WO2019078217A1 - Vehicle power device - Google Patents

Vehicle power device Download PDF

Info

Publication number
WO2019078217A1
WO2019078217A1 PCT/JP2018/038535 JP2018038535W WO2019078217A1 WO 2019078217 A1 WO2019078217 A1 WO 2019078217A1 JP 2018038535 W JP2018038535 W JP 2018038535W WO 2019078217 A1 WO2019078217 A1 WO 2019078217A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
stator
rotor
generator
Prior art date
Application number
PCT/JP2018/038535
Other languages
French (fr)
Japanese (ja)
Inventor
康之 藤田
光生 川村
雄司 矢田
健太郎 西川
浩希 藪田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019078217A1 publication Critical patent/WO2019078217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a power unit for a vehicle, and relates to a technique etc. capable of securing a large mounting space of a generator in the wheel bearing without largely changing the mounting structure of the wheel bearing to the vehicle body.
  • a general wheel bearing that does not have an in-wheel motor includes a mounting flange 60 a provided integrally with the outer ring 60, and the mounting flange 60 a is mounted to the knuckle 61. .
  • the mounting flange 60a abuts on the knuckle 61 from the vehicle body outer side (outboard side), and is fastened by the knuckle 61 and a bolt 62 inserted from the vehicle body inner side (inboard side).
  • good assembly is required.
  • a wheel bearing having a general flange structure for attachment to a knuckle is disclosed (Patent Document 1).
  • Patent Document 1 A wheel bearing having a general flange structure for attachment to a knuckle is disclosed.
  • bolts are fastened from the knuckle surface, and the mounting flange for the wheel bearing is held outside the vehicle body.
  • the in-wheel motor structure (patent documents 2, 3) which incorporates a motor in a wheel needs to mount the inverter and battery which operate a motor on a vehicle body, it is not necessary to mount a power unit in a vehicle body. Therefore, the in-wheel motor structure can provide power to the vehicle without occupying the volume of the vehicle body, and the degree of freedom in designing the vehicle body is also high.
  • the motor output is proportional to the motor volume, in order to obtain a large output torque, it is necessary to enlarge the motor or to use a speed reduction mechanism or the like. In-wheel motors with large motor volumes or reduction mechanisms are difficult to fit in the wheel, and the conventional wheel bearing suspension can not be used, and structural changes around the body of the vehicle can not be avoided .
  • Patent No. 4306903 gazette Patent No. 4694147 Patent No. 4724075
  • the motor volume is small in order to support the motive power of the vehicle body only with the wheel bearing and the in-wheel motor that fits in the brake rotor. Therefore, in order to increase the output torque, it is necessary to provide a reduction mechanism or to increase the motor size.
  • an in-wheel motor as a power assist system of a hybrid system having as a main power means another power mechanism such as an internal combustion engine.
  • a main power means another power mechanism such as an internal combustion engine.
  • the following problems are raised.
  • the object of the present invention is to provide a mountability equivalent to that of a general wheel bearing, and for a vehicle capable of securing a large mounting space for a generator without largely changing the mounting structure of the wheel bearing to the vehicle body It is providing a power plant.
  • a vehicle power unit has a fixed wheel, and a rotating wheel rotatably supported on the fixed wheel via a rolling element and having a hub flange, and the wheel and brake rotor of the vehicle being attached to the hub flange.
  • Wheel bearings A generator having a stator attached to a fixed wheel of the wheel bearing, and a rotor attached to a rotating wheel of the wheel bearing;
  • a rotation detector for detecting a rotation angle or rotation speed of the rotating wheel with respect to the fixed wheel; Equipped with Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle,
  • the rotation detector is located in the hollow interior of the stator.
  • the rotor of the generator is a direct drive type mounted on the rotating wheel of the wheel bearing, the number of parts of the entire power unit for a vehicle is small, the configuration is simple and space saving is achieved. The increase can also be suppressed.
  • Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor, and the whole except the attachment part to the hub flange in the generator is the hub flange and the outboard side face of the undercarriage frame part In the axial range between For this reason, the space which installs a generator in a brake rotor is secured, and this generator can be stored compactly.
  • the rotation detector for detecting the rotation angle or the rotation speed of the rotating wheel is located inside the hollow of the stator, the desired generator output can be obtained compared to a configuration in which the rotation detector is provided at the axial end of the stator.
  • the entire apparatus can be made axially compact.
  • the axial length of the stator and the rotor is maximized within the allowable space for accommodating the generator, and the area where the rotor and the stator face each other is increased.
  • the machine's output can be maximized.
  • as a method of fixing the power unit for a vehicle to a frame frame part of the vehicle it becomes possible to design it to be fixed by bolts in the same way as a general wheel bearing.
  • the design of the vehicle can be similar to a vehicle without a generator.
  • the generator may be a motor generator capable of rotationally driving the wheel.
  • the vehicle power unit provided with the motor generator is mounted on a vehicle equipped with a conventional internal combustion engine or the like, the fuel efficiency can be reduced by the power assist by the motor generator.
  • the generator may be an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator.
  • the area in which the rotor and the stator face can be increased more than in the inner rotor type. This makes it possible to maximize the output torque in a limited space.
  • the rotation detector may be disposed between the wheel bearing and an outboard side surface of the undercarriage part.
  • the rotation detector since the rotation detector is located on the inboard side of the entire vehicle power unit, it is easy to make the rotation detector detachable while the vehicle power unit is removed from the undercarriage frame part. is there. Further, the length of the wiring extending from the rotation detector to the inboard side can be made shorter than in a structure in which the rotation detector is installed, for example, in the vicinity of the hub flange. This can reduce the cost.
  • the wheel bearing may include two axially aligned bearings, and the rotation detector may be disposed between the two bearings.
  • the rotation detector can be disposed by utilizing the space between the two bearings. Further, since the rotation detector can be installed directly on the wheel bearing, it is possible to reduce the parts and the like that hold the rotation detector. Therefore, the structure can be simplified and the manufacturing cost can be reduced.
  • the rotation detector may be used to control the generator.
  • the performance of the vehicle such as the traveling performance, the braking performance, and the fuel consumption can be improved by performing power assist or regenerative braking on the driven wheel. It becomes possible.
  • the vehicle may include an antilock braking system, and the rotation detector may be used to control the antilock braking system.
  • FIG. 1 is a cross-sectional view of a vehicular power unit according to an embodiment of the present invention. It is a side view of the power unit for the same vehicles. It is a front view of the power unit for the same vehicles. It is the IV-IV sectional view taken on the line of FIG. It is the perspective view which looked at the intermediate member of the power unit for the vehicles from the knuckle side.
  • FIG. 6 is a cross-sectional view of a vehicular power unit according to another embodiment of the present invention. It is a front view of the power unit for the same vehicles.
  • FIG. 1 is a block diagram showing a conceptual configuration of a vehicle system of a vehicle provided with any of the vehicle power devices. It is a power supply system figure used as an example of the vehicles carrying the system for vehicles. It is sectional drawing of the bearing for wheels etc. of a prior art example. It is the side view which disassembled the bearing for wheels, the brake rotor, and the knuckle. It is the perspective view which decomposed
  • the vehicle power unit 1 includes a wheel bearing 2 and a motor generator 3 which is a generator that doubles as an electric motor.
  • the wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring.
  • the inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows. Grease is enclosed in the bearing space between the outer ring 4 and the inner ring 5.
  • the inner ring 5 has a hub ring 5a and a partial inner ring 5b fitted to the inboard outer peripheral surface of the hub ring 5a.
  • the hub wheel 5 a has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4.
  • a wheel rim (not shown), a brake rotor 12 and a case bottom 11 (described later) are attached to the side surface on the outboard side of the hub flange 7 by a hub bolt 13 in an axially overlapping manner.
  • a tire not shown is mounted on the outer periphery of the rim.
  • FIG. 1 is a cross-sectional view taken along line II of FIG.
  • the brake rotor 12 has a flat portion 12 a and an outer peripheral portion 12 b.
  • the flat portion 12 a is an annular and flat member overlapping the hub flange 7 via the case bottom 11.
  • the outer circumferential portion 12 b extends from the flat plate portion 12 a to the outer circumferential side of the outer ring 4.
  • the outer peripheral portion 12b is a cylindrical portion 12ba cylindrically extending from the outer peripheral edge of the flat portion 12a to the inboard side, and a flat portion 12bb extending from the inboard end of the cylindrical portion 12ba to the outer diameter side And.
  • the brake caliper Kp has a friction pad that holds the flat plate portion 12bb of the brake rotor 12 therebetween.
  • the brake caliper Kp is attached to a knuckle 8 which is an underbody frame part of a vehicle.
  • the brake caliper Kp may be either hydraulic or mechanical, and may be electric motor.
  • the motor generator 3 of this example generates electric power by rotation of the wheels, and is a driving assist motor generator capable of rotationally driving the wheels by being supplied with power.
  • the motor generator 3 has a rotating case 15, a stator 18 and a rotor 19.
  • the rotating case 15 is attached to the hub flange 7 and covers the rotor 19 and the stator 18.
  • the motor generator 3 is an outer rotor type in which the rotor 19 is located radially outward of the stator 18.
  • the motor generator 3 is an outer rotor type IPM (Interior Permanent Magnet) synchronous motor (or denoted as IPMSM (Interior Permanent Magnet Synchronous Motor)).
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • the motor generator 3 can adopt various types such as a switched reluctance motor (abbreviation: SR motor), an induction motor (induction motor: abbreviation: IM) and the like.
  • SR motor switched reluctance motor
  • IM induction motor
  • each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
  • the rotating case 15 is composed of a bottomed cylindrical case body 16.
  • the case main body 16 has a case bottom 11 and a case cylindrical portion 25.
  • the case bottom 11 and the case cylindrical portion 25 are integrally or separately formed.
  • the case bottom 11 is a flat and annular member sandwiched between the flat portion 12 a of the brake rotor 12 and the hub flange 7.
  • a case cylindrical portion 25 extends cylindrically from the outer peripheral edge of the case bottom 11 toward the inboard side.
  • the rotor 19 includes a magnetic body 19 a provided by press-fitting or the like in the middle diameter portion of the case cylindrical portion 25 and a plurality of permanent magnets 19 b built in the magnetic body 19 a. As shown in FIG. 1, the outboard side end of the rotor 19 abuts on the stepped portion connecting the small diameter portion and the medium diameter portion of the case cylindrical portion 25, whereby the rotor 19 with respect to the rotation case 15 is obtained. Are positioned in the axial direction.
  • the stator 18 is attached to the outer peripheral surface of the outer ring 4 via a stator holding member 24.
  • the stator 18 has a core 18 a and coils 18 b wound around the teeth of the core 18 a.
  • the coil 18 b is connected to the wiring 17 (FIG. 1).
  • the stator holding member 24 holds the stator 18 in contact with the inner peripheral surface of the stator 18 and the end face on the outboard side.
  • the stator 18 is, for example, fixed to the stator holding member 24 in the rotational direction and the radial direction by press-fitting or bolt fastening. Further, the stator holding member 24 is fixed to the outer peripheral surface of the outer ring 4 by press-fitting or bolt fastening.
  • stator holding member 24 and the knuckle 8 are fastened by a bolt 20.
  • a cover upright plate portion 22 a of the unit cover 22 is interposed between the inboard end surface of the stator holding member 24 and the outboard side surface of the knuckle 8.
  • wire connection of the coil 18b (FIG. 1) is made on the outer diameter side of the stator holding member 24.
  • a plurality of (six in this example) communication holes 24c are provided in the circumferential direction to be passed from the inside to the inside diameter side.
  • a plurality of communication holes 24 c are formed by providing notches of equal circumferential distribution on the end surface on the inboard side of the stator holding member 24.
  • the plurality of communication holes 24c need not be circumferentially equidistant, and may be communication holes generally passing through the wiring 17 (FIG. 1) formed of three lines of U-phase, V-phase and W-phase.
  • the knuckle 8 is formed with a through hole 8b for allowing insertion of the outer peripheral surface of the cylindrical portion 22b in the unit cover 22.
  • Through holes 8b of the unit cover 22 are inserted through a plurality of bolts 20 (see FIG. 1). Not shown) is formed.
  • a plurality of (six in this example) circumferentially equidistant female threads 24d are formed in the stator holding member 24 in the axial direction.
  • Through holes (not shown) in the same phase as the respective female screws 24 d are formed in the cover upright plate portion 22 a.
  • the bolts 20 are inserted from the inboard side of the knuckles 8 into the insertion holes of the knuckles 8 and screwed to the female screws 24 d of the stator holding member 24 through the through holes of the cover upright plate portion 22 a.
  • a seal member 23 is disposed between the rotating case 15 and the outboard side surface of the knuckle 8 to prevent the entry of water and foreign matter into the motor generator 3 and the wheel bearing 2.
  • the seal member 23 has an annular seal plate 23a and an elastic seal member 23b facing each other.
  • An annular rotor end ring member 26 is fixed to the large diameter portion and the end face of the case cylindrical portion 25 of the rotation case 15 by bolts.
  • An axial gap is formed between the rotor end ring member 26 and the outboard side surface 8 a of the knuckle 8.
  • An annular recess is formed on the inboard side of the rotor end ring member 26 in the radially outward direction, and an elastic seal member 23b of the seal member 23 is press-fitted in the annular recess.
  • the seal plate 23a of the seal member 23 is press-fit fitted on the outer peripheral surface of the cover upright plate portion 22a.
  • the seal plate 23a is a metal having an L-shaped cross section including a cylindrical portion fitted on the outer peripheral surface of the cover upright plate portion 22a, and an upright plate portion rising radially outward from the inboard end of the cylindrical portion. It is made.
  • An annular groove is formed on the outer peripheral surface of the rotor end ring member 26, and an O-ring is provided in the annular groove.
  • the O-ring seals the contact surface between the end inner peripheral surface of the rotating case 15 and the rotor end ring member 26.
  • the rotor end ring member 26 also serves as a positioning member in the axial direction of the permanent magnet 19 b (FIG. 4) incorporated in the magnetic body 19 a (FIG. 4).
  • the elastic seal member 23 b is, for example, one in which an elastic body is fixed to an annular core metal.
  • the cored bar has a cylindrical portion fitted in the annular recess of the rotor end ring member 26, and a rising plate portion which falls inward in the radial direction from the end portion on the outboard side of the cylindrical portion, the seal plate It has an inverted L-shape in cross section that axially faces 23a.
  • the elastic body is provided so as to cover the inside of the core metal, and has a plurality of side lips and a plurality of radial lips. Each side lip extends obliquely outward from the upright plate portion of the core, and the tip of a part of the side lip contacts the upright plate portion of the seal plate 23a.
  • Each radial lip extends obliquely from the tip end of the upstanding plate portion of the core to an inner diameter side, and the tip contacts the cylindrical portion of the seal plate 23a.
  • the vehicle power unit 1 is provided with a rotation detector 27.
  • the rotation detector 27 is located inside the hollow of the stator 18.
  • the rotation detector 27 detects the rotation angle of the rotor 19 connected to the inner ring 5 with respect to the stator 18 connected to the outer ring 4 in order to control the rotation of the motor generator 3 for traveling assistance.
  • the rotation detector 27 includes a detected portion 27a attached to a detected portion holding member 28 described later, and a sensor portion 27b attached to the inner peripheral surface of the stator holding member 24 to detect the detected portion 27a.
  • a resolver is applied as the rotation detector 27.
  • the rotation detector 27 is not limited to the resolver, and may be, for example, an encoder, a pulser ring or a Hall sensor regardless of the type.
  • the rotation speed can be easily calculated from the rotation angle, and the calculated rotation speed may be used for control of the motor generator 3 or an antilock brake system (not shown).
  • an antilock brake system (not shown).
  • one or both of the rotational speed and the rotational angle are required. For example, when torque control (current control) of the motor generator 3 is performed, both the rotation angle and the rotation speed are required, and the torque and the rotation speed are required to calculate the power consumption and the regenerative power.
  • Anti-lock brake systems require rotational speeds.
  • a step is formed on the inner peripheral surface of the stator holding member 24 such that the inboard end of the outer ring 4 abuts.
  • the inner peripheral surface of the stator holding member 24 is provided with a flange portion which protrudes a predetermined small distance inward in the radial direction from the portion where the step is present.
  • the sensor portion 27 b is attached to the inner peripheral surface of the stator holding member 24 via the sensor portion fixing member 29.
  • the sensor portion fixing member 29 includes a sensor portion fixing ring, a sensor portion holding portion, and a plurality of (in this example, four) bolts 63.
  • the sensor portion fixing ring is a ring-shaped member that positions the sensor portion 27b in the axial direction.
  • the sensor portion fixing ring is fitted to the inner peripheral surface of the stator holding member 24 and arranged to abut the inboard side surface of the flange portion.
  • An annular recess is formed on the inner peripheral surface of the sensor portion fixing ring for fittingly fixing a projection projecting radially outward from the outer peripheral surface of the sensor portion 27b.
  • the sensor holding portion is an annular member for holding the sensor portion 27b in the axial direction, and an L-shaped cross section is formed by a cylindrical portion and a standing plate portion rising radially outward from an end portion on the outboard side of the cylindrical portion. It is formed in the shape of a circle. With the inboard end of the protruding portion of the sensor portion 27b in contact with the standing plate portion, the sensor portion 27b is screwed to the female screw of the flange portion through the bolt for fixing the bolt 63 through the standing plate portion and the sensor portion fixing ring. It is fixed to the stator holding member 24.
  • bolt insertion holes are formed at regular intervals in the circumferential direction in the sensor fixing ring and the plate portion of the sensor holding portion.
  • the flange portion of the stator holding member 24 is formed with the female screw in the same phase as the bolt insertion holes.
  • the bolts 63 are inserted from the inboard side into the bolt insertion holes of the upright plate portion and the sensor portion fixing ring, and are screwed into the female screw of the flange portion.
  • the sensor portion 27b may be directly fixed to the inner peripheral surface of the stator holding member 24 by press fitting or the like.
  • the detected portion holding member 28 is coaxially screwed with the hub wheel 5a at the inboard side end of the hub wheel 5a.
  • a flange portion that abuts the inboard end of the partial inner ring 5b is provided in the vicinity of the axially middle portion of the detection target holding member 28.
  • a large diameter portion and a small diameter portion are provided on the inboard side of the flange portion of the outer peripheral surface of the detected portion holding member 28.
  • a female screw is formed on the inboard side end of the detection target holding member 28 coaxially with the female screw.
  • the inner peripheral surface of the detected portion 27a is fitted to the small diameter portion of the detected portion holding member 28, and the outboard side end of the detected portion 27a abuts on the stepped portion of the detected portion holding member 28. It has become.
  • a ring for detecting a portion to be detected 65 is screwed into the female screw of the portion to be detected holding member 28, and the flange portion of the ring for detecting a portion to be detected 65 abuts against the inboard end of the portion to be detected 27a.
  • the portion 27a is held and fixed to the detected portion holding member 28.
  • the detection target portion 27a may be press-fit fitted and fixed to the detection target holding member 28.
  • a connector cover 66 covering the inboard end is detachably attached to the inboard end of the cylindrical portion 22b of the unit cover 22 by a plurality of bolts.
  • the wiring 17 of the motor generator 3 is supported by the connector cover 66 via a so-called panel mount type power line connector 67.
  • the connector cover 66 also supports a panel mount type sensor connector 64.
  • the motor generator 3 is simple and space saving is achieved. Since this can be done, the motor generator 3 can be easily installed on the driven wheels without changing the structure of the underbody of the vehicle body and the like. Since the rotor 19 of the motor generator 3 is a direct drive type mounted on the inner ring 5 of the wheel bearing 2, the number of parts of the motor generator 3 is small, the configuration is simple and space saving is achieved, and the weight of the vehicle is also increased. It is suppressed.
  • the whole of the stator 18 and the rotor 19 is smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the whole of the motor generator 3 excluding the mounting portion to the hub flange 7 is the hub flange 7 and the outboard side face of the knuckle 8. It is located in the axial range L1 between 8a and 8a. For this reason, the space which installs motor generator 3 in brake rotor 12 is secured, and this motor generator 3 can be stored compactly.
  • the entire device can be axially secured while securing a desired output of the motor generator 3 as compared with the configuration in which the rotation detector is provided on the axial end side of the stator. It can be made compact in the direction. Further, in the power unit for a vehicle, the axial length of the stator 18 and the rotor 19 is maximized in the space where the motor generator 3 is to be accommodated, and the area where the rotor 19 and the stator 18 face each other. The output of the motor generator 3 can be maximized by increasing.
  • a rotation detector 27 is disposed between the wheel bearing 2 and the outboard side surface 8 a of the knuckle 8.
  • the rotation detector 27 since the rotation detector 27 is located on the inboard side of the entire wheel bearing device, it is easy to make the rotation detector 27 detachable in a state where the vehicular power unit 1 is removed from the knuckle 8 It is.
  • the length of the wiring 27ba extending from the rotation detector 27 to the inboard side can be made shorter than in a structure in which the rotation detector 27 is installed, for example, in the vicinity of the hub flange. This can reduce the cost.
  • the motor generator 3 is an outer rotor type in which the rotor 19 is located outward in the radial direction of the stator 18, the area in which the rotor 19 and the stator 18 face each other can be increased compared to the inner rotor type. This makes it possible to maximize the output torque in a limited space.
  • FIG. 6 is a cross-sectional view (cross-sectional view along the line VI-VI in FIG. 7) of a vehicular power unit 1A according to another embodiment.
  • FIG. 7 is a front view of the power unit 1A for the same vehicle.
  • the brake rotor, the brake caliper, the knuckle, the connector cover and the connector are omitted in FIG. 6, they have the same configuration as the embodiment shown in FIG. 1 described above. Comparison of FIG. 1 and FIG. 6 only differs in the arrangement of the rotation detector, so only that part will be described.
  • a rotation detector 27 is disposed in the space between the two bearing portions 2A, 2A aligned in the axial direction in the wheel bearing 2.
  • the sensor portion 27 b is installed in a through hole that penetrates the outer ring 4 and the stator holding member 24 in the radial direction.
  • the to-be-detected part 27a is press-fit fitted to the outer peripheral surface of the hub wheel 5a, and is pinched between the step portion of the hub wheel 5a and the outboard side end of the partial inner ring 5b to restrict the axial position.
  • a wire (not shown) of the rotation detector 27 is wired from the sensor portion 27b to the sensor connector 64 (see FIG. 1) supported by the connector cover 66 (see FIG. 1) through the through hole of the stator holding member 24 and the like. ing.
  • the rotation detector 27 can be disposed utilizing the space between the two bearing portions 2A, 2A. Further, since the rotation detector 27 can be installed directly on the wheel bearing 2, it is possible to reduce the parts and the like that hold the rotation detector 27. Therefore, the structure can be simplified and the manufacturing cost can be reduced. The other effects similar to those described above are exhibited.
  • stator 18 and the rotor 19 have a diameter smaller than that of the outer peripheral portion 12b of the brake rotor 12, the present invention is not limited to this example.
  • a part of the stator 18 and the rotor 19 may be smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12.
  • FIG. 8 is a block diagram showing a conceptual configuration of a system for a vehicle using the vehicle power unit 1, (1A) according to any one of the embodiments.
  • the vehicle power unit 1, (1A) in a vehicle having a driven wheel 10 B is a main drive source mechanically unconnected, is mounted against the driven wheel 10 B.
  • the vehicle power unit 1, a wheel bearing 2 in (1A) ( Figure 1, Figure 6) is a bearing supporting the driven wheel 10 B.
  • the main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both.
  • the "motor generator” refers to an electric motor capable of generating power by rotation.
  • the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side. It is a hybrid car (hereinafter may be referred to as "HEV").
  • HEV hybrid car
  • Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating. In the (electric car) mode, it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time.
  • Internal combustion engine 35a of the example of the figure is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and speed reducer 37, the motor generator 35b of the driving wheel is connected to a reduction gear 37.
  • the vehicle system is provided to a motor generator 3 which is a generator for driving assistance for rotating the driven wheel 10 B , an individual control means 39 for controlling the motor generator 3, and a host ECU 40. It includes an individual motor generator command means 45 for outputting a command for causing the individual control means 39 to perform drive and regeneration control.
  • the motor generator 3 is connected to the storage means.
  • the storage means may be a battery (storage battery) or a capacitor, a capacitor, etc.
  • the type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
  • the motor generator 3 for a driven wheel is a direct drive motor that does not use a transmission.
  • the motor generator 3 acts as a motor by supplying electric power, and also acts as a generator that converts kinetic energy of the vehicle 30 into electric power. Since the motor generator 3 has the rotor 19 (FIG. 1) attached to the inner ring 5 (FIG. 1), the current is applied to the motor generator 3 to generate torque in the same direction as the traveling direction of the vehicle. 5 (FIG. 1) is rotationally driven, and regenerative electric power is obtained by applying a current so as to generate torque in the reverse direction.
  • the host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43.
  • the torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal.
  • This vehicle 30 includes an internal combustion engine 35a and a motor generator 35b on the drive wheel side as a main drive source 35, and also includes two motor generators 3 and 3 for driving two driven wheels 10 B and 10 B respectively.
  • the host ECU 40 is provided with torque command distribution means 44 for distributing the torque command to the drive sources 35a, 35b, 3 and 3 according to a rule defined.
  • the torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47.
  • a torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed.
  • the torque command to the motor generators 3, 3 on the driven wheel side is transmitted to the individual control means 39, 39.
  • the part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45.
  • the individual motor generator instruction means 45 gives the individual control means 39 a torque instruction serving as an instruction of a braking force with which the motor generator 3 shares braking by regenerative braking. It also has a function.
  • the individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc.
  • the inverter 41 includes a bridge circuit (not shown) and the like by a semiconductor switching element and the like.
  • the control unit 42 controls the motor generator 3 to follow the torque command generated by the individual motor generator command means 45, for example, so that the generated torque matches. That is, the control unit 42 controls the command torque, the rotation speed (which can be easily calculated in the case of the rotation angle sensor) detected by the rotation detector 27 (FIG. 1), and the current applied to the motor generator 3 from the test result. calculate. Further, the voltage applied to the motor generator 3 is calculated from the calculated current, the rotation angle, and the value of the current sensor (not shown). The calculated voltage is applied to the motor generator 3 to generate a torque that matches the command torque.
  • the individual control means 39 is separately provided for the two motor generators 3 and 3, it is housed in one case, and the control unit 42 is shared by both the individual control means 39, 39. It is also good.
  • FIG. 9 is a power supply system diagram as an example of a vehicle equipped with the vehicle system shown in FIG.
  • a low voltage battery 50 and a medium power battery 49 are provided as batteries, and both the batteries 49 and 50 are connected via a DC / DC converter 51.
  • the motor generator 35b on the drive wheel side of FIG. 8 is connected to the medium power system in parallel with the motor generator 3 on the driven wheel side.
  • a low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system.
  • the low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V.
  • the low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown).
  • the low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
  • the medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable.
  • a medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
  • the medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor, an electric pump, an electric power steering, a supercharger, an air compressor, or the like which is the motor generator 35b on the drive wheel side.
  • the power assist output is lower than that of high voltage (100V or higher strong hybrid vehicles etc.)
  • the risk of electric shock to occupants and maintenance workers can be reduced. it can.
  • the insulation coating of the wire can be thinned, the weight and volume of the wire can be reduced.
  • the volume of the motor or generator can be reduced. From these things, it contributes to the fuel consumption reduction effect of vehicles.
  • the vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part.
  • CMGs, GMGs, and belt-driven starter motors may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
  • the power regeneration In this case, the kinetic energy of the car body can be used directly.
  • CMG, GMG, a belt drive type starter motor, etc. are mounted, they need to be incorporated in consideration from the design stage of the vehicle 30, and it is difficult to retrofit.
  • motor generator 3 of the system for this vehicle to fit in the driven wheel 10 in the B may be attached even complete vehicles in part exchange the same steps, to complete vehicle internal combustion engine 35a only Even a 48V system can be configured.
  • the vehicle power unit 1 (1A) according to any one of the embodiments and the medium voltage battery 49 as a battery for a motor generator are mounted on the vehicle. It can be a mild hybrid vehicle without major modifications.
  • Another auxiliary drive motor generator 35b may be mounted on the vehicle equipped with the vehicle system of this embodiment as shown in FIG. At that time, the power assist amount and the regenerative electric energy for the vehicle 30 can be increased, which further contributes to the fuel consumption reduction.
  • the power unit for a vehicle may be applied to the drive wheel. It is also possible to apply the vehicle power unit to the drive wheel and the driven wheel, respectively.
  • the system for vehicles shown in FIG. 8 has a function to generate electric power, it may be a system which does not rotate by feeding.
  • the braking power can be generated by storing the regenerated power generated by the motor generator 3 in the medium voltage battery 49.
  • the braking performance can also be improved by using it together with or using the mechanical brake operating means 57.
  • the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter.
  • the AC / DC converter device has a function of charging the regenerative power of the motor generator 3 to the medium voltage battery 49 by converting a three-phase AC voltage into a DC voltage, and the control method is easy compared to an inverter. Can be miniaturized.
  • the rotation detector 27 may be used to control the antilock brake system.
  • ABS antilock brake system
  • the slip state of the wheel with respect to the ground contact surface can be estimated from the wheel speed and the vehicle speed calculated from the rotation detector 27, and control can be performed to eliminate this slip state.
  • a plurality of rotation detectors 27 may be disposed in the vehicle, any one of the rotation detectors 27 may be used to control the motor generator 3, and any other rotation detector 27 may be used to control the ABS.
  • the wheel bearing 2 includes a hub ring to which one partial inner ring is fitted as a rotary ring, and the outer ring which is a fixed ring and the hub ring and the partial inner ring
  • the 3rd generation structure comprised by union it does not limit to this.
  • a structure in which a hub having a hub flange and a member having a raceway surface of a rolling element are combined is a rotating wheel as referred to in the present specification.
  • the wheel bearing 2 may be, for example, a first generation structure including an outer ring mainly serving as a fixed ring and an inner ring fitted to the outer peripheral surface of a hub having a hub flange, and the outer ring serving as a fixed ring
  • the inner ring rotation type second generation structure may be provided with an inner ring fitted to an outer peripheral surface of a hub having a hub flange.
  • the combination of the hub and the inner ring corresponds to the "rotating wheel" in the present specification.
  • the wheel bearing 2 may be of an outer ring rotation type second generation structure including an outer ring which is a rotating ring having a hub flange and an inner ring which is a fixed ring.
  • 1, 1A power unit for vehicle 2: bearing for wheel 3: motor generator (generator) 4 ... Outer ring (fixed ring) 5 ... Inner ring (turning wheel) 7 ... Hub flange 8 ... knuckle (frame of underbody frame) 12 ... brake rotor 18 ... stator 19 ... rotor 27 ... rotation detector

Abstract

A vehicle power device (1) is provided with: a wheel bearing (2); a motor generator (3); and a rotation detector (27) that detects the rotational angle or the rotational speed of a rotating wheel (5) with respect to a fixed wheel (4) of the wheel bearing (2). A stator (18) and a rotor (19) of the motor generator (3) are smaller in diameter than an outer peripheral part (12b) of a brake rotor (12), and the entire motor generator (3) excluding a mounting part mounted to a hub flange (7) is positioned within an axial-direction range (L1) between the hub flange (7) and the outboard side-surface of a suspension frame component (8). The rotation detector (27) is positioned inside a hollow part of the stator (18).

Description

車両用動力装置Power unit for vehicle 関連出願Related application
 本出願は、2017年10月17日出願の特願2017-200781の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-200781 filed on Oct. 17, 2017, which is incorporated by reference in its entirety.
 この発明は、車両用動力装置に関し、車輪用軸受の車体への取付構造を大きく変えることなく、車輪用軸受内の発電機の実装空間を大きく確保することができる技術等に関する。 The present invention relates to a power unit for a vehicle, and relates to a technique etc. capable of securing a large mounting space of a generator in the wheel bearing without largely changing the mounting structure of the wheel bearing to the vehicle body.
 図10~図12に示すように、インホイールモータを有しない一般的な車輪用軸受は、外輪60と一体に設けられた取付用フランジ60aを備え、この取付用フランジ60aがナックル61に取付けられる。前記取付用フランジ60aは、車体外側(アウトボード側)からナックル61と当接し、前記ナックル61と車体内側(インボード側)から挿通されたボルト62により締結される。車輪用軸受は、車両メーカにより取り付けられるため、組み付け性の良さが求められる。 As shown in FIGS. 10 to 12, a general wheel bearing that does not have an in-wheel motor includes a mounting flange 60 a provided integrally with the outer ring 60, and the mounting flange 60 a is mounted to the knuckle 61. . The mounting flange 60a abuts on the knuckle 61 from the vehicle body outer side (outboard side), and is fastened by the knuckle 61 and a bolt 62 inserted from the vehicle body inner side (inboard side). As the wheel bearing is mounted by a vehicle manufacturer, good assembly is required.
 一般的なナックルへの取付用フランジ構造を備えた車輪用軸受が開示されている(特許文献1)。この車輪用軸受では、ナックル面からボルトで締結し、車体より外側に車輪用軸受の取付用フランジを保持する。 A wheel bearing having a general flange structure for attachment to a knuckle is disclosed (Patent Document 1). In this wheel bearing, bolts are fastened from the knuckle surface, and the mounting flange for the wheel bearing is held outside the vehicle body.
 車輪の中にモータを組み込むインホイールモータ構造(特許文献2,3)は、モータを動作させるインバータおよび電池を車体に搭載する必要があるものの、動力ユニットを車体内に搭載する必要がない。このため、インホイールモータ構造は、車体容積を占有することなく車両に動力を付与でき、車体設計の自由度も高い。しかしながら、モータ出力はモータ体積と比例するため、大きな出力トルクを得るためにはモータを大きくするか、減速機構等が必要となる。モータ体積が大きいものまたは減速機構を有するインホイールモータはホイール内に収めることが難しく、従来と同様の車輪用軸受の懸架装置を使うことができず、車体の足回りの構造変更が避けられない。 Although the in-wheel motor structure (patent documents 2, 3) which incorporates a motor in a wheel needs to mount the inverter and battery which operate a motor on a vehicle body, it is not necessary to mount a power unit in a vehicle body. Therefore, the in-wheel motor structure can provide power to the vehicle without occupying the volume of the vehicle body, and the degree of freedom in designing the vehicle body is also high. However, since the motor output is proportional to the motor volume, in order to obtain a large output torque, it is necessary to enlarge the motor or to use a speed reduction mechanism or the like. In-wheel motors with large motor volumes or reduction mechanisms are difficult to fit in the wheel, and the conventional wheel bearing suspension can not be used, and structural changes around the body of the vehicle can not be avoided .
特許第4306903号公報Patent No. 4306903 gazette 特許第4694147号公報Patent No. 4694147 特許第4724075号公報Patent No. 4724075
 車輪用軸受とブレーキロータ内に収まるインホイールモータのみで車体の動力を賄うにはモータ体積が小さい。このため、出力トルクを増大するために減速機構を備える必要またはモータサイズを大きくする必要がある。しかし、大きなモータをホイール内に収めることは難しく、特にモータを軸方向に大きくした場合、一般的な車輪用軸受の固定方法のようなナックル面とフランジ面をボルトで締結する方法を用いることができず、車体の足回りの構造変更が避けられない(特許文献2,3)。 The motor volume is small in order to support the motive power of the vehicle body only with the wheel bearing and the in-wheel motor that fits in the brake rotor. Therefore, in order to increase the output torque, it is necessary to provide a reduction mechanism or to increase the motor size. However, it is difficult to fit a large motor in the wheel, and in particular, when the motor is made axially large, it is preferable to use a method of bolting the knuckle surface and the flange surface with a bolt such as a general wheel bearing fixing method. It can not be done, and structural change of the underbody of the vehicle body can not be avoided (Patent Documents 2 and 3).
 一方、内燃機関等の他の動力機構を主動力手段とするハイブリッドシステムの動力補助システムとしてインホイールモータを搭載することが考えられる。この場合、インホイールモータのみで車体の動力を賄う必要はなく、車両の走行状態または主動力手段の状態に合わせてインホイールモータを駆動、回生制動・充電することで、省燃費化および車両の動力性能の向上を図ることができる。その際、下記の課題が挙げられる。 On the other hand, it is conceivable to mount an in-wheel motor as a power assist system of a hybrid system having as a main power means another power mechanism such as an internal combustion engine. In this case, it is not necessary to use the in-wheel motor alone to support the power of the vehicle, but by driving the in-wheel motor according to the traveling state of the vehicle or the state of the main power means, regenerative braking and charging Power performance can be improved. At that time, the following problems are raised.
 ・制限された空間における出力トルクの高出力化
 ・一般的な車輪用軸受と同等の実装性
 ・一般的な車輪用軸受とナックル周辺の設計の共通化
・ High output of output torque in confined space ・ Same installability as a general wheel bearing ・ Common design of a common wheel bearing and knuckle circumference
 この発明の目的は、一般的な車輪用軸受と同等の組み付け性を有し、車輪用軸受の車体への取付構造を大きく変えることなく、発電機の実装空間を大きく確保することができる車両用動力装置を提供することである。 The object of the present invention is to provide a mountability equivalent to that of a general wheel bearing, and for a vehicle capable of securing a large mounting space for a generator without largely changing the mounting structure of the wheel bearing to the vehicle body It is providing a power plant.
 この発明の車両用動力装置は、固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
 この車輪用軸受の固定輪に取付けられたステータ、および前記車輪用軸受の回転輪に取付けられたロータを有する発電機と、
 前記固定輪に対する前記回転輪の回転角度または回転速度を検出する回転検出器と、
を備え、
 前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記発電機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
 前記回転検出器が前記ステータの中空内部に位置する。
A vehicle power unit according to the present invention has a fixed wheel, and a rotating wheel rotatably supported on the fixed wheel via a rolling element and having a hub flange, and the wheel and brake rotor of the vehicle being attached to the hub flange. Wheel bearings,
A generator having a stator attached to a fixed wheel of the wheel bearing, and a rotor attached to a rotating wheel of the wheel bearing;
A rotation detector for detecting a rotation angle or rotation speed of the rotating wheel with respect to the fixed wheel;
Equipped with
Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle,
The rotation detector is located in the hollow interior of the stator.
 この構成によると、発電機のロータが、車輪用軸受の回転輪に取付けられたダイレクトドライブ形式であるため、車両用動力装置全体の部品点数が少なく構成が簡易で省スペースで済み、車両重量の増加も抑えられる。 According to this configuration, since the rotor of the generator is a direct drive type mounted on the rotating wheel of the wheel bearing, the number of parts of the entire power unit for a vehicle is small, the configuration is simple and space saving is achieved. The increase can also be suppressed.
 ステータおよびロータの一部または全部が、ブレーキロータの外周部よりも小径であり、且つ、発電機におけるハブフランジへの取付部を除く全体が、ハブフランジと、足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置する。このため、ブレーキロータ内に発電機を設置するスペースを確保してこの発電機をコンパクトに収めることができる。 Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor, and the whole except the attachment part to the hub flange in the generator is the hub flange and the outboard side face of the undercarriage frame part In the axial range between For this reason, the space which installs a generator in a brake rotor is secured, and this generator can be stored compactly.
 さらに、回転輪の回転角度または回転速度を検出する回転検出器がステータの中空内部に位置するため、ステータの軸方向端側に回転検出器を設ける構成等に比べて、所望の発電機の出力を確保しつつ装置全体を軸方向にコンパクト化することができる。また、車両用動力装置内において、発電機を収容すべき許容される空間内でステータとロータの軸方向長さを最大限に大きくし、ロータとステータとが対向する面積を増やすことで、発電機の出力の最大化を図ることができる。これにより、この車両用動力装置の足回りフレーム部品への固定方法として、一般的な車輪用軸受と同様にボルトで固定するような設計が可能となり、車両側の足回りフレーム部品のアウトボード側面の設計が、発電機を持たない車両と同様にすることができる。 Furthermore, since the rotation detector for detecting the rotation angle or the rotation speed of the rotating wheel is located inside the hollow of the stator, the desired generator output can be obtained compared to a configuration in which the rotation detector is provided at the axial end of the stator. As a result, the entire apparatus can be made axially compact. Further, in the vehicle power plant, the axial length of the stator and the rotor is maximized within the allowable space for accommodating the generator, and the area where the rotor and the stator face each other is increased. The machine's output can be maximized. As a result, as a method of fixing the power unit for a vehicle to a frame frame part of the vehicle, it becomes possible to design it to be fixed by bolts in the same way as a general wheel bearing. The design of the vehicle can be similar to a vehicle without a generator.
 前記発電機は、前記車輪を回転駆動可能な電動発電機であってもよい。従来の内燃機関等を搭載した車両に、前記電動発電機を備えた車両用動力装置を搭載する場合、電動発電機による動力アシストにより燃費低減することができる。 The generator may be a motor generator capable of rotationally driving the wheel. When the vehicle power unit provided with the motor generator is mounted on a vehicle equipped with a conventional internal combustion engine or the like, the fuel efficiency can be reduced by the power assist by the motor generator.
 前記発電機は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型であってもよい。この場合、インナーロータ型よりもロータとステータとが対向する面積を増やすことができる。これにより、限られた空間内で出力トルクを最大化することが可能となる。 The generator may be an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator. In this case, the area in which the rotor and the stator face can be increased more than in the inner rotor type. This makes it possible to maximize the output torque in a limited space.
 前記車輪用軸受と前記足回りフレーム部品のアウトボード側面との間に、前記回転検出器が配置されてもよい。この場合、回転検出器が車両用動力装置全体のインボード側に位置することから、この車両用動力装置を足回りフレーム部品から取り外した状態で、回転検出器を着脱自在にすることが容易である。また回転検出器が例えばハブフランジ近傍に設置される構造等よりも、回転検出器からインボード側に延びる配線の長さを短くすることができる。これによりコスト低減を図れる。 The rotation detector may be disposed between the wheel bearing and an outboard side surface of the undercarriage part. In this case, since the rotation detector is located on the inboard side of the entire vehicle power unit, it is easy to make the rotation detector detachable while the vehicle power unit is removed from the undercarriage frame part. is there. Further, the length of the wiring extending from the rotation detector to the inboard side can be made shorter than in a structure in which the rotation detector is installed, for example, in the vicinity of the hub flange. This can reduce the cost.
 前記車輪用軸受は、軸方向に並ぶ二個の軸受部を備え、前記二個の軸受部の間に、前記回転検出器が配置されてもよい。この場合、二個の軸受部の間の空間を活用して回転検出器を配置することができる。また回転検出器を車輪用軸受に直接設置することが可能となるため、回転検出器を保持する部品等を低減することが可能となる。したがって、構造を簡略化でき、製造コストの低減を図れる。 The wheel bearing may include two axially aligned bearings, and the rotation detector may be disposed between the two bearings. In this case, the rotation detector can be disposed by utilizing the space between the two bearings. Further, since the rotation detector can be installed directly on the wheel bearing, it is possible to reduce the parts and the like that hold the rotation detector. Therefore, the structure can be simplified and the manufacturing cost can be reduced.
 前記回転検出器は、前記発電機の制御に使用されるものであってもよい。この場合、回転検出器で検出される回転輪の回転速度に応じて、従動輪に動力補助または回生制動を行うことにより、車両の走行性能、制動性能、燃料消費量等の車両性能を向上させることが可能となる。 The rotation detector may be used to control the generator. In this case, depending on the rotational speed of the rotating wheel detected by the rotation detector, the performance of the vehicle such as the traveling performance, the braking performance, and the fuel consumption can be improved by performing power assist or regenerative braking on the driven wheel. It becomes possible.
 前記車両がアンチロックブレーキシステムを備え、前記回転検出器は、アンチロックブレーキシステムの制御に使用されるものであってもよい。 The vehicle may include an antilock braking system, and the rotation detector may be used to control the antilock braking system.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の側面図である。 同車両用動力装置の正面図である。 図1のIV-IV線断面図である。 同車両用動力装置の中間部材をナックル側から見た斜視図である。 この発明の他の実施形態に係る車両用動力装置の断面図である。 同車両用動力装置の正面図である。 いずれかの車両用動力装置を備えた車両の車両用システムの概念構成を示すブロック図である。 同車両用システムを搭載した車両の一例となる電源系統図である。 従来例の車輪用軸受等の断面図である。 同車輪用軸受とブレーキロータとナックルを分解した側面図である。 同車輪用軸受とブレーキロータとナックルを分解した斜視図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
1 is a cross-sectional view of a vehicular power unit according to an embodiment of the present invention. It is a side view of the power unit for the same vehicles. It is a front view of the power unit for the same vehicles. It is the IV-IV sectional view taken on the line of FIG. It is the perspective view which looked at the intermediate member of the power unit for the vehicles from the knuckle side. FIG. 6 is a cross-sectional view of a vehicular power unit according to another embodiment of the present invention. It is a front view of the power unit for the same vehicles. FIG. 1 is a block diagram showing a conceptual configuration of a vehicle system of a vehicle provided with any of the vehicle power devices. It is a power supply system figure used as an example of the vehicles carrying the system for vehicles. It is sectional drawing of the bearing for wheels etc. of a prior art example. It is the side view which disassembled the bearing for wheels, the brake rotor, and the knuckle. It is the perspective view which decomposed | disassembled the bearing for wheels, the brake rotor, and the knuckle.
 この発明の実施形態に係る車両用動力装置を図1ないし図5と共に説明する。図1に示すように、この車両用動力装置1は、車輪用軸受2と、電動機を兼用する発電機である電動発電機3とを備える。 A vehicular power unit according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, the vehicle power unit 1 includes a wheel bearing 2 and a motor generator 3 which is a generator that doubles as an electric motor.
 <車輪用軸受2について>
 車輪用軸受2は、固定輪である外輪4と、複列の転動体6と、回転輪である内輪5とを有する。外輪4に複列の転動体6を介して内輪5が回転自在に支持されている。外輪4と内輪5との間の軸受空間には、グリースが封入されている。内輪5は、ハブ輪5aと、このハブ輪5aのインボード側の外周面に嵌合された部分内輪5bとを有する。ハブ輪5aは、外輪4よりも軸方向のアウトボード側に突出した箇所にハブフランジ7を有する。
<About wheel bearing 2>
The wheel bearing 2 has an outer ring 4 which is a fixed ring, rolling elements 6 in double rows, and an inner ring 5 which is a rotating ring. The inner ring 5 is rotatably supported by the outer ring 4 via the rolling elements 6 in double rows. Grease is enclosed in the bearing space between the outer ring 4 and the inner ring 5. The inner ring 5 has a hub ring 5a and a partial inner ring 5b fitted to the inboard outer peripheral surface of the hub ring 5a. The hub wheel 5 a has a hub flange 7 at a location protruding toward the outboard side in the axial direction with respect to the outer ring 4.
 ハブフランジ7のアウトボード側の側面には、車輪のリム(図示せず)とブレーキロータ12とケース底部11(後述する)とが軸方向に重なった状態で、ハブボルト13により取り付けられている。前記リムの外周に図示外のタイヤが取付けられている。なおこの明細書において、車両用動力装置が車両に搭載された状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の車幅方向の中央寄りとなる側をインボード側と呼ぶ。 A wheel rim (not shown), a brake rotor 12 and a case bottom 11 (described later) are attached to the side surface on the outboard side of the hub flange 7 by a hub bolt 13 in an axially overlapping manner. A tire not shown is mounted on the outer periphery of the rim. In this specification, when the power unit for a vehicle is mounted on a vehicle, the side closer to the outside in the vehicle width direction of the vehicle is called the outboard side, and the side closer to the center in the vehicle width direction is the inboard Call it the side.
 <ブレーキについて>
 図2および図3に示すように、ブレーキは、ディスク式のブレーキロータ12と、ブレーキキャリパKpとを備える摩擦ブレーキである。図1は、図3のI-I線断面図である。図1に示すように、ブレーキロータ12は、平板状部12aと、外周部12bとを有する。平板状部12aは、ハブフランジ7にケース底部11を介して重なる環状で且つ平板状の部材である。外周部12bは、平板状部12aから外輪4の外周側へ延びる。外周部12bは、平板状部12aの外周縁部からインボード側に円筒状に延びる円筒状部12baと、この円筒状部12baのインボード側端から外径側に平板状に延びる平板部12bbとを有する。
<About the brake>
As shown in FIGS. 2 and 3, the brake is a friction brake provided with a disc-type brake rotor 12 and a brake caliper Kp. FIG. 1 is a cross-sectional view taken along line II of FIG. As shown in FIG. 1, the brake rotor 12 has a flat portion 12 a and an outer peripheral portion 12 b. The flat portion 12 a is an annular and flat member overlapping the hub flange 7 via the case bottom 11. The outer circumferential portion 12 b extends from the flat plate portion 12 a to the outer circumferential side of the outer ring 4. The outer peripheral portion 12b is a cylindrical portion 12ba cylindrically extending from the outer peripheral edge of the flat portion 12a to the inboard side, and a flat portion 12bb extending from the inboard end of the cylindrical portion 12ba to the outer diameter side And.
 ブレーキキャリパKpは、ブレーキロータ12の平板部12bbを挟み付ける摩擦パッドを有する。ブレーキキャリパKpは、車両における足回りフレーム部品であるナックル8に取付けられている。ブレーキキャリパKpは、油圧式および機械式のいずれであってもよく、また電動モータ式であってもよい。 The brake caliper Kp has a friction pad that holds the flat plate portion 12bb of the brake rotor 12 therebetween. The brake caliper Kp is attached to a knuckle 8 which is an underbody frame part of a vehicle. The brake caliper Kp may be either hydraulic or mechanical, and may be electric motor.
 <電動発電機3について>
 この例の電動発電機3は、車輪の回転で発電を行い、給電されることによって車輪を回転駆動可能な走行補助用の電動発電機である。電動発電機3は、回転ケース15と、ステータ18と、ロータ19とを有する。回転ケース15は、ハブフランジ7に取付けられ、ロータ19およびステータ18を覆う。電動発電機3は、ロータ19がステータ18の半径方向外方に位置するアウターロータ型である。
<About the motor generator 3>
The motor generator 3 of this example generates electric power by rotation of the wheels, and is a driving assist motor generator capable of rotationally driving the wheels by being supplied with power. The motor generator 3 has a rotating case 15, a stator 18 and a rotor 19. The rotating case 15 is attached to the hub flange 7 and covers the rotor 19 and the stator 18. The motor generator 3 is an outer rotor type in which the rotor 19 is located radially outward of the stator 18.
 この電動発電機3は、ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径である。さらに電動発電機3におけるハブフランジ7への取付部を除く全体が、ハブフランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲L1に位置する。 In the motor generator 3, all of the stator 18 and the rotor 19 are smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12. Furthermore, the whole of the motor generator 3 except for the attachment portion to the hub flange 7 is located in the axial range L1 between the hub flange 7 and the outboard side surface 8 a of the knuckle 8.
 電動発電機3は、アウターロータ型のIPM(Interior Permanent Magnet)同期モータ(もしくはIPMSM(Interior Permanent Magnet Synchronous Motor)と標記)である。その他、電動発電機3は、スイッチトリラクタンスモータ(Switched reluctance motor;略称:SRモータ)、インダクションモータ(Induction Motor;略称:IM)等各種形式が採用できる。各モータ形式において、ステータ18の巻き線形式として分布巻、集中巻の各形式が採用できる。 The motor generator 3 is an outer rotor type IPM (Interior Permanent Magnet) synchronous motor (or denoted as IPMSM (Interior Permanent Magnet Synchronous Motor)). In addition, the motor generator 3 can adopt various types such as a switched reluctance motor (abbreviation: SR motor), an induction motor (induction motor: abbreviation: IM) and the like. In each motor type, each type of distributed winding and concentrated winding can be adopted as a winding type of the stator 18.
 回転ケース15は、有底円筒状のケース本体16から成る。ケース本体16は、ケース底部11と、ケース円筒状部25とを有する。これらケース底部11と、ケース円筒状部25とは一体もしくは別体で形成されている。ケース底部11は、ブレーキロータ12の平板状部12aと、ハブフランジ7との間に挟まれる平板状で且つ環状の部材である。このケース底部11の外周縁部からインボード側にケース円筒状部25が円筒状に延びる。 The rotating case 15 is composed of a bottomed cylindrical case body 16. The case main body 16 has a case bottom 11 and a case cylindrical portion 25. The case bottom 11 and the case cylindrical portion 25 are integrally or separately formed. The case bottom 11 is a flat and annular member sandwiched between the flat portion 12 a of the brake rotor 12 and the hub flange 7. A case cylindrical portion 25 extends cylindrically from the outer peripheral edge of the case bottom 11 toward the inboard side.
 ケース円筒状部25の内周面には、アウトボード側からインボード側に順次、小径部、中径部および大径部が設けられている。図4に示すように、ロータ19は、ケース円筒状部25の前記中径部に圧入などにより設けられる磁性体19aと、この磁性体19aに内蔵される複数の永久磁石19bとを備える。
 図1に示すように、ケース円筒状部25のうち、前記小径部と前記中径部とを繋ぐ段差部に、ロータ19のアウトボード側端が当接することで、回転ケース15に対しロータ19が軸方向に位置決めされる。
A small diameter portion, a medium diameter portion and a large diameter portion are provided on the inner peripheral surface of the case cylindrical portion 25 sequentially from the outboard side to the inboard side. As shown in FIG. 4, the rotor 19 includes a magnetic body 19 a provided by press-fitting or the like in the middle diameter portion of the case cylindrical portion 25 and a plurality of permanent magnets 19 b built in the magnetic body 19 a.
As shown in FIG. 1, the outboard side end of the rotor 19 abuts on the stepped portion connecting the small diameter portion and the medium diameter portion of the case cylindrical portion 25, whereby the rotor 19 with respect to the rotation case 15 is obtained. Are positioned in the axial direction.
 ステータ18は、外輪4の外周面にステータ保持部材24を介して取付けられている。図1および図4に示すように、ステータ18は、コア18aと、このコア18aの各ティースに巻回されたコイル18bとを有する。コイル18bは配線17(図1)に接続されている。
 図1に示すように、ステータ保持部材24は、ステータ18の内周面およびアウトボード側端面に接してこのステータ18を保持する。ステータ18は、例えば、ステータ保持部材24に対し、圧入またはボルト締結などにより回転方向および径方向に固定されている。さらにステータ保持部材24は、外輪4の外周面に圧入またはボルト締結などにより固定されている。
The stator 18 is attached to the outer peripheral surface of the outer ring 4 via a stator holding member 24. As shown in FIGS. 1 and 4, the stator 18 has a core 18 a and coils 18 b wound around the teeth of the core 18 a. The coil 18 b is connected to the wiring 17 (FIG. 1).
As shown in FIG. 1, the stator holding member 24 holds the stator 18 in contact with the inner peripheral surface of the stator 18 and the end face on the outboard side. The stator 18 is, for example, fixed to the stator holding member 24 in the rotational direction and the radial direction by press-fitting or bolt fastening. Further, the stator holding member 24 is fixed to the outer peripheral surface of the outer ring 4 by press-fitting or bolt fastening.
 ステータ保持部材24とナックル8はボルト20により締結される。ステータ保持部材24のインボード側端面とナックル8のアウトボード側面との間に、ユニットカバー22のカバー立板部22aが介在されている。
 図5に示すように、中間部材であるステータ保持部材24のうち、インボード側(ナックル面側)の端面には、コイル18b(図1)の結線を、このステータ保持部材24の外径側から内径側へ通す連通孔24cが円周方向に複数(この例では六つ)設けられている。例えば、ステータ保持部材24におけるインボード側の端面に、円周等配の切欠きを設けることで、複数の連通孔24cが形成される。なお複数の連通孔24cは、円周等配である必要なく、また一般的にU相,V相,W相の三線から成る配線17(図1)を通す連通孔であればよい。図1に示すように、ナックル8には、ユニットカバー22における円筒部22bの外周面の挿入を許す貫通孔8bが形成され、この貫通孔8bの周囲に、複数のボルト20の挿通孔(図示せず)が形成されている。
The stator holding member 24 and the knuckle 8 are fastened by a bolt 20. A cover upright plate portion 22 a of the unit cover 22 is interposed between the inboard end surface of the stator holding member 24 and the outboard side surface of the knuckle 8.
As shown in FIG. 5, of the stator holding member 24 which is an intermediate member, on the end face on the inboard side (knuckle surface side), wire connection of the coil 18b (FIG. 1) is made on the outer diameter side of the stator holding member 24. A plurality of (six in this example) communication holes 24c are provided in the circumferential direction to be passed from the inside to the inside diameter side. For example, a plurality of communication holes 24 c are formed by providing notches of equal circumferential distribution on the end surface on the inboard side of the stator holding member 24. The plurality of communication holes 24c need not be circumferentially equidistant, and may be communication holes generally passing through the wiring 17 (FIG. 1) formed of three lines of U-phase, V-phase and W-phase. As shown in FIG. 1, the knuckle 8 is formed with a through hole 8b for allowing insertion of the outer peripheral surface of the cylindrical portion 22b in the unit cover 22. Through holes 8b of the unit cover 22 are inserted through a plurality of bolts 20 (see FIG. 1). Not shown) is formed.
 図1および図5に示すように、ステータ保持部材24には、軸方向に延びる雌ねじ24dが円周等配に複数(この例では6つ)形成されている。カバー立板部22aには、前記各雌ねじ24dと同位相の貫通孔(図示せず)が形成されている。各ボルト20は、ナックル8のインボード側から同ナックル8の前記挿通孔に挿通され、カバー立板部22aの貫通孔を通して、ステータ保持部材24の各雌ねじ24dに螺合されている。 As shown in FIGS. 1 and 5, a plurality of (six in this example) circumferentially equidistant female threads 24d are formed in the stator holding member 24 in the axial direction. Through holes (not shown) in the same phase as the respective female screws 24 d are formed in the cover upright plate portion 22 a. The bolts 20 are inserted from the inboard side of the knuckles 8 into the insertion holes of the knuckles 8 and screwed to the female screws 24 d of the stator holding member 24 through the through holes of the cover upright plate portion 22 a.
 <シール構造について>
 図1に示すように、回転ケース15とナックル8のアウトボード側面との間には、電動発電機3および車輪用軸受2内部への水および異物の侵入を防ぐシール部材23が配置されている。シール部材23は、互いに対向する環状のシール板23aおよび弾性シール部材23bを有する。回転ケース15のケース円筒状部25における前記大径部およびこの端面に、環状のロータ端リング部材26がボルトにより固定されている。ロータ端リング部材26と、ナックル8のアウトボード側面8aとの間には、アキシアル隙間が形成されている。
<About seal structure>
As shown in FIG. 1, a seal member 23 is disposed between the rotating case 15 and the outboard side surface of the knuckle 8 to prevent the entry of water and foreign matter into the motor generator 3 and the wheel bearing 2. . The seal member 23 has an annular seal plate 23a and an elastic seal member 23b facing each other. An annular rotor end ring member 26 is fixed to the large diameter portion and the end face of the case cylindrical portion 25 of the rotation case 15 by bolts. An axial gap is formed between the rotor end ring member 26 and the outboard side surface 8 a of the knuckle 8.
 ロータ端リング部材26のインボード側の内周面に、半径方向外方に凹む環状凹みが形成され、この環状凹みにシール部材23の弾性シール部材23bが圧入嵌合されている。カバー立板部22aの外周面に、シール部材23のシール板23aが圧入嵌合されている。シール板23aは、カバー立板部22aの外周面に嵌合する円筒部と、この円筒部のインボード側の端部から半径方向外方に立ち上がる立板部とを含む断面L字状の金属製とされる。 An annular recess is formed on the inboard side of the rotor end ring member 26 in the radially outward direction, and an elastic seal member 23b of the seal member 23 is press-fitted in the annular recess. The seal plate 23a of the seal member 23 is press-fit fitted on the outer peripheral surface of the cover upright plate portion 22a. The seal plate 23a is a metal having an L-shaped cross section including a cylindrical portion fitted on the outer peripheral surface of the cover upright plate portion 22a, and an upright plate portion rising radially outward from the inboard end of the cylindrical portion. It is made.
 なおロータ端リング部材26の外周面に環状溝が形成され、この環状溝にOリングが設けられている。このOリングにより、回転ケース15の端部内周面とロータ端リング部材26との接触面を密封している。このロータ端リング部材26は、磁性体19a(図4)に内蔵される永久磁石19b(図4)の軸方向についての位置決め部材を兼ねる。 An annular groove is formed on the outer peripheral surface of the rotor end ring member 26, and an O-ring is provided in the annular groove. The O-ring seals the contact surface between the end inner peripheral surface of the rotating case 15 and the rotor end ring member 26. The rotor end ring member 26 also serves as a positioning member in the axial direction of the permanent magnet 19 b (FIG. 4) incorporated in the magnetic body 19 a (FIG. 4).
 弾性シール部材23bは、例えば、環状の芯金に弾性体を固着したものである。前記芯金は、ロータ端リング部材26の環状凹みに嵌合する円筒部と、この円筒部のアウトボード側の端部から半径方向内方に立ち下がる立板部とを有し、前記シール板23aと軸方向に対向する断面逆L字状とされている。前記弾性体は、前記芯金の内側を覆って設けられたものであり、複数のサイドリップと、複数のラジアルリップとを有する。各サイドリップは、前記芯金の立板部から斜め外径側へ延びて、一部のサイドリップの先端がシール板23aの立板部に接する。各ラジアルリップは、芯金の立板部の先端から斜め内径側へ延びて、先端がシール板23aの円筒部に接する。 The elastic seal member 23 b is, for example, one in which an elastic body is fixed to an annular core metal. The cored bar has a cylindrical portion fitted in the annular recess of the rotor end ring member 26, and a rising plate portion which falls inward in the radial direction from the end portion on the outboard side of the cylindrical portion, the seal plate It has an inverted L-shape in cross section that axially faces 23a. The elastic body is provided so as to cover the inside of the core metal, and has a plurality of side lips and a plurality of radial lips. Each side lip extends obliquely outward from the upright plate portion of the core, and the tip of a part of the side lip contacts the upright plate portion of the seal plate 23a. Each radial lip extends obliquely from the tip end of the upstanding plate portion of the core to an inner diameter side, and the tip contacts the cylindrical portion of the seal plate 23a.
 <回転検出器等について>
 この車両用動力装置1には、回転検出器27が設けられている。この回転検出器27は、ステータ18の中空内部に位置する。この回転検出器27は、走行補助用の電動発電機3の回転を制御するために、外輪4に連結しているステータ18に対する内輪5に連結しているロータ19の回転角度を検出する。回転検出器27は、後述する被検出部保持部材28等に取付けられた被検出部27aと、ステータ保持部材24の内周面に取付けられて前記被検出部27aを検出するセンサ部27bとを有する。この回転検出器27として例えばレゾルバが適用される。なお回転検出器27としては、レゾルバに限定されるものではなく、例えば、エンコーダ、パルサーリングあるいはホールセンサなど形式を問わず採用可能である。回転角度からは容易に回転速度を算出することができ、算出した回転速度は電動発電機3の制御やアンチロックブレーキシステム(図示せず)に使用してもよい。なおシステムの構成により、回転速度および回転角度のいずれか一方または両方が必要となる。例えば、電動発電機3のトルク制御(電流制御)を行う場合は回転角度と回転速度の両方が必要となり、消費電力、回生電力を算出するにはトルクと回転速度が必要である。アンチロックブレーキシステムは回転速度が必要である。
<About the rotation detector etc.>
The vehicle power unit 1 is provided with a rotation detector 27. The rotation detector 27 is located inside the hollow of the stator 18. The rotation detector 27 detects the rotation angle of the rotor 19 connected to the inner ring 5 with respect to the stator 18 connected to the outer ring 4 in order to control the rotation of the motor generator 3 for traveling assistance. The rotation detector 27 includes a detected portion 27a attached to a detected portion holding member 28 described later, and a sensor portion 27b attached to the inner peripheral surface of the stator holding member 24 to detect the detected portion 27a. Have. For example, a resolver is applied as the rotation detector 27. The rotation detector 27 is not limited to the resolver, and may be, for example, an encoder, a pulser ring or a Hall sensor regardless of the type. The rotation speed can be easily calculated from the rotation angle, and the calculated rotation speed may be used for control of the motor generator 3 or an antilock brake system (not shown). Depending on the system configuration, one or both of the rotational speed and the rotational angle are required. For example, when torque control (current control) of the motor generator 3 is performed, both the rotation angle and the rotation speed are required, and the torque and the rotation speed are required to calculate the power consumption and the regenerative power. Anti-lock brake systems require rotational speeds.
 ステータ保持部材24の内周面には、外輪4のインボード側端が当接する段差が形成されている。このステータ保持部材24の内周面には、前記段差がある箇所から半径方向内方に所定小距離突出するフランジ部が設けられている。センサ部27bは、ステータ保持部材24の内周面にセンサ部固定部材29を介して取付けられている。センサ部固定部材29は、センサ部固定用リング、センサ部保持部および複数(この例では4本)のボルト63を備える。 A step is formed on the inner peripheral surface of the stator holding member 24 such that the inboard end of the outer ring 4 abuts. The inner peripheral surface of the stator holding member 24 is provided with a flange portion which protrudes a predetermined small distance inward in the radial direction from the portion where the step is present. The sensor portion 27 b is attached to the inner peripheral surface of the stator holding member 24 via the sensor portion fixing member 29. The sensor portion fixing member 29 includes a sensor portion fixing ring, a sensor portion holding portion, and a plurality of (in this example, four) bolts 63.
 前記センサ部固定用リングは、センサ部27bを軸方向に位置決めするリング状部材である。センサ部固定用リングは、ステータ保持部材24の内周面に嵌合され、且つ、前記フランジ部のインボード側面に当接するように配置される。前記センサ部固定用リングの内周面には、センサ部27bの外周面から半径方向外方に突出する突出部を嵌合固定する環状凹みが形成されている。センサ部固定用リングにおける、環状凹みを成す段差に、前記突出部のアウトボード側端が当接することで、ステータ保持部材24に対しセンサ部27bが軸方向に位置決めされる。センサ部27bの配線27baは、センサコネクタ64に接続されている。 The sensor portion fixing ring is a ring-shaped member that positions the sensor portion 27b in the axial direction. The sensor portion fixing ring is fitted to the inner peripheral surface of the stator holding member 24 and arranged to abut the inboard side surface of the flange portion. An annular recess is formed on the inner peripheral surface of the sensor portion fixing ring for fittingly fixing a projection projecting radially outward from the outer peripheral surface of the sensor portion 27b. When the outboard side end of the protrusion abuts on a step forming an annular recess in the sensor portion fixing ring, the sensor portion 27b is positioned in the axial direction with respect to the stator holding member 24. The wiring 27 ba of the sensor unit 27 b is connected to the sensor connector 64.
 前記センサ部保持部は、センサ部27bを軸方向に保持する環状部材であり、円筒部と、この円筒部のアウトボード側の端部から半径方向外方に立ち上がる立板部とで断面L字状に形成されている。センサ部27bの突出部におけるインボード側端を前記立板部に当接し、ボルト63を前記立板部およびセンサ部固定用リングを通して前記フランジ部の雌ねじに螺合することで、センサ部27bがステータ保持部材24に固定される。 The sensor holding portion is an annular member for holding the sensor portion 27b in the axial direction, and an L-shaped cross section is formed by a cylindrical portion and a standing plate portion rising radially outward from an end portion on the outboard side of the cylindrical portion. It is formed in the shape of a circle. With the inboard end of the protruding portion of the sensor portion 27b in contact with the standing plate portion, the sensor portion 27b is screwed to the female screw of the flange portion through the bolt for fixing the bolt 63 through the standing plate portion and the sensor portion fixing ring. It is fixed to the stator holding member 24.
 すなわち前記センサ部固定用リングおよび前記センサ部保持部の立板部には、ボルト挿通孔が円周方向一定間隔おきに形成されている。ステータ保持部材24のフランジ部には、各ボルト挿通孔と同位相に前記雌ねじが形成されている。各ボルト63は、インボード側から前記立板部および前記センサ部固定用リングの各ボルト挿通孔に挿通され、前記フランジ部の雌ねじに螺合されている。なおステータ保持部材24の内周面に、センサ部27bを直接圧入等により固定してもよい。 That is, bolt insertion holes are formed at regular intervals in the circumferential direction in the sensor fixing ring and the plate portion of the sensor holding portion. The flange portion of the stator holding member 24 is formed with the female screw in the same phase as the bolt insertion holes. The bolts 63 are inserted from the inboard side into the bolt insertion holes of the upright plate portion and the sensor portion fixing ring, and are screwed into the female screw of the flange portion. The sensor portion 27b may be directly fixed to the inner peripheral surface of the stator holding member 24 by press fitting or the like.
 被検出部保持部材28は、ハブ輪5aのインボード側端にこのハブ輪5aに同軸に螺合されている。被検出部保持部材28の軸方向中間付近部には、部分内輪5bのインボード側端に当接するフランジ部が設けられている。被検出部保持部材28のアウトボード側に位置する雄ねじを、ハブ輪5aの雌ねじに螺合することで、部分内輪5bのインボード側端に前記フランジ部が当接し、ハブ輪5aに部分内輪5bが強固に固定される。 The detected portion holding member 28 is coaxially screwed with the hub wheel 5a at the inboard side end of the hub wheel 5a. A flange portion that abuts the inboard end of the partial inner ring 5b is provided in the vicinity of the axially middle portion of the detection target holding member 28. By screwing the male screw located on the outboard side of the detected portion holding member 28 with the female screw of the hub wheel 5a, the flange portion abuts on the inboard side end of the partial inner ring 5b, and the partial inner ring against the hub ring 5a. 5b is firmly fixed.
 被検出部保持部材28の外周面のうち、前記フランジ部よりもインボード側に、大径部と小径部が設けられている。被検出部保持部材28のインボード側端に前記雌ねじと同軸に雌ねじが形成されている。被検出部保持部材28の小径部に、被検出部27aの内周面が嵌合されると共に、被検出部保持部材28の段差部に被検出部27aのアウトボード側端が当接するようになっている。被検出部保持部材28の雌ねじに被検出部固定用リング65が螺合され、この被検出部固定用リング65のフランジ部を被検出部27aのインボード側端に当接することで、被検出部27aが被検出部保持部材28に保持され固定される。なお被検出部保持部材28に被検出部27aを圧入嵌合して固定してもよい。 A large diameter portion and a small diameter portion are provided on the inboard side of the flange portion of the outer peripheral surface of the detected portion holding member 28. A female screw is formed on the inboard side end of the detection target holding member 28 coaxially with the female screw. The inner peripheral surface of the detected portion 27a is fitted to the small diameter portion of the detected portion holding member 28, and the outboard side end of the detected portion 27a abuts on the stepped portion of the detected portion holding member 28. It has become. A ring for detecting a portion to be detected 65 is screwed into the female screw of the portion to be detected holding member 28, and the flange portion of the ring for detecting a portion to be detected 65 abuts against the inboard end of the portion to be detected 27a. The portion 27a is held and fixed to the detected portion holding member 28. The detection target portion 27a may be press-fit fitted and fixed to the detection target holding member 28.
 <配線類等>
 ユニットカバー22の円筒部22bのインボード側端には、このインボード側端を覆うコネクタカバー66が複数のボルトにより着脱自在に取付けられている。このコネクタカバー66に、いわゆるパネルマウント型のパワー線用コネクタ67を介して、この電動発電機3の配線17が支持されている。コネクタカバー66には、パネルマウント型のセンサコネクタ64も支持されている。
<Wires etc>
A connector cover 66 covering the inboard end is detachably attached to the inboard end of the cylindrical portion 22b of the unit cover 22 by a plurality of bolts. The wiring 17 of the motor generator 3 is supported by the connector cover 66 via a so-called panel mount type power line connector 67. The connector cover 66 also supports a panel mount type sensor connector 64.
 <作用効果>
 以上説明した車両用動力装置1によれば、車輪用軸受2が、車両の主駆動源と機械的に非連結である従動輪を支持する軸受であるため、電動発電機3が簡易で省スペースで済むことから、車体の足回りの構造等を変更することなく、この電動発電機3を従動輪に簡単に設置し得る。電動発電機3のロータ19が、車輪用軸受2の内輪5に取付けられたダイレクトドライブ形式であるため、電動発電機3の部品点数が少なく構成が簡易で省スペースで済み、車両重量の増加も抑えられる。
<Function effect>
According to the power unit 1 for a vehicle described above, since the wheel bearing 2 is a bearing that supports a driven wheel mechanically disconnected from the main drive source of the vehicle, the motor generator 3 is simple and space saving is achieved. Since this can be done, the motor generator 3 can be easily installed on the driven wheels without changing the structure of the underbody of the vehicle body and the like. Since the rotor 19 of the motor generator 3 is a direct drive type mounted on the inner ring 5 of the wheel bearing 2, the number of parts of the motor generator 3 is small, the configuration is simple and space saving is achieved, and the weight of the vehicle is also increased. It is suppressed.
 ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径で、且つ、電動発電機3におけるハブフランジ7への取付部を除く全体が、ハブフランジ7と、ナックル8のアウトボード側面8aとの間の軸方向範囲L1に位置する。このため、ブレーキロータ12内に電動発電機3を設置するスペースを確保してこの電動発電機3をコンパクトに収めることができる。 The whole of the stator 18 and the rotor 19 is smaller in diameter than the outer peripheral portion 12b of the brake rotor 12, and the whole of the motor generator 3 excluding the mounting portion to the hub flange 7 is the hub flange 7 and the outboard side face of the knuckle 8. It is located in the axial range L1 between 8a and 8a. For this reason, the space which installs motor generator 3 in brake rotor 12 is secured, and this motor generator 3 can be stored compactly.
 さらに回転検出器27がステータ18の中空内部に位置するため、ステータの軸方向端側に回転検出器を設ける構成等に比べて、所望の電動発電機3の出力を確保しつつ装置全体を軸方向にコンパクト化することができる。また、車両用動力装置内において、電動発電機3を収容すべき許容される空間内でステータ18とロータ19の軸方向長さを最大限に大きくし、ロータ19とステータ18とが対向する面積を増やすことで、電動発電機3の出力の最大化を図ることができる。これにより、この車両用動力装置1のナックル8への固定方法として、一般的な車輪用軸受と同様にボルトで固定するような設計が可能となり、車両側のナックル8のアウトボード側面8aの設計が、電動発電機を持たない車両と同様にすることができる。 Furthermore, since the rotation detector 27 is positioned inside the hollow of the stator 18, the entire device can be axially secured while securing a desired output of the motor generator 3 as compared with the configuration in which the rotation detector is provided on the axial end side of the stator. It can be made compact in the direction. Further, in the power unit for a vehicle, the axial length of the stator 18 and the rotor 19 is maximized in the space where the motor generator 3 is to be accommodated, and the area where the rotor 19 and the stator 18 face each other. The output of the motor generator 3 can be maximized by increasing. As a result, as a method of fixing the power unit 1 for a vehicle to the knuckle 8, a design can be made such that it can be fixed with a bolt like a general wheel bearing. Design of the outboard side surface 8a of the knuckle 8 on the vehicle side However, it can be the same as a vehicle that does not have a motor generator.
 また、車輪用軸受2とナックル8のアウトボード側面8aとの間に、回転検出器27が配置されている。この場合、回転検出器27が車輪用軸受装置全体のインボード側に位置することから、この車両用動力装置1をナックル8から取り外した状態で、回転検出器27を着脱自在にすることが容易である。また回転検出器27が例えばハブフランジ近傍に設置される構造等よりも、回転検出器27からインボード側に延びる配線27baの長さを短くすることができる。これによりコスト低減を図れる。 Further, a rotation detector 27 is disposed between the wheel bearing 2 and the outboard side surface 8 a of the knuckle 8. In this case, since the rotation detector 27 is located on the inboard side of the entire wheel bearing device, it is easy to make the rotation detector 27 detachable in a state where the vehicular power unit 1 is removed from the knuckle 8 It is. Further, the length of the wiring 27ba extending from the rotation detector 27 to the inboard side can be made shorter than in a structure in which the rotation detector 27 is installed, for example, in the vicinity of the hub flange. This can reduce the cost.
 電動発電機3はロータ19がステータ18の半径方向外方に位置するアウターロータ型であるため、インナーロータ型よりもロータ19とステータ18とが対向する面積を増やすことができる。これにより、限られた空間内で出力トルクを最大化することが可能となる。 Since the motor generator 3 is an outer rotor type in which the rotor 19 is located outward in the radial direction of the stator 18, the area in which the rotor 19 and the stator 18 face each other can be increased compared to the inner rotor type. This makes it possible to maximize the output torque in a limited space.
 <他の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<Other Embodiments>
In the following description, the portions corresponding to the items described in advance in each embodiment are denoted by the same reference numerals, and the redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the portions specifically described in the embodiments but also the embodiments may be partially combined if any problem does not occur in the combination.
 図6は、他の実施形態に係る車両用動力装置1Aの断面図(図7のVI-VI線断面図)である。図7は同車両用動力装置1Aの正面図である。図6では、ブレーキロータ、ブレーキキャリパ、ナックル、コネクタカバーおよびコネクタを省略しているが、前述の図1に示す実施形態と同一構成である。図1と図6とを比較すると回転検出器の配置だけが異なるため、その部分のみ説明する。 FIG. 6 is a cross-sectional view (cross-sectional view along the line VI-VI in FIG. 7) of a vehicular power unit 1A according to another embodiment. FIG. 7 is a front view of the power unit 1A for the same vehicle. Although the brake rotor, the brake caliper, the knuckle, the connector cover and the connector are omitted in FIG. 6, they have the same configuration as the embodiment shown in FIG. 1 described above. Comparison of FIG. 1 and FIG. 6 only differs in the arrangement of the rotation detector, so only that part will be described.
 図6に示すように、車輪用軸受2における軸方向に並ぶ二個の軸受部2A,2Aの間の空間に、回転検出器27が配置されている。センサ部27bは、外輪4とステータ保持部材24を径方向に貫通する貫通孔に設置されている。被検出部27aは、ハブ輪5aの外周面に圧入嵌合され、且つ、このハブ輪5aの段差部と部分内輪5bのアウトボード側端との間に挟み込まれて軸方向位置が規制されている。この回転検出器27の図示外の配線は、センサ部27bよりステータ保持部材24の貫通孔等を通り、コネクタカバー66(図1参照)に支持されたセンサコネクタ64(図1参照)に配線されている。 As shown in FIG. 6, a rotation detector 27 is disposed in the space between the two bearing portions 2A, 2A aligned in the axial direction in the wheel bearing 2. The sensor portion 27 b is installed in a through hole that penetrates the outer ring 4 and the stator holding member 24 in the radial direction. The to-be-detected part 27a is press-fit fitted to the outer peripheral surface of the hub wheel 5a, and is pinched between the step portion of the hub wheel 5a and the outboard side end of the partial inner ring 5b to restrict the axial position. There is. A wire (not shown) of the rotation detector 27 is wired from the sensor portion 27b to the sensor connector 64 (see FIG. 1) supported by the connector cover 66 (see FIG. 1) through the through hole of the stator holding member 24 and the like. ing.
 この構成によると、二個の軸受部2A,2Aの間の空間を活用して回転検出器27を配置することができる。また回転検出器27を車輪用軸受2に直接設置することが可能となるため、回転検出器27を保持する部品等を低減することが可能となる。したがって、構造を簡略化でき、製造コストの低減を図れる。その他前述の同様の作用効果を奏する。 According to this configuration, the rotation detector 27 can be disposed utilizing the space between the two bearing portions 2A, 2A. Further, since the rotation detector 27 can be installed directly on the wheel bearing 2, it is possible to reduce the parts and the like that hold the rotation detector 27. Therefore, the structure can be simplified and the manufacturing cost can be reduced. The other effects similar to those described above are exhibited.
 この例の電動発電機3は、ステータ18およびロータ19の全部がブレーキロータ12の外周部12bよりも小径であるが、この例に限定されるものではない。例えば、ステータ18およびロータ19の一部がブレーキロータ12の外周部12bよりも小径であってもよい。 In the motor generator 3 of this example, although all of the stator 18 and the rotor 19 have a diameter smaller than that of the outer peripheral portion 12b of the brake rotor 12, the present invention is not limited to this example. For example, a part of the stator 18 and the rotor 19 may be smaller in diameter than the outer peripheral portion 12 b of the brake rotor 12.
 <車両用システムについて>
 図8は、いずれかの実施形態に係る車両用動力装置1,(1A)を用いた車両用システムの概念構成を示すブロック図である。この車両用システムにおいて、車両用動力装置1,(1A)は、主駆動源と機械的に非連結である従動輪10を持つ車両において、従動輪10に対して搭載される。車両用動力装置1,(1A)における車輪用軸受2(図1,図6)は、従動輪10を支持する軸受である。
<About the system for vehicles>
FIG. 8 is a block diagram showing a conceptual configuration of a system for a vehicle using the vehicle power unit 1, (1A) according to any one of the embodiments. In the vehicle system, the vehicle power unit 1, (1A), in a vehicle having a driven wheel 10 B is a main drive source mechanically unconnected, is mounted against the driven wheel 10 B. The vehicle power unit 1, a wheel bearing 2 in (1A) (Figure 1, Figure 6) is a bearing supporting the driven wheel 10 B.
 主駆動源35は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関、または電動発電機(電動モータ)、または両者を組み合わせたハイブリッド型の駆動源である。前記「電動発電機」は、回転付与による発電が可能な電動モータを称す。図示の例では、車両30は、前輪が駆動輪10、後輪が従動輪10となる前輪駆動車であって、主駆動源35が内燃機関35aと駆動輪側の電動発電機35bとを有するハイブッリド車(以下、「HEV」と称することがある)である。 The main drive source 35 is an internal combustion engine such as a gasoline engine or a diesel engine, or a motor generator (electric motor), or a hybrid drive source combining both. The "motor generator" refers to an electric motor capable of generating power by rotation. In the illustrated example, the vehicle 30 is a front wheel drive car whose front wheels are drive wheels 10 A and rear wheels are driven wheels 10 B, and the main drive source 35 is an internal combustion engine 35 a and a motor generator 35 b on the drive wheels side. It is a hybrid car (hereinafter may be referred to as "HEV").
 具体的には、駆動輪側の電動発電機35bが48V等の中電圧で駆動されるマイルドハイブリッド形式である。ハイブリッドはストロングハイブリッドとマイルドハイブリッドとに大別されるが、マイルドハイブリッドは、主要駆動源が内燃機関であって、発進時や加速時等にモータで走行の補助を主に行う形式を言い、EV(電気自動車)モードでは通常の走行を暫くは行えても長時間行うことができないことでストロングハイブリッドと区別される。同図の例の内燃機関35aは、クラッチ36および減速機37を介して駆動輪10のドライブシャフトに接続され、減速機37に駆動輪側の電動発電機35bが接続されている。 Specifically, it is a mild hybrid type in which the motor generator 35b on the drive wheel side is driven by a medium voltage such as 48V. Hybrids can be broadly divided into Strong Hybrids and Mild Hybrids, but Mild Hybrids, whose main drive source is an internal combustion engine, is a type that mainly assists driving with a motor when starting or accelerating. In the (electric car) mode, it can be distinguished from the strong hybrid because normal travel can be performed for a while but can not be performed for a long time. Internal combustion engine 35a of the example of the figure, is connected to the drive shaft of the drive wheel 10 A via the clutch 36 and speed reducer 37, the motor generator 35b of the driving wheel is connected to a reduction gear 37.
 この車両用システムは、従動輪10の回転駆動を行う走行補助用の発電機である電動発電機3と、この電動発電機3の制御を行う個別制御手段39と、上位ECU40に設けられて前記個別制御手段39に駆動および回生の制御を行わせる指令を出力する個別電動発電機指令手段45とを備える。電動発電機3は、蓄電手段に接続されている。この蓄電手段は、バッテリー(蓄電池)またはキャパシタ、コンデンサ等を用いることができ、その形式や車両30への搭載位置は問わないが、この実施形態では、車両30に搭載された低電圧バッテリー50および中電圧バッテリー49のうちの中電圧バッテリー49とされている。 The vehicle system is provided to a motor generator 3 which is a generator for driving assistance for rotating the driven wheel 10 B , an individual control means 39 for controlling the motor generator 3, and a host ECU 40. It includes an individual motor generator command means 45 for outputting a command for causing the individual control means 39 to perform drive and regeneration control. The motor generator 3 is connected to the storage means. The storage means may be a battery (storage battery) or a capacitor, a capacitor, etc. The type and mounting position on the vehicle 30 are not limited. In this embodiment, the low voltage battery 50 mounted on the vehicle 30 and The medium voltage battery 49 of the medium voltage battery 49 is used.
 従動輪用の電動発電機3は、変速機を用いないダイレクトドライブモータである。電動発電機3は、電力を供給することで電動機として作用し、また車両30の運動エネルギーを電力に変換する発電機としても作用する。電動発電機3は、内輪5(図1)にロータ19(図1)が取付けられているため、電動発電機3に車両の進行方向と同じ方向にトルクを発生するように電流を印加すると内輪5(図1)が回転駆動され、逆方向にトルクを発生するように電流を印加することで回生電力が得られる。 The motor generator 3 for a driven wheel is a direct drive motor that does not use a transmission. The motor generator 3 acts as a motor by supplying electric power, and also acts as a generator that converts kinetic energy of the vehicle 30 into electric power. Since the motor generator 3 has the rotor 19 (FIG. 1) attached to the inner ring 5 (FIG. 1), the current is applied to the motor generator 3 to generate torque in the same direction as the traveling direction of the vehicle. 5 (FIG. 1) is rotationally driven, and regenerative electric power is obtained by applying a current so as to generate torque in the reverse direction.
 <車両30の制御系について>
 上位ECU40は、車両30の統合制御を行う手段であり、トルク指令生成手段43を備える。このトルク指令生成手段43は、アクセルペダル等のアクセル操作手段56およびブレーキペダル等のブレーキ操作手段57からそれぞれ入力される操作量の信号に従ってトルク指令を生成する。この車両30は、主駆動源35として内燃機関35aおよび駆動輪側の電動発電機35bを備え、また二つの従動輪10,10をそれぞれ駆動する二つの電動発電機3,3を備えるため、前記トルク指令を各駆動源35a,35b,3,3に定められた規則によって分配するトルク指令分配手段44が上位ECU40に設けられている。
<About Control System of Vehicle 30>
The host ECU 40 is a unit that performs integrated control of the vehicle 30, and includes a torque command generation unit 43. The torque command generation unit 43 generates a torque command in accordance with signals of operation amounts respectively input from an accelerator operation unit 56 such as an accelerator pedal and a brake operation unit 57 such as a brake pedal. This vehicle 30 includes an internal combustion engine 35a and a motor generator 35b on the drive wheel side as a main drive source 35, and also includes two motor generators 3 and 3 for driving two driven wheels 10 B and 10 B respectively. The host ECU 40 is provided with torque command distribution means 44 for distributing the torque command to the drive sources 35a, 35b, 3 and 3 according to a rule defined.
 内燃機関35aに対するトルク指令は内燃機関制御手段47に伝達され、内燃機関制御手段47によるバルブ開度制御等に用いられる。駆動輪側の発電電動機35bに対するトルク指令は、駆動輪側電動発電機制御手段48に伝達されて実行される。従動輪側の電動発電機3,3に対するトルク指令は、個別制御手段39,39に伝達される。前記トルク指令分配手段44のうち、個別制御手段39,39へ出力する部分を個別電動発電機指令手段45と称している。この個別電動発電機指令手段45は、ブレーキ操作手段57の操作量の信号に対して、電動発電機3が回生制動により制動を分担する制動力の指令となるトルク指令を個別制御手段39へ与える機能も備える。 The torque command for the internal combustion engine 35a is transmitted to the internal combustion engine control means 47, and is used for valve opening control etc. by the internal combustion engine control means 47. A torque command to the drive wheel side generator motor 35b is transmitted to the drive wheel side motor generator control means 48 and executed. The torque command to the motor generators 3, 3 on the driven wheel side is transmitted to the individual control means 39, 39. The part of the torque command distribution means 44 to be output to the individual control means 39, 39 is referred to as an individual motor generator command means 45. In response to the signal of the operation amount of the brake operation means 57, the individual motor generator instruction means 45 gives the individual control means 39 a torque instruction serving as an instruction of a braking force with which the motor generator 3 shares braking by regenerative braking. It also has a function.
 個別制御手段39はインバータ装置であり、中電圧バッテリー49の直流電力を三相の交流電圧に変換するインバータ41と、前記トルク指令等によりインバータ41の出力をPWM制御等で制御する制御部42とを有する。インバータ41は、半導体スイッチング素子等によるブリッジ回路(図示せず)等を備える。 The individual control means 39 is an inverter device, and an inverter 41 for converting DC power of the medium voltage battery 49 into three-phase AC voltage, and a control unit 42 for controlling the output of the inverter 41 by PWM control etc. Have. The inverter 41 includes a bridge circuit (not shown) and the like by a semiconductor switching element and the like.
 制御部42は、例えば、個別電動発電機指令手段45より与えられるトルク指令に対して、発生するトルクが一致するように電動発電機3を追従制御する。すなわち制御部42は、指令トルクと、回転検出器27(図1)で検出される回転速度(回転角度センサの場合、容易に算出可能)と、試験結果から電動発電機3に印加する電流を算出する。さらに算出した電流と回転角度と図示外の電流センサの値から電動発電機3に印加する電圧を算出する。算出した電圧を電動発電機3に印加し、指令トルクと一致するトルクを発生する。なお個別制御手段39は、二つの電動発電機3,3に対して個別に設けられるが、一つの筐体内に収められ、制御部42を両個別制御手段39,39で共有する構成であってもよい。 The control unit 42 controls the motor generator 3 to follow the torque command generated by the individual motor generator command means 45, for example, so that the generated torque matches. That is, the control unit 42 controls the command torque, the rotation speed (which can be easily calculated in the case of the rotation angle sensor) detected by the rotation detector 27 (FIG. 1), and the current applied to the motor generator 3 from the test result. calculate. Further, the voltage applied to the motor generator 3 is calculated from the calculated current, the rotation angle, and the value of the current sensor (not shown). The calculated voltage is applied to the motor generator 3 to generate a torque that matches the command torque. Although the individual control means 39 is separately provided for the two motor generators 3 and 3, it is housed in one case, and the control unit 42 is shared by both the individual control means 39, 39. It is also good.
 図9は、図8に示した車両用システムを搭載した車両の一例となる電源系統図である。同図の例では、バッテリーとして低電圧バッテリー50と中電力バッテリー49とが設けられ、両バッテリー49,50は、DC/DCコンバータ51を介して接続されている。電動発電機3は二つあるが、代表して一つで図示している。図8の駆動輪側の電動発電機35bは、図9では図示を省略しているが、従動輪側の電動発電機3と並列に中電力系統に接続されている。低電圧系統には低電圧負荷52が接続され、中電圧系統には中電圧負荷53が接続される。低電圧負荷52および中電圧負荷53は、それぞれ複数あるが、代表して一つで示している。 FIG. 9 is a power supply system diagram as an example of a vehicle equipped with the vehicle system shown in FIG. In the example of the figure, a low voltage battery 50 and a medium power battery 49 are provided as batteries, and both the batteries 49 and 50 are connected via a DC / DC converter 51. Although there are two motor generators 3, one is shown as a representative. Although not shown in FIG. 9, the motor generator 35b on the drive wheel side of FIG. 8 is connected to the medium power system in parallel with the motor generator 3 on the driven wheel side. A low voltage load 52 is connected to the low voltage system, and a medium voltage load 53 is connected to the medium voltage system. There are a plurality of low voltage loads 52 and a plurality of medium voltage loads 53, but one is representatively shown.
 低電圧バッテリー50は、制御系等の電源として各種の自動車一般に用いられているバッテリーであり、例えば12Vまたは24Vとされる。低電圧負荷52としては、内燃機関35aのスタータモータ、灯火類、上位ECU40およびその他のECU(図示せず)等の基幹部品がある。低電圧バッテリー50は電装補機類用補助バッテリーと称し、中電圧バッテリー49は電動システム用補助バッテリー等と称してもよい。 The low voltage battery 50 is a battery generally used in various automobiles as a power supply of a control system or the like, and is, for example, 12 V or 24 V. The low voltage load 52 includes basic components such as a starter motor of the internal combustion engine 35a, lights, a host ECU 40, and other ECUs (not shown). The low voltage battery 50 may be referred to as an auxiliary battery for electrical equipment accessories, and the medium voltage battery 49 may be referred to as an auxiliary battery for an electric system or the like.
 中電圧バッテリー49は、低電圧バッテリー50よりも電圧が高く、かつストロングハイブリッド車等に用いられる高圧バッテリー(100V以上、例えば200~400V程度)よりも低く、かつ作業時に感電による人体への影響が問題とならない程度の電圧であり、近年マイルドハイブリッドに用いられている48Vバッテリーが好ましい。48Vバッテリー等の中電圧バッテリー49は、従来の内燃機関を搭載した車両に比較的容易に搭載することができ、マイルドハイブリッドとして電力による動力アシストや回生により、燃費低減することができる。 The medium voltage battery 49 has a higher voltage than the low voltage battery 50 and is lower than a high voltage battery (100 V or more, for example, about 200 to 400 V) used in a strong hybrid vehicle etc. It is a voltage that does not cause a problem, and a 48V battery used in recent years for mild hybrids is preferable. A medium voltage battery 49 such as a 48V battery can be mounted relatively easily on a vehicle equipped with a conventional internal combustion engine, and can reduce fuel consumption by power assist and regeneration with electric power as a mild hybrid.
 前記48V系統の中電圧負荷53は前記アクセサリー部品であり、前記駆動輪側の電動発電機35bである動力アシストモータ、電動ポンプ、電動パワーステアリング、スーパーチャージャ、およびエアーコンプレッサなどである。アクセサリーによる負荷を48V系統で構成することで、高電圧(100V以上のストロングハイブリッド車など)よりも動力アシストの出力が低くなるものの、乗員やメンテナンス作業者への感電の危険性を低くすることができる。電線の絶縁被膜を薄くすることができるので、電線の重量や体積を減らすことができる。また、12Vよりも小さな電流量で大きな電力量を入出力することができるため、電動機または発電機の体積を小さくすることができる。これらのことから、車両の燃費低減効果に寄与する。 The medium voltage load 53 of the 48V system is the accessory component, and is a power assist motor, an electric pump, an electric power steering, a supercharger, an air compressor, or the like which is the motor generator 35b on the drive wheel side. By configuring the load of accessories with a 48V system, although the power assist output is lower than that of high voltage (100V or higher strong hybrid vehicles etc.), the risk of electric shock to occupants and maintenance workers can be reduced. it can. Since the insulation coating of the wire can be thinned, the weight and volume of the wire can be reduced. Further, since a large amount of power can be input / output with a current amount smaller than 12 V, the volume of the motor or generator can be reduced. From these things, it contributes to the fuel consumption reduction effect of vehicles.
 この車両用システムは、こうしたマイルドハイブリッド車のアクセサリー部品に好適であり、動力アシストおよび電力回生部品として適用される。なお、従来よりマイルドハイブリッド車において、CMG、GMG、ベルト駆動式スタータモータ(いずれも図示せず)などが採用されることがあるが、これらはいずれも、内燃機関または動力装置に対して動力アシストまたは回生するため、伝達装置および減速機などの効率の影響を受ける。 The vehicle system is suitable for accessory parts of such mild hybrid vehicles, and is applied as a power assist and a power regeneration part. Although CMGs, GMGs, and belt-driven starter motors (none of which are shown) may be employed conventionally in mild hybrid vehicles, all of them are power assists for internal combustion engines or power devices. Or because it regenerates, it is affected by the efficiency of the transmission device and speed reducer.
 これに対してこの実施形態の車両用システムは従動輪10に対して搭載されるため、内燃機関35aおよび電動モータ(図示せず)等の主駆動源とは切り離されており、電力回生の際には車体の運動エネルギーを直接利用することができる。また、CMG、GMG、ベルト駆動式スタータモータなどを搭載する際には、車両30の設計段階から考慮して組み込む必要があり、後付けすることが難しい。 Since contrast to the vehicle system of this embodiment is mounted with respect to the driven wheels 10 B, and the main drive source is disconnected such as an internal combustion engine 35a and the electric motor (not shown), the power regeneration In this case, the kinetic energy of the car body can be used directly. In addition, when CMG, GMG, a belt drive type starter motor, etc. are mounted, they need to be incorporated in consideration from the design stage of the vehicle 30, and it is difficult to retrofit.
 これに対して、従動輪10内に収まるこの車両用システムの電動発電機3は、完成車であっても部品交換と同等の工数で取り付けることができ、内燃機関35aのみの完成車に対しても48Vのシステムを構成することができる。内燃機関35aのみ備えた既存の車両に、いずれかの実施形態に係る車両用動力装置1,(1A)と、電動発電機用のバッテリーとして前記中電圧バッテリー49とを搭載することで、車両の大幅な改造をすることなく、マイルドハイブリッド車両にすることができる。この実施形態の車両用システムを搭載した車両に、図8の例のように別の補助駆動用の電動発電機35bが搭載されていても構わない。その際は車両30に対する動力アシスト量や回生電力量を増加させることができ、さらに燃費低減に寄与する。 In contrast, motor generator 3 of the system for this vehicle to fit in the driven wheel 10 in the B may be attached even complete vehicles in part exchange the same steps, to complete vehicle internal combustion engine 35a only Even a 48V system can be configured. In an existing vehicle equipped with only the internal combustion engine 35a, the vehicle power unit 1 (1A) according to any one of the embodiments and the medium voltage battery 49 as a battery for a motor generator are mounted on the vehicle. It can be a mild hybrid vehicle without major modifications. Another auxiliary drive motor generator 35b may be mounted on the vehicle equipped with the vehicle system of this embodiment as shown in FIG. At that time, the power assist amount and the regenerative electric energy for the vehicle 30 can be increased, which further contributes to the fuel consumption reduction.
 図示しないが、いずれかの実施形態に係る車両用動力装置を駆動輪に適用してもよい。車両用動力装置を駆動輪および従動輪にそれぞれ適用することも可能である。 Although not shown, the power unit for a vehicle according to any of the embodiments may be applied to the drive wheel. It is also possible to apply the vehicle power unit to the drive wheel and the driven wheel, respectively.
 図8に示す車両用システムは、発電を行う機能を有するが、給電による回転駆動をしないシステムとしてもよい。この場合、電動発電機3が発電した回生電力を中電圧バッテリー49に蓄えることにより、制動力を発生させることができる。機械式のブレーキ操作手段57と併用や使い分けで、制動性能も向上させることができる。このように発電を行う機能に限定した場合、個別制御手段39はインバータ装置ではなく、AC/DCコンバータ装置(図示せず)として構成することができる。前記AC/DCコンバータ装置は、3相交流電圧を直流電圧に変換することで、電動発電機3の回生電力を中電圧バッテリー49に充電する機能を備え、インバータと比較すると制御方法が容易であり、小型化が可能となる。 Although the system for vehicles shown in FIG. 8 has a function to generate electric power, it may be a system which does not rotate by feeding. In this case, the braking power can be generated by storing the regenerated power generated by the motor generator 3 in the medium voltage battery 49. The braking performance can also be improved by using it together with or using the mechanical brake operating means 57. When limited to the function of generating power as described above, the individual control means 39 can be configured as an AC / DC converter (not shown) rather than an inverter. The AC / DC converter device has a function of charging the regenerative power of the motor generator 3 to the medium voltage battery 49 by converting a three-phase AC voltage into a DC voltage, and the control method is easy compared to an inverter. Can be miniaturized.
 車両がアンチロックブレーキシステム(略称ABS)を備える場合、回転検出器27は、アンチロックブレーキシステムの制御に用いられるものであってもよい。この制御において、回転検出器27から算出された車輪速と車体速から接地面に対する車輪の滑り状態を推定し、この滑り状態を解消するように制御し得る。
 車両に回転検出器27を複数配置し、いずれかの回転検出器27を電動発電機3の制御に使用し、他のいずれかの回転検出器27をABSの制御に使用してもよい。
When the vehicle includes an antilock brake system (abbr. ABS), the rotation detector 27 may be used to control the antilock brake system. In this control, the slip state of the wheel with respect to the ground contact surface can be estimated from the wheel speed and the vehicle speed calculated from the rotation detector 27, and control can be performed to eliminate this slip state.
A plurality of rotation detectors 27 may be disposed in the vehicle, any one of the rotation detectors 27 may be used to control the motor generator 3, and any other rotation detector 27 may be used to control the ABS.
 加えて、本願における車両用動力装置1において、車輪用軸受2は、回転輪として、一つの部分内輪が嵌合されたハブ輪を備え、固定輪である外輪と、ハブ輪および部分内輪の嵌合体で構成された第3世代構造としているが、これに限定するものではない。ハブフランジを有するハブと、転動体の軌道面を有する部材とを合わせた構造体が本明細書でいう回転輪となる。車輪用軸受2は、例えば、主に固定輪である外輪と、ハブフランジを有するハブの外周面に嵌合された内輪とを備えた第1世代構造であってもよく、固定輪である外輪と、ハブフランジを有するハブの外周面に嵌合された内輪とを備えた内輪回転形式の第2世代構造であってもよい。これらの例では、前記ハブと前記内輪とが組み合わさったものが本明細書でいう「回転輪」に相当する。車輪用軸受2は、ハブフランジを有する回転輪である外輪と、固定輪である内輪とを備えた外輪回転形式の第2世代構造であってもよい。 In addition, in the power unit 1 for a vehicle according to the present application, the wheel bearing 2 includes a hub ring to which one partial inner ring is fitted as a rotary ring, and the outer ring which is a fixed ring and the hub ring and the partial inner ring Although it is set as the 3rd generation structure comprised by union, it does not limit to this. A structure in which a hub having a hub flange and a member having a raceway surface of a rolling element are combined is a rotating wheel as referred to in the present specification. The wheel bearing 2 may be, for example, a first generation structure including an outer ring mainly serving as a fixed ring and an inner ring fitted to the outer peripheral surface of a hub having a hub flange, and the outer ring serving as a fixed ring The inner ring rotation type second generation structure may be provided with an inner ring fitted to an outer peripheral surface of a hub having a hub flange. In these examples, the combination of the hub and the inner ring corresponds to the "rotating wheel" in the present specification. The wheel bearing 2 may be of an outer ring rotation type second generation structure including an outer ring which is a rotating ring having a hub flange and an inner ring which is a fixed ring.
 以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
1,1A…車両用動力装置
2…車輪用軸受
3…電動発電機(発電機)
4…外輪(固定輪)
5…内輪(回転輪)
7…ハブフランジ
8…ナックル(足回りフレーム部品)
12…ブレーキロータ
18…ステータ
19…ロータ
27…回転検出器
1, 1A: power unit for vehicle 2: bearing for wheel 3: motor generator (generator)
4 ... Outer ring (fixed ring)
5 ... Inner ring (turning wheel)
7 ... Hub flange 8 ... knuckle (frame of underbody frame)
12 ... brake rotor 18 ... stator 19 ... rotor 27 ... rotation detector

Claims (7)

  1.  固定輪、およびハブフランジを有し前記固定輪に転動体を介して回転自在に支持されて前記ハブフランジに車両の車輪およびブレーキロータが取付けられる回転輪を有する車輪用軸受と、
     前記車輪用軸受の前記固定輪に取付けられたステータ、および前記車輪用軸受の前記回転輪に取付けられたロータを有する発電機と、
     前記固定輪に対する前記回転輪の回転角度または回転速度を検出する回転検出器と、
    を備えた車両用動力装置であって、
     前記ステータおよび前記ロータの一部または全部が、前記ブレーキロータにおける、ブレーキキャリパが押し付けられる部分となる外周部よりも小径であり、且つ、前記発電機におけるハブフランジへの取付部を除く全体が、前記ハブフランジと、前記車両における足回りフレーム部品のアウトボード側面との間の軸方向範囲に位置し、
     前記回転検出器が前記ステータの中空内部に位置する車両用動力装置。
    A wheel bearing having a fixed wheel, and a wheel flange having a hub flange and rotatably supported by the fixed wheel via rolling elements and having the wheel and brake rotor of the vehicle attached to the hub flange;
    A generator having a stator attached to the fixed wheel of the wheel bearing, and a rotor attached to the rotating wheel of the wheel bearing;
    A rotation detector for detecting a rotation angle or rotation speed of the rotating wheel with respect to the fixed wheel;
    A power unit for a vehicle comprising
    Part or all of the stator and the rotor are smaller in diameter than the outer peripheral part of the brake rotor where the brake caliper is pressed, and the whole excluding the mounting portion to the hub flange in the generator is In an axial range between the hub flange and the outboard side of an undercarriage part of the vehicle,
    A power plant for a vehicle, wherein the rotation detector is located inside the hollow of the stator.
  2.  請求項1に記載の車両用動力装置において、前記発電機は、前記車輪を回転駆動可能な電動発電機である車両用動力装置。 The vehicular power apparatus according to claim 1, wherein the generator is a motor generator capable of rotationally driving the wheels.
  3.  請求項1または請求項2に記載の車両用動力装置において、前記発電機は、前記ステータが前記車輪用軸受の外周に位置し、前記ロータが前記ステータの半径方向外方に位置するアウターロータ型である車両用動力装置。 The power generator for a vehicle according to claim 1 or 2, wherein the generator is an outer rotor type in which the stator is located on the outer periphery of the wheel bearing and the rotor is located radially outward of the stator A power unit for a vehicle.
  4.  請求項1ないし請求項3のいずれか1項に記載の車両用動力装置において、前記車輪用軸受と前記足回りフレーム部品のアウトボード側面との間に、前記回転検出器が配置された車両用動力装置。 The power unit for a vehicle according to any one of claims 1 to 3, wherein the rotation detector is disposed between the wheel bearing and an outboard side surface of the underbody frame part. Power plant.
  5.  請求項1ないし請求項3のいずれか1項に記載の車両用動力装置において、前記車輪用軸受は、軸方向に並ぶ二個の軸受部を備え、前記二個の軸受部の間に、前記回転検出器が配置された車両用動力装置。 The power unit for a vehicle according to any one of claims 1 to 3, wherein the wheel bearing comprises two bearing portions arranged in the axial direction, and between the two bearing portions. Power unit for vehicles in which a rotation detector is arranged.
  6.  請求項1ないし請求項5のいずれか1項に記載の車両用動力装置において、前記回転検出器は、前記発電機の制御に使用されるものである車両用動力装置。 The vehicular power apparatus according to any one of claims 1 to 5, wherein the rotation detector is used to control the generator.
  7.  請求項1ないし請求項6のいずれか1項に記載の車両用動力装置において、前記車両がアンチロックブレーキシステムを備え、前記回転検出器は、アンチロックブレーキシステムの制御に使用されるものである車両用動力装置。 The power plant for vehicles according to any one of claims 1 to 6, wherein the vehicle includes an antilock brake system, and the rotation detector is used to control the antilock brake system. Vehicle power unit.
PCT/JP2018/038535 2017-10-17 2018-10-16 Vehicle power device WO2019078217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200781A JP7025176B2 (en) 2017-10-17 2017-10-17 Vehicle power unit
JP2017-200781 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019078217A1 true WO2019078217A1 (en) 2019-04-25

Family

ID=66174170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038535 WO2019078217A1 (en) 2017-10-17 2018-10-16 Vehicle power device

Country Status (2)

Country Link
JP (1) JP7025176B2 (en)
WO (1) WO2019078217A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386070B2 (en) 2019-12-20 2023-11-24 Ntn株式会社 Bearing devices for vehicle power plants and wheels with generators
CN111665271B (en) * 2020-07-27 2023-07-25 大冶市探伤机有限责任公司 X-ray flaw detector and running gear thereof
CN112290750B (en) * 2020-10-15 2022-10-04 厦门唯质电气科技有限公司 Salient-pole hub motor and control method thereof
WO2024043004A1 (en) * 2022-08-24 2024-02-29 株式会社デンソー In-wheel motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492290A1 (en) * 1990-12-21 1992-07-01 FIAT AUTO S.p.A. Driving wheel unit for an electric traction vehicle
JP2005031063A (en) * 2003-05-22 2005-02-03 Nsk Ltd Load measuring device for rolling bearing unit, and rolling bearing unit for measuring load
JP2007153266A (en) * 2005-12-08 2007-06-21 Mitsubishi Motors Corp In-wheel motor
JP2007162923A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Abrasion powder adsorption device
US20140117743A1 (en) * 2011-07-07 2014-05-01 Schaeffler Technologies AG & Co. KG Drive system with ventilation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492290A1 (en) * 1990-12-21 1992-07-01 FIAT AUTO S.p.A. Driving wheel unit for an electric traction vehicle
JP2005031063A (en) * 2003-05-22 2005-02-03 Nsk Ltd Load measuring device for rolling bearing unit, and rolling bearing unit for measuring load
JP2007153266A (en) * 2005-12-08 2007-06-21 Mitsubishi Motors Corp In-wheel motor
JP2007162923A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Abrasion powder adsorption device
US20140117743A1 (en) * 2011-07-07 2014-05-01 Schaeffler Technologies AG & Co. KG Drive system with ventilation

Also Published As

Publication number Publication date
JP2019073170A (en) 2019-05-16
JP7025176B2 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US10752104B2 (en) Bearing device for wheels with auxiliary power device
JP7156787B2 (en) Wheel bearing device and vehicle equipped with this wheel bearing device
JP7089939B2 (en) Motors and vehicle power units equipped with this motor, generators and bearings for wheels with generators equipped with this generator
WO2020162399A1 (en) Vehicle power device and wheel bearing device equipped with generator
WO2019225522A1 (en) Vehicle power unit and vehicle wheel bearing with generator
WO2019078217A1 (en) Vehicle power device
WO2019138965A1 (en) Wheel bearing apparatus and vehicle provided with wheel bearing apparatus
JP2018057255A (en) Vehicle power assistance system and vehicle driven wheel regenerative system
EP3517336B1 (en) Bearing device for wheels with auxiliary power device
WO2021251299A1 (en) Vehicle power device and wheel bearing with generator
US11447003B2 (en) Vehicle power device and wheel bearing device with generator
WO2020162400A1 (en) Vehicle power device equipped with electric motor and generator-attached wheel bearing equipped with generator
WO2019078216A1 (en) Vehicle power device and wheel bearing device with generator
WO2018225696A1 (en) Generator-equipped wheel bearing device and system for vehicles
JP2019018707A (en) Wheel bearing device with power device
WO2019049973A1 (en) Bearing device for vehicle wheel, and vehicle provided with bearing device for vehicle wheel
WO2018056270A1 (en) Vehicle power assist system
JP7349961B2 (en) Bearings for vehicle power units and wheels with generators
JP2019048555A (en) Bearing device for wheel with generator and vehicle provided with bearing device for wheel with generator
JP2019049314A (en) Bearing device for wheel with power generator and vehicle provided with bearing device for wheel with power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869096

Country of ref document: EP

Kind code of ref document: A1