WO2019085887A1 - 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法 - Google Patents

一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法 Download PDF

Info

Publication number
WO2019085887A1
WO2019085887A1 PCT/CN2018/112621 CN2018112621W WO2019085887A1 WO 2019085887 A1 WO2019085887 A1 WO 2019085887A1 CN 2018112621 W CN2018112621 W CN 2018112621W WO 2019085887 A1 WO2019085887 A1 WO 2019085887A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
solution
heat exchange
zone
condenser
Prior art date
Application number
PCT/CN2018/112621
Other languages
English (en)
French (fr)
Inventor
王玉军
马晓洁
王颖
王天舒
杨奕
Original Assignee
江苏天舒电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天舒电器有限公司 filed Critical 江苏天舒电器有限公司
Priority to US16/757,944 priority Critical patent/US11248824B2/en
Publication of WO2019085887A1 publication Critical patent/WO2019085887A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/08Drying; Subsequent reconstitution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/001Drying-air generating units, e.g. movable, independent of drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/06Grains, e.g. cereals, wheat, rice, corn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Definitions

  • the invention belongs to the technical field of grain drying, and particularly relates to a control system of a frost-free, multi-variable coupled heat pump hot blast stove and a control method thereof.
  • the invention application with the application number of 201010209086.0 discloses a high-temperature hot air furnace with a de-dusting and decompression type of a dust-removing smoke.
  • the upper furnace of the combustion furnace is provided with a residual heat return air passage, and the residual heat return air passage is connected to the inner layer of the upper furnace.
  • the hot air chamber is connected to the hot air outlet through the outer hot air chamber, and the soot chamber of the upper furnace is connected to the dust passage through the smoke passage and the induced draft fan, and the soot passage is connected to the dust removal and smoke removal device, and the waste heat recovery mechanism is arranged to be installed in the dust removal device.
  • the fresh air inlet on the smoke removing device is connected to the waste heat chamber in the dust removing and de-smitting device through the fresh air chamber in the dust removing and smoke removing device, and the residual heat outlet is provided on one side of the residual heat chamber, and the residual heat outlet is above There is a residual heat blower, and the residual heat blower is connected to the residual heat return air duct.
  • the invention application No. 201310603146.0 discloses a high-efficiency multi-functional hot blast stove, which comprises a furnace, a furnace and a chimney, and an insulation layer is arranged outside the furnace, and a passage for air to pass between the insulation layer and the furnace is provided, and the lower part of the passage A water jacket is provided, and a middle partition for extending the air path is provided in the passage. A heated top layer is also disposed between the top of the furnace and the insulating layer, and a top partition for extending the air path is also provided in the heated top layer.
  • the water jacket can also produce hot water or steam while producing hot air. Due to the arrangement of the heat preservation tank, the water circulation can be self-circulating or circulating through the water pump, and the water temperature is up to 100 degrees Celsius. Therefore, the furnace side plates of the combustion zone of the furnace body are well protected from high temperature damage.
  • the invention application No. 201210558824.1 discloses a novel all-steel structure direct-fired jacket type hot blast stove, which is composed of a furnace shell, a mounting flange, a positioning ring, a combustion cylinder, a round basin-shaped chassis, a conical mixing cylinder, The installation sleeve, the cold air heat exchange jacket, the insulation layer, the cold air inlet, the combustion device, the cold air supply device, and the automatic control system are composed.
  • the present invention provides a control system for a frost-free, multi-variable coupled heat pump hot blast stove and a control method thereof, the technical solutions of which are as follows:
  • a frost-free, multi-variable coupled heat pump hot blast stove control system and control method thereof for grain drying operation characterized in that:
  • the first compressor (1-1), the first condenser (1-2), the first throttle (1-3), and the first connected in this order are the first compressor (1-1), the first condenser (1-2), the first throttle (1-3), and the first connected in this order
  • a first heat pump unit composed of an evaporator (1-4) and a first gas-liquid separator (1-5);
  • a second heat pump unit comprising an evaporator (2-4) and a second gas-liquid separator (2-5);
  • a third heat pump unit composed of an evaporator (3-4) and a third gas-liquid separator (3-5);
  • the first heat exchanger, the third condenser, the second condenser, the first condenser and the second heat exchanger are sequentially arranged on the air supply duct and the fresh air air inlet to the fresh air air supply port to form the first heat exchange a preheating zone formed by the device, a low temperature zone composed of a third condenser, a middle temperature zone composed of a second condenser, and a high temperature zone formed by the first condenser and the second heat exchanger;
  • a preheating step heat supply consisting of a preheating zone, a low temperature zone, a medium temperature zone and a high temperature zone;
  • a frost-free step heat supply consisting of frost-free operation, low temperature zone, medium temperature zone and high temperature zone.
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • step S1 the heat step cycle preheating mode is specifically implemented by the following steps:
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • step S2 the heat stepping cycle is frost-free, and is specifically implemented by the following steps:
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • a solution heat exchanger a first solution pump (7-13) and a second solution pump (7-14) are disposed in the total solution tank.
  • the frost-free solution circulation line set by the above is completed by the following steps:
  • SA1 The solution in the concentrated solution zone in the total solution pool is sent to the spray ends of the first evaporator, the second evaporator and the third evaporator via the first solution pump (7-13) pipeline, and performs frost-free operation to form a thinning The solution flows into the respective solution pool;
  • SA2 a dilute solution flowing into the solution pool is piped into a dilute solution zone of the solution pool;
  • SA3 The dilute solution flowing into the total solution of the solution is sent to the liquid flow path of the solution heat exchanger via the pipeline where the second solution pump (7-14) is located for heat exchange, and the water is deposited and then flows into the concentrated solution zone of the solution pool.
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • the heat for heat exchange for completing the solution heat exchanger is jointly provided by the first heat pump unit, the second heat pump unit, and the third heat pump unit.
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • the heat used to complete the heat exchange of the solution heat exchanger is provided by the following steps:
  • the first compressor (1-1) is turned on, and the prepared high-temperature high-pressure refrigerant is introduced into the first condenser (1-2) for heat exchange, thereby forming a first heat exchange zone in the high temperature zone;
  • the exchanged refrigerant is sent to the solution heat exchanger via a pipeline to form a first heat source for heat exchange of the solution heat exchanger;
  • the heat exchanged refrigerant is sent to the first throttle (1-3) via the pipeline;
  • the second compressor (2-1) is turned on, and the prepared high-temperature high-pressure refrigerant is introduced into the second condenser (2-2) for heat exchange to form a medium temperature zone; the heat exchanged refrigerant passes through the pipe The road is sent to the solution heat exchanger to form a second heat source for heat exchange of the solution heat exchanger; the heat exchanged refrigerant is sent to the second throttle device (2-3) via the pipeline;
  • SS3 The third compressor (3-1) is turned on, and the prepared high-temperature and high-pressure refrigerant is introduced into the second heat exchanger (5-2) for heat exchange, thereby forming a second heat exchange zone in the high temperature zone. ;
  • the refrigerant that has completed heat exchange in the second heat exchanger (5-2) is sent to the third condenser (3-2) via the pipeline for heat exchange, thereby forming a low temperature zone;
  • the refrigerant that has completed heat exchange in the third condenser (3-2) is sent to the solution heat exchanger via a pipeline to form a third heat source for heat exchange of the solution heat exchanger; the refrigerant after heat exchange is sent through the pipeline Third throttle (3-3).
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • a first drying filter (1-6) is further disposed on the pipeline of the first condenser (1-2) and the first restrictor (1-3);
  • a second drying filter (2-6) is further disposed on the pipeline of the second condenser (2-2) and the second throttle (2-3);
  • a third drying filter (3-6) is also disposed on the piping of the third condenser (3-2) and the third throttle (3-3).
  • a control system for a frost-free, multivariable coupled heat pump hot blast stove and a control method thereof according to the present invention characterized in that:
  • the solution pools disposed at the lower ends of the evaporators are spatially disposed above the total pool of the solution;
  • the dilute solution in the solution tank flows into the dilute solution zone of the solution pool by its own gravity.
  • a heat supply source is formed by the first heat pump unit, the second heat pump unit, the third heat pump unit, the first heat exchanger and the second heat exchanger;
  • the heat supply in the preheating zone, the low temperature zone, the middle temperature zone and the high temperature zone in the direction of the air inlet from the air inlet to the air outlet is formed, and the thermal cascade utilization on the air supply pipeline is realized.
  • the heat exchange in the frost-free device is provided via the first heat pump unit, the second heat pump unit, and the third heat pump unit, and no heat pump unit is provided.
  • FIG. 1 is a schematic flow chart of a step sequence of the present invention
  • FIG. 2 is a schematic flow chart of a step of a heat cascade circulating preheating mode in the present invention
  • FIG. 3 is a schematic flow chart of a step sequence of a thermal step cycle without frost in the present invention
  • Figure 4 is a schematic diagram of a solution circulation process in the present invention.
  • Figure 5 is a schematic view showing the heating process of the solution heat exchanger of the present invention.
  • FIG. 6 is a step-by-step diagram of a heat cascade circulating preheating mode in the present invention.
  • Figure 7 is a step diagram of a heat cascade cycle frost-free mode in the present invention.
  • Figure 8 is a schematic view showing the structure of the system of the present invention.
  • 1-1 is the first compressor; 2-1 is the second compressor; 3-1 is the third compressor; 1-5 is the first gas-liquid separator; 2-5 is the second gas-liquid separation 3-5 is a third gas-liquid separator; 1-4 is a first evaporator; 2-4 is a second evaporator; 3-4 is a third evaporator; 1-3 is a first throttle; 2-3 is the second throttle; 3-3 is the third throttle; 1-6 is the first dry filter; 2-6 is the second dry filter; 3-6 is the third dry filter; 1-2 is the first condenser; 2-2 is the second condenser; 3-2 is the third condenser; 4-2 is the first heat exchanger; 5-2 is the second heat exchanger; 1-7 , 1-8, 1-9, 2-7, 2-8, 3-7, 3-8, 3-9, 3-10 are solenoid valves; 7-13 is the first solution pump; 7-14 is the first Two solution pump.
  • a control system and a control method thereof for a frost-free, multivariable coupled heat pump hot blast stove as shown in FIG. 1 are used for grain drying operations,
  • the first compressor (1-1), the first condenser (1-2), the first throttle (1-3), and the first connected in this order are the first compressor (1-1), the first condenser (1-2), the first throttle (1-3), and the first connected in this order
  • a first heat pump unit composed of an evaporator (1-4) and a first gas-liquid separator (1-5);
  • a second heat pump unit comprising an evaporator (2-4) and a second gas-liquid separator (2-5);
  • a third heat pump unit composed of an evaporator (3-4) and a third gas-liquid separator (3-5);
  • the first heat exchanger, the third condenser, the second condenser, the first condenser and the second heat exchanger are sequentially arranged on the air supply duct and the fresh air air inlet to the fresh air air supply port to form the first heat exchange a preheating zone formed by the device, a low temperature zone composed of a third condenser, a middle temperature zone composed of a second condenser, and a high temperature zone formed by the first condenser and the second heat exchanger;
  • a preheating step heat supply consisting of a preheating zone, a low temperature zone, a medium temperature zone and a high temperature zone;
  • a frost-free step heat supply consisting of frost-free operation, low temperature zone, medium temperature zone and high temperature zone.
  • step S1 the heat step cycle preheating mode is specifically implemented by the following steps (as shown in FIG. 2):
  • step S2 the heat stepping cycle frost-free mode is specifically implemented by the following steps (as shown in FIG. 3):
  • a solution heat exchanger a first solution pump (7-13) and a second solution pump (7-14) are disposed in the total solution tank.
  • SA1 The solution in the concentrated solution zone in the total solution pool is sent to the spray ends of the first evaporator, the second evaporator and the third evaporator via the first solution pump (7-13) pipeline, and performs frost-free operation to form a thinning The solution flows into the respective solution pool;
  • SA2 a dilute solution flowing into the solution pool is piped into a dilute solution zone of the solution pool;
  • SA3 The dilute solution flowing into the total solution of the solution is sent to the liquid flow path of the solution heat exchanger via the pipeline where the second solution pump (7-14) is located for heat exchange, and the water is deposited and then flows into the concentrated solution zone of the solution pool.
  • the heat for heat exchange for completing the solution heat exchanger is jointly provided by the first heat pump unit, the second heat pump unit, and the third heat pump unit.
  • the heat used to complete the heat exchange of the solution heat exchanger is provided by the following steps (as shown in Figure 5):
  • the first compressor (1-1) is turned on, and the prepared high-temperature high-pressure refrigerant is introduced into the first condenser (1-2) for heat exchange, thereby forming a first heat exchange zone in the high temperature zone;
  • the exchanged refrigerant is sent to the solution heat exchanger via a pipeline to form a first heat source for heat exchange of the solution heat exchanger;
  • the heat exchanged refrigerant is sent to the first throttle (1-3) via the pipeline;
  • the second compressor (2-1) is turned on, and the prepared high-temperature high-pressure refrigerant is introduced into the second condenser (2-2) for heat exchange to form a medium temperature zone; the heat exchanged refrigerant passes through the pipe The road is sent to the solution heat exchanger to form a second heat source for heat exchange of the solution heat exchanger; the heat exchanged refrigerant is sent to the second throttle device (2-3) via the pipeline;
  • SS3 The third compressor (3-1) is turned on, and the prepared high-temperature and high-pressure refrigerant is introduced into the second heat exchanger (5-2) for heat exchange, thereby forming a second heat exchange zone in the high temperature zone. ;
  • the refrigerant that has completed heat exchange in the second heat exchanger (5-2) is sent to the third condenser (3-2) via the pipeline for heat exchange, thereby forming a low temperature zone;
  • the refrigerant that has completed heat exchange in the third condenser (3-2) is sent to the solution heat exchanger via a pipeline to form a third heat source for heat exchange of the solution heat exchanger; the refrigerant after heat exchange is sent through the pipeline Third throttle (3-3).
  • a first drying filter (1-6) is further disposed on the pipeline of the first condenser (1-2) and the first restrictor (1-3);
  • a second drying filter (2-6) is further disposed on the pipeline of the second condenser (2-2) and the second throttle (2-3);
  • a third drying filter (3-6) is also disposed on the piping of the third condenser (3-2) and the third throttle (3-3).
  • the solution pools disposed at the lower ends of the evaporators are spatially disposed above the total pool of the solution;
  • the dilute solution in the solution tank flows into the dilute solution zone of the solution pool by its own gravity.
  • Refrigeration system workflow Compressor 1 draws in low-temperature and low-pressure gaseous refrigerant, which becomes a high-temperature and high-pressure gas state after being compressed, discharged into condenser 2 for condensation and cooling to become liquid, and the dissipated heat is transferred to the heated air.
  • the liquid refrigerant is dried by the drying filter 6 to filter the moisture impurities in the refrigerant, and then throttled and depressurized by the throttle valve 3, and the throttled and depressurized refrigerant flows into the evaporator, and the air is absorbed by the evaporator 4.
  • the heat in the gas becomes a gaseous refrigerant that flows into the vapor-liquid separator 5 and is sucked in by the compressor port, thus forming a closed thermodynamic cycle system.
  • Heat pump hot air system work flow the residual heat generated by the refrigerant at the outlet of the first condenser 1-2 in summer, enters the heat exchanger 4-2 through the solenoid valve 1-8 to preheat the fresh air, which is the preheating zone;
  • the exhaust gas made by machine 3-1 passes through the electromagnetic valve 3-8 and then enters the heat exchanger 5-2 and returns to the condenser 3-2.
  • the condenser 3-2 heats the fresh air for the first time, which is a low temperature zone;
  • the exhaust gas made by the second compressor 2-1 directly enters the condenser 2-2, and the condenser 2-2 performs the second heating of the fresh air, which is the intermediate temperature zone; the exhaust of the first compressor 1-1 passes.
  • the condenser 1-2, the condenser 1-2 performs the third heating of the fresh air, and then the fourth heating of the fresh air through the heat exchanger 5-2, which is a high temperature zone; thus forming a heat pump hot air circulation.
  • Frost-free system workflow pumping the concentrated solution of the solution pool 7-12 to the spray line of the evaporator through the solution pump 7-13, the concentrated solution is evenly sprayed into the air environment near the fins, absorbing air The water is used to reduce the ambient dew point temperature. At this time, the solution becomes a dilute solution, which is stored in the solution pool on the lower side of the evaporator 4. After reaching a certain height, it is sent to the solution pool 7-12 by gravity, and the diluted solution passes through the solution pump 7- 14 pumping to the upper heat exchanger of the solution pool for heat exchange, and then forming a concentrated solution after precipitating water.
  • the solution pump 7- 14 pumping to the upper heat exchanger of the solution pool for heat exchange, and then forming a concentrated solution after precipitating water.
  • a heat supply source is formed by the first heat pump unit, the second heat pump unit, the third heat pump unit, the first heat exchanger and the second heat exchanger;
  • the heat supply in the preheating zone, the low temperature zone, the middle temperature zone and the high temperature zone in the direction of the air inlet from the air inlet to the air outlet is formed, and the thermal cascade utilization on the air supply pipeline is realized.
  • the heat exchange in the frost-free device is provided via the first heat pump unit, the second heat pump unit, and the third heat pump unit, and no heat pump unit is provided.

Abstract

一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法。该控制系统内设有第一换热器(4-2);第二换热器(5-2);溶液总池与相应管路;温度检测仪;并形成有第一热泵机组、第二热泵机组、第三热泵机组;在送风管道上、新风进风口向新风送风口的方向依次形成预热区、低温区、中温区、及高温区。同时设有无霜作业环节。该一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,可实现热量梯级循环预热模式及热量梯级循环无霜模式两种控制模式下的热量提供。

Description

一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法 技术领域
本发明属于粮食烘干技术领域,具体涉及一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法。
背景技术
近年来,我国粮食烘干机械设备行业获得快速的发展,但整体上还是处于市场比较混乱,产品技术落后,企业创新能力差、研发能力较弱,一次性购置成本偏高等阶段,亟需从政策法规、市场层面、技术层面等,推动烘干机行业持续健康和有序发展。现有的粮食烘干技术有自然风干,晒干、燃烧化学燃料烘干、电加热、红外,微波干燥等,这些技术能耗巨大,污染严重,效率低,安全差,显然,这些旧式的干燥设备不符合当今社会的可持续发展的趋势。寻找一种可替代旧式的干燥设备,且安全、环保、节能的干燥设备显得越发紧迫。
随着中国能源消耗的加剧,人均能源利用率已不能满足需求,国家政府对能源利用的宏观调控,热泵设备的节能减排优势已日渐明显。与燃油,燃气锅炉相比,全年平均可节约能源约70%,加上电价的走低和燃料价格的上涨,运行费用低的优点日益突出;热泵产品无任何燃烧排放物,制冷剂选用环保制冷剂,对臭氧层零污染,是较好的环保型产品;设备全自动控制,无需人员蹲守,节省了人力成本。但是,现在市场上的热泵热风炉处于刚推广阶段,还有许多技术需要创新和突破。
目前市场上使用的热泵热风炉仍存在一些问题:1、系统冬季运行时,室外环境温度低,蒸发温度降低,蒸发器表面易结上厚厚的霜层,从而导致机组性能下降,甚至不能正常换热,机组出现故障停机,传统化霜方式需停机或逆向化霜,造成烘干效率低。2、夏季系统运行时,室外环境温度高,使得系统冷凝温度升高,新风经冷凝器换热后,冷凝器内热量并不能完全释放,造成大量热量的浪费,同时降低系统的运行效率,对粮食烘干产生不利影响。3、新风流过相同温度的换热器后,风温很难提高到所需温度。4、系统冬季运行时,由于进风侧的冷凝器进行温度很低,从而冷凝效果好,导致此系统高低压小,机组的循环动力难以保证,机组的运行能效差。同时也会出现此系统蒸发压力低,蒸发侧翅片更容易结霜。5、机组靠出风侧的系统由于出风侧的温度高,最后面的 系统冷凝温度高,此系统一直处于高负荷运行状态,压缩机的寿命会大大降低。
申请号为:201010209086.0的发明申请,公开了一种排管除尘烟回风减压式高温热风炉,燃烧炉的上炉膛上面设有余热回风道,余热回风道连通到上炉膛的内层热风腔室,再经外层热风腔室连通到热风出风口,上炉膛的烟尘腔室经烟尘道口和引风机连通奥烟尘通道,烟尘通道连通到除尘除烟装置,余热回收机构包括设置在除尘除烟装置上的新风进风口,新风进风口经除尘除烟装置中的新风腔室连通到除尘除烟装置中的余热腔室,余热腔室的一侧设有余热出风口,余热出风口上面设有余热送风机,余热送风机连通到余热回风道。
申请号为201310603146.0的发明申请,公开了一种高效多功能热风炉,包括炉膛、炉膛与烟囱连通,炉膛之外设有保温层,保温层与炉膛之间设有供空气通过的通道,通道下部设有水夹套,通道内设有用于延长空气路径的中层隔板。炉膛顶部与保温层之间还设有加热顶层,加热顶层内还设有用于延长空气路径的顶层隔板。通过水夹套可以在生产热风的同时还生产热水或蒸气,由于配置保温水箱,水循环可以自循环也可以通过水泵循环,水的温度最高为100摄氏度。所以很好的保护了炉体燃烧堆聚区的炉膛侧板不受高温损坏。
申请号为201210558824.1的发明申请,公开了一种新型全钢结构直燃夹套式热风炉,由炉体外壳、安装法兰、定位套圈、燃烧筒、圆盆形底盘、圆锥形混合筒、安装套筒、冷风换热夹套、保温层、冷风进风口、燃烧装置、冷风供风装置、自动控制系统组成。
发明内容
为解决以上问题,本发明提供了一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其技术方案具体如下:
一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,用于粮食烘干作业,其特征在于:
在所述控制系统内设有第一换热器(4-2);第二换热器(5-2);溶液总池(7-12)与相应管路;温度检测仪;
由依次连接的第一压缩机(1-1)、第一冷凝器(1-2)、第一节流器(1-3)、第一
蒸发器(1-4)及第一气液分离器(1-5)构成的第一热泵机组;
由依次连接的第二压缩机(2-1)、第二冷凝器(2-2)、第二节流器(2-3)、第二
蒸发器(2-4)及第二气液分离器(2-5)构成的第二热泵机组;
由依次连接的第三压缩机(3-1)、第三冷凝器(3-2)、第三节流器(3-3)、第三
蒸发器(3-4)及第三气液分离器(3-5)构成的第三热泵机组;
在送风管道上、新风进风口向新风送风口的方向依次设置第一换热器、第三冷凝器、第二冷凝器、第一冷凝器及第二换热器,形成由第一换热器构成的预热区、由第三冷凝器构成的低温区、由第二冷凝器构成的中温区、由第一冷凝器与第二换热器共同构成的高温区;
根据上述的控制方法,具体包括如下步骤:
S1:当温度检测仪检测到外界温度大于等于5℃时,启动热量梯级循环预热模式,
形成由预热区、低温区、中温区及高温区依次构成的预热式梯级热量供应;
S2:当温度检测仪检测到外界温度小于5℃时,启动热量梯级循环无霜模式,形成
由无霜作业、低温区、中温区及高温区依次构成的无霜式梯级热量供应。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
步骤S1中,所述的热量梯级循环预热模式,具体通过如下步骤实现:
S11:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一换热器(4-2)中进行热交换,以此形成预热区;热交换后的冷媒经由管路送入第一节流器(1-3);
S12:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
S13:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
S14:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
步骤S2中,所述的热量梯级循环无霜模式,具体通过如下步骤实现:
S21:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
S22:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
S23:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
S24:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一节流器(1-3);
S25:将溶液总池(7-12)内的浓溶液通过管路分别输送至第一蒸发器(1-4)、第二蒸发器(2-4)及第三蒸发器(3-4)的相应喷淋端,完成无霜作业。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
在所述溶液总池内形成浓溶液区与稀溶液区,
在所述溶液总池内设有溶液换热器、第一溶液泵(7-13)及第二溶液泵(7-14),
在所述第一蒸发器、第二蒸发器及第三蒸发器的下端分别设置相应的溶液池,
通过上述设置的无霜溶液循环管路通过下述步骤完成:
SA1:溶液总池内浓溶液区的溶液经由第一溶液泵(7-13)管路送至第一蒸发器、第二蒸发器及第三蒸发器的喷淋端,进行无霜作业,形成稀溶液流入各自的溶液池;
SA2:流入溶液池的稀溶液经由管路汇入溶液总池的稀溶液区;
SA3:流入溶液总池的稀溶液经由第二溶液泵(7-14)所在的管路送至溶液换热器的液体流道进行热交换,析出水分,再流入溶液总池的浓溶液区。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
用于完成溶液换热器的换热用热量由第一热泵机组、第二热泵机组及第三热泵机组共同提供。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
用于完成溶液换热器换热用热量通过下述步骤提供:
SS1:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第一热量源;热交换后的冷媒经由管路送入第一节流器(1-3);
SS2:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;热交换后的冷媒经由管路送入溶液换热器中,形成溶 液换热器换热的第二热量源;热交换后的冷媒经由管路送入第二节流器(2-3);
SS3:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
将第二换热器(5-2)内完成热交换的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
将第三冷凝器(3-2)内完成热交换的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第三热量源;热交换后的冷媒经由管路送入第三节流器(3-3)。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
在第一冷凝器(1-2)与第一节流器(1-3)的管路上还设置第一干燥过滤器(1-6);
在第二冷凝器(2-2)与第二节流器(2-3)的管路上还设置第二干燥过滤器(2-6);
在第三冷凝器(3-2)与第三节流器(3-3)的管路上还设置第三干燥过滤器(3-6)。
根据本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
设于各蒸发器下端的溶液池在空间上呈高于溶液总池的物理方式设置;
所述溶液池内的稀溶液通过自身的重力作用流入溶液总池的稀溶液区。
本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,
首先,通过设置的第一热泵机组、第二热泵机组、第三热泵机组、第一换热器及第二换热器构成热量提供源;
其次,通过基于上述设备的结构设置,形成送风管路上由进风口向送风口方向上依次的预热区、低温区、中温区及高温区的热量提供,实现送风管路上的热量梯级利用;
再次,通过设置无霜设备,完成冬季的无霜作业;
然后,所述无霜设备内的换热经由第一热泵机组、第二热泵机组、第三热泵机组提供,不另设热泵机组。
附图说明
图1为本发明的步序流程示意图;
图2为本发明中的热量梯级循环预热模式步序流程示意图;
图3为本发明中的热量梯级循环无霜模式步序流程示意图;
图4为本发明中的溶液循环流程示意图;
图5为本发明中溶液换热器的供热流程示意图;
图6为本发明中的热量梯级循环预热模式步序图;
图7为本发明中的热量梯级循环无霜模式步序图;
图8为本发明的系统结构示意图。
图中,1-1为第一压缩机;2-1为第二压缩机;3-1为第三压缩机;1-5为第一气液分离器;2-5为第二气液分离器;3-5为第三气液分离器;1-4为第一蒸发器;2-4为第二蒸发器;3-4为第三蒸发器;1-3为第一节流器;2-3为第二节流器;3-3为第三节流器;1-6为一号干燥过滤器;2-6为第二干燥过滤器;3-6为第三干燥过滤器;1-2为第一冷凝器;2-2为第二冷凝器;3-2为第三冷凝器;4-2为第一换热器;5-2为第二换热器;1-7、1-8、1-9、2-7、2-8、3-7、3-8、3-9、3-10为电磁阀;7-13为第一溶液泵;7-14为第二溶液泵。
具体实施方式
下面,根据说明书附图和具体实施方式对本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法作进一步具体说明。
如图1所示的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,用于粮食烘干作业,
在所述控制系统内设有第一换热器(4-2);第二换热器(5-2);溶液总池(7-12)与相应管路;温度检测仪;
由依次连接的第一压缩机(1-1)、第一冷凝器(1-2)、第一节流器(1-3)、第一
蒸发器(1-4)及第一气液分离器(1-5)构成的第一热泵机组;
由依次连接的第二压缩机(2-1)、第二冷凝器(2-2)、第二节流器(2-3)、第二
蒸发器(2-4)及第二气液分离器(2-5)构成的第二热泵机组;
由依次连接的第三压缩机(3-1)、第三冷凝器(3-2)、第三节流器(3-3)、第三
蒸发器(3-4)及第三气液分离器(3-5)构成的第三热泵机组;
在送风管道上、新风进风口向新风送风口的方向依次设置第一换热器、第三冷凝器、第二冷凝器、第一冷凝器及第二换热器,形成由第一换热器构成的预热区、由第三冷凝器构成的低温区、由第二冷凝器构成的中温区、由第一冷凝器与第二换热器共同构成的高温区;
根据上述的控制方法,具体包括如下步骤:
S1:当温度检测仪检测到外界温度大于等于5℃时,启动热量梯级循环预热模式,
形成由预热区、低温区、中温区及高温区依次构成的预热式梯级热量供应;
S2:当温度检测仪检测到外界温度小于5℃时,启动热量梯级循环无霜模式,形成
由无霜作业、低温区、中温区及高温区依次构成的无霜式梯级热量供应。
其中,
步骤S1中,所述的热量梯级循环预热模式,具体通过如下步骤实现(如图2所示):
S11:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一换热器(4-2)中进行热交换,以此形成预热区;热交换后的冷媒经由管路送入第一节流器(1-3);
S12:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
S13:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
S14:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区。
其中,
步骤S2中,所述的热量梯级循环无霜模式,具体通过如下步骤实现(如图3所示):
S21:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
S22:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
S23:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
S24:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一节流器(1-3);
S25:将溶液总池(7-12)内的浓溶液通过管路分别输送至第一蒸发器(1-4)、第二蒸发器(2-4)及第三蒸发器(3-4)的相应喷淋端,完成无霜作业。
其中,
在所述溶液总池内形成浓溶液区与稀溶液区,
在所述溶液总池内设有溶液换热器、第一溶液泵(7-13)及第二溶液泵(7-14),
在所述第一蒸发器、第二蒸发器及第三蒸发器的下端分别设置相应的溶液池,
通过上述设置形成的溶液循环管路,通过下述步骤完成(如图4所示):
SA1:溶液总池内浓溶液区的溶液经由第一溶液泵(7-13)管路送至第一蒸发器、第二蒸发器及第三蒸发器的喷淋端,进行无霜作业,形成稀溶液流入各自的溶液池;
SA2:流入溶液池的稀溶液经由管路汇入溶液总池的稀溶液区;
SA3:流入溶液总池的稀溶液经由第二溶液泵(7-14)所在的管路送至溶液换热器的液体流道进行热交换,析出水分,再流入溶液总池的浓溶液区。
其中,
用于完成溶液换热器的换热用热量由第一热泵机组、第二热泵机组及第三热泵机组共同提供。
其中,
用于完成溶液换热器换热用热量通过下述步骤提供(如图5所示):
SS1:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第一热量源;热交换后的冷媒经由管路送入第一节流器(1-3);
SS2:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;热交换后的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第二热量源;热交换后的冷媒经由管路送入第二节流器(2-3);
SS3:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
将第二换热器(5-2)内完成热交换的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
将第三冷凝器(3-2)内完成热交换的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第三热量源;热交换后的冷媒经由管路送入第三节流器(3-3)。
其中,
在第一冷凝器(1-2)与第一节流器(1-3)的管路上还设置第一干燥过滤器(1-6);
在第二冷凝器(2-2)与第二节流器(2-3)的管路上还设置第二干燥过滤器(2-6);
在第三冷凝器(3-2)与第三节流器(3-3)的管路上还设置第三干燥过滤器(3-6)。
其中,
设于各蒸发器下端的溶液池在空间上呈高于溶液总池的物理方式设置;
所述溶液池内的稀溶液通过自身的重力作用流入溶液总池的稀溶液区。
工作过程:
室外环境温度大于等于5℃时,开启热量梯级循环预热模式(如图6所示);当室外环境温度小于5℃时,开启热量梯级循环无霜模式(如图7所示)。
制冷系统工作流程:压缩机1吸入低温低压的气态制冷剂,通过压缩做功后变为高温高压的气态,排入到冷凝器2进行冷凝降温变成液态,散发的热量转移到被加热的空气中,液态制冷剂通过干燥过滤器6进行干燥过滤制冷剂中水分杂质后,通过节流阀3进行节流降压,节流降压后的制冷剂流入到蒸发器中,通过蒸发器4吸收空气中的热量变为气态制冷剂流入到汽液分离器5中,再被压缩机口吸入,如此形成一个闭式热力循环系统。
热泵热风系统工作流程:夏季一号冷凝器1-2出口制冷剂产生的余热,经过电磁阀1-8进入换热器4-2对新风进行预热,此为预热区;由三号压缩机3-1制成的排气经过电磁阀3-8先进入换热器5-2后回到冷凝器3-2,冷凝器3-2对新风进行第一次加热,此为低温区;由二号压缩机2-1制成的排气直接进入冷凝器2-2,冷凝器2-2对新风进行第二次加热,此为中温区;一号压缩机1-1的排气经过冷凝器1-2,冷凝器1-2对新风进行第三次加热,后经过换热器5-2对新风进行第四次加热,此为高温区;如此形成一个热泵热风循环。
无霜系统工作流程:通过溶液泵7-13,将溶液总池7-12的浓溶液泵送到蒸发器的喷淋管路,浓溶液被均匀喷淋到翅片附近空气环境中,吸收空气中水分从而降低环境露点温度,此时溶液变为稀溶液,存储在蒸发器4下侧的溶液池内,到达一定高度后经重力作用送至溶液总池7-12,稀溶液通过溶液泵7-14泵送至溶液池上部换热器进行热交换,析出水分后变为浓溶液。根据上述的系统结构,如图8所示。
本发明的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,
首先,通过设置的第一热泵机组、第二热泵机组、第三热泵机组、第一换热器及第二换热器构成热量提供源;
其次,通过基于上述设备的结构设置,形成送风管路上由进风口向送风口方向上依次的预热区、低温区、中温区及高温区的热量提供,实现送风管路上的热量梯级利用;
再次,通过设置无霜设备,完成冬季的无霜作业;
然后,所述无霜设备内的换热经由第一热泵机组、第二热泵机组、第三热泵机组提供,不另设热泵机组。

Claims (8)

  1. 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,用于粮食烘干作业,其特征在于:
    在所述控制系统内设有第一换热器(4-2);第二换热器(5-2);溶液总池(7-12)与相应管路;温度检测仪;
    由依次连接的第一压缩机(1-1)、第一冷凝器(1-2)、第一节流器(1-3)、第一蒸发器(1-4)及第一气液分离器(1-5)构成的第一热泵机组;
    由依次连接的第二压缩机(2-1)、第二冷凝器(2-2)、第二节流器(2-3)、第二蒸发器(2-4)及第二气液分离器(2-5)构成的第二热泵机组;
    由依次连接的第三压缩机(3-1)、第三冷凝器(3-2)、第三节流器(3-3)、第三蒸发器(3-4)及第三气液分离器(3-5)构成的第三热泵机组;
    在送风管道上、新风进风口向新风送风口的方向依次设置第一换热器、第三冷凝器、第二冷凝器、第一冷凝器及第二换热器,形成由第一换热器构成的预热区、由第三冷凝器构成的低温区、由第二冷凝器构成的中温区、由第一冷凝器与第二换热器共同构成的高温区;
    根据上述的控制方法,具体包括如下步骤:
    S1:当温度检测仪检测到外界温度大于等于5℃时,启动热量梯级循环预热模式,形成由预热区、低温区、中温区及高温区依次构成的预热式梯级热量供应;
    S2:当温度检测仪检测到外界温度小于5℃时,启动热量梯级循环无霜模式,形成由无霜作业、低温区、中温区及高温区依次构成的无霜式梯级热量供应。
  2. 根据权利要求1所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    步骤S1中,所述的热量梯级循环预热模式,具体通过如下步骤实现:
    S11:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一换热器(4-2)中进行热交换,以此形成预热区;热交换后的冷媒经由管路送入第一节流器(1-3);
    S12:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
    S13:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
    S14:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区。
  3. 根据权利要求1所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    步骤S2中,所述的热量梯级循环无霜模式,具体通过如下步骤实现:
    S21:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
    S22:将第二换热器(5-2)内完成热交换作业的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
    S23:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;换热后的冷媒经由管路送入第二节流器(2-3);
    S24:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入第一节流器(1-3);
    S25:将溶液总池(7-12)内的浓溶液通过管路分别输送至第一蒸发器(1-4)、第二蒸发器(2-4)及第三蒸发器(3-4)的相应喷淋端,完成无霜作业。
  4. 根据权利要求1所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    在所述溶液总池内形成浓溶液区与稀溶液区,
    在所述溶液总池内设有溶液换热器、第一溶液泵(7-13)及第二溶液泵(7-14),
    在所述第一蒸发器、第二蒸发器及第三蒸发器的下端分别设置相应的溶液池,
    通过上述设置形成的溶液循环管路,通过下述步骤完成:
    SA1:溶液总池内浓溶液区的溶液经由第一溶液泵(7-13)管路送至第一蒸发器、第二蒸发器及第三蒸发器的喷淋端,进行无霜作业,形成稀溶液流入各自的溶液池;
    SA2:流入溶液池的稀溶液经由管路汇入溶液总池的稀溶液区;
    SA3:流入溶液总池的稀溶液经由第二溶液泵(7-14)所在的管路送至溶液换热器的液体流道进行热交换,析出水分,再流入溶液总池的浓溶液区。
  5. 根据权利要求4所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    用于完成溶液换热器的换热用热量由第一热泵机组、第二热泵机组及第三热泵机组共同提供。
  6. 根据权利要求3和5所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    用于完成溶液换热器换热用热量通过下述步骤提供:
    SS1:开启第一压缩机(1-1)工作,将制成的高温高压冷媒通入第一冷凝器(1-2)内进行热交换,以此形成高温区的第一换热区;热交换后的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第一热量源;热交换后的冷媒经由管路送入第一节流器(1-3);
    SS2:开启第二压缩机(2-1)工作,将制成的高温高压冷媒通入第二冷凝器(2-2)内进行热交换,以此形成中温区;热交换后的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第二热量源;热交换后的冷媒经由管路送入第二节流器(2-3);
    SS3:开启第三压缩机(3-1)工作,将制成的高温高压的冷媒通入第二换热器(5-2)内进行热交换,以此形成高温区的第二换热区;
    将第二换热器(5-2)内完成热交换的冷媒经由管路送入第三冷凝器(3-2)中进行热交换,以此形成低温区;
    将第三冷凝器(3-2)内完成热交换的冷媒经由管路送入溶液换热器中,形成溶液换热器换热的第三热量源;热交换后的冷媒经由管路送入第三节流器(3-3)。
  7. 根据权利要求1所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    在第一冷凝器(1-2)与第一节流器(1-3)的管路上还设置第一干燥过滤器(1-6);
    在第二冷凝器(2-2)与第二节流器(2-3)的管路上还设置第二干燥过滤器(2-6);
    在第三冷凝器(3-2)与第三节流器(3-3)的管路上还设置第三干燥过滤器(3-6)。
  8. 根据权利要求4所述的一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法,其特征在于:
    设于各蒸发器下端的溶液池在空间上呈高于溶液总池的物理方式设置;
    所述溶液池内的稀溶液通过自身的重力作用流入溶液总池的稀溶液区。
PCT/CN2018/112621 2017-10-31 2018-10-30 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法 WO2019085887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/757,944 US11248824B2 (en) 2017-10-31 2018-10-30 Control system and control method for frostless, multivariable coupling, and heat pump-based hot blast stove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711053800.X 2017-10-31
CN201711053800.XA CN107741150A (zh) 2017-10-31 2017-10-31 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019085887A1 true WO2019085887A1 (zh) 2019-05-09

Family

ID=61233856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112621 WO2019085887A1 (zh) 2017-10-31 2018-10-30 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法

Country Status (3)

Country Link
US (1) US11248824B2 (zh)
CN (1) CN107741150A (zh)
WO (1) WO2019085887A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764036B (zh) * 2017-10-31 2019-11-05 江苏天舒电器有限公司 一种无霜、多变量耦合型热泵热风炉系统
CN107741150A (zh) * 2017-10-31 2018-02-27 江苏天舒电器股份有限公司 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
CN109405283B (zh) * 2018-12-05 2023-05-23 江苏天舒电器有限公司 一种精确控温型热泵热风炉系统
CN109442753B (zh) * 2018-12-05 2021-10-01 江苏天舒电器有限公司 一种精确控温型热泵热风炉控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203381336U (zh) * 2013-04-02 2014-01-08 广州德能热源设备有限公司 一种印刷行业热泵烘干系统
CN104487777A (zh) * 2012-07-13 2015-04-01 株式会社日立制作所 热源系统
WO2015121993A1 (ja) * 2014-02-14 2015-08-20 三菱電機株式会社 冷凍サイクル装置
CN106643107A (zh) * 2016-12-16 2017-05-10 江苏天舒电器股份有限公司 一种热泵式双循环热风烘干系统控制方法及其控制装置
CN107741150A (zh) * 2017-10-31 2018-02-27 江苏天舒电器股份有限公司 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
CN208000031U (zh) * 2017-10-31 2018-10-23 江苏天舒电器股份有限公司 一种热泵热风炉结构

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1675285A (en) * 1924-08-01 1928-06-26 Coe Mfg Co Drier for veneer and sheet material
US3625812A (en) * 1968-12-18 1971-12-07 Beloit Corp Presize moisture control system for a papermaking machine
US3791049A (en) * 1971-10-04 1974-02-12 Smitherm Industries Drying methods with moisture profile control
US4015341A (en) * 1975-12-22 1977-04-05 Mcdonnell Douglas Corporation Seed drying process and apparatus
US4125945A (en) * 1977-05-18 1978-11-21 Westlake Agricultural Engineering, Inc. Multiple stage grain dryer with intermediate steeping
FR2504662A1 (fr) * 1981-04-22 1982-10-29 Pavailler Louis Four tunnel, a chauffage par circulation d'huile
CA2078290A1 (en) * 1991-10-24 1993-04-25 W.R. Grace & Co.-Conn. Combination infrared and air flotation dryer
CN201104049Y (zh) * 2007-11-15 2008-08-20 南京五洲制冷集团有限公司 全新风热泵型空调机
DE102009012668A1 (de) * 2009-03-13 2010-09-16 E.On Anlagenservice Gmbh Verfahren und Anlage zur Verwertung von Biomasse
CN101581522B (zh) * 2009-04-27 2011-03-30 哈尔滨工业大学 空气源热泵防止结霜的方法
CN201416108Y (zh) * 2009-06-01 2010-03-03 东莞市康源节能科技有限公司 一种空气源高温热泵干衣机
US9200834B1 (en) * 2013-03-14 2015-12-01 Kiln Drying Systems & Components, Inc. Uninterrupted alternating air circulation for continuous drying lumber kilns
US20160084573A1 (en) * 2013-05-06 2016-03-24 Rjg Labs Inc. Ignition-Source-Free Heat Tunnel
CN104019574B (zh) * 2014-05-16 2017-10-31 浙江普林艾尔电器工业有限公司 一种低冷凝压力深度过冷高效除湿机
CN104792065B (zh) * 2014-12-19 2017-06-20 浙江普林艾尔电器工业有限公司 一种干燥介质梯级加热与余热梯级回收的热泵系统
KR101664142B1 (ko) * 2015-11-24 2016-10-24 (주)에이원엔지니어링 다단 분리 열교환방식의 건조 시스템
CN106196779A (zh) * 2016-07-27 2016-12-07 南京理工大学 一种溶液除霜冷冻再生空气源热泵机组
US11339994B2 (en) * 2016-12-16 2022-05-24 Jiangsu Tenesun Electrical Appliance Co., Ltd. Control method and control device for variable-frequency and variable-capacity heat pump hot-air drying system
US11131502B2 (en) * 2017-08-14 2021-09-28 Ut-Battelle, Llc Heating system with induction power supply and electromagnetic acoustic transducer with induction power supply
ES2911197T3 (es) * 2017-11-28 2022-05-18 Etex Building Performance Int Sas Método y disposición de secado de láminas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487777A (zh) * 2012-07-13 2015-04-01 株式会社日立制作所 热源系统
CN203381336U (zh) * 2013-04-02 2014-01-08 广州德能热源设备有限公司 一种印刷行业热泵烘干系统
WO2015121993A1 (ja) * 2014-02-14 2015-08-20 三菱電機株式会社 冷凍サイクル装置
CN106643107A (zh) * 2016-12-16 2017-05-10 江苏天舒电器股份有限公司 一种热泵式双循环热风烘干系统控制方法及其控制装置
CN107741150A (zh) * 2017-10-31 2018-02-27 江苏天舒电器股份有限公司 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
CN208000031U (zh) * 2017-10-31 2018-10-23 江苏天舒电器股份有限公司 一种热泵热风炉结构

Also Published As

Publication number Publication date
US11248824B2 (en) 2022-02-15
CN107741150A (zh) 2018-02-27
US20200263909A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2019085453A1 (zh) 一种无霜、多变量耦合型热泵热风炉系统
WO2019085887A1 (zh) 一种无霜、多变量耦合型热泵热风炉的控制系统及其控制方法
WO2020248684A1 (zh) 一种全热回收型一体式燃气热泵供热机组及其应用
WO2019085443A1 (zh) 一种自适应、自调节式热泵热风炉控制系统及其控制方法
CN107782125B (zh) 一种自适应、自调节式热泵热风炉系统
CN103604249A (zh) 一种能源塔型吸收式冷热水机组
CN102620489B (zh) 一种带防冻溶液再生热回收装置的空调热泵机组
CN208000031U (zh) 一种热泵热风炉结构
CN210070102U (zh) 一种地埋管水源除湿加湿新风机组
CN207741445U (zh) 空气能热泵烘干系统
US10760202B2 (en) Marine clothes dryer and control method therefor
CN202221254U (zh) 一种车间中低温水蒸气余热梯级回收装置
CN105318601B (zh) 一种空气源柔性燃气热泵机组及其运行方法
CN205174926U (zh) 一种空气源燃气热泵机组
WO2020073372A1 (zh) 一种粮食烘干用热泵热风炉系统
CN102620474B (zh) 一种带防冻溶液再生热回收装置的空调冷热水机组
CN115468183A (zh) 一种间接空冷机组循环水余热利用系统及运行方法
CN211717126U (zh) 一种热泵型粮食烘干系统的排风余热回收装置
CN201757537U (zh) 一种蒸发式冷凝液泵供液循环冷热水机组
CN103277996A (zh) 基于热泵的干燥系统及其使用方法
CN108397930B (zh) 消白烟高效直燃型溴化锂吸收式冷、热水机组
CN210718209U (zh) 具有除霜功能的热泵系统
CN202675751U (zh) 一种带防冻溶液再生热回收装置的空调热泵机组
CN112747585B (zh) 一种基于土壤源、空气源及太阳能耦合的开式热泵干燥系统
CN202853106U (zh) 一种空气能热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872359

Country of ref document: EP

Kind code of ref document: A1