WO2019090935A1 - 光学模组及其加工方法、及终端设备 - Google Patents

光学模组及其加工方法、及终端设备 Download PDF

Info

Publication number
WO2019090935A1
WO2019090935A1 PCT/CN2017/118638 CN2017118638W WO2019090935A1 WO 2019090935 A1 WO2019090935 A1 WO 2019090935A1 CN 2017118638 W CN2017118638 W CN 2017118638W WO 2019090935 A1 WO2019090935 A1 WO 2019090935A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
sensor
cavity
optical
substrate
Prior art date
Application number
PCT/CN2017/118638
Other languages
English (en)
French (fr)
Inventor
董昊翔
韦亚
龙卫
吴宝全
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780017245.7A priority Critical patent/CN109074477B/zh
Priority to EP17931166.7A priority patent/EP3534292A4/en
Publication of WO2019090935A1 publication Critical patent/WO2019090935A1/zh
Priority to US16/432,913 priority patent/US10784298B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the embodiments of the present invention relate to the field of optical devices, and in particular, to an optical module, a processing method thereof, and a terminal device.
  • the mobile terminal is provided with a fingerprint recognition device, and performs operations such as unlocking and password setting through fingerprint recognition.
  • the fingerprint recognition device the capacitive fingerprint recognition device and the optical fingerprint recognition device are two commonly used fingerprint recognition devices.
  • the conventional capacitive fingerprint recognition device has limited penetration capability, complicated ID structure, thick module size, and limited placement position, which is disadvantageous to the thinning and miniaturization of the mobile terminal.
  • the current optical fingerprint recognition device has the characteristics of strong penetrating ability and can support any position under the screen, but on the other hand, when it is set under the screen of the mobile terminal, it needs to overlap with the setting position of the battery of the mobile terminal, and In the package structure of the optical fingerprint recognition device, there are many components stacked; on the other hand, based on the requirement of recognition accuracy, the higher the precision, the higher the thickness of the device, which is also disadvantageous for the thinning and miniaturization of the mobile terminal.
  • the embodiments of the present application provide an optical module, a processing method thereof, and a terminal device, which are used to overcome the thickness of the optical module in the prior art, which is disadvantageous to the thinning and miniaturization of the mobile terminal. problem.
  • an optical module includes a lens and a sensor package, the lens is located at an uppermost portion of the optical module, and is attached to a lower portion of the terminal screen for transmission and wear.
  • the sensor package includes an optical sensor, an upper surface of the optical sensor has a photosensitive area for receiving light passing through the lens; and the sensor package has a cavity, and the photosensitive area of the optical sensor receives the light passing through the screen through the cavity.
  • another optical module including a lens and a sensor package, the lens being located at an uppermost portion of the optical module and attached to a lower portion of the terminal screen for transmission Light passing through the screen;
  • the sensor package includes an optical sensor, an upper surface of the optical sensor having a photosensitive region for receiving light passing through the lens; the lens and the lens There is a cavity between the sensor packages, and the photosensitive area of the optical sensor receives the light passing through the screen through the cavity.
  • an optical module processing method comprising: packaging an optical sensor to form a sensor package having a cavity, wherein an upper surface of the optical sensor has a receiving a photosensitive region of the light, the cavity in the sensor package being located above the photosensitive region of the optical sensor; forming an optical module using the sensor package and a lens for transmitting light, the lens being located The top of the optical module.
  • an optical module processing method comprising: packaging an optical sensor to form a sensor package, wherein an upper surface of the optical sensor has a photosensitive region for receiving light Forming a cavity under the lens for transmitting light; forming an optical module using the sensor package and a lens having a cavity located at an uppermost portion of the optical module, a photosensitive area of the optical sensor Light is received through the cavity.
  • a terminal device comprising the optical module described above.
  • a cavity is disposed in the sensor package encapsulating the optical sensor, and the optical sensor receives light passing through the screen through the cavity to perform imaging.
  • the cavity can be filled with a corresponding gas medium having a low refractive index, which can effectively reduce interference with the imaging light reaching the optical sensor, and ensure the accuracy of fingerprint detection and recognition.
  • the accuracy of detection and recognition is higher at the same thickness compared to the imaging of other media reaching the optical sensor. From another perspective, the same accuracy Thinner thickness, which balances the accuracy and thickness of the optical module, making the optical module thinner while ensuring detection and recognition accuracy.
  • FIG. 1 is a schematic structural view of an optical module according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application;
  • FIG. 3 is a schematic structural diagram of an optical module of a package type 1 according to Embodiment 3 of the present application;
  • FIG. 4 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 6 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 8 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 9 is a schematic structural diagram of an optical module of a package method according to Embodiment 3 of the present application.
  • FIG. 10 is a schematic structural view of an optical module of a package type nine according to an implementation example of the present application.
  • FIG. 11 is a schematic structural view of an optical module generated by a processing method according to Embodiment 4 of the present application.
  • FIG. 12 is a schematic structural view of a first shaped lens of an optical module generated by a processing method according to Embodiment 4 of the present application;
  • FIG. 13 is a schematic structural view of a second shaped lens of an optical module generated by a processing method according to Embodiment 4 of the present application;
  • FIG. 14 is a schematic diagram showing fingerprint recognition using an optical module according to Embodiment 1 of the present application.
  • an optical module includes a lens 10 and a sensor package.
  • the lens 10 is located at an uppermost portion of the optical module and is attached to the bottom of the terminal screen 60 for transmission through the screen 60.
  • Light sensor; the sensor package includes an optical sensor 21 having an upper surface having a photosensitive area 211 for receiving light passing through the lens 10; a cavity 22 in the sensor package, and a photosensitive light of the optical sensor 21. Region 211 receives light that passes through screen 60 through cavity 22.
  • the optical sensor 21 of the optical module is configured to receive light for imaging to image based on the light.
  • a cavity 22 is provided in the sensor package enclosing the optical sensor, and the optical sensor receives light passing through the screen through the cavity to perform imaging.
  • the cavity 22 can be filled with a corresponding gas medium having a low refractive index, which can effectively reduce interference with the imaging light reaching the optical sensor, and ensure the accuracy of fingerprint detection and recognition.
  • the accuracy of detection and recognition is higher at the same thickness compared to the imaging of other media reaching the optical sensor. From another perspective, the same accuracy Thinner thickness, which balances the accuracy and thickness of the optical module, making the optical module thinner while ensuring detection and recognition accuracy.
  • the optical module having the cavity 22 of the present embodiment has a smaller thickness in the case of the same recognition accuracy. Further, by providing the cavity 22 between the lens 10 and the optical sensor 21, the object distance between the optical sensor 21 and the object to be detected can be increased, compared to the optical mode in which the optical sensor 21 directly adheres to the lens 10 in the prior art. The group can reduce the moiré during the detection process and improve the recognition accuracy.
  • the cavity 22 may be an air interlayer or a transparent laminated material; the cavity 22 may be implemented by a suitable packaging process during the packaging process, as long as the lens 10 and the optical The sensor 21 can be between.
  • the thickness of the cavity 22 can be in the range of 200-500 um and can be used to enhance fingerprint recognition performance.
  • the sensor package includes a substrate 23, which may be located at different locations of the sensor package, depending on the requirements.
  • the substrate 23 is located at the bottom of the sensor package, and the optical sensor 21 is located at the upper surface of the substrate 23.
  • the substrate 23 can be located above the optical sensor 21.
  • the substrate 23 is used for mounting and carrying other structures of the sensor package, for example, for mounting the optical sensor 21, and electrically connecting the optical sensor 21 to the substrate 23 to output the signal of the optical sensor 21 to the sensor package through the substrate 23. .
  • the substrate 23 can be implemented by a combination of a soft and hard board, and the thickness of the soft and hard board is higher than that of the SMT (Surface Mount Technology) and the reinforced FPC (Flexible Printed Circuit). It will be thinner, and the thickness of the substrate 23 can be further reduced, thereby reducing the thickness of the entire optical module, and satisfying the requirements of miniaturization and thinning while ensuring the accuracy of detection and recognition.
  • the overall thickness of the substrate 23 using the soft and hard bonding plates may be less than or equal to 1 mm.
  • a circuit can be built in the substrate 23 for outputting the signal of the optical sensor 21.
  • the discrete components 231 may or may not be disposed on the substrate 23.
  • the discrete devices 231 may have resistors for protection, for example, or capacitors for energy storage. Of course, the discrete device 231 can be set as needed.
  • the substrate 23 can be connected to other structures by connecting the wires 91 (as shown in FIG. 1) or the like to realize transmission of signals, electric energy, and the like.
  • the substrate 23 may be connected to other external structures of the sensor package through pads, solder balls 232, or the like to realize transmission of signals, electric energy, and the like.
  • the optical sensor 21 may be a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • the photosensitive area 211 of the photosensitive image is included on the CMOS sensor.
  • the optical sensor 21 may be integrated with a logic circuit and an optical sensor, and has a function of converting the received optical signal into an electrical signal. Through the packaging process, the electrical signal on the sensor can be led out to the outside of the package to facilitate connection of the external device.
  • the optical sensor 21 can be bonded to the upper surface of the substrate 23 through the fourth adhesive layer 84, and the fourth adhesive under the optical sensor 21.
  • Layer 84 may have a thickness greater than or equal to 1 um and is capable of absorbing light of a certain wavelength. According to different product requirements, the wavelength range can be specifically determined to select the material of the fourth binder that meets the demand.
  • the optical sensor 21 can be connected to the substrate 23 by a Wirebond method.
  • the metal pad 212 of the optical sensor 21 can be connected to a pad 233 on the substrate 23.
  • the connection may include a physical connection or a connection of signals and electrical energy.
  • the Wirebond method performs better than the CSP (Chip Scale Package), and is not prone to spherical image interference.
  • the optical sensor 21 can also be electrically connected to the substrate 23 by ball implantation.
  • the optical sensor 21 and the substrate 23 are connected by a bonding wire 90 of the optical module.
  • the bonding wire 90 is used to transfer an electrical signal from the optical sensor 21 to the substrate 23, and a protective glue wrapped around the outside of the bonding wire 90 is provided.
  • the protective rubber layer of the wrapped bonding wire 90 can have characteristics such as low shrinkage ratio and waterproofness, and can better protect the bonding wire 90 from the environment, but is not limited thereto.
  • the bonding wire 90 may be a gold wire and/or a copper wire.
  • the specific material of the bonding wire 90 may be determined according to requirements and costs. For example, when a plurality of bonding wires 90 are required, a part of the wire may be a gold wire or a part of a copper wire. All the bonding wires 90 may have the same material, such as gold wires or copper wires, but are not limited thereto.
  • a plastic encapsulant 24 is further included in the sensor package for encapsulating and protecting the optical sensor 21 and the like.
  • the molding compound 24 forms a supporting structure disposed outside the optical sensor 21 , and the molding compound 24 is disposed on the upper surface of the substrate 23 , and the upper surface of the molding compound 24 is higher than The upper surface of the optical sensor 21 is such that a cavity 22 is formed between the molding compound 24 and the optical sensor 21.
  • a hole that exposes at least the photosensitive region 211 is formed on a portion of the molding compound 24 that is higher than the optical sensor 21, thereby forming a cavity 22 between the molding compound 24 and the optical sensor 21.
  • the top of the molding compound 24 is joined to the screen 60 by a second adhesive layer 82 to form a cavity 22 above the optical sensor 21.
  • the molding compound 24 is a light shielding material.
  • the molding compound 24 may be a dark color for the purpose of blocking light, and other materials capable of absorbing light of a certain wavelength may be selected, but are not limited thereto.
  • the thickness of the support structure formed by the molding compound 24 can be adjusted as needed, as long as the cavity 22 can be formed and the height of the cavity 22 is sufficient.
  • the thickness of the cavity 22 is greater than or equal to 10 um.
  • the support structure is formed by the molding compound 24 compared with the optical module production process including mold (injection molding and the like), so that the optical The thickness adjustment of the module is more flexible and the implementation cost is lower.
  • a lens 10 is bonded to the underside of the screen 60 by a first adhesive layer 81, the lens 10 corresponding to the optical sensor 21, and the cavity 22 being located below the lens 10 above the optical sensor 21.
  • the screen 60 may be an OLED (Organic Light-Emitting Diode) material, but is not limited thereto.
  • the screen 60 may be provided with a foam/black glue layer on the back side, for example, a side of the screen 60 adjacent to the metal cathode or a metal cathode is attached with a foam or black rubber layer to prevent light leakage in some cases, corresponding to the screen 60.
  • the area of the lens 10 is a light transmissive area for light to pass through.
  • the second adhesive layer 82 is further used to bond the molding compound 24 to the screen 60.
  • the molding adhesive 24 can be bonded to the structure of the foam or black rubber layer attached to the screen through the second adhesive layer 82.
  • the second adhesive layer 82 may be a material having a function of absorbing light of a certain wavelength to prevent ambient light from penetrating through the second adhesive layer 82 to cause light leakage, thereby preventing light leakage from affecting the recognition accuracy of the optical sensor 21.
  • the lens 10 may have a function of absorbing light of a certain wavelength to cause the lens 10 to have a certain filtering effect, but is not limited thereto.
  • the lens 10 (Lens) may be provided with an optical modulation hole or channel.
  • the function of the optical modulation hole is similar to that of the small hole imaging.
  • the channel supplies light to form collimated light, and the obliquely incident light collides when passing through the lens 10.
  • the channel walls are absorbed such that the light passing through the lens 10 is direct light.
  • the first adhesive layer 81 of the adhesive lens 10 can be made of a material that can transmit light of a certain wavelength to achieve bonding of the lens 10 while ensuring light transmission without affecting the detection and recognition of the light module.
  • the lens 10 is an optical path modulating device, and realizes special optical path transmission by modulating the optical path for improving fingerprint recognition performance. It can be disposed under the screen 60 and above the optical sensor 21, and can be integrated into the package body through the package, or in the latter stage. Added when the module is assembled. The lens 10 is required to cover the photosensitive area of the optical sensor 21. When the optical module includes the filter layer 30, the lens 10 may be disposed above the filter layer 30 or may be disposed below the filter layer 30. Alternatively, the thickness of the first adhesive layer 81 may be less than or equal to 200 um.
  • the sensor package further includes a spacer 25 on the upper surface of the molding compound 24, and a cavity 22 is formed between the spacer 25 and the optical sensor 21.
  • the spacer 25 is a perforated spacer, and the aperture on the spacer 25 corresponds to the photosensitive area 211 of the optical sensor 21 to form the cavity 22 between the spacer 25 and the optical sensor 21.
  • the substrate 23 has an opening
  • the optical sensor 21 is located in the opening of the substrate 23, and the upper surface of the substrate 23 is higher than the upper surface of the optical sensor 21, and is formed between the substrate 23 and the optical sensor 21. Cavity 22.
  • the carrier 26 may be used instead of the substrate 23.
  • the sensor package may further include a carrier 26 located at a lowermost portion of the sensor package.
  • the side of the carrier 26 is coated with the optical sensor 21 to increase the area of the package other than the optical sensor 21, thereby realizing the expansion of the Fan-out rewiring area and protecting the chip.
  • the carrier 26 may be a silicon wafer, which may be a molding compound or a substrate. It is possible to form the recess in which the optical sensor 21 is placed by the trenching process, or to cover the optical sensor 21 by the Open Mold process.
  • the optical sensor 21 can be coated by the molding compound 24 to form a structure similar to the carrier 26 for carrying and protecting the optical sensor 21.
  • the carrier 26 can also be formed by other processing techniques using other materials. Taking the formation of the molding compound 24 as an example, the optical sensor 21 is located on the upper surface of the molding compound 24, and the upper surface of the carrier 26 (i.e., the molding compound 24) is flush with the upper surface of the optical sensor 21.
  • the carrier 26 has an opening
  • the optical sensor 21 is located in the opening of the carrier 26, and the upper surface of the carrier 26 is flush with the upper surface of the optical sensor 21.
  • An upper conductive material 27 or a spacer 25 is disposed above the plastic encapsulant 24 or above the carrier 26, and a cavity 22 is formed between the mutual conductive material 27 or the spacer 25 and the optical sensor 21.
  • the inter-edge conductor 27 or the spacer 25 is of a perforated structure, and the cavity 22 may be formed between the hole of the mutual-side conductor 27 or the spacer 25 and the optical sensor 21.
  • the optical module further includes a filter layer 30 between the lens 10 and the optical sensor 21.
  • the filter layer 30 may be a filter, and the filter has the function of absorbing light of a certain range of wavelengths, and can be filtered according to requirements, which is equivalent to a band pass filter.
  • the filter layer 30 can filter at least a portion of the light, thereby preventing unwanted light from causing interference and influence on the detection and recognition of the optical sensor 21.
  • the user's finger placement position is not standardized, causing a part of the ambient light.
  • the optical sensor 21 may be inaccurate or unrecognizable, and unnecessary light generated by the ambient light needs to be removed. Thereby preventing the recognition accuracy from being affected.
  • the filter layer 30 is bonded to the upper optical sensor 21 through a third adhesive layer 83 (shown in FIG. 1), which has a function of transmitting light of a certain range of wavelengths, and a certain range.
  • the specific value can be determined according to the different needs of the product.
  • the filter layer 30 is a filter, at least one surface of the filter may be provided with a reflective coating, which can reflect a part of the wavelength of light, thereby avoiding unnecessary light transmission, where the light to be filtered is
  • the upper and lower surfaces of the optical filter which adversely affect the recognition accuracy may be provided with a reflective plating layer, or a reflective plating layer may be provided on only one surface, or may not be provided.
  • the area of the filter layer 30 covers the photosensitive area 211 of the optical sensor 21 and is placed vertically below the lens 10.
  • the area of the filter layer 30 is greater than or equal to the area of the photosensitive area 211 of the optical sensor 21, and the area of the lens 10 is greater than or equal to the area of the filter layer 30. This ensures that the light reaching the filter layer 30 passes through the processing of the lens 10 (for example, focusing processing).
  • the area of the filter layer 30 is greater than or equal to the area of the photosensitive area 211 of the optical sensor 21, and the filter layer 30 covers the photosensitive area 211 of the optical sensor 21, ensuring that light reaching the photosensitive area 211 of the optical sensor 21 passes through the filter layer 30. Processing to ensure the accuracy of detection and recognition of optical modules.
  • the filter layer 30 may be made of a transparent or translucent material, and the surface may be disposed above the optical sensor 21 by a coating film to cut off light of a specific wavelength band.
  • the optical sensor 21 may be directly used as a substrate directly on the optical sensor 21.
  • the surface coating achieves a filtering effect.
  • the optical signal transmission between the optical sensor 21 and the optical sensor 21 can be integrated into the package by the package or can be added during assembly of the rear module.
  • the filter layer 30 can be disposed under the screen 60 and above the optical sensor 21, and can be integrated into the package body by a package; it can be externally placed separately, added when the module is assembled; or it can be set according to actual needs.
  • the filter layer 30 is sized to cover the photosensitive area 211 of the optical sensor 21.
  • the lens 10 may be bonded to the filter layer 30 through a transparent DAF, or framed by a film and a filter layer 30, or the lens 10 may be directly externally attached to the module when assembled.
  • the filter layer 30 may be attached through the transparent DAF or through the film frame over the cavity 22, or externally, and added when the module is assembled.
  • the optical module includes the filter layer 30 and the electrical connection between the optical sensor 21 and the substrate 23 is realized by the bonding wire 90, as shown in FIG. 1, the arc height of the bonding wire 90 is shorter than the optical sensor. The sum of the thickness of 21 and filter layer 30. That is, the highest point of the bend of the bonding wire 90 does not exceed the top surface of the filter layer 30.
  • the overall thickness of the optical module has a total thickness greater than 0.8 mm and may not exceed 1.1 mm.
  • the thickness of the substrate 23 ranges from 50 ⁇ m to 500 ⁇ m, preferably 400 ⁇ m.
  • the thickness of the support structure formed by the molding compound 24 is determined depending on the height of the cavity 22, for example, 500 ⁇ m.
  • the thickness of the second adhesive layer 82 ranges from 10 ⁇ m to 1 mm, preferably 200 ⁇ m.
  • the thickness of the lens 10 ranges from 50 ⁇ m to 400 ⁇ m, preferably 150 ⁇ m.
  • the thickness of the first adhesive layer 81 between the lens 10 and the screen 60 ranges from 0 to 100 ⁇ m, and the smaller the thickness, the better, preferably 50 ⁇ m.
  • the thickness of the cavity 22 ranges from greater than 10 ⁇ m, and the larger the ideal, the better, preferably 250 ⁇ m.
  • the thickness of the filter layer 30 ranges from 50 ⁇ m to 400 ⁇ m, preferably 110 ⁇ m.
  • the thickness of the optical sensor 21 ranges from 25 ⁇ m to 650 ⁇ m, preferably 100 ⁇ m.
  • the thickness of the third adhesive layer 83 between the optical sensor 21 and the filter layer 30 ranges from greater than 10 ⁇ m, preferably to 20 ⁇ m.
  • the thickness of the fourth adhesive layer 84 between the optical sensor 21 and the substrate 23 ranges from greater than 10 ⁇ m, preferably to 20 ⁇ m.
  • an optical module is provided.
  • the optical module of the embodiment is different from the optical module of the first embodiment.
  • the cavity of the optical module of the embodiment is located outside the sensor package.
  • the optical module of the embodiment includes a lens 10 and a sensor package.
  • the lens 10 is located at the uppermost portion of the optical module and is attached to the bottom of the terminal screen for transmitting light passing through the screen.
  • the sensor package includes The optical sensor 21, the upper surface of the optical sensor 21 has a photosensitive area 211 for receiving light passing through the lens 10; a cavity 22 between the lens 10 and the sensor package, and the photosensitive area 211 of the optical sensor 21 passes The cavity 22 receives light that passes through the screen.
  • the optical module has a cavity 22, and the cavity 22 can be filled with a corresponding gas medium.
  • the refractive index of the gas medium is low, which can effectively reduce the interference of the imaging light reaching the optical sensor, and ensure the fingerprint.
  • Accuracy of detection and identification In optical modules with the same level of accuracy as traditional implementations, the accuracy of detection and recognition is higher at the same thickness compared to the imaging of other media reaching the optical sensor. From another perspective, the same accuracy Thinner thickness, which balances the accuracy and thickness of the optical module, making the optical module thinner while ensuring detection and recognition accuracy.
  • the sensor package may include a substrate 23, a filter layer 30, a molding compound 24, and the like in addition to the optical sensor 21.
  • the optical sensor 21 is disposed on the upper surface of the substrate 23, and the metal pad 212 of the optical sensor 21 and the pad on the substrate 23 are connected by a bonding wire 90.
  • the filter layer 30 is disposed on the upper surface of the optical sensor 21 and covers at least the photosensitive region 211.
  • the molding compound 24 encapsulates the substrate 23, the filter layer 30, and the optical sensor 21, and the upper surface is flush with the upper surface of the filter layer 30.
  • the functions of the substrate 23, the filter layer 30, and the molding compound 24 of the present embodiment are the same as those of the substrate 23, the filter layer 30, and the molding compound 24 in the first embodiment, and thus will not be described herein.
  • the optical module further includes a spacer 25, the spacer 25 is located between the lens 10 and the sensor package, the spacer 25 is a perforated spacer, and the lens 10 and the sensor package pass through the pad.
  • the aperture of sheet 25 forms a cavity 22.
  • the spacer 25 may be of other construction as long as the cavity 22 can be formed between the lens 10 and the sensor package.
  • the grooves can be machined directly onto the lens 10 and the lens 10 and the sensor package can be formed through the grooves in the lens 10 to form the cavity 22.
  • an optical module processing method for processing the optical module in the first embodiment or the second embodiment is provided.
  • the optical module processing method of this embodiment includes: packaging the optical sensor 21 to form a sensor package having a cavity 22, wherein the upper surface of the optical sensor 21 has a photosensitive region 211 for receiving light, in the sensor package
  • the cavity 22 is located above the photosensitive area 211 of the optical sensor 21; an optical module is formed using the sensor package and the lens 10 for transmitting light, and the lens 10 is located at the uppermost portion of the optical module.
  • the optical module processing method has high integration of the optical module package. Since the optical module has an air gap 22, the cavity 22 can be filled with a gaseous medium such as air, and the refractive index of the gaseous medium is higher. Low, can effectively reduce the interference of the imaging light reaching the optical sensor, ensure the accuracy of fingerprint detection and recognition, and at the same time reduce the overall thickness of the optical module. In addition, by integrating the optical sensor 21 and the cavity 22, the package integration degree is improved, the overall thickness of the optical module is reduced, and the fingerprint image quality is improved.
  • a structure for applying an optical module processed by the optical module processing method of the embodiment to a mobile terminal is as shown in FIG. 14 , and the optical module can be used for a full screen mobile terminal, and an optical for fingerprint recognition
  • the module is installed under the screen 60, and the light emitted by the screen 60 is irradiated onto the surface of the finger surface and then reflected to the surface of the lens 10, and then modulated (focused) by the optical path of the lens 10 and then passed through the cavity 22 (the light layer 30 can be filtered as needed)
  • the image is imaged on the surface of the optical sensor 21, and finally the optical signal is captured by the optical sensor 21 and converted into an electrical signal to read the fingerprint.
  • processing of the optical module described above can be implemented by any of the following processing methods.
  • the optical sensor 21 is connected to the substrate 23 before the optical sensor 21 is packaged to form a sensor package having the cavity 22.
  • the optical sensor 21 can be bonded to the substrate 23 and the optical sensor 21 can be electrically connected to the substrate 23.
  • the optical sensor 21 (which may be a single sensor chip) is bonded to the upper surface of the substrate 23 by using Epoxy (epoxy resin) or DAF (Die-Attach Film, adhesive layer), and optical The photosensitive area 211 of the sensor 21 faces upward.
  • Epoxy epoxy resin
  • DAF Die-Attach Film, adhesive layer
  • the optical sensor 21 is electrically connected to the substrate 23 by a bonding wire 90.
  • the processed optical module is shown in Figures 2 and 3.
  • the optical sensor 21 may be packaged by a first packaging process and a sensor package having a cavity 22 formed to encapsulate the optical sensor 21 to form a sensor package having a cavity 22.
  • the filter layer 30 can be disposed on the optical sensor 21 as needed. If the filter layer 30 is provided, the method further comprises: attaching the filter layer 30 to the upper surface of the optical sensor 21 with a transparent glue or a transparent DAF, so that the filter layer 30 covers at least the photosensitive region 211 of the optical sensor 21. This causes the optical sensor 21 to be positioned between the filter layer 30 and the substrate 23.
  • the first packaging process may be a special-shaped open mold process (a Molding process, which can realize the shape set by the molding compound after Molding), and the optical sensor 21, the filter layer 30 and the substrate 23 are packaged by the plastic sealant 24 to form a sensor.
  • the package body and a cavity 22 is formed between the molding compound 24 and the optical sensor 21.
  • the molding is performed by the method of the shaped OpenMold, the upper surface of the filter layer 30 is ensured to be exposed to form the cavity 22.
  • a solder ball 232 can be implanted on the pad on the lower surface of the substrate 23 (whether the solder ball can be determined according to specific needs or directly retained), and the package is cut.
  • the packaged sensor package is shown in Figure 3.
  • the lens 10 is bonded to the upper surface of the diced single sensor package to form an optical module with the lens 10 at the top of the optical module.
  • the encapsulation process is similar to the encapsulation mode. Therefore, the same encapsulation process will not be described here. Only different encapsulation processes are described:
  • the first packaging process may be an open mold process (a Molding process, the surface of the chip may be exposed after Molding), and the optical sensor 21, the filter layer 30 and the substrate 23 are packaged by the plastic sealant 24 to filter
  • the upper surface of the optical layer 30 is flush with the upper surface of the molding compound 24, and the molding compound 24 is exposed.
  • a spacer 25 is attached to the upper surface of the molding compound 24 to form a cavity 22 between the spacer 25 and the optical sensor 21, and a sensor package is formed.
  • a spacer 25 provided on the upper surface of the molding compound 24 is a perforated spacer in which a cavity 22 is formed.
  • a solder ball 232 can be implanted on the pad on the lower surface of the substrate 23, and finally the package is cut.
  • the sensor package of the package is shown in FIG.
  • the lens 10 is bonded to the upper surface of the diced single sensor package to form an optical module with the lens 10 at the top of the optical module.
  • the packaging process includes: packaging the optical sensor 21 by a first packaging process, and forming a sensor package having a cavity 22, and the packaged optical module is as shown in FIG.
  • a filler layer is provided on the upper surface of the filter layer 30.
  • the thickness of the filler layer can be determined according to the height of the cavity 22 to be formed, for example, 200-500 um.
  • the filler layer may be formed of a photosensitive material to facilitate peeling.
  • the filter layer 30 having a filler layer is bonded to the upper surface of the optical sensor 21 such that the filter layer 30 covers at least the photosensitive region 211 of the optical sensor 21, and the optical sensor 21 is positioned between the filter layer 30 and the substrate 23.
  • the adhesion between the optical sensor 21 and the filter layer 30 may be a transparent DAF or the like.
  • the first packaging process may be an open mold process in which the optical sensor 21, the filler layer, the filter layer 30, and the substrate 23 are encapsulated by a molding compound 24.
  • the filler layer is peeled off to form a cavity 22 between the molding compound 24 and the optical sensor 21, and a sensor package is formed.
  • the release filler layer may be stripped and stripped using a release agent leaving only the cavity 22. Finally, the cut is made and the package is cut into individual pieces.
  • the lens 10 which has etched the parallel light tunnel 11 on the lens substrate, is bonded to the sensor package structure by, for example, a frame.
  • the process of bonding the optical sensor 21 to the substrate 23 and electrically connecting the optical sensor 21 to the substrate 23 in the processing method of the optical module includes:
  • a through hole is formed in the substrate 23.
  • a ball bump is formed on the wafer of the optical sensor chip by a bump process (also known as a ball placement process), and the optical sensor 21 is formed by dicing.
  • the optical sensor 21 is connected to the substrate 23 by a flip chip process, and the optical sensor 21 is electrically connected to the substrate 23 through the ball, at this time, the metal pad 212 of the optical sensor 21 and the pad 233 on the substrate 23. Electrical connection is achieved by bumping the ball.
  • the process of packaging the optical sensor 21 by the first packaging process and forming the sensor package having the cavity 22 in the processing method of the optical module includes:
  • the first packaging process may be a mold process (an injection molding process in which a chip is packaged with a package carrier using a Molding die, and then the molding glue is potted inside the mold to achieve the purpose of molding).
  • the optical sensor 21 is sealed by underfill dispensing (underfill dispensing), for example by underfill dispensing, forming a fourth adhesive layer 84, sealing the optical sensor 21 and the substrate 23 through the fourth adhesive layer 84, and forming The fourth adhesive layer 84 exposes at least the photosensitive area of the optical sensor 21.
  • the optical sensor 21 and the substrate 23 are packaged by a first packaging process, and a cavity 22 is formed between the substrate 23 and the optical sensor 21, and a sensor package is formed. Finally, the package is cut to form a single sensor package.
  • the lens 10 is bonded to a single sensor package and an optical module is formed such that the lens 10 is located at the top of the optical module.
  • the optical sensor 21 is bonded to the substrate 23, and the optical sensor 21 is electrically connected to the substrate 23, including:
  • a through hole is formed in the substrate 23.
  • the optical sensor chip is processed by the TSV process (Through Silicon Vias), and the TSV process is performed on the wafer of the optical sensor chip.
  • the metal pad 212 on the upper surface of the optical sensor chip is electrically connected to the rewiring pad on the lower surface of the optical sensor chip through the TSV hole.
  • the optical sensor chip is bonded to the substrate 23, and the optical sensor chip is electrically connected to the substrate 23 by the bonding wire 90.
  • the filter layer 30 is bonded to the substrate 23.
  • the optical sensor chip is bonded to the filter layer 30, and the filter layer 30 covers at least the photosensitive region 211 of the corresponding optical sensor chip.
  • the rewiring pads of the optical sensor chip are electrically connected to the pads 233 of the substrate 23 by the bonding wires 90.
  • the method of packaging the optical sensor 21 by the first packaging process in the processing method of the optical module, and forming the sensor package having the cavity 22 includes:
  • the first packaging process can be a mold process.
  • the optical sensor chip, the filter layer 30 and the substrate 23 are encapsulated by the plastic encapsulation 24 by a first encapsulation process, and the sensor package is formed by a single cutting.
  • the sensor chip in each sensor package is an optical sensor 21, which is empty.
  • the cavity 22 is formed between the substrate 23 and the optical sensor 21, for example, at the through hole of the substrate 23 in Fig. 7, above the filter layer 30.
  • the lens 10 is bonded to the sensor package formed after cutting to form an optical module, and the lens 10 is positioned at the uppermost portion of the optical module.
  • the optical module processing method further includes forming a through hole in the substrate 23 .
  • the process of packaging the optical sensor 21 in the optical module processing method to form the sensor package having the cavity 22 includes: through the fan-out process (fan-out type package, the electrical signal can be taken out of the chip area) to the optical
  • the sensor chip is packaged and forms a rewiring pad that is electrically connected to the metal pad on the optical sensor chip.
  • a ball bump 92 is formed on the rewiring pad.
  • the optical sensor chip and the substrate 23 are electrically connected by a ball transfer through an SMT process.
  • the fourth adhesive layer 84 is formed by underfill dispensing, the optical sensor chip is sealed by the fourth adhesive layer 84, and the photosensitive region 211 of the optical sensor chip is exposed from the through hole of the substrate 23.
  • the filter layer 30 can be attached to the upper surface of the photosensitive region 211 as needed for filtering. Perform a single cut and form a sensor package.
  • the optical sensor chip in each sensor package is an optical sensor 21, and the cavity 22 is formed between the substrate 23 and the optical sensor 21.
  • the lens 10 is bonded to the sensor package formed after cutting to form an optical module, and the lens 10 is positioned at the uppermost portion of the optical module.
  • the optical sensor 21 in the optical module processing method is packaged to form a sensor package having a cavity 22, including:
  • the wafer of the optical sensor chip is thinned and diced to form a single optical sensor 21.
  • the optical sensor 21 is coupled to the carrier 26 such that the upper surface of the optical sensor 21 is flush with the upper surface of the carrier 26.
  • the carrier 26 can be a carrier of any suitable material.
  • the optical sensor 21 is coupled to the carrier 26 by digging holes in the carrier 26 and bonding the optical sensor 21 into the aperture by an adhesive to bring the upper surface of the optical sensor 21 to the upper side of the carrier 26. The surface is flush.
  • a first insulating layer may be formed on the upper surface of the carrier 26 and the upper surface of the metal pad 212 of the optical sensor 21.
  • the redistribution layer 93 electrically connected to the metal pad 212 of the optical sensor 21 is formed on the first insulating layer by a fan-out process.
  • a second insulating layer is formed on the redistribution layer.
  • the redistribution layer that is, the RDL rewiring, realizes the extraction of the optical signal of the optical sensor chip by metal rewiring, and is disposed on the surface of the optical sensor chip and the surface of the carrier carrier (ie, the carrier 26).
  • the RDL rewiring is to take the electrical signal of the optical sensor 21 out of the non-photosensitive area by Fan-out processing metal rewiring, and may be disposed on the upper surface of the non-photosensitive area of the chip surface, or may be disposed on the upper surface of the carrier.
  • the optical sensor 21 directs an electrical signal to the upper surface of the carrier by RDL rewiring, or directs the electrical signal to the upper surface of the other structure by RDL rewiring.
  • a mutual side conductor 27 with a through hole is bonded to the second insulating layer.
  • the ball is implanted on the mutual conductive material 27, the ball 92 is electrically connected to the redistribution layer 93 (RDL trace), and the sensor package is formed, and the cavity 22 is formed between the mutual conductive material 27 and the optical sensor 21.
  • RDL trace redistribution layer 93
  • the sensor package is formed, and the cavity 22 is formed between the mutual conductive material 27 and the optical sensor 21.
  • a cavity 22 is formed at the hole of the mutual-side conductor 27.
  • the redistribution layer 93 needs to avoid the photosensitive region, which can be expanded on the upper surface of the first insulating layer.
  • the second insulating layer can function to protect the redistribution layer 93.
  • the ball 92 can be interconnected with external components such as a circuit board to achieve electrical connection.
  • the first insulating layer and the second insulating layer are used for circuit insulation protection and are disposed above and below the RDL redistribution layer. It may not cover the photosensitive area 211 of the optical sensor 21 or may cover the photosensitive area of the optical sensor 21.
  • the insulating layer material may remain only in the non-sensing area of the optical sensor 21 by exposure development, or may be made of a transparent material and remain above the sensing area of the optical sensor 21.
  • Bump which can electrically connect the optical sensor 21 to an external device and is disposed on the surface of the package.
  • the ball is placed above the non-photosensitive area for connection with external devices to achieve electrical connection of the optical sensor chip, or according to actual needs, the bump can be left without leaving a bump.
  • the mutual-side conductive material may be a silicon wafer, which may be an organic material or a substrate, and can transmit electrical signals from one side to the other.
  • the hollow gasket can be a plastic seal or a metal sheet.
  • the cavity 22 may be replaced by a transparent laminate (such as glass) that is directly attached over the optical sensor 21 or above the filter layer 30.
  • the lens 10 and the filter layer 30 may be attached to the profiled Fan-out package formed by the fan-out process through a transparent DAF or a frame to form an optical module.
  • the optical module it is necessary to ensure that the lens 10 and the filter layer 30 cover the entire photosensitive region 211.
  • packaging process differs from the packaging method 7 in the material of the carrier 26 and the connection with the optical sensor 21.
  • Other packaging processes may be the same as the packaging method 7 or only simple adaptive adjustment, and therefore will not be described here.
  • the optical sensor 21 is coupled to the carrier 26 in the processing method of the optical module, and the upper surface of the optical sensor 21 is flush with the upper surface of the carrier 26, including:
  • the optical sensor 21 is molded by an open mold process using a molding compound 24 (for example, an EMC molding compound), and the molding compound 24 is formed under the optical sensor 21 to form a carrier 26 such that the upper surface of the carrier 26 and the upper surface of the optical sensor 21. Flush.
  • a molding compound 24 for example, an EMC molding compound
  • the difference from the packaging method 7 mainly lies in the process of packaging the optical sensor 21 to form the sensor package having the cavity 22.
  • the other processes are the same as or similar to the packaging method 7. This will not be repeated here.
  • the process of packaging the optical sensor 21 to form the sensor package having the cavity 22 includes:
  • a spacer 25 having a through hole is bonded to the second insulating layer.
  • a hole is formed in the second insulating layer and the ball is implanted to electrically connect the ball to the redistribution layer, and a sensor package is formed, and a cavity 22 is formed between the spacer 25 and the optical sensor 21.
  • an optical module processing method for processing the optical module in the first embodiment or the second embodiment is provided.
  • the optical module processing method in this embodiment is different from the optical module in the third embodiment in that the cavity 22 is formed on the lens 10, and the sensor package may be a conventional package.
  • the optical module processing method of the present embodiment includes: packaging the optical sensor 21 to form a sensor package, wherein the upper surface of the optical sensor 21 has a photosensitive region 211 for receiving light; and is formed under the lens 10 for transmitting light.
  • the cavity 22 is formed using a sensor package and a lens 10 having a cavity 22, the lens 10 being located at the uppermost portion of the optical module, and the photosensitive region 211 of the optical sensor 21 receiving light through the cavity 22.
  • the optical module processing method can improve the package integration degree of the optical module, reduce the package thickness, and add the cavity 22 (Air Gap), and improve the package integration degree by reducing the integration of the optical sensor 21 and the cavity 22.
  • the overall thickness of the optical module improves the quality of the fingerprint image.
  • the cavity 22 of the optical module can be formed on the lens 10, and the sensor package adopts an LGA package structure, thereby reducing the packaging difficulty.
  • forming the cavity 22 under the lens 10 for transmitting light includes bonding the apertured spacer 25 below the lens 10 and forming the cavity 22 at the aperture of the spacer 25.
  • the parallel light tunnel 11 is processed by dry etching (or laser) on a single lens substrate, and the lens 10 is produced.
  • a perforated spacer 25 of a certain thickness e.g., 200-500 um
  • the cutting is performed, and the shaped lens (Lens) is cut into individual pieces, and the shaped lens formed by cutting is shown in FIG.
  • forming the cavity 22 beneath the lens 10 for transmitting light includes machining the groove below the lens 10 and forming the cavity 22 at the groove.
  • a groove is first processed on a lens substrate by dry etching (or wet etching, etc.); then a parallel light channel 11 is processed on the upper surface of the groove; finally, cutting is performed to cut the shaped lens.
  • a single, cut-shaped shaped lens is shown in Figure 13.
  • the process of forming the sensor package is as follows: the substrate 23, the optical sensor 21, and the filter layer 30 are bonded together to complete the wire bond processing, and the metal pad 212 of the optical sensor 21 is electrically connected to the substrate 23, and then The Open mold package exposes the top surface of the filter layer 30 from the molding compound 24; finally, the cutting is performed to cut the package into individual pieces.
  • the sensor package and the lens 10 are combined by a transparent DAF or a frame to realize the optical module shown in FIG.
  • a terminal device which includes the above optical module.
  • the terminal device adopts the above optical module, and can reduce the volume and achieve the goal of thinning and thinning while ensuring performance.
  • the terminal device having the above optical module can reduce the volume while ensuring the recognition accuracy, thereby achieving the goal of slimming.
  • the terminal device may be a mobile terminal device such as a mobile phone, a portable tablet, a video camera, a camera, or the like. It can also be a device such as a punch card machine.

Abstract

本申请实施例提供一种光学模组及其加工方法、及终端设备,属于光学设备技术领域。该光学模组包括透镜和传感器封装体,透镜位于光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过屏幕的光线;传感器封装体中包括光学传感器,光学传感器的上表面具有感光区域,感光区域用于接收穿过透镜的光线;传感器封装体中具有空腔,且光学传感器的感光区域通过空腔接收穿过屏幕的光线。该光学模组能够平衡厚度和性能,保证检测和识别的准确性,且减小厚度。

Description

光学模组及其加工方法、及终端设备 技术领域
本申请实施例涉及光学设备技术领域,尤其涉及一种光学模组及其加工方法、及终端设备。
背景技术
随着通信技术的发展,移动终端正被广泛应用于人们的日常生活和工作中。目前,移动终端中都设置有指纹识别装置,通过指纹识别进行解锁、密码设置等诸多操作。在指纹识别装置中,电容式指纹识别装置和光学指纹识别装置是两种较为常用的指纹识别装置。
但是,传统的电容式指纹识别装置穿透能力有限、ID结构复杂、模组尺寸偏厚、摆放位置受限,不利于移动终端的轻薄化和小型化。而目前的光学指纹识别装置虽然具有穿透能力强,可支持屏幕下任意位置摆放等特点,但一方面,将其设置在移动终端屏幕下方时,需要与移动终端电池的设置位置重叠,且光学指纹识别装置的封装结构中零部件叠层多;另一方面,基于识别精度的要求,精度越高则该装置的厚度也会越高,同样不利于移动终端的轻薄化和小型化。
发明内容
有鉴于此,本申请实施例提供了一种光学模组及其加工方法、及终端设备,用以克服现有技术中的光学模组厚度较大,不利于移动终端的轻薄化和小型化的问题。
根据本申请实施例的第一方面,提供了一种光学模组,包括透镜和传感器封装体,所述透镜位于所述光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过所述屏幕的光线;所述传感器封装体中包括光学传感器,所述光学传感器的上表面具有感光区域,所述感光区域用于接收穿过所述透镜的光线;所述传感器封装体中具有空腔,且所述光学传感器的感光区域通过所述空腔接收所述穿过屏幕的光线。
根据本申请实施例的第二方面,提供了另一种光学模组,包括透镜和传感器封装体,所述透镜位于所述光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过所述屏幕的光线;所述传感器封装体中包括光学传感器,所述光学传感器的上表面具有感光区域,所述感光区域用于接收穿过所述透镜的光线;所述透镜与所述传感器封装体之间具有空腔,且所述光学传感器的感光区域通过所述空腔接收所述穿过屏幕的光线。
根据本申请实施例的第三方面,提供了一种光学模组加工方法,其包括:对光学传感器进行封装形成具有空腔的传感器封装体,其中,所述光学传感器的上表面具有用于接收光线的感光区域,所述传感器封装体中的所述空腔位于所述光学传感器的感光区域的上方;使用所述传感器封装体和用于传输光线的透镜形成光学模组,所述透镜位于所述光学模组的最上方。
根据本申请实施例的第四方面,提供了一种光学模组加工方法,其包括:对光学传感器进行封装形成传感器封装体,其中,所述光学传感器的上表面具有用于接收光线的感光区域;在用于传输光线的透镜下方形成空腔;使用所述传感器封装体和具有空腔的透镜形成光学模组,所述透镜位于所述光学模组的最上方,所述光学传感器的感光区域通过所述 空腔接收光线。
根据本申请实施例的第五方面,提供了一种终端设备,其包括上述的光学模组。
由以上技术方案可见,本申请实施例的光学模组中,在封装有光学传感器的传感器封装体中设置空腔,光学传感器通过空腔接收穿过屏幕的光线,进而进行成像。空腔中可以填充相应的气体介质,该气体介质的折射率较低,能够有效减少对到达光学传感器的成像用光线的干扰,保证指纹检测和识别的准确度。与传统的实现同等准确度的光学模组中,光线经其它介质到达光学传感器的成像相比,在相同的厚度下,检测和识别的准确度更高,从另一个角度看,同样的准确度厚度更薄,从而实现平衡光学模组的准确性和厚度的效果,在保证检测和识别准确率的情况下使光学模组更薄。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本申请的实施例一的光学模组的结构示意图;
图2示出了根据本申请的实施例三的封装方式二的光学模组的结构示意图;
图3示出了根据本申请的实施例三的封装方式一的光学模组的结构示意图;
图4示出了根据本申请的实施例三的封装方式三的光学模组的结构示意图;
图5示出了根据本申请的实施例三的封装方式四的光学模组的结构示意图;
图6示出了根据本申请的实施例三的封装方式六的光学模组的结构示意图;
图7示出了根据本申请的实施例三的封装方式五的光学模组的结构示意图;
图8示出了根据本申请的实施例三的封装方式七的光学模组的结构示意图;
图9示出了根据本申请的实施例三的封装方式八的光学模组的结构示意图;
图10示出了根据本申请的实施三例的封装方式九的光学模组的结构示意图;
图11示出了根据本申请的实施例四的加工方法生成的光学模组的结构示意图;
图12示出了根据本申请的实施例四的加工方法生成的光学模组的第一种异形透镜的结构示意图;
图13示出了根据本申请的实施例四的加工方法生成的光学模组的第二种异形透镜结构示意图;
图14示出了根据本申请的实施例一的利用光学模组进行指纹识别的示意图。
附图标记说明:
10、透镜;11、平行光通道;21、光学传感器;211、感光区域;212、金属焊盘;22、空腔;23、基板;231、分立器件;232、锡球;233、焊盘;24、塑封胶;25、垫片;26、载体;27、互边导电物;30、滤光层;60、屏幕;81、第一粘结剂层;82、第二粘结剂层;83、第三粘结剂层;84、第四粘结剂层;90、焊线;91、排线;92、植球;93、重布线层。
具体实施方式
为使得本申请实施例的发明目的、特征、优点能够更加的明显和易懂,下面将结合本 申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请实施例一部分实施例,而非全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
实施例一
如图1所示,根据本申请实施例,光学模组包括透镜10和传感器封装体,透镜10位于光学模组的最上方,且贴合于终端屏幕60下方,用于传输穿过屏幕60的光线;传感器封装体中包括光学传感器21,光学传感器21的上表面具有感光区域211,感光区域211用于接收穿过透镜10的光线;传感器封装体中具有空腔22,且光学传感器21的感光区域211通过空腔22接收穿过屏幕60的光线。
该光学模组的光学传感器21用于接收成像用的光线,从而根据这些光线成像。在封装有光学传感器的传感器封装体中设置空腔22,光学传感器通过空腔接收穿过屏幕的光线,进而进行成像。空腔22中可以填充相应的气体介质,该气体介质的折射率较低,能够有效减少对到达光学传感器的成像用光线的干扰,保证指纹检测和识别的准确度。与传统的实现同等准确度的光学模组中,光线经其它介质到达光学传感器的成像相比,在相同的厚度下,检测和识别的准确度更高,从另一个角度看,同样的准确度厚度更薄,从而实现平衡光学模组的准确性和厚度的效果,在保证检测和识别准确率的情况下使光学模组更薄。
相较于现有技术中采用粘结胶粘结滤光片与透镜的光学模组,在相同的识别准确度的情况下,本实施例的具有空腔22的光学模组的厚度更小。此外,通过在透镜10和光学传感器21之间设置空腔22,可以增加光学传感器21和被检测物之间的物距,相比现有技术中光学传感器21直接与透镜10贴合的光学模组,可以降低检测过程中的摩尔纹,提高识别准确度。
可选地,在本实施例中,空腔22可以是空气夹层,也可以采用透明叠层物质替代;在封装过程中该空腔22可以通过合适的封装加工实现,位置只要在透镜10与光学传感器21之间即可。空腔22的厚度可以在200-500um范围内,可以用于提升指纹识别性能。
可选地,传感器封装体中包括基板23,根据需求的不同,基板23可以位于传感器封装体的不同位置。
例如,在一具体实现中,如图1所示,基板23位于传感器封装体的最下方,光学传感器21位于基板23的上表面。
在另一具体实现中,基板23可以位于光学传感器21的上方。
基板23用于安装和承载传感器封装体的其他结构,例如用于安装光学传感器21,并实现光学传感器21与该基板23电连接,以通过该基板23将光学传感器21的信号输出到传感器封装体外。
在本实施例中,基板23可以采用软硬结合板的实现方式,软硬结合板较SMT(Surface Mount Technology,表面贴装技术)和含补强的FPC(Flexible Printed Circuit,柔性电路板) 厚度会更薄,能够进一步降低基板23的厚度,从而减小光学模组整体的厚度,在保证检测和识别准确性的前提下,满足小型化、轻薄化的需求。采用软硬结合板的基板23的整体厚度可以小于或等于1mm。基板23上可以内置电路,用于将光学传感器21的信号输出。
结合参见图2,可选地,基板23上可以设置分立器件231,也可以不设置分立器件231,这些分立器件231比如有用于保护的电阻,或者,有用于储能的电容等。当然,分立器件231可以根据需要设置。基板23可以通过连接排线91(如图1所示)等与其他结构连接,实现信号、电能等的传递。基板23也可以通过焊盘或锡球232等与其他传感器封装体外部结构连接,实现信号、电能等的传递。
在本实施例中,光学传感器21可以是CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)传感器。CMOS传感器上包含感光成像的感光区域211。光学传感器21可以是集成了逻辑电路和光学sensor,具有将接收到的光信号转换成电信号的功能,通过封装加工,可以将传感器上的电信号引出到封装体外部,便于外部器件连接。
如图1所示,以光学传感器21位于基板23的上表面为例,光学传感器21可以通过第四粘结剂层84粘结在基板23的上表面,光学传感器21下方的第四粘结剂层84厚度可以大于或等于1um,其具备吸收一定波长的光线的作用。根据不同的产品需求,可以具体确定波长范围,从而选择满足需求的第四粘结剂的材质。
在本实施例中,光学传感器21可以通过Wirebond(焊线)方式与基板23实现连接,具体地,光学传感器21的金属焊盘212可以与基板23上的焊盘(pad)233连接,此种连接可以包括物理上的连接,也可以包括信号和电能的连接。Wirebond方式较CSP(Chip Scale Package,芯片级封装)方式性能更好,不容易出现球形图像干扰。在其他实施例中,光学传感器21也可以通过植球与基板23实现电连接。
在一具体实现中,通过光学模组的焊线90连接光学传感器21与基板23。焊线90用于将电信号从光学传感器21传递到基板23,焊线90外设置有包裹在外部的保护胶。包裹焊线90的保护胶层,可以具备低收缩率,防水等特征,能够更好的保护焊线90不受环境影响,但不限于此。
焊线90可以是金线和/或铜线,焊线90的具体材质可以根据需求和成本等综合考虑确定,例如需要多个焊线90时,可以一部分是金线、一部分是铜线,也可以所有的焊线90的材质一致,均为金线或铜线等,但不限于此。
可选地,传感器封装体中还包括塑封胶24,用于封装和保护光学传感器21等结构。
如图1所示,在一种具体实现中,该塑封胶24形成围设在光学传感器21外的支撑结构,该塑封胶24设置在基板23的上表面,且塑封胶24的上表面高于光学传感器21的上表面,以使塑封胶24与光学传感器21之间形成空腔22。
例如,使塑封胶24的高于光学传感器21的部分上形成至少露出感光区域211的孔,从而在塑封胶24与光学传感器21之间形成空腔22。又例如,使塑封胶24的顶部通过第二粘结剂层82与屏幕60连接,从而在光学传感器21的上方形成空腔22。
在本实施例中,塑封胶24为遮光材质。例如,塑封胶24可以是深色,以实现挡光的 目的,其亦可以选用其他能够吸收一定波长光的材料,但不限于此。
在本实施例中,塑封胶24形成的支撑结构的厚度可以根据需求调整,只要保证能够形成空腔22,且空腔22的高度满足需求即可。
可选地,空腔22的厚度大于或等于10um。同时,由于该空腔22可以基于支撑结构的厚度做灵活调整,因此与mold(注塑成型等加工工艺)在内的光学模组生产工艺相比,通过塑封胶24形成支撑结构的方式,使得光学模组的厚度调整更灵活,实现成本更低。
可选地,屏幕60的下方通过第一粘结剂层81粘结有透镜10,该透镜10对应于光学传感器21,且空腔22位于透镜10下方,光学传感器21上方。
在本实施例中,屏幕60可以是OLED(Organic Light-Emitting Diode,有机发光二极管)材质,但不限于此。
此外,屏幕60可以带泡棉/黑胶层于背面,例如在屏幕60的靠近金属阴极的一面或金属阴极上贴附泡棉或黑胶层,以防止某些情况下漏光,屏幕60的对应透镜10的区域为透光区域,以供光线穿过。
第二粘结剂层82进一步用于将塑封胶24粘结到屏幕60上,例如,可以通过第二粘结剂层82将塑封胶24粘结到屏幕附带的泡棉或黑胶层等结构上,第二粘结剂层82可以是具有吸收一定波长光作用的材质,以防止环境光通过第二粘结剂层82透入造成漏光现象,从而避免漏光影响光学传感器21的识别准确度。
透镜10可以具有吸收一定波长的光作用,以使透镜10具有一定的滤光作用,但不限于此。透镜10(Lens)可以具备光学调制孔或通道,光学调制孔的作用与小孔成像中的小孔类似,通道供光穿过形成准直光,倾斜入射的光在通过透镜10时会撞到通道壁而被吸收,从而使得穿过透镜10的光是直射光。
粘结透镜10的第一粘结剂层81可以由可透一定波长的光的材质制成,以实现粘结透镜10的同时保证光线透过,不会影响光线模组检测和识别。
透镜10为光路调制装置,通过对光路进行调制来实现特殊光路传输,用于提升指纹识别性能,可以设置在屏幕60下方、光学传感器21上方,可以通过封装集成封装体内部,也可以在后段模组组装时添加。透镜10需覆盖光学传感器21的感光区域。当光学模组包括滤光层30时,透镜10可以设置在滤光层30上方,也可以设置在滤光层30下方。可选地,第一粘结剂层81的厚度可以小于或等于200um。
如图2所示,在另一种具体实现中,传感器封装体中还包括垫片25,垫片25位于塑封胶24的上表面,在垫片25与光学传感器21之间形成空腔22。
其中,垫片25为有孔垫片,且垫片25上的孔对应于光学传感器21的感光区域211,以在垫片25与光学传感器21之间形成该空腔22。
在又一种具体实现中,基板23上有开孔,光学传感器21位于基板23开孔中,且基板23的上表面高于光学传感器21的上表面,在基板23与光学传感器21之间形成空腔22。
以上,以基板23作为承载体为例,对本申请实施例提供的光学模组进行了说明。但不限于此,在另一种可行方式中,可以使用载体26替代基板23。如图8-10所示,传感器封装体中还可以包括载体26,载体26位于传感器封装体的最下方。载体26侧面包覆光 学传感器21,增大封装体中光学传感器21以外的面积,实现Fan-out重布线区域扩展和保护芯片的作用。载体26可以是硅片,可以是塑封料,也可以是基板。其可以通过挖槽工艺形成安放光学传感器21的凹槽,也可以通过Open Mold工艺包覆光学传感器21。
可以通过塑封胶24包覆光学传感器21形成承载和保护光学传感器21的作用与载体26类似的结构。载体26也可以采用其他材质通过其他加工工艺形成。以采用塑封胶24形成为例,光学传感器21位于塑封胶24的上表面,且载体26(即塑封胶24)的上表面与光学传感器21的上表面平齐。
以载体26采用其他材质为例,载体26上有开孔,光学传感器21位于载体26开孔中,且载体26的上表面与光学传感器21的上表面平齐。
塑封胶24的上方或载体26上方设置有互边导电物27或者垫片25,互边导电物27或者垫片25与光学传感器21之间形成空腔22。
该互边导电物27或垫片25均为有孔结构,空腔22可以形成在互边导电物27或垫片25的孔与光学传感器21之间。
可选地,光学模组中还包括滤光层30,滤光层30位于透镜10和光学传感器21之间。
在本实施例中,滤光层30可以是滤光片,滤光片具有吸收一定范围内波长光的作用,可以根据需求滤波,相当于带通滤波片作用。滤光层30可以将至少一部分光滤除,从而避免不需要的光线对光学传感器21的检测和识别造成干扰和影响,例如在进行指纹识别时,用户的手指放置位置不规范,造成一部分环境光透入光学模组,这些环境光和手指反射的光若一同到达光学传感器21,就会造成光学传感器21识别不准确或无法识别的情况,为此需要将由环境光产生的不需要的光去除,从而防止影响识别准确度。
在一种具体实现中,滤光层30下方通过第三粘结剂层83(如图1所示)粘接到上光学传感器21上,其具备透过一定范围内波长光的作用,一定范围的具体取值可以根据产品需求的不同而具体确定。若滤光层30采用滤光片时,滤光片的至少一个表面可以设置反射镀层,可以将一部分波长的光进行反射,从而避免不需要的光透过,这里的需要滤除的光是会对识别准确度产生不利影响的光滤光片的上下表面可以都设置反射镀层,也可以仅一个表面设置反射镀层,也可以都不设置。
在本实施例中,滤光层30的面积覆盖光学传感器21的感光区域211,且置于透镜10的垂直下方。滤光层30的面积大于或等于光学传感器21的感光区域211的面积,透镜10面积大于或等于滤光层30的面积。这样可以保证到达滤光层30的光均通过透镜10的处理(例如聚焦处理)。滤光层30的面积大于或等于光学传感器21的感光区域211的面积,且滤光层30覆盖光学传感器21的感光区域211,保证到达光学传感器21的感光区域211的光均通过滤光层30处理,以保证光学模组的检测和识别准确度。
滤光层30可以以透明或半透明材料为基材,表面通过镀膜达到截止特定波段光线的作用,设置在光学传感器21的上方;也可直接以光学传感器21作为基材,直接在光学传感器21的表面镀膜达到滤光效果。其保持与光学传感器21之间的光信号传递,可以通过封装集成封装体内部,也可以在后段模组组装时添加。滤光层30可以设置在屏幕60下方、光学传感器21上方的,其可以通过封装集成在封装体内部;可以单独外置,在模组组装时添加;也可以根据实际需求,不设置。滤光层30大小覆盖光学传感器21的感光区域 211。
透镜10可以是通过透明DAF与滤光层30贴合,或通过胶膜与滤光层30进行框贴,或透镜10直接外置,在模组组装时添加。滤光层30可以是通过透明DAF贴合或通过胶膜框贴设置在空腔22上方,或是外置的,在模组组装时添加。
需要说明的是,当光学模组包括滤光层30,且通过焊线90实现光学传感器21与基板23之间的电连接时,如图1所示,焊线90的弧度高度矮于光学传感器21和滤光层30的厚度总和。即焊线90的折弯处的最高点不超过滤光层30的顶面。
如图1所示,该光学模组整体结构的总厚度大于0.8mm,且可以不超过1.1mm。其中,基板23的厚度的取值范围为50μm~500μm,优选为400μm。塑封胶24形成的支撑结构的厚度依据空腔22的高度决定,例如为500μm。第二粘结剂层82的厚度的取值范围为10μm~1mm,优选地,为200μm。透镜10的厚度的取值范围为50μm~400μm,优选地,为150μm。透镜10与屏幕60之间的第一粘结剂层81的厚度的取值范围为0~100μm,其厚度越小越好,优选地,为50μm。空腔22的厚度的取值范围为大于10μm,理想情况越大越好,优选地,为250μm。滤光层30的厚度的取值范围为50μm~400μm,优选地,110μm。光学传感器21的厚度的取值范围为25μm~650μm,优选地,100μm。光学传感器21与滤光层30之间的第三粘结剂层83的厚度的取值范围为大于10μm,优选地,为20μm。光学传感器21与基板23之间的第四粘结剂层84的厚度的取值范围为大于10μm,优选地,为20μm。
上述的尺寸仅是例举,具体尺寸可以根据工艺需求具体确定。
实施例二
在本实施例中,提供一种光学模组,与实施例一中的光学模组不同的是,本实施例的光学模组中空腔位于传感器封装体外部。
基于此,本实施例的光学模组包括透镜10和传感器封装体,透镜10位于光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过屏幕的光线;传感器封装体中包括光学传感器21,光学传感器21的上表面具有感光区域211,感光区域211用于接收穿过透镜10的光线;透镜10与传感器封装体之间具有空腔22,且光学传感器21的感光区域211通过空腔22接收穿过屏幕的光线。
在本实施例中,光学模组具有空腔22,空腔22中可以填充相应的气体介质,该气体介质的折射率较低,能够有效减少对到达光学传感器的成像用光线的干扰,保证指纹检测和识别的准确度。与传统的实现同等准确度的光学模组中,光线经其它介质到达光学传感器的成像相比,在相同的厚度下,检测和识别的准确度更高,从另一个角度看,同样的准确度厚度更薄,从而实现平衡光学模组的准确性和厚度的效果,在保证检测和识别准确率的情况下使光学模组更薄。
在本实施例中,传感器封装体除包括光学传感器21外,还可以包括基板23、滤光层30、和塑封胶24等。光学传感器21设置在基板23的上表面,光学传感器21的金属焊盘212与基板23上的焊盘通过焊线90连接。滤光层30设置在光学传感器21的上表面,且至少覆盖感光区域211。塑封胶24封装基板23、滤光层30、光学传感器21,且上表面与 滤光层30的上表面平齐。
其中,本实施例的基板23、滤光层30、和塑封胶24的作用与实施例一中的基板23、滤光层30、和塑封胶24的作用相同,故在此不再赘述。
可选地,如图12所示,光学模组中还包括垫片25,垫片25位于透镜10与传感器封装体之间,垫片25为有孔垫片,透镜10与传感器封装体通过垫片25的孔形成空腔22。当然,在其他实施例中,垫片25可以是其他结构,只要能够在透镜10与传感器封装体之间形成空腔22即可。
当然,可以直接在透镜10上加工凹槽,并使透镜10与传感器封装体通过透镜10上的凹槽形成该空腔22。
实施例三
在本实施例中,提供了一种光学模组加工方法,用于加工前述实施例一或二中的光学模组。
本实施例的光学模组加工方法包括:对光学传感器21进行封装形成具有空腔22的传感器封装体,其中,光学传感器21的上表面具有用于接收光线的感光区域211,传感器封装体中的空腔22位于光学传感器21的感光区域211的上方;使用传感器封装体和用于传输光线的透镜10形成光学模组,透镜10位于光学模组的最上方。
该光学模组加工方法加工出的光学模组封装集成度高,由于光学模组中具有空腔22(air gap),空腔22中可以填充气体介质,例如空气,而气体介质的折射率较低,能够有效减少对到达光学传感器的成像用光线的干扰,保证指纹检测和识别的准确度,同时使得光学模组的整体厚度可以降低。此外,通过将光学传感器21和空腔22集成封装的方式提高了封装集成度,减小了光学模组总体厚度,提高了指纹图像质量。
一种将使用本实施例的光学模组加工方法加工出的光学模组应用于移动终端中的结构如图14所示,该光学模组可以用于全面屏移动终端,将进行指纹识别的光学模组安装在屏幕60下方,屏幕60发出的光线照射到手指表面指纹后反射至透镜10表面,再通过透镜10的光路调制(聚焦)后经过空腔22(根据需要可以经过滤光层30),成像在光学传感器21表面,最终由光学传感器21捕捉到光学信号并转换为电信号,从而读取指纹。
在具体实现时,可以采用下面加工方式中的任意一种实现上述光学模组的加工。
封装方式一
在对光学传感器21进行封装形成具有空腔22的传感器封装体之前,将光学传感器21与基板23连接。
例如,可以将光学传感器21粘结在基板23上,并使光学传感器21与基板23电连接。
在一种具体实现中,将光学传感器21(可以是单个传感器芯片)采用Epoxy(环氧树脂)或者DAF(Die-Attach Film,粘结胶层)粘结到基板23的上表面,并使光学传感器21的感光区域211朝上。通过焊线90使光学传感器21与基板23电连接。加工后的光学模组如图2和3中所示。
可选地,可以通过第一封装工艺封装光学传感器21,并形成具有空腔22的传感器封装体,实现对光学传感器21进行封装形成具有空腔22的传感器封装体。
在一种具体实现中,根据需要可以在光学传感器21上设置滤光层30。若设置滤光层30,则该方法还包括:在光学传感器21的上表面采用透明的胶水或者透明DAF贴附滤光层30,使滤光层30至少覆盖光学传感器21的感光区域211。这样使得光学传感器21位于滤光层30与基板23之间。
其中,第一封装工艺可以是异形open mold工艺(一种Molding工艺,可以实现Molding后塑封胶呈现设定的形状),利用塑封胶24封装光学传感器21、滤光层30和基板23,形成传感器封装体,且在塑封胶24与光学传感器21之间形成空腔22。使用异形的OpenMold的方式进行塑封时,保证滤光层30的上表面露出,以便形成空腔22。在基板23下表面的焊盘上可以植锡球232(是否植锡球可以根据具体需求确定,也可以直接保留焊盘),进行封装体切割。封装后的传感器封装体如图3所示。
在切割后的单个传感器封装体的上表面粘结透镜10,以形成光学模组,并使透镜10位于光学模组的最上方。
封装方式二
在本封装方式中,其封装过程与封装方式一类似,故相同的封装过程在此不再赘述,仅对不同的封装过程进行说明:
本封装方式中,第一封装工艺可以为open mold工艺(一种Molding工艺,可以实现Molding后芯片的表面裸露在外),利用塑封胶24封装光学传感器21、滤光层30和基板23,使滤光层30的上表面与塑封胶24的上表面平齐,且露出塑封胶24。在塑封胶24的上表面粘贴垫片25,使垫片25与光学传感器21之间形成空腔22,并形成传感器封装体。在塑封胶24的上表面设置的垫片(Lid)25为有孔的垫片,在垫片25的孔内形成空腔22。基板23的下表面的焊盘上可以植锡球232,最后进行封装体切割,完成封装的传感器封装体如图2所示。
在切割后的单个传感器封装体的上表面粘结透镜10,以形成光学模组,并使透镜10位于光学模组的最上方。
封装方式三
本封装方式中,主要对光学传感器21进行封装形成具有空腔22的传感器封装体的封装过程进行说明,将光学传感器21与基板23连接的过程可以与封装方式一相同,在此不再赘述。该封装过程包括:通过第一封装工艺封装光学传感器21,并形成具有空腔22的传感器封装体,封装后的光学模组如图4所示。
具体地:
在滤光层30的上表面设置填充物层。填充物层的厚度可以根据需要形成的空腔22的高度确定,例如200-500um。填充物层可以由光敏材料形成,以便于剥离。
在光学传感器21的上表面粘结该具有填充物层的滤光层30,使滤光层30至少覆盖光学传感器21的感光区域211,并使光学传感器21位于滤光层30与基板23之间。光学传感器21与滤光层30之间的粘结可以采用透明DAF等。
第一封装工艺可以为open mold工艺,通过第一封装工艺,利用塑封胶24封装光学传感器21、填充物层、滤光层30和基板23。剥离填充物层,使塑封胶24与光学传感器21之间形成空腔22,并形成传感器封装体。剥离填充物层可以使用剥离剂将 填充物层溶解剥离,仅留下空腔22。最后进行切割,将封装体切成单颗。
在完成的传感器封装体上,将已经在透镜基体上刻蚀出平行光通道11的透镜10通过例如框贴的方式和传感器封装体结构结合。
封装方式四
如图5所示,在本封装方式中,光学模组的加工方法中的将光学传感器21粘结在基板23上,并使光学传感器21与基板23电连接的过程包括:
在基板23上开设通孔。通过bump工艺(又名植球工艺)在光学传感芯片的晶圆上生成植球,并划片形成光学传感器21。通过flip chip(倒装芯片)工艺将光学传感器21与基板23连接,并使光学传感器21通过植球与基板23电连接,此时光学传感器21的金属焊盘212与基板23上的焊盘233通过Bump植球实现了电性连接。
光学模组的加工方法中的通过第一封装工艺封装光学传感器21,并形成具有空腔22的传感器封装体的过程包括:
第一封装工艺可以为mold工艺(一种注塑封装工艺,使用Molding模具将芯片与封装载体一同包住,之后向模具内部灌封塑封胶水,以达到塑封的目的)。通过underfill点胶(底部填充点胶)密封光学传感器21,例如通过underfill点胶形成第四粘结剂层84,通过第四粘结剂层84将光学传感器21与基板23之间密封,且形成的第四粘结剂层84至少露出光学传感器21的感光区域。通过第一封装工艺封装光学传感器21和基板23,并在基板23和光学传感器21之间形成空腔22,并形成传感器封装体。最后进行封装体切割,形成单个传感器封装体。
在单个传感器封装体上粘结透镜10,并形成光学模组,使透镜10位于光学模组的最上方。
封装方式五
如图7所示,光学模组的加工方法中的将光学传感器21粘结在基板23上,并使光学传感器21与基板23电连接的过程中包括:
在基板23上开设通孔。通过TSV工艺(Through Silicon Vias,穿过硅片通道)加工光学传感芯片,TSV加工针对光学传感芯片的晶圆进行。将位于光学传感芯片的上表面的金属焊盘212通过TSV孔与位于光学传感芯片下表面的重布线焊盘电连接。
将光学传感芯片粘结到基板23上,通过焊线90使光学传感芯片与基板23电连接。
在一种具体实现中,在基板23上粘结滤光层30。将光学传感芯片粘结在滤光层30上,且滤光层30至少覆盖对应的光学传感芯片的感光区域211。通过焊线90使光学传感芯片的重布线焊盘与基板23的焊盘233电连接。
光学模组的加工方法中的通过第一封装工艺封装光学传感器21,并形成具有空腔22的传感器封装体包括:
第一封装工艺可以为mold工艺。通过第一封装工艺,利用塑封胶24封装光学传感芯片、滤光层30和基板23,并进行单颗切割形成传感器封装体,其中,各传感器封装体中的传感器芯片为光学传感器21,空腔22形成在基板23与光学传感器21之间,例如,在图7中基板23的通孔处,滤光层30的上方形成该空腔22。
在切割后形成的传感器封装体上粘结透镜10,形成光学模组,并使透镜10位于光学 模组的最上方。
封装方式六
如图6所示,光学模组的加工方法中的对光学传感器21进行封装形成具有空腔22的传感器封装体之前,该光学模组加工方法还包括在基板23上开设通孔。
光学模组加工方法中的对光学传感器21进行封装形成具有空腔22的传感器封装体的过程包括:通过fan-out工艺(扇出型封装,可将电信号引出到芯片区域范围以外)对光学传感芯片进行封装,并形成重布线焊盘,该重布线焊盘与光学传感芯片上的金属焊盘电连接。在重布线焊盘上生成植球92。通过SMT工艺使光学传感芯片与基板23通过植球电连接。通过underfill点胶形成第四粘结剂层84,通过第四粘结剂层84密封光学传感芯片,并使光学传感芯片的感光区域211从基板23的通孔中露出。根据滤光需要可以在感光区域211的上表面粘贴滤光层30。进行单颗切割,并形成传感器封装体。
其中,各传感器封装体中的光学传感芯片为光学传感器21,空腔22形成在基板23与光学传感器21之间。
在切割后形成的传感器封装体上粘结透镜10,形成光学模组,并使透镜10位于光学模组的最上方。
封装方式七
如图8所示,在本封装过程中,光学模组加工方法中的对光学传感器21进行封装形成具有空腔22的传感器封装体包括:
将光学传感芯片的晶圆减薄并划片,形成单颗光学传感器21。将光学传感器21与载体26连接,并使光学传感器21的上表面与载体26的上表面平齐。
如图8所示,载体26可以是任何适宜材质的载体。在一种具体实现中,光学传感器21与载体26连接可以是在载体26上挖孔,并通过粘结剂将光学传感器21粘结在孔内,使光学传感器21的上表面与载体26的上表面平齐。为了确保绝缘性,避免漏电或短路等情况,还可以在载体26的上表面和光学传感器21的金属焊盘212的上表面形成第一绝缘层。通过fan-out工艺,在第一绝缘层上形成与光学传感器21的金属焊盘212电连接的重布线层93。在重布线层上形成第二绝缘层。
需要说明的是,重布线层即RDL重布线,通过金属重布线实现光学传感芯片电信号的引出,设置在光学传感芯片表面和Carrier承载体(即载体26)表面。RDL重布线是通过Fan-out加工金属重布线将光学传感器21的电信号引出到非感光区域上方,可布置在芯片表面的非感光区域上表面,也可布置在载体上表面。光学传感器21通过RDL重布线将电信号引到载体上表面,或通过RDL重布线将电信号引到其他结构的上表面。
在第二绝缘层上粘结带有通孔的互边导电物27。在互边导电物27上植球,使植球92与重布线层93(RDL走线)电连接,并形成传感器封装体,且使互边导电物27与光学传感器21之间形成空腔22,例如在图8中光学传感器21的感光区域211的上方,互边导电物27的孔处形成空腔22。
需要说明的是,为确保感光区域211能接收到光线并实现功能,重布线层93需避开感光区域,其可在第一绝缘层的上表面进行扩展。第二绝缘层可以起到保护重布线层93的作用。植球92可以与外界元器件如电路板互联,实现电性连接。
第一绝缘层和第二绝缘层用于实现电路绝缘保护,设置在RDL重布线层上方和下方。其可以不覆盖光学传感器21的感光区域211,也可以覆盖光学传感器21的感光区域。绝缘层材料可以通过曝光显影的方式仅保留在光学传感器21的非感应区,或采用透明材料并保留在光学传感器21的感应区域上方。
植球(Bump),可实现光学传感器21与外部器件的电性连接,设置在封装体表面。植球是设置在非感光区域上方,用于与外部器件连接实现光学传感芯片的电性连接,或根据实际需求,可以不设置Bump,保留焊盘。
互边导电物可以是硅片,可以是有机物,也可以是基板,可实现电信号从一侧传输到另一侧。
镂空垫片可以是塑封胶体,也可以是金属片。
空腔22可以是通过透明叠层(如玻璃)替代,将透明叠层直接贴合在光学传感器21上方或滤光层30上方。
形成传感器封装体之后,可以将透镜10和滤光层30通过透明DAF或框贴的方式贴合在通过fan-out工艺形成的异形Fan-out封装体上方,以形成光学模组。该光学模组中需保证透镜10和滤光层30覆盖整个感光区域211。
封装方式八
在此封装过程中,其与封装方式七的区别在于,载体26的材质和与光学传感器21的连接方式。其他封装过程可以与封装方式七相同或仅做简单的适应性调整,故在此不再赘述。
如图9所示,在一种具体实现中,光学模组的加工方法中的将光学传感器21与载体26连接,并使光学传感器21的上表面与载体26的上表面平齐包括:
通过open mold工艺,利用塑封胶24(例如EMC塑封料)对光学传感器21进行塑封,并使塑封胶24在光学传感器21的下方形成载体26,使载体26的上表面与光学传感器21的上表面平齐。
封装方式九
如图10所示,在本封装过程中,其与封装方式七的区别主要在于对光学传感器21进行封装形成具有空腔22的传感器封装体的过程,其他过程与封装方式七相同或类似,在此不再赘述。其中,对光学传感器21进行封装形成具有空腔22的传感器封装体的过程包括:
在第二绝缘层上粘结带有通孔的垫片25。在第二绝缘层上开孔并植球,使植球与重布线层电连接,并形成传感器封装体,且使垫片25与光学传感器21之间形成空腔22。
实施例四
在本实施例中,提供了一种光学模组加工方法,用于加工前述实施例一或二中的光学模组。本实施例中的光学模组加工方法与实施例三中的光学模组的区别在于空腔22形成在透镜10上,而传感器封装体可以为常规封装体。
本实施例的光学模组加工方法包括:对光学传感器21进行封装形成传感器封装体,其中,光学传感器21的上表面具有用于接收光线的感光区域211;在用于传输光线的透 镜10下方形成空腔22;使用传感器封装体和具有空腔22的透镜10形成光学模组,透镜10位于光学模组的最上方,光学传感器21的感光区域211通过空腔22接收光线。
该光学模组加工方法可以提高光学模组的封装集成度、降低封装厚度、增设空腔22(Air Gap),通过将光学传感器21和空腔22集成封装的方式提高了封装集成度,减小了光学模组总体厚度,提高了指纹图像质量。该光学模组的空腔22可以形成在透镜10上,而传感器封装体采用LGA封装结构,从而降低封装难度。
在一具体实现中,在用于传输光线的透镜10下方形成空腔22包括:在透镜10的下方粘结带孔垫片25,并使垫片25的孔处形成空腔22。
具体例如:在一片透镜基材上通过干法蚀刻(或激光)的方式加工出平行光通道11,并生成透镜10。在透镜10上通过贴合(或键合)的方式贴上一层一定厚度(例如200-500um)的带孔垫片25。进行切割,将异形透镜(Lens)切成单颗,切割形成的异形透镜单颗如图12所示。
在另一具体实现中,在用于传输光线的透镜10下方形成空腔22包括:在透镜10的下方加工凹槽,并使凹槽处形成空腔22。
具体例如,在一片透镜基材上先通过干法蚀刻(或湿法蚀刻等)的方式加工出一个凹槽;之后在凹槽上表面加工出平行光通道11;最后进行切割,将异形透镜切成单颗,切割形成的异形透镜单颗如图13所示。
形成传感器封装体的加工过程如下:将基板23、光学传感器21和滤光层30贴合,完成Wire bond(焊线)加工,使光学传感器21的金属焊盘212与基板23电连接,之后进行Open mold封装,使滤光层30的顶面从塑封胶24中露出;最后进行切割,将封装体切成单颗。
在两个部分的加工均完成后,将传感器封装体和透镜10通过透明DAF或框贴的形式结合,实现图11中所示光学模组。
实施例五
在本实施例中,提供一种终端设备,其包括上述的光学模组。该终端设备采用上述的光学模组,可以在保证性能的情况下,减小体积,实现轻薄化的目标。
具有上述光学模组的终端设备能够在确保识别准确性的情况下,减小体积,从而实现轻薄化的目标。
终端设备可以是移动终端设备,例如,手机、便携平板电脑、摄像机、照相机等。也可以是打卡机等设备。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (34)

  1. 一种光学模组,包括透镜和传感器封装体,其特征在于:
    所述透镜位于所述光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过所述屏幕的光线;
    所述传感器封装体中包括光学传感器,所述光学传感器的上表面具有感光区域,所述感光区域用于接收穿过所述透镜的光线;
    所述传感器封装体中具有空腔,且所述光学传感器的感光区域通过所述空腔接收所述穿过屏幕的光线。
  2. 根据权利要求1所述的光学模组,其特征在于,所述传感器封装体中包括基板,且所述基板位于所述传感器封装体的最下方。
  3. 根据权利要求2所述的光学模组,其特征在于,所述光学传感器位于所述基板的上表面,且所述传感器封装体中包括塑封胶。
  4. 根据权利要求3所述的光学模组,其特征在于,所述塑封胶的上表面高于所述光学传感器的上表面;
    所述传感器封装体中具有空腔,包括:
    所述塑封胶与所述光学传感器之间形成空腔。
  5. 根据权利要求3所述的光学模组,其特征在于,
    所述传感器封装体中还包括垫片,所述垫片位于所述塑封胶的上表面;
    所述传感器封装体中具有空腔,包括:
    所述垫片与所述光学传感器之间形成空腔。
  6. 根据权利要求2所述的光学模组,其特征在于,所述基板上有开孔,所述光学传感器位于所述基板开孔中,且所述基板的上表面高于所述光学传感器的上表面;
    所述传感器封装体中具有空腔,包括:
    所述基板与所述光学传感器之间形成空腔。
  7. 根据权利要求1所述的光学模组,其特征在于,所述传感器封装体中包括载体,且所述载体位于所述传感器封装体的最下方。
  8. 根据权利要求7所述的光学模组,其特征在于,所述传感器封装体中还包括塑封胶,所述光学传感器位于所述载体的上表面,且所述塑封胶的上表面与所述光学传感器的上表面平齐;
    所述塑封胶的上方设置有互边导电物或者垫片,所述传感器封装体中具有空腔,包括:
    所述互边导电物或者垫片与所述光学传感器之间形成空腔。
  9. 根据权利要求7所述的光学模组,其特征在于,所述载体上有开孔,所述光学传感器位于所述载体开孔中,且所述载体的上表面与所述光学传感器的上表面平齐;
    所述载体上方设置有互边导电物或者垫片,所述传感器封装体中具有空腔,包括:
    所述互边导电物或者垫片与所述光学传感器之间形成空腔。
  10. 根据权利要求1-9任一项所述的光学模组,其特征在于,所述光学模组中还包括滤光层;
    所述滤光层位于所述透镜和所述光学传感器之间。
  11. 一种光学模组,包括透镜和传感器封装体,其特征在于:
    所述透镜位于所述光学模组的最上方,且贴合于终端屏幕下方,用于传输穿过所述屏幕的光线;
    所述传感器封装体中包括光学传感器,所述光学传感器的上表面具有感光区域,所述感光区域用于接收穿过所述透镜的光线;
    所述透镜与所述传感器封装体之间具有空腔,且所述光学传感器的感光区域通过所述空腔接收所述穿过屏幕的光线。
  12. 根据权利要求11所述的光学模组,其特征在于,所述光学模组中还包括垫片,所述垫片位于所述透镜与所述传感器封装体之间;
    所述透镜与所述传感器封装体之间具有空腔,包括:
    所述透镜与所述传感器封装体通过所述垫片形成空腔。
  13. 根据权利要求11或12所述的光学模组,其特征在于,所述光学模组中还包括滤光层;
    所述滤光层位于所述透镜和所述光学传感器之间,且所述滤光层的面积大于或等于所述光学传感器感光区域的面积。
  14. 一种光学模组加工方法,其特征在于,包括:
    对光学传感器进行封装形成具有空腔的传感器封装体,其中,所述光学传感器的上表面具有用于接收光线的感光区域,所述传感器封装体中的所述空腔位于所述光学传感器的感光区域的上方;
    使用所述传感器封装体和用于传输光线的透镜形成光学模组,所述透镜位于所述光学模组的最上方。
  15. 根据权利要求14所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体之前,所述方法包括:
    将所述光学传感器与基板连接。
  16. 根据权利要求15所述的方法,其特征在于,将所述光学传感器与基板连接,包括:
    将所述光学传感器粘结在所述基板上,并使所述光学传感器与所述基板电连接;
    对光学传感器进行封装形成具有空腔的传感器封装体,包括:
    通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体。
  17. 根据权利要求16所述的方法,其特征在于,使所述光学传感器与所述基板电连接包括:
    通过焊线使所述光学传感器与所述基板电连接。
  18. 根据权利要求17所述的方法,其特征在于,通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体,包括:
    在所述光学传感器的上表面粘结滤光层,使所述滤光层至少覆盖所述光学传感器的感光区域,并使所述光学传感器位于所述滤光层与所述基板之间;
    通过第一封装工艺,利用塑封胶封装所述光学传感器、所述滤光层和所述基板, 形成所述传感器封装体,且在所述塑封胶与所述光学传感器之间形成空腔,其中,所述第一封装工艺为异形open mold工艺。
  19. 根据权利要求17所述的方法,其特征在于,通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体,包括:
    在滤光层的上表面设置填充物层;
    在所述光学传感器的上表面粘结所述滤光层,使所述滤光层至少覆盖所述光学传感器的感光区域,并使所述光学传感器位于所述滤光层与所述基板之间;
    通过第一封装工艺,利用塑封胶封装所述光学传感器、所述填充物层、所述滤光层和所述基板,其中所述第一封装工艺为open mold工艺;
    剥离所述填充物层,使所述塑封胶与所述光学传感器之间形成所述空腔,并形成所述传感器封装体。
  20. 根据权利要求17所述的方法,其特征在于,通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体,包括:
    在所述光学传感器的上表面粘结滤光层,使所述滤光层至少覆盖所述光学传感器的感光区域,并使所述光学传感器位于所述滤光层与所述基板之间;
    通过第一封装工艺,利用塑封胶封装所述光学传感器、所述滤光层和所述基板,使所述滤光层的上表面露出所述塑封胶,其中,所述第一封装工艺为open mold工艺;
    在所述塑封胶的上表面粘贴垫片,使所述垫片与所述光学传感器之间形成所述空腔,并形成所述传感器封装体。
  21. 根据权利要求16所述的方法,其特征在于,
    将所述光学传感器粘结在所述基板上,并使所述光学传感器与所述基板电连接,包括:
    在所述基板上开设通孔。
  22. 根据权利要求21所述的方法,其特征在于,将所述光学传感器粘结在所述基板上,并使所述光学传感器与所述基板电连接,还包括:
    通过bump工艺在光学传感芯片的晶圆上生成植球,并划片形成所述光学传感器;
    通过flip chip工艺将所述光学传感器与所述基板连接,并使所述光学传感器通过所述植球与所述基板电连接。
  23. 根据权利要求22所述的方法,其特征在于,通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体,包括:
    通过underfill点胶密封所述光学传感器;
    通过第一封装工艺封装所述光学传感器和所述基板,并在所述基板和所述光学传感器之间形成所述空腔,并形成所述传感器封装体,其中,所述第一封装工艺为mold工艺。
  24. 根据权利要求21所述的方法,其特征在于,将所述光学传感器粘结在所述基板上,并使所述光学传感器与所述基板电连接,还包括:
    通过TSV工艺加工光学传感芯片,将位于所述光学传感芯片的上表面的芯片焊盘通过TSV孔与位于光学传感芯片下表面的重布线焊盘电连接;
    将光学传感芯片粘结到所述基板上,且通过焊线使所述光学传感芯片与所述基板电连接。
  25. 根据权利要求24所述的方法,其特征在于,将光学传感芯片粘结到所述基板上,且通过焊线使所述光学传感芯片与所述基板电连接,包括:
    在所述基板上粘结滤光层;
    将所述光学传感芯片粘结在所述滤光层上,且所述滤光层至少覆盖对应的所述光学传感芯片的感光区域;
    通过焊线使所述光学传感芯片的重布线焊盘与所述基板电连接;
    通过第一封装工艺封装所述光学传感器,并形成具有空腔的所述传感器封装体,包括:
    通过第一封装工艺,利用塑封胶封装所述光学传感芯片、所述滤光层和所述基板,并进行单颗切割形成所述传感器封装体,其中,所述第一封装工艺为mold工艺,各传感器封装体中的传感器芯片为光学传感器,所述空腔形成在所述基板与所述光学传感器之间。
  26. 根据权利要求14所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体之前,所述方法还包括:
    在基板上开设通孔。
  27. 根据权利要求26所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体,包括:
    通过fan-out工艺对光学传感芯片进行封装,并形成重布线焊盘;
    在所述重布线焊盘上生成植球;
    通过SMT工艺使所述传感芯片与所述基板通过所述植球电连接;
    通过underfill点胶密封所述光学传感芯片,并使所述光学传感芯片的感光区域从所述基板的通孔中露出;
    在所述感光区域的上表面粘贴滤光层;
    进行单颗切割,并形成所述传感器封装体,其中,各所述传感器封装体中的传感器芯片为所述光学传感器,所述空腔形成在所述基板与所述光学传感器之间。
  28. 根据权利要求14所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体,包括:
    将光学传感芯片的晶圆减薄并划片,形成单颗光学传感器;
    将光学传感器与载体连接,并使光学传感器的上表面与所述载体的上表面平齐。
  29. 根据权利要求28所述的方法,其特征在于,将光学传感器与载体连接,并使光学传感器的上表面与所述载体的上表面平齐,包括:
    在载体上挖孔,并通过粘结剂将所述光学传感器粘结在所述孔内,使所述光学传感器的上表面与所述载体的上表面平齐;
    或者,
    将光学传感器与载体连接,并使光学传感器的上表面与所述载体的上表面平齐,包括:
    通过open mold工艺,利用塑封胶对光学传感器进行塑封,并在所述光学传感器的下方形成所述载体,使所述载体的上表面与所述光学传感器的上表面平齐。
  30. 根据权利要求28所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体,还包括:
    在所述载体的上表面和所述光学传感器的焊盘的上表面形成第一绝缘层;
    通过fan-out工艺,在所述第一绝缘层上形成与所述光学传感器的焊盘电连接的重布线层;
    在所述重布线层上形成第二绝缘层。
  31. 根据权利要求30所述的方法,其特征在于,对光学传感器进行封装形成具有空腔的传感器封装体,还包括:
    在所述第二绝缘层上粘结带有通孔的互边导电物;
    在所述互边导电物上植球,使所述植球与所述重布线层电连接,并形成所述传感器封装体,且使所述互边导电物与所述光学传感器之间形成所述空腔;
    或者,
    对光学传感器进行封装形成具有空腔的传感器封装体,还包括:
    在所述第二绝缘层上粘结带有通孔的垫片;
    在所述第二绝缘层上开孔并植球,使所述植球与所述重布线层电连接,并形成所述传感器封装体,且使所述垫片与所述光学传感器之间形成所述空腔。
  32. 一种光学模组加工方法,其特征在于,包括:
    对光学传感器进行封装形成传感器封装体,其中,所述光学传感器的上表面具有用于接收光线的感光区域;
    在用于传输光线的透镜下方形成空腔;
    使用所述传感器封装体和具有空腔的透镜形成光学模组,所述透镜位于所述光学模组的最上方,所述光学传感器的感光区域通过所述空腔接收光线。
  33. 根据权利要求32所述的方法,其特征在于,在用于传输光线的透镜下方形成空腔,包括:
    在所述透镜的下方粘结带孔垫片,并使所述垫片的孔处形成所述空腔;
    或者,
    在用于传输光线的透镜下方形成空腔,包括:
    在所述透镜的下方加工凹槽,并使所述凹槽处形成所述空腔。
  34. 一种终端设备,其包括权利要求1-13中任一项所述的光学模组。
PCT/CN2017/118638 2017-11-09 2017-12-26 光学模组及其加工方法、及终端设备 WO2019090935A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780017245.7A CN109074477B (zh) 2017-11-09 2017-12-26 光学模组及其加工方法、及终端设备
EP17931166.7A EP3534292A4 (en) 2017-11-09 2017-12-26 OPTICAL MODULE AND PROCESSING METHOD THEREFOR AND TERMINAL DEVICE
US16/432,913 US10784298B2 (en) 2017-11-09 2019-06-05 Optical module, fabrication method thereof, and terminal device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721489594.2 2017-11-09
CN201721489594 2017-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/432,913 Continuation US10784298B2 (en) 2017-11-09 2019-06-05 Optical module, fabrication method thereof, and terminal device using the same

Publications (1)

Publication Number Publication Date
WO2019090935A1 true WO2019090935A1 (zh) 2019-05-16

Family

ID=63389684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118638 WO2019090935A1 (zh) 2017-11-09 2017-12-26 光学模组及其加工方法、及终端设备

Country Status (4)

Country Link
US (1) US10784298B2 (zh)
EP (1) EP3534292A4 (zh)
CN (1) CN207833534U (zh)
WO (1) WO2019090935A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134898B (zh) * 2018-01-30 2020-04-10 维沃移动通信有限公司 一种摄像头模组、摄像头模组的组装方法及移动终端
DE102018109542B4 (de) * 2018-04-20 2022-08-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Licht emittierendes bauelement und verfahren zur herstellung eines licht emittierenden bauelements
CN109446908A (zh) * 2018-09-27 2019-03-08 维沃移动通信有限公司 一种移动终端
US20200193120A1 (en) * 2018-12-12 2020-06-18 Novatek Microelectronics Corp. Fingerprint identification apparatus
WO2020118699A1 (zh) * 2018-12-14 2020-06-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
US11289522B2 (en) * 2019-04-03 2022-03-29 Semiconductor Components Industries, Llc Controllable gap height for an image sensor package
CN110059626B (zh) * 2019-04-18 2021-12-14 维沃移动通信有限公司 一种终端设备
CN113343829B (zh) * 2019-05-29 2024-04-09 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111247524B (zh) * 2019-06-05 2023-08-22 深圳市汇顶科技股份有限公司 光学指纹装置、制作方法和电子设备
CN112104769A (zh) * 2019-06-18 2020-12-18 成都鼎桥通信技术有限公司 一种感光镜片、光线感应组件及终端
CN111095277B (zh) 2019-11-04 2021-06-11 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
CN113207244A (zh) * 2020-02-03 2021-08-03 奥特斯奥地利科技与系统技术有限公司 制造部件承载件的方法及部件承载件
US11398517B2 (en) 2020-03-06 2022-07-26 Raytheon Company Optical device having a detector and an optical element mounted on an epoxy fence
CN112310315B (zh) * 2020-10-28 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026169A1 (en) * 2006-08-30 2008-03-06 Panasonic Electric Works Co., Ltd. Fingerprint image input apparatus
US20110058091A1 (en) * 2009-09-09 2011-03-10 Chi-Hsing Hsu Image-capturing module with a flexible type substrate structure
US20140140587A1 (en) * 2012-11-14 2014-05-22 Claudio R. Ballard "home" button with integrated user biometric sensing and verification system for mobile device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410907B2 (ja) * 1996-08-30 2003-05-26 株式会社東芝 光電変換素子の実装装置およびその製造方法
JP2004296453A (ja) * 2003-02-06 2004-10-21 Sharp Corp 固体撮像装置、半導体ウエハ、光学装置用モジュール、固体撮像装置の製造方法及び光学装置用モジュールの製造方法
KR100664316B1 (ko) * 2004-12-23 2007-01-04 삼성전자주식회사 이미지 센서 패키지, 고체촬상장치 및 그 제조방법
US20090053850A1 (en) * 2005-03-25 2009-02-26 Fujifilm Corporation Method of manufacturing solid state imaging device
US7745897B2 (en) * 2005-05-27 2010-06-29 Aptina Imaging Corporation Methods for packaging an image sensor and a packaged image sensor
CN100544007C (zh) * 2005-11-16 2009-09-23 鸿富锦精密工业(深圳)有限公司 影像感测器封装结构
US20080191333A1 (en) * 2007-02-08 2008-08-14 Advanced Chip Engineering Technology Inc. Image sensor package with die receiving opening and method of the same
US20080197435A1 (en) * 2007-02-21 2008-08-21 Advanced Chip Engineering Technology Inc. Wafer level image sensor package with die receiving cavity and method of making the same
JP5094802B2 (ja) * 2008-09-26 2012-12-12 シャープ株式会社 光学素子ウエハの製造方法
GB2465607A (en) * 2008-11-25 2010-05-26 St Microelectronics CMOS imager structures
TW201103128A (en) * 2009-07-03 2011-01-16 Creative Sensor Inc Image sensor and the method for package of the same
TW201104850A (en) * 2009-07-29 2011-02-01 Kingpak Tech Inc Image sensor package structure with large air cavity
US9666730B2 (en) * 2014-08-18 2017-05-30 Optiz, Inc. Wire bond sensor package
KR20160090972A (ko) * 2015-01-22 2016-08-02 에스케이하이닉스 주식회사 이미지 센서 패키지 및 제조 방법
US9813602B2 (en) * 2015-12-22 2017-11-07 Faez Ba-Tis Autofocus camera using MEMS actuation of image sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026169A1 (en) * 2006-08-30 2008-03-06 Panasonic Electric Works Co., Ltd. Fingerprint image input apparatus
US20110058091A1 (en) * 2009-09-09 2011-03-10 Chi-Hsing Hsu Image-capturing module with a flexible type substrate structure
US20140140587A1 (en) * 2012-11-14 2014-05-22 Claudio R. Ballard "home" button with integrated user biometric sensing and verification system for mobile device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534292A4 *

Also Published As

Publication number Publication date
EP3534292A4 (en) 2020-07-22
US10784298B2 (en) 2020-09-22
US20190326339A1 (en) 2019-10-24
CN207833534U (zh) 2018-09-07
EP3534292A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2019090935A1 (zh) 光学模组及其加工方法、及终端设备
CN109074477B (zh) 光学模组及其加工方法、及终端设备
TWI228948B (en) Camera module
US7495325B2 (en) Optical die-down quad flat non-leaded package
US7202460B2 (en) Camera module for compact electronic equipments
US6713857B1 (en) Low profile stacked multi-chip semiconductor package with chip carrier having opening and fabrication method of the semiconductor package
TWI244174B (en) Photosensitive semiconductor package and method for fabricating the same
US20130292786A1 (en) Integrated optical sensor module
JP2004296453A (ja) 固体撮像装置、半導体ウエハ、光学装置用モジュール、固体撮像装置の製造方法及び光学装置用モジュールの製造方法
US20090256222A1 (en) Packaging method of image sensing device
JP2002329850A (ja) チップサイズパッケージおよびその製造方法
US11296141B2 (en) Image capturing assembly and packaging method thereof, lens module, and electronic device
US20090215216A1 (en) Packaging method of image sensing device
US10861895B2 (en) Image capturing assembly and packaging method thereof, lens module and electronic device
KR20160017628A (ko) 저 프로파일 트랜스듀서 모듈
KR20170073796A (ko) 반도체 패키지 및 패키지 제조 방법
CN209746551U (zh) 生物特征识别模组及电子设备
US20220093664A1 (en) Reliable semiconductor packages
JP2006005612A (ja) 撮像モジュール
US20080303111A1 (en) Sensor package and method for fabricating the same
TW200411945A (en) Flip chip optical and imaging sensor device
US20090315130A1 (en) Solid-state imaging apparatus and method for manufacturing the same
US10922518B2 (en) Chip package structure, chip package method and terminal device
JP4283801B2 (ja) カメラモジュール及びその製造方法
CN117059677A (zh) 影像感测模组、显示模组及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017931166

Country of ref document: EP

Effective date: 20190527

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE