WO2019078563A1 - Sagger for firing lithium secondary battery positive electrode active material and method for manufacturing same - Google Patents

Sagger for firing lithium secondary battery positive electrode active material and method for manufacturing same Download PDF

Info

Publication number
WO2019078563A1
WO2019078563A1 PCT/KR2018/012137 KR2018012137W WO2019078563A1 WO 2019078563 A1 WO2019078563 A1 WO 2019078563A1 KR 2018012137 W KR2018012137 W KR 2018012137W WO 2019078563 A1 WO2019078563 A1 WO 2019078563A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
powder
sagger
present
average particle
Prior art date
Application number
PCT/KR2018/012137
Other languages
French (fr)
Korean (ko)
Inventor
유지훈
박정식
성대용
최원석
황지훈
김용석
최요한
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020207004761A priority Critical patent/KR102652593B1/en
Priority to CN201880067482.9A priority patent/CN111225889A/en
Publication of WO2019078563A1 publication Critical patent/WO2019078563A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to the improvement of the lifetime of a fireproof container for firing a cathode active material of a lithium secondary battery using a material which has low reactivity with lithium and has high strength and thermal shock resistance compared to existing commercial fireplaces.
  • the cathode active material used for the lithium secondary battery is composed of Li, Co, Mn, Ni, etc., and the raw material is buried in a fireproof container and fired at 400 to 1000 ° C. At this time, the Li and Co compounds are melted and penetrate into the pores of the inner wall and react with the constituents to cause cracking and peeling. The quality of the cathode material is deteriorated by the reactant in the peeled inner shell, and when the inner shell is broken due to cracking, the cathode material may deteriorate in performance when it is introduced into a subsequent process.
  • An object of the present invention is to improve the service life of a firebox, which is a plastic container of a lithium ion battery cathode active material.
  • the present invention provides a lithium secondary battery for cathode active material, which comprises 70 to 99.5 at.% Of MgO and 0.5 to 30 at.% Of Al2O3, and has a porosity of 10% I will provide my wallet.
  • the strength of the inner shell may be greater than or equal to 600 MPa.
  • the present invention includes a step of mixing a MgO powder and an Al 2 O 3 powder to prepare a mixed powder, molding the mixed powder into a predetermined shape to produce a molded body, and sintering the molded body at a temperature of 1550 to 1700 ° C And the mixed powder is composed of 70 to 99.5 at.% Of MgO and 0.5 to 30 at.% Of Al2O3.
  • the present invention also provides a method of manufacturing an inner shell for firing a lithium secondary battery cathode active material.
  • the MgO powder may be a mixture of two kinds of powders having different average particle diameters.
  • the average particle diameter of any one of the two kinds of powders may be 27 to 33 mu m and the average particle diameter of the other one may be 3 to 8 mu m.
  • the Al2O3 powder may have an average particle diameter of 0.5 to 10 mu m.
  • the average particle size of the MgO powder and the average particle size of the Al2O3 powder may be the same.
  • the MgO may be dead burnt MgO or molten MgO.
  • the strength and the thermal shock resistance of the existing firefly are increased, and the reactivity with lithium is lowered, so that the firefly is not damaged even after the firing is repeated 100 times or more.
  • the inner wall according to the present invention has a durability 3 times higher than that of the conventional inner wall.
  • FIG. 1 is a conceptual diagram showing a sintering process of a lithium ion battery cathode active material.
  • Figs. 2A and 2B are photographs of samples used for evaluating the performance of the fireproof glove according to the present invention.
  • Figs. 3A to 3C are SEM photographs of an inner fire wall according to the present invention.
  • FIG. 4 is a photograph of a conventional inner fire coat after being repeatedly fired 30 times.
  • FIG. 5 is a photograph of the inner fire coat according to the present invention taken after firing 100 times.
  • the lithium secondary battery cathode active material is composed of a mixture of Li and at least one of Co, Ni, Mn, and Fe.
  • the mixture is calcined in an inner shell to prepare a cathode active material of a lithium secondary battery.
  • the composition of the inner shell was composed of a mixture of Al 2 O 3 (main component), SiO 2 , and MgO.
  • the inner fire coat is peeled off at about 30 times of firing and can not be reused anymore.
  • the present invention provides an inner shell composed of 70 to 99.5 at.% MgO and 0.5 to 30 at.% Al 2 O 3 .
  • MgO is a major constituent of the fire coat according to the present invention. Since MgO has a very low reactivity with Li, it is possible to prevent the firefly and lithium from reacting during repeated firing.
  • the MgO contained in the inner protective layer according to the present invention is 70 to 99.5 at.%.
  • the other components of the inner furnace are made of Al 2 O 3 .
  • Al 2 O 3 serves to facilitate the porosity control by lowering the sintering temperature for the manufacture of fireproofing. Specifically, Al 2 O 3 is added in an amount of 0.5 to 30 at.%. When the content of Al 2 O 3 is less than 0.5 at.%, The effect of lowering the sintering temperature is insufficient. When the content of Al 2 O 3 is more than 30 at.%, The reactivity with Li is increased and the lifetime of the inner shell decreases.
  • MgO and Al 2 O 3 of at.% Being based on the total of the number of MgO and Al 2 O 3 by mole.
  • Additives such as binders can be added in the manufacture of fireproofs, but they are not included in the finished fireproofing because they are all removed during the sintering process.
  • SiC, cordierite, mullite and the like may be further added to control the sintering temperature and increase the thermal expansion coefficient and strength.
  • SiC, cordierite, mullite and the like may be further added to control the sintering temperature and increase the thermal expansion coefficient and strength.
  • the additives are not essential.
  • the MgO powder dispersion prepared by the atmospheric oxidation method can be applied to the surface of the inner shell to be dense.
  • the coating layer formed in this manner is not essential.
  • the sintering temperature for producing an inner protective layer is 1550 to 1700 ° C. It is easy to control the porosity at the sintering temperature.
  • the porosity of the inner shell according to the present invention is preferably 10% or less.
  • the porosity of the inner shell In order to allow the cathode active material to be fired more than 100 times, the porosity of the inner shell must be 10% or less.
  • the average size of the pores is preferably 10 ⁇ or less.
  • MgO powder and Al 2 O 3 powder are mixed to prepare a mixed powder.
  • the MgO powder may be a mixture of two powders having different average particle diameters.
  • the two types of powders may be mixed in a ratio of 7: 3, 5: 5, or 3: 7.
  • the average particle diameter of any one of the two kinds of powders may be 27 to 33 mu m and the average particle diameter of the other one may be 3 to 8 mu m. Accordingly, the present invention reduces the porosity of the inner shell.
  • the present invention is not limited thereto, and the MgO powder may be composed of one kind of powder.
  • the average particle diameter of the MgO powder may be 2 to 4 ⁇ ⁇ .
  • the average particle diameter of the Al 2 O 3 powder may be 0.5 to 10 ⁇ m.
  • the mean particle size of Al 2 O 3 powder exceeds 10 ⁇ m, there is a problem that the increase in porosity of the hwagap.
  • the average particle diameter of the MgO powder and the average particle diameter of the Al 2 O 3 powder may be equal to each other.
  • the mixed powder of MgO and Al 2 O 3 is made of a mixture of the said MgO and Al 2 O 3 as a sludge state can be produced in such a way as to evaporate water.
  • Moisture can react with MgO in the sludge state, which can adversely affect the hardness of the fire wall.
  • the MgO may be Dead Burnt MgO or fused MgO.
  • An additive such as a binder may be added during the production of the molded article.
  • the additive to be added in the production of the molded article is a well-known technology, and a detailed description thereof will be omitted. Since the additive is an organic material, it is all removed during the sintering of the fireproof glove, and is no longer left in the finished fireproof glove.
  • the components of the inner shell used in the performance comparison experiment (hereinafter, comparative example) consisted of 70 at.% Al 2 O 3 , 19 at.% SiO 2 , 10 at.% MgO and other components.
  • the specimen includes a circular specimen having a predetermined thickness (FIG. 2A) and a rectangular parallelepiped specimen having an internal space (FIG. 2B).
  • the rectangular parallelepiped-shaped specimen has a shape similar to that of an actual inner shell.
  • a circular specimen is referred to as a coin sample
  • a rectangular parallelepiped specimen is referred to as Lab. It is called a scale sample.
  • composition of the specimen used in the performance evaluation described below is shown in Table 1 below.
  • the inner shell according to the present invention has much higher strength than the conventional shell shell, the possibility of breakage during firing of the cathode active material is lowered.
  • a cathode material containing lithium was placed on each sample, and then the temperature was raised to 800 ° C at a rate of 10 ° C / min and maintained at 800 ° C for one hour. Thereafter, it was cooled by an air cooling method for 30 minutes or more.
  • the lifetime evaluation was performed under pressure conditions taking into consideration the actual weight of the cathode material. After repeated evaluation of the lifetime described above, changes in the sample were observed. Observation results are shown in Table 4 below.
  • the inner shell has a porosity of at least 10% .
  • the strength and the thermal shock resistance of the existing firefly are increased, and the reactivity with lithium is lowered, so that the firefly is not damaged even after the firing is repeated 100 times or more.
  • the inner wall according to the present invention has a durability 3 times higher than that of the conventional inner wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention provides a sagger for firing a lithium secondary battery positive electrode active material, wherein the sagger includes 70 to 99.5 at.% of MgO and 0.5 to 30 at.% of Al2O3 and has a porosity of 10 % or less. According to the present invention, the sagger has increased strength and thermal shock resistance in comparison with a conventional sagger and has a lowered reactivity with lithium, and thus is not broken even after being fired repeatedly 100 times or more. Considering that a conventional sagger is broken after being firing about 30 times, the sagger according to the present invention has a durability at least 3 times higher than the conventional sagger.

Description

리튬이차전지 양극활물질 소성용 내화갑 및 그 제조 방법LITHIUM SECONDARY BATTERY CORE ACTIVATING MATERIAL AND METHOD FOR MANUFACTURING THE SAME
본 발명은 기존의 상용 내화갑 대비 리튬과의 반응성이 낮고, 강도 및 열충격 저항성이 높은 소재를 이용한 리튬이차전지 양극활물질 소성용 내화갑 의 수명 향상에 관한 것이다.The present invention relates to the improvement of the lifetime of a fireproof container for firing a cathode active material of a lithium secondary battery using a material which has low reactivity with lithium and has high strength and thermal shock resistance compared to existing commercial fireplaces.
스마트폰, 노트북 등 휴대용 전자기기의 성능 향상 및 대중화와 함께 최근에는 하이브리드 및 전기 자동차와 같은 친환경 자동차의 개발이 활발해지면서 곧 대중화를 앞두고 있는 실정이다. 전자기기 및 전기 자동차의 성능은 베터리의 용량 및 효율과 밀접한 관련이 있는데, 이에 따라 안정성이 우수하며 높은 에너지 밀도를 갖는 고성능 리튬이차전지의 개발이 경쟁적으로 이루어지고 있다.Smart phones, laptops and other portable electronic devices, and recently, eco-friendly automobiles such as hybrid and electric vehicles have been developed and become popular. The performance of electronic devices and electric vehicles is closely related to the capacity and efficiency of a battery. Accordingly, development of a high performance lithium secondary battery having excellent stability and high energy density has been competitive.
리튬이차전지에 사용되는 양극활물질은 Li, Co, Mn, Ni등으로 이루어져 있으며, 원료물질을 내화갑용기에 담아400~1000℃로 소성하게 된다. 이때Li및Co화합물이 용융되어 내화갑의 기공으로 침투하고 구성성분과 반응하여 크랙 및 박리를 유발하게 된다. 박리된 내화갑의 반응물질은 양극재의 품질을 저하시키며 크랙으로 인해 내화갑이 파손되어 이후 공정으로 유입될 경우 양극활물질의 성능을 저하시키는 위험이 있다.The cathode active material used for the lithium secondary battery is composed of Li, Co, Mn, Ni, etc., and the raw material is buried in a fireproof container and fired at 400 to 1000 ° C. At this time, the Li and Co compounds are melted and penetrate into the pores of the inner wall and react with the constituents to cause cracking and peeling. The quality of the cathode material is deteriorated by the reactant in the peeled inner shell, and when the inner shell is broken due to cracking, the cathode material may deteriorate in performance when it is introduced into a subsequent process.
종래의 내화갑은 반응성이 적은 물질을 내화갑 표면에 코팅하거나 내화갑 자체의 열충격 저항성을 올리는 방향으로 개발되었다. 하지만 코팅의 번거로움으로 인해 대량 생산이 어렵거나 내화갑 소재와의 열팽창 계수 차이에 의하여 박리가 일어나는 단점이 있다. 또한 반응의 정도를 저하 시킬뿐 본질적으로는 양극활물질과 반응한다는 점에 있어서 문제가 있다.Conventional intumescent shells have been developed in such a way that less reactive material is coated on the surface of the inner shell or the thermal shock resistance of the inner shell itself is increased. However, it is disadvantageous that mass production is difficult due to the complication of coating or peeling occurs due to a difference in thermal expansion coefficient from the inner wall material. There is a problem in that it only reacts with the cathode active material in a degree of reducing the degree of the reaction.
본 발명은 리튬이온전지 양극활물질의 소성 용기인 내화갑의 수명을 향상시키기 위한 것을 그 목적으로 한다.An object of the present invention is to improve the service life of a firebox, which is a plastic container of a lithium ion battery cathode active material.
상술한 목적을 달성하기 위하여, 본 발명은 70 내지 99.5 at.%의 MgO 및 0.5 내지 30 at.%의 Al2O3로 구성되고, 10%이하의 기공률을 가지는 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑을 제공한다.In order to achieve the above object, the present invention provides a lithium secondary battery for cathode active material, which comprises 70 to 99.5 at.% Of MgO and 0.5 to 30 at.% Of Al2O3, and has a porosity of 10% I will provide my wallet.
일 실시 예에 있어서, 상기 내화갑의 강도는 600MPa 이상일 수 있다.In one embodiment, the strength of the inner shell may be greater than or equal to 600 MPa.
또한, 본 발명은 MgO 분말과 Al2O3분말을 혼합하여 혼합 분말을 제조하는 단계, 상기 혼합분말을 소정 형상으로 성형하여 성형체를 제조하는 단계 및 상기 성형체를 1550 내지 1700℃의 온도에서 소결하는 단계를 포함하고, 상기 혼합 분말은 70 내지 99.5 at.%의 MgO 및 0.5 내지 30 at.%의 Al2O3 로 이루어지는 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법을 제공한다.In addition, the present invention includes a step of mixing a MgO powder and an Al 2 O 3 powder to prepare a mixed powder, molding the mixed powder into a predetermined shape to produce a molded body, and sintering the molded body at a temperature of 1550 to 1700 ° C And the mixed powder is composed of 70 to 99.5 at.% Of MgO and 0.5 to 30 at.% Of Al2O3. The present invention also provides a method of manufacturing an inner shell for firing a lithium secondary battery cathode active material.
일 실시 예에 있어서, 상기 MgO 분말은 평균 입경이 상이한 두 종류의 분말이 혼합된 상태일 수 있다.In one embodiment, the MgO powder may be a mixture of two kinds of powders having different average particle diameters.
일 실시 예에 있어서, 상기 두 종류의 분말 중 어느 하나의 평균 입경은 27 내지 33㎛이고, 다른 하나의 평균 입경은 3 내지 8㎛일 수 있다.In one embodiment, the average particle diameter of any one of the two kinds of powders may be 27 to 33 mu m and the average particle diameter of the other one may be 3 to 8 mu m.
일 실시 예에 있어서, 상기 Al2O3 분말의 평균 입경은 0.5 내지 10㎛일 수 있다.In one embodiment, the Al2O3 powder may have an average particle diameter of 0.5 to 10 mu m.
일 실시 예에 있어서, 상기 MgO 분말의 평균 입경과 상기 Al2O3 분말의 평균 입경은 서로 동일한 것일 수 있다.In one embodiment, the average particle size of the MgO powder and the average particle size of the Al2O3 powder may be the same.
일 실시 예에 있어서, 상기 MgO는 dead burnt MgO 또는 전융 MgO일 수 있다.In one embodiment, the MgO may be dead burnt MgO or molten MgO.
본 발명에 따르면, 기존 내화갑 대비 강도 및 열충격 저항성이 증가하며, 리튬과의 반응성이 낮아져 100회 이상의 반복 소성에도 내화갑이 파손되지 않게 된다. 종래 내화갑이 약 30회의 소성에서 파손되는 점을 고려할 때, 본 발명에 따른 내화갑은 종래 내화갑 대비 내구성이 3배이상 높다. According to the present invention, the strength and the thermal shock resistance of the existing firefly are increased, and the reactivity with lithium is lowered, so that the firefly is not damaged even after the firing is repeated 100 times or more. In view of the fact that the conventional inner wall is broken at about 30 times of firing, the inner wall according to the present invention has a durability 3 times higher than that of the conventional inner wall.
도 1은 리튬이온전지 양극활물질의 소성과정을 나타내는 개념도이다.1 is a conceptual diagram showing a sintering process of a lithium ion battery cathode active material.
도 2a 및 2b는 본 발명에 따른 내화갑의 성능 평가에 사용된 샘플 사진들이다.Figs. 2A and 2B are photographs of samples used for evaluating the performance of the fireproof glove according to the present invention.
도 3a 내지 3c는 본 발명에 따른 내화갑의 SEM사진이다.Figs. 3A to 3C are SEM photographs of an inner fire wall according to the present invention.
도 4는 종래 내화갑을 30회 반복 소성 후 촬영한 사진이다.FIG. 4 is a photograph of a conventional inner fire coat after being repeatedly fired 30 times.
도 5는 본 발명에 따른 내화갑을 100회 반복 소성 후 촬영한 사진이다.FIG. 5 is a photograph of the inner fire coat according to the present invention taken after firing 100 times.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals are used to designate identical or similar elements, and redundant description thereof will be omitted. The suffix " module " and " part " for the components used in the following description are given or mixed in consideration of ease of specification, and do not have their own meaning or role. In the following description of the embodiments of the present invention, a detailed description of related arts will be omitted when it is determined that the gist of the embodiments disclosed herein may be blurred. In addition, it should be noted that the attached drawings are only for easy understanding of the embodiments disclosed in the present specification, and should not be construed as limiting the technical idea disclosed in the present specification by the attached drawings.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.It is also to be understood that when an element such as a layer, region or substrate is referred to as being present on another element "on," it is understood that it may be directly on the other element or there may be an intermediate element in between There will be.
본 발명에 따른 리튬이차전지 양극활물질 소성용 내화갑에 대하여 설명하기에 앞서 종래 리튬이차전지 양극활물질 소성용 내화갑에 대하여 설명한다.Before describing the inner shell for firing the cathode active material of the lithium secondary battery according to the present invention, the inner shell for firing the cathode active material of the lithium secondary battery will be described.
도 1을 참조하면, 리튬이차전지 양극활물질은 Co, Ni, Mn 및 Fe 중 적어도 하나와 Li의 혼합물로 이루어진다. 상기 혼합물은 내화갑에서 소성되어, 리튬이차전지의 양극활물질로 제조된다.Referring to FIG. 1, the lithium secondary battery cathode active material is composed of a mixture of Li and at least one of Co, Ni, Mn, and Fe. The mixture is calcined in an inner shell to prepare a cathode active material of a lithium secondary battery.
상기 혼합물의 소성 시, 리튬과 내화갑 간의 화학반응이 일어날 수 있다. 리튬과 내화갑 간 화학반응이 일어날 경우, 내화갑이 박리되어, 재사용이 불가능하게 되는 문제가 있다. During the calcination of the mixture, a chemical reaction between lithium and the inner shell may occur. When a chemical reaction occurs between lithium and the inner shell, the inner shell is peeled off, making it impossible to reuse.
종래에는 리튬이 내화갑과 반응하는 것을 방지하기 위해, 내화갑의 조성을 Al2O3(주성분), SiO2, MgO의 혼합물로 구성하였다. 하지만, 상기 내화갑은 약30회의 반복 소성 시 박리되어 더 이상 재사용이 불가하다는 문제가 있었다.Conventionally, in order to prevent lithium from reacting with the inner shell, the composition of the inner shell was composed of a mixture of Al 2 O 3 (main component), SiO 2 , and MgO. However, there is a problem in that the inner fire coat is peeled off at about 30 times of firing and can not be reused anymore.
본 발명은 상술한 문제를 해결하기 위해, 70 내지 99.5 at.%의 MgO 및 0.5 내지 30 at.%의 Al2O3로 구성되는 내화갑을 제공한다.In order to solve the above-mentioned problems, the present invention provides an inner shell composed of 70 to 99.5 at.% MgO and 0.5 to 30 at.% Al 2 O 3 .
MgO는 본 발명에 따른 내화갑의 주요 구성성분이다. MgO는 Li과의 반응성이 매우 낮기 때문에, 반복 소성 시 내화갑과 리튬이 반응하는 것을 막을 수 있다. MgO is a major constituent of the fire coat according to the present invention. Since MgO has a very low reactivity with Li, it is possible to prevent the firefly and lithium from reacting during repeated firing.
내화갑 전체를 MgO로 형성할 경우, Li에 대한 반응성은 최소화할 수 있지만, 소결 온도가 매우 높아지기 때문에 기공률을 제어하기 어려워진다는 단점이 있다. 이에, 본 발명에 따른 내화갑에 포함된 MgO는 70 내지 99.5 at.%이다. 내화갑의 나머지 성분은 Al2O3로 이루어진다.When the entire inner shell is made of MgO, the reactivity to Li can be minimized, but the sintering temperature becomes very high, which makes it difficult to control the porosity. Accordingly, the MgO contained in the inner protective layer according to the present invention is 70 to 99.5 at.%. The other components of the inner furnace are made of Al 2 O 3 .
Al2O3는 내화갑 제조를 위한 소결 온도를 낮추어 기공률 제어를 용이하게 하는 역할을 한다. 구체적으로, Al2O3는 0.5 내지 30 at.%첨가된다. Al2O3가 0.5 at.% 미만으로 첨가되는 경우, 소결 온도를 낮추는 효과가 미비하고, 30 at.%를 초과하는 경우, Li와의 반응성이 증가하여 내화갑의 수명이 감소하는 문제가 있다. Al 2 O 3 serves to facilitate the porosity control by lowering the sintering temperature for the manufacture of fireproofing. Specifically, Al 2 O 3 is added in an amount of 0.5 to 30 at.%. When the content of Al 2 O 3 is less than 0.5 at.%, The effect of lowering the sintering temperature is insufficient. When the content of Al 2 O 3 is more than 30 at.%, The reactivity with Li is increased and the lifetime of the inner shell decreases.
본 명세서에서, MgO 및 Al2O3의 at.%는 MgO와 Al2O3 몰 수의 총합을 기준으로 한다. 내화갑 제조 시 바인더 등의 첨가제가 첨가될 수 있으나, 이는 소결 과정에서 모두 제거되므로, 완성된 내화갑에는 포함되지 않는다.In this specification, MgO and Al 2 O 3 of at.% Being based on the total of the number of MgO and Al 2 O 3 by mole. Additives such as binders can be added in the manufacture of fireproofs, but they are not included in the finished fireproofing because they are all removed during the sintering process.
한편, 소결 온도 조절하고, 열팽창 계수 및 강도를 높이기 위해 SiC, 코디어라이트, 뮬라이트 등이 추가로 첨가될 수 있다. 구체적으로, 내화갑 전체를 기준으로 0at. % 초과 20at. % 이하의 스피넬, 0at. % 초과 10at. % 이하의 코디어라이트, 0at. % 초과 10at. % 이하의 뮬라이트, 0at. % 초과 5at. % 이하의 SiC로 이루어지는 군으로부터 선택되는 적어도 1종 이상을 함유할 수 있다. 다만, 상기 첨가물들은 필수적인 것은 아니다.On the other hand, SiC, cordierite, mullite and the like may be further added to control the sintering temperature and increase the thermal expansion coefficient and strength. Specifically, based on the entire inner wallet, 0at. More than 20at. % Or less of spinel, 0at. More than 10at. % Or less of cordierite, 0at. More than 10at. % Mullite, 0at. % 5at. % Or less of SiC. However, the additives are not essential.
한편, 상기 내화갑의 표면을 치밀하게 하기 위하여 대기 산화법으로 제조된 MgO분말 분산액이 도포될 수 있다. 다만, 이러한 방식으로 형성되는 코팅층은 필수적인 것은 아니다.Meanwhile, the MgO powder dispersion prepared by the atmospheric oxidation method can be applied to the surface of the inner shell to be dense. However, the coating layer formed in this manner is not essential.
상기 Al2O3를 0.5 내지 30 at.% 첨가할 경우, 내화갑 제조를 위한 소결 온도는 1550 내지 1700℃가 된다. 상기 소결 온도에서는 기공률을 제어하는 것이 용이하다.When 0.5 to 30 at.% Of Al 2 O 3 is added, the sintering temperature for producing an inner protective layer is 1550 to 1700 ° C. It is easy to control the porosity at the sintering temperature.
한편, 본 발명에 따른 내화갑의 기공률은 10% 이하인 것이 바람직하다. 내화갑의 기공률이 낮을수록 내화갑 사이로 침투되는 리튬의 양이 감소한다. 양극활 물질을 100회 이상 소성 가능하도록 하기 위해서는, 내화갑의 기공률은 10% 이하이어야 한다. 또한, 기공의 평균 크기는 10㎛ 이하인 것이 바람직하다.On the other hand, the porosity of the inner shell according to the present invention is preferably 10% or less. The lower the porosity of the inner shell, the lower the amount of lithium penetrated through the shell. In order to allow the cathode active material to be fired more than 100 times, the porosity of the inner shell must be 10% or less. The average size of the pores is preferably 10 탆 or less.
이하, 본 발명에 따른 내화갑의 제조 방법에 대하여 구체적으로 설명한다.Hereinafter, a method of manufacturing an inner protective cap according to the present invention will be described in detail.
먼저, MgO 분말과 Al2O3분말을 혼합하여 혼합 분말을 제조하는 단계가 진행된다. First, MgO powder and Al 2 O 3 powder are mixed to prepare a mixed powder.
상기 MgO 분말은 평균 입경이 상이한 두 종류의 분말이 혼합된 상태일 수 있다. 예를 들어, 상기 두 종류의 분말은 7:3, 5:5 또는 3:7의 비율로 혼합될 수 있다.The MgO powder may be a mixture of two powders having different average particle diameters. For example, the two types of powders may be mixed in a ratio of 7: 3, 5: 5, or 3: 7.
일 실시 예에 있어서, 상기 두 종류의 분말 중 어느 하나의 평균 입경은 27 내지 33㎛이고, 다른 하나의 평균 입경은 3 내지 8㎛일 수 있다. 이를 통해, 본 발명은 내화갑의 기공률을 감소시킨다. In one embodiment, the average particle diameter of any one of the two kinds of powders may be 27 to 33 mu m and the average particle diameter of the other one may be 3 to 8 mu m. Accordingly, the present invention reduces the porosity of the inner shell.
한편, 이에 한정되지 않고, MgO 분말은 한 종류의 분말로 이루어질 수 있다. 한 종류의 MgO분말을 사용하는 경우, MgO 분말의 평균 입경은 2 내지 4㎛일 수 있다.However, the present invention is not limited thereto, and the MgO powder may be composed of one kind of powder. When one type of MgO powder is used, the average particle diameter of the MgO powder may be 2 to 4 占 퐉.
한편, 상기 Al2O3 분말의 평균 입경은 0.5 내지 10㎛일 수 있다. 0.5㎛ 미만의 평균 입경을 가지는 Al2O3 분말은 제조가 어렵고, Al2O3 분말의 평균 입경이 10㎛를 초과하는 경우, 내화갑의 기공률이 증가하는 문제가 있다.On the other hand, the average particle diameter of the Al 2 O 3 powder may be 0.5 to 10 μm. When Al 2 O 3 powder having an average particle size of less than 0.5㎛ are difficult to manufacture, the mean particle size of Al 2 O 3 powder exceeds 10㎛, there is a problem that the increase in porosity of the hwagap.
한편, 상기 MgO 분말의 평균 입경과 상기 Al2O3 분말의 평균 입경은 서로 동일할 수 있다. Meanwhile, the average particle diameter of the MgO powder and the average particle diameter of the Al 2 O 3 powder may be equal to each other.
한편, 상기 MgO 및 Al2O3의 혼합분말은 상기 상기 MgO 및 Al2O3의 혼합물을 슬러지 상태로 만든 후 수분을 증발시키는 방식으로 제조될 수 있다. 상기 슬러지 상태에서 수분이 MgO와 반응할 수 있는데, 이러한 경우 내화갑의 경도에 부정적인 영향을 줄 수 있다. MgO가 물과 반응하는 것을 방지하기 위해, 상기 MgO는 Dead Burnt MgO 또는 전융 MgO일 수 있다. On the other hand, after the mixed powder of MgO and Al 2 O 3 is made of a mixture of the said MgO and Al 2 O 3 as a sludge state can be produced in such a way as to evaporate water. Moisture can react with MgO in the sludge state, which can adversely affect the hardness of the fire wall. To prevent MgO from reacting with water, the MgO may be Dead Burnt MgO or fused MgO.
다음으로, 상기 혼합분말을 소정 형상으로 성형하여 성형체를 제조하는 단계가 진행된다. Next, the step of molding the mixed powder into a predetermined shape to produce a molded body is proceeded.
상기 성형체 제조 시 바인더 등의 첨가제가 첨가될 수 있다. 성형체 제조 시 첨가되는 첨가제는 기 공지된 기술이므로 구체적인 설명은 생략한다. 상기 첨가제는 유기물이기 때문에, 내화갑 소결 시 모두 제거되며, 완성된 내화갑에는 더 이상 잔류하지 않는다.An additive such as a binder may be added during the production of the molded article. The additive to be added in the production of the molded article is a well-known technology, and a detailed description thereof will be omitted. Since the additive is an organic material, it is all removed during the sintering of the fireproof glove, and is no longer left in the finished fireproof glove.
마지막으로, 상기 성형체를 1550 내지 1700℃의 온도에서 소결하는 단계가 진행된다.Finally, a step of sintering the shaped body at a temperature of 1550 to 1700 ° C is carried out.
이하에서는, 실시 예 및 실험 예들을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만, 후술할 실시 예 및 실험 예들에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the scope and contents of the present invention are not construed to be limited or limited by the following Examples and Experimental Examples.
이하, 본 발명에 따른 내화갑과 종래 내화갑의 성능 비교 결과에 대하여 설명한다.Hereinafter, the performance comparison result between the inner fire wall according to the present invention and the conventional inner fire wall will be described.
성능 비교 실험에 사용된 내화갑(이하, 비교예)의 성분은 70at.%의 Al2O3, 19at.%의 SiO2, 10at.%의 MgO 및 기타 성분으로 구성된다. The components of the inner shell used in the performance comparison experiment (hereinafter, comparative example) consisted of 70 at.% Al 2 O 3 , 19 at.% SiO 2 , 10 at.% MgO and other components.
한편, 후술할 성능 비교 실험에 사용된 시편의 형상은 두 종류이다. 구체적으로, 상기 시편은 소정 두께를 가지는 원 형상의 시편(도 2a) 및 내부 공간을 구비하는 직육면체 형태의 시편(도 2b)을 포함한다. 상기 직육면체 형태의 시편은 실제 내화갑의 형상과 유사한 형상을 가진다. 본 명세서에서 원 형상의 시편은 코인(coin) 샘플이라 하고, 직육면체 형상의 시편은 Lab. Scale 샘플이라 한다. On the other hand, there are two types of specimen used in the performance comparison experiment described later. Specifically, the specimen includes a circular specimen having a predetermined thickness (FIG. 2A) and a rectangular parallelepiped specimen having an internal space (FIG. 2B). The rectangular parallelepiped-shaped specimen has a shape similar to that of an actual inner shell. In the present specification, a circular specimen is referred to as a coin sample, and a rectangular parallelepiped specimen is referred to as Lab. It is called a scale sample.
후술할 성능 평가에 사용된 시편의 조성은 아래 표 1과 같다.The composition of the specimen used in the performance evaluation described below is shown in Table 1 below.
구분division 소재Material 입도Granularity 소결온도Sintering temperature 형상shape
기존existing Al2O3, MgO, SiO2 Al 2 O 3 , MgO, SiO 2 약 50㎛About 50㎛ 1300℃1300 ℃ 코인Coin
Coin-1Coin-1 MgO (100%) + Al2O3 (0%) + Al 2 O 3 MgO (100 %) (0%) MgO 분말: 13㎛ (30%) + 50㎛ (70%)MgO powder: 13 占 퐉 (30%) + 50 占 퐉 (70%) 1580℃1580 ° C
Coin-2Coin-2 MgO (90%) + Al2O3 (10%) + Al 2 O 3 MgO (90 %) (10%)
Coin-3Coin-3 MgO (100%) + Al2O3 (0%) + Al 2 O 3 MgO (100 %) (0%) 1680℃1680 ° C
Coin-4Coin-4 MgO (95%) + Al2O3 (5%) + Al 2 O 3 MgO (95 %) (5%)
Coin-5Coin-5 MgO (90%) + Al2O3 (10%) + Al 2 O 3 MgO (90 %) (10%)
Lab Scale-1Lab Scale-1 MgO (90%) + Al2O3 (10%) + Al 2 O 3 MgO (90 %) (10%) MgO 및 Al2O3분말: 3㎛MgO and Al 2 O 3 powder: 3 탆 1500℃1500 ℃ 직육면체Cube
Lab Scale-2Lab Scale-2 MgO (90%) + Al2O3 (10%) + Al 2 O 3 MgO (90 %) (10%) 1450℃1450 ℃
Lab Scale-3Lab Scale-3 MgO (90%) + Al2O3 (10%) + Al 2 O 3 MgO (90 %) (10%) 1400℃1400 ° C
(1) 강도 실험(1) Strength test
표 1에 개시된 시편들에 대한 3 Point bending test를 수행하였다. 측정 결과는 아래 표 2와 같다.A 3 point bending test was performed on the specimens shown in Table 1. The measurement results are shown in Table 2 below.
구분division 강도burglar
기존existing 77MPa77 MPa
Coin-1Coin-1 138MPa138 MPa
Coin-2Coin-2 420MPa420 MPa
Coin-3Coin-3 270MPa270 MPa
Coin-4Coin-4 450MPa450MPa
Coin-5Coin-5 596MPa596 MPa
Lab Scale-1Lab Scale-1 현재측정 불가(600 MPa이상으로 추정)Currently unmeasurable (estimated to be over 600 MPa)
상기 표 2에 따르면, Lab Scale로 제조된 실시 예의 강도는 측정 기기의 측정 한계치(600MPa)를 초과하였다. Lab Scale1 내지 3과 동일한 조성의 샘플 Coin-5와 비교예의 강도를 비교하면, Coin-5의 강도가 7배 이상 높은 것을 확인할 수 있었다.According to Table 2 above, the strength of the example made with Lab Scale exceeded the measurement limit of the measuring instrument (600 MPa). Comparing the strength of the comparative example with that of the sample Coin-5 having the same composition as Lab Scale 1 to 3, it was confirmed that the intensity of Coin-5 was 7 times or more higher.
상술한 바와 같이, 본 발명에 따른 내화갑은 종래 내화갑 대비 강도가 월등히 높기 때문에, 양극활물질 소성 중 파손될 가능성이 낮아진다. As described above, since the inner shell according to the present invention has much higher strength than the conventional shell shell, the possibility of breakage during firing of the cathode active material is lowered.
(2) 기공률 측정(2) Measurement of porosity
각 샘플의 단면을 SEM으로 촬영(도 3a 내지 3c 참조)한 후, SEM 이미지에서 기공이 차지하는 비율을 측정하였다. 각 샘플의 기공률 측정 결과는 아래 표 3과 같다.The cross section of each sample was photographed by SEM (see Figs. 3A to 3C), and the ratio of pores in the SEM image was measured. The results of the porosity measurement of each sample are shown in Table 3 below.
구분division 기공률Porosity
기존existing 24.5%24.5%
Coin-1Coin-1 37.0%37.0%
Coin-2Coin-2 22.0%22.0%
Coin-3Coin-3 32.0%32.0%
Coin-4Coin-4 24.7%24.7%
Coin-5Coin-5 11.1%11.1%
Lab Scale-1Lab Scale-1 0.1% - 1.5%0.1% - 1.5%
Lab Scale-2Lab Scale-2 4.0%4.0%
Lab Scale-3Lab Scale-3 10.3%10.3%
(3) 수명 평가(3) Life evaluation
각 샘플 상에 리튬을 포함하는 양극재를 올린 후 800℃까지 10℃/min의 속도로 승온시키고, 800℃에서 한시간을 유지하였다. 이후, 공냉 방식으로 30분이상 냉각하였다. 상기 수명 평가는 실제 양극재 무게를 고려한 압력 조건에서 수행되었다. 상술한 수명 평가를 반복적으로 수행한 후, 샘플의 변화를 관찰하였다. 관찰 결과는 아래 표 4와 같다.A cathode material containing lithium was placed on each sample, and then the temperature was raised to 800 ° C at a rate of 10 ° C / min and maintained at 800 ° C for one hour. Thereafter, it was cooled by an air cooling method for 30 minutes or more. The lifetime evaluation was performed under pressure conditions taking into consideration the actual weight of the cathode material. After repeated evaluation of the lifetime described above, changes in the sample were observed. Observation results are shown in Table 4 below.
구분division 관찰결과Observation result
기존existing 5회 균열 시작30회 박리 시작(도4)5 crack initiation 30 peeling start (Fig. 4)
Coin-1Coin-1 19회 균열 시작36회 파단19 breaks start 36 breaks
Coin-2Coin-2 50회 완료균열/박리 無Completed 50 times Crack / No peeling
Coin-3Coin-3 22회 균열 시작및 파단22 crack initiation and break
Coin-4Coin-4 100회 완료균열/박리 無100 times complete crack / no peeling
Coin-5Coin-5 100회 완료균열/박리 無100 times complete crack / no peeling
Lab Scale-1Lab Scale-1 100회 진행 중(도 5)균열/박리 無100 times in progress (Fig. 5) No crack / peeling
Lab Scale-2Lab Scale-2 100회 진행 중(50회 미세박리)100 times in progress (50 minute peeling)
Lab Scale-3Lab Scale-3 100회 진행 중(5회 미세균열)During 100 runs (5 microcracks)
상기 표 4를 참조하면, 기공률이 낮을수록, 내화갑의 수명이 길어지는 것을 확인할 수 있고, 적어도 100회 이상 소성 공정에 재사용되기 위해서는, 내화갑의 기공률이 적어도 10%이하 이어야 한다는 것을 확인할 수 있다.Referring to Table 4, it can be seen that the lower the porosity is, the longer the life of the inner shell is, and in order to be reused in the firing process at least 100 times, it can be confirmed that the inner shell has a porosity of at least 10% .
본 발명에 따르면, 기존 내화갑 대비 강도 및 열충격 저항성이 증가하며, 리튬과의 반응성이 낮아져 100회 이상의 반복 소성에도 내화갑이 파손되지 않게 된다. 종래 내화갑이 약 30회의 소성에서 파손되는 점을 고려할 때, 본 발명에 따른 내화갑은 종래 내화갑 대비 내구성이 3배이상 높다.According to the present invention, the strength and the thermal shock resistance of the existing firefly are increased, and the reactivity with lithium is lowered, so that the firefly is not damaged even after the firing is repeated 100 times or more. In view of the fact that the conventional inner wall is broken at about 30 times of firing, the inner wall according to the present invention has a durability 3 times higher than that of the conventional inner wall.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.
또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, the above detailed description should not be construed in all aspects as limiting and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Claims (8)

  1. 70 내지 99.5 at.%의 MgO 및 0.5 내지 30 at.%의 Al2O3로 구성되고, 10%이하의 기공률을 가지는 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑.% Of MgO, and 0.5 to 30 at.% Of Al 2 O 3 , and having a porosity of 10% or less. The fireproof fireproof material for firing a cathode active material of a lithium secondary battery according to claim 1,
  2. 제1항에 있어서,The method according to claim 1,
    상기 내화갑의 강도는 600MPa 이상인 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑.Wherein the strength of the inner shell is 600 MPa or more.
  3. MgO 분말과 Al2O3분말을 혼합하여 혼합 분말을 제조하는 단계;MgO powder and Al 2 O 3 powder to prepare a mixed powder;
    상기 혼합분말을 소정 형상으로 성형하여 성형체를 제조하는 단계; 및Molding the mixed powder into a predetermined shape to produce a molded body; And
    상기 성형체를 1550 내지 1700℃의 온도에서 소결하는 단계를 포함하고,Sintering the shaped body at a temperature of 1550 to 1700 ° C,
    상기 혼합 분말은 70 내지 99.5 at.%의 MgO 및 0.5 내지 30 at.%의 Al2O3 로 이루어지는 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the mixed powder is composed of 70 to 99.5 at.% Of MgO and 0.5 to 30 at.% Of Al 2 O 3 .
  4. 제3항에 있어서,The method of claim 3,
    상기 MgO 분말은 평균 입경이 상이한 두 종류의 분말이 혼합된 상태인 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the MgO powder is mixed with two kinds of powders having different average particle diameters.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 두 종류의 분말 중 어느 하나의 평균 입경은 27 내지 33㎛이고, 다른 하나의 평균 입경은 3 내지 8㎛인 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the average particle diameter of one of the two types of powders is 27 to 33 占 퐉 and the average particle diameter of the other one is 3 to 8 占 퐉.
  6. 제3항에 있어서,The method of claim 3,
    상기 Al2O3 분말의 평균 입경은 0.5 내지 10㎛인 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the Al 2 O 3 powder has an average particle diameter of 0.5 to 10 μm.
  7. 제3항에 있어서,The method of claim 3,
    상기 MgO 분말의 평균 입경과 상기 Al2O3 분말의 평균 입경은 서로 동일한 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the average particle diameter of the MgO powder and the average particle diameter of the Al 2 O 3 powder are equal to each other.
  8. 제3항에 있어서,The method of claim 3,
    상기 MgO는 dead burnt MgO 또는 전융 MgO인 것을 특징으로 하는 리튬이차전지 양극활물질 소성용 내화갑의 제조방법.Wherein the MgO is dead burnt MgO or molten MgO. ≪ RTI ID = 0.0 > 11. < / RTI >
PCT/KR2018/012137 2017-10-17 2018-10-15 Sagger for firing lithium secondary battery positive electrode active material and method for manufacturing same WO2019078563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207004761A KR102652593B1 (en) 2017-10-17 2018-10-15 Resistant saggar for firing cathode active material for lithium secondary batteries and manufacturing method thereof
CN201880067482.9A CN111225889A (en) 2017-10-17 2018-10-15 Sagger for sintering positive electrode active material of lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762573668P 2017-10-17 2017-10-17
US62/573,668 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019078563A1 true WO2019078563A1 (en) 2019-04-25

Family

ID=66174032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012137 WO2019078563A1 (en) 2017-10-17 2018-10-15 Sagger for firing lithium secondary battery positive electrode active material and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR102652593B1 (en)
CN (1) CN111225889A (en)
WO (1) WO2019078563A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430082A (en) * 2020-12-15 2021-03-02 湖南仁海科技材料发展有限公司 Zinc oxide sagger and preparation method thereof
CN112811886A (en) * 2021-01-16 2021-05-18 陕西科技大学 Battery sagger and preparation method thereof
CN114031407A (en) * 2021-12-13 2022-02-11 湖南太子新材料科技有限公司 Silicon carbide sagger for lithium battery anode material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603469B (en) * 2021-08-04 2022-12-16 江苏晶邦新型材料有限公司 Composite spinel-mullite ceramic refractory material and preparation method thereof
KR20230168569A (en) 2022-06-07 2023-12-14 주식회사 에코프로비엠 Sagger for calcinating precursor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033263A (en) * 2005-07-11 2008-04-16 리프랙토리 인터렉추얼 프라퍼티 게엠베하 운트 코. 카게 Fired, fire-resistant ceramic product
KR20090055696A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 Improved furnace for manufacture of lithium-metal oxide and process for preparing the same
KR101223032B1 (en) * 2011-03-08 2013-01-17 주식회사 우진 Sagger and composition of sagger containing silicon carbide for manufacturing positive, negative electrode active material of secondary battery
KR20130120073A (en) * 2012-04-25 2013-11-04 주식회사 와이제이씨 Heat treatment vessel and method of manufacturing the same
KR20150100849A (en) * 2013-03-21 2015-09-02 구로사키 하리마 코포레이션 Refractory and nozzle for casting

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999306A (en) * 1973-01-24 1974-09-19
JPH07206511A (en) * 1993-12-29 1995-08-08 Toshiba Ceramics Co Ltd Magnesia clinker, monolithic refractory and ladle for steel making
AU698761B2 (en) * 1994-06-22 1998-11-05 Mitsubishi Materials Corporation Magnesia-titania refractory and method for manufacturing the same
JP4560199B2 (en) * 2000-10-23 2010-10-13 株式会社ニッカトー Ceramic heat treatment material with excellent thermal shock resistance
US8505335B2 (en) * 2007-06-19 2013-08-13 Magneco/Metrel, Inc. Refractoy composition for glass melting furnaces
CN101928152B (en) * 2009-06-25 2012-07-18 鞍钢集团耐火材料公司 Heat insulation non-burning refractory brick and production method thereof
KR101758926B1 (en) * 2010-05-07 2017-07-17 엔지케이 인슐레이터 엘티디 Composite refractory
CN101964414A (en) * 2010-09-01 2011-02-02 中国地质大学(北京) Method for preparing high-temperature resistant saggar for producing lithium ion battery anode material
JP2012224487A (en) * 2011-04-18 2012-11-15 Mitsui Mining & Smelting Co Ltd Kiln tool for manufacturing positive electrode active material of lithium secondary battery, and method for manufacturing the same
CN106278296B (en) * 2015-06-12 2019-05-10 刘婷婷 A kind of anode material of lithium battery saggar and preparation method thereof
CN106187238A (en) * 2016-07-21 2016-12-07 济源市金峰耐火材料有限公司 Bauxite composite refractory brick and its preparation method and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080033263A (en) * 2005-07-11 2008-04-16 리프랙토리 인터렉추얼 프라퍼티 게엠베하 운트 코. 카게 Fired, fire-resistant ceramic product
KR20090055696A (en) * 2007-11-29 2009-06-03 주식회사 엘지화학 Improved furnace for manufacture of lithium-metal oxide and process for preparing the same
KR101223032B1 (en) * 2011-03-08 2013-01-17 주식회사 우진 Sagger and composition of sagger containing silicon carbide for manufacturing positive, negative electrode active material of secondary battery
KR20130120073A (en) * 2012-04-25 2013-11-04 주식회사 와이제이씨 Heat treatment vessel and method of manufacturing the same
KR20150100849A (en) * 2013-03-21 2015-09-02 구로사키 하리마 코포레이션 Refractory and nozzle for casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430082A (en) * 2020-12-15 2021-03-02 湖南仁海科技材料发展有限公司 Zinc oxide sagger and preparation method thereof
CN112811886A (en) * 2021-01-16 2021-05-18 陕西科技大学 Battery sagger and preparation method thereof
CN114031407A (en) * 2021-12-13 2022-02-11 湖南太子新材料科技有限公司 Silicon carbide sagger for lithium battery anode material and preparation method thereof

Also Published As

Publication number Publication date
CN111225889A (en) 2020-06-02
KR20200058383A (en) 2020-05-27
KR102652593B1 (en) 2024-04-01

Similar Documents

Publication Publication Date Title
WO2019078563A1 (en) Sagger for firing lithium secondary battery positive electrode active material and method for manufacturing same
JP2019121601A (en) Lithium ion battery electrode material firing pot and protective layer of the same
WO2014193203A1 (en) Anode active material for lithium cell and method for manufacturing same
WO2018212554A1 (en) Method for manufacturing metal foam
WO2014168392A1 (en) Separator for secondary battery and method of manufacturing the same
WO2018101712A1 (en) Method for producing metal foam
WO2018101714A1 (en) Method for producing metal foam
WO2021080052A1 (en) Lithium metal anode structure, electrochemical device comprising same, and method for manufacturing lithium metal anode structure
KR20220043055A (en) Casing for sintering cathode active material used in lithium secondary battery and method for manufacturing the same
WO2009134047A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
CN112010661B (en) Sagger for lithium battery positive electrode material and preparation method thereof
CN113292349B (en) Sagger containing calcium hexaluminate composite layer and preparation method thereof
KR101159102B1 (en) Furnace for Manufacture of Lithium-Metal Oxide and Process for Preparing the Same
JP2003165767A (en) Spinel refractory and use of the same
WO2019066545A1 (en) Sagger for firing secondary battery active material and method for manufacturing secondary battery active material using same
CA1202332A (en) Unburned magnesia-carbon refractory
WO2019054594A1 (en) Flame-resistant and lightweight building material panel composition, fabrication method, and panel
CN115340409B (en) Sagger coating for lithium battery positive electrode material and preparation method of sagger coating
CN115395174B (en) Composite diaphragm, secondary battery and electric equipment
CN113321983B (en) Kiln tail anti-coking coating and coating method thereof
KR101719823B1 (en) Furnace material and manufacturing method of furnace material
WO2020179998A1 (en) Separator, preparation method of same, and secondary battery comprising same
WO2020059902A1 (en) Cathode material having silicon oxide coating layer formed thereon, cathode comprising same, sodium ion battery, and manufacturing method therefor
WO2024101647A1 (en) Insulation material and insulation member using same
KR101345001B1 (en) Heat treatment vessel and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867381

Country of ref document: EP

Kind code of ref document: A1