WO2019080765A1 - 一种共聚焦扫描激光眼底镜 - Google Patents

一种共聚焦扫描激光眼底镜

Info

Publication number
WO2019080765A1
WO2019080765A1 PCT/CN2018/110794 CN2018110794W WO2019080765A1 WO 2019080765 A1 WO2019080765 A1 WO 2019080765A1 CN 2018110794 W CN2018110794 W CN 2018110794W WO 2019080765 A1 WO2019080765 A1 WO 2019080765A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
scanning laser
eyepiece
lens
light
Prior art date
Application number
PCT/CN2018/110794
Other languages
English (en)
French (fr)
Inventor
武珩
彭先兆
Original Assignee
视微影像(河南)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 视微影像(河南)科技有限公司 filed Critical 视微影像(河南)科技有限公司
Publication of WO2019080765A1 publication Critical patent/WO2019080765A1/zh
Priority to US16/858,699 priority Critical patent/US11337608B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1241Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes specially adapted for observation of ocular blood flow, e.g. by fluorescein angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/156Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only

Definitions

  • the present invention relates to an ophthalmic imaging diagnostic system, and more particularly to a confocal scanning scanning laser ophthalmoscope.
  • Confocal scanning laser ophthalmoscope enables rapid and no radiation damage to examine fundus and angiography.
  • the narrow-band or broadband light source of a certain wavelength is used to perform a point-by-point continuous scanning on the surface of the retina, and the obtained two-dimensional data is rearranged and analyzed by a computer and reconstructed into an ophthalmic detecting device of a two-dimensional image.
  • the scanning laser ophthalmoscope (SLO) has the advantages of low illumination brightness, high light collection efficiency, no divergence, and wide field of view and large depth of field.
  • the confocal scanning laser ophthalmoscope has a confocal property that determines only the light returned from the fundus focus position, which greatly improves the contrast of the image; and can be set to receive light from a certain layer of the fundus. To make tomography possible.
  • Confocal scanning laser ophthalmoscope cSLO can diagnose different lesions of the eye under the condition of infrared light and ICGA fluorescence contrast: under infrared light, the pigment distribution of retinal pigment epithelial layer can be roughly understood.
  • infrared light examination can often reveal the phenomenon of pigment loss, and sometimes it can detect the lesions that were not found during fundus examination. It is convenient to examine the fundus with infrared light in children, patients with severe photophobia and refractive interstitial opacity. The filling process and filling pattern of choroidal large, medium and small vessels can be clearly observed under the condition of fluorescein angiography ICGA.
  • the detector can receive even lower energy than the reflected stray light after the lens surface is coated.
  • the confocal imaging properties of the cSLO system can well suppress the stray light on the defocusing surface and the reflected stray light in most intermediate and edge fields, the central field of view imaging beam reflects the stray light on the lens surface and remains the cSLO system.
  • the main source of stray light so that cSLO images often have a very bright spot in the center of the image.
  • the lens reflection problem is particularly prominent for large field of view cSLO systems, such as the literature Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. "Scanning Laser Ophthalmoscopy and Angiography With a Wide-Field Contact Lens System.” Arch Ophthalmol. 2005; 123(2): 244-252.doi: 10.1001/archopht.123.2.244 introduces a human-eye contact large field of view SLO.
  • the comparison of the drawings and texts in the literature illustrates the use of filters in fluorescent ICG angiography.
  • Patent US9204791 describes a cSLO optical path in which a cylindrical mirror is arranged in the conjugate position of the fundus.
  • the method of tilting the lens is adopted to make the reflected stray light away from the fundus. Signal light path.
  • the main features of the cSLO system ghost image are as follows: 1. cSLO light will pass through some optical surfaces in the system in opposite directions, so the source of the ghost image is mainly the primary reflection of the optical surface; 2.
  • the cSLO uses confocal imaging. Technology, the core fiber diameter of the collecting end is essentially the pinhole of the confocal system. Only a small amount of light beam reflected by the lens near the central field of view will interfere with the image.
  • the real-time fundus scanning field of view covered by the cSLO scanning device is increasing year by year, which brings great convenience for fundus diagnosis.
  • the overall luminous flux of the optical path design also increases, but the scanning element has a limited scanning angle range under the premise of high-speed scanning, and only increases the beam diameter to ensure the luminous flux.
  • the cSLO confocal technique has a limited suppression of the central field ghost image caused by the increase in beam aperture, thus increasing the difficulty of optical design to suppress stray light ghosts.
  • the method of suppressing stray light by tilting or offsetting an optical element as in US Pat. No. 9,014,791 is widely used in ophthalmic examination equipment. Methods of tilting or offsetting optical components are more effective for planar optical components, but optical components that are not zero in power are often accompanied by degradation in imaging quality or system efficiency. For large-field cSLO systems with a fundus field of view exceeding 30 degrees, it is difficult to tilt the optics to completely remove the ghost image and at the same time balance the image quality.
  • the present invention provides a confocal scanning laser ophthalmoscope.
  • a confocal scanning laser ophthalmoscope comprising an illumination module, an acquisition module, a scanning element and an imaging lens group; the illumination module is configured to emit a scanning laser; the imaging lens group comprises an eyepiece, a first mirror, a mirror Or a dichroic mirror and a second mirror group; the scanning laser passes through the scanning element and then passes through the second mirror group, the mirror or the dichroic mirror, the first mirror group, and the eyepiece to reach the fundus, and reaches the fundus and returns light to the collecting module.
  • the collecting module comprises an optical fiber, and the optical fiber is used for collecting the returned light; the angle of deviation between the incident angle of each face of the eyepiece, the first mirror group and the second mirror group and the reflected angle of the stray light of the surface is not less than 0.5 degree.
  • the present invention provides a confocal scanning laser ophthalmoscope, which has a scanning field of 40°*40° in front of the eye and covers a range of 770 nm to 860 nm, including near-infrared cSLO near-infrared or infrared.
  • the band of the narrow-band light source covers the ICGA band of the fundus fluorescein fluoroscopy, that is, the near-infrared or infrared narrow-band light source can be used for the fundus to be tested, and the fluorescence contrast imaging can also be used.
  • the optical path design of the confocal scanning laser ophthalmoscope is optimized for suppressing stray light ghost images. By constraining the angle of incidence of light between the lens and the air interface or the interface of different materials, it is possible to suppress the reflection of the stray ghost image after the confocal suppression. The remaining effects will have the effect of ghosting to a minimum.
  • Figure 1 is an image with ghost points
  • Figure 2 is an image of removing ghost points
  • Figure 3 is a fundus image of the reflection of the lens in the infrared SLO image
  • Figure 4 is an optical system diagram of a confocal scanning laser ophthalmoscope
  • Figure 5 is a schematic diagram showing the angular shift of reflected stray light
  • FIG. 6 is a schematic diagram of an S8 surface reflection ghost image in the embodiment
  • Figure 7 is a schematic view of an S7 surface reflection ghost image in the embodiment.
  • FIG. 8 is a schematic diagram of a common optical path design in the embodiment.
  • Figure 9 (a) is a wave aberration diagram of the first point selected in the embodiment.
  • Figure 9 (b) is a wave aberration diagram of the second point selected in the embodiment.
  • Figure 9 (c) is a wave aberration diagram of the third point selected in the embodiment.
  • Figure 9 (d) is a wave aberration diagram of the fourth point selected in the embodiment.
  • Figure 9 (e) is a wave aberration diagram of the fifth point selected in the embodiment.
  • Figure 9 (f) is a wave aberration diagram of the sixth point selected in the embodiment.
  • Figure 9 (g) is a wave aberration diagram of the seventh point selected in the embodiment.
  • Figure 9 (h) is a wave aberration diagram of the eighth point selected in the embodiment.
  • Figure 9 (i) is a wave aberration diagram of the ninth point selected in the embodiment.
  • Fig. 10 is a diagram showing the transfer function of the MTF modulation of the present embodiment.
  • the confocal scanning laser ophthalmoscope includes an illumination module 107, an acquisition module 109, a scanning element 106, and an imaging lens group; the illumination module 107 is configured to emit a scanning laser; the imaging lens group includes an eyepiece 101, an intermediate image The surface 102, the first mirror group 103, the mirror or the dichroic mirror 104, and the second mirror group 105; the scanning laser passes through the scanning element 106 and sequentially passes through the second mirror group 105, the mirror or the dichroic mirror 104, and the first The lens assembly 103 and the eyepiece 101 reach the fundus 100, returning to the fundus 100 and returning light to the acquisition module 109.
  • the acquisition module 109 includes an optical fiber 110 for collecting the returned light.
  • the eyepiece 101 is a biconvex aspherical lens
  • the first mirror group 103 includes a lens 11, a lens 12, and a lens 13.
  • the lens 11 is a negative lens close to the intermediate image plane for balancing the field.
  • the center of the concave surface is on the side away from the eyepiece.
  • Both the lens 12 and the lens 13 are double convex positive lenses.
  • the second lens group 105 includes a lens 14, a lens 15, and a lens 16.
  • the lens 14 is a meniscus lens with the two centers at a position away from the scanning element.
  • Lens 15 is an approximately plano-convex positive lens.
  • the theoretical position of the scanning element is the position of the theoretical aperture stop of the optical path, and the lens 16 is the lens closest to the theoretical position of the scanning element, ie the lens closest to the pupil.
  • the lens 16 is a meniscus double-bonded lens, and both surfaces are centered on the side close to the scanning element; the double-gluing design corrects most of the chromatic aberration in the system, ensuring near-infrared and more covered indocyanine green blood fundus fluorescein ICGA Optical performance within the band.
  • Zero power lens means a planar optical component such as a mirror or dichroic mirror 104, or a prism;
  • non-zero power lens means that the deflection angle is limited only for spherical or aspherical surfaces having power Optical element.
  • the angle of deviation between the incident angle of each surface of the non-zero power lens in the shared optical path 300 and the reflected angle of the surface stray light is not less than 0.5 degrees, that is, the eyepiece 101, the first mirror group 103, and the second mirror group 105.
  • the angle of deviation between the incident angle of each face and the reflected angle of the stray light of the face is not less than 0.5 degrees.
  • the angle between the incident angle of each face of the non-zero power lens and the reflected angle of the stray light of the face is selected. The deviation angle is 0.5 degrees.
  • the laser light emitted by the illumination module 107 enters the scanning element 106 through the beam splitter, and the light passing through the scanning element 106 is reflected by the second mirror group 105 through the mirror or the dichroic mirror 104, passes through the first mirror group 103, and is transmitted through the first mirror group 103.
  • the fundus 100 After the eyepiece 101 reaches the fundus 100 through the human eye, the fundus 100 reflects and scatters light and then passes through the eyepiece 101, the first mirror group 103, the mirror or the dichroic mirror 104, and the second mirror group 105 to the acquisition module 109.
  • the end face of the fiber is collected to obtain a fundus image.
  • the optical path between the beam splitter 108 and the human eye is a common optical path 300 for the light entering the human eye from the scanning element 106 and the light reflected from the human eye and scattered into the optical fiber.
  • the reflection of the lens surface in the shared optical path 300 is more likely to enter the optical fiber 110 to interfere with the fundus image signal, while the reflection of the lens in the illumination module 107 and the acquisition module 109 has substantially no effect. Therefore, this embodiment only needs to limit the angle of deviation between the incident angle and the reflection angle of the non-zero power lens in the shared optical path.
  • the direction of the fiber path from the illumination to the fundus is defined as the incident light direction, that is, the direction A in the figure, the corresponding incident angle is i; the reflection surface of the lens corresponds to the reflection angle i', that is, the B direction in the figure, both Angle deviation (and C in the figure) is defined as:
  • the analysis of the 0-degree scan field can be used as a reference for preliminary ghost analysis and a reference for further improvement.
  • the 0 degree scanning field surface reflection angle shift Angle deviation of the S1 to S15 plane in Fig. 1 is as shown in Table 1.
  • the central field of view edge of S8 has the smallest amount of light reflection angle offset, which is theoretically the most sensitive surface of the ghost image.
  • the ghost image analysis based on the angular offset can also be verified in the stray light ghost image tracing.
  • Fig. 6 is the stray light ghost image tracing on the S8 surface
  • Fig. 7 is the stray light ghost image tracing on the S7 surface. Comparing Fig. 6 with Fig. 7, it can be seen that the focal plane of the S8 ghost image is relatively close to the end face of the fiber, which is consistent with the results of Table 1.
  • the AR coating can also reduce the lens reflection from 4% to 5% to less than 0.5%. For light incidents less than 6°, the lens reflection can be controlled to 0.1% to 0.2%. Finally, through testing to compare the highest intensity of the fundus image and the highest intensity of the stray light ghost image, the stray light can be controlled below 1% of the highest intensity of the fundus image.
  • the intermediate image plane is a telecentric design.
  • the distance between the eyepiece and the intermediate image plane, the distance between the intermediate image plane and the first mirror group can be adjusted, and the relative movement of the two vision optical paths in front of the intermediate image can compensate for the different visions to be measured.
  • the intermediate image plane is designed for telecentricity, with the aim of no change in imaging magnification and distortion during the visual compensation process.
  • the first lens group includes at least one negative lens.
  • the negative lens is located on a side of the first mirror group adjacent to the eyepiece, and the negative lens has at least one concave center on a side away from the eyepiece.
  • the SLO scanning system covers the band range of 770 nm to 860 nm, which not only covers the band of the traditional near-infrared SLO light source, but also covers the ICGA band of the indocyanine green blood fundus fundus fluoroscopy, that is, the near-infrared can be used for the fundus to be tested. Or infrared narrow-band source imaging, but also ICGA fluorescence imaging.
  • at least one cemented lens is included to balance the chromatic aberration, and the cemented lens is near the position of the scanning element conjugated to the pupil of the eye.
  • the focal length of the eyepiece is f 101
  • the first mirror group The focal length of the mirror or the dichroic mirror and the second mirror are both f 202 , and the focal length of the lens group satisfies the following constraints:
  • the image quality correction results in the range of 770 nm to 860 nm are shown in the waveform aberration diagram of Fig. 9; the resolution results in the wavelength range of 770 nm to 860 nm are as shown in Fig. 10, which can satisfy the total field of view of 15 ⁇ m. ⁇ 20um fundus resolution requirements.

Abstract

一种共聚焦扫描激光眼底镜,包括照明模块(107)、采集模块(109)、扫描元件(106)及成像透镜组;照明模块(107)用于发射扫描激光;该成像透镜组包括接目镜(101)、第一镜组(103)、反射镜或二向色镜(104)、第二镜组(105);扫描激光经扫描元件(106)后依次经过第二镜组(105)、反射镜或二向色镜(104)、第一镜组(103)、接目镜(101)到达眼底(100),达到眼底(100)后返回光线至采集模块(109);采集模块(109)包括光纤(110),光纤(110)用于收集返回的光线;非零光焦度镜片每个面的入射角与该面杂散光反射角之间的偏差角不小于0.5度。该眼底镜既可使用近红外或红外窄带光源成像,也可以使用荧光造影成像;共聚焦扫描激光眼底镜的光路设计针对抑制杂散光鬼像进行了优化,可以抑制镜片反射杂光鬼像在经共聚焦抑制后的剩余影响。

Description

一种共聚焦扫描激光眼底镜 技术领域
本发明涉及眼科成像诊断系统,尤其涉及一种共聚焦扫描扫描激光眼底镜。
背景技术
共聚焦扫描扫描激光眼底镜(confocal scanning laser ophthalmoscope,cSLO),能够快速、无辐射损伤对眼底及血管造影进行检查。具体是以一定波长的窄带或宽带光源,对视网膜表面进行逐点连续扫描后,将所获得的二维数据经计算机重新排列分析并重建为二维图像的眼科检测装置。相对传统眼底镜,扫描扫描激光眼底镜(scanning laser ophthalmoscope,SLO)具有所需照明亮度低,光收集效率高无需散瞳,宽视野大景深的优点。而其中的共聚焦扫描激光眼底镜(confocal scanning laser ophthalmoscope,cSLO),其共聚焦属性决定只收集眼底焦点位置返回的光线,大大提高了图像的对比度;而且可以设定接受眼底某一层的光线,使断层成像成为可能。
共聚焦扫描激光眼底镜cSLO在红外光及ICGA荧光造影条件下,可对眼睛不同病灶进行诊断:在红外光下可大致了解视网膜色素上皮层色素分布的情况。对“中浆”、黄斑裂孔及干性老年黄斑变性患者,用红外光检查,常能较清楚地发现色素脱失的情况,有时还能查出眼底检查时未能发现的病灶。对于儿童、严重畏光及屈光间质混浊的患者用红外光检查眼底较为方便。在吲哚青绿血管眼底荧光造影ICGA条件下能较清楚地观察到脉络膜大、中、小血管的充盈过程及充盈形态。
在cSLO眼底成像光路设计中,由于眼底的反射和散射收集效率非常低,探测器可以接收到的能量甚至低于镜片表面镀膜后的反射杂光。尽管cSLO系统的共聚焦成像属性可以很好地抑制离焦面的杂散光以及大部分中间视场和边缘视场的反射杂光,但中心视场成像光束在镜片表面反射杂光仍为cSLO系统的主要杂光来源,致使cSLO图像常常在图像中心有一个很亮的点。如文献Francesco LaRocca,A1-Hafeez Dhalla,Michael P.Kelly,Sina Farsiu,and Joseph A.Izatt,“Optimization of confocal scanning laser ophthalmoscope design”,Journal of Biomedical Optics 18(7),076015(July 2013)中公开的cSLO图像,如图1所示,镜片反射像比图像本身强度高,甚至已经饱和了。所述文献采用了减背景等算法去除鬼像点,得到修正后的图像如图2。
镜片反射问题对于大视野的cSLO系统尤其突出,如文献Staurenghi G,Viola F,Mainster MA,Graham RD,Harrington PG.“Scanning Laser Ophthalmoscopy and Angiography With a Wide-Field Contact Lens System.”Arch Ophthalmol. 2005;123(2):244-252.doi:10.1001/archopht.123.2.244介绍了一种人眼接触式大视场SLO,文献中附图及文字对比说明了:在荧光ICG血管造影成像中由于滤光片的使用,镜片反射对图像影响可以忽略(文献中除Figure 5外大部分眼底图);而在红外SLO图像中,镜片反射不受荧光造影滤光片的抑制,眼底SLO图像依然可以明显看到镜片的反射影响,如图3所示。
这是因为:1、扫描镜与目镜的焦距比大,扫描镜的焦距长,导致更多的杂散光通过针孔。2、大视野的光学设计,镜片多,产生杂散光的反射面多。
专利US9204791中介绍了一种cSLO光路,该cSLO光路中在眼底共轭位置设置了一个柱面镜,为了避免该镜片表面反射对眼底成像造成影响,采用倾斜镜片的方法,使反射杂散光远离眼底信号光路。
cSLO系统鬼像的主要特点体现在:1.cSLO光线会以方向相反的两次通过系统中部分光学面,所以鬼像的来源主要为光学面的一次反射;2.cSLO使用的是共聚焦成像技术,采集端光纤芯径本质上就是共聚焦系统的针孔,只有靠近中心视场少部分光束经镜片反射后的杂光鬼像会对图像造成干扰。cSLO扫描设备覆盖的实时眼底扫描视场逐年增大,为眼底诊断带来很大便利。同时光路设计总体光通量也随之增加,但扫描元件在高速扫描前提下扫描角度范围是有限的,只能增加光束口径来保证光通量。cSLO共聚焦技术对光束口径增加导致的中心视场鬼像的抑制作用有限,因此增加了光学设计抑制杂散光鬼像的难度。因此如专利US9204791中通过倾斜或偏移光学元件来抑制杂散光的方法在眼科检查设备中被广泛使用。倾斜或偏移光学元件的方法对于平面光学元件比较有效,但对于光焦度不为零的光学元件经常伴随着成像质量或系统效率的下降。对于眼底视野超过30度的大视野cSLO系统,倾斜光学元件的办法难以完全把鬼像移除视野并同时兼顾像质。
发明内容
发明目的:为了解决现有技术存在的问题,降低镜片反射杂光的影响,本发明提供一种共聚焦扫描激光眼底镜。
技术方案:一种共聚焦扫描激光眼底镜,包括照明模块、采集模块、扫描元件及成像透镜组;照明模块用于发射扫描激光;所述成像透镜组包括接目镜、第一镜组、反射镜或二向色镜、第二镜组;扫描激光经扫描元件后依次经过第二镜组、反射镜或二向色镜、第一镜组、接目镜到达眼底,达到眼底后返回光线至采集模块;采集模块包括光纤,光纤用于收集返回的光线;所述接目镜、第一镜组、第二镜组的每个面的入射角与该面杂散光反射角之间的偏差角不小于0.5度。
有益效果:本发明提出一种共聚焦扫描激光眼底镜,在眼前的扫描视场达到40°*40°的扫描范围,且覆盖了770nm~860nm的波段范围,其中包含近红外cSLO 近红外或红外窄带光源所属波段,更覆盖了吲哚青绿血管眼底荧光造影ICGA波段,即针对待测眼底既可使用近红外或红外窄带光源成像,也可使用荧光造影成像。共聚焦扫描激光眼底镜的光路设计针对抑制杂散光鬼像进行了优化,通过约束镜片与空气界面或不同材料镜片界面的光线入射角度,可以抑制镜片反射杂光鬼像在经共聚焦抑制后的剩余影响,将鬼影的影响将至最低。
附图说明
图1为带有鬼像点的图像;
图2为去除鬼像点的图像;
图3为红外SLO图像中带镜片的反射影响的眼底图像;
图4为共聚焦扫描激光眼底镜的光学系统图;
图5为反射杂散光角度偏移示意图;
图6为实施例中S8面反射鬼像示意图;
图7为实施例中S7面反射鬼像示意图;
图8为本实施例中共用光路设计示意图;
图9(a)为本实施例选取的第一个点的波像差图;
图9(b)为本实施例选取的第二个点的波像差图;
图9(c)为本实施例选取的第三个点的波像差图;
图9(d)为本实施例选取的第四个点的波像差图;
图9(e)为本实施例选取的第五个点的波像差图;
图9(f)为本实施例选取的第六个点的波像差图;
图9(g)为本实施例选取的第七个点的波像差图;
图9(h)为本实施例选取的第八个点的波像差图;
图9(i)为本实施例选取的第九个点的波像差图;
图10为本实施例MTF调制传递函数图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图4所示,共聚焦扫描激光眼底镜包括照明模块107、采集模块109、扫描元件106及成像透镜组;照明模块107用于发射扫描激光;所述成像透镜组包括接目镜101、中间像面102、第一镜组103、反射镜或二向色镜104、第二镜组105;扫描激光经扫描元件106后依次经过第二镜组105、反射镜或二向色镜104、第一镜组103、接目镜101到达眼底100,达到眼底100后返回光线至采集模块109;采集模块109包括光纤110,光纤110用于收集返回的光线。
具体的如图8所示,接目镜101为双凸非球面透镜,第一镜组103包含透镜11,透镜12,透镜13。考虑到本实施例SLO扫描系统在眼前的扫描视场达到 40°*40°的扫描范围,因此有场区平衡的需要,透镜11为靠近中间像面的负透镜,用以平衡场区,其凹面圆心在远离接目镜的一侧。透镜12及透镜13均为双凸正透镜,通过平衡透镜11、透镜12及透镜13光焦度,控制在反射镜或二向色镜104上边缘视场主光线的入射角,降低加工难度。第二透镜组105包含透镜14、透镜15、透镜16。透镜14为弯月透镜,两圆心在远离扫描元件位置。透镜15为近似平凸正透镜。扫描元件理论位置为本光路的理论孔径光阑所在位置,透镜16为最靠近扫描元件理论位置的透镜,即最靠近光阑的镜片。透镜16为弯月式双胶合透镜,两个表面圆心均在靠近扫描元件位置一侧;双胶合设计矫正了系统内大部分的色差,保证近红外以及更覆盖了吲哚青绿血管眼底荧光造影ICGA波段内的光学性能。
“零光焦度镜片”指平面光学元件,如反射镜或二向色镜104,或者棱镜;“非零光焦度镜片”指偏转角的约束只针对球面或者非球面这些具有光焦度的光学元件。共用光路300中的非零光焦度镜片每个面的入射角与该面杂散光反射角之间的偏差角不小于0.5度,即接目镜101、第一镜组103、第二镜组105每个面的入射角与该面杂散光反射角之间的偏差角不小于0.5度,本实施例中选取非零光焦度镜片每个面的入射角与该面杂散光反射角之间的偏差角为0.5度。
照明模块107发出的激光通过分光镜进入扫描元件106,经过扫描元件106后的光线透过第二镜组105经反射镜或二向色镜104反射,再经过第一镜组103,透过接目镜101后经过人眼到达眼底100,眼底100反射及散射光再依次进过接目镜101、第一镜组103、反射镜或二向色镜104、第二镜组105到达采集模块109中的光纤端面,从而采集到眼底图像。
在该共聚焦扫描激光眼底镜的光路设计中,分光镜108到人眼之间的光路为从扫描元件106进入人眼的光线与从人眼中反射、散射进入光纤的光线的共用光路300。在共用光路300中的镜片表面反射更有可能进入光纤110成为干扰眼底图像信号,而照明模块107和采集模块109中镜片的反射则基本没有影响。所以本实施例仅需限制共用光路中的非零光焦度镜片的入射角与反射角之间的偏差角。
下面针对共用光路中镜片进行杂散光鬼像分析:
如图5所示,定义从照明到眼底的光纤路径方向为入射光方向,即图中A方向,对应入射角为i;镜片表面反射对应反射角为i’,即图中B方向,二者角度偏差Angle deviation(及图中的C)定义为:
Angle deviation=i-i’  (1)
由于光纤纤芯尺寸有限,只有小角度扫描视场的杂散光鬼像可以进入光纤。在小角度近似范围内,对于光路中位置固定的单个光学表面而言,反射光相对入 射光的角度偏移量大越大,则越不易产生鬼像。考虑到鬼像中心区域通常能量相对比较强,所以0度扫描视场的分析可做初步鬼像分析的参考,及进一步改善的参考。
图1中的S1~S15面的0度扫描视场镜片表面反射角偏移Angle deviation如表1所示。
表1 0度扫描视场角偏移
Figure PCTCN2018110794-appb-000001
如表1所示,S8的中心视场边缘光线反射角度偏移量最小,理论上为鬼像最灵敏的表面。基于角偏移的进行的鬼像分析也可在杂散光鬼像追迹中进行验证,图6为S8面的杂散光鬼像追迹,图7为S7面的杂散光鬼像追迹。比较图6与图7可知,S8面鬼像聚焦面离光纤端面位置相对较近,与表1结果一致。
在设计约束的同时,镀增透膜也可将镜片反射由4%~5%降到0.5%以下,对于小于6°入射角的光线,镜片反射可以控制到0.1%~0.2%。最终通过测试对比眼底像最高强度与杂散光鬼像最高强度,杂散光可控制在眼底像最高强度的1%以下。
所述接目镜与第一镜组之间存在中间像面,且中间像面为远心设计。接目镜与中间像面之间的距离、中间像面与第一镜组之间的距离可调节,通过中间像面前后两部分光路的相对移动,可以进行不同视度待测眼的补偿。中间像面为远心设计,目的是在视度补偿过程中无成像放大率及畸变的变化。
设接目镜焦距为f 101,设接目镜与中间像面之间的距离为L 11,设中间像面与第一镜组之间的距离为L 21,为满足眼睛+/-20视度的补偿范围,本设计满足如 下约束条件:
0.7<L 11/f 101
0.7<L 21/f 101
为了达到较大的视场扫描范围(本实施例SLO扫描系统在眼前的扫描视场达到40°*40°),因此有场曲平衡的需要,所述第一镜组至少包括一个负透镜,所述负透镜位于第一镜组靠近接目镜的一面,所述负透镜至少有一个凹面圆心在远离接目镜的一侧。
本实施例SLO扫描系统覆盖了770nm~860nm的波段范围,其中不光覆盖了传统近红外SLO光源所属波段,更覆盖了吲哚青绿血管眼底荧光造影ICGA波段,即针对待测眼底即可使用近红外或红外窄带光源成像,也可使用ICGA荧光造影成像。因此包含至少一个胶合透镜用以平衡色差,且胶合透镜靠近与眼睛瞳孔共轭的扫描元件位置。
进一步考虑到扫描元件在高速扫描前提下扫描角度有限,为了增大对眼底的扫描视场,如本实施例眼前40°*40°的扫描范围,设接目镜焦距为f 101,第一镜组、反射镜或二向色镜、第二镜组的焦距均为f 202,则透镜组焦距满足如下约束条件:
1.7<f 202/f 101
本实施例在770nm~860nm的波段范围的设计像质校正结果如图9波像差图所示;在770nm~860nm的波段范围的分辨率结果如图10所示,可以满足全视场内15um~20um的眼底分辨要求。

Claims (10)

  1. 一种共聚焦扫描激光眼底镜,其特征在于,包括照明模块、采集模块、扫描元件及成像透镜组;照明模块用于发射扫描激光;所述成像透镜组包括接目镜、第一镜组、反射镜或二向色镜、第二镜组;扫描激光经扫描元件后依次经过第二镜组、反射镜或二向色镜、第一镜组、接目镜到达眼底,达到眼底后返回光线至采集模块;采集模块包括光纤,光纤用于收集返回的光线;所述接目镜、第一镜组、第二镜组的每个面的入射角与该面杂散光反射角之间的偏差角不小于0.5度。
  2. 根据权利要求1所述的共聚焦扫描激光眼底镜,其特征在于,所述接目镜与第一镜组之间存在中间像面,且中间像面为远心设计。
  3. 根据权利要求2所述的共聚焦扫描激光眼底镜,其特征在于,接目镜与中间像面之间的距离、中间像面与第一镜组之间的距离可调节。
  4. 根据权利要求3所述的共聚焦扫描激光眼底镜,其特征在于,设接目镜焦距为f 101,设接目镜与中间像面之间的距离为L 11,设中间像面与第一镜组之间的距离为L 21,满足:
    0.7<L 11/f 101
    0.7<L 21/f 101
  5. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,接目镜为双凸非球面透镜。
  6. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,所述第一镜组至少包括一个负透镜,所述负透镜位于第一镜组靠近接目镜的一面,所述负透镜至少有一个凹面圆心在远离接目镜的一侧。
  7. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,所述第二镜组至少包括一个弯月式双胶合透镜,弯月式双胶合透镜两个表面圆心均在靠近扫描元件位置一侧。
  8. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,设接目镜焦距为f 101,第一镜组、反射镜或二向色镜、第二镜组的焦距均为f 202,f 101与f 202满足:
    1.7<f 202/f 101
  9. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,用于使用近红外或红外窄带光源成像。
  10. 根据权利要求1至4任一所述的共聚焦扫描激光眼底镜,其特征在于,用于使用ICGA荧光造影技术成像。
PCT/CN2018/110794 2017-10-25 2018-10-18 一种共聚焦扫描激光眼底镜 WO2019080765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/858,699 US11337608B2 (en) 2017-10-25 2020-04-26 Confocal scanning laser ophthalmoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711018788.9A CN107692963B (zh) 2017-10-25 2017-10-25 一种共聚焦扫描激光眼底镜
CN201711018788.9 2017-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/858,699 Continuation-In-Part US11337608B2 (en) 2017-10-25 2020-04-26 Confocal scanning laser ophthalmoscope

Publications (1)

Publication Number Publication Date
WO2019080765A1 true WO2019080765A1 (zh) 2019-05-02

Family

ID=61183212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110794 WO2019080765A1 (zh) 2017-10-25 2018-10-18 一种共聚焦扫描激光眼底镜

Country Status (3)

Country Link
US (1) US11337608B2 (zh)
CN (1) CN107692963B (zh)
WO (1) WO2019080765A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108283484B (zh) * 2018-04-08 2024-01-16 视微影像(河南)科技有限公司 一种oct眼底成像视度补偿光学系统
CN108378819B (zh) * 2018-05-02 2023-10-27 重庆贝奥新视野医疗设备有限公司 眼底照相机以及虚拟现实成像设备
CN111308701B (zh) * 2020-03-31 2022-02-11 执鼎医疗科技(杭州)有限公司 Oct眼底大视场高分辨率成像的光学系统
CN113520299B (zh) * 2021-08-24 2022-06-21 图湃(北京)医疗科技有限公司 一种眼部多模态成像系统
CN114748034B (zh) * 2022-05-05 2023-09-19 中国科学院光电技术研究所 一种基于多次散射光成像的自适应共焦检眼镜
CN116909002B (zh) * 2023-09-06 2023-11-21 图湃(北京)医疗科技有限公司 用于改进眼科成像的光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129458A1 (en) * 2010-04-15 2011-10-20 Canon Kabushiki Kaisha Ocular optical system
CN102885607A (zh) * 2011-07-21 2013-01-23 上海美沃精密仪器有限公司 一种眼部成像的系统和方法
WO2014048570A2 (en) * 2012-09-28 2014-04-03 Universität Heidelberg Structured illumination ophthalmoscope
CN103926679A (zh) * 2013-01-11 2014-07-16 晋弘科技股份有限公司 透镜模块及眼底相机
US20150282707A1 (en) * 2014-04-08 2015-10-08 Kabushiki Kaisha Topcon Ophthalmologic apparatus
CN106539556A (zh) * 2017-01-06 2017-03-29 苏州微清医疗器械有限公司 共焦激光眼底成像仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322960A (ja) * 2006-06-05 2007-12-13 Casio Comput Co Ltd プロジェクタ用投影レンズ及びプロジェクタ
KR101016190B1 (ko) 2010-04-12 2011-02-24 주식회사 유니크 차량용 바이패스 밸브
US8783868B2 (en) * 2012-12-21 2014-07-22 Carl Zeiss Meditec, Inc. Two-dimensional confocal imaging using OCT light source and scan optics
JP6180147B2 (ja) * 2013-03-27 2017-08-16 キヤノン株式会社 眼科装置、その制御方法およびプログラム
US20150282705A1 (en) 2014-04-07 2015-10-08 Ofer Avital Method and System of Using Eye Tracking to Evaluate Subjects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129458A1 (en) * 2010-04-15 2011-10-20 Canon Kabushiki Kaisha Ocular optical system
CN102885607A (zh) * 2011-07-21 2013-01-23 上海美沃精密仪器有限公司 一种眼部成像的系统和方法
WO2014048570A2 (en) * 2012-09-28 2014-04-03 Universität Heidelberg Structured illumination ophthalmoscope
CN103926679A (zh) * 2013-01-11 2014-07-16 晋弘科技股份有限公司 透镜模块及眼底相机
US20150282707A1 (en) * 2014-04-08 2015-10-08 Kabushiki Kaisha Topcon Ophthalmologic apparatus
CN106539556A (zh) * 2017-01-06 2017-03-29 苏州微清医疗器械有限公司 共焦激光眼底成像仪

Also Published As

Publication number Publication date
US11337608B2 (en) 2022-05-24
CN107692963B (zh) 2019-04-23
CN107692963A (zh) 2018-02-16
US20200260951A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2019080765A1 (zh) 一种共聚焦扫描激光眼底镜
US6741359B2 (en) Optical coherence tomography optical scanner
US8864309B2 (en) Optical imaging systems having input beam shape control and path length control
US5493109A (en) Optical coherence tomography assisted ophthalmologic surgical microscope
US7140730B2 (en) Optical apparatus and method for comprehensive eye diagnosis
JP5756253B2 (ja) 光コヒーレンス断層法機構を有する外科用顕微鏡システム
US7830525B2 (en) Optical coherence imaging systems having a mechanism for shifting focus and scanning modality and related adapters
JP5628177B2 (ja) 測定システム
JP5952833B2 (ja) 高解像度網膜結像方法および装置
JP5808119B2 (ja) 模型眼、光断層画像撮像装置の調整方法、及び評価方法
CN103815867B (zh) 连续可调环带照明视网膜暗视场光学相干层析成像仪
JP5649324B2 (ja) 眼科装置及び眼科装置の制御方法
JP2017184788A (ja) 走査型レーザー検眼鏡
WO2018086157A1 (zh) 超广角眼底成像系统
JP6209448B2 (ja) 高解像度網膜結像方法および装置
JP6853690B2 (ja) 眼科撮影装置
JP2016022312A (ja) 眼科撮影装置及びその制御方法
WO2021060203A1 (ja) 眼科用光学系及び眼科装置
JP2015039580A (ja) 光断層撮像装置
CN116909002B (zh) 用于改进眼科成像的光学系统
US11241153B2 (en) Method and apparatus for parallel optical coherence tomographic funduscope
JP6557388B2 (ja) 眼科撮影装置
WO2008000008A2 (en) Achromatising triplet for the human eye
JP2023514360A (ja) Oct小帯撮像
Hossein-Javaheri Non-Invasive Retinal Imaging in Mice with Fluorescent Scanning Laser Ophthalmoscopy and Fourier Domain Optical Coherence Tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871756

Country of ref document: EP

Kind code of ref document: A1