WO2019078268A1 - 位置検出装置 - Google Patents

位置検出装置 Download PDF

Info

Publication number
WO2019078268A1
WO2019078268A1 PCT/JP2018/038702 JP2018038702W WO2019078268A1 WO 2019078268 A1 WO2019078268 A1 WO 2019078268A1 JP 2018038702 W JP2018038702 W JP 2018038702W WO 2019078268 A1 WO2019078268 A1 WO 2019078268A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
value
difference
output value
detection device
Prior art date
Application number
PCT/JP2018/038702
Other languages
English (en)
French (fr)
Inventor
尚明 河野
山中 哲爾
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019078268A1 publication Critical patent/WO2019078268A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Definitions

  • the present disclosure relates to a position detection device.
  • Patent Document 1 aims to improve the output accuracy with a few correction points by setting correction points in order from a part where the amount of error is large.
  • Patent Document 1 while repeating the series of processes, it is necessary to sequentially store an error amount, a position at which the absolute value of the error amount is maximum, and a correction value set based on the error amount at that position. Therefore, it is necessary to prepare a certain storage area regardless of the necessity. Moreover, in patent document 1, it is necessary to calculate the output value after correction
  • the present disclosure has been made in view of the above-described point, and an object thereof is to provide a position detection device capable of calculating a correction value with a small number of operations with a small storage area and improving output accuracy. It is.
  • the position detection device includes a magnetism generation unit, a signal output unit that outputs a signal according to the relative position of the magnetism generation unit, a correction value calculation unit that calculates a correction value, a correction value, and the correction value.
  • a storage unit for storing various values used in calculation, a correction unit for correcting an actual output value based on an output signal of the signal output unit with a correction value, and a magnetism generation unit for the signal output unit based on the value corrected by the correction unit
  • a position calculation unit that calculates the relative position of
  • the correction value calculation unit calculates a primary difference which is a difference between an actual output value and an ideal output value, and sets primary differences at n correction points set in advance within a predetermined measurement range as temporary correction values. To perform interpolation processing. In addition, the correction value calculation unit calculates a secondary difference which is a difference between the output value after interpolation processing and the ideal output value, and finely adjusts temporary correction values corresponding to n correction points based on the secondary difference. And set it as a correction value.
  • the provisional correction value is finely adjusted only once based on the secondary difference instead of repeating setting of a new correction point based on the secondary difference as in the past, calculation is performed while keeping the storage area small Is possible. Further, since the calculation is completed in the procedure of finely adjusting the temporary correction value set based on the primary difference based on the secondary difference, the number of calculations is small. Therefore, it is possible to improve the output accuracy by calculating the correction value with a small number of operations while keeping the storage area small.
  • FIG. 1 is a diagram for explaining a position detection device according to a first embodiment
  • FIG. 2 is a view of the position detection device of FIG. 1 as viewed in the direction of arrow II
  • FIG. 3 is a block diagram showing the configuration of the position detection device
  • FIG. 4 is a flow chart for explaining the process of calculating the correction value by the position detection device.
  • FIG. 5 is a diagram showing the relationship between the actual output value measured by the position detection device and the angle value
  • FIG. 6 is a diagram showing the relationship between the difference calculated by the position detection device and the angle value
  • FIG. 1 is a diagram for explaining a position detection device according to a first embodiment
  • FIG. 2 is a view of the position detection device of FIG. 1 as viewed in the direction of arrow II
  • FIG. 3 is a block diagram showing the configuration of the position detection device
  • FIG. 4 is a flow chart for explaining the process of calculating the correction value by the position detection device.
  • FIG. 5 is a diagram showing the relationship between the actual output
  • FIG. 7 is a diagram showing a part of secondary differences calculated by the position detection device;
  • FIG. 8 is a diagram showing another part of the secondary difference calculated by the position detection device,
  • FIG. 9 is a block diagram showing a configuration of a position detection device according to a second embodiment,
  • FIG. 10 is a view for explaining the position detection device according to the second embodiment, 11 is a view of the position detection device of FIG. 10 as viewed in the direction of arrow XI, 12 is a view for explaining a position detection device according to the third embodiment,
  • FIG. 13 is a view of the position detection device of FIG. 12 as viewed in the direction of arrow XIII.
  • the position detection device 10 is a rotation angle detection device that detects the relative rotation angle of the detection target member 6 with respect to the reference member 5.
  • the position detection device 10 includes a magnetism generation unit 11 and a Hall IC 12.
  • the Hall IC 12 includes a Hall element 13, a digital signal processor (hereinafter DSP) 14 and a memory 15.
  • DSP digital signal processor
  • the magnetism generation unit 11 is fixed to the detection target member 6 and has two yokes 16 and two magnets 17.
  • One magnet 17 is provided between one end of each yoke 16.
  • the other magnet 17 is provided between the other ends of the respective yokes 16.
  • the two yokes 16 and the two magnets 17 form a closed magnetic circuit.
  • the reference groove 8 formed at one end of the rotation shaft portion 7 of the detection target member 6 is used to be fitted with the measuring instrument and to match the reference of the angle of the detection target member 6 and the angle of the measuring instrument.
  • the Hall IC 12 is fixed to the reference member 5 and disposed inside the closed magnetic circuit of the magnetic generation unit 11, that is, between the two yokes 16.
  • the magnetism generation unit 11 is rotatable relative to the Hall IC 12 together with the detection target member 6.
  • the Hall element 13 is a signal output unit that outputs a signal according to the relative position to the magnetism generation unit 11.
  • the DSP 14 is specialized for digital signal processing, and performs processing such as correction processing and position calculation processing on the values output from the Hall element 13 and converted into digital signals.
  • the DSP 14 is a correction unit and a position calculation unit.
  • the memory 15 is a storage unit including, for example, a read only memory and a writable and erasable memory, and stores various data used by the DSP 14.
  • the memory 15 stores a correction value corresponding to the rotation angle of the detection target member 6.
  • the Hall IC 12 includes, in addition to the Hall element 13, the DSP 14 and the memory 15, an analog-digital conversion circuit (hereinafter, ADC) 18 and a digital-analog conversion circuit (hereinafter, DAC) 19 and the like. It is an IC chip that contains
  • the Hall element 13 outputs a signal according to the change of the magnetic flux density generated by the relative rotation of the magnetic generation unit 11 with respect to the Hall element 13 around the central axis AX.
  • the ADC 18 converts an analog value output from the Hall element 13 into a digital value, and outputs the digital value to the DSP 14.
  • the digital value converted by the ADC 18 is simply referred to as an actual output value.
  • the DSP 14 performs correction processing, position calculation processing, and the like on the actual output value, and outputs the processing result to the DAC 19.
  • the DAC 19 converts the digital value output from the DSP 14 into an analog value and outputs it.
  • n correction points are set in advance within a predetermined measurement range corresponding to the rotatable angle range of the detected member 6, and the actual output value is based on the correction values corresponding to the n correction points. Is corrected.
  • the memory 15 stores predetermined values A (1) to A (n) and correction values c (1) to c (n) corresponding to the respective correction points.
  • the predetermined values A (1) to A (n) are all within the range of the actual output value based on the output signal of the Hall element 13.
  • the actual output value matches one of the predetermined values A (1) to A (n)
  • the actual output value is corrected by subtracting the correction value corresponding to the matching predetermined value from the actual output value. Be done. For example, if the actual output value matches A (3), the correction value corresponding to A (3) is c (3), so the actual output value is corrected to A (3) -c (3) .
  • the actual output value is corrected by subtracting the operation correction value corresponding to the actual output value from the actual output value.
  • the arithmetic correction value c is to be subjected to linear interpolation according to the equation 2 derived by the following equation 1 using the two predetermined values taking the actual output value and the correction values corresponding to the two predetermined values.
  • ⁇ C (n) -c (n-1) ⁇ / ⁇ A (n) -A (n-1) ⁇ ⁇ c-c (n-1) ⁇ / ⁇ A-A (n-1) ⁇ . ..
  • Formula 1 c ⁇ c (n) -c (n-1) ⁇ / ⁇ A (n) -A (n-1) ⁇ * ⁇ A-A (n-1) ⁇ + c (n-1)
  • Formula 2 Formula 2
  • the operation correction value corresponding to the actual output value A is c.
  • Expression 3 is obtained.
  • Formula 4 is obtained by Formula 3.
  • the actual output value is corrected to A ⁇ c, the actual output value is corrected to the calculated value by equation 5.
  • the DSP 14 corrects the actual output value by subtracting the operation correction value calculated by the linear function interpolation processing from the actual output value.
  • the DSP 14 is a correction value calculation unit.
  • the DSP 14 calculates the correction value based on the process flowchart shown in FIG.
  • an angle value Angle (m) and an actual output value V (m) corresponding to the rotation angle of the detection target member 6 within a predetermined measurement range are measured.
  • An example of the relationship between the measured angle value Angle (m) and the actual output value V (m) is shown by a curve S1 in FIG.
  • the angle value range ⁇ b1 is a range corresponding to a predetermined measurement range.
  • the angle value Angle (m) and the actual output value V (m) are stored in the memory 15.
  • an ideal output value VR (m) is calculated based on the measured actual output value V (m).
  • the ideal output value VR (m) passes through the coordinates (0, 0) at which the angle value Angle (m) and the actual output value V (m) are 0 respectively, and the inclination is the ideal inclination. It is a value on a straight line.
  • An example of the relationship between the angle value Angle (m) and the ideal output value VR (m) is shown by a straight line S2 in FIG.
  • the ideal output value VR (m) is stored in the memory 15. After S102, the process proceeds to S103.
  • the primary difference is the difference ⁇ V (m) ⁇ VR (m) ⁇ between the actual output value V (m) and the ideal output value VR (m).
  • An example of the relationship between the angle value Angle (m) and the primary difference is shown by a curve S3 in FIG. After S103, the process proceeds to S104.
  • the primary differences at n correction points set in advance within the predetermined measurement range are set to a temporary correction value ct (n). As shown in FIG. 5, the n correction points are equally arranged with respect to the actual output value V (m). After S104, the process proceeds to S105.
  • an output value VC (m) (hereinafter, an output value after interpolation) subjected to linear function interpolation processing using the temporary correction value ct (n) is calculated.
  • the interpolated output value VC (m) is stored in the memory 15. After S105, the process proceeds to S106.
  • the secondary difference is the difference ⁇ VC (m) ⁇ VR (m) ⁇ between the interpolated output value VC (m) and the ideal output value VR (m).
  • the relationship between the angle value Angle (m) within a predetermined measurement range and the second-order difference is shown by a curve S4 in FIG. After S106, the process proceeds to S107.
  • the secondary difference Y1 at the position where the absolute value of the secondary difference is maximum between the k-th correction point and the (k-1) -th correction point, the k-th correction point and the (k + 1) -th correction point
  • the secondary difference Y2 is calculated at the position where the absolute value of the secondary difference is maximum between the correction point of.
  • the secondary differences Y1 and Y2 are stored in the memory 15. After S108, the process proceeds to S109.
  • S109 it is determined whether or not ⁇ (Y1 ⁇ Y2) ⁇ 0 ⁇ . That is, it is determined whether the signs of the secondary difference Y1 and the secondary difference Y2 are the same.
  • FIG. 7 shows the case of ⁇ (Y1 ⁇ Y2) ⁇ 0 ⁇ . In this case (S109: YES), the process proceeds to S110.
  • FIG. 8 shows the case of ⁇ (Y1 ⁇ Y2) ⁇ 0 ⁇ . In this case (S109: NO), the process proceeds to S113.
  • the temporary correction value ct (k) corresponding to the kth correction point is finely adjusted based on the secondary difference to obtain a correction value c (k).
  • the correction value c (k) is calculated from Expression 6. That is, half of the second-order difference Y1 having a large absolute value is set as the fine adjustment amount.
  • the temporary correction value ct (k) corresponding to the kth correction point is finely adjusted based on the secondary difference to obtain a correction value c (k).
  • the correction value c (k) is calculated from Expression 7. That is, half of the second-order difference Y2 having a large absolute value is set as the fine adjustment amount.
  • the temporary correction value ct (k) corresponding to the kth correction point is finely adjusted based on the secondary difference to obtain a correction value c (k).
  • the correction value c (k) is calculated from Expression 8. That is, half of the sum of the secondary difference Y1 and the secondary difference Y2 is set as the fine adjustment amount.
  • S115 it is determined whether the count value k is n-1. If the count value k is n-1 (S115: YES), the process ends. On the other hand, when the count value k is not n ⁇ 1, ie, the count value k is smaller than n ⁇ 1 (S115: NO), the process proceeds to S108.
  • the relationship between the angle value Angle (m) within the predetermined measurement range and the final difference is shown by a curve S5 in FIG.
  • the final difference is the difference ⁇ VC2 (m) -VR (m) ⁇ between the ideal output value VR (m) and the output value VC2 (m) subjected to linear function interpolation processing by the correction value c (n) after fine adjustment is there.
  • the DSP 14 does not calculate the final difference.
  • the position detection device 10 outputs the Hall element 13 that outputs a signal according to the relative position of the magnetism generation unit 11 and the magnetism generation unit 11, and various correction values and various correction values used in calculation of the correction values.
  • Memory 15 for storing a value, a correction value is calculated, an actual output value based on an output signal of the Hall element 13 is corrected with the correction value, and a relative rotation angle of the magnetism generating portion 11 with respect to the Hall element 13 based on the corrected value.
  • a DSP 14 for calculating.
  • the DSP 14 calculates a primary difference which is a difference between an actual output value and an ideal output value, sets primary differences at n correction points set in advance within a predetermined measurement range as a temporary correction value, and performs interpolation processing Conduct. Further, the DSP 14 calculates a secondary difference which is a difference between the output value after the interpolation processing and the ideal output value, and finely adjusts a provisional correction value corresponding to n correction points based on the secondary difference to correct It will be a value.
  • the provisional correction value is finely adjusted only once based on the secondary difference instead of repeating setting of a new correction point based on the secondary difference as in the past, calculation is performed while keeping the storage area small Is possible. Further, since the calculation is completed in the procedure of finely adjusting the temporary correction value set based on the primary difference based on the secondary difference, the number of calculations is small. Therefore, it is possible to improve the output accuracy by calculating the correction value with a small number of operations while keeping the storage area small.
  • the n correction points are equally arranged with respect to the actual output value. Therefore, if the actual output values at both ends of the predetermined measurement range are known, it is not necessary to store other points.
  • the DSP 14 calculates the fine adjustment amount of the k-th correction point with 1 ⁇ 2 of the larger one of the absolute values of Y1 and Y2. Do. Further, when ⁇ (Y1 ⁇ Y2) ⁇ 0 ⁇ , the DSP 14 sets (Y1 + Y2) / 2 as the fine adjustment amount of the k-th correction point. According to this, it is possible to effectively correct the difference between the actual output value and the ideal output value to be small by finely adjusting the temporary correction value by the simple calculation means. Therefore, the output accuracy can be easily improved.
  • a computer 21 is provided outside the Hall IC 12.
  • the computer 21 functions as a correction calculation unit, calculates correction values c (1) to c (n), and stores the correction values in the memory 15.
  • a correction calculation unit may be provided outside the Hall IC 12.
  • the magnetism generating unit 31 of the position detection device 30 is rotatable relative to the Hall IC 12 about the central axis AX.
  • the two yokes 32 of the magnetism generation unit 31 are provided to face each other in the direction parallel to the central axis AX.
  • the Hall IC 12 is provided inside the closed magnetic circuit formed by the two yokes 32 and the two magnets 33.
  • the position detection device 30 detects the relative rotation angle of the magnetism generation unit 31 with respect to the Hall IC 12.
  • Such a magnetism generation part 31 may be provided. Nevertheless, since the Hall IC 12 has the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained.
  • the magnetism generating unit 41 of the position detection device 40 is movable relative to the Hall IC 12 in the linear direction.
  • the two yokes 42 of the magnetism generation part 41 are provided to face in the direction orthogonal to the movement direction.
  • the Hall IC 12 is provided inside the closed magnetic circuit formed by the two yokes 42 and the two magnets 43.
  • the position detection device 40 detects the relative stroke amount of the magnetism generation unit 41 with respect to the Hall IC 12.
  • Such a magnetism generation part 41 may be provided. Nevertheless, since the Hall IC 12 has the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained.
  • the signal output unit is not limited to the Hall element but may be another configuration such as a magnetoresistive element. In short, any signal may be output as long as the signal corresponds to the relative position with the magnetism generation unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

位置検出装置(10)は、磁気発生部(11)と、磁気発生部(11)との相対位置に応じた信号を出力するホール素子(13)と、補正値および当該補正値の算出時に使われる各種値を記憶するメモリ(15)と、補正値を算出し、ホール素子(13)の出力信号に基づく実出力値を補正値で補正し、補正された値に基づきホール素子(13)に対する磁気発生部(11)の相対回転角度を算出するDSP(14)とを備える。DSP(14)は、実出力値と理想出力値との差分である一次差分を算出し、所定の計測範囲内において予め設定されたn個の補正点における一次差分を仮の補正値に設定して補間処理を実施する。また、DSP(14)は、補間処理後の出力値と理想出力値との差分である二次差分を算出し、n個の補正点に対応する仮の補正値を二次差分に基づき微調整して補正値とする。

Description

位置検出装置 関連出願の相互参照
 本出願は、2017年10月20日に出願された特許出願番号2017-203417号に基づくものであり、ここにその記載内容を援用する。
 本開示は、位置検出装置に関する。
 従来、ホール素子などの信号出力部の出力信号に基づく実出力値を補正値で補正して相対位置を算出する位置検出装置が知られている。補正値は予め設定される。特許文献1に開示された位置検出装置は、一次関数補間を実施した後の出力値と理想出力値との誤差量の最大絶対値を補正値に設定して補正する一連の処理を行い、それらの処理を誤差量が所定値を下回るまで繰り返す。このようにして、誤差量が大きい箇所から順番に補正点に設定することで、数少ない補正点により出力精度を向上させることを特許文献1では目指している。
特開2013-19829号公報
 特許文献1では、前記一連の処理を繰り返す間、誤差量、誤差量の絶対値が最大となる位置、その位置の誤差量を基に設定される補正値を順次記憶する必要がある。そのため、ある一定の記憶領域を必要の有無に関わらず準備しなければならない。また、特許文献1では、前記一連の処理を繰り返す毎に補正後の出力値を演算する必要がある。そのため、演算回数が多くなる。演算回数が多いことは、回路大規模化や製造工数増加につながる。
 本開示は、上述の点に鑑みてなされたものであり、その目的は、記憶領域が小さいままに少ない演算回数で補正値を算出して出力精度を向上させることができる位置検出装置を提供することである。
 本開示の位置検出装置は、磁気発生部と、磁気発生部との相対位置に応じた信号を出力する信号出力部と、補正値を算出する補正値算出部と、補正値および当該補正値の算出時に使われる各種値を記憶する記憶部と、信号出力部の出力信号に基づく実出力値を補正値で補正する補正部と、補正部により補正された値に基づき信号出力部に対する磁気発生部の相対位置を算出する位置算出部とを備える。
 補正値算出部は、実出力値と理想出力値との差分である一次差分を算出し、所定の計測範囲内において予め設定されたn個の補正点における一次差分を仮の補正値に設定して補間処理を実施する。また、補正値算出部は、補間処理後の出力値と理想出力値との差分である二次差分を算出し、n個の補正点に対応する仮の補正値を二次差分に基づき微調整して補正値とする。
 従来のように二次差分を基に新たな補正点を設定することを繰り返すのではなく、二次差分を基に仮の補正値を1回だけ微調整するので、記憶領域を小さいままに演算が可能である。また、一次差分を基に設定された仮の補正値を二次差分に基づき微調整するという手順で演算が終了するので、演算回数が少ない。したがって、記憶領域が小さいままに少ない演算回数で補正値を算出して出力精度を向上させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による位置検出装置を説明する図であり、 図2は、図1の位置検出装置を矢印II方向から見たときの図であり、 図3は、位置検出装置の構成を示すブロック図であり、 図4は、位置検出装置が補正値を算出する処理を説明するフローチャートであり、 図5は、位置検出装置が計測する実出力値と角度値との関係を示す図であり、 図6は、位置検出装置が算出する差分と角度値との関係を示す図であり、 図7は、位置検出装置が算出する二次差分の一部を示す図であり、 図8は、位置検出装置が算出する二次差分の他の一部を示す図であり、 図9は、第2実施形態による位置検出装置の構成を示すブロック図であり、 図10は、第2実施形態による位置検出装置を説明する図であり、 図11は、図10の位置検出装置を矢印XI方向から見たときの図であり、 図12は、第3実施形態による位置検出装置を説明する図であり、 図13は、図12の位置検出装置を矢印XIII方向から見たときの図である。
 以下、複数の実施形態を図面に基づき説明する。複数の実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
[第1実施形態]
 第1実施形態による位置検出装置を図1、図2に示す。位置検出装置10は、基準部材5に対する被検出部材6の相対回転角度を検出する回転角検出装置である。位置検出装置10は、磁気発生部11およびホールIC12を備えている。ホールIC12は、ホール素子13とデジタルシグナルプロセッサ(以下、DSP)14とメモリ15とを含む。
 磁気発生部11は、被検出部材6に固定されており、2つのヨーク16および2つの磁石17を有する。一方の磁石17は、各ヨーク16の一端部の間に設けられている。他方の磁石17は、各ヨーク16の他端部の間に設けられている。2つのヨーク16および2つの磁石17は、閉磁気回路を形成している。被検出部材6の回転軸部7の一端に形成された基準溝8は、計測器と嵌合させて、被検出部材6の角度と計測器の角度の基準を一致させるために用いられる。
 ホールIC12は、基準部材5に固定されており、磁気発生部11の閉磁気回路の内側、すなわち2つのヨーク16の間に配置されている。磁気発生部11は、被検出部材6と共にホールIC12に対して相対的に回転可能である。
 ホール素子13は、磁気発生部11との相対位置に応じた信号を出力する信号出力部である。DSP14は、デジタル信号処理に特化したものであり、ホール素子13から出力されてデジタル信号に変換された値に対して補正処理および位置算出処理等の処理を行う。DSP14は、補正部および位置算出部である。メモリ15は、例えば、読み出し専用メモリ、および、書き込みおよび消去可能なメモリを含む記憶部であり、DSP14で使われる各種データが記憶される。メモリ15には、被検出部材6の回転角度に対応する補正値が記憶されている。
 図3に示すように、ホールIC12は、ホール素子13とDSP14とメモリ15との他に、アナログ-デジタル変換回路(以下、ADC)18、および、デジタル-アナログ変換回路(以下、DAC)19などを内蔵したICチップである。
 次に、位置検出装置10の作動について説明する。ホール素子13は、磁気発生部11がホール素子13に対して中心軸AX周りに相対回転することにより生じる磁束密度の変化に応じた信号を出力する。ADC18は、ホール素子13が出力するアナログ値をデジタル値に変換し、DSP14に出力する。以下、ADC18により変換されたデジタル値を単に実出力値という。DSP14は、実出力値に対して補正処理および位置算出処理等を行い、処理結果をDAC19に出力する。DAC19は、DSP14から出力されたデジタル値をアナログ値に変換して出力する。
 DSP14による補正処理について説明する。本実施形態の場合、被検出部材6の回転可能な角度範囲に対応する所定の計測範囲内においてn個の補正点が予め設定され、n個の補正点に対応する補正値に基づき実出力値が補正される。メモリ15には、各補正点に対応する所定値A(1)~A(n)および補正値c(1)~c(n)が記憶されている。所定値A(1)~A(n)は、いずれもホール素子13の出力信号に基づく実出力値の範囲内の値である。
 実出力値が所定値A(1)~A(n)のうち、いずれか一個と一致する場合、その一致する所定値に対応する補正値を実出力値から減算することで実出力値が補正される。例えば、実出力値がA(3)と一致する場合、A(3)に対応する補正値がc(3)であるため、実出力値はA(3)-c(3)に補正される。
 また、実出力値が所定値A(1)~A(n)のいずれとも異なる場合、実出力値に対応する演算補正値を実出力値から減算することで実出力値が補正される。演算補正値cは、実出力値を間にとる二つの所定値、および、この二つの所定値に対応する補正値を用いて、下記の式1により導出される式2によって一次補間を行うことで算出される。
 {c(n)-c(n-1)}/{A(n)-A(n-1)}={c-c(n-1)}/{A-A(n-1)}・・・式1
 c={c(n)-c(n-1)}/{A(n)-A(n-1)}×{A-A(n-1)}+c(n-1)・・・式2
 例えば、実出力値が所定値A(3)と所定値A(4)との間の値Aである場合、この実出力値Aに対応する演算補正値をcとする。ここで、実出力値A、所定値A(3)、所定値A(4)、補正値c(3)、および、補正値c(4)を式1に代入すると、式3が得られる。そして、式3により式4が得られる。また、実出力値はA-cに補正されるため、実出力値は式5による計算値に補正される。このように、DSP14は、一次関数補間処理によって算出された演算補正値を実出力値から減算することで実出力値を補正する。
 {c(4)-c(3)}/{A(4)-A(3)}={c-c(3)}/{A-A(3)}・・・式3
 c=[{c(4)-c(3)}/{A(4)-A(3)}]×{A-A(3)}+c(3)・・・式4
 A-[{c(4)-c(3)}/{A(4)-A(3)}]×{A-A(3)}-c(3)・・・式5
 次に、補正値の設定について図4~図8を参照して説明する。本実施形態では、DSP14が補正値算出部である。DSP14は、図4に示す処理フローチャートに基づき、補正値を算出する。
 図4のS101では、所定の計測範囲内の被検出部材6の回転角度に対応する角度値Angle(m)と実出力値V(m)を計測する。計測された角度値Angle(m)と実出力値V(m)の関係の一例を図5に曲線S1で示す。図5において、角度値範囲θb1は、所定の計測範囲に対応する範囲である。角度値Angle(m)と実出力値V(m)はメモリ15に記憶される。S101の後、処理はS102へ移行する。
 S102では、計測された実出力値V(m)に基づき理想出力値VR(m)を計算する。本実施形態の場合、理想出力値VR(m)は、角度値Angle(m)と実出力値V(m)がそれぞれ0である座標(0,0)を通り且つ傾きが理想傾きである理想直線上の値である。角度値Angle(m)と理想出力値VR(m)との関係の一例を図5に直線S2で示す。理想出力値VR(m)は、メモリ15に記憶される。S102の後、処理はS103へ移行する。
 S103では、一次差分を算出する。一次差分は、実出力値V(m)と理想出力値VR(m)との差分{V(m)-VR(m)}である。角度値Angle(m)と一次差分との関係の一例を図6に曲線S3で示す。S103の後、処理はS104へ移行する。
 S104では、所定の計測範囲内において予め設定されたn個の補正点における一次差分を仮の補正値ct(n)に設定する。図5に示すように、n個の補正点は、実出力値V(m)に対して均等に配置される。S104の後、処理はS105へ移行する。
 S105では、仮の補正値ct(n)による一次関数補間処理された出力値VC(m)(以下、補間後出力値)を計算する。補間後出力値VC(m)は、メモリ15に記憶される。S105の後、処理はS106へ移行する。
 S106では、二次差分を算出する。二次差分は、補間後出力値VC(m)と理想出力値VR(m)との差{VC(m)-VR(m)}である。所定の計測範囲内の角度値Angle(m)と二次差分との関係を図6に曲線S4で示す。S106の後、処理はS107へ移行する。
 S107では、補正点カウンタのカウント値kを2にセットする。S107の後、処理はS108へ移行する。
 S108では、k番目の補正点と(k-1)番目の補正点との間において二次差分の絶対値が最大となる位置における二次差分Y1と、k番目の補正点と(k+1)番目の補正点との間において二次差分の絶対値が最大となる位置における二次差分Y2を算出する。二次差分Y1、Y2は、メモリ15に記憶される。S108の後、処理はS109へ移行する。
 S109では、{(Y1×Y2)≧0}であるか否かを判断する。つまり、二次差分Y1と二次差分Y2の符号が同じか否かを判断する。図7は{(Y1×Y2)≧0}の場合である。この場合(S109:YES)、処理はS110へ移行する。一方、図8は{(Y1×Y2)<0}の場合である。この場合(S109:NO)、処理はS113へ移行する。
 S110では、(Y1≧Y2)であるか否かを判断する。(Y1≧Y2)である場合(S110:YES)、処理はS111へ移行する。一方、(Y1<Y2)である場合(S110:NO)、処理はS112へ移行する。図7は(Y1<Y2)の場合である。
 S111では、k番目の補正点に対応する仮の補正値ct(k)を二次差分に基づき微調整して補正値c(k)とする。具体的には、補正値c(k)を式6から算出する。すなわち、絶対値の大きい二次差分Y1の半分を微調整量とする。S111の後、処理はS114へ移行する。
 c(k)=ct(k)+Y1/2・・・式6
 S112では、k番目の補正点に対応する仮の補正値ct(k)を二次差分に基づき微調整して補正値c(k)とする。具体的には、補正値c(k)を式7から算出する。すなわち、絶対値の大きい二次差分Y2の半分を微調整量とする。S112の後、処理はS114へ移行する。
 c(k)=ct(k)+Y2/2・・・式7
 S113では、k番目の補正点に対応する仮の補正値ct(k)を二次差分に基づき微調整して補正値c(k)とする。具体的には、補正値c(k)を式8から算出する。すなわち、二次差分Y1と二次差分Y2の和の半分を微調整量とする。S113の後、処理はS114へ移行する。
 c(k)=ct(k)+(Y1+Y2)/2・・・式8
 S114では、補正点カウンタのカウント値kをカウントアップ(すなわち、+1)する。S114の後、処理はS115へ移行する。
 S115では、カウント値kがn-1であるか否かを判断する。カウント値kがn-1である場合(S115:YES)、処理は終了する。一方、カウント値kがn-1ではない、すなわちカウント値kがn-1よりも小さい場合(S115:NO)、処理はS108へ移行する。
 所定の計測範囲内の角度値Angle(m)と最終差分との関係を図6に曲線S5で示す。最終差分は、微調整後の補正値c(n)による一次関数補間処理された出力値VC2(m)と理想出力値VR(m)との差{VC2(m)-VR(m)}である。なお、DSP14が最終差分を算出するわけではない。
(効果)
 以上説明したように、位置検出装置10は、磁気発生部11と、磁気発生部11との相対位置に応じた信号を出力するホール素子13と、補正値および当該補正値の算出時に使われる各種値を記憶するメモリ15と、補正値を算出し、ホール素子13の出力信号に基づく実出力値を補正値で補正し、補正された値に基づきホール素子13に対する磁気発生部11の相対回転角度を算出するDSP14とを備える。
 DSP14は、実出力値と理想出力値との差分である一次差分を算出し、所定の計測範囲内において予め設定されたn個の補正点における一次差分を仮の補正値に設定して補間処理を実施する。また、DSP14は、補間処理後の出力値と理想出力値との差分である二次差分を算出し、n個の補正点に対応する仮の補正値を二次差分に基づき微調整して補正値とする。
 従来のように二次差分を基に新たな補正点を設定することを繰り返すのではなく、二次差分を基に仮の補正値を1回だけ微調整するので、記憶領域を小さいままに演算が可能である。また、一次差分を基に設定された仮の補正値を二次差分に基づき微調整するという手順で演算が終了するので、演算回数が少ない。したがって、記憶領域が小さいままに少ない演算回数で補正値を算出して出力精度を向上させることができる。
 また、第1実施形態では、n個の補正点は、実出力値に対して均等に配置される。そのため、所定の計測範囲の両端の実出力値が分かれば、その他の点を記憶する必要がない。
 また、第1実施形態では、DSP14は、{(Y1×Y2)≧0}である場合には、Y1およびY2の絶対値が大きい方の1/2をk番目の補正点の微調整量とする。また、DSP14は、{(Y1×Y2)<0}である場合には、(Y1+Y2)/2をk番目の補正点の微調整量とする。これによれば、仮の補正値を簡易な演算手段で微調整することで、実出力値と理想出力値との差分が小さくなるように効果的に補正することができる。そのため、簡易に出力精度を向上させることができる。
[第2実施形態]
 第2実施形態では、図9に示すように、ホールIC12の外部にコンピュータ21が設けられている。コンピュータ21は、補正算出部として機能し、補正値c(1)~c(n)を算出し、メモリ15に記憶する。このようにホールIC12の外部に補正算出部が設けられてもよい。
[第3実施形態]
 第3実施形態では、図10、図11に示すように、位置検出装置30の磁気発生部31は、ホールIC12に対して中心軸AXまわりに相対回転可能である。磁気発生部31の2つのヨーク32は、中心軸AXと平行な方向に対向するように設けられている。ホールIC12は、2つのヨーク32および2つの磁石33が形成する閉磁気回路の内側に設けられている。位置検出装置30は、ホールIC12に対する磁気発生部31の相対回転角度を検出する。このような磁気発生部31を備えるものであってよい。それでも、ホールIC12が第1実施形態と同様の構成であるため、第1実施形態と同様の効果を得ることができる。
[第4実施形態]
 第4実施形態では、図12、図13に示すように、位置検出装置40の磁気発生部41は、ホールIC12に対して直線方向へ相対移動可能である。磁気発生部41の2つのヨーク42は、移動方向に対して直交する方向に対向するように設けられている。ホールIC12は、2つのヨーク42および2つの磁石43が形成する閉磁気回路の内側に設けられている。位置検出装置40は、ホールIC12に対する磁気発生部41の相対ストローク量を検出する。このような磁気発生部41を備えるものであってよい。それでも、ホールIC12が第1実施形態と同様の構成であるため、第1実施形態と同様の効果を得ることができる。
[他の実施形態]
 他の実施形態では、信号出力部は、ホール素子に限らず、例えば磁気抵抗素子などの他の構成であってもよい。要するに、磁気発生部との相対位置に応じた信号を出力するものであればよい。
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。

Claims (4)

  1.  磁気発生部(11、31、41)と、
     前記磁気発生部との相対位置に応じた信号を出力する信号出力部(13)と、
     補正値を算出する補正値算出部(14、21)と、
     前記補正値および当該補正値の算出時に使われる各種値を記憶する記憶部(15)と、
     前記信号出力部の出力信号に基づく実出力値を前記補正値で補正する補正部(14)と、
     前記補正部により補正された値に基づき前記信号出力部に対する前記磁気発生部の相対位置を算出する位置算出部(14)と、を備え、
     前記補正値算出部は、
      前記実出力値と理想出力値との差分である一次差分を算出し、
      所定の計測範囲内において予め設定されたn個の補正点における前記一次差分を仮の補正値に設定して補間処理を実施し、
      前記補間処理後の出力値と前記理想出力値との差分である二次差分を算出し、
      前記n個の補正点に対応する前記仮の補正値を前記二次差分に基づき微調整して前記補正値とする位置検出装置。
  2.  前記n個の補正点は、前記実出力値に対して均等に配置される請求項1に記載の位置検出装置。
  3.  前記補正値算出部は、
      k番目の補正点と(k-1)番目の補正点との間において前記二次差分の絶対値が最大となる位置における前記二次差分をY1とし、
      k番目の補正点と(k+1)番目の補正点との間において前記二次差分の絶対値が最大となる位置における前記二次差分をY2とすると、
      {(Y1×Y2)≧0}である場合には、Y1およびY2の絶対値が大きい方の1/2をk番目の補正点の微調整量とし、
      {(Y1×Y2)<0}である場合には、(Y1+Y2)/2をk番目の補正点の微調整量とする請求項1または2に記載の位置検出装置。
  4.  前記位置算出部が算出する相対位置は、相対回転角度または相対ストローク量である請求項1~3のいずれか一項に記載の位置検出装置。
PCT/JP2018/038702 2017-10-20 2018-10-17 位置検出装置 WO2019078268A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-203417 2017-10-20
JP2017203417A JP6816700B2 (ja) 2017-10-20 2017-10-20 位置検出装置

Publications (1)

Publication Number Publication Date
WO2019078268A1 true WO2019078268A1 (ja) 2019-04-25

Family

ID=66173727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038702 WO2019078268A1 (ja) 2017-10-20 2018-10-17 位置検出装置

Country Status (2)

Country Link
JP (1) JP6816700B2 (ja)
WO (1) WO2019078268A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115402849B (zh) * 2022-08-16 2024-08-20 苏州沪琨智能科技有限公司 应用于水松纸输送的多级控制纠偏方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175319A (ja) * 1989-12-01 1991-07-30 Nippon Seiko Kk リニアエンコーダの誤差補正方法
JP2000123503A (ja) * 1998-10-14 2000-04-28 Alps Electric Co Ltd ディスク装置
US20060290545A1 (en) * 2005-05-31 2006-12-28 Wolfgang Granig Method for Determining Residual Error Compensation Parameters for a Magnetoresistive Angle Sensor and Method for Reducing a Residual Angle Error in a Magnetoresistive Angle Sensor
JP2013019829A (ja) * 2011-07-13 2013-01-31 Denso Corp 物理量検出装置、および物理量検出装置の検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175319A (ja) * 1989-12-01 1991-07-30 Nippon Seiko Kk リニアエンコーダの誤差補正方法
JP2000123503A (ja) * 1998-10-14 2000-04-28 Alps Electric Co Ltd ディスク装置
US20060290545A1 (en) * 2005-05-31 2006-12-28 Wolfgang Granig Method for Determining Residual Error Compensation Parameters for a Magnetoresistive Angle Sensor and Method for Reducing a Residual Angle Error in a Magnetoresistive Angle Sensor
JP2013019829A (ja) * 2011-07-13 2013-01-31 Denso Corp 物理量検出装置、および物理量検出装置の検査方法

Also Published As

Publication number Publication date
JP6816700B2 (ja) 2021-01-20
JP2019078547A (ja) 2019-05-23

Similar Documents

Publication Publication Date Title
JP4277887B2 (ja) エンコーダ信号の補正回路
CN103837169B (zh) 用于磁电编码器的自校正装置和方法以及磁电编码器
JP5853046B2 (ja) 磁場計測装置
JP6043721B2 (ja) 改良型位置センサ
JP4985730B2 (ja) ストロークセンサおよび回転角センサ
JP2013537310A (ja) 移動する物体の絶対的な位置特定のための方法及び装置
US9285438B2 (en) Circuits and methods for processing signals generated by a plurality of magnetic field sensing elements
JP6705867B2 (ja) センサ
WO2011037117A1 (ja) 地磁気検出装置
JP2004191101A (ja) 磁気センサ信号処理集積回路、その回転角度測定方法および回転角度センサ
JP2007155668A (ja) 回転角度センサ、および、回転角度検出方法
JP7165149B2 (ja) 磁場の絶対角度を判断する方法、デジタル信号プロセッサーおよびシステム
US8271221B2 (en) Phase detection device and position detection device
JP5327656B2 (ja) 物理量検出装置、および物理量検出装置の検査方法
JP2005043228A (ja) デジタル角度測定システム
JP2010101746A (ja) 回転角度検出方法および回転角度センサ
WO2019078268A1 (ja) 位置検出装置
EP3211380B1 (en) Rotation detection device
JP6449935B2 (ja) センサ
US10161762B2 (en) Method and apparatus for calculating a correction factor for an angular measuring system
US20220364891A1 (en) Device and method for calibrating a magnetic angle sensor
JP2020016439A (ja) 角度センサの補正装置および角度センサ
JP2010139405A (ja) エンコーダ信号処理方法、エンコーダ装置及びサーボモータ
JP2016211979A (ja) 磁気センサ信号処理プログラム及び磁気センサモジュール
JP2002168654A (ja) 位置決め制御機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868561

Country of ref document: EP

Kind code of ref document: A1