by the first pressure sensor. Since the current pressure between the current liquid level and the bottom of the medicine box reflects the height of the current liquid level, the present embodiment determines the current height corresponding to the current pressure based on the current pressure. For example, the greater the current pressure, the higher the current height of the current liquid level; the smaller the current pressure, the smaller the current height of the current liquid level.
  • the first pressure sensor may be located inside the medicine box, and the first pressure sensor is installed at the bottom of the medicine box, so the pressure detected by the first pressure sensor is the pressure of the bottom of the medicine box, that is, between the current liquid level and the bottom pressure.
  • the first pressure sensor may be located outside the medicine box, and the first pressure sensor is in communication with the bottom of the medicine box.
  • the first pressure sensor is in communication with the bottom of the medicine box, so the pressure detected by the first pressure sensor is the pressure of the bottom of the medicine box, that is, the current liquid level to the The pressure between the bottoms.
  • the first pressure sensor may be a contact type pressure sensor, or may be a non-contact differential barometer.
  • one implementation of the above S2012 is to determine the current height according to the relationship between the current pressure and the density of the medical liquid in the medicine box and the gravity acceleration of the current geographical position.
  • the current pressure according to the current pressure, the density of the liquid medicine in the medicine box, the gravity acceleration of the current geographical position, and the current pressure, the density of the liquid medicine in the liquid medicine, the gravity acceleration of the current geographical position, and the current.
  • the density of the liquid medicine in the medicine box and the gravity acceleration of the current geographical location are acquired in real time, or are stored in advance in the memory.
  • one way of obtaining the density of the medical solution in the medicine box and the gravitational acceleration of the current geographic location is: obtaining a pressure difference of different depths of the medical liquid in the medicine box; according to the pressure difference The value is obtained by obtaining the density of the liquid medicine in the medicine box and the gravity acceleration of the current geographical position.
  • ⁇ g - P2 - P1 - / ⁇ h
  • ⁇ g - P2 - P1 - / ⁇ h
  • an implementation manner of the above S2012 is: determining the current height according to a preset correspondence between the current pressure and a liquid level of the liquid medicine in the medicine box.
  • the relationship between the pressure from the liquid surface to the bottom of the chemical solution in the medicine box and the height of the liquid surface is set in advance according to the current pressure and the correspondence between the current pressure and the liquid level height.
  • the liquid level corresponding to the current pressure is determined, and the liquid level corresponding to the current pressure is determined as the current height of the current liquid level.
  • a table corresponding to the pressure between the liquid surface and the bottom portion and the liquid level height is prepared in advance, and the corresponding table may be artificially obtained, and the corresponding table indicates the liquid level corresponding to different pressures, according to the current
  • the pressure finds the preset corresponding table to determine the liquid level corresponding to the current pressure.
  • the pressure difference of different depths of the liquid medicine in the medicine box is also obtained before the execution of the above S201, wherein how to obtain the pressure difference of different depths can be referred to above, and details are not described herein.
  • - P2-P1 - is the difference in pressure obtained at different depths, ⁇ h is known in advance.
  • S201 includes: S2011'.
  • one implementation manner of obtaining pressure difference values of different depths of the liquid medicine in the medicine box in the above embodiments is: acquiring a first pressure detected by the first pressure sensor, and acquiring a second pressure sensor a second pressure detected; then obtaining a difference between the first pressure and the second pressure as the pressure difference, wherein the first pressure sensor and the second pressure sensor respectively detect different Depth of pressure.
  • the first pressure detected by the first pressure sensor may be the current pressure between the current liquid level and the bottom of the medicine box.
  • the second pressure sensor can detect a pressure higher than a depth of the position of the bottom of the medicine box, or can detect a pressure lower than a position depth of the bottom of the medicine box.
  • the second pressure sensor and the first pressure sensor respectively detect pressures at different depths, and thus the second pressure sensor and the first pressure sensor may be located at different depths of the medical fluid.
  • the second pressure sensor may be located inside the medicine box, for example, the second pressure sensor may be located at a position ⁇ h above the first pressure sensor in the medicine box, for example as shown in FIG. 3, wherein the first figure is shown in FIG.
  • the pressure sensor is also located inside the medicine box, but is not limited thereto.
  • the second pressure sensor may be located outside the medicine box, and the second pressure sensor is in communication with the bottom of the medicine box, for example, the second pressure sensor may be located at a position ⁇ h below the first pressure sensor outside the medicine box, for example As shown in FIG. 4, wherein the first pressure sensor is also shown outside the medicine box in FIG. 4, it is not limited thereto.
  • the second pressure sensor may be a contact type pressure sensor, or may be a non-contact differential barometer.
  • the pressures of different depths of the liquid medicine in the medicine box are obtained in each of the above embodiments.
  • One implementation of the force difference is: acquiring a second pressure detected by the second pressure sensor, and a third pressure detected by the third pressure sensor; and then acquiring between the second pressure and the third pressure The difference is the pressure difference, wherein the second pressure sensor and the third pressure sensor respectively detect pressures of different depths.
  • the second pressure sensor and the third pressure sensor respectively detect pressures of different depths, and thus, the second pressure sensor and the third pressure sensor may be located at different depths of the medical liquid.
  • the second pressure sensor may be located inside the medicine box, or the second pressure sensor may be located outside the medicine box, and the second pressure sensor is in communication with the bottom of the medicine box.
  • the third pressure sensor may be located inside the medicine box; or the third pressure sensor is located outside the medicine box, and the third pressure sensor is in communication with the bottom of the medicine box.
  • the position between the second pressure sensor, the third pressure sensor and the medicine box can be referred to the example shown in FIG. 3 or FIG. 4.
  • the second pressure sensor may be a contact type pressure sensor, or may be a non-contact differential barometer.
  • the third pressure sensor may be a contact type pressure sensor or may be a non-contact differential barometer.
  • the diameter of the pipe connecting the medicine box and the spraying system needs to be small enough, wherein the smaller the diameter, the tension of the water can prevent the liquid from vibrating. If the pipeline enters the pipeline and enters the differential pressure gauge along the pipeline, the differential pressure gauge is damaged, and the gas can be prevented from entering the pipeline, which improves the test accuracy.
  • the inner diameter of the pipe can be less than 4mm.
  • the current liquid medicine volume is obtained according to a preset correspondence relationship between the current height and a liquid volume of the medicine box.
  • the liquid level of the liquid medicine has a preset correspondence relationship with the liquid medicine volume. After obtaining the current height, the present embodiment determines the volume of the liquid medicine corresponding to the current height according to the preset correspondence relationship, and The determined volume of the drug solution is taken as the current drug solution volume.
  • the preset correspondence may be a correspondence table between different liquid level heights and different liquid medicine volumes.
  • the table 1 may be pre-acquired by an artificial person.
  • the corresponding current liquid volume can be obtained.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores program instructions, and the program execution may include part or all of the medicine box flow detection method in FIG. 2 and its corresponding embodiments. step.
  • FIG. 5 is a schematic structural diagram of a medicine box flow rate detecting device according to an embodiment of the present invention.
  • the medicine box flow rate detecting device 500 of the present embodiment may include a memory 501 and a processor 502.
  • a memory 501 configured to store program instructions
  • the processor 502 is configured to invoke the program instructions stored in the memory 501 to implement:
  • the current flow rate of the liquid medicine flowing out of the medicine box is determined according to the current liquid medicine volume, the current time, the volume of the liquid medicine obtained last time, and the time of the last time the medicine liquid volume is obtained.
  • the processor 502 is configured to: acquire the current liquid volume according to a preset correspondence between the current height and a liquid volume of the medicine box.
  • the processor 502 may be a central processing unit (CPU), and the processor 502 may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a medicine box flow rate detecting device according to another embodiment of the present invention. As shown in FIG. 6, the medicine box flow rate detecting device 500 of the present embodiment may further include The first pressure sensor 503.
  • the first pressure sensor 503 is configured to detect a current pressure between the current liquid level and the bottom portion
  • the processor 502 is configured to: acquire, by the first pressure sensor 503, a current pressure between the current liquid level and the bottom; and determine the current height according to the current pressure.
  • the first pressure sensor 503 is located inside the medicine box and the first pressure sensor 503 is mounted at the bottom of the medicine box.
  • the first pressure sensor 503 is located outside the medicine box, and the first pressure sensor 503 is in communication with the bottom of the medicine box.
  • the processor 502 is specifically configured to determine the current height according to a relationship between the current pressure and a density of the medical liquid in the medicine box and a gravity acceleration of the current geographical position.
  • the processor 502 also for the density of the medical fluid within the kit and the gravitational acceleration of the current geographic location, is acquired in real time.
  • the processor 502 is specifically configured to: acquire a pressure difference of different depths of the liquid medicine in the medicine box; and acquire the liquid medicine in the medicine box according to the pressure difference value.
  • the memory 501 is further configured to pre-store the density of the medical liquid in the medicine box and the gravity acceleration of the current geographical position;
  • the processor 502 is further configured to acquire, from the memory 501, a density of the medical liquid in the medicine box and a gravity acceleration of the current geographical position.
  • the processor 502 is configured to: determine the current height according to a preset correspondence between the current pressure and a liquid level of the liquid medicine in the medicine box.
  • the processor 502 is further configured to acquire a pressure difference of different depths of the liquid medicine in the medicine box before determining the current height according to the current pressure;
  • the processor 502 is configured to determine the current height according to the pressure difference value and a current pressure between the current liquid level and the bottom portion when acquiring the current height of the current liquid level in the medicine box.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a medicine box flow detecting device according to another embodiment of the present invention.
  • the medicine box flow detecting device 500 of the present embodiment may further include the embodiment shown in FIG. : Second pressure sensor 504.
  • the first pressure sensor 503 and the second pressure sensor 504 are respectively used to detect pressures of different depths
  • the processor 502 is specifically configured to: acquire a first pressure detected by the first pressure sensor 503, and a second pressure detected by the second pressure sensor 504; and acquire the first pressure and the second pressure The difference between the two is the pressure difference.
  • the second pressure sensor 504 and the first pressure sensor 503 are located at different depths of the medical fluid.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a medicine box flow rate detecting device according to another embodiment of the present invention.
  • the medicine box flow rate detecting device 500 of the present embodiment may further include : a second pressure sensor 504 and a third pressure sensor 505;
  • the second pressure sensor 504 and the third pressure sensor 505 are respectively used to detect pressures of different depths
  • the processor 502 is specifically configured to: acquire a second pressure detected by the second pressure sensor 504, and a third pressure detected by the third pressure sensor 505; and acquire the second pressure and the third pressure The difference between the two is the pressure difference.
  • the second pressure sensor 504 and the third pressure sensor 505 are located at different depths of the medical fluid.
  • the second pressure sensor 504 is located inside the medicine box
  • the second pressure sensor 504 is external to the medicine box and the second pressure sensor 504 is in communication with the bottom of the medicine box.
  • the third pressure sensor 505 is located inside the medicine box
  • the third pressure sensor 505 is located outside of the medicine box and the third pressure sensor 505 is in communication with the bottom of the medicine box.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of an agricultural drone according to an embodiment of the present invention.
  • the agricultural drone 1000 of the present embodiment includes a medicine box flow detecting device 500, a body 600, and a medicine box 700.
  • the medicine box 700 is connected to the medicine box flow detecting device 500 and the body 600.
  • the medicine box flow rate detecting device 500 is configured to detect the flow rate of the medicine liquid flowing out of the medicine box 700.
  • the medicine box flow rate detecting device 500 can adopt the structure of the embodiment shown in any of FIG. 5 to FIG. 8 , and correspondingly, the technical solutions of the foregoing method embodiments of the present invention can be executed, and the implementation principle and the technical effect are similar. I won't go into details here.
  • FIG. 10 is a schematic structural diagram of an agricultural drone according to another embodiment of the present invention. As shown in FIG. 10, the agricultural drone 1000 of the present embodiment further includes: a display device 800.
  • the display device 800 is configured to display the flow rate detected by the medicine box flow rate detecting device 500. Therefore, the user can observe the flow rate of the medicine liquid in the medicine box 700 in real time through the display device 800, so as to more accurately control the spraying precision of the medicine liquid.
  • the chemical liquid contained in the above medicine box may also be water.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种药箱流量检测方法,包括步骤S201获取药箱中当前液面的当前高度,步骤S202获取当前高度对应的当前药液体积,步骤S203根据当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定药箱中药液流出的流量。还包括一种药箱流量监测装置,包括存储器(501)和处理器(502),存储器(501)用于存储程序指令,处理器(502)用于调用所述存储器中存储的所述程序指令以实现药箱流量检测方法。还包括一种农用无人机(1000),包括机体(600)、药箱(700)和药箱流量检测装置(500),药箱(700)与药箱流量检测装置(500)与机体(600)连接。流量根据当前液面的当前高度来确定,不受管道和药液密度的影响,因此可以实时、准确的检测流量。

Description

药箱流量检测方法、装置和农用无人机 技术领域
本发明实施例涉及无人机农药喷洒技术领域,尤其涉及一种药箱流量检测方法、装置和农用无人机。
背景技术
目前,农用无人机已面市,其可以耕地、喷洒农药和收割庄稼等,给农业领域带来了极大的好处,例如节省用户时间、提高作业效率、增加作业收益以及提高农业机械的利用效率等。以农用无人机喷洒农药为例,对于精准农业,农药的喷洒精度是非常重要的,其中,农药的喷洒精度可由检测流量(即盛装农药的药箱中的液位)的变化来控制,因此,流量的检测尤为重要。其中,现有技术可以通过蠕动泵来计算流量,因为蠕动泵每次挤压出的液体的体积是固定的,因此可以根据挤压次数得知流量。但是,蠕动泵的管道经多次挤压后,容易发生形变,形变后每次挤压的液体体积会减少,从而导致计算得出的流量与实际流量不相符,造成流量检测不准确。
发明内容
本发明实施例提供一种药箱流量检测方法、装置和农用无人机,用于提高流量检测的准确度。
第一方面,本发明实施例提供一种药箱流量检测方法,包括:
获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差;
根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积;
根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
第二方面,本发明实施例提供一种药箱流量检测装置,包括:存储器和处理器;
存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现:
获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差;
根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积;
根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
第三方面,本发明实施例提供一种农用无人机,包括:机体、药箱和如第一方面本发明实施例所述的药箱流量检测装置;所述药箱与所述药箱流量检测装置和所述机体连接;
其中,所述药箱流量检测装置用于检测所述药箱中药液流出的流量。
第四方面,本发明实施例提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如第一方面本发明实施例所述的药箱流量检测方法。
第五方面,本发明提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现如第一方面本发明实施例所述的药箱流量检测方法。
本发明实施例提供的药箱流量检测方法、装置和农用无人机,通过获取药箱中当前液面的当前高度,然后获取当前高度对应的当前药液体积,再根据当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定药箱中药液流出的流量。本实施例中的流量根据当前流面的当前高度来确定的,不受管道的影响,也不受药液的密度的影响,因此提高了流量检测的准确率,还能实时检测流量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图;
图2为本发明一实施例提供的药箱流量检测方法的流程图;
图3为本发明一实施例提供的第一压力传感器、第二压力传感器、药箱之间的一种位置示意图;
图4为本发明一实施例提供的第一压力传感器、第二压力传感器、药箱之间的另一种位置示意图;
图5为本发明一实施例提供的药箱流量检测装置的结构示意图;
图6为本发明另一实施例提供的药箱流量检测装置的结构示意图;
图7为本发明另一实施例提供的药箱流量检测装置的结构示意图;
图8为本发明另一实施例提供的药箱流量检测装置的结构示意图;
图9为本发明一实施例提供的农用无人机的结构示意图;
图10为本发明另一实施例提供的农用无人机的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供了药箱流量检测方法、装置和农用无人机。农用无人机可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图。本实施例以旋翼无人飞行器为例进行说明。
无人飞行系统100可以包括无人飞行器110、云台120、显示设备130和控制装置140。其中,无人飞行器110可以包括动力系统150、飞行控制系统160和机架。无人飞行器110可以与控制装置140和显示设备130进行无线通信。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人飞行器110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人飞行器110的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人飞行器110的飞行提供动力,该动力使得无人飞行器110能够实现一个或多个自由度的运动。在某些实施例中,无人飞行器110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人飞行器的姿态信息,即无人飞行器110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(英文:Inertial Measurement Unit,简称:IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(英文:Global Positioning System,简称:GPS)或者。飞行控制器161用于控制无人飞行器110的飞行,例如,可以根据传感系统162测量的姿态信息控制无人飞行器110的飞行。应理解,飞行控制器161可以按照预先编好的程序指令对无人飞行器110进行控制,也可以通过响应来自控制装置140的一个或多个控制指令对无人飞行器110进行控制。
云台120可以包括电机122。云台用于携带成像装置123。飞行控制器161可以通过电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于无人飞行器110,也可以为无人飞行器110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人飞行器的顶部,也可以位于无人飞行器的底部。
成像装置123例如可以是照相机或摄像机等用于捕获图像的设备,成像 装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的成像装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,并且可以用于显示无人飞行器110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制装置140中。
控制装置140位于无人飞行系统100的地面端,可以通过无线方式与无人飞行器110进行通信,用于对无人飞行器110进行远程操纵。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
图2为本发明一实施例提供的药箱流量检测方法的流程图,如图2所示,本实施例的方法可以包括:
S201、获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差。
S202、根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积。
S203、根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
本实施例中,获取药箱中当前液面的当前高度,该当前高度是指当前液面到药箱的底部之间的高度差。其中,该当前高度可以通过液位检测器获取,或者,通过人眼识别获取,或者,通过其它方式获取(具体可以参见下述)等。在获取当前高度之后,由于当前高度可以反映出药箱的当前药液体积,因此,本实施例可以根据当前高度,确定该当前高对应的药箱的当前药液体积。例如:当前高度越大,则对应的当前药液体积越大,当前高度越小,则对应的当前药液体积越小。由于药箱的药液体积的变化可以反映出药箱中药液流出的流量,因此,本实施例根据当前药液体积、当前时间、上一次获取的药液体以及上一次获取药液体积的时间,确定该药箱中药液流出的当前流量。
其中,单位时间内药液体积变化量可以确认为药箱中药液流出的当前流量。例如,可以采用如下公式一确定当前流量,公式一:ν=︱V2-V1︱/︱T2-T1︱;其中,ν表示当前流量,V2表示当前药液体积,V1表示上一次获取的药液体积,T2表示当前时间,T1表示上一次获取药液体积的时间。若T2与T1的时间间隔足够小,则可以获得瞬时流量。
本实施例中,通过获取药箱中当前液面的当前高度,然后获取当前高度对应的当前药液体积,再根据当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定药箱中药液流出的流量。本实施例中的流量根据当前流面的当前高度来确定的,不受管道的影响,也不受药液的密度的影响,因此提高了流量检测的准确率,还能实时检测流量。
在一些实施例中,S201的一种实现方式包括:S2011和S2012。
S2011、通过第一压力传感器获取所述当前液面到所述底部之间的当前压力。
S2012、根据所述当前压力,确定所述当前高度。
本实施例中,本实施例中可以获取当前液面到药箱的底部之间的当前压力,其中,本实施例中设有第一压力传感器,第一压力传感器可以检测当前液面到药箱的底部之间的压力,再获取第一压力传感器检测到的压力。由于当前液面到药箱的底部之间的当前压力反映了当前液面的高度,因此,本实施例根据该当前压力,确定该当前压力对应的当前高度。例如:该当前压力越大,当前液面的当前高度越高;该当前压力越小,当前液面的当前高度越小。
其中,第一压力传感器可以位于药箱内部,并且第一压力传感器安装在该药箱的底部,因此第一压力传感器检测的压力为药箱的底部的压力,即当前液面到该底部之间的压力。
其中,第一压力传感器可以位于药箱外部,并且第一压力传感器与药箱的底部相连通。本实施例中,虽然第一压力传感器位于药箱外部,但第一压力传感器与药箱的底部相连通,因此第一压力传感器检测的压力为药箱的底部的压力,即当前液面到该底部之间的压力。
其中,第一压力传感器可以为接触式的压力传感器,或者,可以为非接触式的差分气压计。
在一些实施例中,上述S2012的一种实现方式为:根据所述当前压力与所述药箱内的药液的密度以及当前地理位置的重力加速度的关系,确定所述当前高度。本实施例中,根据所述当前压力、所述药箱内的药液的密度、当前地理位置的重力加速度,以及当前压力、药液内的药液的密度、当前地理位置的重力加速度、当前高度四者之间的对应关系,确定当前高度。
例如:可以根据公式二确定当前高度,其中,公式二:h=P/ρg,P表示当前压力,h表示当前高度,g表示当前地理位置的重力加速度,ρ表示所述药箱内药液的密度。
其中,药箱内的药液的密度以及当前地理位置的重力加速度是实时获取的,或者,是预先存储在存储器中。
在一些实施例中,获取药箱内的药液的密度以及当前地理位置的重力加速度的一种方式为:获取所述药箱内的药液的不同深度的压力差值;根据所述压力差值,获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
本实施例中,获取药箱内的药液的第一深度h1的压力P1以及第二深度h2的压力P2,其中,P1=ρgh1,P2=ρgh2,并且第一深度h1与第二深度h2不同,而且第一深度h1与第二深度h2之间的深度差值也是预先获知的,即△h。另外,根据P1=ρgh1以及P2=ρgh2,可以确定︱P2-P1︱=ρg︱h2-h1︱=ρg△h,由于△h是预先已知的,因此ρg=︱P2-P1︱/△h,本实施例可以将ρg当作一个值来计算,从而可以根据上述方式,获得所述药箱内的药液的密度以及当前地理位置的重力加速度之积,而且这种方式获得的密度和重力加速度之积的准确率更高。
在一些实施例中,上述S2012的一种实现方式为:根据所述当前压力与所述药箱内药液的液面高度的预设对应关系,确定所述当前高度。本实施例中预先设定有药箱内药液的液面到底部之间的压力,与,液面高度之间的对应关系,根据当前压力以及当前压力与液面高度之间的对应关系,确定当前压力对应的液面高度,将该当前压力对应的液面高度确定为当前液面的当前高度。例如:预先制定有液面到底部之间的压力,与,液面高度的对应表格,该对应表格可以是人为获得的,该对应表格中标示出不同的压力所对应的液面高度,根据当前压力查找预设的对应表格,可以确定当前压力对应的液面高度。
在一些实施例中,在执行上述S201之前还获取该药箱内的药液的不同深度的压力差值,其中,如何获取不同深度的压力差可以参见上面所述,此处不再赘述,其中,︱P2-P1︱=ρg︱h2-h1︱=ρg△h。︱P2-P1︱为获取的不同深度的压力差值,△h预先已知。
相应地,S201的另一种实现方式包括:S2011’。
S2011’、根据所述压力差值以及所述当前液面到所述底部之间的当前压力,确定所述当前高度。
本实施例中,当前压力与当前高度之间的关系可以表示为:P=ρgh,因此,h=P/ρg,又因为压力差值︱P2-P1︱=ρg︱h2-h1︱=ρg△h,因此,ρg=︱P2-P1︱/△h,从而可以获得h=P△h/︱P2-P1︱。
在一些实施例中,上述各实施例中获取所述药箱内药液的不同深度的压力差值的一种实现方式为:获取第一压力传感器检测到的第一压力,以及第二压力传感器检测到的第二压力;然后获取所述第一压力与所述第二压力之间的差值为所述压力差值,其中,所述第一压力传感器与所述第二压力传感器分别检测不同深度的压力。
本实施例中,第一压力传感器检测到的第一压力可以为当前液面到药箱的底部之间的当前压力。第二压力传感器可以检测高于药箱的底部的一个位置深度的压力,或者,可以检测低于药箱的底部的一个位置深度的压力。
在一些实施例中,第二压力传感器与第一压力传感器分别检测不同深度的压力,因此,第二压力传感器与第一压力传感器可以位于药液的不同深度处。其中,第二压力传感器可以位于药箱内部,例如:第二压力传感器可以位于药箱内第一压力传感器上方△h的位置处,例如如图3所示,其中,图3中示出第一压力传感器也位于药箱内部,但并不限于此。或者,第二压力传感器可以位于药箱外部,且第二压力传感器与所述药箱的底部相连通,例如:第二压力传感器可以位于药箱外第一压力传感器下方△h的位置处,例如如图4所示,其中,图4中示出第一压力传感器也位于药箱外部,但并不限于此。
其中,第二压力传感器可以为接触式的压力传感器,或者,可以为非接触式的差分气压计。
在一些实施例中,上述各实施例中获取所述药箱内药液的不同深度的压 力差值的一种实现方式为:获取第二压力传感器检测到的第二压力,以及第三压力传感器检测到的第三压力;然后获取所述第二压力与所述第三压力之间的差值为所述压力差值,其中,所述第二压力传感器与所述第三压力传感器分别检测不同深度的压力。
在一些实施例中,第二压力传感器与第三压力传感器分别检测不同深度的压力,因此,第二压力传感器与第三压力传感器可以位于药液的不同深度处。其中,第二压力传感器可以位于药箱内部,或者,第二压力传感器可以位于药箱外部,且第二压力传感器与所述药箱的底部相连通。其中,第三压力传感器可以位于所述药箱内部;或者,所述第三压力传感器位于所述药箱外部,并且所述第三压力传感器与所述药箱的底部相连通。其中,第二压力传感器、第三压力传感器和药箱之间的位置可以参见图3或图4所示的例子。
其中,第二压力传感器可以为接触式的压力传感器,或者,可以为非接触式的差分气压计。第三压力传感器可以为接触式的压力传感器,或者,可以为非接触式的差分气压计。
需要说明的是,若本实施例中使用了非接触式的差分气压计,将药箱与喷洒系统连接的管道的直径需要足够小,其中,直径越小,水的张力可以阻止药液因为震动等原因进入管道,顺着管道进入该差分压力计,导致该差分气压计损坏,也可以保证不会有气体进入管道,提高了测试精度。例如:管道的内径可以小于4mm。
在一些实施例中,上述S203的一种可能的实现方式中,根据所述当前高度与所述药箱的药液体积的预设对应关系,获取所述当前药液体积。
本实施例中,药液的液面高度与药液体积之间具有预设对应关系,本实施例在获取到当前高度之后,根据该预设对应关系,确定当前高度对应的药液体积,并将确定的药液体积作为当前药液体积。
其中,该预设对应关系可以是预设函数,如果药箱为规则的矩形,则液面高度与药液体积之间的预设函数例如为:V=Sh,其中,V表示药液体积,S表示药箱的底面积,h表示液面高度,药箱的底面积是预先已知且是不变的,根据获得的当前液面的当前高度,可以获得对应的当前药液体积。
其中,该预设对应关系可以是不同液面高度与不同药液体积之间的对应表格,例如如表一,该表一可以是人为预先获得的。本实施例中,根据获得 的当前液面的当前高度,通过查找该表格,可以获得对应的当前药液体积。
表一
液面高度 药液体积
h1 V1
h2 V2
h3 V3
h4 V4
本发明实施例中还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图2及其对应实施例中的药箱流量检测方法的部分或全部步骤。
图5为本发明一实施例提供的药箱流量检测装置的结构示意图,如图5所示,本实施例的药箱流量检测装置500可以包括:存储器501和处理器502。
存储器501,用于存储程序指令;
所述处理器502,用于调用所述存储器501中存储的所述程序指令以实现:
获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差;
根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积;
根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
在一些实施例中,所述处理器502,具体用于:根据所述当前高度与所述药箱的药液体积的预设对应关系,获取所述当前药液体积。
上述处理器502可以是中央处理单元(Central Processing Unit,CPU),该处理器502还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本发明另一实施例提供的药箱流量检测装置的结构示意图,如图6所示,本实施例的药箱流量检测装置500在图5所示实施例的基础上,还可以包括第一压力传感器503。
所述第一压力传感器503,用于检测所述当前液面到所述底部之间的当前压力;
所述处理器502,具体用于:通过所述第一压力传感器503获取所述当前液面到所述底部之间的当前压力;根据所述当前压力,确定所述当前高度。
在一些实施例中,所述第一压力传感器503位于所述药箱内部,并且所述第一压力传感器503安装在所述药箱的底部。
或者,所述第一压力传感器503位于所述药箱外部,并且所述第一压力传感器503与所述药箱的底部相连通。
在一些实施例中,所述处理器502,具体用于:根据所述当前压力与所述药箱内的药液的密度以及当前地理位置的重力加速度的关系,确定所述当前高度。
在一些实施例中,所述处理器502,还用于所述药箱内的药液的密度以及当前地理位置的重力加速度是实时获取的。
在一些实施例中,所述处理器502,具体用于:获取所述药箱内的药液的不同深度的压力差值;以及根据所述压力差值,获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
在一些实施例中,存储器501,还用于预先存储所述药箱内的药液的密度以及当前地理位置的重力加速度;
所述处理器502,还用于从所述存储器501中获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
在一些实施例中,所述处理器502,具体用于:根据所述当前压力与所述药箱内药液的液面高度的预设对应关系,确定所述当前高度。
在一些实施例中,所述处理器502,还用于在根据所述当前压力,确定所述当前高度之前,获取所述药箱内的药液的不同深度的压力差值;
所述处理器502在获取药箱中当前液面的当前高度时,具体用于:根据所述压力差值以及所述当前液面到所述底部之间的当前压力,确定所述当前高度。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明另一实施例提供的药箱流量检测装置的结构示意图,如图7所示,本实施例的药箱流量检测装置500在图6所示实施例的基础上,还可以包括:第二压力传感器504。
所述第一压力传感器503与所述第二压力传感器504分别用于检测不同深度的压力;
所述处理器502,具体用于:获取第一压力传感器503检测到的第一压力,以及第二压力传感器504检测到的第二压力;以及获取所述第一压力与所述第二压力之间的差值为所述压力差值。
在一些实施例中,所述第二压力传感器504与所述第一压力传感器503位于所述药液的不同深度处。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明另一实施例提供的药箱流量检测装置的结构示意图,如图8所示,本实施例的药箱流量检测装置500在图6所示实施例的基础上,还可以包括:第二压力传感器504和第三压力传感器505;
所述第二压力传感器504与所述第三压力传感器505分别用于检测不同深度的压力;
所述处理器502,具体用于:获取第二压力传感器504检测到的第二压力,以及第三压力传感器505检测到的第三压力;以及获取所述第二压力与所述第三压力之间的差值为所述压力差值。
在一些实施例中,所述第二压力传感器504与所述第三压力传感器505位于所述药液的不同深度处。
在一些实施例中,所述第二压力传感器504位于所述药箱内部;
或者,所述第二压力传感器504位于所述药箱外部,并且所述第二压力传感器504与所述药箱的底部相连通。
在一些实施例中,所述第三压力传感器505位于所述药箱内部;
或者,所述第三压力传感器505位于所述药箱外部,并且所述第三压力传感器505与所述药箱的底部相连通。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图9为本发明一实施例提供的农用无人机的结构示意图,如图9所示,本实施例的农用无人机1000包括:药箱流量检测装置500、机体600和药箱700。其中,所述药箱700与所述药箱流量检测装置500和所述机体600连接。其中,所述药箱流量检测装置500用于检测所述药箱700中药液流出的流量。所述药箱流量检测装置500可以采用图5-图8任一所示实施例的结构,其对应地,可以执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本发明另一实施例提供的农用无人机的结构示意图,如图10所示,本实施例的农用无人机1000还包括:显示装置800。
所述显示装置800,用于显示所述药箱流量检测装置500检测出的所述流量。因此,用户可以通过显示装置800实时观察到药箱700中药液流出的流量,以便更精确地控制药液的喷洒精度。
需要说明的是,上述药箱中盛装的药液也可以为水。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种药箱流量检测方法,其特征在于,包括:
    获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差;
    根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积;
    根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
  2. 根据权利要求1所述的方法,其特征在于,所述获取药箱中当前液面的当前高度,包括:
    通过第一压力传感器获取所述当前液面到所述底部之间的当前压力;
    根据所述当前压力,确定所述当前高度。
  3. 根据权利要求2所述的方法,其特征在于,所述第一压力传感器位于所述药箱内部,并且所述第一压力传感器安装在所述药箱的底部;
    或者,所述第一压力传感器位于所述药箱外部,并且所述第一压力传感器与所述药箱的底部相连通。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述当前压力,确定所述当前高度包括:
    根据所述当前压力与所述药箱内的药液的密度以及当前地理位置的重力加速度的关系,确定所述当前高度。
  5. 根据权利要求4所述的方法,其特征在于,所述药箱内的药液的密度以及当前地理位置的重力加速度是实时获取的或者预先储存在存储器中。
  6. 根据权利要求2或3所述的方法,其特征在于,所述根据所述当前压力,确定所述当前高度包括:
    根据所述当前压力与所述药箱内药液的液面高度的预设对应关系,确定所述当前高度。
  7. 根据权利要求5所述的方法,其特征在于,获取所述药箱内的药液的密度以及当前地理位置的重力加速度,包括:
    获取所述药箱内的药液的不同深度的压力差值;
    根据所述压力差值,获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
  8. 根据权利要求2所述的方法,其特征在于,所述根据所述当前压力,确定所述当前高度之前,还包括:
    获取所述药箱内的药液的不同深度的压力差值;
    所述获取药箱中当前液面的当前高度,包括:根据所述压力差值以及所述当前液面到所述底部之间的当前压力,确定所述当前高度。
  9. 根据权利要求7或8所述的方法,其特征在于,所述获取所述药箱内药液的不同深度的压力差值,包括:
    获取第一压力传感器检测到的第一压力,以及第二压力传感器检测到的第二压力;
    获取所述第一压力与所述第二压力之间的差值为所述压力差值;
    其中,所述第一压力传感器与所述第二压力传感器分别检测不同深度的压力。
  10. 根据权利要求9所述的方法,其特征在于,所述第二压力传感器与所述第一压力传感器位于所述药液的不同深度处。
  11. 根据权利要求7或8所述的方法,其特征在于,所述获取所述药箱内药液的不同深度的压力差值,包括:
    获取第二压力传感器检测到的第二压力,以及第三压力传感器检测到的第三压力;
    获取所述第二压力与所述第三压力之间的差值为所述压力差值;
    其中,所述第二压力传感器与所述第三压力传感器分别检测不同深度的压力。
  12. 根据权利要求11所述的方法,其特征在于,所述第二压力传感器与所述第三压力传感器位于所述药液的不同深度处。
  13. 根据权利要求9-12任意一项所述的方法,其特征在于,所述第二压力传感器位于所述药箱内部;
    或者,所述第二压力传感器位于所述药箱外部,并且所述第二压力传感器与所述药箱的底部相连通。
  14. 根据权利要求11或12所述的方法,其特征在于,所述第三压力传感器位于所述药箱内部;
    或者,所述第三压力传感器位于所述药箱外部,并且所述第三压力传感 器与所述药箱的底部相连通。
  15. 根据权利要求1-14任意一项所述的方法,其特征在于,所述根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积,包括:
    根据所述当前高度与所述药箱的药液体积的预设对应关系,获取所述当前药液体积。
  16. 一种药箱流量检测装置,其特征在于,包括:存储器和处理器;
    存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器中存储的所述程序指令以实现:
    获取药箱中当前液面的当前高度,其中所述当前高度为所述当前液面到所述药箱的底部之间的高度差;
    根据所述当前高度,获取所述当前高度对应的所述药箱的当前药液体积;
    根据所述当前药液体积、当前时间、上一次获取的药液体积以及上一次获取药液体积的时间,确定所述药箱中药液流出的当前流量。
  17. 根据权利要求16所述的装置,其特征在于,还包括:第一压力传感器;
    所述第一压力传感器,用于检测所述当前液面到所述底部之间的当前压力;
    所述处理器,具体用于:通过所述第一压力传感器获取所述当前液面到所述底部之间的当前压力;根据所述当前压力,确定所述当前高度。
  18. 根据权利要求17所述的装置,其特征在于,所述第一压力传感器位于所述药箱内部,并且所述第一压力传感器安装在所述药箱的底部;
    或者,所述第一压力传感器位于所述药箱外部,并且所述第一压力传感器与所述药箱的底部相连通。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理器,具体用于:根据所述当前压力与所述药箱内的药液的密度以及当前地理位置的重力加速度的关系,确定所述当前高度。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器,还用于所述药箱内的药液的密度以及当前地理位置的重力加速度是实时获取的。
  21. 根据权利要求19所述的装置,其特征在于,所述存储器,还用于预先存储所述药箱内的药液的密度以及当前地理位置的重力加速度;
    所述处理器,还用于从所述存储器中获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
  22. 根据权利要求19-21任意一项所述的装置,其特征在于,所述处理器,具体用于:根据所述当前压力与所述药箱内药液的液面高度的预设对应关系,确定所述当前高度。
  23. 根据权利要求20所述的装置,其特征在于,所述处理器,具体用于:获取所述药箱内的药液的不同深度的压力差值;以及根据所述压力差值,获取所述药箱内的药液的密度以及当前地理位置的重力加速度。
  24. 根据权利要求17所述的装置,其特征在于,所述处理器,还用于在根据所述当前压力,确定所述当前高度之前,获取所述药箱内的药液的不同深度的压力差值;
    所述处理器在获取药箱中当前液面的当前高度时,具体用于:根据所述压力差值以及所述当前液面到所述底部之间的当前压力,确定所述当前高度。
  25. 根据权利要求23或24所述的装置,其特征在于,还包括:第二压力传感器;
    所述第一压力传感器与所述第二压力传感器分别用于检测不同深度的压力;
    所述处理器,具体用于:获取第一压力传感器检测到的第一压力,以及第二压力传感器检测到的第二压力;以及获取所述第一压力与所述第二压力之间的差值为所述压力差值。
  26. 根据权利要求25所述的装置,其特征在于,所述第二压力传感器与所述第一压力传感器位于所述药液的不同深度处。
  27. 根据权利要求25或26所述的装置,其特征在于,还包括:第二压力传感器和第三压力传感器;
    所述第二压力传感器与所述第三压力传感器分别用于检测不同深度的压力;
    所述处理器,具体用于:获取第二压力传感器检测到的第二压力,以及第三压力传感器检测到的第三压力;以及获取所述第二压力与所述第三压力之间的差值为所述压力差值。
  28. 根据权利要求27所述的装置,其特征在于,所述第二压力传感器与 所述第三压力传感器位于所述药液的不同深度处。
  29. 根据权利要求25-28任意一项所述的装置,其特征在于,所述第二压力传感器位于所述药箱内部;
    或者,所述第二压力传感器位于所述药箱外部,并且所述第二压力传感器与所述药箱的底部相连通。
  30. 根据权利要求28或29所述的装置,其特征在于,所述第三压力传感器位于所述药箱内部;
    或者,所述第三压力传感器位于所述药箱外部,并且所述第三压力传感器与所述药箱的底部相连通。
  31. 根据权利要求16-30任意一项所述的装置,其特征在于,所述处理器,具体用于:根据所述当前高度与所述药箱的药液体积的预设对应关系,获取所述当前药液体积。
  32. 一种农用无人机,其特征在于,包括:机体、药箱和如权利要求16-31任意一项所述的药箱流量检测装置;所述药箱与所述药箱流量检测装置和所述机体连接;
    其中,所述药箱流量检测装置用于检测所述药箱中药液流出的流量。
  33. 根据权利要求32所述的农用无人机,其特征在于,还包括:显示装置;
    所述显示装置,用于显示所述药箱流量检测装置检测出的所述流量。
PCT/CN2017/113246 2017-11-28 2017-11-28 药箱流量检测方法、装置和农用无人机 WO2019104454A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/113246 WO2019104454A1 (zh) 2017-11-28 2017-11-28 药箱流量检测方法、装置和农用无人机
CN201780027939.9A CN109152353B (zh) 2017-11-28 2017-11-28 药箱流量检测方法、装置和农用无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113246 WO2019104454A1 (zh) 2017-11-28 2017-11-28 药箱流量检测方法、装置和农用无人机

Publications (1)

Publication Number Publication Date
WO2019104454A1 true WO2019104454A1 (zh) 2019-06-06

Family

ID=64803462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113246 WO2019104454A1 (zh) 2017-11-28 2017-11-28 药箱流量检测方法、装置和农用无人机

Country Status (2)

Country Link
CN (1) CN109152353B (zh)
WO (1) WO2019104454A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411526A (zh) * 2019-08-14 2019-11-05 杭州启飞智能科技有限公司 一种植保无人机累计药量计算方法
CN114532314A (zh) * 2021-12-28 2022-05-27 河北北直通用航空股份有限公司 一种植保喷洒系统中精确流量获取方法
WO2023044905A1 (zh) * 2021-09-27 2023-03-30 深圳市大疆创新科技有限公司 喷洒组件和农业植保器械
CN116602286A (zh) * 2023-07-20 2023-08-18 黑龙江惠达科技股份有限公司 一种植保无人机喷洒作业控制系统和方法
CN116642562A (zh) * 2023-07-27 2023-08-25 黑龙江惠达科技股份有限公司 一种植保无人机药液质量测量系统、方法和无人机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933079B (zh) * 2019-04-16 2021-08-27 瑞安市浙工大创新创业研究院 一种无人机农药喷洒流量监测方法
CN111084169A (zh) * 2019-09-03 2020-05-01 苏州极目机器人科技有限公司 流量检测装置、方法和自动化植保设备
CN110686760A (zh) * 2019-10-22 2020-01-14 深圳市道通智能航空技术有限公司 流量校正方法及装置、无人飞行器
JP2023500779A (ja) * 2019-10-31 2023-01-11 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 補正方法、移動式プラットフォーム、及びコンピュータプログラム
CN115792337B (zh) * 2022-11-23 2023-09-26 深圳市好盈科技股份有限公司 一种无人机喷洒箱无药检测方法与装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315317A (en) * 1979-12-04 1982-02-09 The United States Of America As Represented By The Secretary Of Agriculture Pesticide spray monitoring system for spray vehicles
FR2432164B1 (zh) * 1978-07-24 1982-04-23 Lestradet M C J
CN102322911A (zh) * 2011-06-01 2012-01-18 北京石大东方能源技术有限公司 一种油井采出液连续计量装置
CN104949733A (zh) * 2015-06-15 2015-09-30 华南农业大学 一种农用无人机药箱液位在线监测装置及方法
CN105716684A (zh) * 2016-02-24 2016-06-29 深圳高科新农技术有限公司 无人机液位测量装置及方法
CN206223241U (zh) * 2016-11-18 2017-06-06 深圳市大疆创新科技有限公司 农业植保机及用于该农业植保机的流量计
CN206387466U (zh) * 2017-01-12 2017-08-08 山东瑞达有害生物防控有限公司 一套飞机航化作业药液监测装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557669B (zh) * 2015-12-22 2018-06-05 中国农业大学 一种喷药机侧倾翻预警方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432164B1 (zh) * 1978-07-24 1982-04-23 Lestradet M C J
US4315317A (en) * 1979-12-04 1982-02-09 The United States Of America As Represented By The Secretary Of Agriculture Pesticide spray monitoring system for spray vehicles
CN102322911A (zh) * 2011-06-01 2012-01-18 北京石大东方能源技术有限公司 一种油井采出液连续计量装置
CN104949733A (zh) * 2015-06-15 2015-09-30 华南农业大学 一种农用无人机药箱液位在线监测装置及方法
CN105716684A (zh) * 2016-02-24 2016-06-29 深圳高科新农技术有限公司 无人机液位测量装置及方法
CN206223241U (zh) * 2016-11-18 2017-06-06 深圳市大疆创新科技有限公司 农业植保机及用于该农业植保机的流量计
CN206387466U (zh) * 2017-01-12 2017-08-08 山东瑞达有害生物防控有限公司 一套飞机航化作业药液监测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411526A (zh) * 2019-08-14 2019-11-05 杭州启飞智能科技有限公司 一种植保无人机累计药量计算方法
WO2023044905A1 (zh) * 2021-09-27 2023-03-30 深圳市大疆创新科技有限公司 喷洒组件和农业植保器械
CN114532314A (zh) * 2021-12-28 2022-05-27 河北北直通用航空股份有限公司 一种植保喷洒系统中精确流量获取方法
CN116602286A (zh) * 2023-07-20 2023-08-18 黑龙江惠达科技股份有限公司 一种植保无人机喷洒作业控制系统和方法
CN116602286B (zh) * 2023-07-20 2023-09-29 黑龙江惠达科技股份有限公司 一种植保无人机喷洒作业控制系统和方法
CN116642562A (zh) * 2023-07-27 2023-08-25 黑龙江惠达科技股份有限公司 一种植保无人机药液质量测量系统、方法和无人机
CN116642562B (zh) * 2023-07-27 2023-10-20 黑龙江惠达科技股份有限公司 一种植保无人机药液质量测量系统、方法和无人机

Also Published As

Publication number Publication date
CN109152353A (zh) 2019-01-04
CN109152353B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2019104454A1 (zh) 药箱流量检测方法、装置和农用无人机
US10266265B2 (en) Spraying system having a liquid flow and rotating speed feedback
US10228245B2 (en) Altitude estimator for a drone
US20180147998A1 (en) Aerial Photogrammetric Device And Aerial Photogrammetric Method
KR20200031165A (ko) 내비게이션 차트 구성 방법, 장애물 회피 방법 및 장치, 단말기, 무인 항공기
US11798172B2 (en) Maximum temperature point tracking method, device and unmanned aerial vehicle
US20200290739A1 (en) Method and device for measuring spray area
WO2021232407A1 (zh) 一种喷洒控制方法及装置
US20220155800A1 (en) Method and apparatus for yaw fusion and aircraft
WO2020237471A1 (zh) 飞行航线生成方法、终端和无人机
US11669109B2 (en) Method and apparatus for yaw fusion and aircraft
US11231725B2 (en) Control system for a flying object, control device therefor, and marker thereof
WO2018214005A1 (zh) 农业无人飞行器的控制方法、飞行控制器及农业无人机
US20220238029A1 (en) Unmanned aerial vehicle return method and apparatus and unmanned aerial vehicle
US9896205B1 (en) Unmanned aerial vehicle with parallax disparity detection offset from horizontal
WO2019084709A1 (zh) 控制云台的方法、云台、控制系统和可移动设备
CN110377058B (zh) 一种飞行器的偏航角修正方法、装置及飞行器
US20210229810A1 (en) Information processing device, flight control method, and flight control system
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
CN108450032B (zh) 飞行控制方法和装置
CN110799985A (zh) 基于地图识别目标对象的方法与控制终端
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
CN110770539A (zh) 磁传感器校准方法、控制终端以及可移动平台
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
WO2019189381A1 (ja) 移動体、制御装置、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933353

Country of ref document: EP

Kind code of ref document: A1