WO2019065990A1 - Ophthalmological laser medical treatment device - Google Patents

Ophthalmological laser medical treatment device Download PDF

Info

Publication number
WO2019065990A1
WO2019065990A1 PCT/JP2018/036303 JP2018036303W WO2019065990A1 WO 2019065990 A1 WO2019065990 A1 WO 2019065990A1 JP 2018036303 W JP2018036303 W JP 2018036303W WO 2019065990 A1 WO2019065990 A1 WO 2019065990A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
unit
image
patient
laser
Prior art date
Application number
PCT/JP2018/036303
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 水戸
康寛 古内
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2019545149A priority Critical patent/JPWO2019065990A1/en
Publication of WO2019065990A1 publication Critical patent/WO2019065990A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser

Definitions

  • the present disclosure relates to an ophthalmic laser treatment apparatus for treating a patient's eye by irradiating a laser beam.
  • a laser treatment apparatus which performs treatment of an eye by irradiating treatment laser light onto a tissue (for example, the fundus) of a patient's eye (see Patent Document 1).
  • a tissue for example, the fundus
  • Patent Document 1 a tissue which covers the fundus of a patient's eye.
  • the operator observes the fundus of the patient's eye using a slit lamp, a fundus camera or the like, and applies a laser beam to the treatment site of the eye.
  • Patent Document 1 discloses an ophthalmic laser treatment apparatus in which a contact lens is put on a patient's eye and a laser is irradiated thereon.
  • an apparatus for irradiating a laser beam without contacting a contact lens has been proposed.
  • the operator irradiates a laser while checking the image of the fundus camera.
  • This indication makes it a technical subject to provide an ophthalmic laser treatment apparatus which can irradiate a laser in a proper state in view of the above-mentioned problem.
  • the present invention is characterized by having the following composition.
  • An ophthalmic laser treatment apparatus comprising: irradiation means for irradiating a patient's eye with treatment laser light; fundus imaging means for photographing a fundus image of the patient's eye; and an anterior segment image of the patient's eye
  • irradiation means for irradiating a patient's eye with treatment laser light
  • fundus imaging means for photographing a fundus image of the patient's eye
  • anterior segment image of the patient's eye An anterior segment imaging unit for imaging a subject, and a control unit for controlling the fundus imaging unit and the anterior segment imaging unit, wherein the control unit is configured to: It is characterized in that a part image is taken.
  • the ophthalmic laser treatment apparatus (for example, the laser treatment apparatus 1) according to the present embodiment includes an irradiation unit (for example, a laser irradiation unit 40), a fundus imaging unit (for example, a fundus imaging unit 60), and an anterior eye imaging unit (for example, , An anterior-eye imaging unit 30), a control unit (for example, a control unit 70), and the like.
  • the irradiation unit for example, irradiates the patient's eye with therapeutic laser light.
  • the irradiation unit includes, for example, a therapeutic laser light source (for example, a laser light source 41) and a scanning unit (for example, a scanning unit 44) that causes the laser light emitted from the laser light source to scan the patient's eye.
  • a therapeutic laser light source for example, a laser light source 41
  • a scanning unit for example, a scanning unit 44
  • the fundus imaging unit captures, for example, a fundus image of a patient's eye.
  • the fundus imaging unit for example, a scanning laser ophthalmoscope, a fundus camera, or the like is used.
  • the anterior eye photographing unit photographs, for example, an anterior eye part image of a patient's eye.
  • the control unit controls, for example, a fundus imaging unit, an anterior eye imaging unit, a laser irradiation unit, and the like.
  • the control unit captures, for example, a fundus image and an anterior segment image of a patient's eye at the time of laser irradiation.
  • the laser treatment apparatus of this embodiment can confirm the alignment state or the state of the eye to be examined by the anterior segment image captured by the anterior segment imaging unit.
  • the laser irradiation does not have to be during laser irradiation, but may be immediately before or after laser irradiation.
  • the control unit may be configured by a plurality of CPUs and the like. For example, a CPU that controls the fundus imaging unit and a CPU that controls the anterior eye imaging unit may be provided.
  • the control unit may detect the alignment state of the irradiation unit with respect to the patient's eye based on the anterior segment image.
  • the control unit detects, for example, the alignment state in the vertical and horizontal directions (XY direction) or the alignment state in the front and rear direction (Z direction).
  • XY direction the alignment state in the vertical and horizontal directions
  • Z direction the alignment state in the front and rear direction
  • the control unit may detect at least one of the open eye state and the mydriatic state based on the anterior eye part image. For example, the control unit detects whether the eyelid, eyebrows, iris or the like of the eye to be examined is not in the area through which the laser light passes. This can prevent the laser light from being blocked by eyelids, eyebrows, irises and the like.
  • the control unit may determine the suitability of the laser use condition based on the anterior segment image. For example, the control unit sets a laser use condition for determining whether or not the laser may be irradiated based on the alignment state of the irradiation unit, the mydriasis state of the eye to be examined, the open eye state, etc. The propriety may be determined. By this, it is possible to reduce the irradiation of the laser beam in an inappropriate state.
  • control unit may notify the operator by the notification unit (for example, the display unit 75 or the like) that the laser use condition is not satisfied. By this, the operator can interrupt the use of the laser based on the notification of the notification unit.
  • the notification unit for example, the display unit 75 or the like
  • the control unit may change the control of the irradiation unit based on the anterior segment image.
  • the control unit may control the irradiation unit, such as changing the light amount of the laser beam or stopping the laser irradiation, according to the alignment state detected from the anterior eye image or the state of the eye to be examined. By this, it is possible to reduce the irradiation of the laser beam in an inappropriate state.
  • the control unit may cause the display unit to display an anterior segment image at the time of laser irradiation.
  • the operator can confirm the state of the eye to be examined and perform laser irradiation by viewing the anterior segment image displayed on the display unit.
  • the present apparatus may also include an index projection unit (index projection unit 10) that projects the alignment index onto the patient's eye.
  • the anterior eye photographing unit may photograph the alignment index projected onto the patient's eye.
  • the control unit may detect the alignment state of the irradiation unit based on the alignment index captured in the anterior segment image.
  • the anterior eye photographing unit may be a TOF image sensor.
  • the TOF type image sensor measures the distance to the object by, for example, reflecting the light emitted from the light source by the object and detecting the time of flight (time difference) of the light until it reaches the sensor. is there.
  • the control unit may detect the working distance (the distance between the laser irradiation unit and the eye to be examined) and determine the alignment state in the Z direction.
  • FIG. 1 is a schematic configuration view for explaining the configuration of an optical system 100 and a control system 200 of a laser treatment apparatus 1 according to the present embodiment.
  • the axial direction of the patient's eye E is described as Z direction
  • the horizontal direction as X direction
  • the vertical direction as Y direction
  • the surface direction of the fundus may be considered as the XY direction.
  • the laser treatment apparatus 1 applies laser light to the fundus oculi Ef to treat the patient's eye E.
  • the laser treatment apparatus 1 includes, for example, an index projection unit 10, an anterior eye imaging unit 30, a laser irradiation unit 40, a fixation target presenting unit 50, a fundus imaging unit 60, a control unit 70, and the like.
  • the index projection unit 10 projects an alignment index on the patient's eye.
  • the index projection unit 10 includes, for example, a plurality of light sources arranged circumferentially around the optical axis L1 of the objective lens 21.
  • the index projection unit 10 has, for example, seven light sources 11 that emit infrared light with a center wavelength of 940 nm, and emits diffused light toward the subject's eye.
  • the index projection unit 10 includes two collimator lenses 12 and emits diffused light of two of the seven light sources 11 as parallel light toward the eye to be examined.
  • the anterior eye photographing unit 30 photographs the anterior eye part of the patient's eye.
  • the anterior eye photographing unit 30 includes an imaging device (for example, a CMOS camera) 31, an imaging lens 32, and an imaging diaphragm 33 in the reflection direction of the dichroic mirror 22.
  • the imaging device 31 is disposed at a position optically conjugate with the anterior segment of the patient's eye E.
  • the imaging element 31 has, for example, sensitivity in the infrared region, and captures an image of the anterior segment illuminated by the anterior segment illumination light source 15 that emits infrared light having a central wavelength of 940 nm. Further, the imaging device 31 captures an image of the alignment index projected onto the anterior segment by the index projection unit 10.
  • the reflected light of the anterior segment illuminated by the anterior segment illumination light source 15 is received by the imaging device 31 via the objective lens 21, the dichroic mirror 22, the imaging diaphragm 33, and the imaging lens 32.
  • the light reception signal of the imaging device 31 is output to the control unit 70.
  • the laser irradiation unit 40 oscillates, for example, therapeutic laser light, and irradiates the patient's eye E with the laser light.
  • the laser irradiation unit 40 includes a laser light source 41, a focusing lens 42, a driving unit 43, a scanning unit 44, and the like.
  • the laser light source 41 oscillates a therapeutic laser light (for example, a wavelength of 532 nm).
  • the focusing lens 42 is moved by the drive unit 43 to adjust the focus of the laser light.
  • the scanning unit 48 includes, for example, a driving mirror 44 a and a driving unit 44 b.
  • the drive unit 44b changes the irradiation position of the laser beam on the fundus oculi Ef by changing the angle of the reflection surface of the drive mirror 44a.
  • the light emitted from the laser light source 41 passes through the focusing lens 42, is reflected by the scanning unit 44 and the dichroic mirror 23 disposed on the optical axis L1, and is focused on the fundus oculi Ef via the objective lens 21.
  • the laser unit 40 may include an aiming light source that emits aiming light.
  • the fixation target presenting unit 50 has an optical system for fixing the patient's eye.
  • the fixation target presenting unit 50 is disposed in the reflection direction of the dichroic mirror 24 disposed on the optical axis L1.
  • the fixation target presenting unit 50 includes, for example, a red light source 51, a visual target plate 52 having a fixation target in which an opening is formed, a relay lens 53, and the like.
  • the light emitted from the light source 51 passes through the aperture of the target plate 52 and the relay lens 53, is reflected by the dichroic mirror 24, and passes through the objective lens 21 to be irradiated to the patient's eye.
  • fixation target presenting unit 50 various configurations may be used, such as a configuration in which light from a light source is scanned using LEDs arranged in a matrix, an optical scanner, and the like.
  • the fixation target presenting unit 50 may be an internal fixation lamp type or an external fixation lamp type.
  • the fundus imaging unit 60 captures an image of the fundus oculi Ef, for example.
  • the fundus imaging unit 60 is, for example, a scanning laser ophthalmoscope (SLO).
  • the fundus imaging unit 60 includes an SLO light source 61, a beam splitter 62, a focusing lens 63, a scanning unit 64, a relay lens 65, and the like.
  • the beam splitter 62 is disposed between the SLO light source 61 and the focusing lens 63. In the reflection direction of the beam splitter 62, a condenser lens 66, a confocal aperture 67 placed at a position conjugate to the fundus, and a light receiving element 68 are provided.
  • the focusing lens 63 is movable in the optical axis direction in accordance with the refractive error of the patient's eye.
  • the scanning unit 64 includes, for example, a driving mirror 64 a and a driving unit 64 b.
  • the scanning unit 64 drives the drive mirror 64 a by the drive unit 64 b to scan the measurement light at high speed in the X and Y directions on the fundus.
  • the drive mirror 64a may be, for example, a combination of a galvano mirror and a polygon mirror.
  • the relay lens 65 relays the measurement light reflected by the scanning unit 64 to the objective lens 10.
  • the measurement light emitted from the SLO light source 61 passes through the beam splitter 62, and then enters the scanning unit 64 through the focusing lens 63. Then, the measurement light reflected by the scanning unit 64 is focused on the fundus oculi Ef of the patient's eye via the relay lens 65 and the objective lens 21.
  • the measurement light reflected by the fundus passes through the objective lens 21, the relay lens 65, the scanning unit 64, and the focusing lens 63, and is reflected by the beam splitter 62. Thereafter, the light is condensed by the condenser lens 66 and then detected by the light receiving element 68 through the confocal aperture 67. The light reception signal detected by the light reception element 68 is output to the control unit 70.
  • the control unit 70 is connected to each unit of the laser treatment apparatus 1 and controls the entire apparatus.
  • the control unit 70 is realized by a general central processing unit (CPU) 71, a ROM 72, a RAM 73, and the like.
  • the ROM 72 stores various programs for controlling the operation of the laser treatment apparatus, an image processing program for processing an image, initial values and the like.
  • the RAM 73 temporarily stores various information.
  • the control unit 70 may be configured by a plurality of control units (that is, a plurality of processors).
  • the control unit 70 includes, for example, an index projection unit 10, an anterior eye imaging unit 30, a laser irradiation unit 40, a fixation target presenting unit 50, a fundus imaging unit 60, a storage unit (for example, non-volatile memory) 74, a display unit 75, It is electrically connected to the operation unit 76 and the like.
  • control unit 70 acquires an anterior segment image or a fundus image of a patient's eye based on a signal output from the imaging device 31 or the light receiving device 68.
  • control unit 70 detects an alignment index from the anterior segment image of the patient.
  • the control unit 70 can determine the propriety of the alignment state between the device 1 and the patient's eye based on the position at which the alignment index is detected.
  • control unit 70 controls the scanning unit 44, the scanning unit 64, and the like to change the irradiation position of the measurement light or the laser light.
  • the storage unit 74 is a non-transitory storage medium capable of retaining stored contents even when the supply of power is shut off.
  • a hard disk drive, a flash ROM, a removable USB memory, or the like can be used as the storage unit 74.
  • the control unit 70 causes the storage unit 74 to store, for example, an anterior segment image captured by the anterior eye capturing unit 30, a fundus image captured by the fundus capturing unit 60, and the like.
  • the display unit 75 may be a display mounted on the apparatus main body, or may be a display connected to the main body. A display of a personal computer may be used. Multiple displays may be used together. In addition, the display unit 75 may be a touch panel.
  • Control unit 70 controls the display screen of display unit 75.
  • the control unit 70 outputs an anterior segment image captured by the anterior eye capturing unit 30, a fundus image captured by the fundus capturing unit 60, or the like to the display unit 75 as a still image or a moving image.
  • the operation unit 76 outputs a signal corresponding to the input operation instruction to the control unit 70.
  • the operation unit 76 for example, at least one of user interfaces such as a mouse, a joystick, a keyboard, and a touch panel may be used.
  • Control unit 70 may acquire an operation signal based on the operation of the operator received by operation unit 76.
  • the operation unit 76 is a touch panel, the operation unit 76 may function as the display unit 75.
  • the optical system 100 is provided movably in the X, Y, and Z directions by a drive mechanism (not shown).
  • a drive mechanism (not shown).
  • the operator moves the optical system 100 relative to the patient's eye by operating the operation unit 76 such as a joystick. Thereby, the operator aligns the optical system 100 with respect to the patient's eye.
  • Step S101 Anterior Segment Shooting>
  • the operator causes the patient's face to be supported by the face support unit (not shown).
  • the control unit 70 causes the fixation target presenting unit 50 to present the fixation target to the patient.
  • the operator instructs the patient to fixate on the fixation target.
  • the anterior eye photographing unit 30 picks up an image of the anterior eye illuminated by the anterior eye illumination light source 15 and the alignment index by the index projection unit 10, and outputs the result to the control unit 70.
  • the control unit 70 causes the display unit 75 to display the anterior eye part image acquired from the anterior eye photographing unit 30.
  • ⁇ Step S102 Alignment>
  • the operator aligns the optical system 100 while observing the anterior segment image displayed on the display unit 75.
  • the index images Mb and Mf are index images of parallel light having passed through the collimator lens 12.
  • the control unit 70 electrically forms a circular reticle mark N and a ring mark T indicating the pupil diameter necessary for photographing on the anterior eye image.
  • the operator operates the operation unit 76 to move the optical system 100 vertically and horizontally so that the reticle marks N have the index images Ma, Mb, Mc, Md, Me, Mf and Mg. Further, in the front-rear direction (working distance direction), the optical system 100 is such that the index images Ma, Mc, Md, Me, Mg by diffused light and the index images Mb, Mf by parallel light have a predetermined positional relationship.
  • Step S103 fundus image photography>
  • the control unit 70 controls the fundus imaging unit 60 to capture the fundus Ef of the patient's eye E.
  • the control unit 70 causes the scanning unit 64 to scan the patient's eye E with the measurement light, and acquires an image of the fundus oculi Ef.
  • Step S104 Setting of Laser Irradiation Area>
  • the operator sets the irradiation area of the laser based on the fundus oculi image photographed by the fundus oculi photographing unit 60.
  • the control unit 70 causes the fundus image 69 to display an aiming mark G indicating the irradiation area of the laser light.
  • the operator operates the operation unit 76 to move the aiming mark G to a desired position while confirming the position of a macula or the like shown in the fundus image 69.
  • the control unit 70 moves the position of the aiming mark G displayed on the fundus image based on the operation signal from the operation unit 76.
  • control unit 70 sets the designated position as a laser irradiation area.
  • Step S105 Reception of Irradiation Start Signal>
  • the operator presses the irradiation start button 76 a provided on the operation unit 76.
  • the operation unit 76 outputs an irradiation start signal.
  • Control unit 70 receives the irradiation start signal output from operation unit 76.
  • Step S105 Laser Use Condition Determination>
  • the control unit 70 determines whether the use condition of the laser is satisfied. For example, the control unit 70 determines whether the use condition of the laser is satisfied based on the alignment, the mydriasis state, the suitability of the open eye state, and the like.
  • FIG. 5 shows a state in which the alignment in the XY directions is shifted.
  • the laser light may be blocked by the iris, and the laser light may not sufficiently reach the fundus.
  • FIG. 6A shows the case where the laser is irradiated to the fundus at an appropriate working distance
  • FIG. 6B shows the case where the laser is irradiated at an incorrect working distance.
  • the control unit 70 determines the propriety of the alignment state before irradiating the fundus with laser light.
  • FIG. 7 shows that the open eye condition is bad and the eyelid is on the pupil P.
  • the laser beam may not reach the fundus sufficiently because the laser beam is blocked by the eyelid.
  • the control unit 70 determines the suitability of the open eye status or mydriatic status.
  • the control unit 70 determines the suitability of alignment based on, for example, the anterior segment image 39 captured by the anterior segment imaging unit 30. For example, when seven index images Ma to Mg captured by the imaging device 31 are detected, the control unit 70 determines the displacement amount (displacement) with respect to the alignment reference based on these index images.
  • the control unit 70 determines the amount of deviation between the center of the circle Q passing the index images Ma to Mg and the alignment reference position C in the XY direction. Then, the propriety of the alignment in the X and Y directions is determined based on whether the amount of deviation falls within a predetermined allowable range and continues for a fixed time (for example, 10 frames or 0.3 seconds of image processing).
  • the control unit 70 when determining the appropriateness of the alignment in the Z direction, for example, obtains the size of the circle Q. For example, the size of the circle Q changes according to the working distance, and the circle Q becomes larger as the patient's eye and the device 1 approach, and becomes smaller as the patient's eye and the device 1 move closer. Therefore, the control unit 70 determines whether the alignment in the Z direction is appropriate or not by comparing the size of the circle Q at the appropriate working distance stored in the storage unit 74 with the size of the circle Q on the image. Good.
  • the suitability of alignment in the Z direction may be determined based on not only the size of the circle Q but also the sharpness of the image, for example.
  • the deviation amount with respect to the alignment reference position in the Z direction may be determined, and the suitability of the alignment in the Z direction may be determined based on whether the deviation amount falls within a predetermined allowable range for a predetermined time.
  • the appropriateness determination of the mydriatic state will be described.
  • the propriety of the mydriatic state is determined by whether or not the edge of the pupil P detected from the anterior eye image 39 by the imaging element 31 is out of the ring mark T shown in FIG.
  • the size of the ring mark T is set based on the alignment reference position C as a diameter (for example, a diameter of 4 mm) through which the laser beam can pass.
  • the edge of the pupil P is outside the ring mark T, the light amount at the time of laser irradiation is sufficiently secured.
  • the suitability of the mydriasis state may also be determined to be appropriate when the appropriate condition continues continuously for a fixed time, as in the determination of the alignment completion.
  • the appropriateness determination of the open condition will be described. Whether the open condition is appropriate or not is determined based on the anterior segment image 39 captured by the imaging device 31. For example, if the eyelid detected from the anterior segment image 39 is outside the ring mark T, the control unit 70 determines that the open condition is appropriate, and the eyelid is inside the ring mark T as shown in FIG. If it is determined that the open condition is inappropriate.
  • Step S107 Laser Irradiation>
  • the control unit 70 controls the operation of the laser irradiation unit 40, and irradiates the set irradiation area with the laser light.
  • each position on the fundus image is associated with the movable position of the scanning unit 44, and the control unit 70 controls the scanning unit 44 so that the irradiation region in the fundus image is irradiated with the laser light.
  • the control unit 70 sequentially irradiates each irradiation area with laser light.
  • the control unit 70 acquires the fundus oculi image 69 photographed by the fundus oculi photographing unit 60 as needed, and displays the fundus oculi image 69 on the display unit 75 in real time.
  • the control unit 70 may cause the display unit 75 to display the anterior segment image 39.
  • the operator can easily confirm the state of the patient's eye E at the time of laser irradiation.
  • the images may be displayed side by side on the screen of the display unit 75, or one image may be displayed superimposed on the position of the other image.
  • Step S108 Warning>
  • the control unit 70 causes the display unit 75 to display a warning K (see FIGS. 4, 5 and 7), for example. Inform.
  • the warning indication K may be displayed on the anterior segment image or may be displayed on the fundus image.
  • the operator may be notified by an alarm or lighting of a lamp instead of display.
  • the control unit 70 causes the anterior eye photographing unit 30 to detect an alignment state, a mydriasis state, or an open eye state, as needed, even during a warning. Then, when it is determined that the laser use condition is satisfied by the treatment of the operator, the control unit 70 proceeds to step 107 and starts the laser irradiation.
  • the anterior segment image it is possible to confirm whether the alignment state, the mydriasis state of the eye, and the open eye state are appropriate. By this, it is possible to reduce that the laser light is blocked by the iris or eyelid or the like, and the amount of irradiation light is insufficient, or that the irradiation unevenness is generated.
  • control unit 70 may display the reason for determining that it is not appropriate as the warning display K.
  • the operator refers to the display information on the display unit 75 and warns the patient to open the eye widely, or takes a break to enlarge the pupil diameter, etc. Can be applied.
  • the control unit 70 detects the index images Ma to Mg in the anterior eye image 39 in step S106, and if alignment is shifted, the control unit 70 automatically illustrates based on the position of the index image.
  • the drive unit may be controlled to align the optical system 100 (step S208).
  • the control unit 70 may perform irradiation control of the laser light based on the information of the anterior eye image 39. For example, as shown in FIG. 10, when it is determined in step S106 that the eyebrows or eyelids are applied to the pupil, the light amount of the laser light is increased, or the irradiation of the laser light is stopped. Control may be performed (step S308). This can prevent the laser from being irradiated inappropriately.
  • control unit 70 simultaneously displays the anterior eye image 39 and the fundus image 69 of the patient's eye on the display unit 75, the anterior eye image 39 and the fundus image 69 may be displayed separately. Good. In this case, for example, when the patient's eye E moves largely, the display on the display unit 75 may be switched from the fundus image 69 to the anterior segment image 39. By this, the alignment by the anterior segment image 39 can be smoothly performed.
  • the suitability of the working distance may be determined using a TOF image sensor.
  • the TOF image sensor is, for example, a device that measures the distance at the time of light reaching the CCD.
  • Reference Signs List 1 laser treatment apparatus 10 index projection unit 30 anterior eye imaging unit 40 laser irradiation unit 50 fixation target projection unit 60 fundus imaging unit 70 control unit 71 CPU 72 ROM 73 RAM 74 storage unit 75 display unit 76 operation unit

Abstract

Provided is an ophthalmological laser medical treatment device capable of laser irradiation in an appropriate state. The disclosed ophthalmological laser medical treatment device comprises: an irradiation means for irradiating a patient's eye with a medical treatment laser beam; a fundus oculi photography means for photographing an image of the fundus oculi of the patient's eye; an anterior part photography means for photographing an image of the anterior part of the patient's eye; and a control means for controlling the fundus oculi photography means and the anterior part photography means. The control means photographs the fundus oculi image and the anterior part image of the patient's eye during the laser irradiation.

Description

眼科用レーザ治療装置Ophthalmic laser treatment device
 本開示は、レーザ光を照射することによって患者眼を治療する眼科用レーザ治療装置に関する。 The present disclosure relates to an ophthalmic laser treatment apparatus for treating a patient's eye by irradiating a laser beam.
 従来のレーザ治療装置として、例えば、治療レーザ光を患者眼の組織(例えば、眼底)上に照射し、眼の治療を行うレーザ治療装置が知られている(特許文献1参照)。このような装置を用いる場合、術者は、スリットランプ,眼底カメラなどを用いて患者眼の眼底を観察し、眼の治療部位にレーザ光を照射する。 As a conventional laser treatment apparatus, for example, a laser treatment apparatus is known which performs treatment of an eye by irradiating treatment laser light onto a tissue (for example, the fundus) of a patient's eye (see Patent Document 1). When using such a device, the operator observes the fundus of the patient's eye using a slit lamp, a fundus camera or the like, and applies a laser beam to the treatment site of the eye.
 例えば、特許文献1では、患者眼にコンタクトレンズを当て、その上からレーザを照射する眼科用レーザ治療装置が開示される。 For example, Patent Document 1 discloses an ophthalmic laser treatment apparatus in which a contact lens is put on a patient's eye and a laser is irradiated thereon.
特開2010-148635号公報JP, 2010-148635, A
 ところで、コンタクトレンズを当てずにレーザ光を照射する装置が提案されている。このような装置において、術者は、眼底カメラの画像を確認しながらレーザを照射する。 By the way, an apparatus for irradiating a laser beam without contacting a contact lens has been proposed. In such an apparatus, the operator irradiates a laser while checking the image of the fundus camera.
 しかしながら、眼底画像では、アライメント状態、散瞳状態、または開瞼状態などを確認することが難しく、不適切な状態でレーザを照射してしまう可能性があった。 However, in the fundus image, it is difficult to confirm the alignment state, the mydriasis state, the open state or the like, and there is a possibility that the laser is irradiated in an inappropriate state.
 本開示は、上記の問題点に鑑み、適正な状態でレーザを照射できる眼科用レーザ治療装置を提供することを技術課題とする。 This indication makes it a technical subject to provide an ophthalmic laser treatment apparatus which can irradiate a laser in a proper state in view of the above-mentioned problem.
 上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。 In order to solve the above-mentioned subject, the present invention is characterized by having the following composition.
 (1) 眼科用レーザ治療装置であって、治療用レーザ光を患者眼に照射する照射手段と、前記患者眼の眼底画像を撮影するための眼底撮影手段と、前記患者眼の前眼部画像を撮影するための前眼部撮影手段と、前記眼底撮影手段および前記前眼部撮影手段を制御する制御手段と、を備え、前記制御手段は、レーザ照射時に前記患者眼の眼底画像および前眼部画像を撮影することを特徴とする。 (1) An ophthalmic laser treatment apparatus, comprising: irradiation means for irradiating a patient's eye with treatment laser light; fundus imaging means for photographing a fundus image of the patient's eye; and an anterior segment image of the patient's eye An anterior segment imaging unit for imaging a subject, and a control unit for controlling the fundus imaging unit and the anterior segment imaging unit, wherein the control unit is configured to: It is characterized in that a part image is taken.
本実施例に係るレーザ治療装置の構成について説明する概略構成図である。It is a schematic block diagram explaining the structure of the laser treatment apparatus which concerns on a present Example. 本実施例に係るレーザ治療装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the laser treatment apparatus which concerns on a present Example. 前眼部画像の一例を示す図である。It is a figure which shows an example of an anterior segment image. 眼底画像の一例を示す図である。It is a figure which shows an example of a fundus oculi image. アライメントがずれた状態の前眼部画像の一例を示す図である。It is a figure which shows an example of the anterior ocular segment image of the state which alignment shifted. 作動距離とレーザ光の光路の関係を示す図である。It is a figure which shows the relationship of the working distance and the optical path of a laser beam. 作動距離とレーザ光の光路の関係を示す図である。It is a figure which shows the relationship of the working distance and the optical path of a laser beam. 開瞼状態の悪い場合の前眼部画像の一例を示す図である。It is a figure which shows an example of the anterior segment image in the case of the bad state of an open eyelid. 眼底画像と前眼部画像の表示方法の一例を示す図である。It is a figure which shows an example of the display method of a fundus oculi image and an anterior segment image. 変容例に係るレーザ治療装置の制御動作を示すフローチャートである。It is a flow chart which shows control operation of a laser treatment apparatus concerning a modification. 変容例に係るレーザ治療装置の制御動作を示すフローチャートである。It is a flow chart which shows control operation of a laser treatment apparatus concerning a modification.
<実施形態>
 以下、本開示に係る実施形態を簡単に説明する。本実施形態の眼科用レーザ治療装置(例えば、レーザ治療装置1)は、照射部(例えば、レーザ照射部40)と、眼底撮影部(例えば、眼底撮影部60)と、前眼撮影部(例えば、前眼撮影部30)と、制御部(例えば、制御部70)などを主に備える。照射部は、例えば、患者眼に治療用レーザ光を照射する。照射部は、例えば、治療用レーザ光源(例えば、レーザ光源41)と、レーザ光源から発せられたレーザ光を患者眼に対して走査させる走査部(例えば、走査部44)と、を備える。
Embodiment
Hereinafter, embodiments according to the present disclosure will be briefly described. The ophthalmic laser treatment apparatus (for example, the laser treatment apparatus 1) according to the present embodiment includes an irradiation unit (for example, a laser irradiation unit 40), a fundus imaging unit (for example, a fundus imaging unit 60), and an anterior eye imaging unit (for example, , An anterior-eye imaging unit 30), a control unit (for example, a control unit 70), and the like. The irradiation unit, for example, irradiates the patient's eye with therapeutic laser light. The irradiation unit includes, for example, a therapeutic laser light source (for example, a laser light source 41) and a scanning unit (for example, a scanning unit 44) that causes the laser light emitted from the laser light source to scan the patient's eye.
 眼底撮影部は、例えば、患者眼の眼底画像を撮影する。眼底撮影部は、例えば、走査型レーザ検眼鏡、眼底カメラ等が用いられる。前眼撮影部は、例えば、患者眼の前眼部画像を撮影する。制御部は、例えば、眼底撮影部、前眼撮影部またはレーザ照射部などを制御する。制御部は、例えば、レーザ照射時に患者眼の眼底画像および前眼部画像を撮影する。これによって、本実施形態のレーザ治療装置は、前眼撮影部によって撮影された前眼部画像によってアライメント状態、または被検眼の状態を確認することができる。なお、レーザ照射時とは、レーザ照射中でなくともよく、レーザ照射直前、直後であってもよい。また、制御部は、複数のCPU等によって構成されてもよい。例えば、眼底撮影部を制御するCPUと、前眼撮影部を制御するCPUと、をそれぞれ備えてもよい。 The fundus imaging unit captures, for example, a fundus image of a patient's eye. As the fundus imaging unit, for example, a scanning laser ophthalmoscope, a fundus camera, or the like is used. The anterior eye photographing unit photographs, for example, an anterior eye part image of a patient's eye. The control unit controls, for example, a fundus imaging unit, an anterior eye imaging unit, a laser irradiation unit, and the like. The control unit captures, for example, a fundus image and an anterior segment image of a patient's eye at the time of laser irradiation. By this, the laser treatment apparatus of this embodiment can confirm the alignment state or the state of the eye to be examined by the anterior segment image captured by the anterior segment imaging unit. The laser irradiation does not have to be during laser irradiation, but may be immediately before or after laser irradiation. Further, the control unit may be configured by a plurality of CPUs and the like. For example, a CPU that controls the fundus imaging unit and a CPU that controls the anterior eye imaging unit may be provided.
 なお、制御部は、前眼部画像に基づいて、患者眼に対する照射部のアライメント状態を検出してもよい。制御部は、例えば、上下左右方向(XY方向)のアライメント状態、または前後方向(Z方向)のアライメント状態を検出する。これによって、制御部は、術者にアライメント情報を提示したり、アライメント操作を誘導したりできる。 The control unit may detect the alignment state of the irradiation unit with respect to the patient's eye based on the anterior segment image. The control unit detects, for example, the alignment state in the vertical and horizontal directions (XY direction) or the alignment state in the front and rear direction (Z direction). Thus, the control unit can present the operator with alignment information and can guide the alignment operation.
 なお、制御部は、前眼部画像に基づいて、開瞼状態および散瞳状態の少なくとも1つを検出してもよい。例えば、制御部は、レーザ光の通過する領域に被検眼の瞼、睫毛、虹彩などが入っていないか検出する。これによって、レーザ光が瞼、睫毛、虹彩などによって遮られることを抑制できる。 The control unit may detect at least one of the open eye state and the mydriatic state based on the anterior eye part image. For example, the control unit detects whether the eyelid, eyebrows, iris or the like of the eye to be examined is not in the area through which the laser light passes. This can prevent the laser light from being blocked by eyelids, eyebrows, irises and the like.
 なお、制御部は、前眼部画像に基づいて、レーザ使用条件の適否を判定してもよい。例えば、制御部は、照射部のアライメント状態、被検眼の散瞳状態、または開瞼状態などに基づいて、レーザを照射してもよいかどうかを判定するためのレーザ使用条件を設定し、その適否を判定してもよい。これによって、不適正な状態でレーザ光が照射されることを低減することができる。 The control unit may determine the suitability of the laser use condition based on the anterior segment image. For example, the control unit sets a laser use condition for determining whether or not the laser may be irradiated based on the alignment state of the irradiation unit, the mydriasis state of the eye to be examined, the open eye state, etc. The propriety may be determined. By this, it is possible to reduce the irradiation of the laser beam in an inappropriate state.
 なお、制御部は、レーザ使用条件を満たしていないと判定した場合、レーザ使用条件を満たしていないことを報知部(例えば、表示部75など)によって術者に報知してもよい。これによって、術者は、報知部の報知に基づいてレーザの使用を中断させることができる。 If the control unit determines that the laser use condition is not satisfied, the control unit may notify the operator by the notification unit (for example, the display unit 75 or the like) that the laser use condition is not satisfied. By this, the operator can interrupt the use of the laser based on the notification of the notification unit.
 なお、制御部は、前眼部画像に基づいて、照射部の制御を変更してもよい。例えば、制御部は、前眼部画像から検出されたアライメント状態、または被検眼の状態に応じて、レーザ光の光量の変更、またはレーザ照射の停止など、照射部を制御してもよい。これによって、不適正な状態でレーザ光が照射されることを低減することができる。 The control unit may change the control of the irradiation unit based on the anterior segment image. For example, the control unit may control the irradiation unit, such as changing the light amount of the laser beam or stopping the laser irradiation, according to the alignment state detected from the anterior eye image or the state of the eye to be examined. By this, it is possible to reduce the irradiation of the laser beam in an inappropriate state.
 なお、制御部は、レーザ照射時に前眼部画像を表示部に表示させてもよい。これによって、術者は、表示部に表示された前眼部画像を見ることによって、被検眼の状態を確認してレーザ照射を行うことができる。 The control unit may cause the display unit to display an anterior segment image at the time of laser irradiation. As a result, the operator can confirm the state of the eye to be examined and perform laser irradiation by viewing the anterior segment image displayed on the display unit.
 なお、本装置は、患者眼にアライメント指標を投影する指標投影部(指標投影部10)を備えてもよい。この場合、前眼撮影部は、患者眼に投影されたアライメント指標を撮影してもよい。制御部は、前眼部画像に写るアライメント指標に基づいて、照射部のアライメント状態を検出してもよい。 The present apparatus may also include an index projection unit (index projection unit 10) that projects the alignment index onto the patient's eye. In this case, the anterior eye photographing unit may photograph the alignment index projected onto the patient's eye. The control unit may detect the alignment state of the irradiation unit based on the alignment index captured in the anterior segment image.
 なお、前眼撮影部は、TOF型イメージセンサであってもよい。TOF型のイメージセンサとは、例えば、光源から発した光を対象物で反射させ、センサに届くまでの光の飛行時間(時間差)を検出することによって、対象物までの距離を測定するものである。これによって、制御部は、作動距離(レーザ照射部と被検眼との間の距離)を検出し、Z方向のアライメント状態を判定してもよい。 The anterior eye photographing unit may be a TOF image sensor. The TOF type image sensor measures the distance to the object by, for example, reflecting the light emitted from the light source by the object and detecting the time of flight (time difference) of the light until it reaches the sensor. is there. By this, the control unit may detect the working distance (the distance between the laser irradiation unit and the eye to be examined) and determine the alignment state in the Z direction.
<実施例>
 以下、本開示に係る実施例を図面に基づいて説明する。図1は本実施例に係るレーザ治療装置1の光学系100と制御系200の構成について説明するための概略構成図である。なお、本実施例においては、患者眼Eの軸方向をZ方向、水平方向をX方向、鉛直方向をY方向として説明する。眼底の表面方向をXY方向として考えても良い。
<Example>
Hereinafter, an embodiment according to the present disclosure will be described based on the drawings. FIG. 1 is a schematic configuration view for explaining the configuration of an optical system 100 and a control system 200 of a laser treatment apparatus 1 according to the present embodiment. In the present embodiment, the axial direction of the patient's eye E is described as Z direction, the horizontal direction as X direction, and the vertical direction as Y direction. The surface direction of the fundus may be considered as the XY direction.
 レーザ治療装置1は、眼底Efにレーザ光を照射して患者眼Eを治療する。レーザ治療装置1は、例えば、指標投影部10、前眼撮影部30、レーザ照射部40、固視標呈示部50、眼底撮影部60、制御部70等を備える。 The laser treatment apparatus 1 applies laser light to the fundus oculi Ef to treat the patient's eye E. The laser treatment apparatus 1 includes, for example, an index projection unit 10, an anterior eye imaging unit 30, a laser irradiation unit 40, a fixation target presenting unit 50, a fundus imaging unit 60, a control unit 70, and the like.
<指標投影部>
 指標投影部10は、患者眼にアライメント指標を投影する。指標投影部10は、例えば、対物レンズ21の光軸L1を中心とする円周状に配置された複数の光源を備える。指標投影部10は、例えば、中心波長940nmの赤外光を発する7つの光源11を持ち、被検眼に向けて拡散光を出射する。なお、指標投影部10は、2つのコリメートレンズ12を備え、7つのうち2つの光源11の拡散光を平行光として被検眼に向けて出射する。
<Index projection part>
The index projection unit 10 projects an alignment index on the patient's eye. The index projection unit 10 includes, for example, a plurality of light sources arranged circumferentially around the optical axis L1 of the objective lens 21. The index projection unit 10 has, for example, seven light sources 11 that emit infrared light with a center wavelength of 940 nm, and emits diffused light toward the subject's eye. The index projection unit 10 includes two collimator lenses 12 and emits diffused light of two of the seven light sources 11 as parallel light toward the eye to be examined.
<前眼撮影部>
 前眼撮影部30は、患者眼の前眼部を撮影する。前眼撮影部30は、ダイクロイックミラー22の反射方向に、撮像素子(例えば、CMOSカメラ)31、撮像レンズ32、撮像絞り33を備える。撮像素子31は、患者眼Eの前眼部と光学的に共役な位置に配置される。撮像素子31は、例えば、赤外域の感度を持ち、中心波長940nmの赤外光を発する前眼部照明光源15によって照明された前眼部を撮像する。また、撮像素子31は、指標投影部10によって前眼部に投影されたアライメント指標を撮像する。例えば、前眼部照明光源15により照明された前眼部の反射光は、対物レンズ21、ダイクロイックミラー22、撮像絞り33、撮像レンズ32を介して撮像素子31に受光される。撮像素子31の受光信号は、制御部70に出力される。
<Front eye photography part>
The anterior eye photographing unit 30 photographs the anterior eye part of the patient's eye. The anterior eye photographing unit 30 includes an imaging device (for example, a CMOS camera) 31, an imaging lens 32, and an imaging diaphragm 33 in the reflection direction of the dichroic mirror 22. The imaging device 31 is disposed at a position optically conjugate with the anterior segment of the patient's eye E. The imaging element 31 has, for example, sensitivity in the infrared region, and captures an image of the anterior segment illuminated by the anterior segment illumination light source 15 that emits infrared light having a central wavelength of 940 nm. Further, the imaging device 31 captures an image of the alignment index projected onto the anterior segment by the index projection unit 10. For example, the reflected light of the anterior segment illuminated by the anterior segment illumination light source 15 is received by the imaging device 31 via the objective lens 21, the dichroic mirror 22, the imaging diaphragm 33, and the imaging lens 32. The light reception signal of the imaging device 31 is output to the control unit 70.
<レーザ照射部>
 レーザ照射部40は、例えば、治療用レーザ光を発振し、レーザ光を患者眼Eに照射する。例えば、レーザ照射部40は、レーザ光源41、フォーカシングレンズ42、駆動部43、走査部44などを備える。レーザ光源41は、治療用レーザ光(例えば、532nmの波長)を発振する。フォーカシングレンズ42は、駆動部43によって移動されることでレーザ光のフォーカスを調整する。走査部48は、例えば、駆動ミラー44aと、駆動部44bなどを備える。駆動部44bは、駆動ミラー44aの反射面の角度を変更することによって、眼底Ef上におけるレーザ光の照射位置を変更する。
<Laser irradiation part>
The laser irradiation unit 40 oscillates, for example, therapeutic laser light, and irradiates the patient's eye E with the laser light. For example, the laser irradiation unit 40 includes a laser light source 41, a focusing lens 42, a driving unit 43, a scanning unit 44, and the like. The laser light source 41 oscillates a therapeutic laser light (for example, a wavelength of 532 nm). The focusing lens 42 is moved by the drive unit 43 to adjust the focus of the laser light. The scanning unit 48 includes, for example, a driving mirror 44 a and a driving unit 44 b. The drive unit 44b changes the irradiation position of the laser beam on the fundus oculi Ef by changing the angle of the reflection surface of the drive mirror 44a.
 レーザ光源41から出射された光は、フォーカシングレンズ42を通過し、走査部44、および光軸L1上に配置されたダイクロイックミラー23によって反射され、対物レンズ21を介して眼底Efに集光される。なお、レーザユニット40は、エイミング光を発するエイミング光源を備えてもよい。 The light emitted from the laser light source 41 passes through the focusing lens 42, is reflected by the scanning unit 44 and the dichroic mirror 23 disposed on the optical axis L1, and is focused on the fundus oculi Ef via the objective lens 21. . The laser unit 40 may include an aiming light source that emits aiming light.
<固視標呈示部>
 固視標呈示部50は、患者眼を固視させるための光学系を有する。固視標呈示部50は、光軸L1上に配置されたダイクロイックミラー24の反射方向に配置される。固視標呈示部50は、例えば、赤色の光源51、開口が形成された固視標を持つ視標板52、リレーレンズ53などを備える。光源51から出射した光は、視標板52の開口、およびリレーレンズ53を通過し、ダイクロイックミラー24によって反射された後、対物レンズ21を通過して患者眼に照射される。
<Fixation Target Presentation Unit>
The fixation target presenting unit 50 has an optical system for fixing the patient's eye. The fixation target presenting unit 50 is disposed in the reflection direction of the dichroic mirror 24 disposed on the optical axis L1. The fixation target presenting unit 50 includes, for example, a red light source 51, a visual target plate 52 having a fixation target in which an opening is formed, a relay lens 53, and the like. The light emitted from the light source 51 passes through the aperture of the target plate 52 and the relay lens 53, is reflected by the dichroic mirror 24, and passes through the objective lens 21 to be irradiated to the patient's eye.
 なお、固視標呈示部50としては、例えば、マトリクス状に配列されたLED、光スキャナを用いて光源からの光を走査させる構成など、種々の構成を用いてもよい。また、固視標呈示部50は、内部固視灯タイプであってもよいし、外部固視灯タイプであってもよい。 As the fixation target presenting unit 50, various configurations may be used, such as a configuration in which light from a light source is scanned using LEDs arranged in a matrix, an optical scanner, and the like. In addition, the fixation target presenting unit 50 may be an internal fixation lamp type or an external fixation lamp type.
<眼底撮影部>
 眼底撮影部60は、例えば、眼底Efの画像を撮影する。眼底撮影部60は、例えば、走査型レーザ検眼鏡(SLO)である。例えば、眼底撮影部60は、SLO光源61、ビームスプリッタ62、フォーカシングレンズ63、走査部64、リレーレンズ65等を備える。
<Fundus photographing part>
The fundus imaging unit 60 captures an image of the fundus oculi Ef, for example. The fundus imaging unit 60 is, for example, a scanning laser ophthalmoscope (SLO). For example, the fundus imaging unit 60 includes an SLO light source 61, a beam splitter 62, a focusing lens 63, a scanning unit 64, a relay lens 65, and the like.
 SLO光源61は、高コヒーレントな光を発する光源であり、例えば、λ=780nmのレーザダイオード光源が用いられる。ビームスプリッタ62は、SLO光源61とフォーカシングレンズ63との間に配置されている。ビームスプリッタ62の反射方向には、集光レンズ66と、眼底に共役な位置に置かれる共焦点開口67と、受光素子68が設けられている。 The SLO light source 61 is a light source that emits highly coherent light, and for example, a laser diode light source of λ = 780 nm is used. The beam splitter 62 is disposed between the SLO light source 61 and the focusing lens 63. In the reflection direction of the beam splitter 62, a condenser lens 66, a confocal aperture 67 placed at a position conjugate to the fundus, and a light receiving element 68 are provided.
 フォーカシングレンズ63は、患者眼の屈折誤差に合わせて光軸方向に移動可能である。走査部64は、例えば、駆動ミラー64aと、駆動部64bを備える。走査部64は、駆動部64bによって駆動ミラー64aを駆動させ、眼底上でXY方向に測定光を高速で走査させる。駆動ミラー64aは、例えば、ガルバノミラーとポリゴンミラーの組み合わせであってもよい。リレーレンズ65は、走査部64によって反射した測定光を対物レンズ10までリレーする。 The focusing lens 63 is movable in the optical axis direction in accordance with the refractive error of the patient's eye. The scanning unit 64 includes, for example, a driving mirror 64 a and a driving unit 64 b. The scanning unit 64 drives the drive mirror 64 a by the drive unit 64 b to scan the measurement light at high speed in the X and Y directions on the fundus. The drive mirror 64a may be, for example, a combination of a galvano mirror and a polygon mirror. The relay lens 65 relays the measurement light reflected by the scanning unit 64 to the objective lens 10.
 SLO光源61から発せられた測定光は、ビームスプリッタ62を透過した後、フォーカシングレンズ63を介して走査部64に入射する。そして、走査部64で反射された測定光は、リレーレンズ65、対物レンズ21を介して、患者眼の眼底Efに集光される。 The measurement light emitted from the SLO light source 61 passes through the beam splitter 62, and then enters the scanning unit 64 through the focusing lens 63. Then, the measurement light reflected by the scanning unit 64 is focused on the fundus oculi Ef of the patient's eye via the relay lens 65 and the objective lens 21.
 そして、眼底で反射した測定光は、対物レンズ21、リレーレンズ65、走査部64、フォーカシングレンズ63を経て、ビームスプリッタ62にて反射される。その後、集光レンズ66にて集光された後、共焦点開口67を介して、受光素子68によって検出される。受光素子68によって検出された受光信号は制御部70へ出力される。 The measurement light reflected by the fundus passes through the objective lens 21, the relay lens 65, the scanning unit 64, and the focusing lens 63, and is reflected by the beam splitter 62. Thereafter, the light is condensed by the condenser lens 66 and then detected by the light receiving element 68 through the confocal aperture 67. The light reception signal detected by the light reception element 68 is output to the control unit 70.
<制御部>
 制御部70は、レーザ治療装置1の各部と接続され、装置全体を制御する。例えば、制御部70は、一般的なCPU(Central Processing Unit)71、ROM72、RAM73等で実現される。ROM72には、レーザ治療装置の動作を制御するための各種プログラム、画像を処理するための画像処理プログラム、初期値等が記憶されている。RAM73は、各種情報を一時的に記憶する。なお、制御部70は、複数の制御部(つまり、複数のプロセッサ)によって構成されてもよい。
<Control unit>
The control unit 70 is connected to each unit of the laser treatment apparatus 1 and controls the entire apparatus. For example, the control unit 70 is realized by a general central processing unit (CPU) 71, a ROM 72, a RAM 73, and the like. The ROM 72 stores various programs for controlling the operation of the laser treatment apparatus, an image processing program for processing an image, initial values and the like. The RAM 73 temporarily stores various information. The control unit 70 may be configured by a plurality of control units (that is, a plurality of processors).
 制御部70は、例えば、指標投影部10、前眼撮影部30、レーザ照射部40、固視標呈示部50、眼底撮影部60、記憶部(例えば、不揮発性メモリ)74、表示部75、操作部76等と電気的に接続されている。 The control unit 70 includes, for example, an index projection unit 10, an anterior eye imaging unit 30, a laser irradiation unit 40, a fixation target presenting unit 50, a fundus imaging unit 60, a storage unit (for example, non-volatile memory) 74, a display unit 75, It is electrically connected to the operation unit 76 and the like.
 例えば、制御部70は、撮像素子31または受光素子68から出力された信号に基づいて患者眼の前眼部画像または眼底画像を取得する。また、制御部70は、患者の前眼部画像からアライメント指標を検出する。制御部70は、アライメント指標が検出される位置に基づいて装置1と患者眼とのアライメント状態の適否を判定できる。また、例えば、制御部70は、走査部44、走査部64などを制御し、測定光またはレーザ光の照射位置を変更する。 For example, the control unit 70 acquires an anterior segment image or a fundus image of a patient's eye based on a signal output from the imaging device 31 or the light receiving device 68. In addition, the control unit 70 detects an alignment index from the anterior segment image of the patient. The control unit 70 can determine the propriety of the alignment state between the device 1 and the patient's eye based on the position at which the alignment index is detected. Also, for example, the control unit 70 controls the scanning unit 44, the scanning unit 64, and the like to change the irradiation position of the measurement light or the laser light.
 記憶部74は、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、フラッシュROM、着脱可能なUSBメモリ等を記憶部74として使用することができる。制御部70は、例えば、前眼撮影部30によって撮影された前眼部画像、または眼底撮影部60によって撮影された眼底画像などを記憶部74に記憶させる。 The storage unit 74 is a non-transitory storage medium capable of retaining stored contents even when the supply of power is shut off. For example, a hard disk drive, a flash ROM, a removable USB memory, or the like can be used as the storage unit 74. The control unit 70 causes the storage unit 74 to store, for example, an anterior segment image captured by the anterior eye capturing unit 30, a fundus image captured by the fundus capturing unit 60, and the like.
 表示部75は、装置本体に搭載されたディスプレイであってもよいし、本体に接続されたディスプレイであってもよい。パーソナルコンピュータのディスプレイを用いてもよい。複数のディスプレイが併用されてもよい。また、表示部75は、タッチパネルであってもよい。 The display unit 75 may be a display mounted on the apparatus main body, or may be a display connected to the main body. A display of a personal computer may be used. Multiple displays may be used together. In addition, the display unit 75 may be a touch panel.
 制御部70は、表示部75の表示画面を制御する。例えば、制御部70は、前眼撮影部30によって撮影された前眼部画像、または眼底撮影部60によって撮影された眼底画像などを表示部75に静止画または動画として出力する。 Control unit 70 controls the display screen of display unit 75. For example, the control unit 70 outputs an anterior segment image captured by the anterior eye capturing unit 30, a fundus image captured by the fundus capturing unit 60, or the like to the display unit 75 as a still image or a moving image.
 操作部76には、術者による各種操作指示が入力される。操作部76は、入力された操作指示に応じた信号を制御部70に出力する。操作部76には、例えば、マウス、ジョイスティック、キーボード、タッチパネル等の少なくともいずれかのユーザーインターフェイスを用いればよい。制御部70は、操作部76が受け付けた術者の操作に基づく操作信号を取得してもよい。操作部76がタッチパネルである場合、操作部76が表示部75として機能してもよい。 Various operation instructions by the operator are input to the operation unit 76. The operation unit 76 outputs a signal corresponding to the input operation instruction to the control unit 70. For the operation unit 76, for example, at least one of user interfaces such as a mouse, a joystick, a keyboard, and a touch panel may be used. Control unit 70 may acquire an operation signal based on the operation of the operator received by operation unit 76. When the operation unit 76 is a touch panel, the operation unit 76 may function as the display unit 75.
 なお、本実施例において、光学系100は図示無き駆動機構によってXYZ方向に移動可能に設けられている。例えば、術者は、ジョイスティック等の操作部76の操作によって光学系100を患者眼に対して移動させる。これによって、術者は、患者眼に対する光学系100の位置合わせを行う。 In the present embodiment, the optical system 100 is provided movably in the X, Y, and Z directions by a drive mechanism (not shown). For example, the operator moves the optical system 100 relative to the patient's eye by operating the operation unit 76 such as a joystick. Thereby, the operator aligns the optical system 100 with respect to the patient's eye.
<制御動作>
 以下、本実施例のレーザ治療装置を用いて患者眼の治療をする際の手順を、図2のフローチャートを用いて装置の制御動作とともに説明する。
<Control action>
Hereinafter, the procedure for treating a patient's eye using the laser treatment apparatus of the present embodiment will be described together with the control operation of the apparatus using the flowchart of FIG.
<ステップS101:前眼部撮影>
 まず、術者は、患者の顔を図示無き顔支持ユニットにより支持させる。制御部70は、固視標呈示部50によって患者に固視標を呈示する。術者は、患者に固視標を固視するように指示する。前眼撮影部30は、前眼部照明光源15によって照明された前眼部と、指標投影部10によるアライメント指標を撮像し、その結果を制御部70に出力する。制御部70は、前眼撮影部30から取得した前眼部画像を表示部75に表示させる。
<Step S101: Anterior Segment Shooting>
First, the operator causes the patient's face to be supported by the face support unit (not shown). The control unit 70 causes the fixation target presenting unit 50 to present the fixation target to the patient. The operator instructs the patient to fixate on the fixation target. The anterior eye photographing unit 30 picks up an image of the anterior eye illuminated by the anterior eye illumination light source 15 and the alignment index by the index projection unit 10, and outputs the result to the control unit 70. The control unit 70 causes the display unit 75 to display the anterior eye part image acquired from the anterior eye photographing unit 30.
<ステップS102:アライメント>
 術者は、表示部75に表示された前眼部画像を観察しながら、光学系100のアライメント(位置合わせ)を行う。例えば、図3に示すように、表示部75に表示された前眼部画像39には光源11による7つの指標像Ma,Mb,Mc,Md,Me,Mf,Mgが形成される。また、指標像Mb,Mfは、コリメートレンズ12を通過した平行光による指標像である。制御部70は、円状のレチクルマークNと、撮影に必要な瞳孔径を示すリングマークTを前眼部画像上に電気的に形成させている。術者は、レチクルマークNに指標像Ma,Mb,Mc,Md,Me,Mf,Mgが位置するように、操作部76を操作して光学系100を上下左右に移動させる。また、前後方向(作動距離方向)は、拡散光による指標像Ma,Mc,Md,Me,Mgと平行光による指標像Mb,Mfによる指標像とが所定の位置関係になるように光学系100を移動させる。
<Step S102: Alignment>
The operator aligns the optical system 100 while observing the anterior segment image displayed on the display unit 75. For example, as shown in FIG. 3, seven index images Ma, Mb, Mc, Md, Me, Mf, and Mg from the light source 11 are formed in the anterior segment image 39 displayed on the display unit 75. The index images Mb and Mf are index images of parallel light having passed through the collimator lens 12. The control unit 70 electrically forms a circular reticle mark N and a ring mark T indicating the pupil diameter necessary for photographing on the anterior eye image. The operator operates the operation unit 76 to move the optical system 100 vertically and horizontally so that the reticle marks N have the index images Ma, Mb, Mc, Md, Me, Mf and Mg. Further, in the front-rear direction (working distance direction), the optical system 100 is such that the index images Ma, Mc, Md, Me, Mg by diffused light and the index images Mb, Mf by parallel light have a predetermined positional relationship. Move
<ステップS103:眼底画像撮影>
 アライメントが完了すると、制御部70は眼底撮影部60を制御し、患者眼Eの眼底Efを撮影する。制御部70は、走査部64によって患者眼Eに測定光を走査させ、眼底Efの画像を取得する。
<Step S103: fundus image photography>
When the alignment is completed, the control unit 70 controls the fundus imaging unit 60 to capture the fundus Ef of the patient's eye E. The control unit 70 causes the scanning unit 64 to scan the patient's eye E with the measurement light, and acquires an image of the fundus oculi Ef.
<ステップS104:レーザ照射領域の設定>
 次に術者は、眼底撮影部60によって撮影された眼底画像に基づいてレーザの照射領域を設定する。例えば、図4に示すように、制御部70は、眼底画像69にレーザ光の照射領域を示す照準マークGを表示させる。術者は、操作部76を操作し、眼底画像69に写る黄斑などの位置を確認しながら照準マークGを所望の位置に移動させる。制御部70は、操作部76からの操作信号に基づいて眼底画像上に表示された照準マークGの位置を移動させる。そして、制御部70は、指定された位置をレーザ照射領域として設定する。なお、照射をしない領域(照射禁止領域)が設定され、照射禁止領域を除く領域をレーザで照射する構成としてもよい。
<Step S104: Setting of Laser Irradiation Area>
Next, the operator sets the irradiation area of the laser based on the fundus oculi image photographed by the fundus oculi photographing unit 60. For example, as shown in FIG. 4, the control unit 70 causes the fundus image 69 to display an aiming mark G indicating the irradiation area of the laser light. The operator operates the operation unit 76 to move the aiming mark G to a desired position while confirming the position of a macula or the like shown in the fundus image 69. The control unit 70 moves the position of the aiming mark G displayed on the fundus image based on the operation signal from the operation unit 76. Then, the control unit 70 sets the designated position as a laser irradiation area. In addition, it is good also as a structure which sets the area | region (irradiation prohibition area | region) which does not irradiate, and irradiates the area | region except an irradiation prohibition area | region with a laser.
<ステップS105:照射開始信号受信>
 術者は、レーザ照射領域を設定すると、操作部76に設けられた照射開始ボタン76aを押す。操作部76は、照射開始ボタン76aが押されると、照射開始信号を出力する。制御部70は、操作部76から出力された照射開始信号を受信する。
<Step S105: Reception of Irradiation Start Signal>
After setting the laser irradiation area, the operator presses the irradiation start button 76 a provided on the operation unit 76. When the irradiation start button 76 a is pressed, the operation unit 76 outputs an irradiation start signal. Control unit 70 receives the irradiation start signal output from operation unit 76.
<ステップS105:レーザ使用条件判定>
 制御部70は、照射開始信号を受け付けると、レーザの使用条件を満たしているか否かを判定する。例えば、制御部70は、アライメント、散瞳状態、または開瞼状態の適否等に基づいて、レーザの使用条件を満たしているか否かを判定する。
<Step S105: Laser Use Condition Determination>
When the control unit 70 receives the irradiation start signal, the control unit 70 determines whether the use condition of the laser is satisfied. For example, the control unit 70 determines whether the use condition of the laser is satisfied based on the alignment, the mydriasis state, the suitability of the open eye state, and the like.
 図5は、XY方向のアライメントがずれた状態を示す。このように、XY方向のアライメントがずれると、レーザ光が虹彩によって遮られてしまい、レーザ光が十分に眼底に届かない可能性がある。また、図6Aは適正な作動距離においてレーザが眼底に照射される場合を示し、図6Bは不適正な作動距離でレーザが照射される場合を示す。図6Aに示すように、作動距離が適正な場合は、レーザ光が瞳孔Pを通って眼底に照射される。しかしながら、図6Bに示すように、作動距離が不適正である場合、レーザ光が虹彩によって遮られる可能性がある。したがって、制御部70は、眼底にレーザ光を照射する前に、アライメント状態の適否を判定する。 FIG. 5 shows a state in which the alignment in the XY directions is shifted. As described above, when the alignment in the XY directions is deviated, the laser light may be blocked by the iris, and the laser light may not sufficiently reach the fundus. Also, FIG. 6A shows the case where the laser is irradiated to the fundus at an appropriate working distance, and FIG. 6B shows the case where the laser is irradiated at an incorrect working distance. As shown in FIG. 6A, when the working distance is appropriate, laser light is emitted to the fundus through the pupil P. However, as shown in FIG. 6B, if the working distance is incorrect, the laser light may be blocked by the iris. Therefore, the control unit 70 determines the propriety of the alignment state before irradiating the fundus with laser light.
 図7は、開瞼状態が悪く、瞼が瞳孔Pにかかっている様子を示す。このような場合、レーザ光が瞼によって遮られるため、レーザ光が十分に眼底に届かない可能性がある。また、散瞳状態が悪く、レーザ光の通過する領域よりも瞳孔Pが小さい場合は、レーザ光が虹彩によって遮られてしまう。したがって、しがたって、制御部70は、開瞼状態または散瞳状態の適否を判定する。 FIG. 7 shows that the open eye condition is bad and the eyelid is on the pupil P. In such a case, the laser beam may not reach the fundus sufficiently because the laser beam is blocked by the eyelid. In addition, when the mydriasis state is bad and the pupil P is smaller than the area through which the laser light passes, the laser light is blocked by the iris. Therefore, the control unit 70 determines the suitability of the open eye status or mydriatic status.
 アライメントの適否判定について説明する。制御部70は、アライメントの適否を判定する場合、例えば、前眼撮影部30によって撮影された前眼部画像39に基づいて、アライメントの適否を判定する。例えば、撮像素子31で撮像された7つの指標像Ma~Mgが検出されるようになると、制御部70はこれらの指標像に基づいてアライメント基準に対する偏位量(位置ずれ)を求める。 The appropriateness determination of alignment will be described. When determining the suitability of alignment, the control unit 70 determines the suitability of alignment based on, for example, the anterior segment image 39 captured by the anterior segment imaging unit 30. For example, when seven index images Ma to Mg captured by the imaging device 31 are detected, the control unit 70 determines the displacement amount (displacement) with respect to the alignment reference based on these index images.
 XY方向のアライメントの適否を判定する場合、例えば、制御部70は、指標像Ma~Mgを通る円Qの中心とXY方向のアライメント基準位置Cとの偏位量を求める。そして、この偏位量が所定の許容範囲に入って一定時間(例えば、画像処理の10フレーム分又は0.3秒間等)継続しているかによって、XY方向のアライメントの適否を判定する。 When determining the suitability of the alignment in the XY direction, for example, the control unit 70 determines the amount of deviation between the center of the circle Q passing the index images Ma to Mg and the alignment reference position C in the XY direction. Then, the propriety of the alignment in the X and Y directions is determined based on whether the amount of deviation falls within a predetermined allowable range and continues for a fixed time (for example, 10 frames or 0.3 seconds of image processing).
 また、Z方向のアライメントの適否を判定する場合、例えば、制御部70は、円Qの大きさを求める。例えば、円Qの大きさは、作動距離によって変化し、患者眼と装置1が近づくと円Qは大きくなり、遠ざかると円Qは小さくなる。したがって、制御部70は、記憶部74に記憶された適正な作動距離における円Qの大きさと、画像上の円Qの大きさを比較することによって、Z方向のアライメントの適否を判定してもよい。もちろん、円Qの大きさに限らず、例えば、画像の鮮明度に基づいてZ方向のアライメントの適否を判定してもよい。 In addition, when determining the appropriateness of the alignment in the Z direction, for example, the control unit 70 obtains the size of the circle Q. For example, the size of the circle Q changes according to the working distance, and the circle Q becomes larger as the patient's eye and the device 1 approach, and becomes smaller as the patient's eye and the device 1 move closer. Therefore, the control unit 70 determines whether the alignment in the Z direction is appropriate or not by comparing the size of the circle Q at the appropriate working distance stored in the storage unit 74 with the size of the circle Q on the image. Good. Of course, the suitability of alignment in the Z direction may be determined based on not only the size of the circle Q but also the sharpness of the image, for example.
 なお、Z方向についても、Z方向のアライメント基準位置に対する偏位量を求め、その偏位量が所定の許容範囲に一定時間入っているかによって、Z方向のアライメントの適否を判定してもよい。 Also in the Z direction, the deviation amount with respect to the alignment reference position in the Z direction may be determined, and the suitability of the alignment in the Z direction may be determined based on whether the deviation amount falls within a predetermined allowable range for a predetermined time.
 散瞳状態の適否判定について説明する。散瞳状態の適否は、撮像素子31による前眼部画像39から検出される瞳孔Pのエッジが、図3に示すリングマークTから外れているか否かで判定される。リングマークTの大きさは、アライメント基準位置Cを基準に、レーザ光が通過可能な径(例えば、直径4mm)として設定されているものである。瞳孔PのエッジがこのリングマークTよりも外にあれば、レーザ照射時の光量が十分に確保される状態となる。なお、散瞳状態の適否も、アライメント完了の判定と同じく、適正条件が連続して一定時間継続するときに、適正であると判定してもよい。 The appropriateness determination of the mydriatic state will be described. The propriety of the mydriatic state is determined by whether or not the edge of the pupil P detected from the anterior eye image 39 by the imaging element 31 is out of the ring mark T shown in FIG. The size of the ring mark T is set based on the alignment reference position C as a diameter (for example, a diameter of 4 mm) through which the laser beam can pass. When the edge of the pupil P is outside the ring mark T, the light amount at the time of laser irradiation is sufficiently secured. It should be noted that the suitability of the mydriasis state may also be determined to be appropriate when the appropriate condition continues continuously for a fixed time, as in the determination of the alignment completion.
 開瞼状態の適否判定について説明する。開瞼状態の適否は、撮像素子31によって撮影された前眼部画像39に基づいて判定する。例えば、制御部70は、前眼部画像39から検出された瞼がリングマークTの外側にあれば開瞼状態が適正であると判定し、図7に示すように瞼がリングマークTの内側にあれば開瞼状態が不適であると判定する。 The appropriateness determination of the open condition will be described. Whether the open condition is appropriate or not is determined based on the anterior segment image 39 captured by the imaging device 31. For example, if the eyelid detected from the anterior segment image 39 is outside the ring mark T, the control unit 70 determines that the open condition is appropriate, and the eyelid is inside the ring mark T as shown in FIG. If it is determined that the open condition is inappropriate.
<ステップS107:レーザ照射>
 ステップ106において、使用条件が満たされていると判定された場合において、制御部70は、レーザ照射部40の動作を制御し、設定された照射領域に対してレーザ光を照射する。例えば、眼底画像上の各位置と走査部44の可動位置が対応付けられており、制御部70は、眼底画像における照射領域にレーザ光が照射領域に照射されるように走査部44を制御する。複数の照射領域がある場合、制御部70は、各照射領域に対し順次レーザ光を照射する。
<Step S107: Laser Irradiation>
When it is determined in step 106 that the use condition is satisfied, the control unit 70 controls the operation of the laser irradiation unit 40, and irradiates the set irradiation area with the laser light. For example, each position on the fundus image is associated with the movable position of the scanning unit 44, and the control unit 70 controls the scanning unit 44 so that the irradiation region in the fundus image is irradiated with the laser light. . When there are a plurality of irradiation areas, the control unit 70 sequentially irradiates each irradiation area with laser light.
 制御部70は、眼底撮影部60によって撮影された眼底画像69を随時取得し、眼底画像69をリアルタイムに表示部75に表示する。また、制御部70は、前眼部画像39を表示部75に表示させてもよい。これによって、術者は、レーザ照射時の患者眼Eの状態を容易に確認することができる。表示方法としては、例えば、図8に示すように、表示部75の画面上に並べて表示させてもよいし、一方の画像を他方の画像の位置に重畳させて表示させてもよい。 The control unit 70 acquires the fundus oculi image 69 photographed by the fundus oculi photographing unit 60 as needed, and displays the fundus oculi image 69 on the display unit 75 in real time. In addition, the control unit 70 may cause the display unit 75 to display the anterior segment image 39. By this, the operator can easily confirm the state of the patient's eye E at the time of laser irradiation. As a display method, for example, as shown in FIG. 8, the images may be displayed side by side on the screen of the display unit 75, or one image may be displayed superimposed on the position of the other image.
<ステップS108:警告>
 ステップS106において、アライメントまたは被検眼の状態の少なくとも一方が適正でないと判定した場合、制御部70は、例えば、表示部75に警告表示K(図4,5,7参照)を行い、術者に報知する。警告表示Kは、前眼部画像上に表示させてもよいし、眼底画像上に表示させてもよい。もちろん、表示ではなく、警報またはランプの点灯等によって術者に報知してもよい。
<Step S108: Warning>
When it is determined in step S106 that at least one of the alignment and the state of the eye to be examined is not appropriate, the control unit 70 causes the display unit 75 to display a warning K (see FIGS. 4, 5 and 7), for example. Inform. The warning indication K may be displayed on the anterior segment image or may be displayed on the fundus image. Of course, the operator may be notified by an alarm or lighting of a lamp instead of display.
 なお、制御部70は、警告中も随時、前眼撮影部30によってアライメント状態、散瞳状態、または開瞼状態を検出する。そして、制御部70は、術者の処置によってレーザ使用条件が満たされたと判定した場合、ステップ107に進み、レーザの照射を開始する。 The control unit 70 causes the anterior eye photographing unit 30 to detect an alignment state, a mydriasis state, or an open eye state, as needed, even during a warning. Then, when it is determined that the laser use condition is satisfied by the treatment of the operator, the control unit 70 proceeds to step 107 and starts the laser irradiation.
 上記のように、前眼部画像によって、アライメントの状態、眼の散瞳状態、開瞼状態が適正かどうかを確認できる。これによって、レーザ光が虹彩または瞼等によって遮られ、照射光量が不足すること、または照射ムラができることを低減することができる。 As described above, with the anterior segment image, it is possible to confirm whether the alignment state, the mydriasis state of the eye, and the open eye state are appropriate. By this, it is possible to reduce that the laser light is blocked by the iris or eyelid or the like, and the amount of irradiation light is insufficient, or that the irradiation unevenness is generated.
 なお、制御部70は、適正でないと判定した理由を警告表示Kとして表示させてもよい。これによって、術者は、表示部75の表示情報を参考にして、眼を大きく開くように患者に注意を促したり、瞳孔径が広がるように休憩したりするなど、レーザ照射前に必要な処置を施すことができる。 Note that the control unit 70 may display the reason for determining that it is not appropriate as the warning display K. As a result, the operator refers to the display information on the display unit 75 and warns the patient to open the eye widely, or takes a break to enlarge the pupil diameter, etc. Can be applied.
 なお、以上の実施例では、手動で患者眼に対する光学系100のアライメントを行ったが、これに限らない。例えば、図9に示すように、制御部70は、ステップS106において前眼部画像39に写る指標像Ma~Mgを検出し、アライメントがずれていた場合、指標像の位置に基づいて自動で図示無き駆動部を制御し、光学系100のアライメントを行ってもよい(ステップS208)。 Although the optical system 100 is manually aligned with the patient's eye in the above embodiments, the present invention is not limited to this. For example, as shown in FIG. 9, the control unit 70 detects the index images Ma to Mg in the anterior eye image 39 in step S106, and if alignment is shifted, the control unit 70 automatically illustrates based on the position of the index image. The drive unit may be controlled to align the optical system 100 (step S208).
 なお、制御部70は、前眼部画像39の情報に基づいて、レーザ光の照射制御を行ってもよい。例えば、図10に示すように、ステップS106において、睫毛や瞼が瞳に掛かっていると判定された場合、レーザ光の光量を高める、またはレーザ光の照射を中止するなど、レーザ照射部40の制御を行ってもよい(ステップS308)。これによって、レーザが不適切に照射されることを防ぐことができる。 The control unit 70 may perform irradiation control of the laser light based on the information of the anterior eye image 39. For example, as shown in FIG. 10, when it is determined in step S106 that the eyebrows or eyelids are applied to the pupil, the light amount of the laser light is increased, or the irradiation of the laser light is stopped. Control may be performed (step S308). This can prevent the laser from being irradiated inappropriately.
 なお、制御部70は、患者眼の前眼部画像39と眼底画像69とを表示部75に同時に表示させる例を示したが、前眼部画像39と眼底画像69は別々に表示させてもよい。この場合、例えば、患者眼Eが大きく動いた場合、表示部75の表示が眼底像69から前眼部画像39へと切換わるようにしてもよい。これによって、前眼部画像39によるアライメントをスムーズに行うことができる。 Although the control unit 70 simultaneously displays the anterior eye image 39 and the fundus image 69 of the patient's eye on the display unit 75, the anterior eye image 39 and the fundus image 69 may be displayed separately. Good. In this case, for example, when the patient's eye E moves largely, the display on the display unit 75 may be switched from the fundus image 69 to the anterior segment image 39. By this, the alignment by the anterior segment image 39 can be smoothly performed.
 なお、上記の実施例において、アライメント指標に基づいて作動距離の適否を判定したが、これに限らない。例えば、TOF型イメージセンサを用いて作動距離の適否を判定してもよい。TOF型イメージセンサは、例えば、CCDに到達する光の時間で距離を計測するデバイスである。 In the above-mentioned example, although the propriety of the working distance was judged based on the alignment index, it does not restrict to this. For example, the suitability of the working distance may be determined using a TOF image sensor. The TOF image sensor is, for example, a device that measures the distance at the time of light reaching the CCD.
 1 レーザ治療装置
 10 指標投影部
 30 前眼撮影部
 40 レーザ照射部
 50 固視標投影部
 60 眼底撮影部
 70 制御部
 71 CPU
 72 ROM
 73 RAM
 74 記憶部
 75 表示部
 76 操作部
Reference Signs List 1 laser treatment apparatus 10 index projection unit 30 anterior eye imaging unit 40 laser irradiation unit 50 fixation target projection unit 60 fundus imaging unit 70 control unit 71 CPU
72 ROM
73 RAM
74 storage unit 75 display unit 76 operation unit

Claims (9)

  1.  眼科用レーザ治療装置であって、
     治療用レーザ光を患者眼に照射する照射手段と、
     前記患者眼の眼底画像を撮影するための眼底撮影手段と、
     前記患者眼の前眼部画像を撮影するための前眼部撮影手段と、
     前記眼底撮影手段および前記前眼部撮影手段を制御する制御手段と、を備え、
     前記制御手段は、レーザ照射時に前記患者眼の眼底画像および前眼部画像を撮影することを特徴とする眼科用レーザ治療装置。
    An ophthalmic laser treatment apparatus,
    Irradiation means for irradiating a patient's eye with a therapeutic laser beam;
    Fundus imaging means for capturing a fundus image of the patient's eye;
    Anterior segment imaging means for capturing an anterior segment image of the patient's eye;
    And a control unit that controls the fundus imaging unit and the anterior segment imaging unit.
    An ophthalmic laser treatment apparatus, wherein the control means takes a fundus image and an anterior segment image of the patient's eye at the time of laser irradiation.
  2.  前記制御手段は、前記前眼部画像に基づいて、前記患者眼に対する前記照射手段のアライメント状態を検出することを特徴とする請求項1の眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to claim 1, wherein the control unit detects an alignment state of the irradiation unit with respect to the patient's eye based on the anterior segment image.
  3.  前記制御手段は、前記前眼部画像に基づいて、開瞼状態および散瞳状態の少なくとも1つを検出することを特徴とする請求項1または2の眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to claim 1 or 2, wherein the control means detects at least one of an open eye state and a mydriatic state based on the anterior segment image.
  4.  前記制御手段は、前記前眼部画像に基づいて、レーザ使用条件の適否を判定することを特徴とする請求項1~3のいずれかの眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to any one of claims 1 to 3, wherein the control means determines the suitability of the laser use condition based on the anterior segment image.
  5.  前記制御手段は、レーザ使用条件を満たしていないと判定した場合、レーザ使用条件を満たしていないことを報知手段によって術者に報知することを特徴とする請求項4の眼科用レーザ治療装置。 5. The ophthalmic laser treatment apparatus according to claim 4, wherein the control means informs the operator by the notifying means that the laser use condition is not satisfied when it is determined that the laser use condition is not satisfied.
  6.  前記制御手段は、前記前眼部画像に基づいて、前記照射手段の制御を変更することを特徴とする請求項4または5の眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to claim 4 or 5, wherein the control unit changes control of the irradiation unit based on the anterior segment image.
  7.  前記制御手段は、レーザ照射時に前記前眼部画像を表示手段に表示させることを特徴とする請求項1~6のいずれかの眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to any one of claims 1 to 6, wherein the control means causes the display means to display the anterior segment image upon laser irradiation.
  8.  患者眼にアライメント指標を投影する指標投影手段を備え、
    前記前眼部撮影手段は、前記患者眼に投影された前記アライメント指標を撮影することを特徴とする請求項1~7のいずれかの眼科用レーザ治療装置。
    Index projection means for projecting an alignment index onto the patient's eye;
    The ophthalmic laser treatment apparatus according to any one of claims 1 to 7, wherein the anterior segment imaging means captures the alignment index projected onto the patient's eye.
  9.  前記前眼部撮影部は、TOF型イメージセンサであることを特徴とする請求項1~8のいずれかの眼科用レーザ治療装置。 The ophthalmic laser treatment apparatus according to any one of claims 1 to 8, wherein the anterior segment imaging unit is a TOF image sensor.
PCT/JP2018/036303 2017-09-28 2018-09-28 Ophthalmological laser medical treatment device WO2019065990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019545149A JPWO2019065990A1 (en) 2017-09-28 2018-09-28 Laser treatment device for ophthalmology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189225 2017-09-28
JP2017-189225 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065990A1 true WO2019065990A1 (en) 2019-04-04

Family

ID=65901572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036303 WO2019065990A1 (en) 2017-09-28 2018-09-28 Ophthalmological laser medical treatment device

Country Status (2)

Country Link
JP (1) JPWO2019065990A1 (en)
WO (1) WO2019065990A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350742A (en) * 1999-06-11 2000-12-19 Sumitomo Heavy Ind Ltd Control method and apparatus of eyeball irradiating radiation
JP2011235120A (en) * 2000-06-13 2011-11-24 Clarity Medical Systems Inc Digital eye camera
JP2014200403A (en) * 2013-04-03 2014-10-27 株式会社トプコン Ophthalmologic apparatus
JP2016193033A (en) * 2015-03-31 2016-11-17 株式会社ニデック Ophthalmologic apparatus and ophthalmologic apparatus control program
JP2017153751A (en) * 2016-03-02 2017-09-07 株式会社ニデック Ophthalmic laser treatment device, ophthalmic laser treatment system and laser radiation program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350742A (en) * 1999-06-11 2000-12-19 Sumitomo Heavy Ind Ltd Control method and apparatus of eyeball irradiating radiation
JP2011235120A (en) * 2000-06-13 2011-11-24 Clarity Medical Systems Inc Digital eye camera
JP2014200403A (en) * 2013-04-03 2014-10-27 株式会社トプコン Ophthalmologic apparatus
JP2016193033A (en) * 2015-03-31 2016-11-17 株式会社ニデック Ophthalmologic apparatus and ophthalmologic apparatus control program
JP2017153751A (en) * 2016-03-02 2017-09-07 株式会社ニデック Ophthalmic laser treatment device, ophthalmic laser treatment system and laser radiation program

Also Published As

Publication number Publication date
JPWO2019065990A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US8944599B2 (en) Ophthalmologic apparatus, and ophthalmologic control method and program
JP2007175352A (en) Ophthalmologic instrument
US20130208243A1 (en) Ophthalmologic apparatus, method for controlling ophthalmologic apparatus, and storage medium
JP2010148635A (en) Ophthalmic apparatus for laser medical treatment
JP2003245300A (en) Ophthalmic equipment
JP2005160549A (en) Fundus camera
JP5953740B2 (en) Fundus examination device
JP5554610B2 (en) Fundus photographing device
JP2016158721A (en) Ophthalmologic apparatus
JP4359527B2 (en) Fundus camera
JP7183617B2 (en) Fundus camera
JP5522841B2 (en) Fundus photographing device
WO2019065990A1 (en) Ophthalmological laser medical treatment device
JP4615891B2 (en) Fundus camera
JP5522629B2 (en) Fundus photographing device
JP5807701B2 (en) Fundus photographing device
JP6711638B2 (en) Ophthalmic equipment
JP7344351B2 (en) Ophthalmological equipment and its operating method
JP2013027672A (en) Fundus photography device
WO2016129499A1 (en) Ocular refractivity measuring device
JP2013179979A (en) Fundus imaging apparatus
JP6292331B2 (en) Fundus photographing device
JP5927689B2 (en) Ophthalmic examination equipment
JP6107906B2 (en) Fundus photographing device
JP5987356B2 (en) Fundus photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862135

Country of ref document: EP

Kind code of ref document: A1