WO2019100859A1 - 数据传输方法及装置、计算机存储介质 - Google Patents

数据传输方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2019100859A1
WO2019100859A1 PCT/CN2018/109895 CN2018109895W WO2019100859A1 WO 2019100859 A1 WO2019100859 A1 WO 2019100859A1 CN 2018109895 W CN2018109895 W CN 2018109895W WO 2019100859 A1 WO2019100859 A1 WO 2019100859A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
dmrs port
subset
qcl
ports
Prior art date
Application number
PCT/CN2018/109895
Other languages
English (en)
French (fr)
Inventor
苏昕
陈润华
高秋彬
拉盖施
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP18882179.7A priority Critical patent/EP3716708A4/en
Priority to KR1020207018236A priority patent/KR20200088455A/ko
Priority to JP2020528299A priority patent/JP2021505022A/ja
Priority to US16/766,700 priority patent/US11528120B2/en
Publication of WO2019100859A1 publication Critical patent/WO2019100859A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus, and a computer storage medium.
  • the data demodulation process requires channel estimation based on a Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the DMRS in the NR system will be transmitted in the same precoding manner as the corresponding data layer.
  • the embodiment of the present application provides a data transmission method and device, and a computer storage medium, which are configured to map a data layer to a DMRS port used for transmission according to a preset DMRS port sorting rule.
  • a data sending method provided by the embodiment of the present application includes:
  • the data layer is mapped to the DMRS port used for transmission and sent to the terminal.
  • the data layer is mapped to the DMRS port used for the transmission to be sent to the terminal according to the preset DMRS port sorting rule, and specifically includes:
  • each data layer is arranged according to the number as the following transmission signal vector:
  • v data layers are mapped to v DMRS ports according to the following formula and sent to the terminal:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the method further includes:
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the DMRS is configured by a RRC (Radio Resource Control) configuration, or a Media Access Control (MAC) control unit (Control Element) or Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • DCI Downlink Control Information
  • a data receiving method provided by the embodiment of the present application includes:
  • the data layer transmitted on the DMRS port of the demodulation reference signal is received.
  • receiving, according to the preset DMRS port sorting rule, the data layer that is sent to the DMRS port of the demodulation reference signal specifically includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • the data layer sent on the DMRS port used for transmission is received according to the following formula:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the method further includes:
  • the quasi-co-located QCL group information of the DMRS port notified by the network side is received.
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • receiving the notification in a broadcast, multicast, or terminal-specific manner and acquiring the RRC configuration, or the medium access control MAC control unit CE, or the downlink control information DCI in the notification QCL group information of the DMRS port.
  • a data sending apparatus includes: a memory and a processor, wherein the memory is used to store program instructions, and the processor is configured to invoke program instructions stored in the memory, according to Obtained program execution:
  • the data layer is mapped to the DMRS port used for transmission and sent to the terminal.
  • the processor sends the data layer to the DMRS port used for the transmission to be sent to the terminal according to the DMRS port sorting rule, which includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • v data layers are mapped to v DMRS ports according to the following formula and sent to the terminal:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the processor is further configured to:
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the processor controls the RRC configuration, or the medium access control MAC control unit CE, or the downlink control information DCI, by using a radio resource control RRC configuration, or a QCL group information of the DMRS port in a broadcast, multicast, or terminal exclusive manner. And notifying the terminal of the QCL group information of the DMRS port.
  • a data receiving apparatus includes: a memory and a processor, wherein the memory is used to store program instructions, and the processor is configured to invoke program instructions stored in the memory, according to Obtained program execution:
  • the data layer transmitted on the DMRS port of the demodulation reference signal is received.
  • receiving, according to the preset DMRS port sorting rule, the data layer that is sent to the DMRS port of the demodulation reference signal specifically includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • the data layer sent on the DMRS port used for transmission is received according to the following formula:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the processor is further configured to: receive quasi-co-located QCL group information of the DMRS port notified by the network side.
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the processor performs the sorting between the subsets of the DMRS ports in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the processor receives the notification in a broadcast, multicast, or terminal-specific manner, from the radio resource control RRC configuration in the notification, or the media access control MAC control unit CE, or the downlink control information DCI Obtaining QCL group information of the DMRS port.
  • Another data sending apparatus provided in this embodiment of the present application includes:
  • a determining unit configured to determine a preset DMRS port ordering rule of the demodulation reference signal
  • a sending unit configured to map the data layer to the DMRS port used for transmission to the terminal according to the preset DMRS port sorting rule.
  • another data receiving apparatus provided in this embodiment of the present application includes:
  • a determining unit configured to determine a preset DMRS port ordering rule
  • a receiving unit configured to receive, according to the preset DMRS port ordering rule, a data layer that is sent to be sent on a DMRS port of the demodulation reference signal.
  • Another embodiment of the present application provides a computer storage medium storing computer executable instructions for causing the computer to perform any of the methods described above.
  • FIG. 1 is a schematic diagram of a first DMRS according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second DMRS according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third DMRS according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth DMRS according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a data sending method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of a data receiving method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a data sending apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data receiving apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another data sending apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another data receiving apparatus according to an embodiment of the present application.
  • the embodiment of the present application provides a data transmission method and device, and a computer storage medium, which are configured to map a data layer to a DMRS port used for transmission according to a preset DMRS port sorting rule.
  • the DMRS front-load DMRS configuration includes the following:
  • the number of DMRS symbols is 1: Combine (comb) 2+ cyclic shifts (CS) 2, and support up to 4 ports.
  • comb2 is frequency domain multiplexing.
  • CS2 uses cyclic shifts for multiplexing between ports.
  • the relationship between ports 0 and 1 is the multiplexing relationship of CS2.
  • the number of DMRS symbols is 2: Comb2+CS2+TD-OCC ( ⁇ 1,1 ⁇ and ⁇ 1,-1 ⁇ ) is used, and the maximum support is 8 ports.
  • TD-OCC ( ⁇ 1, 1 ⁇ and ⁇ 1, -1 ⁇ ) indicates that time domain orthogonal cover code (TD-OCC) multiplexing is used between two ports, ⁇ 1, 1 ⁇ and ⁇ 1,- 1 ⁇ are the multiplexing coefficients of the two ports, respectively.
  • the TD-OCC is an Orthogonal Cover Code (OCC) multiplexing, such as time domain OCC multiplexing between ports 0/1 and 4/5.
  • OCC Orthogonal Cover Code
  • port 0 and port 1 are CS2 multiplexed
  • port 4 and port 5 are CS2 multiplexed
  • port 0/1 and port 4/5 are time domain OCC multiplexed.
  • the number of DMRS symbols is 1: 2-FD-OCC (Resource Element (Resource Element, RE)) is used, and the maximum support is 6 ports.
  • 2-FD-OCC that is, frequency domain OCC multiplexing.
  • FDM frequency-division multiplexing
  • the number of DMRS symbols is 2: 2-FD-OCC (adjacent frequency domain RE) + TD-OCC ( ⁇ 1, 1 ⁇ and ⁇ 1, -1 ⁇ ) is used, and the maximum support is 12 ports.
  • TD-OCC is time domain OCC multiplexing, such as time domain OCC multiplexing between ports 0/1 and 6/7.
  • the first two columns indicate the control symbol domain, that is, the symbol position occupied by the downlink control channel, and the last two columns may be the symbol positions occupied by the uplink control channel, that is, cannot be used for physical downlink.
  • PDSCH Physical Downlink Shared Channel
  • TRPs transmission/receiving points
  • signals transmitted by different TRP/panel may have relatively independent large-scale features such as average delay, delay spread, average Doppler shift, Doppler spread, and spatial reception parameters. Therefore, in NR, the case where two or more reference signal channel large-scale parameters are consistent is called Quasi-colocation (QCL). On the contrary, it is called non-QCL.
  • QCL Quasi-colocation
  • the large-scale parameters for example, average delay, delay spread, Doppler shift, Doppler spread, spatial receive parameters, average received power, and the like.
  • the terminal cannot judge that the received reference signal ports are from stations or antenna sub-arrays of the same or different physical locations, if the average delay, delay spread, Doppler bias of the two reference signal ports
  • the parameters (or subsets thereof) such as shift, Doppler spread, spatial receive parameters, and average received power are the same, and it can be considered that the two reference signals are quasi-co-located in the sense of the above-mentioned large-scale parameters.
  • the concept of QCL group is defined in the NR system, that is, the QCL group of the DMRS port (which can be referred to as the QCL group): each DMRS port QCL in the QCL group, and the DMRS ports belonging to different QCL groups are not QCL. . It is specified in the NR system that the DMRS ports in the same Code Division Multiplexing (CDM) group have a QCL relationship. That is, in a CDM group, each reference signal port occupies the same time-frequency resource, and is distinguished by orthogonal codewords.
  • CDM Code Division Multiplexing
  • the DMRS design features a DMRS symbol
  • port 0/1 is the CDM relationship
  • port 2/3 is the CDM relationship
  • port 0/1 and port 2/3 are the FDM relationship.
  • adjacent and identical filling blocks form a CDM group.
  • Each data channel can support two QCL groups.
  • the data channel is, for example, a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the QCL group of the DMRS port described in this embodiment may be referred to as a QCL group or a DMRS group.
  • the DMRS port described in this embodiment may be simply referred to as a port, and may also be referred to as an antenna port.
  • Step 1 The network side indicates the QCL group information of the DMRS port (for indicating the QCL packet status of the DMRS port) by using the control signaling, where the content of the QCL group information of the DMRS port is optionally as follows: 1, 1-2 or 1-3 content.
  • the CDM group in the DMRS pattern is recorded as: CDM group 1, CDM group 2, ..., CDM group N.
  • the DMRS configuration type 1 has a maximum of two CDM groups
  • the DMRS configuration type 2 has a maximum of three CDM groups.
  • Mode 1-1 (for example, notified by DCI or MAC CE):
  • the control signal is respectively notified to the DMRS pattern, and the reference signal corresponding to each of the CDM groups having the QCL relationship (ie, the QCL reference source of each DMRS port in the CDM group n), for example, the reference signal of the CDM group n having the QCL relationship is Ref_n, the corresponding identifier is ID_n, that is, only the ID_n is notified, and the terminal can determine that the reference signal of the CDM group n having the QCL relationship is Ref_n according to the ID_n, and perform QCL grouping according to the QCL reference source, that is, the CDM group having the same ID_n, including
  • the DMRS ports constitute the same QCL group, and the ID_n corresponding to the DMRS ports of different QCL groups is different, and the ID_n corresponding to the DMRS ports of the same QCL group is the same.
  • the set of DMRS ports included is a QCL group of a DMRS port. It should be noted that one of the groups refers to a group that is not a DMRS port, that is, one.
  • Mode 1-2 Directly indicating the CDM group included in the QCL group i through control signaling.
  • control signaling may indicate that QCL Group 1 contains CDM Groups 1 and 2, and QCL Group 2 contains CDM Group 3.
  • Mode 1-3 Directly indicating the list of DMRS ports included in the QCL group i through control signaling. For example, for DMRS configuration type 2, if the number of data layers is 8, the control signaling may indicate that QCL group 1 includes DMRS ports 0, 1, 6, and 7, and QCL group 2 includes DMRS ports 2, 3, 8, and 9.
  • the control information for indicating the QCL packet condition of the DMRS port may be configured by Radio Resource Control (RRC) or media access control (Media Access Control). , MAC) Control Element (CE), or Downlink Control Information (DCI), is notified to the terminal in a broadcast, multicast, or terminal-specific manner (terminal-specific).
  • RRC Radio Resource Control
  • Media Access Control Media Access Control
  • CE Media Access Control
  • DCI Downlink Control Information
  • the terminal may further combine the pre-set DMRS port sorting rules according to the QCL group information of the DMRS port notified by the network side (the specific rules may be determined according to actual needs, and some examples are given in the following embodiments) Description, but not limited to these rules), determine the ordering of the DMRS ports occupied by the terminal.
  • Step 2 According to the number of parallel transmission data layers of multiple input and multiple MIMO, that is, the number of ranks v, each transmission data layer (each data layer is one data stream) is arranged as a transmission signal vector according to the number:
  • X is a column vector with v elements, and the superscript 0...v-1 is the number of its element, that is, the number of each data layer. Indicates that each data layer needs to be transmitted The ith of the modulation symbols.
  • the signal vector formed by v DMRS ports is denoted as Y, wherein the ports included in the set ⁇ P 0 , . . . , P v-1 ⁇ are indicated by DCI, and the ordering manner thereof is determined by step 3.
  • Y is a column vector with v elements
  • superscript P 0 ,..., P v- 1 is the label of the element in y
  • superscript P 0 ,..., P v-1 is the number of v DMRS ports
  • Step 3 According to a preset DMRS port sorting rule, the data layer is mapped to the DMRS port used for transmission for transmission.
  • the options are as follows: 3-1, 3-2, 3-3, 3-4, 3-5:
  • v data layers (also referred to as data data layers, each data layer data, that is, each data layer, and the number of data data layers v transmitted in parallel, that is, the number of data layers v transmitted simultaneously) are mapped to v.
  • DMRS port On the DMRS port:
  • the terminals in the DCI are assigned DMRS ports 0, 1, 6, and 7 and ports 2, 3, 8, and 9, respectively, and the data layers 0, 1, respectively. 2, 3, 4, 5, 6, 7, and 8 are mapped to the DMRS ports 0, 1, 2, 3, 6, 7, 8, and 9 used for transmission.
  • Sorting in a port group that is, sorting the number of the DMRS port in each subset of the DMRS port, and obtaining the sorting result in the subset of the DMRS port number corresponding to each DMRS port subset, specifically: according to step one
  • the QCL group information of the DMRS port configured/instructed is sorted in the QCL group to which the DMRS ports belong to each DMRS port indicated in the DCI, and the DMRS port numbers in each QCL group are in ascending order (small to large). arrangement;
  • Sorting between ports that is, sorting between subsets of DMRS ports based on the sorting result in the subset of DMRS port numbers corresponding to each DMRS port subset, specifically including: in each port subset obtained according to the above grouping and sorting, according to The minimum DMRS port number in each subset further sorts each port subset in ascending order (small to large), that is, the subset with the smallest DMRS port number in the subset is in the top order (of course, the subset can also be performed according to other principles.
  • the order of the DMRS port numbers is, for example, the subset of the largest DMRS port number in the subset is in the top order; wherein each port subset is referred to as a subset, that is, a DMRS port in a QCL group.
  • Each subset of DMRS ports described in the embodiments of the present application is a set of DMRS ports included in each CDM group or QCL group.
  • the v DMRS ports are composed into a vector:
  • the terminals are assigned DMRS ports 0, 1, 6, 7 and ports 2, 3, 8, and 9 in the DCI, and by step 1, the terminal learns its DMRS.
  • the port is divided into two QCL groups, corresponding to subset 1 (including ports ⁇ 0, 1, 6, 7 ⁇ (ascending order)) and subset 2 (including ports ⁇ 2, 3, 8, 9 ⁇ (ascending order) ). Since the minimum DMRS port number of port subset 1 is 0, which is smaller than the minimum DMRS port number 2 of subset 2, the port subset is further sorted, that is, subset 1 is in front of subset 2, and port order is 0.
  • the data layers 0, 1, 2, 3, 4, 5, 6, 7, and 8 are respectively mapped to the DMRS ports 0, 1, 6, 7, 2, 3, 8, and 9 used for transmission.
  • Sorting in the port group According to the CDM group relationship of the DMRS port in the DMRS pattern, the DMRS ports indicated in the DCI are sorted in their respective CDM groups, and the DMRS port numbers in each CDM group are in ascending order ( Arrange from small to large.
  • Sorting between port groups In each port subset obtained by grouping and sorting according to the above, according to the minimum DMRS port number in each subset, further sorting each port subset in ascending order, that is, the subset of the smallest DMRS port number is smaller Front; where each subset is the DMRS port in a CDM group.
  • the v DMRS ports are composed into a vector:
  • the terminals are assigned DMRS ports 0, 1, 6, 7 and ports 2, 3, 8, and 9 in the DCI, and the DMRS pattern is used by the terminal to know the DMRS.
  • the port is divided into two CDM groups, corresponding to CDM group 1 (including ports ⁇ 0, 1, 6, 7 ⁇ (ascending order)) and CDM group 2 (including ports ⁇ 2, 3, 8, 9 ⁇ (ascending order) )).
  • the port subset is further sorted, the subset 1 is in front of the subset 2, and the ports are sorted as 0 , 1 , 6 , 7 , 2 , 3 , 8, and 9, thereby obtaining P 0 , P 1 , P 2 , P 3 is equal to 0, 1 , 6 , and 7 , respectively, and P 4 , P 5 , P 6 , and P 7 are equal to 2, 3 , 8, and 9 , respectively.
  • the v data layers are mapped to v DMRS ports according to the following formula:
  • the data layers 0, 1, 2, 3, 4, 5, 6, 7, and 8 are respectively mapped to the DMRS ports 0, 1, 6, 7, 2, 3, 8, and 9 used for transmission.
  • Sorting in the port group According to the CDM group relationship of the DMRS port in the DMRS pattern, the DMRS ports indicated in the DCI are sorted in their respective CDM groups, and the DMRS port numbers in each group are in ascending order (small) Arrange to the big).
  • Sorting between port groups The above subsets are arranged in the order of the number of CDM groups to which they belong.
  • the v DMRS ports are composed into a vector:
  • the terminals are assigned DMRS ports 0, 1, 6, 7 and ports 2, 3, 8, and 9 in the DCI, and the DMRS pattern is used by the terminal to know the DMRS.
  • the port is divided into two CDM groups, corresponding to CDM group 1 (including ports ⁇ 0, 1, 6, 7 ⁇ (ascending order)) and CDM group 2 (including ports ⁇ 2, 3, 8, 9 ⁇ (ascending order) )). Then, according to the CDM group number to which each subset belongs (of course, for the second case in the above manner 3-1, the sub-sets may be sorted according to the sequence of the QCL group to which each subset belongs), and further the port subset is performed.
  • Sorting ie ⁇ CDM group 1, CDM group 2 ⁇
  • subset 1 ie ports ⁇ 0, 1, 6, 7 ⁇
  • subset 2 ie ports ⁇ 2, 3, 8, 9 ⁇
  • the ports are sorted to 0 , 1 , 6 , 7 , 2 , 3 , 8, and 9, so that P 0 , P 1 , P 2 , and P 3 are equal to 0 , 1 , 6, and 7 , respectively, and P 4 , P 5 , and P are obtained.
  • P 7 is equal to 2 , 3 , 8 , and 9 , respectively.
  • the v data layers are mapped to v DMRS ports according to the following formula:
  • the data layers 0, 1, 2, 3, 4, 5, 6, 7, and 8 are respectively mapped to the DMRS ports 0, 1, 6, 7, 2, 3, 8, and 9 used for transmission.
  • the terminals in the DCI are assigned DMRS ports 0, 1, 6, and 7 and ports 2, 3, 8, and 9, respectively, and the data layers 0, 1, respectively. 2, 3, 4, 5, 6, 7, and 8 are mapped to the DMRS ports 0, 1, 2, 3, 6, 7, 8, and 9 used for transmission.
  • Sorting in the port group According to the QCL group relationship of the DMRS port configured/instructed in step 1, the DMRS ports indicated in the DCI are sorted in their respective QCL groups, and the DMRS port numbers in each group are followed. Ascending order (small to large).
  • Sorting between port groups In each port subset obtained by grouping and sorting according to the above, according to the number of DMRS ports included in each subset, the sub-sets of each port are further sorted in ascending order (small to large), that is, the number of DMRS ports is small.
  • the subset is in the top order (of course, it can also be a subset with a larger number of DMRS ports); one subset, which is a set of DMRS ports in a QCL group.
  • the v DMRS ports are composed into a vector:
  • the terminals are assigned DMRS ports 0, 1, 6 in the DCI. 7, and ports 2, 3, 8, and by step 1, the terminal knows that its DMRS port is divided into two QCL groups, corresponding to subset 1 (including ports ⁇ 0, 1, 6, 7 ⁇ (ascending order)) And subset 2 (including ports ⁇ 2, 3, 8 ⁇ (ascending order)).
  • port subset 1 includes 4 DMRS ports, which is larger than the number of DMRS ports of subset 2 (3)
  • the port subsets are further sorted to obtain ⁇ subset 2, subset 1 ⁇ , that is, P 0 , P 1 , P 2 is equal to 2 , 3 , and 8 , respectively, and P 3 , P 4 , P 5 , P 6 , and P 7 are equal to 0, 1 , 6 , and 7 , respectively.
  • the v data layers are mapped to v DMRS ports according to the following formula:
  • Data layers 0, 1, 2, 3, 4, 5, 6, and 7 are mapped to DMRS ports 2, 3, 8, 0, 1, 6, and 7 used for transmission, respectively.
  • Mode 3-5 (can be compared to mode 3-3):
  • Sorting in the port group According to the CDM group relationship of the DMRS port in the DMRS pattern, the DMRS ports indicated in the DCI are sorted in their respective CDM groups, and the DMRS port numbers in each group are in ascending order (small) Arrange to the big).
  • Inter-port group ordering The above-mentioned subsets are arranged in the order of the number of DMRS ports included, that is, the subsets with fewer DMRS ports are included (of course, the number of DMRS ports is larger) Set sorted earlier).
  • the v DMRS ports are composed into a vector:
  • the terminals are assigned DMRS ports 0, 1, 6 in the DCI. 7, and ports 2, 3, 8, and by the DMRS pattern, the terminal knows that its DMRS port is divided into two CDM groups, corresponding to CDM group 1 (including ports ⁇ 0, 1, 6, 7 ⁇ (ascending order)) And CDM group 2 (including ports ⁇ 2, 3, 8 ⁇ (ascending order)).
  • the port subsets are further sorted, that is, ⁇ CDM group 2, CDM group 1 ⁇ , and P 0 , P 1 , and P 2 are equal to 2 , 3 , and 8, respectively, and P 3 is obtained.
  • P 4 , P 5 , P 6 , and P 7 are equal to 0, 1 , 6 , and 7 , respectively.
  • the v data layers are mapped to v DMRS ports according to the following formula:
  • Data layers 0, 1, 2, 3, 4, 5, 6, and 7 are mapped to DMRS ports 2, 3, 8, 0, 1, 6, and 7 used for transmission, respectively.
  • any of the above embodiments can be replaced with a sorting (descending order) from large to small.
  • the embodiment of the present application does not limit how to sort.
  • the embodiment of the present application is not limited to the foregoing determining manners of the v DMRS port component vectors, and the mapping manner of the specific v DMRS ports and the v data layers is not limited, and those skilled in the art are based on the embodiments of the present application. The description of the invention is completely conceivable and is within the scope of protection of the present application.
  • the preset DMRS port sorting rule described in the embodiment of the present application may be preset on the network side and the terminal side, that is, the same DMRS port sorting rule is set on both sides; and the network side and the terminal side may be pre- The same formula as above is set to implement the same way to map the data layer to the DMRS port used for transmission.
  • a data sending method provided by an embodiment of the present application includes:
  • the data layer is mapped to the DMRS port used for the transmission to be sent to the terminal according to the preset DMRS port sorting rule, and specifically includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • v data layers are mapped to v DMRS ports for transmission according to the following formula:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the method further includes:
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 if there is only one QCL group or CDM group, the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 For example, Case 1 in the above mode 3-1 and Case 1 in the mode 3-4.
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports. For example, Case 2 in the above mode 3-1, Case 2 in Mode 3-4, Mode 3-2, Mode 3-3, and Mode 3-5.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets for example, Case 2 and Mode 3-2 in the foregoing mode 3-1; or
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset, such as the foregoing manner 3-5.
  • the QCL group information specifically includes one of the following information (that is, the content described in the foregoing manners 1-1, 1-2, or 1-3):
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the RRC configuration, or the medium access control MAC control unit CE, or the downlink control information DCI is used to perform the QCL group information of the DMRS port in a broadcast, multicast, or terminal exclusive manner.
  • the QCL group information of the DMRS port is notified to the terminal.
  • a data receiving method provided by an embodiment of the present application includes:
  • receiving, according to the preset DMRS port sorting rule, the data layer that is sent to the DMRS port of the demodulation reference signal specifically includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • the data layer sent on the DMRS port used for transmission is received according to the following formula:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the method further includes:
  • the quasi-co-located QCL group information of the DMRS port notified by the network side is received.
  • the terminal may determine the order of the DMRS ports occupied by the terminal according to the QCL group information of the DMRS port and the pre-set DMRS port sorting rules. Specifically, for example, the content in the above manner relates to intra-port group ordering and port group ordering.
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • receiving the notification in a broadcast, multicast, or terminal-specific manner and acquiring the RRC configuration, or the medium access control MAC control unit CE, or the downlink control information DCI in the notification QCL group information of the DMRS port.
  • a data sending apparatus includes: a memory 520 and a processor 500, where the memory 520 is used to store program instructions, and the processor 500 is used to call a station.
  • the program instructions stored in the memory 520 are executed in accordance with the obtained program:
  • the data layer is mapped to the DMRS port used for transmission and sent to the terminal through the transceiver 510.
  • bus interface the transceiver 510, and the like in FIG. 7 may be used as an optional device in a data transmitting apparatus provided in an embodiment of the present application, and is not required.
  • the processor 500 according to the preset DMRS port sorting rule, mapping the data layer to the DMRS port used for the transmission, and sending the data layer to the terminal, specifically:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • v data layers are mapped to v DMRS ports according to the following formula and sent to the terminal:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • processor 500 is further configured to:
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the DMRS port subsets are sorted in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the processor 500 uses the radio resource control RRC configuration, or the medium access control MAC control unit CE, or the downlink control information DCI, to use the QCL group information of the DMRS port as a broadcast, multicast, or terminal exclusive In a manner, the QCL group information of the DMRS port is notified to the terminal.
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device ( Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex programmable logic device
  • a data receiving apparatus provided by an embodiment of the present application includes: a memory 620 and a processor 600, wherein the memory 620 is configured to store program instructions, and the processor 600 is used to invoke a location.
  • the program instructions stored in the memory 620 are executed in accordance with the obtained program:
  • the data layer transmitted on the DMRS port mapped to the demodulation reference signal is received by the transceiver 610 according to the predetermined DMRS port ordering rule.
  • the devices other than the memory 620 and the processor 600 in FIG. 8 are optional devices and are not included in the data receiving device provided in the embodiment of the present application.
  • receiving, according to the preset DMRS port sorting rule, the data layer that is sent to the DMRS port of the demodulation reference signal specifically includes:
  • each data layer is arranged according to the number as a transmission signal vector as follows:
  • the data layer sent on the DMRS port used for transmission is received according to the following formula:
  • i indicates that each data layer needs to be transmitted.
  • the i-th modulation symbol in the modulation symbols; P 0 , . . . , P v-1 represents the number of v DMRS ports.
  • the processor 600 is further configured to: receive quasi-co-located QCL group information of the DMRS port notified by the network side.
  • the P 0 ⁇ P 1 ⁇ ,..., P v-1 the P 0 ⁇ P 1 ⁇ ,..., P v-1 .
  • the signal vectors formed by the v DMRS ports are determined according to the ranking result of the numbers of the v DMRS ports.
  • the sorting result is obtained as follows:
  • the subset of each DMRS port is a set of DMRS ports included in each CDM group or QCL group.
  • the processor 600 performs the ordering of the DMRS port subsets in one of the following manners:
  • the DMRS port subsets are sorted according to the number of DMRS ports included in each DMRS port subset.
  • the QCL group information specifically includes one of the following information:
  • CDM group included in the QCL group
  • a list of DMRS ports included in the QCL group is a list of DMRS ports included in the QCL group.
  • the processor 600 receives the notification in a broadcast, multicast, or terminal-specific manner, and controls the RRC configuration, or the media access control MAC control unit CE, or the downlink control information from the radio resource in the notification.
  • the QCL group information of the DMRS port is obtained in the DCI.
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the processor 600 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • another data sending apparatus provided by the embodiment of the present application includes:
  • a determining unit 11 configured to determine a preset demodulation reference signal DMRS port ordering rule
  • the sending unit 12 is configured to map the data layer to the DMRS port used for transmission to the terminal according to the preset DMRS port sorting rule.
  • another data receiving apparatus provided by the embodiment of the present application includes:
  • a determining unit 21 configured to determine a preset DMRS port ordering rule
  • the receiving unit 22 is configured to receive, according to the preset DMRS port ordering rule, a data layer that is sent to the DMRS port that is mapped to the demodulation reference signal.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the computing device, including a program for executing the above information indication or determination method.
  • the computer storage medium can be any available media or data storage device accessible by a computer, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memories (for example, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)).
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memories for example, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)).
  • the method provided by the embodiment of the present application can be applied to a terminal device, and can also be applied to a network device.
  • the terminal device may also be referred to as a user equipment (User Equipment, referred to as "UE"), a mobile station (Mobile Station, referred to as "MS”), a mobile terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal may The ability to communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal can be a mobile phone (or “cellular” phone), or a computer with mobile nature, etc.
  • RAN Radio Access Network
  • the terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • a network device may be a base station (e.g., an access point) that refers to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B) is not limited in the embodiment of the present invention.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station in LTE
  • LTE NodeB or eNB or e-NodeB, evolutional Node B
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer memory produce an article of manufacture comprising the instruction device, the instruction device being implemented in the process Figure One or more processes and/or block diagrams of the functions specified in a block or blocks.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了数据传输方法及装置、计算机存储介质,用以实现基于预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。本申请实施例提供的一种数据传输方法,包括:确定预先设定的解调参考信号DMRS端口排序规则;根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。

Description

数据传输方法及装置、计算机存储介质
本申请要求在2017年11月24日提交中国专利局、申请号为201711192554.6、发明名称为“数据传输方法及装置、计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及数据传输方法及装置、计算机存储介质。
背景技术
新的无线技术(New Radio,NR)系统中,数据解调过程需要基于解调参考信号(Demodulation Reference Signal,DMRS)进行信道估计。现有技术中,NR系统中DMRS将采用与对应的数据层相同的预编码方式进行传输。
发明内容
本申请实施例提供了数据传输方法及装置、计算机存储介质,用以实现基于预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。
在网络侧,本申请实施例提供的一种数据发送方法,包括:
确定预先设定的解调参考信号DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
通过该数据发送方法,确定预先设定的解调参考信号DMRS端口排序规则,并根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,从而实现了基于预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。
可选地,根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
根据多入多出MIMO(Multiple-Input Multiple-Output)的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000001
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000002
根据如下公式将v个数据层映射到v个DMRS端口上发送给终端:
Figure PCTCN2018109895-appb-000003
其中,
Figure PCTCN2018109895-appb-000004
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000005
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,该方法还包括:
确定DMRS端口的准共址QCL(Quasi-Co-Location)组信息;
将所述QCL组信息通知给终端。
可选地,若只存在一个QCL组或CDM(Code Division Multiplexing,码分复用)组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中, 具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,通过无线资源控制RRC(Radio Resource Control)配置、或者媒体接入控制MAC(Media Access Control)控制单元CE(Control Element)、或者下行控制信息DCI(Downlink Control Information),将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知给所述终端。
相应地,在终端侧,本申请实施例提供的一种数据接收方法,包括:
确定预先设定的DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
可选地,根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000006
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000007
根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
Figure PCTCN2018109895-appb-000008
其中,
Figure PCTCN2018109895-appb-000009
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000010
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,该方法还包括:
接收网络侧通知的DMRS端口的准共址QCL组信息。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
在网络侧,本申请实施例提供的一种数据发送装置,包括:存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定预先设定的解调参考信号DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
可选地,所述处理器根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000011
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000012
根据如下公式将v个数据层映射到v个DMRS端口上发送给终端:
Figure PCTCN2018109895-appb-000013
其中,
Figure PCTCN2018109895-appb-000014
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000015
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,所述处理器还用于:
确定DMRS端口的准共址QCL组信息;
将所述QCL组信息通知给终端。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口 子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,所述处理器通过无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI,将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知给所述终端。
在终端侧,本申请实施例提供的一种数据接收装置,包括:存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定预先设定的DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
可选地,根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000016
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000017
根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
Figure PCTCN2018109895-appb-000018
其中,
Figure PCTCN2018109895-appb-000019
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000020
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,所述处理器还用于:接收网络侧通知的DMRS端口的准共址QCL组信息。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,所述处理器采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,所述处理器以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
在网络侧,本申请实施例提供的另一种数据发送装置,包括:
确定单元,用于确定预先设定的解调参考信号DMRS端口排序规则;
发送单元,用于根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
在终端侧,本申请实施例提供的另一种数据接收装置,包括:
确定单元,用于确定预先设定的DMRS端口排序规则;
接收单元,用于根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种DMRS的图样示意图;
图2为本申请实施例提供的第二种DMRS的图样示意图;
图3为本申请实施例提供的第三种DMRS的图样示意图;
图4为本申请实施例提供的第四种DMRS的图样示意图;
图5为本申请实施例提供的一种数据发送方法的流程示意图;
图6为本申请实施例提供的一种数据接收方法的流程示意图;
图7为本申请实施例提供的一种数据发送装置的结构示意图;
图8为本申请实施例提供的一种数据接收装置的结构示意图;
图9为本申请实施例提供的另一种数据发送装置的结构示意图;
图10为本申请实施例提供的另一种数据接收装置的结构示意图。
具体实施方式
本申请实施例提供了数据传输方法及装置、计算机存储介质,用以实现基于预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。
DMRS的基本图样(front-load DMRS)配置包含以下情况:
配置(Configuration)1:
DMRS符号数为1:采用组合(Combination,comb)2+循环移位方式(cyclic shifts,CS)2,最大支持到4端口。
见图1,其中comb2为频域复用,比如端口0和2之间就是comb2的复用关系。CS2为端口之间的序列采用循环移位方式(cyclic shifts)进行复用,比如端口0和1之间就是CS2的复用关系。
DMRS符号数为2:采用comb2+CS2+TD-OCC({1,1}和{1,-1}),最大支持到8端口。其中,TD-OCC({1,1}和{1,-1})表示两个端口之间采用时域正交覆盖码(TD-OCC)复用,{1,1}和{1,-1}分别是两个端口的复用系数。
见图2,TD-OCC为时域正交覆盖码(Orthogonal Cover Code,OCC)复用,比如端口0/1和4/5之间采用时域OCC复用。其中,端口0和端口1之间是CS2复用,端口4和端口5之间是CS2复用,端口0/1和端口4/5之间是时域OCC复用。
Configuration 2:
DMRS符号数为1:采用2-FD-OCC(相邻频域资源单元(Resource Element,RE)),最大支持到6端口。
见图3,2-FD-OCC,即频域OCC复用,比如端口0和1之间就是频域OCC复用。另外和其他端口之间采用频分复用(Frequency-division Multiplexing,FDM)方式,比如端口0/1和2/3之间采用FDM方式。
DMRS符号数为2:采用2-FD-OCC(相邻频域RE)+TD-OCC({1,1}和{1,-1}),最大支持到12端口。
见图4,TD-OCC为时域OCC复用,比如端口0/1和6/7之间采用时域OCC复用。
从上述DMRS各种导频图样(pattern)可以看出,configuration1的情况,如果支持的最大端口数不超过4,则可以用图1的pattern来配置,如果超过4,但是不超过8,可以用图2的pattern来配置;configuration2的情况,如果支持的最大端口数不超过6,则可以用图3的pattern来配置,如果超过6,但是不超过12,可以用图4的pattern来配置。此处所述的端口数是指每一资源位置上复用的所有终端的端口数总和。
补充说明,图1~图4中,前两列表示控制符号域,即下行控制信道所需要占用的符号位置,后两列可以是上行控制信道所需要占用的符号位置,即不能用于物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)数据信道的符号资源。
在NR系统中,可能需要考虑多个传输/接收点(Transport Receive Point,TRP)/天线面板或者子阵(panel)进行协作传输的情况。这种情况下,不同TRP/panel发送的信号可能具有相对独立的大尺度特征,例如平均时延、时延扩展、平均多普勒偏移、多普勒扩展以及空域接收参数等。因此,在NR中,将两个或多个参考信号信道大尺度参数一致的情况称为准共址(Quasi-colocation,QCL)。反之,则称其非QCL。其中,所述大尺度参数,例如,平均时延、时延扩展、多普勒偏移、多普勒扩展、空间接收参数、平均接收功率等。并且,进一步对QCL解释如下:终端不能判断收到的各个参考信号端口来自相同或者不同物理位置的站点或者天线子阵,如果两个参考信号端口的平均时延、时延扩展、多普勒偏移、多普勒扩展、空间接收参数、平均接收功率等参数(或者其子集)均相同,则可以认为在上述大尺度参数意义下,这两个参考信号是准共址的。
针对DMRS端口,NR系统中定义了QCL组(group)的概念,即DMRS端口的QCL组(可以简称QCL组):在QCL group内的各DMRS端口QCL,而属于不同QCL组的DMRS端口非QCL。在NR系统中规定,相同码分复用(Code Division Multiplexing,CDM)组中的DMRS端口具有QCL关系。即,在一个CDM组中,各参考信号端口占用相同的时频资源,而通过正交的码字进行区分。以图4所示为例,由于DMRS设计的特点,一个DMRS符号时,端口0/1为CDM的关系,端口2/3为CDM关系,端口0/1和端口2/3之间为FDM关系。在图1~图4中,相邻且相同填充方式的方块构成一个CDM组。每个数据信道可以支持两个QCL组。所述数据信道,例如物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)。
本申请实施例中所述的DMRS端口的QCL组,可以简称为QCL组,也可以称为DMRS组。
本申请实施例中所述的DMRS端口,可以简称为端口,也可以称为天线端口。
本申请实施例提供的具体方案包括:
步骤一:网络侧通过控制信令,对DMRS端口的QCL组信息(用于指示DMRS端口的QCL分组情况)进行指示,其中,DMRS端口的QCL组信息的内容可选地如下面的方式1-1、1-2或1-3所示的内容。
将DMRS图样中的CDM组记为:CDM组1,CDM组2,…,CDM组N。例如,根据目前的DMRS图样(参照图1~图4),DMRS configuration type1的CDM组最多为2个,DMRS configuration type 2的CDM组最多为3个。
方式1-1(例如,可由DCI或MAC CE通知):
通过控制信令分别通知DMRS图样中,与各CDM组具有QCL关系的参考信号(即该CDM组n中各DMRS端口的QCL参考源)对应的标识,例如CDM组n具有QCL关系的参考信号为Ref_n,对应的标识为ID_n,即仅通知该ID_n即可,终端根据ID_n可以确定CDM组n具有QCL关系的参考信号为Ref_n,按照QCL参考源进行QCL分组,即具有相同ID_n的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的ID_n不同,同一QCL组的DMRS端口对应的上述ID_n相同。
对于具有相同参考源参考信号标识的CDM组,可以认为其包含的DMRS端口构成的集合为一个DMRS端口的QCL group,需要说明的是,此处的一个是指一个组不是一个DMRS端口,即一个QCL组,或者也可以简称为DMRS group。
方式1-2:通过控制信令直接指示QCL组i中包含的CDM组。例如,对于DMRS configuration type 2,控制信令中可以指示QCL组1包含CDM组1和2,QCL组2包含CDM组3。
方式1-3:通过控制信令直接指示QCL组i中包含的DMRS端口列表。例如,对于 DMRS configuration type 2,如果数据层数为8,控制信令中可以指示QCL组1包含DMRS端口0、1、6、7,QCL组2包含DMRS端口2、3、8、9。
在上述过程中,用于指示DMRS端口的QCL分组情况的控制信息(即DMRS端口的QCL组信息),可以通过无线资源控制(Radio Resource Control,RRC)配置、或者媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)、或者下行控制信息(Downlink Control Information,DCI),以广播、组播或者终端的专属方式(终端-specific)通知给终端。
并且,需要说明的是,对于本申请而言,上述步骤一并不是必须要执行的步骤,而是可选步骤,也就是说,下述步骤可以独立存在。若存在步骤一,终端可以进一步根据网络侧通知的DMRS端口的QCL组信息,结合预先设置的DMRS端口的排序规则(具体规则可以根据实际需要而定,下述实施例中给出一些规则的举例说明,但并不限于这些规则),确定终端占用的DMRS端口的排序方式。
步骤二:根据多入多出MIMO的并行传输数据层(layer)数,即秩(rank)数v,将各发送数据层(每一数据层就是一路数据流)按照编号排列为发送信号向量:
Figure PCTCN2018109895-appb-000021
也就是说,X为具有v个元素的列向量,上标0…v-1为其元素的编号,即每个数据层的编号,
Figure PCTCN2018109895-appb-000022
表示每数据层需要传输的
Figure PCTCN2018109895-appb-000023
个调制符号中的第i个。
将v个DMRS端口构成的信号向量记为Y,其中集合{P 0,…,P v-1}中包含的端口由DCI指示,而其排序方式由步骤三确定。
Figure PCTCN2018109895-appb-000024
其中,Y为具有v个元素的列向量,上标P 0,…,P v-1是y中元素的标号,上标P 0,…,P v-1是v个DMRS端口的编号,
Figure PCTCN2018109895-appb-000025
表示每数据层数据层需要传输的
Figure PCTCN2018109895-appb-000026
个调制符号中的第i个。
步骤三:根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。可选方式如下面的方式3-1、3-2、3-3、3-4、3-5所示:
方式3-1:
情况一、若只存在一个QCL组或CDM组:
对DCI中分配给终端的v个DMRS端口的编号进行排序,使得P 0<P 1<,…,P v-1,即此 为一种预先设定的DMRS端口排序规则;
按照如下公式将v个数据层(也可以称为数据数据层,每数据层数据即每一数据层,同时并行传输的数据数据层数v,即同时并行传输的数据层数v)映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000027
上述公式表示向量中各对应元素相等,也就是说,将数据层
Figure PCTCN2018109895-appb-000028
映射到传输时使用的DMRS端口x (0)(i)上,以此类推,数据层
Figure PCTCN2018109895-appb-000029
映射到传输时使用的DMRS端口x (υ-1)(i)上,后续相同公式同理,不再赘述。
例如,对于DMRS configuration type 2,如果数据层数v=8,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8、9,则分别将数据层0、1、2、3、4、5、6、7、8映射到传输时使用的DMRS端口0、1、2、3、6、7、8、9上去。
情况二、对于存在多个QCL组或CDM组的情况:
端口组内排序,即对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,具体包括:依照步骤一中配置/指示的DMRS端口的QCL组信息,对DCI中指示的各DMRS端口,在DMRS端口各自所属的QCL组中进行排序,在每个QCL组内的DMRS端口编号按照升序(从小到大)排列;
端口组间排序,即基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序,具体包括:在按照上述分组和排序得到的各端口子集中,按照每个子集中的最小DMRS端口编号,进一步对各个端口子集进行升序(从小到大)排序,即子集中最小DMRS端口编号较小的子集顺序靠前(当然,也可以按照其他原则进行子集间的DMRS端口编号排序,例如子集中最大DMRS端口编号较大的子集顺序靠前);其中,每一端口子集,简称子集,即一个QCL组内的DMRS端口。
本申请实施例中所述的每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
上述端口组内排序和端口组间排序相结合,可以看作为另一种预先设定的DMRS端口排序规则,以下各方式中同理,后续不再赘述。
根据上述排序结果,将v个DMRS端口组成向量:
Figure PCTCN2018109895-appb-000030
按照如下公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000031
例如,对于DMRS configuration type 2,如果数据层数v=8,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8、9,而由步骤一,终端获知其DMRS端口分为两个QCL组,分别对应于子集1(包含端口{0、1、6、7}(升序排列))和子集2(包含端口{2、3、8、9}(升序排列))。由于端口子集1的最小DMRS端口编号为0,小于子集2的最小DMRS端口编号2,因此进一步对端口子集进行排序,即子集1排在子集2的前面,端口排序为0、1、6、7、2、3、8、9,从而得到P 0、P 1、P 2、P 3分别等于0、1、6、7,而P 4、P 5、P 6、P 7分别等于2、3、8、9。最终,按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000032
即将数据层0、1、2、3、4、5、6、7、8分别映射到传输时使用的DMRS端口0、1、6、7、2、3、8、9上。
方式3-2:
端口组内排序:依照DMRS图样中的DMRS端口的CDM组关系,对DCI中指示的各DMRS端口,在其各自所属的CDM组中进行排序,在每个CDM组内的DMRS端口编号按照升序(从小到大)排列。
端口组间排序:在按照上述分组和排序得到的各端口子集中,按照每个子集中的最小DMRS端口编号,进一步对各个端口子集进行升序排序,即最小DMRS端口编号较小的子集顺序靠前;其中,每一子集,即一个CDM组中的DMRS端口。
根据上述排序,将v个DMRS端口组成向量:
Figure PCTCN2018109895-appb-000033
按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000034
例如,对于DMRS configuration type 2,如果数据层数v=8,DCI中给终端分配了DMRS 端口0、1、6、7和端口2、3、8、9,而由DMRS图样,终端获知其DMRS端口分为两个CDM组,分别对应于CDM组1(包含端口{0、1、6、7}(升序排列))和CDM组2(包含端口{2、3、8、9}(升序排列))。由于端口子集1(即端口{0、1、6、7})的最小DMRS端口编号为0,小于子集2(即端口{2、3、8、9})的最小DMRS端口编号2,因此进一步对端口子集进行排序,子集1排在子集2前面,端口排序为0、1、6、7、2、3、8、9,从而得到P 0、P 1、P 2、P 3分别等于0、1、6、7,而P 4、P 5、P 6、P 7分别等于2、3、8、9。最终,按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000035
即将数据层0、1、2、3、4、5、6、7、8分别映射到传输时使用的DMRS端口0、1、6、7、2、3、8、9上。
方式3-3:
端口组内排序:依照DMRS图样中的DMRS端口的CDM组关系,对DCI中指示的各DMRS端口,在其各自所属的CDM组中进行排序,在每个组内的DMRS端口编号按照升序(从小到大)排列。
端口组间排序:对上述子集按照所属的CDM组序号从小到大的顺序进行排列。
根据上述排序,将v个DMRS端口组成向量:
Figure PCTCN2018109895-appb-000036
按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000037
例如,对于DMRS configuration type 2,如果数据层数v=8,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8、9,而由DMRS图样,终端获知其DMRS端口分为两个CDM组,分别对应于CDM组1(包含端口{0、1、6、7}(升序排列))和CDM组2(包含端口{2、3、8、9}(升序排列))。而后,根据各子集所属的CDM组序号(当然,对于上述方式3-1中的情况二,也可以按照各子集所属的QCL组的序号进行子集间排序),进一步对端口子集进行排序(即{CDM组1,CDM组2}),子集1(即端口{0、1、6、7})排在子集2(即端口{2、3、8、9})前面,端口排序为0、1、6、7、2、3、8、9,从而得 到P 0、P 1、P 2、P 3分别等于0、1、6、7,而P 4、P 5、P 6、P 7分别等于2、3、8、9。最终,按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000038
即将数据层0、1、2、3、4、5、6、7、8分别映射到传输时使用的DMRS端口0、1、6、7、2、3、8、9上。
方式3-4(可与上述方式3-1相对比):
情况一、若只存在一个QCL组或CDM组:
对DCI中分配给终端的v个DMRS端口进行排序,保证P 0<P 1<,…,P v-1
按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000039
例如,对于DMRS configuration type 2,如果数据层数v=8,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8、9,则分别将数据层0、1、2、3、4、5、6、7、8映射到传输时使用的DMRS端口0、1、2、3、6、7、8、9上去。
情况二、对于存在超过一个QCL组的情况:
端口组内排序:依照步骤一中配置/指示的DMRS端口的QCL组关系,对DCI中指示的各DMRS端口,在其各自所属的QCL组中进行排序,在每个组内的DMRS端口编号按照升序(从小到大)排列。
端口组间排序:在按照上述分组和排序得到的各端口子集中,按照每个子集中包含的DMRS端口数量,进一步对各个端口子集进行升序(从小到大)排序,即DMRS端口数量较少的子集顺序靠前(当然,也可以是包含DMRS端口数较多的子集排序较前);其中,一个子集,即一个QCL组中的DMRS端口构成的集合。
根据上述排序,将v个DMRS端口组成向量:
Figure PCTCN2018109895-appb-000040
按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000041
例如,对于DMRS configuration type 2,如果数据层数v=7,例如分别为数据层0、1、2、3、4、5、6、7,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8,而由步骤一,终端获知其DMRS端口分为两个QCL组,分别对应于子集1(包含端口{0、1、6、7}(升序排列))和子集2(包含端口{2、3、8}(升序排列))。由于端口子集1包含4个DMRS端口,大于子集2的DMRS端口数量(3),因此进一步对端口子集进行排序,得到{子集2,子集1},即P 0、P 1、P 2分别等于2、3、8,而P 3、P 4、P 5、P 6、P 7分别等于0、1、6、7。最终,按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000042
即将数据层0、1、2、3、4、5、6、7,分别映射到传输时使用的DMRS端口2、3、8、0、1、6、7上。
方式3-5(可与方式3-3相对比):
端口组内排序:依照DMRS图样中的DMRS端口的CDM组关系,对DCI中指示的各DMRS端口,在其各自所属的CDM组中进行排序,在每个组内的DMRS端口编号按照升序(从小到大)排列。
端口组间排序:对上述子集按照所包含的DMRS端口数量从小到大的顺序进行排列,即包含DMRS端口数较少的子集靠前(当然,也可以是包含DMRS端口数较多的子集排序较前)。
根据上述排序,将v个DMRS端口组成向量:
Figure PCTCN2018109895-appb-000043
按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000044
例如,对于DMRS configuration type 2,如果数据层数v=7,例如分别为数据层0、1、2、3、4、5、6、7,DCI中给终端分配了DMRS端口0、1、6、7和端口2、3、8,而由 DMRS图样,终端获知其DMRS端口分为两个CDM组,分别对应于CDM组1(包含端口{0、1、6、7}(升序排列))和CDM组2(包含端口{2、3、8}(升序排列))。而后,根据各子集包含的端口数,进一步对端口子集进行排序,即{CDM组2,CDM组1},得到P 0、P 1、P 2分别等于2、3、8,而P 3、P 4、P 5、P 6、P 7分别等于0、1、6、7。最终,按照下列公式将v个数据层映射到v个DMRS端口上:
Figure PCTCN2018109895-appb-000045
即将数据层0、1、2、3、4、5、6、7,分别映射到传输时使用的DMRS端口2、3、8、0、1、6、7上。
需要说明的是,以上实施例中任一处提到的从小到大的排序,同理,都可以替换成从大到小的排序(降序),本申请实施例并不对具体如何排序进行限制。并且,本申请实施例也不限于上述几种v个DMRS端口组成向量的确定方式,以及也不限定具体的v个DMRS端口与v个数据层的映射方式,本领域技术人员基于本申请实施例的记载,完全还可以想到其他替代方案,均在本申请的保护范围内。
并且,本申请实施例中所述的预先设定的DMRS端口排序规则,可以预先设置在网络侧和终端侧,即两侧均设置有同样的DMRS端口排序规则;并且网络侧和终端侧可以预先设置有同样的上述公式,实现采用同样的方式将数据层映射到传输时使用的DMRS端口。
另外,上述步骤二和步骤三可以合并为一个步骤。
综上,参见图5,在网络侧,本申请实施例提供的一种数据发送方法,包括:
S101、确定预先设定的解调参考信号DMRS端口排序规则;
S102、根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
通过该数据发送方法,确定预先设定的解调参考信号DMRS端口排序规则,并根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,从而实现了基于预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上进行传输。
可选地,根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000046
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000047
根据如下公式将v个数据层映射到v个DMRS端口上进行发送:
Figure PCTCN2018109895-appb-000048
其中,
Figure PCTCN2018109895-appb-000049
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000050
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,该方法还包括:
确定DMRS端口的准共址QCL组信息;
将所述QCL组信息通知给终端。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1。例如上述方式3-1中的情况一、方式3-4中的情况一。
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。例如上述方式3-1中的情况二、方式3-4中的情况二、方式3-2、方式3-3、方式3-5。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序,例如上述方式3-1中的情况二、方式3-2;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口 子集间排序,例如上述方式3-3;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序,例如上述方式3-5。
可选地,所述QCL组信息,具体包括下列信息(即上述方式1-1、1-2或1-3所述的内容)之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,通过无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI,将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知给所述终端。
相应地,参见图6,在终端侧,本申请实施例提供的一种数据接收方法,包括:
S201、确定预先设定的DMRS端口排序规则;
S202、根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
可选地,根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000051
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000052
根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
Figure PCTCN2018109895-appb-000053
其中,
Figure PCTCN2018109895-appb-000054
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000055
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,该方法还包括:
接收网络侧通知的DMRS端口的准共址QCL组信息。
终端可以根据DMRS端口的QCL组信息,结合预先设定的DMRS端口的排序规则,确定终端占用的DMRS端口的排序方式。具体例如上述各方式中涉及端口组内排序和端口组间排序的内容。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
在网络侧,参见图7,本申请实施例提供的一种数据发送装置,包括:存储器520和处理器500,其中,所述存储器520用于存储程序指令,所述处理器500用于调用所述存储器520中存储的程序指令,按照获得的程序执行:
确定预先设定的解调参考信号DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上通过收发机510发送给终端。
其中,需要说明的是,图7中的总线接口、收发机510等都可以作为可选器件存在于本申请实施例提供的一种数据发送装置中,不是必需的。
可选地,所述处理器500根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000056
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000057
根据如下公式将v个数据层映射到v个DMRS端口上发送给终端:
Figure PCTCN2018109895-appb-000058
其中,
Figure PCTCN2018109895-appb-000059
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000060
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,所述处理器500还用于:
确定DMRS端口的准共址QCL组信息;
将所述QCL组信息通知给终端。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,所述处理器500通过无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI,将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知给所述终端。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图8,在终端侧,本申请实施例提供的一种数据接收装置,包括:存储器620和处理器600,其中,所述存储器620用于存储程序指令,所述处理器600用于调用所述存储器620中存储的程序指令,按照获得的程序执行:
确定预先设定的DMRS端口排序规则;
根据所述预先设定的DMRS端口排序规则,通过收发机610接收映射到解调参考信号DMRS端口上发送的数据层。
需要说明的是,图8中除了存储器620和处理器600之外的器件都是可选器件存在于本申请实施例提供的一种数据接收装置中,不作为必选器件。
可选地,根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层,具体包括:
根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
Figure PCTCN2018109895-appb-000061
确定v个DMRS端口构成的如下信号向量:
Figure PCTCN2018109895-appb-000062
根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
Figure PCTCN2018109895-appb-000063
其中,
Figure PCTCN2018109895-appb-000064
i表示每一数据层需要传输的
Figure PCTCN2018109895-appb-000065
个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
可选地,所述处理器600还用于:接收网络侧通知的DMRS端口的准共址QCL组信息。
可选地,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
可选地,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
可选地,所述排序结果是采用如下方式得到的:
对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端 口子集对应的DMRS端口编号的子集内排序结果;
基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
可选地,所述处理器600采用如下方式之一进行所述DMRS端口子集间排序:
按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
可选地,所述QCL组信息,具体包括下列信息之一:
DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
QCL组中包含的CDM组;
QCL组中包含的DMRS端口列表。
可选地,所述处理器600以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或 CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
在网络侧,参见图9,本申请实施例提供的另一种数据发送装置,包括:
确定单元11,用于确定预先设定的解调参考信号DMRS端口排序规则;
发送单元12,用于根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
在终端侧,参见图10,本申请实施例提供的另一种数据接收装置,包括:
确定单元21,用于确定预先设定的DMRS端口排序规则;
接收单元22,用于根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
本申请实施例提供了一种计算机存储介质,用于储存为上述计算设备所用的计算机程序指令,其包含用于执行上述信息指示或确定方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network.RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本方面实施例中不做限定。本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机存储器中,使得存储在该计算机存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (39)

  1. 一种数据传输方法,其特征在于,包括:
    确定预先设定的解调参考信号DMRS端口排序规则;
    根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
  2. 根据权利要求1所述的方法,其特征在于,根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
    根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
    Figure PCTCN2018109895-appb-100001
    确定v个DMRS端口构成的如下信号向量:
    Figure PCTCN2018109895-appb-100002
    根据如下公式将v个数据层映射到v个DMRS端口上发送给终端:
    Figure PCTCN2018109895-appb-100003
    其中,
    Figure PCTCN2018109895-appb-100004
    i表示每一数据层需要传输的
    Figure PCTCN2018109895-appb-100005
    个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
  3. 根据权利要求2所述的方法,其特征在于,该方法还包括:
    确定DMRS端口的准共址QCL组信息;
    将所述QCL组信息通知给终端。
  4. 根据权利要求3所述的方法,其特征在于,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
  5. 根据权利要求3所述的方法,其特征在于,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
  6. 根据权利要求5所述的方法,其特征在于,所述排序结果是采用如下方式得到的:
    对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
    基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
    其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
  7. 根据权利要求6所述的方法,其特征在于,采用如下方式之一进行所述DMRS端口子集间排序:
    按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
  8. 根据权利要求3所述的方法,其特征在于,所述QCL组信息,具体包括下列信息之一:
    DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
    QCL组中包含的CDM组;
    QCL组中包含的DMRS端口列表。
  9. 根据权利要求3所述的方法,其特征在于,通过无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI,将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知给所述终端。
  10. 一种数据接收方法,其特征在于,包括:
    确定预先设定的解调参考信号DMRS端口排序规则;
    根据所述预先设定的DMRS端口排序规则,接收映射到DMRS端口上发送的数据层。
  11. 根据权利要求10所述的方法,其特征在于,根据所述预先设定的DMRS端口排序规则,接收映射到DMRS端口上发送的数据层,具体包括:
    根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
    Figure PCTCN2018109895-appb-100006
    确定v个DMRS端口构成的如下信号向量:
    Figure PCTCN2018109895-appb-100007
    根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
    Figure PCTCN2018109895-appb-100008
    其中,
    Figure PCTCN2018109895-appb-100009
    i表示每一数据层需要传输的
    Figure PCTCN2018109895-appb-100010
    个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
  12. 根据权利要求11所述的方法,其特征在于,该方法还包括:
    接收网络侧通知的DMRS端口的准共址QCL组信息。
  13. 根据权利要求12所述的方法,其特征在于,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
  14. 根据权利要求12所述的方法,其特征在于,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
  15. 根据权利要求14所述的方法,其特征在于,所述排序结果是采用如下方式得到的:
    对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
    基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
    其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
  16. 根据权利要求15所述的方法,其特征在于,采用如下方式之一进行所述DMRS端口子集间排序:
    按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
  17. 根据权利要求12所述的方法,其特征在于,所述QCL组信息,具体包括下列信 息之一:
    DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
    QCL组中包含的CDM组;
    QCL组中包含的DMRS端口列表。
  18. 根据权利要求12所述的方法,其特征在于,以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
  19. 一种数据发送装置,其特征在于,包括:存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定预先设定的解调参考信号DMRS端口排序规则;
    根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器根据预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端,具体包括:
    根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
    Figure PCTCN2018109895-appb-100011
    确定v个DMRS端口构成的如下信号向量:
    Figure PCTCN2018109895-appb-100012
    根据如下公式将v个数据层映射到v个DMRS端口上发送给终端:
    Figure PCTCN2018109895-appb-100013
    其中,
    Figure PCTCN2018109895-appb-100014
    i表示每一数据层需要传输的
    Figure PCTCN2018109895-appb-100015
    个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器还用于:
    确定DMRS端口的准共址QCL组信息;
    将所述QCL组信息通知给终端。
  22. 根据权利要求21所述的装置,其特征在于,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
  23. 根据权利要求21所述的装置,其特征在于,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
  24. 根据权利要求23所述的装置,其特征在于,所述排序结果是采用如下方式得到的:
    对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
    基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
    其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
  25. 根据权利要求24所述的装置,其特征在于,采用如下方式之一进行所述DMRS端口子集间排序:
    按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
  26. 根据权利要求21所述的装置,其特征在于,所述QCL组信息,具体包括下列信息之一:
    DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
    QCL组中包含的CDM组;
    QCL组中包含的DMRS端口列表。
  27. 根据权利要求21所述的装置,其特征在于,所述处理器通过无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI,将所述DMRS端口的QCL组信息以广播、组播或终端的专属方式,将所述DMRS端口的QCL组信息通知 给所述终端。
  28. 一种数据接收装置,其特征在于,包括:存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定预先设定的DMRS端口排序规则;
    根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层。
  29. 根据权利要求28所述的装置,其特征在于,根据所述预先设定的DMRS端口排序规则,接收映射到解调参考信号DMRS端口上发送的数据层,具体包括:
    根据多入多出MIMO的并行传输数据层数v,将各数据层按照编号排列为如下发送信号向量:
    Figure PCTCN2018109895-appb-100016
    确定v个DMRS端口构成的如下信号向量:
    Figure PCTCN2018109895-appb-100017
    根据如下公式接收映射到传输时使用的DMRS端口上发送的数据层:
    Figure PCTCN2018109895-appb-100018
    其中,
    Figure PCTCN2018109895-appb-100019
    i表示每一数据层需要传输的
    Figure PCTCN2018109895-appb-100020
    个调制符号中的第i个调制符号;P 0,…,P v-1表示v个DMRS端口的编号。
  30. 根据权利要求29所述的装置,其特征在于,所述处理器还用于:接收网络侧通知的DMRS端口的准共址QCL组信息。
  31. 根据权利要求30所述的装置,其特征在于,若只存在一个QCL组或CDM组,则所述P 0<P 1<,…,P v-1
  32. 根据权利要求30所述的装置,其特征在于,若存在多个QCL组或CDM组,则按照对v个DMRS端口的编号的排序结果,确定v个DMRS端口构成的所述信号向量。
  33. 根据权利要求32所述的装置,其特征在于,所述排序结果是采用如下方式得到的:
    对每一DMRS端口子集内的DMRS端口的编号进行子集内排序,得到每一DMRS端口子集对应的DMRS端口编号的子集内排序结果;
    基于每一DMRS端口子集对应的DMRS端口编号的子集内排序结果,进行DMRS端口子集间排序;
    其中,所述每一DMRS端口子集,为每一CDM组或QCL组包含的DMRS端口所构成的集合。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器采用如下方式之一进行所述DMRS端口子集间排序:
    按照每个DMRS端口子集中的最小DMRS端口编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集所对应的CDM组或QCL组的编号,进行所述DMRS端口子集间排序;或者,
    按照每个DMRS端口子集中包含的DMRS端口数量,进行所述DMRS端口子集间排序。
  35. 根据权利要求30所述的装置,其特征在于,所述QCL组信息,具体包括下列信息之一:
    DMRS图样中,与各码分复用CDM组具有QCL关系的参考信号对应的标识;其中,具有相同所述标识的CDM组,包含的DMRS端口构成同一QCL组,不同的QCL组的DMRS端口对应的所述标识不同,同一QCL组的DMRS端口对应的所述标识相同;
    QCL组中包含的CDM组;
    QCL组中包含的DMRS端口列表。
  36. 根据权利要求30所述的装置,其特征在于,所述处理器以广播、组播或终端的专属方式接收所述通知,从所述通知中的无线资源控制RRC配置、或者媒体接入控制MAC控制单元CE、或者下行控制信息DCI中获取所述DMRS端口的QCL组信息。
  37. 一种数据发送装置,其特征在于,包括:
    确定单元,用于确定预先设定的解调参考信号DMRS端口排序规则;
    发送单元,用于根据所述预先设定的DMRS端口排序规则,将数据层映射到传输时使用的DMRS端口上发送给终端。
  38. 一种数据接收装置,其特征在于,包括:
    确定单元,用于确定预先设定的解调参考信号DMRS端口排序规则;
    接收单元,用于根据所述预先设定的DMRS端口排序规则,接收映射到DMRS端口上发送的数据层。
  39. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指 令,所述计算机可执行指令用于使所述计算机执行权利要求1至18任一项所述的方法。
PCT/CN2018/109895 2017-11-24 2018-10-11 数据传输方法及装置、计算机存储介质 WO2019100859A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18882179.7A EP3716708A4 (en) 2017-11-24 2018-10-11 DATA TRANSMISSION PROCESS AND APPARATUS, AND COMPUTER STORAGE MEDIA
KR1020207018236A KR20200088455A (ko) 2017-11-24 2018-10-11 데이터 전송 방법 및 장치 및 컴퓨터 저장 매체
JP2020528299A JP2021505022A (ja) 2017-11-24 2018-10-11 データ送信方法および装置ならびにコンピュータ記憶メディア
US16/766,700 US11528120B2 (en) 2017-11-24 2018-10-11 Data transmission method and apparatus, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711192554.6A CN109842468B (zh) 2017-11-24 2017-11-24 数据传输方法及装置、计算机存储介质
CN201711192554.6 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019100859A1 true WO2019100859A1 (zh) 2019-05-31

Family

ID=66631798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109895 WO2019100859A1 (zh) 2017-11-24 2018-10-11 数据传输方法及装置、计算机存储介质

Country Status (6)

Country Link
US (1) US11528120B2 (zh)
EP (1) EP3716708A4 (zh)
JP (1) JP2021505022A (zh)
KR (1) KR20200088455A (zh)
CN (1) CN109842468B (zh)
WO (1) WO2019100859A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115241B2 (en) * 2017-03-24 2021-09-07 Apple Inc. DM-RS grouping and CSI reporting for CoMP
CN110034890B (zh) * 2018-01-12 2020-07-10 电信科学技术研究院有限公司 数据传输方法及装置、计算机存储介质
CN111435883B (zh) * 2019-01-11 2021-10-26 华为技术有限公司 准共址指示方法及装置
US11240836B2 (en) * 2019-08-08 2022-02-01 Qualcomm Incorproated Multi-state reference signaling and single-state data techniques
WO2023003290A1 (ko) * 2021-07-20 2023-01-26 엘지전자 주식회사 무선 통신 시스템에서 상향링크 또는 하향링크 송수신을 수행하는 방법 및 장치
CN118575435A (zh) * 2022-01-26 2024-08-30 高通股份有限公司 针对增加的正交dmrs端口和prb集束大小的下行链路调度
WO2024205033A1 (en) * 2023-03-24 2024-10-03 Samsung Electronics Co., Ltd. Apparatus and methods for indicating dmrs ports for user equipment in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804625A (zh) * 2010-01-18 2012-11-28 株式会社泛泰 无线通信系统中分配信道状态信息-基准信号的方法和设备
CN103069761A (zh) * 2010-06-01 2013-04-24 株式会社泛泰 在无线通信系统中分配信道状态信息-基准信号的装置和方法
CN104079384A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 多天线系统的数据传输方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085509A1 (en) * 2010-01-12 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Layer-to dm rs port mapping for lte-advanced
KR101789621B1 (ko) * 2010-01-19 2017-10-25 엘지전자 주식회사 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기
MX2012007390A (es) * 2010-01-20 2012-07-23 Ericsson Telefon Ab L M Metodo de mapeo de puerto de antena y dispositivo para desmodular señales de referencia.
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102299769B (zh) 2011-09-01 2014-06-25 电信科学技术研究院 一种下行控制信息传输方法及装置
WO2013137625A1 (en) * 2012-03-12 2013-09-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control channel in wireless communication system
CN104579595A (zh) * 2013-10-16 2015-04-29 中兴通讯股份有限公司 ePHICH的发送和接收方法及系统
US10250366B2 (en) * 2014-09-24 2019-04-02 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
CN106712915B (zh) * 2015-11-16 2020-06-30 中国移动通信集团公司 一种发送解调参考信号的方法、装置、基站及终端
CN107306177B (zh) 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN107889258B (zh) * 2016-09-30 2020-07-24 华为技术有限公司 获取、下发dmrs端口配置信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804625A (zh) * 2010-01-18 2012-11-28 株式会社泛泰 无线通信系统中分配信道状态信息-基准信号的方法和设备
CN103069761A (zh) * 2010-06-01 2013-04-24 株式会社泛泰 在无线通信系统中分配信道状态信息-基准信号的装置和方法
CN104079384A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 多天线系统的数据传输方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Further discussion on RS for phase tracking", 3GPP TSG RAN WG1 MEETING #88 R1-1702088, 17 February 2017 (2017-02-17), XP051209249 *
See also references of EP3716708A4

Also Published As

Publication number Publication date
JP2021505022A (ja) 2021-02-15
EP3716708A1 (en) 2020-09-30
KR20200088455A (ko) 2020-07-22
EP3716708A4 (en) 2021-01-13
US20200287699A1 (en) 2020-09-10
US11528120B2 (en) 2022-12-13
CN109842468B (zh) 2020-09-01
CN109842468A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2019100859A1 (zh) 数据传输方法及装置、计算机存储介质
RU2729213C1 (ru) Способ для указания информации конфигурации опорного сигнала, базовая станция и терминал
WO2019192405A1 (zh) 上行信号的发送、接收方法及装置、存储介质、电子设备
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
CN109152017B (zh) 一种传输块大小的确定方法和装置
WO2018113618A1 (zh) 参考信号的发送和接收方法,接入网设备和终端设备
US11342966B2 (en) Information indicating and determining method and apparatus, and computer storage medium
WO2019095931A1 (zh) 信息指示、资源确定方法及装置、计算机存储介质
WO2019100873A1 (zh) 数据传输、信息确定方法及装置、计算机存储介质
WO2018133173A1 (zh) 数据传输方法及装置
WO2022206489A1 (zh) 传输配置指示tci状态的确定方法、装置及终端设备
US20140192843A1 (en) Method and apparatus for triggering a ranked transmission
TWI744585B (zh) 資料傳輸方法及裝置、電腦存儲介質
TW201338483A (zh) 處理控制通道的方法及其通訊裝置
WO2023051173A1 (zh) 数据传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018236

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018882179

Country of ref document: EP

Effective date: 20200624