WO2019065584A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2019065584A1
WO2019065584A1 PCT/JP2018/035330 JP2018035330W WO2019065584A1 WO 2019065584 A1 WO2019065584 A1 WO 2019065584A1 JP 2018035330 W JP2018035330 W JP 2018035330W WO 2019065584 A1 WO2019065584 A1 WO 2019065584A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
phase
coil
main body
bus bars
Prior art date
Application number
PCT/JP2018/035330
Other languages
French (fr)
Japanese (ja)
Inventor
修二 岩崎
卓寛 上谷
幸司 山田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880053883.9A priority Critical patent/CN111052557B/en
Priority to JP2019545108A priority patent/JP7192776B2/en
Publication of WO2019065584A1 publication Critical patent/WO2019065584A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto

Definitions

  • the present invention relates to a motor.
  • one aspect of the present invention aims to provide a motor that can be miniaturized while adopting a plurality of systems.
  • the motor according to the present invention comprises a rotor rotating around a central axis extending in the vertical direction, a stator radially opposed to the rotor with a gap therebetween, and a bus bar unit provided on the upper side of the stator,
  • the stator includes U-phase coils, V-phase coils and W-phase coils as one system coil group and has a plurality of system coil groups, and the coil groups of different systems are arranged symmetrically around the central axis
  • the bus bar unit includes a plurality of phase bus bars connected to lead wires drawn from the coils of each phase and a bus bar holder for holding the plurality of phase bus bars, and the phase bus bars
  • a bus bar main body extending along the circumferential direction, and one end of the bus bar main body extending in the radial direction with respect to the bus bar main body and contacting the lead wire
  • the external connection terminal located on the other end of the bus bar main body and extending upward, and the phase bus bar has a plate shape, and at
  • the phase bus bar having the largest length along the circumferential direction of the bus bar main portion is at least a part of the other phase bus bars.
  • the coil terminals of the other phase busbars in the radial direction pass through in the direction opposite to the extending direction.
  • FIG. 1 is a cross-sectional view of a motor according to one embodiment.
  • FIG. 2 is a plan view of a stator of one embodiment.
  • FIG. 3 is a schematic view showing connection of each coil of the stator of the embodiment.
  • FIG. 4 is a schematic view showing two systems of Y-connections configured by the coil of one embodiment.
  • FIG. 5 is a perspective view of the bus bar unit of one embodiment.
  • FIG. 6 is an exploded perspective view of the bus bar unit according to one embodiment.
  • FIG. 7 is a plan view of the bus bar unit of one embodiment.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a bottom view of the bus bar unit of one embodiment.
  • FIG. 10 is a schematic cross-sectional view along the line XX in FIG.
  • FIG. 11 is a schematic view showing an electric power steering apparatus according to an embodiment.
  • an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the X-axis direction is a direction orthogonal to the Z-axis direction, which is the left-right direction in FIG.
  • the Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
  • the positive side in the Z-axis direction (+ Z side) is referred to as “upper side”
  • the negative side in the Z-axis direction ( ⁇ Z side) is referred to as “lower side”.
  • the upper and lower sides are directions used merely for the purpose of explanation, and do not limit the actual positional relationship or direction.
  • a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”
  • a radial direction centered on the central axis J is simply referred to as “radial direction”.
  • circumferential direction around the central axis J that is, around the axis of the central axis J, is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • FIG. 1 is a cross-sectional view of a motor 1 of the present embodiment.
  • the motor 1 of the present embodiment is a three-phase alternating current motor. Further, the motor 1 of the present embodiment is an inner rotor type motor.
  • the motor 1 includes a rotor 20 having a shaft 21, a stator 30, a bus bar unit 60, a housing 40, an upper bearing 6A, a lower bearing 6B, and a bearing holder 10.
  • the motor 1 is connected to an external device (control unit) 9 by external connection terminals 71 c, 72 c, 73 c extending upward from the bus bar unit 60.
  • the rotation of the rotor 20 is controlled by the external device 9 of the motor 1.
  • the housing 40 is in the form of a cylinder that opens to the upper side (+ Z side).
  • the housing 40 accommodates the rotor 20 and the stator 30.
  • the housing 40 has a cylindrical portion 45, a bottom portion 49, and a lower bearing holding portion 48.
  • the cylindrical portion 45 surrounds the stator 30 from the radially outer side.
  • the cylindrical portion 45 is cylindrical with the central axis J as a center.
  • the bottom portion 49 is located at the lower end of the cylindrical portion 45.
  • the bottom 49 is located below the stator 30.
  • the lower bearing holding portion 48 is located at the center of the bottom portion 49 in plan view.
  • the lower bearing holder 48 holds the lower bearing 6B.
  • the lower bearing holding portion 48 has a holding cylindrical portion 48a extending in the axial direction centering on the central axis J, and a lower end protruding portion 48b extending inward in the radial direction from the lower end of the holding cylindrical portion 48a.
  • a hole 48c penetrating in the axial direction is provided at the center of the lower end protrusion 48b in plan view.
  • the rotor 20 rotates around the central axis J.
  • the rotor 20 has a shaft 21, a rotor core 24, and a rotor magnet 23.
  • the shaft 21 is disposed along the central axis J around a central axis J extending in the vertical direction (axial direction).
  • the shaft 21 is rotatably supported around the central axis J by the upper bearing 6A and the lower bearing 6B.
  • the rotor core 24 is fixed to the shaft 21.
  • the rotor core 24 circumferentially surrounds the shaft 21.
  • the rotor magnet 23 is fixed to the rotor core 24. More specifically, the rotor magnet 23 is fixed to the outer surface along the circumferential direction of the rotor core 24. The rotor core 24 and the rotor magnet 23 rotate with the shaft 21.
  • the upper bearing 6A rotatably supports the shaft 21 provided on the rotor 20 at the upper side of the rotor core 24.
  • the upper bearing 6A is supported by the bearing holder 10.
  • the lower bearing 6B rotatably supports a shaft 21 provided on the rotor 20 at the lower side of the rotor core 24.
  • the lower bearing 6B is supported by the lower bearing holding portion 48 of the housing 40.
  • the bearing holder 10 is located on the upper side (+ Z side) of the stator 30. Further, the bearing holder 10 is located above the bus bar unit 60 described later. The bearing holder 10 holds the upper bearing 6A. Also, the bearing holder 10 is held by the cylindrical portion 45 of the housing 40.
  • the planar view (XY plane) shape of the bearing holder 10 is, for example, a circular shape concentric with the central axis J.
  • the bearing holder 10 includes a disc-shaped bearing holder main body portion 16, an upper bearing holding portion 18 positioned radially inward of the bearing holder main body portion 16, and a fitting cylinder positioned radially outward of the bearing holder main body portion 16. And a unit 15.
  • the upper bearing holding portion 18, the bearing holder main body portion 16 and the fitting cylindrical portion 15 are disposed in this order from the radially inner side to the outer side.
  • the bearing holder body 16 extends along a plane perpendicular to the axial direction.
  • the bearing holder main body portion 16 is provided with a through hole 16a through which the external connection terminals 71c, 72c, 73c of the bus bar unit 60 are inserted.
  • the upper bearing holder 18 holds the upper bearing 6A.
  • the upper bearing holder 18 is located at the center of the bearing holder 10 in plan view.
  • the upper bearing holding portion 18 has a holding cylindrical portion 18a extending in the axial direction centering on the central axis J, and an upper end protruding portion 18b extending inward in the radial direction from the upper end of the holding cylindrical portion 18a.
  • the upper end protrusion 18b positions the upper bearing 6A in the vertical direction.
  • a hole 18c penetrating in the axial direction is provided at the center of the upper end protrusion 18b in a plan view. The upper end portion of the shaft 21 is inserted into the hole 18c.
  • the fitting cylindrical portion 15 extends downward from the outer edge of the bearing holder main body 16.
  • the fitting cylindrical portion 15 extends in a tubular shape along the circumferential direction.
  • the fitting cylindrical portion 15 is engaged with the inner peripheral surface 45 c of the cylindrical portion 45 in the radial direction.
  • the bearing holder 10 is fixed to the housing 40.
  • the stator 30 is annularly disposed around the central axis J.
  • the stator 30 radially faces the rotor 20 via a gap.
  • the stator 30 surrounds the radially outer side of the rotor 20.
  • the stator 30 is fixed to the inner circumferential surface 45 c of the cylindrical portion 45 of the housing 40.
  • the stator 30 has a stator core 31, an upper insulator 35, a lower insulator 34, and a coil 33.
  • FIG. 2 is a plan view of the stator 30.
  • FIG. 2 illustrates a part of coil terminals 71a, 72a, 73a, 81a, 82a of the bus bar unit 60 described later.
  • the stator core 31 is composed of a plurality of core pieces 32 annularly arranged along the circumferential direction. In the stator core 31, the core pieces 32 adjacent in the circumferential direction are connected to each other. That is, the stator core 31 is configured by connecting a plurality of core pieces 32 along the circumferential direction.
  • the core piece 32 has a core back portion 32a, a teeth portion 32b, and an umbrella portion 32c. That is, the stator core 31 has a plurality of core back portions 32a, a plurality of teeth portions 32b, and a plurality of umbrella portions 32c.
  • the stator core 31 of the present embodiment is composed of twelve core pieces 32. Therefore, the stator 30 of the present embodiment has twelve teeth portions 32 b.
  • the number of core pieces 32 and teeth portions 32b is not limited to this.
  • the core back portion 32a extends along the circumferential direction.
  • the core back portion 32 a is connected to the core back portion 32 a of the adjacent core piece 32 at an end portion facing in the circumferential direction.
  • the core back portions 32a adjacent to each other in the circumferential direction are coupled by welding or the like.
  • the core back portions 32a of all the core pieces 32 are annularly coupled.
  • Teeth portion 32 b extends radially inward from the circumferential center of core back portion 32 a.
  • the coil 33 is wound around the teeth portion 32 b via the upper insulator 35 and the lower insulator 34.
  • the umbrella portion 32c is located at the tip (radially inner end) of the tooth portion 32b.
  • the dimension along the circumferential direction of the umbrella portion 32c is larger than the dimension along the circumferential direction of the teeth portion 32b and smaller than the dimension along the circumferential direction of the core back portion 32a.
  • the radially inner surface of the umbrella portion 32 c faces the rotor magnet 23 of the rotor 20.
  • stator core 31 of this embodiment is comprised from the several core piece 32 as what is called a division
  • the core piece constituting the stator core 31 may be a curling core in which the adjacent core back portions 32 a are partially connected to each other and bent in an annular shape after the winding of the coil 33.
  • the upper insulator 35 covers at least the upper side of the teeth portion 32 b of the upper surface of the stator core 31.
  • the lower insulator 34 covers at least the lower side of the teeth portion 32 b of the lower surface of the stator core 31. That is, the upper insulator 35 covers the upper surface of the tooth portion 32b, and the lower insulator 34 covers the lower surface of the tooth portion 32b.
  • the upper insulator 35 and the lower insulator 34 are made of an insulating material.
  • the upper insulator 35 and the lower insulator 34 have the same configuration except that they are provided on the side opposite to the stator core 31 in the vertical direction.
  • the upper insulator 35 has a plurality of insulator pieces 36 located on the upper side of the respective core pieces 32.
  • the lower insulator 34 has a plurality of insulator pieces 36 in the same manner as the upper insulator 35.
  • the insulator pieces 36 of the upper insulator 35 are provided in the same number (12 in this embodiment) as the core pieces 32.
  • One insulator piece 36 is disposed on the upper side of one core piece 32.
  • the plurality of insulator pieces 36 are annularly arranged along the circumferential direction.
  • the insulator piece 36 has a base 36 b, a first standing wall 36 a and a second standing wall 36 c.
  • the base portion 36 b is located on the upper side of the tooth portion 32 b and covers the upper surface of the tooth portion 32 b.
  • the first upright wall portion 36 a protrudes upward from the radially outer end of the base portion 36 b and extends along the circumferential direction.
  • the first upright wall portion 36a is located above the core back portion 32a.
  • the second upright wall portion 36c protrudes upward from the radially inner end of the base 36b and extends along the circumferential direction.
  • the second upright wall portion 36c is located on the upper side of the umbrella portion 32c.
  • the coil 33 is wound around the base 36 b.
  • the first upright wall portion 36 a and the second upright wall portion 36 c are radially opposed to each other with the base portion 36 b interposed therebetween.
  • the first upright wall 36 a and the second upright wall 36 c guide the coil 33 wound around the base 36 b from the radially outer side and the inner side, respectively.
  • the first upright wall portion 36a has a pair of end faces 36d facing both sides in the circumferential direction, and an outer peripheral surface 36e facing outward in the radial direction.
  • the end faces 36 d of the adjacent insulator pieces 36 face each other in the circumferential direction.
  • a chamfer 36f is provided between the first upright wall 36a and the outer peripheral surface 36e.
  • V-shaped leg housings 37 are provided as viewed from the axial direction. That is, the leg housing portion 37 is provided in the upper insulator 35.
  • the leg housing portion 37 is provided by abutting the chamfers 36f of the pair of insulator pieces 36 arranged in the circumferential direction in the radial direction. For this reason, it is not necessary to provide a recessed part in one insulator piece 36, and when manufacturing the insulator piece 36 by injection molding, the freedom degree of the extraction direction of the insulator piece 36 can be raised. As a result, the insulator piece 36 can be manufactured inexpensively.
  • the leg accommodating portion 37 opens in one side in the radial direction (radially outer side in the present embodiment) when viewed from the axial direction, and has a V-shape which narrows in width toward the other side (radially inner side in the present embodiment). It is.
  • the leg accommodating portion 37 is located above the boundary between adjacent core pieces 32 as viewed in the axial direction.
  • the leg portion 65 of the bus bar unit 60 which will be described later, is accommodated in the leg portion accommodating portion 37.
  • the leg 65 fits in the V-shape of the leg accommodating portion 37. That is, the leg portion 65 has a V-shape which narrows in width toward the other side in the radial direction as viewed from the axial direction (in the radial direction in this embodiment).
  • the coil 33 is configured by winding a coil wire around the teeth portion 32 b via the upper insulator 35 and the lower insulator 34. Therefore, the plurality of coils 33 are annularly arranged along the circumferential direction.
  • the stator 30 is provided with twelve coils 33.
  • the twelve coils 33 are wound in a continuous arc with a pair of coils 33 as one set.
  • the two continuously wound coils 33 are connected via a connecting wire 33b.
  • the crossover 33 b passes above the coil 33.
  • the crossover wire 33 b is insulated from the coil 33 by an insulating tube (not shown).
  • One lead wire 33 a extends upward from each coil 33.
  • the lead wire 33a corresponds to the winding start and the winding end of the two coils 33 wound in a continuous arc. Therefore, one lead wire 33 a extends from one coil 33.
  • the lead wire 33a is connected to the coil terminals 71a, 72a, 73a, 81a, 82a described later.
  • the coil terminals 71a, 72a, 73a, 81a, 82a are the coil terminals 71a, 72a, 73a of the phase bus bars 71, 72, 73, and the coil terminals 81a, 82a of the neutral point bus bars 81, 82, respectively. ,are categorized.
  • FIG. 3 is a schematic view showing wire connections of the coils 33 of the stator 30.
  • twelve coils 33 of stator 30 are four U-phase coils U1a, U1b, U2a, U2b, four V-phase coils V1a, V1b, V2a, V2b, and four W-phase coils W1a, W1b, W2a, W2b And consists of
  • FIG. 4 is a schematic view showing two systems of Y-connections formed by 12 coils 33.
  • the stator 30 has a U-phase coil, a V-phase coil and a W-phase coil as one system coil group, and a coil group (a first system) of a plurality of systems (two systems in this embodiment).
  • the coil group 7 and the coil group 8 of the second system are included. That is, the stator 30 has two coil groups 7 and 8 classified into the first coil group 7 and the second coil group.
  • Coil group 7 of the first system has U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b.
  • the coil group 8 of the second system has U-phase coils U2a and U2b, V-phase coils V2a and V2b, and W-phase coils W2a and W2b. That is, two coils 33 are provided in one phase of each system.
  • the two coils 33 of each phase of each system are connected by a connecting wire 33b.
  • a plurality of U-phase coils, V-phase coils and W-phase coils are respectively provided, and are provided across the plurality of teeth portions 32 b via the crossover wires 33 b.
  • U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b are connected to one another by Y connection.
  • the U-phase coils U2a and U2b, the V-phase coils V2a and V2b, and the W-phase coils W2a and W2b are mutually connected by Y connection.
  • one lead wire 33a of the two U-phase coils U1a and U1b of the first system connected via the crossover 33b is a U-phase bus bar 71A of the first system phase bus bar group 70A described later. And the other lead wire 33 a is connected to the first system neutral point bus bar 81.
  • one lead wire 33a of the two V phase coils V1a and V1b of the first system linked via the crossover 33b is connected to the V phase bus bar 72A of the first system phase bus bar group 70A, and the other The lead wire 33 a is connected to the first system neutral point bus bar 81.
  • one lead wire 33a of the two W-phase coils W1a and W1b of the first system connected via the crossover 33b is connected to the W-phase bus bar 73A of the first system phase bus bar group 70A, and the other The line 33 a is connected to the first system neutral point bus bar 81.
  • one ends of U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b of the first system are connected to different phase bus bars 71, 72, 73, respectively. That is, the plurality of phase bus bars 71, 72, 73 are connected to the lead wires 33a drawn from the coils 33 of the respective phases. Further, the other ends of the U-phase coils U1a and U1b, the V-phase coils V1a and V1b, and the W-phase coils W1a and W1b of the first system are connected to the first system neutral point bus bar 81.
  • one first system neutral point bus bar 81 is connected to the lead wire 33 a drawn from the coil 33 of each phase.
  • the U-phase coils U1a and U1b of the first system, the V-phase coils V1a and V1b, and the W-phase coils W1a and W1b form a Y connection.
  • the wire connection configuration of the coils 33 of each phase of the coil group 8 of the second system is the same as the wire connection configuration of the coils of each phase of the coil group 7 of the first system. That is, the U-phase coils U2a and U2b of the second system are connected to the U-phase bus bar 71B and the second system neutral point bus bar 82 of the second system. The V-phase coils V2a and V2b of the second system are connected to the V-phase bus bar 72B and the second system neutral point bus bar 82 of the second system. The W-phase coils W2a and W2b of the second system are connected to the W-phase bus bar 73B of the second system and the second system neutral point bus bar 82. Thus, the U-phase coils U2a and U2b of the second system, the V-phase coils V2a and V2b, and the W-phase coils W2a and W2b form a Y connection.
  • the stator 30 has a plurality of coil groups (the first coil group 7 and the second coil group 8). Further, in the stator 30, the coil groups 7 and 8 of different systems are arranged symmetrically around the central axis J. Thereby, the redundancy of the motor 1 can be secured. That is, even when a failure occurs in any one of the plurality of coil groups 7 and 8, the motor 1 can be smoothly driven using the coil groups of other systems.
  • the bus bar unit 60 is provided to the motor 1.
  • the bus bar unit 60 is located between the stator 30 and the bearing holder 10 in the axial direction. That is, the bus bar unit 60 is provided above the stator 30 and below the bearing holder 10.
  • FIG. 5 is a perspective view of the bus bar unit 60.
  • FIG. 6 is an exploded perspective view of the bus bar unit 60.
  • FIG. 7 is a plan view of the bus bar unit 60. As shown in FIG.
  • the bus bar unit 60 includes a bus bar holder 61, a pair of terminal supports (external connection terminal supports) 66, a first system phase bus bar group 70A, a second system phase bus bar group 70B, and a first system neutral point bus bar 81 and a second system neutral point bus bar 82.
  • the first system phase bus bar group 70A and the first system neutral point bus bar 81 are connected to the first system coil group 7. Further, the second system phase bus bar group 70B and the second system neutral point bus bar 82 are connected to the second system coil group 8.
  • First system phase bus bar group 70A and second system phase bus bar group 70B are fixed to one axial direction side (upper side in the present embodiment) of bus bar holder 61, and first system neutral point bus bar 81 and second system The neutral point bus bar 82 is fixed to the other axial side (the lower side in this embodiment) of the bus bar holder 61.
  • “one side” and “the other side” do not indicate a specific direction. That is, the above description can be rephrased as follows.
  • the first system neutral point bus bar 81 and the second system neutral point bus bar 82 are fixed to one side of the bus bar holder 61 in the axial direction, and the first system phase bus bar group 70A and the second system phase bus bar group 70B are The bus bar holder 61 is fixed to the other side in the axial direction.
  • first system phase bus bar group 70A has a U phase bus bar 71A, a V phase bus bar 72A, and a W phase bus bar 73A.
  • second system phase bus bar group 70B includes a U phase bus bar 71B, a V phase bus bar 72B, and a W phase bus bar 73B.
  • the U-phase bus bars 71A and 71B of different systems are not distinguished from one another, they are simply referred to as the U-phase bus bar 71.
  • V-phase bus bars 72A and 72B of different systems are not distinguished from one another, they are simply referred to as the V-phase bus bars 72.
  • W-phase bus bars 73A and 73B of different systems are not distinguished from one another, they are simply referred to as W-phase bus bars 73.
  • the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 are not distinguished from one another, they are simply referred to as “phase bus bars 71, 72, 73”.
  • the first system neutral point bus bar 81 and the second system neutral point bus bar 82 are not distinguished from one another, they are simply referred to as neutral point bus bars 81, 82.
  • U-phase bus bars 71A and 71B, V-phase bus bars 72A and 72B, and W-phase bus bars 73A and 73B are phase bus bars (first bus bars). That is, the plurality of phase bus bars 71, 72, 73 are U-phase coils U1a, U1b, U2a, U2b, V-phase coils V1a, V1b, respectively of coil group 7 of the first system and coil group 8 of the second system.
  • a phase bus bar is connected to V2a, V2b and W-phase coils W1a, W1b, W2a, W2b, respectively.
  • the bus bar holder 61 is provided on the upper side of the stator 30.
  • the bus bar holder 61 holds the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82.
  • the bus bar holder 61 is made of a resin material.
  • the bus bar holder 61 includes a holder main body (bus bar holder main body) 62, a pair of base portions 63, a plurality of (six in the present embodiment) clamping portions 64, and a plurality (this embodiment) And six legs 65).
  • the holder main body 62 has an annular shape centered on the central axis J when viewed in the axial direction.
  • the holder main body portion 62 is located between the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 in the axial direction. Further, the holder main body 62 has an upper surface 62 a facing upward and a lower surface 62 b facing downward.
  • a plurality of phase bus bars 71, 72, 73 are disposed on the top surface 62 a of the holder body 62.
  • a plurality of neutral point bus bars 81 and 82 are disposed on the lower surface 62 b of the holder main body 62.
  • the lower surface 62b of the holder main body 62 is provided with a first wall 62c and a second wall 62d. That is, the bus bar holder 61 has a first wall 62 c and a second wall 62 d.
  • the first wall 62 c and the second wall 62 d axially project from the lower surface 62 b.
  • the first wall 62c and the second wall 62d extend in the circumferential direction, respectively.
  • the first wall portion 62 c is located radially outward with respect to the neutral point bus bars 81 and 82.
  • the second wall 62 d is located radially inward with respect to the neutral point bus bars 81 and 82. Therefore, neutral point bus bars 81, 82 are located between first wall 62c and second wall 62d in the radial direction and extend along the circumferential direction.
  • the lower surface 62b of the holder main body 62 is provided with a plurality of shaft portions 67a, 68a, 69a and a plurality of welded portions 67b, 68b, 69b located at the tip of each of the shaft portions 67a, 68a, 69a. That is, the bus bar holder 61 has a plurality of shaft portions 67a, 68a, 69a and a plurality of welding portions 67b, 68b, 69b. As will be described later with reference to FIG. 10, the plurality of welds 67 b, 68 b, 69 b fix the neutral point bus bars 81, 82 to the bus bar holder 61.
  • the base portion 63 protrudes upward from the upper surface 62 a of the holder main body portion 62.
  • the pair of base portions 63 is located on the opposite side across the central axis J. Of the pair of base portions 63, one holds the external connection terminals 71c, 72c, 73c of the first system phase bus bar group 70A, and the other holds the external connection terminals 71c, 72c of the second system phase busbar group 70B. , 73c hold.
  • the base portion 63 has an upper surface 63a facing upward.
  • the terminal support 66 is mounted on the upper surface 63 a of the base portion 63.
  • the upper surface 63a is provided with four recessed grooves (concave portions) 63d. That is, the recessed portion 63 d is provided in the bus bar holder 61. In the four recessed grooves 63d, a part of the V-phase bus bar 72, a part of the W-phase bus bar 73, and two U-phase bus bars 71 of different systems (the first U-phase bus bars 71A and the second system A part of U-phase bus bar 71B of the system is inserted. Thus, the base portion 63 holds the plurality of phase bus bars 71, 72, 73.
  • the upper surface 63a of the base portion 63 is provided with a shaft portion 63b extending upward and a welded portion 63c located at the upper end of the shaft portion 63b. That is, the bus bar holder 61 has the shaft portion 63 b and the welded portion 63 c.
  • the shaft portion 63 b passes through a fixing hole 66 h provided in the terminal support 66.
  • the welding portion 63c extends to the outside of the fixing hole 66h on the upper side of the fixing hole 66h of the terminal support 66 as viewed from the axial direction.
  • the welding part 63c is hemispherical shape which becomes convex upward.
  • the welding portion 63c is formed by melting the upper end portion of the shaft portion 63b by heat. Welded portion 63c prevents terminal support 66 from coming off shaft portion 63b.
  • the terminal support 66 is fixed to the bus bar holder 61 by providing the welding portion 63 c.
  • the sandwiching portion 64 is provided on the upper surface 62 a of the holder main body 62.
  • the holding portion 64 has a pair of claw portions 64a extending upward from the upper surface 62a.
  • the pair of claws 64 a sandwich and hold the phase bus bars 71, 72, 73 in the thickness direction. That is, the sandwiching portion 64 holds the plurality of phase bus bars 71, 72, 73 in the thickness direction.
  • the holding portions 64 are provided in the same number (six) as the phase bus bars 71, 72, 73 provided on the upper side of the bus bar holder 61. Therefore, one phase bus bar 71, 72, 73 is held by one holding portion 64. Note that the number of the holding parts 64 may be more than six.
  • a plurality of (six in the present embodiment) legs 65 are provided on the bus bar holder 61.
  • the plurality of legs 65 are arranged at equal intervals around the central axis.
  • the bus bar holder 61 is supported by the stator 30 at the leg portion 65.
  • the leg portion 65 is a radially extending portion 65a extending radially outward from the outer edge of the holder main body 62, and a lower side extending downwardly from the radially outer end of the radially extending portion 65a. And an extending portion 65b. That is, the legs 65 extend downward with respect to the holder body 62.
  • the lower end portion 65c of the leg portion 65 has a V shape which narrows inward as it goes radially inward as viewed from the axial direction.
  • the V-shaped lower end 65 c is accommodated in a leg accommodating portion 37 provided in the upper insulator 35. Further, the leg portion 65 contacts the upper surface of the stator 30 at the lower end surface.
  • the leg accommodating portion 37 has a V-like shape similar to or similar to that of the lower end portion 65 c of the leg 65 when viewed in the axial direction.
  • the leg portion 65 is accommodated in the leg portion accommodating portion 37, whereby the bus bar holder 61 is positioned with respect to the stator 30 in a plane perpendicular to the axial direction.
  • the leg accommodating portion 37 is provided on the upper side of the boundary between the core pieces 32 adjacent in the circumferential direction.
  • the leg 65 accommodated in the leg accommodating portion 37 is provided on the upper side of the boundary between the core pieces 32 adjacent in the circumferential direction. That is, the leg portion 65 is disposed overlapping the boundary between the core pieces 32 adjacent in the circumferential direction when viewed from the axial direction.
  • the lower end portion 65 c of the leg portion 65 and the leg portion accommodation portion 37 have a V shape that narrows toward the one radial direction side, whereby the leg portion 65 with respect to the leg portion accommodation portion 37 Insertion is easy.
  • each leg 65 contacts the V-shaped wall when viewed from the axial direction facing one side and the other side of the leg accommodating portion 37 in the circumferential direction. Therefore, the positioning accuracy of the bus bar holder 61 in the circumferential direction can be enhanced.
  • the leg housing portion 37 may have a shape other than the V shape. For example, even if it is trapezoidal shape and semicircular arc shape, the same effect can be acquired.
  • a straight line connecting the lead axis 33 a drawn from each of the coils 33 and the central axis J is an imaginary line VL.
  • the leg portion 65 is located between the imaginary lines VL of the lead lines 33 a of the pair of coils 33 adjacent in the circumferential direction.
  • the lead wire 33a is any one of coil terminals 71a, 72a, 73a, 81a, 82a provided on the plurality of phase bus bars 71, 72, 73 and the plurality of neutral point bus bars 81, 82, respectively.
  • the leg portion 65 is disposed between the pair of virtual lines VL aligned in the circumferential direction, whereby the leg portion 65 and the coil terminal 71a, 72a, 73a, 81a, in the circumferential direction It can be arranged offset with 82a.
  • the leg portion 65 does not easily inhibit the welding process of the coil terminals 71a, 72a, 73a, 81a, 82a and the lead wire 33a.
  • the plurality of coil terminals 71a, 72a, 73a, 81a and 82a are alternately arranged at a first interval and a second interval narrower than the first interval along the circumferential direction. Therefore, the plurality of virtual lines VL radially extending from the central axis J alternately extend at a first angle ⁇ and a second angle ⁇ smaller than the first angle ⁇ along the circumferential direction.
  • the leg portion 65 of the present embodiment is located between a pair of virtual lines VL forming the first angle ⁇ .
  • the leg 65 is disposed between the pair of virtual lines VL forming the first angle ⁇ and between the pair of virtual lines VL forming the second angle ⁇ .
  • a certain effect of suppressing the interference between the portion 65 and the lead wire 33a can be obtained. Further, as shown in the present embodiment, by arranging the leg portion 65 between the pair of virtual lines VL forming the first angle ⁇ , the effect of suppressing the interference between the leg portion 65 and the lead wire 33a Can be further enhanced.
  • the leg portion 65 When viewed from the axial direction, the leg portion 65 is located between a pair of coil terminals (for example, a pair of coil terminals 81a and 73a) connected to the lead wires 33a of the pair of coils 33 adjacent in the circumferential direction. .
  • a pair of coil terminals for example, a pair of coil terminals 81a and 73a
  • the leg portion 65 and the coil terminals 81a and 73a are offset in the circumferential direction. Therefore, interference between the leg portion 65 and the coil terminals 81a and 73a can be suppressed.
  • interference between the leg 65 and the coil terminals 71a, 72a, 73a, 81a, 82a is suppressed by the above-described arrangement, so the leg 65 and the coil terminals 71a, 72a, 73a, There is no need to shift the 81a and 82a in the axial direction.
  • a part of the leg portion 65 can be arranged so as to axially overlap with a part of the coil terminal 82a.
  • the axial dimension of the bus bar unit 60 can be reduced by arranging at least a part of the leg portion 65 so as to axially overlap the coil terminal 82a.
  • phase Busbar First Busbar, Busbar
  • the plurality of phase bus bars 71, 72, 73 are fixed to the upper side of the bus bar holder 61.
  • the plurality of phase bus bars 71, 72, 73 are classified into a first system phase bus bar group 70A and a second system phase bus bar group 70B.
  • the first system phase bus bar group 70A and the second system phase bus bar group 70B respectively have the U phase bus bar 71, the V phase bus bar 72, and the W phase bus bar 73.
  • the U-phase bus bars 71 of the first system phase bus bar group 70A and the second system phase bus bar group 70B have the same shape, and the first system phase bus bar group 70A and the second system phase bus bar group 70B
  • the V-phase bus bars 72 have the same shape, and the W-phase bus bars 73 of the first system phase bus bar group 70A and the second system phase bus bar group 70B have the same shape.
  • the U-phase bus bar 71 includes a bus bar main body 71b, a coil terminal 71a, an external connection terminal 71c, and a protrusion 71e.
  • the V-phase bus bar 72 includes a bus bar main body 72b, a coil terminal 72a, an external connection terminal 72c, and a protrusion 72e.
  • the W-phase bus bar 73 includes a bus bar main body portion 73b, a coil terminal 73a, an external connection terminal 73c, and a protruding portion 73e.
  • the bus bar main body portions 71b, 72b, 73b extend along a plane orthogonal to the axial direction.
  • the bus bar main body portions 71b, 72b, 73b extend along the circumferential direction, respectively.
  • the bus bar main body portions 71b, 72b and 73b are arranged with the direction orthogonal to the axial direction as the thickness direction.
  • Coil terminals 71a, 72a, 73a are located at one end of bus bar main body portions 71b, 72b, 73b, respectively.
  • the coil terminals 71a, 72a, 73a extend radially outward from the bus bar main body portions 71b, 72b, 73b.
  • the coil terminals 71a, 72a, 73a may extend radially inward with respect to the bus bar main portions 71b, 72b, 73b. That is, coil terminals 71a, 72a, 73a may extend to one side in the radial direction with respect to bus bar main portions 71b, 72b, 73b.
  • the coil terminals 71a, 72a, 73a are connected to the lead 33a.
  • the coil terminals 71a, 72a, 73a are portions for gripping the lead 33a.
  • the shape in plan view of the coil terminals 71a, 72a, 73a is a substantially U shape opened inward in the radial direction.
  • the coil terminals 71a, 72a, 73a are disposed with the direction orthogonal to the axial direction as the thickness direction.
  • the external connection terminals 71c, 72c, 73c are located at the ends (other ends) of the busbar main body portions 71b, 72b, 73b opposite to the coil terminals 71a, 72a, 73a, respectively.
  • the external connection terminals 71c, 72c, 73c extend upward from the bus bar main body portions 71b, 72b, 73b.
  • the three external connection terminals 71c, 72c, 73c are provided in the first system phase bus bar group 70A and the second system phase bus bar group 70B, respectively.
  • the external connection terminals 71c, 72c and 73c of the first system phase bus bar group 70A and the external connection terminals 71c, 72c and 73c of the second system phase busbar group 70B are arranged on the opposite side across the central axis J. .
  • the external connection terminals 71c, 72c, 73c are arranged with the direction orthogonal to the axial direction as the thickness direction. Further, the external connection terminals 71c of the U-phase bus bar 71 are disposed with the direction orthogonal to the radial direction as the sheet width direction. On the other hand, external connection terminals 72c and 73c of V-phase bus bar 72 and W-phase bus bar 73 are arranged with the direction orthogonal to the board width direction of external connection terminals 71c of U-phase bus bar 71 as the board width direction.
  • the protrusions 71e, 72e and 73e extend from the connection between the busbars 71b, 72b and 73b and the external connection terminals 71c, 72c and 73c to the opposite side of the busbars 71b.
  • the protrusions 71e, 72e, 73e are disposed with the direction orthogonal to the axial direction as the thickness direction.
  • the phase bus bars 71, 72, 73 are connection portions between the bus bar main portions 71b, 72b, 73b and the external connection terminals 71c, 72c, 73c and recessed grooves provided in the bus bar holder 61 at the protruding portions 71e, 72e, 73e. Recessed portion) 63d. Therefore, the phase bus bars 71, 72, 73 are held by the bus bar holder 61 at the roots of the external connection terminals 71c, 72c, 73c. Therefore, the stress received when inserting the external connection terminals 71c, 72c, 73c into the socket of the external device can be stably supported by the bus bar holder 61.
  • the bus bar main body portions 71b, 72b, 73b and the projecting portions 71e, 72e, 73e are at the base of the external connection terminals 71c, 72c, 73c in the plate width direction It extends on both sides.
  • the bus bar main portions 71b, 72b, 73b and the protrusions 71e, 72e, 73e suppress rattling of the external connection terminals 71c, 72c, 73c in the plate width direction inside the recessed groove 63d. Thereby, the stability of insertion of the external connection terminals 71c, 72c, 73c into the socket of the external device can be enhanced.
  • the entire widths of the bus bar main portions 71b, 72b, 73b and the entire widths of the protruding portions 71e, 72e, 73e overlap in the axial direction. For this reason, the stability of the external connection terminals 71c, 72c, 73c can be enhanced in the effect of suppressing rattling on both sides in the width direction of the external connection terminals 71c, 72c, 73c.
  • the U-phase bus bar 71 is the phase bus bar having the largest length along the circumferential direction of the bus bar main body portion among the three types of phase bus bars 71, 72, 73.
  • the bus bar main portion 71b of the U-phase bus bar 71 is located radially inward of the bus bar main portions 72b and 73b of the other phase bus bars (V-phase bus bar 72 and W-phase bus bar 73). More specifically, bus bar main portion 71b of U-phase bus bar 71 is positioned radially inward of W-phase bus bar 73 belonging to V-phase bus bar 72 belonging to the same system bus bar group and another system bus bar group Do.
  • phase bus bars 71, 72, 73 of the present embodiment are arranged to overlap in the radial direction in the bus bar main body portions 71b, 72b, 73b. Therefore, the phase bus bars 71, 72, 73 can be compactly arranged in the radial direction by arranging the thickness directions of the bus bar main portions 71b, 72b, 73b to be orthogonal to the axial direction. As a result, the radial dimension of the bus bar unit 60 can be reduced.
  • the U-phase bus bar 71 having the largest length along the circumferential direction of the bus bar main body portion 71b is the other phase bus bar (that is, V). It radially overlaps at least a part of the phase bus bar 72 and the W phase bus bar 73). Further, the bus bar main portion 71b of the U-phase bus bar 71 is located on the opposite side to the direction in which the coil terminals 72a and 73a of the other phase bus bars extend in the radial direction.
  • the bus bar main portion 71b of the U-phase bus bar 71 has a sufficient radial distance from the lead 33a connected to the V-phase bus bar 72 and the coil terminals 72a and 73a of the W-phase bus bar 73. It can be placed apart. As a result, insulation can be ensured without separating the bus bar main body 71b of the U-phase bus bar 71 and the lead wire 33a by a wall or the like.
  • the V-phase bus bar 72 and the W-phase bus bar 73 are held by the sandwiching portion 64 in the region extending in the radial direction of the coil terminals 72 a and 73 a.
  • U-phase bus bar 71 is held by sandwiching portion 64 in bus bar main body portion 71 b.
  • the holding portion 64 holding the U-phase bus bar 71 does not overlap in the radial direction with the V-phase bus bar 72 and the W-phase bus bar 73 in the radial direction.
  • the U-phase bus bar 71 having the longest length along the circumferential direction of the bus bar main body portion 71b is a region not overlapping in a radial direction with other phase bus bars.
  • the bus bar main body portion 71 b is held by the holding portion 64.
  • the bus bar main portion 71 b of the U-phase bus bar 71 radially overlaps the V-phase bus bar 72 and the W-phase bus bar 73 in a region not held by the sandwiching portion 64. Therefore, the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 can be disposed close to each other in the radial direction.
  • the bus bar main portion 71 b of the U-phase bus bar 71 extends 180 ° around the central axis J along the circumferential direction. Therefore, the external connection terminal 71c located at one end of the bus bar main body 71b and the coil terminal 71a located at the other end of the bus bar main body 71b are disposed on the opposite side across the central axis J. Thereby, the external connection terminals 71c, 72c, 73c of one system are reduced while the dimensions along the circumferential direction of the main body portions 72b, 73b of the other phase bus bars (V phase bus bar 72 and W phase bus bar 73) are reduced. Can be arranged side by side.
  • the case where the phase bus bar having the largest length along the circumferential direction of the bus bar main body is the U-phase bus bar 71 has been described.
  • the bus bar main portions 72b and 73b of the V phase bus bar 72 or the W phase bus bar 73 are longer than the bus bar main portions of other phase bus bars, the bus bar main portions 72b of these phase bus bars 72 and 73 , 73 b may extend 180 ° around the central axis J.
  • the external connection terminals 71c, 72c, 73c of the different phase busbars 71, 72, 73 of different phases and located on the opposite side with respect to the central axis J. That is, the external connection terminals 71c, 72c, 73c of the pair of phase bus bars 71, 72, 73 connected to the coils 33 of the same phase of the coil group 7 of the first system and the coil group 8 of the second system It is disposed on the opposite side across the axis J. Thereby, the three external connection terminals 71c, 72c, 73c of the first system and the second system can be arranged symmetrically with respect to the central axis J. As a result, even if the circumferential position of the motor 1 is rotated by 180 °, the motor 1 can be connected to the external device, and the process of connecting the motor 1 to the external device can be simplified.
  • one external connection terminal 71c of the first U-phase bus bar 71A and the second U-phase bus bar 71B and the other coil terminal 71a are partially viewed in the axial direction. Overlap.
  • the bus bar main portion 71b of the U-phase bus bar 71A has a crank portion 71d extending in the axial direction in the vicinity of the root of the external connection terminal 71c.
  • the bus bar main portions 72 b and 73 b of the V-phase bus bar 72 and the W-phase bus bar 73 do not have a portion corresponding to the crank portion 71 d of the U-phase bus bar 71. Therefore, the bus bars 72 b and 73 b of the V-phase bus bar 72 and the W-phase bus bar 73 extend only in a plane orthogonal to the axial direction.
  • the bus bar main portions 71b, 72b, 73b and the coil terminals 71a, 72a, 73a are formed by bending a plate material extending in one direction. Further, in the V-phase bus bar 72 and the W-phase bus bar 73, the full width of the bus bar main portions 72b and 73b and the full width of the coil terminals 72a and 73a overlap in the axial direction. Therefore, when the V-phase bus bar 72 and the W-phase bus bar 73 are manufactured by press working, the V-phase from the plate material is compared with the case where the coil terminal extends upward or downward with respect to the bus bar main body. It is possible to increase the number of removed bus bars 72 and W-phase bus bars 73.
  • the terminal support 66 is fixed to the upper side of the bus bar holder 61.
  • the terminal support 66 covers the upper surface 63 a of the base portion 63 of the bus bar holder 61.
  • the terminal support 66 is made of a resin material.
  • the terminal support 66 has a terminal support main body 66a, three support portions 66b extending in a columnar shape on the upper side from the terminal support main body 66a, and a convex portion 66d projecting downward from the terminal support main body 66a.
  • the support portion 66b has a cylindrical shape.
  • the three support portions 66b are arranged along the circumferential direction.
  • the terminal support body 66 a is provided with a fixing hole 66 h penetrating in the axial direction.
  • the shaft portion 63 b of the bus bar holder 61 is inserted into the fixing hole 66 h.
  • Each of the three support portions 66b is provided with a holding hole 66c penetrating in the axial direction. That is, the terminal support 66 is provided with three holding holes 66c.
  • the external connection terminals 71c, 72c, and 73c of the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 are respectively inserted into the three holding holes 66c. Thereby, the three holding holes 66c hold the external connection terminals 71c, 72c, 73c.
  • the external connection terminals 71c, 72c, 73c are inserted from the lower side of the holding hole 66c, and project above the support portion 66b.
  • the external connection terminals 71c, 72c, 73c pass through the through holes 16a of the bearing holder 10 in a region surrounded by the support portion 66b.
  • the external connection terminals 71 c, 72 c, 73 c are held by the holding holes 66 c of the terminal support 66.
  • the stability of the external connection terminals 71c, 72c, 73c when inserted into the socket of the external device can be enhanced.
  • the external connection terminals 71 c, 72 c and 73 c are surrounded by the support portion 66 b of the terminal support 66. Therefore, when the bus bar unit 60 is disposed below the bearing holder 10 and the external connection terminals 71c, 72c and 73c are inserted into the through holes 16a of the bearing holder 10, the external connection terminals 71c, 72c and 73c and the through holes 16a
  • the support portion 66b can be interposed between the inner peripheral surface of As a result, the insulation between the external connection terminals 71c, 72c, 73c and the bearing holder 10 can be secured.
  • the convex part 66d extends in a plate shape downward from the terminal support main body 66a.
  • the convex portion 66 d fits in the concave groove 63 d of the bus bar holder 61.
  • the reliability of holding of the terminal support 66 by the bus bar holder 61 can be enhanced.
  • the bus bar main body portions 71b, 72b, 73b of the phase bus bars 71, 72, 73 are inserted.
  • the convex portion 66d is fitted into the concave groove 63d from the upper side of the bus bar main body portions 71b, 72b, 73b.
  • the phase bus bars 71, 72, 73 can be pressed from the upper side in the recessed groove 63d, and the holding of the phase bus bars 71, 72, 73 in the bus bar unit 60 can be stabilized.
  • the two projections 66d for pressing the bus bars 72b and 73b of the V-phase bus bar 72 and the W-phase bus bar 73 from the upper side are respectively located on the lower side along the external connection terminals 72c and 73c. It extends and fits in the concave groove 63d. Therefore, these two convex portions 66 d can press the vicinity of the roots of the external connection terminals 72 c and 73 c from the upper side, and the effect of stabilizing the external connection terminals 72 c and 73 c is enhanced.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • the fixing structure of the V-phase bus bar 72 inserted into the recessed groove 63d will be described with reference to FIG. Although the description is omitted here, the same fixing structure is adopted for the U-phase bus bar 71 and the W-phase bus bar 73 which are inserted into the other recessed grooves 63 d.
  • the upper opening of the recessed groove 63d is provided with a tapered portion 63e whose groove width becomes wider toward the upper side.
  • the tip end face 66 f of the convex part 66 d contacts the face of the phase bus bar 72 facing upward.
  • a welding portion 66e joined to the inner surface of the concave groove 63d is provided at the tip of the convex portion 66d.
  • the welded portion 66e is formed by melting and solidifying the tip of the convex portion 66d.
  • the welded portion 66e is joined to the wall surface of the recessed groove 63d and the bus bar 72 for phase in the process of solidification.
  • the terminal support 66 can be firmly fixed to the bus bar holder 61.
  • removal of the phase bus bar 72 from the recessed groove 63 d can be effectively suppressed.
  • welding part 66e is provided in the front-end
  • welding part 66e is provided in at least one copy of convex part 66d.
  • the terminal support 66 is made of a resin material including a first resin portion 66A and a second resin portion 66B which are integrally formed. That is, the terminal support 66 is molded by two-color molding. That is, the terminal support 66 is molded by two-color molding of the first resin portion 66A and the second resin portion 66B.
  • the second resin portion 66B is a thermoplastic resin material having a melting point lower than that of the first resin portion 66A.
  • the terminal support main body 66a and the support 66b are formed of a first resin portion 66A.
  • the convex part 66d is comprised from the 2nd resin part 66B.
  • the welded portion 66e is configured of the second resin portion 66B having a low melting point. Therefore, the welded portion 66e can be easily formed by heating the terminal support 66 in a state where the convex portion 66d is inserted into the concave groove 63d.
  • the case where the entire convex portion 66d is formed of the second resin portion 66B is illustrated. However, a part of the portion fitted to the concave groove 63d of the convex portion 66d may be configured by the second resin portion 66B.
  • the bus bar attaching step of attaching the phase bus bars 71, 72, 73 to the bus bar holder 61 is performed.
  • the phase bus bar attaching step the phase bus bars 71, 72, 73 are inserted into the recessed grooves 63d provided in the bus bar holder 61.
  • a terminal support attachment step for attaching the terminal support 66 to the bus bar holder 61 is performed.
  • the terminal support attachment step first, the external connection terminals 71c, 72c, 73c are inserted into the holding holes 66c of the terminal support 66. Then, the convex portion 66 d of the terminal support 66 is fitted into the concave groove 63 d from the upper side of the phase bus bars 71, 72, 73. Further, heat is applied to the terminal support 66 to melt and solidify a part of the convex portion 66d, thereby forming a welded portion 66e joined to the inner surface of the concave groove 63d.
  • a current may be supplied to the phase bus bars 71, 72, 73 to melt a part of the convex portion 66d.
  • the phase bus bars 71, 72, 73 generate heat due to Joule heat.
  • the heat is transmitted to the convex portion 66 d to melt a part of the convex portion 66 d.
  • the welded portion 66e is formed by supplying current to the phase bus bars 71, 72, 73, only the tip end portion of the convex portion 66d can be locally heated. Therefore, the welded portion 66e can be formed without affecting other portions of the terminal support 66. It should be noted that when forming the welded portion 66e by Joule heat, the current value supplied to the phase bus bars 71, 72, 73 is sufficiently larger than the current value when the motor 1 is driven.
  • the stator 30 of the present embodiment has the two coil groups 7 and 8 (see FIG. 4).
  • the plurality of neutral point bus bars 81 and 82 are provided in the same number as the number of coil groups (i.e., the number of systems). Therefore, the bus bar unit 60 of the present embodiment has two neutral point bus bars 81 and 82.
  • FIG. 9 is a bottom view of the bus bar unit 60.
  • the neutral point bus bars 81 and 82 have bus bar main body portions 81 b and 82 b and three coil terminals 81 a and 82 a.
  • Neutral point bus bars 81 and 82 are plate-like.
  • at least bus bar main body portions 81b and 82b are arranged with the axial direction as the thickness direction.
  • the bus bar main body portions 81 b and 82 b extend along a plane orthogonal to the axial direction.
  • the bus bar main body portions 81 b and 82 b extend in the circumferential direction in the region of 240 ° around the central axis J, respectively. At least a portion of the bus bar main body portions 81 b and 82 b is exposed from the bus bar holder 61. That is, neutral point bus bars 81 and 82 are not resin-inserted in bus bar holder 61.
  • the coil terminals 81a and 82a are connected to the lead 33a.
  • the coil terminals 81a and 82a include a portion for gripping the lead 33a.
  • the plan view shape of the coil terminals 81a and 82a is a substantially U shape opened inward in the radial direction.
  • the coil terminals 81a and 82a are disposed with the direction orthogonal to the axial direction as the thickness direction.
  • the three coil terminals 81a and 82a are arranged at equal intervals along the longitudinal direction (that is, the circumferential direction) of the bus bar main portions 81b and 82b. Of the three coil terminals 81a and 82a, two coil terminals 81a and 82a are located at both ends of the bus bar main portions 81b and 82b, and the remaining one coil terminal 81a and 82a is the two coil terminals described above. Located between 81a and 82a.
  • the coil terminals 81a and 82a extend in the radial direction away from the bus bar main portions 81b and 82b. More specifically, the coil terminals 81a and 82a extend radially outward from the bus bar main portions 81b and 82b.
  • the coil terminals 81a and 82a may extend inward in the radial direction with respect to the bus bar main portions 81b and 82b. That is, the coil terminals 81a and 82a may extend to one side in the radial direction with respect to the bus bar main portions 81b and 82b.
  • the coil terminals 81a and 82a of the neutral point bus bars 81 and 82 and the coil terminals 71a, 72a and 73a of the phase bus bars 71, 72 and 73 are connected to the bus bar main portions 81b, 82b, 71b, 72b and 73b, respectively. It extends in the same radial direction.
  • the neutral point bus bars 81, 82 and the coil terminals 81a, 82a, 71a, 72a, 73a of the phase bus bars 71, 72, 73 project in the radial direction. You can align the direction.
  • the radial positions of the lead wires 33a which extend from the stator 30 and are connected to the coil terminals 81a, 82a, 71a, 72a, 73a can be aligned. Thereby, it is hard to complicate the structure (the 1st wall 62c etc. in this embodiment) which insulates neutral point bus bars 81 and 82 and phase bus bars 71, 72 and 73 of bus bar holder 61, and leader 33a. . Further, by arranging in this manner, the coil terminals 71a, 72a, 73a of the plurality of phase bus bars 71, 72, 73 and the coil terminals 81a of the plurality of neutral point bus bars 81, 82 when viewed from the axial direction.
  • 82a align in a single virtual circle VC around the central axis J. For this reason, by rotating the bus bar unit 60 and the stator 30 around the central axis J in the welding process, the lead wire 33a and the coil terminals 81a, 82a, 71a, 72a, are not moved in the radial direction without moving the welding jig. 73a can be welded and connected. This can simplify the welding process.
  • the coil terminals 81a and 82a extend downward from the bus bar main portions 81b and 82b. That is, coil terminals 81a, 82a extend in the direction away from phase bus bars 71, 72, 73 in the axial direction. As a result, the coil terminals 81a and 82a can be axially separated from the coil terminals 71a, 72a and 73a of the phase bus bars 71, 72 and 73, and mutual interference can be suppressed. In addition, in the process of welding the lead wire 33a to one of the neutral point bus bars 81 and 82 and the phase bus bars 71, 72 and 73, the other coil terminal deteriorates the welding workability. Can be suppressed.
  • the plurality of neutral point bus bars 81 and 82 are classified into a first system neutral point bus bar 81 and a second system neutral point bus bar 82.
  • the first system neutral point bus bar 81 is connected to the lead wire 33 a of the coil 33 of each phase (U phase, V phase, W phase) of one system coil group (the first system coil group 7).
  • the second system neutral point bus bar 82 is connected to the lead 33a of the coil 33 of each phase (U phase, V phase, W phase) of one system coil group (second system coil group 8) Be done.
  • the coil terminals 71a, 72a, 73a of the phase bus bars 71, 72, 73 and the coil terminals 81a, 82a of the neutral point bus bars 81, 82 are alternately arranged in the circumferential direction.
  • the plurality of neutral point bus bars 81 and 82 are fixed to the lower side of the bus bar holder 61.
  • the plurality of neutral point bus bars 81, 82 at least partially overlap each other when viewed in the axial direction.
  • the plurality of neutral point bus bars 81 and 82 are plate members in which at least the bus bar main body portions 81 b and 82 b are arranged with the axial direction as the thickness direction. That is, the neutral point bus bars 81 and 82 of the present embodiment are so-called flat type. For this reason, even when the plurality of neutral point bus bars 81 and 82 are arranged in an axial direction, the axial dimension is unlikely to be large.
  • the neutral point bus bars 81, 82 are flat type.
  • the phase bus bars 71, 72, 73 are so-called vertical type, in which the bus bar main portions 71b, 72b, 73b are arranged with the axial direction as the thickness direction.
  • at least three phase bus bars 71, 72, 73 are required to correspond to the U-phase, V-phase, and W-phase coils 33, respectively. Therefore, in the case where the phase bus bars 71, 72, 73 are placed flat and stacked in the axial direction, three or more layers are required to be stacked corresponding to the bus bars of the respective phases.
  • the axial dimension is the sum of the plate thicknesses of the three bus bars and the thickness of the insulating layer between them, and by overlapping and arranging The effect of axial miniaturization is diminished.
  • the insulating layer provided between the bus bars superimposed in the axial direction described above is an air layer in the present embodiment.
  • the plurality of neutral point bus bars 81, 82 are disposed between the first wall 62c and the second wall 62d provided in the holder main body 62, and are circumferentially It extends along.
  • the first wall portion 62c and the second wall portion 62d are disposed with the bus bar main portions 81b and 82b of the neutral point bus bars 81 and 82 interposed therebetween in the radial direction.
  • the first wall 62 c is located between the bus bar main portions 81 b and 82 b of the neutral point bus bars 81 and 82 and the lead wires 33 a when viewed from the axial direction.
  • neutral point bus bars 81 and 82 and lead wires 33a can be easily insulated.
  • the neutral point bus bars 81 and 82 are sandwiched between the first wall 62 c and the second wall 62 d from inside and outside in the radial direction. Therefore, neutral point bus bars 81 and 82 can be easily positioned in the radial direction.
  • the rigidity of the holder body 62 can be enhanced.
  • the first wall 62c is provided with a first notch 62ca and a second notch 62cb. Further, only the second notch 62db is provided in the second wall 62d.
  • the neutral point bus bars 81 and 82 are exposed in the radial direction in the first notch 62 ca or the second notch 62 cb and 62 db.
  • the coil terminals 81a and 82a of the neutral point bus bars 81 and 82 pass through the first cutouts 62ca.
  • the first notches 62ca it is possible to adopt a structure in which the coil terminals 81a and 82a are extended directly outward in the radial direction from the bus bar main portions 81b and 82b. That is, it is not necessary to provide the coil terminals 81a and 82a with a portion extending downward and over the first wall 62c, and the neutral point bus bars 81 and 82 can be manufactured at low cost.
  • the second notches 62cb and 62db radially overlap the wide portions 81s and 82s of the neutral point bus bars 81 and 82 described later.
  • interference of the wide portions 81 s and 82 s with the bus bar holder 61 can be suppressed.
  • a part of the second notches 62cb allows the coil terminal 81a to pass through. That is, some of the second notches 62cb also function as notches that allow the coil terminals 81a to pass through.
  • the second cutouts 62cb are arranged to be offset from the lead 33a in the radial direction.
  • the second notches 62cb are arranged to be offset from the lead wires 33a in the radial direction.
  • all the 2nd notch parts 62cb may be shifted
  • first layer bus bar 81 one of the plurality of neutral point bus bars 81 and 82 located on the holder main body 62 side (that is, the bus bar holder 61 side) is referred to as a first layer bus bar 81.
  • second layer bus bar 82 the other of the plurality of neutral point bus bars 81 and 82 located outside the first layer bus bar 81 with respect to the holder main body 62 (bus bar holder 61 side) is taken as a second layer bus bar 82.
  • the first layer bus bar 81 and the second layer bus bar 82 are collectively referred to as neutral point bus bars 81 and 82.
  • the first layer bus bar 81 is a first system neutral point bus bar 81 connected to the coil group 7 of the first system
  • the second layer bus bar 82 connected to the coil group 8 of the second system is a second system It is a neutral point bus bar 82.
  • FIG. 10 is a schematic cross-sectional view along the line XX in FIG.
  • a fixing hole (through hole) 81 h and a passing hole (through hole) 81 i penetrating in the axial direction are provided in the bus bar main body portion 81 b of the first layer bus bar 81.
  • a fixing hole (through hole) 82h and a retraction hole (through hole) 82i penetrating in the axial direction are provided in the bus bar main body portion 82b of the second layer bus bar 82.
  • the inner regions are surrounded by the bus bar main portions 81b and 82b from four directions.
  • the fixing holes 81h and 82h, the passing hole 81i and the retracting hole 82i may have a cutout shape as long as they penetrate in the axial direction. That is, in the fixing holes 81h and 82h, the passage holes 81i and the retraction holes 82i, the inner regions may be surrounded by the bus bar main portions 81b and 82b from three sides, and all the inner regions are surrounded by the bus bar main portions 81b and 82b. You do not have to.
  • the lower surface 62b of the holder main body 62 is provided with a plurality of shaft portions 67a, 68a, 69a and a plurality of welded portions 67b, 68b, 69b located at the tip of each of the shaft portions 67a, 68a, 69a.
  • the welds 67 b, 68 b, 69 b are hemispherical in shape, which are convex downward.
  • the welded portions 67b, 68b, 69b are formed by melting the tip portions of the shaft portions 67a, 68a, 69a by heat.
  • the plurality of shaft portions 67a, 68a, 69a include three first shaft portions 67a, two second shaft portions 68a, and one third shaft portion 69a.
  • the plurality of welds 67b, 68b and 69b are a first weld 67b located at the tip of the first shaft 67a, a second weld 68b located at the tip of the second shaft 68a, and a third shaft And a third welding portion 69b located at the tip of the portion 69a.
  • first shaft portion 67 a and the first welded portion 67 b are provided to fix the first layer bus bar 81.
  • the second shaft portion 68 a, the third shaft portion 69 a, the second welded portion 68 b and the third welded portion 69 b are provided to fix the second layer bus bar 82. Therefore, first layer bus bar 81 and second layer bus bar 82 are each fixed by three welds.
  • the first welded portion 67 b, the second welded portion 68 b, and the third welded portion 69 b are arranged on a single virtual circle around the central axis J. Therefore, in the heat caulking step of forming the first welded portion 67b, the second welded portion 68b, and the third welded portion 69b, the bus bar unit 60 is rotated around the central axis J, whereby the heat caulking jig is made in the radial direction. There is no need to move it. This can simplify the heat staking process.
  • Drawing 9 illustration of a virtual circle in which the 1st welding part 67b, the 2nd welding part 68b, and the 3rd welding part 69b are located in a line is omitted. This virtual circle is a circle including an arc-shaped XX line shown in FIG.
  • the first shaft portion 67a passes through the fixing hole 81h of the first layer bus bar 81.
  • the first welded portion 67 b is located below the first layer bus bar 81.
  • the first welded portion 67 b extends to the outside of the fixing hole 81 h of the first layer bus bar 81 when viewed in the axial direction.
  • the first welded portion 67 b has a first fixing surface 67 d facing upward at a portion extending outward with respect to the first shaft portion 67 a.
  • the first fixing surface 67 d contacts the lower surface 81 p of the first layer bus bar 81.
  • the upper surface 81 q of the first layer bus bar 81 contacts the lower surface 62 b of the holder main body 62. That is, the first layer bus bar 81 is sandwiched between the holder main body 62 and the first welded portion 67 b.
  • the first welded portion 67 b fixes the first layer bus bar 81.
  • the retracting hole 82i of the second layer bus bar 82 is located in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap when viewed in the axial direction, and the lower side of the first welded portion 67b that fixes the first layer bus bar 81. Located in That is, the retraction hole 82i overlaps the first welded portion 67b when viewed from the axial direction. As shown in FIG. 9, when viewed from the axial direction, the first welded portion 67b is located inside the inner peripheral surface of the retraction hole 82i. That is, the first welded portion 67b is disposed in the hole of the retraction hole 82i when viewed from the axial direction.
  • the first layer bus bar 81 is fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap by providing the retraction holes 82i in the second layer bus bar 82. Even when the one-layer bus bar 81 and the second-layer bus bar 82 are arranged close to each other in the axial direction, the interference between the first welded portion 67 b and the second-layer bus bar 82 can be suppressed.
  • the first layer bus bar 81 can be fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap. Therefore, welded portion 67 b fixing first layer bus bar 81 can be arranged in a well-balanced manner in the length direction of bus bar main portion 81 b of first layer bus bar 81. In addition, since the first layer bus bar 81 and the second layer bus bar 82 can be disposed close to each other, the bus bar unit 60 can be miniaturized in the axial direction.
  • the second shaft 68a is provided with a step surface 68c facing the side opposite to the holder body 62 (that is, the side opposite to the bus bar holder 61, the lower side).
  • the diameter of the second shaft portion 68a at the proximal end side (upper side) than the step surface 68c is larger than the diameter at the tip end side (lower side) than the step surface 68c.
  • the second shaft portion 68 a passes through the passage hole 81 i of the first layer bus bar 81 and the fixing hole 82 h of the second layer bus bar 82.
  • the lower surface 81 p of the first layer bus bar 81 is located above the stepped surface 68 c. Therefore, the passage hole 81i of the first layer bus bar 81 is inserted into the second shaft portion 68a at the base end side with respect to the step surface 68c.
  • second layer bus bar 82 is located below step surface 68 c.
  • the upper surface 82 q of the second layer bus bar 82 contacts the step surface 68 c. Therefore, the fixing holes 82h of the second layer bus bar 82 are inserted into the second shaft portion 68a at the tip end side of the step surface 68c.
  • the second welded portion 68 b is located below the second layer bus bar 82.
  • the second welded portion 68 b extends to the outside of the fixing hole 82 h of the second layer bus bar 82 when viewed in the axial direction.
  • the second welding portion 68 b has a second fixing surface 68 d facing upward at a portion that spreads outward with respect to the second shaft portion 68 a.
  • the second fixing surface 68 d contacts the lower surface 82 p of the second layer bus bar 82. Since the upper surface 82 q of the second layer bus bar 82 contacts the step surface 68 c, the second layer bus bar 82 is sandwiched between the step surface 68 c and the second welded portion 68 b. Thereby, the second welded portion 68 b fixes the second layer bus bar 82.
  • the second layer bus bar 82 can be fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap. Further, since the second shaft portion 68a passes through the passage hole 81i of the first layer bus bar 81, the first layer bus bar 81 can be positioned in a plane orthogonal to the axial direction. Note that at least a part of the outer peripheral surface of the second shaft portion 68a may be in contact with the inner peripheral surface of the passage hole 81i in the region on the proximal end side (upper side) than the step surface 68c. In this case, the positioning accuracy of the first layer bus bar 81 by the second shaft portion 68a can be enhanced.
  • the lower surface 62b of the holder main body 62 is provided with a stepped portion 62e that protrudes downward.
  • the step 62e has a step lower surface 62f facing downward.
  • the third shaft portion 69a protrudes downward from the step lower surface 62f.
  • the stepped lower surface 62 f is disposed in the area where only the second layer bus bar 82 is provided in the lower surface 62 b of the holder main body 62.
  • the upper surface 82 q of the second layer bus bar 82 is in contact with the step lower surface 62 f.
  • the third shaft portion 69 a passes through the fixing hole 82 h of the second layer bus bar 82 in a region where the first layer bus bar 81 and the second layer bus bar 82 do not overlap.
  • the third welded portion 69 b is located below the second layer bus bar 82.
  • the third welded portion 69 b extends to the outside of the fixing hole 82 h of the second layer bus bar 82 when viewed in the axial direction.
  • the third welded portion 69 b has a third fixed surface 69 d facing upward at a portion that spreads outward with respect to the third shaft portion 69 a.
  • the third fixed surface 69 d contacts the lower surface 82 p of the second layer bus bar 82. That is, the second layer bus bar 82 is sandwiched between the step 62 e of the holder main body 62 and the third welded portion 69 b. Thereby, the third welded portion 69 b fixes the second layer bus bar 82.
  • an insulating sheet (insulating member) 4 may be sandwiched between the first layer bus bar 81 and the second layer bus bar 82. That is, the bus bar unit 60 may have the insulating sheet 4 interposed between the plurality of neutral point bus bars 81 and 82.
  • the insulating sheet 4 is provided with a hole 4 h for avoiding interference with the first welded portion 67 b and the second shaft portion 68 a.
  • phase bus bars 71, 72, 73 disposed above the bus bar holder 61 are shown as hidden lines (broken lines). As shown in FIG. 9, at least a part of the neutral point bus bars 81 and 82 and the phase bus bars 71, 72 and 73 overlap each other when viewed from the axial direction. Thereby, bus bar unit 60 can be miniaturized in the radial direction. Further, the holder main body portion 62 of the bus bar holder 61 is interposed between the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 in the axial direction.
  • phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 are overlapped with each other as viewed from the axial direction, the phase bus bars 71, 72, 73 and the neutral point bus bar 81 , 82 and easy to ensure insulation.
  • welds 67 b, 68 b, 69 b are arranged offset from phase bus bars 71, 72, 73 as viewed in the axial direction. As described above, the welds 67 b, 68 b, 69 b are formed by melting the resin at the tips of the shanks 67 a, 68 a, 69 a. Therefore, heat is applied to the bus bar holder 61 in order to form the welds 67 b, 68 b, 69 b.
  • the portions of the holder main body 62 overlapping the welds 67 b, 68 b, 69 b when viewed in the axial direction may be slightly deformed by heat at the time of molding the welds 67 b, 68 b, 69 b.
  • welding sections 67b, 68b, 69b are arranged by shifting welding sections 67b, 68b, 69b from phase bus bars 71, 72, 73 when viewed from the axial direction, the deformation when melting sections 67b, 68b, 69b is It is possible to suppress the influence on the positional accuracy of 72, 73. Thereby, the positional accuracy of the phase bus bars 71, 72, 73 can be enhanced.
  • the U-phase bus bar 71 having the largest length along the circumferential direction of the bus bar main portions 71b, 72b, 73b has a diameter larger than that of the welded portions 67b, 68b. Go inside the direction.
  • the U-phase bus bar 71 can be shortened by extending the U-phase bus bar 71 along the circumferential direction through the radially inner side of the welded portions 67 b and 68 b. As a result, the weight of the motor 1 can be reduced, and the material cost of the U-phase bus bar 71 can be saved.
  • the plurality of phase bus bars 71, 72, 73 are plate-shaped, and the bus bar main body portions 71b, 72b, 73b are vertically disposed with the direction orthogonal to the axial direction as the thickness direction. .
  • the phase bus bars 71, 72, 73 are set vertically, the phase bus bars 71, 72, 73 and the welds 67b, 68b, 69b are arranged to overlap when viewed from the axial direction.
  • the radial dimension of the bus bar unit 60 does not easily increase.
  • one of the six welds 67 b, 68 b, 69 b is located at the root of the coil terminal 81 a of the first layer bus bar 81. That is, one welded portion 67 b radially overlaps with the coil terminal 81 a.
  • the positional accuracy of the coil terminal 81a can be secured, and the vibration of the coil terminal 81a can be easily suppressed.
  • the case where only one welding portion 67 b is located at the root of the coil terminal 81 a has been described. However, all welds 67 b, 68 b, 69 b may be located at the root of the coil terminal 81 a.
  • the bus bar main portion 81b of the first layer bus bar 81 has a wide portion 81s provided around the passage hole 81i.
  • the bus bar main portion 82b of the second layer bus bar 82 has a wide portion 82s provided around the retraction hole 82i.
  • the wide portions 81s and 82s extend outward in the width direction in a circular shape whose center coincides with the center of the passage hole 81i or the retraction hole 82i.
  • the neutral point bus bars 81 and 82 are provided with the passage holes 81i or the retraction holes 82i, the cross-sectional areas of the busbar main portions 81b and 82b decrease. I have not. It can suppress that the electrical resistance of neutral point bus bars 81 and 82 becomes large.
  • the stator 30 includes two coil groups (the first coil group 7 and the second coil group 8), and the bus bar unit 60 corresponds to two phases of each phase.
  • the motor 1 having the two phase bus bars 71, 72, 73 and the two neutral point bus bars 81, 82 corresponding to the two systems has been described.
  • the number of strains is not limited.
  • stator 30 may have only three or more coil groups, and bus bar unit 60 may have three or more phases of phase bus bars and neutral point bus bars corresponding to the coil groups.
  • FIG. 11 is a schematic view of an electric power steering apparatus on which the motor 1 of the present embodiment is mounted.
  • the electric power steering device 2 is mounted on a steering mechanism of a wheel of a car.
  • the electric power steering device 2 is a device that reduces the steering force by hydraulic pressure.
  • the electric power steering apparatus 2 includes a motor 1, a steering shaft 214, an oil pump 216, and a control valve 217.
  • the steering shaft 214 transmits an input from the steering 211 to an axle 213 having wheels 212.
  • the oil pump 216 generates hydraulic pressure in a power cylinder 215 that transmits hydraulic driving force to the axle 213.
  • the control valve 217 controls the oil of the oil pump 216.
  • the motor 1 is mounted as a drive source of the oil pump 216.
  • the motor 1 of this embodiment is not restricted to an electric-power-steering apparatus, You may be mounted in what kind of apparatus.

Abstract

Provided is a motor, wherein: a stator has a plurality of systems of coil groups; and a busbar unit has a plurality of phase busbars, which are respectively connected to lead-out wires leading out from coils of respective phases, and busbar holders which hold the plurality of busbars. The phase busbars have a plate shape and at least a busbar body section is arranged so as to have a thickness direction perpendicular to an axial direction. The phase busbar having the largest length in the circumferential direction of the busbar body section among the plurality of phase busbars radially overlaps with at least a portion of the other phase busbars, and passes though the opposite side as the direction in which coil terminals of the other phase busbars extend in the radial direction.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to a motor.
 三相モータにおいては、コイル同士を結線するバスバーを設けたものが知られている(例えば特許文献1)。一方で、近年では、三相モータを複数系統の結線構成とすることで、冗長性を確保させたモータが望まれている。 Among three-phase motors, there is known one provided with a bus bar connecting the coils together (for example, Patent Document 1). On the other hand, in recent years, a motor having redundancy is desired by forming a three-phase motor into a plurality of systems of wire connections.
日本国公開公報第2016-208578号公報Japanese Laid Open Publication No. 2016-208578
 複数系統を有するモータにおいては、バスバーの数が増加し結果的にモータが大型化するという問題があった。 In a motor having a plurality of systems, there has been a problem that the number of bus bars increases and as a result, the motor becomes larger.
 本発明の一態様は、上記課題に鑑みて、複数系統を採用しつつ小型化が可能なモータの提供を目的の一つとする。 In view of the above problems, one aspect of the present invention aims to provide a motor that can be miniaturized while adopting a plurality of systems.
 本発明のモータは、上下方向に延びる中心軸を中心として回転するロータと、前記ロータと隙間を介して径方向に対向するステータと、前記ステータの上側に設けられるバスバーユニットと、を備え、前記ステータは、U相コイル、V相コイルおよびW相コイルを一系統のコイル群として、複数の系統の前記コイル群を有し、互いに異なる系統の前記コイル群同士は、中心軸周りに対称に配置され、前記バスバーユニットは、各相のコイルから引き出された引出線にそれぞれ接続される複数の相用バスバーと、複数の前記相用バスバーを保持するバスバーホルダと、を有し、前記相用バスバーは、周方向に沿って延びるバスバー本体部と、前記バスバー本体部の一端に位置し前記バスバー本体部に対し径方向一方側に延びて前記引出線に接続されるコイル用端子と、前記バスバー本体部の他端に位置し上側に延びる外部接続端子と、を有し、前記相用バスバーは、板状であり、少なくとも前記バスバー本体部が軸方向に直交する方向を厚さ方向として配置され、複数の前記相用バスバーのうち、前記バスバー本体部の周方向に沿う長さが最も大きい前記相用バスバーは、他の前記相用バスバーのうち少なくとも一部と径方向に重なり、径方向において他の前記相用バスバーのコイル用端子が延び出る方向と反対側を通過する。 The motor according to the present invention comprises a rotor rotating around a central axis extending in the vertical direction, a stator radially opposed to the rotor with a gap therebetween, and a bus bar unit provided on the upper side of the stator, The stator includes U-phase coils, V-phase coils and W-phase coils as one system coil group and has a plurality of system coil groups, and the coil groups of different systems are arranged symmetrically around the central axis And the bus bar unit includes a plurality of phase bus bars connected to lead wires drawn from the coils of each phase and a bus bar holder for holding the plurality of phase bus bars, and the phase bus bars A bus bar main body extending along the circumferential direction, and one end of the bus bar main body extending in the radial direction with respect to the bus bar main body and contacting the lead wire And the external connection terminal located on the other end of the bus bar main body and extending upward, and the phase bus bar has a plate shape, and at least the bus bar main body is orthogonal to the axial direction. Of the plurality of phase bus bars, the phase bus bar having the largest length along the circumferential direction of the bus bar main portion is at least a part of the other phase bus bars. And the coil terminals of the other phase busbars in the radial direction pass through in the direction opposite to the extending direction.
 本発明の一態様によれば、複数系統を採用しつつ小型化が可能なモータを提供できる。 According to one aspect of the present invention, it is possible to provide a motor that can be miniaturized while adopting a plurality of systems.
図1は、一実施形態のモータの断面図である。FIG. 1 is a cross-sectional view of a motor according to one embodiment. 図2は、一実施形態のステータの平面図である。FIG. 2 is a plan view of a stator of one embodiment. 図3は、一実施形態のステータの各コイルの結線を示す模式図である。FIG. 3 is a schematic view showing connection of each coil of the stator of the embodiment. 図4は、一実施形態のコイルが構成する二系統のY結線を示す模式図である。FIG. 4 is a schematic view showing two systems of Y-connections configured by the coil of one embodiment. 図5は、一実施形態のバスバーユニットの斜視図である。FIG. 5 is a perspective view of the bus bar unit of one embodiment. 図6は、一実施形態のバスバーユニットの分解斜視図である。FIG. 6 is an exploded perspective view of the bus bar unit according to one embodiment. 図7は、一実施形態のバスバーユニットの平面図である。FIG. 7 is a plan view of the bus bar unit of one embodiment. 図8は、図7のVIII-VIII線に沿う断面図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 図9は、一実施形態のバスバーユニットの底面図である。FIG. 9 is a bottom view of the bus bar unit of one embodiment. 図10は、図9のX-X線に沿う断面模式図である。FIG. 10 is a schematic cross-sectional view along the line XX in FIG. 図11は、一実施形態の電動パワーステアリング装置を示す模式図である。FIG. 11 is a schematic view showing an electric power steering apparatus according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るモータについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 Hereinafter, a motor according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure intelligible, a scale, the number, etc. in an actual structure and each structure may be varied.
 各図には、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。X軸方向は、Z軸方向と直交する方向であって図1の左右方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。 In each drawing, an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction is a direction parallel to the axial direction of the central axis J shown in FIG. The X-axis direction is a direction orthogonal to the Z-axis direction, which is the left-right direction in FIG. The Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
 以下の説明において、Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。 In the following description, the positive side in the Z-axis direction (+ Z side) is referred to as “upper side”, and the negative side in the Z-axis direction (−Z side) is referred to as “lower side”. Note that the upper and lower sides are directions used merely for the purpose of explanation, and do not limit the actual positional relationship or direction. Further, unless otherwise noted, a direction (Z-axis direction) parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and a radial direction centered on the central axis J is simply referred to as “radial direction”. The circumferential direction around the central axis J, that is, around the axis of the central axis J, is simply referred to as “circumferential direction”. Furthermore, in the following description, “plan view” means a state viewed from the axial direction.
[モータ]図1は、本実施形態のモータ1の断面図である。本実施形態のモータ1は、3相交流モータである。また、本実施形態のモータ1は、インナーロータ型のモータである。 [Motor] FIG. 1 is a cross-sectional view of a motor 1 of the present embodiment. The motor 1 of the present embodiment is a three-phase alternating current motor. Further, the motor 1 of the present embodiment is an inner rotor type motor.
 モータ1は、シャフト21を有するロータ20と、ステータ30と、バスバーユニット60と、ハウジング40と、上側ベアリング(ベアリング)6Aと、下側ベアリング6Bと、ベアリングホルダ10と、を備える。モータ1は、バスバーユニット60から上側に延びる外部接続端子71c、72c、73cにより外部機器(制御部)9に接続される。モータ1は、外部機器9により、ロータ20の回転を制御される。 The motor 1 includes a rotor 20 having a shaft 21, a stator 30, a bus bar unit 60, a housing 40, an upper bearing 6A, a lower bearing 6B, and a bearing holder 10. The motor 1 is connected to an external device (control unit) 9 by external connection terminals 71 c, 72 c, 73 c extending upward from the bus bar unit 60. The rotation of the rotor 20 is controlled by the external device 9 of the motor 1.
[ハウジング]ハウジング40は、上側(+Z側)に開口する筒状である。ハウジング40は、ロータ20およびステータ30を収容する。ハウジング40は、筒状部45と、底部49と、下側ベアリング保持部48と、を有する。 [Housing] The housing 40 is in the form of a cylinder that opens to the upper side (+ Z side). The housing 40 accommodates the rotor 20 and the stator 30. The housing 40 has a cylindrical portion 45, a bottom portion 49, and a lower bearing holding portion 48.
 筒状部45は、ステータ30を径方向外側から囲む。本実施形態において筒状部45は、中心軸Jを中心とする円筒状である。底部49は、筒状部45の下端に位置する。底部49は、ステータ30の下側に位置する。下側ベアリング保持部48は、底部49の平面視中央に位置する。下側ベアリング保持部48は、下側ベアリング6Bを保持する。下側ベアリング保持部48は、中心軸Jを中心として軸方向に延びる保持筒部48aと、保持筒部48aの下端から径方向内側に延びる下端突出部48bと、を有する。下端突出部48bの平面視中央には、軸方向に貫通する孔部48cが設けられる。 The cylindrical portion 45 surrounds the stator 30 from the radially outer side. In the present embodiment, the cylindrical portion 45 is cylindrical with the central axis J as a center. The bottom portion 49 is located at the lower end of the cylindrical portion 45. The bottom 49 is located below the stator 30. The lower bearing holding portion 48 is located at the center of the bottom portion 49 in plan view. The lower bearing holder 48 holds the lower bearing 6B. The lower bearing holding portion 48 has a holding cylindrical portion 48a extending in the axial direction centering on the central axis J, and a lower end protruding portion 48b extending inward in the radial direction from the lower end of the holding cylindrical portion 48a. A hole 48c penetrating in the axial direction is provided at the center of the lower end protrusion 48b in plan view.
[ロータ]ロータ20は、中心軸Jを中心として回転する。ロータ20は、シャフト21と、ロータコア24と、ロータマグネット23と、を有する。シャフト21は、上下方向(軸方向)に延びる中心軸Jを中心として、中心軸Jに沿って配置される。シャフト21は、上側ベアリング6Aと下側ベアリング6Bとによって、中心軸Jの軸周りに回転可能に支持される。 [Rotor] The rotor 20 rotates around the central axis J. The rotor 20 has a shaft 21, a rotor core 24, and a rotor magnet 23. The shaft 21 is disposed along the central axis J around a central axis J extending in the vertical direction (axial direction). The shaft 21 is rotatably supported around the central axis J by the upper bearing 6A and the lower bearing 6B.
 ロータコア24は、シャフト21に固定される。ロータコア24は、シャフト21を周方向に囲んでいる。ロータマグネット23は、ロータコア24に固定される。より詳細には、ロータマグネット23は、ロータコア24の周方向に沿った外側面に固定される。ロータコア24およびロータマグネット23は、シャフト21とともに回転する。 The rotor core 24 is fixed to the shaft 21. The rotor core 24 circumferentially surrounds the shaft 21. The rotor magnet 23 is fixed to the rotor core 24. More specifically, the rotor magnet 23 is fixed to the outer surface along the circumferential direction of the rotor core 24. The rotor core 24 and the rotor magnet 23 rotate with the shaft 21.
[上側ベアリングおよび下側ベアリング]上側ベアリング6Aは、ロータコア24の上側においてロータ20に設けられたシャフト21を回転可能に支持する。上側ベアリング6Aは、ベアリングホルダ10に支持される。 下側ベアリング6Bは、ロータコア24の下側においてロータ20に設けられたシャフト21を回転可能に支持する。下側ベアリング6Bは、ハウジング40の下側ベアリング保持部48に支持される。 [Upper Bearing and Lower Bearing] The upper bearing 6A rotatably supports the shaft 21 provided on the rotor 20 at the upper side of the rotor core 24. The upper bearing 6A is supported by the bearing holder 10. The lower bearing 6B rotatably supports a shaft 21 provided on the rotor 20 at the lower side of the rotor core 24. The lower bearing 6B is supported by the lower bearing holding portion 48 of the housing 40.
[ベアリングホルダ]ベアリングホルダ10は、ステータ30の上側(+Z側)に位置する。また、ベアリングホルダ10は、後段に説明するバスバーユニット60の上側に位置する。ベアリングホルダ10は、上側ベアリング6Aを保持する。また、ベアリングホルダ10は、ハウジング40の筒状部45に保持される。ベアリングホルダ10の平面視(XY面視)形状は、例えば、中心軸Jと同心の円形状である。 [Bearing Holder] The bearing holder 10 is located on the upper side (+ Z side) of the stator 30. Further, the bearing holder 10 is located above the bus bar unit 60 described later. The bearing holder 10 holds the upper bearing 6A. Also, the bearing holder 10 is held by the cylindrical portion 45 of the housing 40. The planar view (XY plane) shape of the bearing holder 10 is, for example, a circular shape concentric with the central axis J.
 ベアリングホルダ10は、円板状のベアリングホルダ本体部16と、ベアリングホルダ本体部16の径方向内側に位置する上側ベアリング保持部18と、ベアリングホルダ本体部16の径方向外側に位置する嵌合筒部15と、を有する。上側ベアリング保持部18、ベアリングホルダ本体部16および嵌合筒部15は、径方向内側から外側に向かってこの順で配置される。 The bearing holder 10 includes a disc-shaped bearing holder main body portion 16, an upper bearing holding portion 18 positioned radially inward of the bearing holder main body portion 16, and a fitting cylinder positioned radially outward of the bearing holder main body portion 16. And a unit 15. The upper bearing holding portion 18, the bearing holder main body portion 16 and the fitting cylindrical portion 15 are disposed in this order from the radially inner side to the outer side.
 ベアリングホルダ本体部16は、軸方向と直交する平面に沿って延びる。ベアリングホルダ本体部16には、バスバーユニット60の外部接続端子71c、72c、73cが挿通される貫通孔16aが設けられる。 The bearing holder body 16 extends along a plane perpendicular to the axial direction. The bearing holder main body portion 16 is provided with a through hole 16a through which the external connection terminals 71c, 72c, 73c of the bus bar unit 60 are inserted.
 上側ベアリング保持部18は、上側ベアリング6Aを保持する。上側ベアリング保持部18は、ベアリングホルダ10の平面視中央に位置する。上側ベアリング保持部18は、中心軸Jを中心として軸方向に延びる保持筒部18aと、保持筒部18aの上端から径方向内側に延びる上端突出部18bと、を有する。上端突出部18bは、上側ベアリング6Aを上下方向に位置決めする。上端突出部18bの平面視中央には、軸方向に貫通する孔部18cが設けられる。孔部18cには、シャフト21の上端部が挿通される。 The upper bearing holder 18 holds the upper bearing 6A. The upper bearing holder 18 is located at the center of the bearing holder 10 in plan view. The upper bearing holding portion 18 has a holding cylindrical portion 18a extending in the axial direction centering on the central axis J, and an upper end protruding portion 18b extending inward in the radial direction from the upper end of the holding cylindrical portion 18a. The upper end protrusion 18b positions the upper bearing 6A in the vertical direction. A hole 18c penetrating in the axial direction is provided at the center of the upper end protrusion 18b in a plan view. The upper end portion of the shaft 21 is inserted into the hole 18c.
 嵌合筒部15は、ベアリングホルダ本体部16の外縁から下側に延びる。嵌合筒部15は、周方向に沿って筒状に延びる。嵌合筒部15は、筒状部45の内周面45cと径方向に対向して嵌め合わされる。これにより、ベアリングホルダ10は、ハウジング40に固定される。 The fitting cylindrical portion 15 extends downward from the outer edge of the bearing holder main body 16. The fitting cylindrical portion 15 extends in a tubular shape along the circumferential direction. The fitting cylindrical portion 15 is engaged with the inner peripheral surface 45 c of the cylindrical portion 45 in the radial direction. Thus, the bearing holder 10 is fixed to the housing 40.
[ステータ]ステータ30は、中心軸J周りに環状に配置される。ステータ30は、ロータ20と隙間を介して径方向に対向する。ステータ30は、ロータ20の径方向外側を囲む。ステータ30は、ハウジング40の筒状部45の内周面45cに固定される。ステータ30は、ステータコア31と、上側インシュレータ(インシュレータ)35と、下側インシュレータ34と、コイル33と、を有する。 [Stator] The stator 30 is annularly disposed around the central axis J. The stator 30 radially faces the rotor 20 via a gap. The stator 30 surrounds the radially outer side of the rotor 20. The stator 30 is fixed to the inner circumferential surface 45 c of the cylindrical portion 45 of the housing 40. The stator 30 has a stator core 31, an upper insulator 35, a lower insulator 34, and a coil 33.
 図2は、ステータ30の平面図である。なお、図2には、後述するバスバーユニット60のコイル用端子71a、72a、73a、81a、82aの一部を図示する。 FIG. 2 is a plan view of the stator 30. FIG. Note that FIG. 2 illustrates a part of coil terminals 71a, 72a, 73a, 81a, 82a of the bus bar unit 60 described later.
 ステータコア31は、周方向に沿って環状に並ぶ複数のコアピース32から構成される。ステータコア31において、周方向に隣接するコアピース32同士は、連結される。すなわち、ステータコア31は、コアピース32を周方向に沿って複数連結させて、構成される。 The stator core 31 is composed of a plurality of core pieces 32 annularly arranged along the circumferential direction. In the stator core 31, the core pieces 32 adjacent in the circumferential direction are connected to each other. That is, the stator core 31 is configured by connecting a plurality of core pieces 32 along the circumferential direction.
 コアピース32は、コアバック部32aと、ティース部32bと、アンブレラ部32cと、を有する。すなわち、ステータコア31は、複数のコアバック部32a、複数のティース部32bおよび複数のアンブレラ部32cを有する。本実施形態のステータコア31は、12個のコアピース32から構成される。したがって、本実施形態のステータ30は、12個のティース部32bを有する。なお、コアピース32およびティース部32bの数は、これに限定されない。 The core piece 32 has a core back portion 32a, a teeth portion 32b, and an umbrella portion 32c. That is, the stator core 31 has a plurality of core back portions 32a, a plurality of teeth portions 32b, and a plurality of umbrella portions 32c. The stator core 31 of the present embodiment is composed of twelve core pieces 32. Therefore, the stator 30 of the present embodiment has twelve teeth portions 32 b. The number of core pieces 32 and teeth portions 32b is not limited to this.
 コアバック部32aは、周方向に沿って延びる。コアバック部32aは、周方向を向く端部において、隣接するコアピース32のコアバック部32aと連結される。周方向において互いに隣接するコアバック部32a同士は、溶接等により結合される。これにより、全てのコアピース32のコアバック部32aが、環状に結合される。 The core back portion 32a extends along the circumferential direction. The core back portion 32 a is connected to the core back portion 32 a of the adjacent core piece 32 at an end portion facing in the circumferential direction. The core back portions 32a adjacent to each other in the circumferential direction are coupled by welding or the like. Thus, the core back portions 32a of all the core pieces 32 are annularly coupled.
 ティース部32bは、コアバック部32aの周方向中央から径方向内側に向かって延びる。ティース部32bには、上側インシュレータ35および下側インシュレータ34を介してコイル33が巻き付けられる。 Teeth portion 32 b extends radially inward from the circumferential center of core back portion 32 a. The coil 33 is wound around the teeth portion 32 b via the upper insulator 35 and the lower insulator 34.
 アンブレラ部32cは、ティース部32bの先端(径方向内側端部)に位置する。アンブレラ部32cの周方向に沿う寸法は、ティース部32bの周方向に沿う寸法より大きく、コアバック部32aの周方向に沿う寸法より小さい。アンブレラ部32cの径方向内側を向く面は、ロータ20のロータマグネット23と対向する。 The umbrella portion 32c is located at the tip (radially inner end) of the tooth portion 32b. The dimension along the circumferential direction of the umbrella portion 32c is larger than the dimension along the circumferential direction of the teeth portion 32b and smaller than the dimension along the circumferential direction of the core back portion 32a. The radially inner surface of the umbrella portion 32 c faces the rotor magnet 23 of the rotor 20.
 また、本実施形態のステータコア31は、いわゆる分割コアとしての複数のコアピース32から構成される。しかしながら、ステータコア31を構成するコアピースは、隣接するコアバック部32a同士が部分的に接続され、コイル33の巻線後に環状に屈曲されるカーリングコアであってもよい。 Moreover, the stator core 31 of this embodiment is comprised from the several core piece 32 as what is called a division | segmentation core. However, the core piece constituting the stator core 31 may be a curling core in which the adjacent core back portions 32 a are partially connected to each other and bent in an annular shape after the winding of the coil 33.
 図1に示す様に、上側インシュレータ35は、ステータコア31の上面のうち少なくともティース部32bの上側を覆う。同様に下側インシュレータ34は、ステータコア31の下面のうち少なくともティース部32bの下側を覆う。すなわち、上側インシュレータ35は、ティース部32bの上面を覆い、下側インシュレータ34は、ティース部32bの下面を覆う。上側インシュレータ35および下側インシュレータ34は、絶縁性を有する材料から構成される。上側インシュレータ35と下側インシュレータ34とは、ステータコア31の上下方向反対側に設けられる点を除き、同様の構成を有する。 As shown in FIG. 1, the upper insulator 35 covers at least the upper side of the teeth portion 32 b of the upper surface of the stator core 31. Similarly, the lower insulator 34 covers at least the lower side of the teeth portion 32 b of the lower surface of the stator core 31. That is, the upper insulator 35 covers the upper surface of the tooth portion 32b, and the lower insulator 34 covers the lower surface of the tooth portion 32b. The upper insulator 35 and the lower insulator 34 are made of an insulating material. The upper insulator 35 and the lower insulator 34 have the same configuration except that they are provided on the side opposite to the stator core 31 in the vertical direction.
 図2に示す様に、上側インシュレータ35は、それぞれのコアピース32の上側に位置する複数のインシュレータピース36を有する。なお、図示を省略するが、下側インシュレータ34は、上側インシュレータ35と同様に、複数のインシュレータピース36を有する。 As shown in FIG. 2, the upper insulator 35 has a plurality of insulator pieces 36 located on the upper side of the respective core pieces 32. Although not shown, the lower insulator 34 has a plurality of insulator pieces 36 in the same manner as the upper insulator 35.
 上側インシュレータ35のインシュレータピース36は、コアピース32と同数(本実施形態において12個)だけ設けられる。1つのコアピース32の上側には、1つのインシュレータピース36が配置される。複数のインシュレータピース36は、周方向に沿って環状に並ぶ。 The insulator pieces 36 of the upper insulator 35 are provided in the same number (12 in this embodiment) as the core pieces 32. One insulator piece 36 is disposed on the upper side of one core piece 32. The plurality of insulator pieces 36 are annularly arranged along the circumferential direction.
 インシュレータピース36は、基部36bと第1の立壁部36aと第2の立壁部36cとを有する。基部36bは、ティース部32bの上側に位置し、ティース部32bの上面を覆う。第1の立壁部36aは、基部36bの径方向外側の端部から上側に突出し周方向に沿って延びる。第1の立壁部36aは、コアバック部32aの上側に位置する。第2の立壁部36cは、基部36bの径方向内側の端部から上側に突出し周方向に沿って延びる。第2の立壁部36cは、アンブレラ部32cの上側に位置する。 The insulator piece 36 has a base 36 b, a first standing wall 36 a and a second standing wall 36 c. The base portion 36 b is located on the upper side of the tooth portion 32 b and covers the upper surface of the tooth portion 32 b. The first upright wall portion 36 a protrudes upward from the radially outer end of the base portion 36 b and extends along the circumferential direction. The first upright wall portion 36a is located above the core back portion 32a. The second upright wall portion 36c protrudes upward from the radially inner end of the base 36b and extends along the circumferential direction. The second upright wall portion 36c is located on the upper side of the umbrella portion 32c.
 基部36bには、コイル33が巻き付けられる。第1の立壁部36aと第2の立壁部36cは、基部36bを挟んで径方向に対向する。第1の立壁部36aと第2の立壁部36cは、それぞれ径方向外側および内側から、基部36bに巻き付けられたコイル33をガイドする。 The coil 33 is wound around the base 36 b. The first upright wall portion 36 a and the second upright wall portion 36 c are radially opposed to each other with the base portion 36 b interposed therebetween. The first upright wall 36 a and the second upright wall 36 c guide the coil 33 wound around the base 36 b from the radially outer side and the inner side, respectively.
 第1の立壁部36aは、周方向の両側を向く一対の端面36dと、径方向外側を向く外周面36eとを有する。隣接するインシュレータピース36の端面36dは、周方向に対向する。第1の立壁部36aと外周面36eとの間には、面取り36fが設けられている。隣接するインシュレータピース36の面取り36f同士の間には、軸方向から見てV字状の脚部収容部37が設けられる。すなわち、上側インシュレータ35には、脚部収容部37が設けられる。 The first upright wall portion 36a has a pair of end faces 36d facing both sides in the circumferential direction, and an outer peripheral surface 36e facing outward in the radial direction. The end faces 36 d of the adjacent insulator pieces 36 face each other in the circumferential direction. A chamfer 36f is provided between the first upright wall 36a and the outer peripheral surface 36e. Between the chamfers 36f of the adjacent insulator pieces 36, V-shaped leg housings 37 are provided as viewed from the axial direction. That is, the leg housing portion 37 is provided in the upper insulator 35.
 従来、1つインシュレータピースの径方向外側を向く外周面に設けた凹部を脚部収容部とした構造が知られている。これに対して、本実施形態によれば、周方向に並ぶ一対のインシュレータピース36の面取り36fを、径方向に突き合わせることで脚部収容部37を設ける。このため、1つのインシュレータピース36に凹部を設ける必要がなく、インシュレータピース36を射出成型により製造する場合に、インシュレータピース36の抜き方向の自由度を高めることができる。結果的にインシュレータピース36を安価に製造できる。 Heretofore, there has been known a structure in which a recess provided on the outer peripheral surface of one insulator piece facing radially outward is a leg housing portion. On the other hand, according to the present embodiment, the leg housing portion 37 is provided by abutting the chamfers 36f of the pair of insulator pieces 36 arranged in the circumferential direction in the radial direction. For this reason, it is not necessary to provide a recessed part in one insulator piece 36, and when manufacturing the insulator piece 36 by injection molding, the freedom degree of the extraction direction of the insulator piece 36 can be raised. As a result, the insulator piece 36 can be manufactured inexpensively.
 脚部収容部37は、軸方向から見て径方向の一方側(本実施形態では径方向外側)に開口し他方側(本実施形態では径方向内側)に向かうに従って幅狭となるV字状である。脚部収容部37は、軸方向から見て、隣接するコアピース32同士の境界部の上側に位置する。 The leg accommodating portion 37 opens in one side in the radial direction (radially outer side in the present embodiment) when viewed from the axial direction, and has a V-shape which narrows in width toward the other side (radially inner side in the present embodiment). It is. The leg accommodating portion 37 is located above the boundary between adjacent core pieces 32 as viewed in the axial direction.
 脚部収容部37には、後段において説明するバスバーユニット60の脚部65が収容される。脚部65は、脚部収容部37のV字状に嵌る。すなわち、脚部65は、軸方向から見て径方向他方側(本実施形態では径方向内側)に向かうに従って幅狭となるV字状である。 The leg portion 65 of the bus bar unit 60, which will be described later, is accommodated in the leg portion accommodating portion 37. The leg 65 fits in the V-shape of the leg accommodating portion 37. That is, the leg portion 65 has a V-shape which narrows in width toward the other side in the radial direction as viewed from the axial direction (in the radial direction in this embodiment).
 コイル33は、上側インシュレータ35および下側インシュレータ34を介してティース部32bにコイル線を巻き付けることで構成される。したがって、複数のコイル33は、周方向に沿って環状に並ぶ。 The coil 33 is configured by winding a coil wire around the teeth portion 32 b via the upper insulator 35 and the lower insulator 34. Therefore, the plurality of coils 33 are annularly arranged along the circumferential direction.
 本実施形態において、ステータ30には、12個のコイル33が設けられる。12個のコイル33は、一対のコイル33を1組として連弧巻きされている。連弧巻きされた2つのコイル33は、渡り線33bを介して繋がっている。渡り線33bは、コイル33の上側を通過する。なお、渡り線33bには、絶縁チューブ(図示略)によりコイル33に対して絶縁されている。 In the present embodiment, the stator 30 is provided with twelve coils 33. The twelve coils 33 are wound in a continuous arc with a pair of coils 33 as one set. The two continuously wound coils 33 are connected via a connecting wire 33b. The crossover 33 b passes above the coil 33. The crossover wire 33 b is insulated from the coil 33 by an insulating tube (not shown).
 それぞれのコイル33からは、1つの引出線33aが上側に延び出る。引出線33aは、連弧巻きされた2つのコイル33の巻き始めと巻き終りに対応する。したがって、1つのコイル33から1つの引出線33aが延び出る。引出線33aは、後段において説明するコイル用端子71a、72a、73a、81a、82aに接続される。なお、コイル用端子71a、72a、73a、81a、82aは、相用バスバー71、72、73のコイル用端子71a、72a、73aと、中性点バスバー81、82のコイル用端子81a、82aと、に分類される。 One lead wire 33 a extends upward from each coil 33. The lead wire 33a corresponds to the winding start and the winding end of the two coils 33 wound in a continuous arc. Therefore, one lead wire 33 a extends from one coil 33. The lead wire 33a is connected to the coil terminals 71a, 72a, 73a, 81a, 82a described later. The coil terminals 71a, 72a, 73a, 81a, 82a are the coil terminals 71a, 72a, 73a of the phase bus bars 71, 72, 73, and the coil terminals 81a, 82a of the neutral point bus bars 81, 82, respectively. ,are categorized.
 図3は、ステータ30の各コイル33の結線を示す模式図である。ステータ30の12個のコイル33は、4つのU相コイルU1a、U1b、U2a、U2bと、4つのV相コイルV1a、V1b、V2a、V2bと、4つのW相コイルW1a、W1b、W2a、W2bと、から構成される。 FIG. 3 is a schematic view showing wire connections of the coils 33 of the stator 30. As shown in FIG. Twelve coils 33 of stator 30 are four U-phase coils U1a, U1b, U2a, U2b, four V-phase coils V1a, V1b, V2a, V2b, and four W-phase coils W1a, W1b, W2a, W2b And consists of
 図4は、12個のコイル33が構成する二系統のY結線を示す模式図である。図4に示す様に、ステータ30は、U相コイル、V相コイルおよびW相コイルを一系統のコイル群として、複数の系統(本実施形態では、二系統)のコイル群(第1系統のコイル群7および第2系統のコイル群8)を有する。すなわち、ステータ30は、第1系統のコイル群7と第2系統のコイル群とに分類される二系統のコイル群7、8を有する。 FIG. 4 is a schematic view showing two systems of Y-connections formed by 12 coils 33. As shown in FIG. As shown in FIG. 4, the stator 30 has a U-phase coil, a V-phase coil and a W-phase coil as one system coil group, and a coil group (a first system) of a plurality of systems (two systems in this embodiment). The coil group 7 and the coil group 8 of the second system are included. That is, the stator 30 has two coil groups 7 and 8 classified into the first coil group 7 and the second coil group.
 第1系統のコイル群7は、U相コイルU1a、U1b、V相コイルV1a、V1bおよびW相コイルW1a、W1bを有する。また、第2系統のコイル群8は、U相コイルU2a、U2b、V相コイルV2a、V2bおよびW相コイルW2a、W2bを有する。すなわち、各系統の1つの相には、2つのコイル33が設けられる。各系統の各相の2つのコイル33は、渡り線33bで接続される。言い換えると、それぞれの系統において、U相コイル、V相コイルおよびW相コイルはそれぞれ複数設けられ、渡り線33bを介して複数のティース部32bに跨って設けられる。 Coil group 7 of the first system has U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b. The coil group 8 of the second system has U-phase coils U2a and U2b, V-phase coils V2a and V2b, and W-phase coils W2a and W2b. That is, two coils 33 are provided in one phase of each system. The two coils 33 of each phase of each system are connected by a connecting wire 33b. In other words, in each system, a plurality of U-phase coils, V-phase coils and W-phase coils are respectively provided, and are provided across the plurality of teeth portions 32 b via the crossover wires 33 b.
 第1系統のコイル群7において、U相コイルU1a、U1b、V相コイルV1a、V1bおよびW相コイルW1a、W1bは、Y結線により互いに結線されている。同様に、第2系統のコイル群8において、U相コイルU2a、U2b、V相コイルV2a、V2bおよびW相コイルW2a、W2bは、Y結線により互いに結線されている。 In coil group 7 of the first system, U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b are connected to one another by Y connection. Similarly, in the coil group 8 of the second system, the U-phase coils U2a and U2b, the V-phase coils V2a and V2b, and the W-phase coils W2a and W2b are mutually connected by Y connection.
 図3に示す様に、渡り線33bを介して繋がる第1系統の2つのU相コイルU1a、U1bの一方の引出線33aは、後述する第1系統相用バスバー群70AのU相用バスバー71Aに接続され、他方の引出線33aは、第1系統中性点バスバー81に接続される。 As shown in FIG. 3, one lead wire 33a of the two U-phase coils U1a and U1b of the first system connected via the crossover 33b is a U-phase bus bar 71A of the first system phase bus bar group 70A described later. And the other lead wire 33 a is connected to the first system neutral point bus bar 81.
 同様に、渡り線33bを介して繋がる第1系統の2つのV相コイルV1a、V1bの一方の引出線33aは、第1系統相用バスバー群70AのV相用バスバー72Aに接続され、他方の引出線33aは、第1系統中性点バスバー81に接続される。 Similarly, one lead wire 33a of the two V phase coils V1a and V1b of the first system linked via the crossover 33b is connected to the V phase bus bar 72A of the first system phase bus bar group 70A, and the other The lead wire 33 a is connected to the first system neutral point bus bar 81.
 また、渡り線33bを介して繋がる第1系統の2つのW相コイルW1a、W1bの一方の引出線33aは、第1系統相用バスバー群70AのW相用バスバー73Aに接続され、他方の引出線33aは、第1系統中性点バスバー81に接続される。 Further, one lead wire 33a of the two W-phase coils W1a and W1b of the first system connected via the crossover 33b is connected to the W-phase bus bar 73A of the first system phase bus bar group 70A, and the other The line 33 a is connected to the first system neutral point bus bar 81.
 以上に説明したように、第1系統のU相コイルU1a、U1b、V相コイルV1a、V1b、W相コイルW1a、W1bの一端は、それぞれ異なる相用バスバー71、72、73に接続される。すなわち、複数の相用バスバー71、72、73は、各相のコイル33から引き出された引出線33aにそれぞれ接続される。また、第1系統のU相コイルU1a、U1b、V相コイルV1a、V1b、W相コイルW1a、W1bの他端は、第1系統中性点バスバー81に接続される。すなわち、1つの第1系統中性点バスバー81は、各相のコイル33から引き出された引出線33aに接続される。これにより、第1系統のU相コイルU1a、U1b、V相コイルV1a、V1bおよびW相コイルW1a、W1bは、Y結線を構成する。 As described above, one ends of U-phase coils U1a and U1b, V-phase coils V1a and V1b, and W-phase coils W1a and W1b of the first system are connected to different phase bus bars 71, 72, 73, respectively. That is, the plurality of phase bus bars 71, 72, 73 are connected to the lead wires 33a drawn from the coils 33 of the respective phases. Further, the other ends of the U-phase coils U1a and U1b, the V-phase coils V1a and V1b, and the W-phase coils W1a and W1b of the first system are connected to the first system neutral point bus bar 81. That is, one first system neutral point bus bar 81 is connected to the lead wire 33 a drawn from the coil 33 of each phase. Thereby, the U-phase coils U1a and U1b of the first system, the V-phase coils V1a and V1b, and the W-phase coils W1a and W1b form a Y connection.
 第2系統のコイル群8の各相のコイル33の結線構成は、第1系統のコイル群7の各相のコイルの結線構成と同様である。すなわち、第2系統のU相コイルU2a、U2bは、第2系統のU相用バスバー71Bおよび第2系統中性点バスバー82に接続される。第2系統のV相コイルV2a、V2bは、第2系統のV相用バスバー72Bおよび第2系統中性点バスバー82に接続される。第2系統のW相コイルW2a、W2bは、第2系統のW相用バスバー73Bおよび第2系統中性点バスバー82に接続される。これにより、第2系統のU相コイルU2a、U2b、V相コイルV2a、V2bおよびW相コイルW2a、W2bは、Y結線を構成する。 The wire connection configuration of the coils 33 of each phase of the coil group 8 of the second system is the same as the wire connection configuration of the coils of each phase of the coil group 7 of the first system. That is, the U-phase coils U2a and U2b of the second system are connected to the U-phase bus bar 71B and the second system neutral point bus bar 82 of the second system. The V-phase coils V2a and V2b of the second system are connected to the V-phase bus bar 72B and the second system neutral point bus bar 82 of the second system. The W-phase coils W2a and W2b of the second system are connected to the W-phase bus bar 73B of the second system and the second system neutral point bus bar 82. Thus, the U-phase coils U2a and U2b of the second system, the V-phase coils V2a and V2b, and the W-phase coils W2a and W2b form a Y connection.
 本実施形態によれば、ステータ30が、複数系統のコイル群(第1系統のコイル群7および第2系統のコイル群8)を有する。また、ステータ30において、互いに異なる系統のコイル群7、8同士は、中心軸J周りに対称に配置される。これにより、モータ1の冗長性を確保することができる。すなわち、複数系統のコイル群7、8の何れか1つに不具合が生じた場合であっても、他の系統のコイル群を用いて、モータ1をスムーズに駆動させることができる。 According to this embodiment, the stator 30 has a plurality of coil groups (the first coil group 7 and the second coil group 8). Further, in the stator 30, the coil groups 7 and 8 of different systems are arranged symmetrically around the central axis J. Thereby, the redundancy of the motor 1 can be secured. That is, even when a failure occurs in any one of the plurality of coil groups 7 and 8, the motor 1 can be smoothly driven using the coil groups of other systems.
[バスバーユニット]バスバーユニット60は、モータ1に設けられる。バスバーユニット60は、軸方向においてステータ30とベアリングホルダ10との間に位置する。すなわち、バスバーユニット60は、ステータ30の上側かつベアリングホルダ10の下側に設けられる。 [Bus Bar Unit] The bus bar unit 60 is provided to the motor 1. The bus bar unit 60 is located between the stator 30 and the bearing holder 10 in the axial direction. That is, the bus bar unit 60 is provided above the stator 30 and below the bearing holder 10.
 図5は、バスバーユニット60の斜視図である。図6は、バスバーユニット60の分解斜視図である。図7は、バスバーユニット60の平面図である。 FIG. 5 is a perspective view of the bus bar unit 60. As shown in FIG. FIG. 6 is an exploded perspective view of the bus bar unit 60. As shown in FIG. FIG. 7 is a plan view of the bus bar unit 60. As shown in FIG.
 バスバーユニット60は、バスバーホルダ61と、一対の端子サポート(外部接続端子サポート)66と、第1系統相用バスバー群70Aと、第2系統相用バスバー群70Bと、第1系統中性点バスバー81と、第2系統中性点バスバー82と、を備える。 The bus bar unit 60 includes a bus bar holder 61, a pair of terminal supports (external connection terminal supports) 66, a first system phase bus bar group 70A, a second system phase bus bar group 70B, and a first system neutral point bus bar 81 and a second system neutral point bus bar 82.
 第1系統相用バスバー群70Aおよび第1系統中性点バスバー81は、第1系統のコイル群7に接続される。また、第2系統相用バスバー群70Bおよび第2系統中性点バスバー82は、第2系統のコイル群8に接続される。 The first system phase bus bar group 70A and the first system neutral point bus bar 81 are connected to the first system coil group 7. Further, the second system phase bus bar group 70B and the second system neutral point bus bar 82 are connected to the second system coil group 8.
 第1系統相用バスバー群70Aおよび第2系統相用バスバー群70Bは、バスバーホルダ61の軸方向一方側(本実施形態では上側)に固定され、第1系統中性点バスバー81および第2系統中性点バスバー82は、バスバーホルダ61の軸方向他方側(本実施形態では下側)に固定される。なお、本明細書において、「一方側」および「他方側」は、特定の方向を示すものではない。すなわち、上述の記載は、以下の様に言い換えることができる。第1系統中性点バスバー81および第2系統中性点バスバー82は、バスバーホルダ61の軸方向一方側に固定され、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70Bは、バスバーホルダ61の軸方向他方側に固定される。 First system phase bus bar group 70A and second system phase bus bar group 70B are fixed to one axial direction side (upper side in the present embodiment) of bus bar holder 61, and first system neutral point bus bar 81 and second system The neutral point bus bar 82 is fixed to the other axial side (the lower side in this embodiment) of the bus bar holder 61. In the present specification, "one side" and "the other side" do not indicate a specific direction. That is, the above description can be rephrased as follows. The first system neutral point bus bar 81 and the second system neutral point bus bar 82 are fixed to one side of the bus bar holder 61 in the axial direction, and the first system phase bus bar group 70A and the second system phase bus bar group 70B are The bus bar holder 61 is fixed to the other side in the axial direction.
 また、第1系統相用バスバー群70Aは、U相用バスバー71A、V相用バスバー72AおよびW相用バスバー73Aを有する。同様に、第2系統相用バスバー群70Bは、U相用バスバー71B、V相用バスバー72BおよびW相用バスバー73Bを有する。 Further, the first system phase bus bar group 70A has a U phase bus bar 71A, a V phase bus bar 72A, and a W phase bus bar 73A. Similarly, the second system phase bus bar group 70B includes a U phase bus bar 71B, a V phase bus bar 72B, and a W phase bus bar 73B.
 以下の説明において、異なる系統のU相用バスバー71A、71Bを区別しない場合、単にU相用バスバー71と呼ぶ。また、異なる系統のV相用バスバー72A、72Bを区別しない場合、単にV相用バスバー72と呼ぶ。異なる系統のW相用バスバー73A、73Bを区別しない場合、単にW相用バスバー73と呼ぶ。さらに、U相用バスバー71、V相用バスバー72およびW相用バスバー73を区別しない場合、単に相用バスバー71、72、73と呼ぶ。同様に、第1系統中性点バスバー81および第2系統中性点バスバー82を区別しない場合、単に中性点バスバー81、82と呼ぶ。 In the following description, when the U-phase bus bars 71A and 71B of different systems are not distinguished from one another, they are simply referred to as the U-phase bus bar 71. When the V- phase bus bars 72A and 72B of different systems are not distinguished from one another, they are simply referred to as the V-phase bus bars 72. When W- phase bus bars 73A and 73B of different systems are not distinguished from one another, they are simply referred to as W-phase bus bars 73. Furthermore, when the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 are not distinguished from one another, they are simply referred to as “phase bus bars 71, 72, 73”. Similarly, when the first system neutral point bus bar 81 and the second system neutral point bus bar 82 are not distinguished from one another, they are simply referred to as neutral point bus bars 81, 82.
 U相用バスバー71A、71B、V相用バスバー72A、72BおよびW相用バスバー73A、73Bは、相用バスバー(第1のバスバー)である。すなわち、複数の相用バスバー71、72、73は、第1系統のコイル群7および第2系統のコイル群8のそれぞれのU相コイルU1a、U1b、U2a、U2b、V相コイルV1a、V1b、V2a、V2bおよびW相コイルW1a、W1b、W2a、W2bにそれぞれ接続される相用バスバーを含む。 U-phase bus bars 71A and 71B, V- phase bus bars 72A and 72B, and W- phase bus bars 73A and 73B are phase bus bars (first bus bars). That is, the plurality of phase bus bars 71, 72, 73 are U-phase coils U1a, U1b, U2a, U2b, V-phase coils V1a, V1b, respectively of coil group 7 of the first system and coil group 8 of the second system. A phase bus bar is connected to V2a, V2b and W-phase coils W1a, W1b, W2a, W2b, respectively.
(バスバーホルダ)図1に示す様に、バスバーホルダ61は、ステータ30の上側に設けられる。バスバーホルダ61は、相用バスバー71、72、73および中性点バスバー81、82を保持する。バスバーホルダ61は、樹脂材料から構成される。 (Bus Bar Holder) As shown in FIG. 1, the bus bar holder 61 is provided on the upper side of the stator 30. The bus bar holder 61 holds the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82. The bus bar holder 61 is made of a resin material.
 図6に示す様に、バスバーホルダ61は、ホルダ本体部(バスバーホルダ本体)62と、一対のベース部63と、複数(本実施形態では6個)の挟持部64と、複数(本実施形態では6個)の脚部65と、を有する。 As shown in FIG. 6, the bus bar holder 61 includes a holder main body (bus bar holder main body) 62, a pair of base portions 63, a plurality of (six in the present embodiment) clamping portions 64, and a plurality (this embodiment) And six legs 65).
 ホルダ本体部62は、軸方向から見て中心軸Jを中心とする円環形状である。ホルダ本体部62は、軸方向において相用バスバー71、72、73と中性点バスバー81、82との間に位置する。また、ホルダ本体部62は、上側を向く上面62aと、下側を向く下面62bと、を有する。ホルダ本体部62の上面62aには、複数の相用バスバー71、72、73が配置される。ホルダ本体部62の下面62bには、複数の中性点バスバー81、82が配置される。 The holder main body 62 has an annular shape centered on the central axis J when viewed in the axial direction. The holder main body portion 62 is located between the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 in the axial direction. Further, the holder main body 62 has an upper surface 62 a facing upward and a lower surface 62 b facing downward. A plurality of phase bus bars 71, 72, 73 are disposed on the top surface 62 a of the holder body 62. A plurality of neutral point bus bars 81 and 82 are disposed on the lower surface 62 b of the holder main body 62.
 図1に示す様に、ホルダ本体部62の下面62bには、第1の壁部62cと第2の壁部62dとが設けられる。すなわち、バスバーホルダ61は、第1の壁部62cおよび第2の壁部62dを有する。第1の壁部62cおよび第2の壁部62dは、下面62bから軸方向に突出する。また、第1の壁部62cおよび第2の壁部62dは、それぞれ周方向に沿って延びる。第1の壁部62cは、中性点バスバー81、82に対して径方向外側に位置する。第2の壁部62dは、中性点バスバー81、82に対して径方向内側に位置する。したがって、中性点バスバー81、82は、径方向において第1の壁部62cと第2の壁部62dとの間に位置して周方向に沿って延びる。 As shown in FIG. 1, the lower surface 62b of the holder main body 62 is provided with a first wall 62c and a second wall 62d. That is, the bus bar holder 61 has a first wall 62 c and a second wall 62 d. The first wall 62 c and the second wall 62 d axially project from the lower surface 62 b. The first wall 62c and the second wall 62d extend in the circumferential direction, respectively. The first wall portion 62 c is located radially outward with respect to the neutral point bus bars 81 and 82. The second wall 62 d is located radially inward with respect to the neutral point bus bars 81 and 82. Therefore, neutral point bus bars 81, 82 are located between first wall 62c and second wall 62d in the radial direction and extend along the circumferential direction.
 ホルダ本体部62の下面62bには、複数の軸部67a、68a、69aと、それぞれの軸部67a、68a、69aの先端に位置する複数の溶着部67b、68b、69bと、が設けられる。すなわち、バスバーホルダ61は、複数の軸部67a、68a、69aと、複数の溶着部67b、68b、69bと、を有する。後段において図10を基に説明するように、複数の溶着部67b、68b、69bは、中性点バスバー81、82をバスバーホルダ61に固定する。 The lower surface 62b of the holder main body 62 is provided with a plurality of shaft portions 67a, 68a, 69a and a plurality of welded portions 67b, 68b, 69b located at the tip of each of the shaft portions 67a, 68a, 69a. That is, the bus bar holder 61 has a plurality of shaft portions 67a, 68a, 69a and a plurality of welding portions 67b, 68b, 69b. As will be described later with reference to FIG. 10, the plurality of welds 67 b, 68 b, 69 b fix the neutral point bus bars 81, 82 to the bus bar holder 61.
 図6に示す様に、ベース部63は、ホルダ本体部62の上面62aから上側に突出する。一対のベース部63は、中心軸Jを挟んで反対側に位置する。一対のベース部63のうち、一方は、第1系統相用バスバー群70Aの外部接続端子71c、72c、73cを保持し、他方は、第2系統相用バスバー群70Bの外部接続端子71c、72c、73cを保持する。 As shown in FIG. 6, the base portion 63 protrudes upward from the upper surface 62 a of the holder main body portion 62. The pair of base portions 63 is located on the opposite side across the central axis J. Of the pair of base portions 63, one holds the external connection terminals 71c, 72c, 73c of the first system phase bus bar group 70A, and the other holds the external connection terminals 71c, 72c of the second system phase busbar group 70B. , 73c hold.
 ベース部63は、上側を向く上面63aを有する。ベース部63の上面63aには、端子サポート66が搭載される。上面63aには、4つの凹溝(凹部)63dが設けられる。すなわち、バスバーホルダ61には、凹溝63dが設けられる。4つの凹溝63dには、V相用バスバー72の一部、W相用バスバー73の一部および互いに異なる系統の2つのU相用バスバー71(第1系統のU相用バスバー71Aおよび第2系統のU相用バスバー71B)の一部が挿入される。これにより、ベース部63は、複数の相用バスバー71、72、73を保持する。 The base portion 63 has an upper surface 63a facing upward. The terminal support 66 is mounted on the upper surface 63 a of the base portion 63. The upper surface 63a is provided with four recessed grooves (concave portions) 63d. That is, the recessed portion 63 d is provided in the bus bar holder 61. In the four recessed grooves 63d, a part of the V-phase bus bar 72, a part of the W-phase bus bar 73, and two U-phase bus bars 71 of different systems (the first U-phase bus bars 71A and the second system A part of U-phase bus bar 71B of the system is inserted. Thus, the base portion 63 holds the plurality of phase bus bars 71, 72, 73.
 図1に示す様に、ベース部63の上面63aには、上側に延びる軸部63bと、軸部63bの上端に位置する溶着部63cと、が設けられる。すなわち、バスバーホルダ61は、軸部63bと溶着部63cとを有する。 As shown in FIG. 1, the upper surface 63a of the base portion 63 is provided with a shaft portion 63b extending upward and a welded portion 63c located at the upper end of the shaft portion 63b. That is, the bus bar holder 61 has the shaft portion 63 b and the welded portion 63 c.
 軸部63bは、端子サポート66に設けられた固定孔66hを通過する。溶着部63cは、端子サポート66の固定孔66hの上側において、軸方向から見て、固定孔66hの外側まで広がる。溶着部63cは、上側に凸となる半球状である。溶着部63cは、軸部63bの上端部を熱によって溶融させることで成形される。溶着部63cは、端子サポート66が、軸部63bから抜け出すことを抑制する。溶着部63cが設けられることで、端子サポート66は、バスバーホルダ61に固定される。 The shaft portion 63 b passes through a fixing hole 66 h provided in the terminal support 66. The welding portion 63c extends to the outside of the fixing hole 66h on the upper side of the fixing hole 66h of the terminal support 66 as viewed from the axial direction. The welding part 63c is hemispherical shape which becomes convex upward. The welding portion 63c is formed by melting the upper end portion of the shaft portion 63b by heat. Welded portion 63c prevents terminal support 66 from coming off shaft portion 63b. The terminal support 66 is fixed to the bus bar holder 61 by providing the welding portion 63 c.
 図7に示す様に、挟持部64は、ホルダ本体部62の上面62aに設けられる。挟持部64は、上面62aから上側に延びる一対の爪部64aを有する。一対の爪部64aは、相用バスバー71、72、73を厚さ方向から挟み込んで保持する。すなわち、挟持部64は、複数の相用バスバー71、72、73を厚さ方向から保持する。本実施形態において、挟持部64は、バスバーホルダ61の上側に設けられた相用バスバー71、72、73と同数(6つ)だけ設けられる。したがって、1つの相用バスバー71、72、73は、1つの挟持部64により保持される。なお、挟持部64の数は、6より多くてもよい。 As shown in FIG. 7, the sandwiching portion 64 is provided on the upper surface 62 a of the holder main body 62. The holding portion 64 has a pair of claw portions 64a extending upward from the upper surface 62a. The pair of claws 64 a sandwich and hold the phase bus bars 71, 72, 73 in the thickness direction. That is, the sandwiching portion 64 holds the plurality of phase bus bars 71, 72, 73 in the thickness direction. In the present embodiment, the holding portions 64 are provided in the same number (six) as the phase bus bars 71, 72, 73 provided on the upper side of the bus bar holder 61. Therefore, one phase bus bar 71, 72, 73 is held by one holding portion 64. Note that the number of the holding parts 64 may be more than six.
 脚部65は、バスバーホルダ61に複数(本実施形態では6個)設けられる。複数の脚部65は、中心軸周りに等間隔に配置される。バスバーホルダ61は、脚部65において、ステータ30に支持される。 A plurality of (six in the present embodiment) legs 65 are provided on the bus bar holder 61. The plurality of legs 65 are arranged at equal intervals around the central axis. The bus bar holder 61 is supported by the stator 30 at the leg portion 65.
 図6に示す様に、脚部65は、ホルダ本体部62の外縁から径方向外側に延びる径方向延出部65aと、径方向延出部65aの径方向外側先端から下側に延びる下側延出部65bと、を有する。すなわち、脚部65は、ホルダ本体部62に対して下側に延びる。 As shown in FIG. 6, the leg portion 65 is a radially extending portion 65a extending radially outward from the outer edge of the holder main body 62, and a lower side extending downwardly from the radially outer end of the radially extending portion 65a. And an extending portion 65b. That is, the legs 65 extend downward with respect to the holder body 62.
 図9に示す様に、脚部65の下端部65cは、軸方向から見て径方向内側に向かうに従って幅狭となるV字状である。図2に示す様に、V字状の下端部65cは、上側インシュレータ35に設けられた脚部収容部37に収容される。また、脚部65は、下端面においてステータ30の上面に接触する。上述したように、脚部収容部37は、軸方向から見て脚部65の下端部65cと同形状又は相似形状のV字状である。脚部65が、脚部収容部37に収容されることで、軸方向と直交する面内において、バスバーホルダ61が、ステータ30に対して位置決めされる。 As shown in FIG. 9, the lower end portion 65c of the leg portion 65 has a V shape which narrows inward as it goes radially inward as viewed from the axial direction. As shown in FIG. 2, the V-shaped lower end 65 c is accommodated in a leg accommodating portion 37 provided in the upper insulator 35. Further, the leg portion 65 contacts the upper surface of the stator 30 at the lower end surface. As described above, the leg accommodating portion 37 has a V-like shape similar to or similar to that of the lower end portion 65 c of the leg 65 when viewed in the axial direction. The leg portion 65 is accommodated in the leg portion accommodating portion 37, whereby the bus bar holder 61 is positioned with respect to the stator 30 in a plane perpendicular to the axial direction.
 脚部収容部37は、周方向に隣接するコアピース32同士の境界部の上側に設けられる。脚部収容部37に収容される脚部65は、周方向に隣接するコアピース32同士の境界部の上側に設けられる。すなわち、脚部65は、軸方向から見て周方向に隣接するコアピース32同士の境界に重なって配置される。 The leg accommodating portion 37 is provided on the upper side of the boundary between the core pieces 32 adjacent in the circumferential direction. The leg 65 accommodated in the leg accommodating portion 37 is provided on the upper side of the boundary between the core pieces 32 adjacent in the circumferential direction. That is, the leg portion 65 is disposed overlapping the boundary between the core pieces 32 adjacent in the circumferential direction when viewed from the axial direction.
 本実施形態によれば、脚部65の下端部65cおよび脚部収容部37が、径方向一方側に向かうに従って幅狭となるV字状とすることで、脚部収容部37に対する脚部65の挿入を容易に行うことができる。加えて、それぞれの脚部65が、脚部収容部37の周方向の一方側および他方側を向く軸方向から見てV字状の壁部に接触する。このため、バスバーホルダ61の周方向の位置決め精度を高めることができる。なお、脚部収容部37は、V字状以外の形状であってもよい。例えば、台形状、半円弧状であっても、同様の効果を得られる。 According to the present embodiment, the lower end portion 65 c of the leg portion 65 and the leg portion accommodation portion 37 have a V shape that narrows toward the one radial direction side, whereby the leg portion 65 with respect to the leg portion accommodation portion 37 Insertion is easy. In addition, each leg 65 contacts the V-shaped wall when viewed from the axial direction facing one side and the other side of the leg accommodating portion 37 in the circumferential direction. Therefore, the positioning accuracy of the bus bar holder 61 in the circumferential direction can be enhanced. The leg housing portion 37 may have a shape other than the V shape. For example, even if it is trapezoidal shape and semicircular arc shape, the same effect can be acquired.
 図2に示す様に軸方向から見て、それぞれのコイル33から引き出される引出線33aと中心軸Jとを結ぶ直線を仮想線VLとする。軸方向から見て、脚部65は、周方向に隣接する一対のコイル33の引出線33aの仮想線VL同士の間に位置する。なお、引出線33aは、複数の相用バスバー71、72、73および複数の中性点バスバー81、82にそれぞれ設けられたコイル用端子71a、72a、73a、81a、82aのうち何れか1つに接続される。 As shown in FIG. 2, when viewed from the axial direction, a straight line connecting the lead axis 33 a drawn from each of the coils 33 and the central axis J is an imaginary line VL. When viewed from the axial direction, the leg portion 65 is located between the imaginary lines VL of the lead lines 33 a of the pair of coils 33 adjacent in the circumferential direction. The lead wire 33a is any one of coil terminals 71a, 72a, 73a, 81a, 82a provided on the plurality of phase bus bars 71, 72, 73 and the plurality of neutral point bus bars 81, 82, respectively. Connected to
 本実施形態によれば、脚部65が、周方向に並ぶ一対の仮想線VL同士の間に配置されることで、周方向において、脚部65とコイル用端子71a、72a、73a、81a、82aとをずらして配置することができる。これにより、脚部65とコイル用端子71a、72a、73a、81a、82aおよび引出線33aとの干渉を抑制できる。加えて、脚部65が、コイル用端子71a、72a、73a、81a、82aと引出線33aとの溶接工程を阻害し難い。 According to the present embodiment, the leg portion 65 is disposed between the pair of virtual lines VL aligned in the circumferential direction, whereby the leg portion 65 and the coil terminal 71a, 72a, 73a, 81a, in the circumferential direction It can be arranged offset with 82a. Thus, interference between the leg portion 65 and the coil terminals 71a, 72a, 73a, 81a, 82a and the lead wire 33a can be suppressed. In addition, the leg portion 65 does not easily inhibit the welding process of the coil terminals 71a, 72a, 73a, 81a, 82a and the lead wire 33a.
 本実施形態において、複数のコイル用端子71a、72a、73a、81a、82aは、周方向に沿って第1の間隔と、第1の間隔より狭い第2の間隔と、で交互に並ぶ。このため、中心軸Jから放射状に延びる複数の仮想線VLは、周方向に沿って第1の角度αと、第1の角度αより小さい第2の角度βと、で交互に延びる。本実施形態の脚部65は、第1の角度αをなす一対の仮想線VL同士の間に位置する。脚部65を、第1の角度αをなす一対の仮想線VL同士の間、および第2の角度βをなす一対の仮想線VL同士の間、の何れに配置する場合であっても、脚部65と引出線33aとの干渉を抑制する一定の効果を得ることができる。また、本実施形態に示すように、脚部65を、第1の角度αをなす一対の仮想線VL同士の間に配置することで、脚部65と引出線33aとの干渉を抑制する効果をさらに高めることができる。 In the present embodiment, the plurality of coil terminals 71a, 72a, 73a, 81a and 82a are alternately arranged at a first interval and a second interval narrower than the first interval along the circumferential direction. Therefore, the plurality of virtual lines VL radially extending from the central axis J alternately extend at a first angle α and a second angle β smaller than the first angle α along the circumferential direction. The leg portion 65 of the present embodiment is located between a pair of virtual lines VL forming the first angle α. The leg 65 is disposed between the pair of virtual lines VL forming the first angle α and between the pair of virtual lines VL forming the second angle β. A certain effect of suppressing the interference between the portion 65 and the lead wire 33a can be obtained. Further, as shown in the present embodiment, by arranging the leg portion 65 between the pair of virtual lines VL forming the first angle α, the effect of suppressing the interference between the leg portion 65 and the lead wire 33a Can be further enhanced.
 軸方向から見て、脚部65は、周方向に隣接する一対のコイル33の引出線33aに接続される一対のコイル用端子(例えば、一対のコイル用端子81a、73a)の間に位置する。本実施形態によれば、脚部65とコイル用端子81a、73aとの径方向位置が一致する場合であっても、脚部65とコイル用端子81a、73aとが周方向にずれて配置されるため、脚部65とコイル用端子81a、73aとの干渉を抑制できる。 When viewed from the axial direction, the leg portion 65 is located between a pair of coil terminals (for example, a pair of coil terminals 81a and 73a) connected to the lead wires 33a of the pair of coils 33 adjacent in the circumferential direction. . According to the present embodiment, even when the radial positions of the leg portion 65 and the coil terminals 81a and 73a coincide with each other, the leg portion 65 and the coil terminals 81a and 73a are offset in the circumferential direction. Therefore, interference between the leg portion 65 and the coil terminals 81a and 73a can be suppressed.
 本実施形態によれば、上述の配置によって、脚部65とコイル用端子71a、72a、73a、81a、82aとの干渉が抑制される為、脚部65とコイル用端子71a、72a、73a、81a、82aを軸方向にずらして配置する必要がない。より具体的には、図5に示す様に、脚部65の一部を、一部のコイル用端子82aと軸方向に重なるように配置することができる。脚部65の少なくとも一部を、コイル用端子82aと軸方向に重なる様に配置することで、バスバーユニット60の軸方向の寸法を小型化することができる。 According to the present embodiment, interference between the leg 65 and the coil terminals 71a, 72a, 73a, 81a, 82a is suppressed by the above-described arrangement, so the leg 65 and the coil terminals 71a, 72a, 73a, There is no need to shift the 81a and 82a in the axial direction. More specifically, as shown in FIG. 5, a part of the leg portion 65 can be arranged so as to axially overlap with a part of the coil terminal 82a. The axial dimension of the bus bar unit 60 can be reduced by arranging at least a part of the leg portion 65 so as to axially overlap the coil terminal 82a.
(相用バスバー(第1のバスバー、バスバー))複数の相用バスバー71、72、73は、バスバーホルダ61の上側に固定される。複数の相用バスバー71、72、73は、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70Bに分類される。上述したように、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70Bは、それぞれU相用バスバー71、V相用バスバー72およびW相用バスバー73を有する。 (Phase Busbar (First Busbar, Busbar)) The plurality of phase bus bars 71, 72, 73 are fixed to the upper side of the bus bar holder 61. The plurality of phase bus bars 71, 72, 73 are classified into a first system phase bus bar group 70A and a second system phase bus bar group 70B. As described above, the first system phase bus bar group 70A and the second system phase bus bar group 70B respectively have the U phase bus bar 71, the V phase bus bar 72, and the W phase bus bar 73.
 なお、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70BのU相用バスバー71同士は同形状であり、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70BのV相用バスバー72同士は同形状であり、第1系統相用バスバー群70Aおよび第2系統相用バスバー群70BのW相用バスバー73同士は同形状である。 The U-phase bus bars 71 of the first system phase bus bar group 70A and the second system phase bus bar group 70B have the same shape, and the first system phase bus bar group 70A and the second system phase bus bar group 70B The V-phase bus bars 72 have the same shape, and the W-phase bus bars 73 of the first system phase bus bar group 70A and the second system phase bus bar group 70B have the same shape.
 図6に示す様に、U相用バスバー71は、バスバー本体部71bと、コイル用端子71aと、外部接続端子71cと、突出部71eと、を有する。同様に、V相用バスバー72は、バスバー本体部72bと、コイル用端子72aと、外部接続端子72cと、突出部72eと、を有する。さらに、W相用バスバー73は、バスバー本体部73bと、コイル用端子73aと、外部接続端子73cと、突出部73eと、を有する。 As shown in FIG. 6, the U-phase bus bar 71 includes a bus bar main body 71b, a coil terminal 71a, an external connection terminal 71c, and a protrusion 71e. Similarly, the V-phase bus bar 72 includes a bus bar main body 72b, a coil terminal 72a, an external connection terminal 72c, and a protrusion 72e. Furthermore, the W-phase bus bar 73 includes a bus bar main body portion 73b, a coil terminal 73a, an external connection terminal 73c, and a protruding portion 73e.
 バスバー本体部71b、72b、73bは、軸方向と直交する平面に沿って延びる。バスバー本体部71b、72b、73bは、それぞれ周方向に沿って延びる。バスバー本体部71b、72b、73bは、軸方向に直交する方向を厚さ方向として配置される。 The bus bar main body portions 71b, 72b, 73b extend along a plane orthogonal to the axial direction. The bus bar main body portions 71b, 72b, 73b extend along the circumferential direction, respectively. The bus bar main body portions 71b, 72b and 73b are arranged with the direction orthogonal to the axial direction as the thickness direction.
 コイル用端子71a、72a、73aは、それぞれバスバー本体部71b、72b、73bの一端に位置する。コイル用端子71a、72a、73aは、バスバー本体部71b、72b、73bから径方向外側に延びる。なお、コイル用端子71a、72a、73aは、バスバー本体部71b、72b、73bに対し径方向内側に延びていてもよい。すなわち、コイル用端子71a、72a、73aは、バスバー本体部71b、72b、73bに対し径方向一方側に延びていればよい。 Coil terminals 71a, 72a, 73a are located at one end of bus bar main body portions 71b, 72b, 73b, respectively. The coil terminals 71a, 72a, 73a extend radially outward from the bus bar main body portions 71b, 72b, 73b. The coil terminals 71a, 72a, 73a may extend radially inward with respect to the bus bar main portions 71b, 72b, 73b. That is, coil terminals 71a, 72a, 73a may extend to one side in the radial direction with respect to bus bar main portions 71b, 72b, 73b.
 コイル用端子71a、72a、73aは、引出線33aに接続される。コイル用端子71a、72a、73aは、引出線33aを把持する部分である。コイル用端子71a、72a、73aの平面視形状は、径方向内側に開口する略U字状である。コイル用端子71a、72a、73aは、軸方向に直交する方向を厚さ方向として配置される。 The coil terminals 71a, 72a, 73a are connected to the lead 33a. The coil terminals 71a, 72a, 73a are portions for gripping the lead 33a. The shape in plan view of the coil terminals 71a, 72a, 73a is a substantially U shape opened inward in the radial direction. The coil terminals 71a, 72a, 73a are disposed with the direction orthogonal to the axial direction as the thickness direction.
 外部接続端子71c、72c、73cは、それぞれバスバー本体部71b、72b、73bのコイル用端子71a、72a、73aと反対側の端部(他端)に位置する。外部接続端子71c、72c、73cは、バスバー本体部71b、72b、73bから上側に延びる。 The external connection terminals 71c, 72c, 73c are located at the ends (other ends) of the busbar main body portions 71b, 72b, 73b opposite to the coil terminals 71a, 72a, 73a, respectively. The external connection terminals 71c, 72c, 73c extend upward from the bus bar main body portions 71b, 72b, 73b.
 3つの外部接続端子71c、72c、73cは、それぞれ第1系統相用バスバー群70Aおよび第2系統相用バスバー群70Bに設けられる。第1系統相用バスバー群70Aの外部接続端子71c、72c、73cと、第2系統相用バスバー群70Bの外部接続端子71c、72c、73cは、中心軸Jを挟んで反対側に配置される。 The three external connection terminals 71c, 72c, 73c are provided in the first system phase bus bar group 70A and the second system phase bus bar group 70B, respectively. The external connection terminals 71c, 72c and 73c of the first system phase bus bar group 70A and the external connection terminals 71c, 72c and 73c of the second system phase busbar group 70B are arranged on the opposite side across the central axis J. .
 外部接続端子71c、72c、73cは、軸方向に直交する方向を厚さ方向として配置される。また、U相用バスバー71の外部接続端子71cは、径方向と直交する方向を板幅方向として配置される。一方で、V相用バスバー72およびW相用バスバー73の外部接続端子72c、73cは、U相用バスバー71の外部接続端子71cの板幅方向と直交する方向を板幅方向として配置される。 The external connection terminals 71c, 72c, 73c are arranged with the direction orthogonal to the axial direction as the thickness direction. Further, the external connection terminals 71c of the U-phase bus bar 71 are disposed with the direction orthogonal to the radial direction as the sheet width direction. On the other hand, external connection terminals 72c and 73c of V-phase bus bar 72 and W-phase bus bar 73 are arranged with the direction orthogonal to the board width direction of external connection terminals 71c of U-phase bus bar 71 as the board width direction.
 図6に示す様に、突出部71e、72e、73eは、バスバー本体部71b、72b、73bと外部接続端子71c、72c、73cとの接続部からバスバー本体部71bの反対側に延びる。突出部71e、72e、73eは、軸方向に直交する方向を厚さ方向として配置される。 As shown in FIG. 6, the protrusions 71e, 72e and 73e extend from the connection between the busbars 71b, 72b and 73b and the external connection terminals 71c, 72c and 73c to the opposite side of the busbars 71b. The protrusions 71e, 72e, 73e are disposed with the direction orthogonal to the axial direction as the thickness direction.
 相用バスバー71、72、73は、バスバー本体部71b、72b、73bと外部接続端子71c、72c、73cとの接続部および突出部71e、72e、73eにおいてバスバーホルダ61に設けられた凹溝(凹部)63dに挿入される。したがって、相用バスバー71、72、73は、外部接続端子71c、72c、73cの根元においてバスバーホルダ61に保持される。このため、外部接続端子71c、72c、73cを外部機器のソケットに挿入する際に受ける応力を、バスバーホルダ61によって安定的に支持できる。 The phase bus bars 71, 72, 73 are connection portions between the bus bar main portions 71b, 72b, 73b and the external connection terminals 71c, 72c, 73c and recessed grooves provided in the bus bar holder 61 at the protruding portions 71e, 72e, 73e. Recessed portion) 63d. Therefore, the phase bus bars 71, 72, 73 are held by the bus bar holder 61 at the roots of the external connection terminals 71c, 72c, 73c. Therefore, the stress received when inserting the external connection terminals 71c, 72c, 73c into the socket of the external device can be stably supported by the bus bar holder 61.
 本実施形態によれば、バスバー本体部71b、72b、73bと突出部71e、72e、73eとが、外部接続端子71c、72c、73cの根元において、外部接続端子71c、72c、73cの板幅方向両側に延びる。バスバー本体部71b、72b、73bおよび突出部71e、72e、73eは、凹溝63dの内部で、外部接続端子71c、72c、73cの板幅方向へのガタツキを抑制する。これにより、外部接続端子71c、72c、73cの外部機器のソケットへの挿入の安定性を高めることができる。 According to the present embodiment, the bus bar main body portions 71b, 72b, 73b and the projecting portions 71e, 72e, 73e are at the base of the external connection terminals 71c, 72c, 73c in the plate width direction It extends on both sides. The bus bar main portions 71b, 72b, 73b and the protrusions 71e, 72e, 73e suppress rattling of the external connection terminals 71c, 72c, 73c in the plate width direction inside the recessed groove 63d. Thereby, the stability of insertion of the external connection terminals 71c, 72c, 73c into the socket of the external device can be enhanced.
 相用バスバー71、72、73は、軸方向において、バスバー本体部71b、72b、73bの全幅と、突出部71e、72e、73eの全幅とが重なる。このため、外部接続端子71c、72c、73cの安定性を外部接続端子71c、72c、73cの幅方向両側のガタツキ抑制の効果を高めることができる。 In the phase bus bars 71, 72, 73, the entire widths of the bus bar main portions 71b, 72b, 73b and the entire widths of the protruding portions 71e, 72e, 73e overlap in the axial direction. For this reason, the stability of the external connection terminals 71c, 72c, 73c can be enhanced in the effect of suppressing rattling on both sides in the width direction of the external connection terminals 71c, 72c, 73c.
 図7に示す様に、U相用バスバー71は、3種類の相用バスバー71、72、73のうち、バスバー本体部の周方向に沿う長さが最も大きい相用バスバーである。U相用バスバー71のバスバー本体部71bは、他の相用バスバー(V相用バスバー72およびW相用バスバー73)のバスバー本体部72b、73bより径方向内側に位置する。より具体的には、U相用バスバー71のバスバー本体部71bは、同じ系統のバスバー群に属するV相用バスバー72および他の系統のバスバー群に属するW相用バスバー73の径方向内側に位置する。 As shown in FIG. 7, the U-phase bus bar 71 is the phase bus bar having the largest length along the circumferential direction of the bus bar main body portion among the three types of phase bus bars 71, 72, 73. The bus bar main portion 71b of the U-phase bus bar 71 is located radially inward of the bus bar main portions 72b and 73b of the other phase bus bars (V-phase bus bar 72 and W-phase bus bar 73). More specifically, bus bar main portion 71b of U-phase bus bar 71 is positioned radially inward of W-phase bus bar 73 belonging to V-phase bus bar 72 belonging to the same system bus bar group and another system bus bar group Do.
 本実施形態の相用バスバー71、72、73は、バスバー本体部71b、72b、73bにおいて、径方向に重なって配置される。このため、バスバー本体部71b、72b、73bの厚さ方向を軸方向と直交させて配置することで、相用バスバー71、72、73を径方向にコンパクトに配置できる。結果として、バスバーユニット60の径方向寸法を小型化できる。 The phase bus bars 71, 72, 73 of the present embodiment are arranged to overlap in the radial direction in the bus bar main body portions 71b, 72b, 73b. Therefore, the phase bus bars 71, 72, 73 can be compactly arranged in the radial direction by arranging the thickness directions of the bus bar main portions 71b, 72b, 73b to be orthogonal to the axial direction. As a result, the radial dimension of the bus bar unit 60 can be reduced.
 本実施形態によれば、複数の相用バスバー71、72、73のうち、バスバー本体部71bの周方向に沿う長さが最も大きいU相用バスバー71は、他の相用バスバー(すなわち、V相用バスバー72およびW相用バスバー73)のうち少なくとも一部と径方向に重なる。また、U相用バスバー71のバスバー本体部71bは、径方向において他の相用バスバーのコイル用端子72a、73aが延び出る方向と反対側に位置する。このため、U相用バスバー71のバスバー本体部71bは、V相用バスバー72およびW相用バスバー73のコイル用端子72a、73aに接続される引出線33aに対して径方向に十分に距離を離して配置できる。結果として、U相用バスバー71のバスバー本体部71bと引出線33aとの間を壁などで隔てることなく、絶縁を確保することができる。 According to the present embodiment, among the plurality of phase bus bars 71, 72, 73, the U-phase bus bar 71 having the largest length along the circumferential direction of the bus bar main body portion 71b is the other phase bus bar (that is, V). It radially overlaps at least a part of the phase bus bar 72 and the W phase bus bar 73). Further, the bus bar main portion 71b of the U-phase bus bar 71 is located on the opposite side to the direction in which the coil terminals 72a and 73a of the other phase bus bars extend in the radial direction. Therefore, the bus bar main portion 71b of the U-phase bus bar 71 has a sufficient radial distance from the lead 33a connected to the V-phase bus bar 72 and the coil terminals 72a and 73a of the W-phase bus bar 73. It can be placed apart. As a result, insulation can be ensured without separating the bus bar main body 71b of the U-phase bus bar 71 and the lead wire 33a by a wall or the like.
 本実施形態において、V相用バスバー72およびW相用バスバー73は、コイル用端子72a、73aの径方向に延びる領域において、挟持部64に保持される。一方で、U相用バスバー71は、バスバー本体部71bにおいて、挟持部64に保持される。U相用バスバー71を保持する挟持部64は、径方向においてV相用バスバー72およびW相用バスバー73と径方向に重ならない。すなわち、複数の相用バスバー71、72、73のうち、バスバー本体部71bの周方向に沿う長さが最も大きいU相用バスバー71は、他の相用バスバーと径方向に重ならない領域で、バスバー本体部71bが、挟持部64に保持される。言い換えると、U相用バスバー71のバスバー本体部71bは、挟持部64に保持されない領域で、V相用バスバー72およびW相用バスバー73と径方向に重なる。このため、径方向において、U相用バスバー71と、V相用バスバー72およびW相用バスバー73を近接して配置できる。 In the present embodiment, the V-phase bus bar 72 and the W-phase bus bar 73 are held by the sandwiching portion 64 in the region extending in the radial direction of the coil terminals 72 a and 73 a. On the other hand, U-phase bus bar 71 is held by sandwiching portion 64 in bus bar main body portion 71 b. The holding portion 64 holding the U-phase bus bar 71 does not overlap in the radial direction with the V-phase bus bar 72 and the W-phase bus bar 73 in the radial direction. That is, among the plurality of phase bus bars 71, 72, 73, the U-phase bus bar 71 having the longest length along the circumferential direction of the bus bar main body portion 71b is a region not overlapping in a radial direction with other phase bus bars. The bus bar main body portion 71 b is held by the holding portion 64. In other words, the bus bar main portion 71 b of the U-phase bus bar 71 radially overlaps the V-phase bus bar 72 and the W-phase bus bar 73 in a region not held by the sandwiching portion 64. Therefore, the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 can be disposed close to each other in the radial direction.
 U相用バスバー71のバスバー本体部71bは、周方向に沿って中心軸J周りに180°延びる。したがって、バスバー本体部71bの一端に位置する外部接続端子71cと、バスバー本体部71bの他端に位置するコイル用端子71aとは、中心軸Jを挟んで反対側に配置される。これにより、他の相用バスバー(V相用バスバー72およびW相用バスバー73)の本体部72b、73bの周方向に沿う寸法を小さくしつつ、1つの系統の外部接続端子71c、72c、73cを並べて配置できる。なお、本実施形態では、複数の相用バスバー71、72、73のうち、バスバー本体部の周方向に沿う長さが最も大きい相用バスバーがU相用バスバー71である場合について説明した。しかしながら、V相用バスバー72又はW相用バスバー73のバスバー本体部72b、73bが、他の相用バスバーのバスバー本体部より長い場合には、これらの相用バスバー72、73のバスバー本体部72b、73bが中心軸J周りに180°延びていればよい。 The bus bar main portion 71 b of the U-phase bus bar 71 extends 180 ° around the central axis J along the circumferential direction. Therefore, the external connection terminal 71c located at one end of the bus bar main body 71b and the coil terminal 71a located at the other end of the bus bar main body 71b are disposed on the opposite side across the central axis J. Thereby, the external connection terminals 71c, 72c, 73c of one system are reduced while the dimensions along the circumferential direction of the main body portions 72b, 73b of the other phase bus bars (V phase bus bar 72 and W phase bus bar 73) are reduced. Can be arranged side by side. In the present embodiment, among the plurality of phase bus bars 71, 72, 73, the case where the phase bus bar having the largest length along the circumferential direction of the bus bar main body is the U-phase bus bar 71 has been described. However, when the bus bar main portions 72b and 73b of the V phase bus bar 72 or the W phase bus bar 73 are longer than the bus bar main portions of other phase bus bars, the bus bar main portions 72b of these phase bus bars 72 and 73 , 73 b may extend 180 ° around the central axis J.
 本実施形態において、異なる系統であり同じ相の相用バスバー71、72、73の外部接続端子71c、72c、73c同士は、中心軸Jを挟んで反対側に位置する。すなわち、第1系統のコイル群7および第2系統のコイル群8の互いに同じ相のコイル33に接続される一対の相用バスバー71、72、73の外部接続端子71c、72c、73cは、中心軸Jを挟んで反対側に配置される。これにより、第1系統および第2系統の3つの外部接続端子71c、72c、73cを、中心軸Jを中心として対称に配置できる。結果として、モータ1の周方向位置を180°回転させてもモータ1を外部機器に接続することができ、外部機器に対するモータ1の接続工程を簡素化できる。 In the present embodiment, the external connection terminals 71c, 72c, 73c of the different phase busbars 71, 72, 73 of different phases and located on the opposite side with respect to the central axis J. That is, the external connection terminals 71c, 72c, 73c of the pair of phase bus bars 71, 72, 73 connected to the coils 33 of the same phase of the coil group 7 of the first system and the coil group 8 of the second system It is disposed on the opposite side across the axis J. Thereby, the three external connection terminals 71c, 72c, 73c of the first system and the second system can be arranged symmetrically with respect to the central axis J. As a result, even if the circumferential position of the motor 1 is rotated by 180 °, the motor 1 can be connected to the external device, and the process of connecting the motor 1 to the external device can be simplified.
 軸方向から見て、第1系統のU相用バスバー71Aおよび第2系統のU相用バスバー71Bのうち一方の外部接続端子71cと他方のコイル用端子71aとは、軸方向から見て部分的に重なる。U相用バスバー71Aのバスバー本体部71bは、外部接続端子71cの根元の近傍において軸方向に延びるクランク部71dを有する。バスバー本体部71bには、クランク部71dが設けられることで、外部接続端子71cが上側にオフセットされ、コイル用端子71aとの干渉が抑制される。 When viewed from the axial direction, one external connection terminal 71c of the first U-phase bus bar 71A and the second U-phase bus bar 71B and the other coil terminal 71a are partially viewed in the axial direction. Overlap. The bus bar main portion 71b of the U-phase bus bar 71A has a crank portion 71d extending in the axial direction in the vicinity of the root of the external connection terminal 71c. By providing the crank portion 71d in the bus bar main body portion 71b, the external connection terminal 71c is offset upward, and interference with the coil terminal 71a is suppressed.
 図6に示す様に、V相用バスバー72およびW相用バスバー73のバスバー本体部72b、73bは、U相用バスバー71のクランク部71dに相当する部分を有していない。したがって、V相用バスバー72およびW相用バスバー73のバスバー本体部72b、73bは、軸方向と直交する平面内においてのみ延びる。 As shown in FIG. 6, the bus bar main portions 72 b and 73 b of the V-phase bus bar 72 and the W-phase bus bar 73 do not have a portion corresponding to the crank portion 71 d of the U-phase bus bar 71. Therefore, the bus bars 72 b and 73 b of the V-phase bus bar 72 and the W-phase bus bar 73 extend only in a plane orthogonal to the axial direction.
 相用バスバー71、72、73において、バスバー本体部71b、72b、73bおよびコイル用端子71a、72a、73aは、一方向に延びる板材を屈曲させることで成形される。また、V相用バスバー72およびW相用バスバー73は、軸方向において、バスバー本体部72b、73bの全幅と、コイル用端子72a、73aの全幅と、が重なる。このため、V相用バスバー72およびW相用バスバー73をプレス加工により製造する場合、コイル用端子がバスバー本体部に対して上側又は下側に延び出る場合と比較して、板材からのV相用バスバー72およびW相用バスバー73の取り数を増加させることができる。 In the phase bus bars 71, 72, 73, the bus bar main portions 71b, 72b, 73b and the coil terminals 71a, 72a, 73a are formed by bending a plate material extending in one direction. Further, in the V-phase bus bar 72 and the W-phase bus bar 73, the full width of the bus bar main portions 72b and 73b and the full width of the coil terminals 72a and 73a overlap in the axial direction. Therefore, when the V-phase bus bar 72 and the W-phase bus bar 73 are manufactured by press working, the V-phase from the plate material is compared with the case where the coil terminal extends upward or downward with respect to the bus bar main body. It is possible to increase the number of removed bus bars 72 and W-phase bus bars 73.
(端子サポート(外部接続端子サポート))端子サポート66は、バスバーホルダ61の上側に固定される。端子サポート66は、バスバーホルダ61のベース部63の上面63aを覆う。端子サポート66は、樹脂材料から構成される。 (Terminal Support (External Connection Terminal Support)) The terminal support 66 is fixed to the upper side of the bus bar holder 61. The terminal support 66 covers the upper surface 63 a of the base portion 63 of the bus bar holder 61. The terminal support 66 is made of a resin material.
 端子サポート66は、端子サポート本体部66aと、端子サポート本体部66aから上側に柱状に延びる3つのサポート部66bと、端子サポート本体部66aから下側に突出する凸部66dと、を有する。サポート部66bは、円柱形状である。3つのサポート部66bは、周方向に沿って並ぶ。 The terminal support 66 has a terminal support main body 66a, three support portions 66b extending in a columnar shape on the upper side from the terminal support main body 66a, and a convex portion 66d projecting downward from the terminal support main body 66a. The support portion 66b has a cylindrical shape. The three support portions 66b are arranged along the circumferential direction.
 図1に示す様に、端子サポート本体部66aには、軸方向に貫通する固定孔66hが設けられる。固定孔66hには、バスバーホルダ61の軸部63bが挿入される。 As shown in FIG. 1, the terminal support body 66 a is provided with a fixing hole 66 h penetrating in the axial direction. The shaft portion 63 b of the bus bar holder 61 is inserted into the fixing hole 66 h.
 3つのサポート部66bには、それぞれ軸方向に貫通する保持孔66cが設けられる。すなわち、端子サポート66には、3つの保持孔66cが設けられる。3つの保持孔66cには、それぞれU相用バスバー71、V相用バスバー72およびW相用バスバー73の外部接続端子71c、72c、73cが挿通される。これにより、3つの保持孔66cは、外部接続端子71c、72c、73cを保持する。 Each of the three support portions 66b is provided with a holding hole 66c penetrating in the axial direction. That is, the terminal support 66 is provided with three holding holes 66c. The external connection terminals 71c, 72c, and 73c of the U-phase bus bar 71, the V-phase bus bar 72, and the W-phase bus bar 73 are respectively inserted into the three holding holes 66c. Thereby, the three holding holes 66c hold the external connection terminals 71c, 72c, 73c.
 外部接続端子71c、72c、73cは、保持孔66cの下側から挿入され、サポート部66bの上側に突出する。外部接続端子71c、72c、73cは、サポート部66bに囲まれた領域において、ベアリングホルダ10の貫通孔16aを通過する。 The external connection terminals 71c, 72c, 73c are inserted from the lower side of the holding hole 66c, and project above the support portion 66b. The external connection terminals 71c, 72c, 73c pass through the through holes 16a of the bearing holder 10 in a region surrounded by the support portion 66b.
 本実施形態によれば、外部接続端子71c、72c、73cが、端子サポート66の保持孔66cにより保持される。これにより、外部機器のソケットに挿入する際の外部接続端子71c、72c、73cの安定性を高めることができる。 According to this embodiment, the external connection terminals 71 c, 72 c, 73 c are held by the holding holes 66 c of the terminal support 66. As a result, the stability of the external connection terminals 71c, 72c, 73c when inserted into the socket of the external device can be enhanced.
 本実施形態によれば、外部接続端子71c、72c、73cが端子サポート66のサポート部66bに囲まれている。このため、バスバーユニット60をベアリングホルダ10の下側に配置し外部接続端子71c、72c、73cをベアリングホルダ10の貫通孔16aに挿通させる場合に、外部接続端子71c、72c、73cと貫通孔16aの内周面との間にサポート部66bを介在させることができる。結果的に、外部接続端子71c、72c、73cとベアリングホルダ10との絶縁を確保することができる。 According to the present embodiment, the external connection terminals 71 c, 72 c and 73 c are surrounded by the support portion 66 b of the terminal support 66. Therefore, when the bus bar unit 60 is disposed below the bearing holder 10 and the external connection terminals 71c, 72c and 73c are inserted into the through holes 16a of the bearing holder 10, the external connection terminals 71c, 72c and 73c and the through holes 16a The support portion 66b can be interposed between the inner peripheral surface of As a result, the insulation between the external connection terminals 71c, 72c, 73c and the bearing holder 10 can be secured.
 図6に示す様に、凸部66dは、端子サポート本体部66aから下側に向かって板状に延びる。凸部66dは、バスバーホルダ61の凹溝63dに嵌る。これにより、バスバーホルダ61による端子サポート66の保持の確実性を高めることができる。また、結果的に端子サポート66に保持される外部接続端子71c、72c、73cの保持の確実性を高めることができる。 As shown in FIG. 6, the convex part 66d extends in a plate shape downward from the terminal support main body 66a. The convex portion 66 d fits in the concave groove 63 d of the bus bar holder 61. Thereby, the reliability of holding of the terminal support 66 by the bus bar holder 61 can be enhanced. As a result, it is possible to enhance the certainty of the holding of the external connection terminals 71c, 72c, 73c held by the terminal support 66.
 上述したように、凹溝63dは、相用バスバー71、72、73のバスバー本体部71b、72b、73bが挿入される。凸部66dは、バスバー本体部71b、72b、73bの上側から凹溝63dに嵌る。これにより、凹溝63dにおいて相用バスバー71、72、73を上側から押さえて、バスバーユニット60における相用バスバー71、72、73の保持を安定させることができる。 As described above, in the concave groove 63d, the bus bar main body portions 71b, 72b, 73b of the phase bus bars 71, 72, 73 are inserted. The convex portion 66d is fitted into the concave groove 63d from the upper side of the bus bar main body portions 71b, 72b, 73b. Thus, the phase bus bars 71, 72, 73 can be pressed from the upper side in the recessed groove 63d, and the holding of the phase bus bars 71, 72, 73 in the bus bar unit 60 can be stabilized.
 3つの凸部66dのうち、V相用バスバー72およびW相用バスバー73のバスバー本体部72b、73bを上側から押さえる2つの凸部66dは、それぞれ外部接続端子72c、73cに沿って下側に延びて凹溝63dに嵌る。したがって、これら2つの凸部66dは、外部接続端子72c、73cの根元の近傍を上側から押さえることができ、外部接続端子72c、73cを安定させる効果が高まる。 Of the three projections 66d, the two projections 66d for pressing the bus bars 72b and 73b of the V-phase bus bar 72 and the W-phase bus bar 73 from the upper side are respectively located on the lower side along the external connection terminals 72c and 73c. It extends and fits in the concave groove 63d. Therefore, these two convex portions 66 d can press the vicinity of the roots of the external connection terminals 72 c and 73 c from the upper side, and the effect of stabilizing the external connection terminals 72 c and 73 c is enhanced.
 図8は、図7のVIII-VIII線に沿う断面図である。図8には、凹溝63dに挿入されるV相用バスバー72の固定構造について説明する。ここでは説明を省略するが、他の凹溝63dに挿入されるU相用バスバー71およびW相用バスバー73についても、同様の固定構造が採用される。 FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. The fixing structure of the V-phase bus bar 72 inserted into the recessed groove 63d will be described with reference to FIG. Although the description is omitted here, the same fixing structure is adopted for the U-phase bus bar 71 and the W-phase bus bar 73 which are inserted into the other recessed grooves 63 d.
 凹溝63dの上側の開口には、上側に向かうに従い溝幅が広くなるテーパ部63eが設けられる。テーパ部63eが設けられることで、相用バスバー72および凸部66dの凹溝63dへの挿入工程が容易となる。 The upper opening of the recessed groove 63d is provided with a tapered portion 63e whose groove width becomes wider toward the upper side. By providing the tapered portion 63e, the process of inserting the phase bus bar 72 and the convex portion 66d into the concave groove 63d is facilitated.
 凸部66dの先端面66fは、相用バスバー72の上側を向く面に接触する。凸部66dの先端部には、凹溝63dの内面に接合する溶着部66eが設けられる。溶着部66eは、凸部66dの先端が溶融し固化することで成形される。溶着部66eは、固化の過程において凹溝63dの壁面および相用バスバー72に接合される。これによって、端子サポート66をバスバーホルダ61に強固に固定できる。加えて、相用バスバー72の凹溝63dからの抜け出しを効果的に抑制できる。本実施形態では、凸部66dの先端部に溶着部66eが設けられる場合を例示した。なお、凸部66dの少なくとも一部に溶着部66eが設けられていれば、よい。 The tip end face 66 f of the convex part 66 d contacts the face of the phase bus bar 72 facing upward. A welding portion 66e joined to the inner surface of the concave groove 63d is provided at the tip of the convex portion 66d. The welded portion 66e is formed by melting and solidifying the tip of the convex portion 66d. The welded portion 66e is joined to the wall surface of the recessed groove 63d and the bus bar 72 for phase in the process of solidification. Thus, the terminal support 66 can be firmly fixed to the bus bar holder 61. In addition, removal of the phase bus bar 72 from the recessed groove 63 d can be effectively suppressed. In this embodiment, the case where the welding part 66e is provided in the front-end | tip part of the convex part 66d was illustrated. In addition, it is good if welding part 66e is provided in at least one copy of convex part 66d.
 端子サポート66は、一体的に成形された第1の樹脂部66Aと第2の樹脂部66Bとを含む樹脂材料から構成される。すなわち、端子サポート66は、2色成型により成形されている。すなわち、端子サポート66は、第1の樹脂部66Aと第2の樹脂部66Bと、を2色成型することで成形される。 The terminal support 66 is made of a resin material including a first resin portion 66A and a second resin portion 66B which are integrally formed. That is, the terminal support 66 is molded by two-color molding. That is, the terminal support 66 is molded by two-color molding of the first resin portion 66A and the second resin portion 66B.
 第2の樹脂部66Bは、第1の樹脂部66Aより融点が低い熱可塑性の樹脂材料である。端子サポート本体部66aおよびサポート部66bは、第1の樹脂部66Aから構成される。一方で、凸部66dは、第2の樹脂部66Bから構成される。 The second resin portion 66B is a thermoplastic resin material having a melting point lower than that of the first resin portion 66A. The terminal support main body 66a and the support 66b are formed of a first resin portion 66A. On the other hand, the convex part 66d is comprised from the 2nd resin part 66B.
 本実施形態によれば、溶着部66eは、融点の低い第2の樹脂部66Bから構成される。このため、凸部66dを凹溝63dに挿入した状態で端子サポート66を加熱することで容易に溶着部66eを成形できる。なお、本実施形態では、凸部66dの全体が第2の樹脂部66Bから構成される場合を例示した。しかしながら、凸部66dの凹溝63dに嵌る部分の一部が、第2の樹脂部66Bから構成されていればよい。 According to the present embodiment, the welded portion 66e is configured of the second resin portion 66B having a low melting point. Therefore, the welded portion 66e can be easily formed by heating the terminal support 66 in a state where the convex portion 66d is inserted into the concave groove 63d. In the present embodiment, the case where the entire convex portion 66d is formed of the second resin portion 66B is illustrated. However, a part of the portion fitted to the concave groove 63d of the convex portion 66d may be configured by the second resin portion 66B.
 バスバーユニット60の製造方法において、バスバーホルダ61に端子サポート66を固定する手順について説明する。まず、バスバーホルダ61に、相用バスバー71、72、73を取り付けるバスバー取り付け工程を行う。相用バスバー取り付け工程では、バスバーホルダ61に設けられた凹溝63dに相用バスバー71、72、73を挿入する。 A procedure for fixing the terminal support 66 to the bus bar holder 61 in the method of manufacturing the bus bar unit 60 will be described. First, the bus bar attaching step of attaching the phase bus bars 71, 72, 73 to the bus bar holder 61 is performed. In the phase bus bar attaching step, the phase bus bars 71, 72, 73 are inserted into the recessed grooves 63d provided in the bus bar holder 61.
 次に、バスバーホルダ61に、端子サポート66を取り付ける端子サポート取り付け工程(外部接続端子サポート取り付け工程)を行う。端子サポート取り付け工程では、まず、端子サポート66の保持孔66cに外部接続端子71c、72c、73cを挿入する。次いで、端子サポート66の凸部66dを相用バスバー71、72、73の上側から凹溝63dに嵌める。さらに、端子サポート66に熱を加えて凸部66dの一部を溶融しさらに固化させ、凹溝63dの内面に接合する溶着部66eを成形する。 Next, a terminal support attachment step (external connection terminal support attachment step) for attaching the terminal support 66 to the bus bar holder 61 is performed. In the terminal support attachment step, first, the external connection terminals 71c, 72c, 73c are inserted into the holding holes 66c of the terminal support 66. Then, the convex portion 66 d of the terminal support 66 is fitted into the concave groove 63 d from the upper side of the phase bus bars 71, 72, 73. Further, heat is applied to the terminal support 66 to melt and solidify a part of the convex portion 66d, thereby forming a welded portion 66e joined to the inner surface of the concave groove 63d.
 溶着部66eを成形する手順において、相用バスバー71、72、73に電流を流して凸部66dの一部を溶融させてもよい。相用バスバー71、72、73に電流を流すことで、ジュール熱によって相用バスバー71、72、73が発熱する。この熱は、凸部66dに伝わり凸部66dの一部を溶融させる。相用バスバー71、72、73に電流を流すことで溶着部66eを成形する場合、凸部66dの先端部のみを局所的に加熱することができる。このため、端子サポート66の他の部位に影響を与えることなく、溶着部66eを成形できる。なお、ジュール熱により溶着部66eを成形する際に相用バスバー71、72、73に流す電流値は、モータ1を駆動させる際の電流値より十分に大きい。 In the procedure of forming the welded portion 66e, a current may be supplied to the phase bus bars 71, 72, 73 to melt a part of the convex portion 66d. By supplying current to the phase bus bars 71, 72, 73, the phase bus bars 71, 72, 73 generate heat due to Joule heat. The heat is transmitted to the convex portion 66 d to melt a part of the convex portion 66 d. In the case where the welded portion 66e is formed by supplying current to the phase bus bars 71, 72, 73, only the tip end portion of the convex portion 66d can be locally heated. Therefore, the welded portion 66e can be formed without affecting other portions of the terminal support 66. It should be noted that when forming the welded portion 66e by Joule heat, the current value supplied to the phase bus bars 71, 72, 73 is sufficiently larger than the current value when the motor 1 is driven.
(中性点バスバー(第2のバスバー、バスバー))上述したように本実施形態のステータ30は、2系統のコイル群7、8を有する(図4参照)。複数の中性点バスバー81、82は、コイル群の数(すなわち、系統数)と同数だけ設けられる。したがって、本実施形態のバスバーユニット60は、2つの中性点バスバー81、82を有する。 (Neutral point bus bar (second bus bar, bus bar)) As described above, the stator 30 of the present embodiment has the two coil groups 7 and 8 (see FIG. 4). The plurality of neutral point bus bars 81 and 82 are provided in the same number as the number of coil groups (i.e., the number of systems). Therefore, the bus bar unit 60 of the present embodiment has two neutral point bus bars 81 and 82.
 図9は、バスバーユニット60の底面図である。図9に示す様に、中性点バスバー81、82は、バスバー本体部81b、82bと、3つのコイル用端子81a、82aと、を有する。中性点バスバー81、82は、板状である。中性点バスバー81、82において、少なくともバスバー本体部81b、82bは、軸方向を厚さ方向として配置される。 FIG. 9 is a bottom view of the bus bar unit 60. As shown in FIG. As shown in FIG. 9, the neutral point bus bars 81 and 82 have bus bar main body portions 81 b and 82 b and three coil terminals 81 a and 82 a. Neutral point bus bars 81 and 82 are plate-like. In neutral point bus bars 81 and 82, at least bus bar main body portions 81b and 82b are arranged with the axial direction as the thickness direction.
 バスバー本体部81b、82bは、軸方向と直交する平面に沿って延びる。バスバー本体部81b、82bは、それぞれ中心軸J周りの240°の領域において周方向に沿って延びる。バスバー本体部81b、82bの少なくとも一部は、バスバーホルダ61から露出する。すなわち、中性点バスバー81、82は、バスバーホルダ61に樹脂インサート成型されていない。 The bus bar main body portions 81 b and 82 b extend along a plane orthogonal to the axial direction. The bus bar main body portions 81 b and 82 b extend in the circumferential direction in the region of 240 ° around the central axis J, respectively. At least a portion of the bus bar main body portions 81 b and 82 b is exposed from the bus bar holder 61. That is, neutral point bus bars 81 and 82 are not resin-inserted in bus bar holder 61.
 コイル用端子81a、82aは、引出線33aに接続される。コイル用端子81a、82aは、引出線33aを把持する部分を含む。コイル用端子81a、82aの平面視形状は、径方向内側に開口する略U字状である。コイル用端子81a、82aは、軸方向に直交する方向を厚さ方向として配置される。 The coil terminals 81a and 82a are connected to the lead 33a. The coil terminals 81a and 82a include a portion for gripping the lead 33a. The plan view shape of the coil terminals 81a and 82a is a substantially U shape opened inward in the radial direction. The coil terminals 81a and 82a are disposed with the direction orthogonal to the axial direction as the thickness direction.
 3つのコイル用端子81a、82aは、それぞれバスバー本体部81b、82bの長さ方向(すなわち、周方向)に沿って、等間隔に配置される。3つのコイル用端子81a、82aのうち2つのコイル用端子81a、82aは、バスバー本体部81b、82bの両端に位置し、残る1つのコイル用端子81a、82aは、前述の2つのコイル用端子81a、82aの間に位置する。 The three coil terminals 81a and 82a are arranged at equal intervals along the longitudinal direction (that is, the circumferential direction) of the bus bar main portions 81b and 82b. Of the three coil terminals 81a and 82a, two coil terminals 81a and 82a are located at both ends of the bus bar main portions 81b and 82b, and the remaining one coil terminal 81a and 82a is the two coil terminals described above. Located between 81a and 82a.
 コイル用端子81a、82aは、径方向においてバスバー本体部81b、82bから離れる方向に延びる。より具体的には、コイル用端子81a、82aは、バスバー本体部81b、82bから径方向外側に延びる。 The coil terminals 81a and 82a extend in the radial direction away from the bus bar main portions 81b and 82b. More specifically, the coil terminals 81a and 82a extend radially outward from the bus bar main portions 81b and 82b.
 なお、コイル用端子81a、82aは、バスバー本体部81b、82bに対し径方向内側に延びていてもよい。すなわち、コイル用端子81a、82aは、バスバー本体部81b、82bに対し径方向一方側に延びていればよい。 The coil terminals 81a and 82a may extend inward in the radial direction with respect to the bus bar main portions 81b and 82b. That is, the coil terminals 81a and 82a may extend to one side in the radial direction with respect to the bus bar main portions 81b and 82b.
 中性点バスバー81、82のコイル用端子81a、82aと相用バスバー71、72、73のコイル用端子71a、72a、73aとは、それぞれのバスバー本体部81b、82b、71b、72b、73bに対して径方向の同方向に延びる。このように配置することで、バスバーホルダ61に対して、中性点バスバー81、82および相用バスバー71、72、73のコイル用端子81a、82a、71a、72a、73aが突出する径方向の向きをそろえることができる。したがって、ステータ30から延び出てコイル用端子81a、82a、71a、72a、73aに接続される引出線33aの径方向の位置を揃えて配置することができる。これにより、バスバーホルダ61の、中性点バスバー81、82および相用バスバー71、72、73と引出線33aとを絶縁する構造(本実施形態における第1の壁部62cなど)が複雑化しにくい。また、このように配置することで、軸方向から見て、複数の相用バスバー71、72、73のコイル用端子71a、72a、73aおよび複数の中性点バスバー81、82のコイル用端子81a、82aが、中心軸J周りの単一の仮想円上VCに並ぶ。このため、溶接工程において、バスバーユニット60およびステータ30を中心軸J周りに回転させることで、溶接治具を径方向に移動させることなく引出線33aとコイル用端子81a、82a、71a、72a、73aを溶接して接続することができる。これにより、溶接工程を簡素化できる。 The coil terminals 81a and 82a of the neutral point bus bars 81 and 82 and the coil terminals 71a, 72a and 73a of the phase bus bars 71, 72 and 73 are connected to the bus bar main portions 81b, 82b, 71b, 72b and 73b, respectively. It extends in the same radial direction. By arranging in this manner, with respect to the bus bar holder 61, the neutral point bus bars 81, 82 and the coil terminals 81a, 82a, 71a, 72a, 73a of the phase bus bars 71, 72, 73 project in the radial direction. You can align the direction. Therefore, the radial positions of the lead wires 33a which extend from the stator 30 and are connected to the coil terminals 81a, 82a, 71a, 72a, 73a can be aligned. Thereby, it is hard to complicate the structure (the 1st wall 62c etc. in this embodiment) which insulates neutral point bus bars 81 and 82 and phase bus bars 71, 72 and 73 of bus bar holder 61, and leader 33a. . Further, by arranging in this manner, the coil terminals 71a, 72a, 73a of the plurality of phase bus bars 71, 72, 73 and the coil terminals 81a of the plurality of neutral point bus bars 81, 82 when viewed from the axial direction. , 82a align in a single virtual circle VC around the central axis J. For this reason, by rotating the bus bar unit 60 and the stator 30 around the central axis J in the welding process, the lead wire 33a and the coil terminals 81a, 82a, 71a, 72a, are not moved in the radial direction without moving the welding jig. 73a can be welded and connected. This can simplify the welding process.
 コイル用端子81a、82aは、バスバー本体部81b、82bから下側に延びる。すなわち、コイル用端子81a、82aは、軸方向において相用バスバー71、72、73から離れる方向に延びる。これにより、コイル用端子81a、82aを相用バスバー71、72、73のコイル用端子71a、72a、73aから軸方向に離して配置することができ、互いの干渉を抑制できる。加えて、中性点バスバー81、82および相用バスバー71、72、73のうち何れか一方のコイル用端子と引出線33aとの溶接工程において、他方のコイル用端子が溶接の作業性を悪化させることを抑制できる。 The coil terminals 81a and 82a extend downward from the bus bar main portions 81b and 82b. That is, coil terminals 81a, 82a extend in the direction away from phase bus bars 71, 72, 73 in the axial direction. As a result, the coil terminals 81a and 82a can be axially separated from the coil terminals 71a, 72a and 73a of the phase bus bars 71, 72 and 73, and mutual interference can be suppressed. In addition, in the process of welding the lead wire 33a to one of the neutral point bus bars 81 and 82 and the phase bus bars 71, 72 and 73, the other coil terminal deteriorates the welding workability. Can be suppressed.
 複数の中性点バスバー81、82は、第1系統中性点バスバー81と第2系統中性点バスバー82とに分類される。第1系統中性点バスバー81は、1つの系統のコイル群(第1系統のコイル群7)の各相(U相、V相、W相)のコイル33の引出線33aに接続される。同様に、第2系統中性点バスバー82は、1つの系統のコイル群(第2系統のコイル群8)の各相(U相、V相、W相)のコイル33の引出線33aに接続される。なお、相用バスバー71、72、73のコイル用端子71a、72a、73aと、中性点バスバー81、82のコイル用端子81a、82aとは、周方向に沿って交互に並ぶ。 The plurality of neutral point bus bars 81 and 82 are classified into a first system neutral point bus bar 81 and a second system neutral point bus bar 82. The first system neutral point bus bar 81 is connected to the lead wire 33 a of the coil 33 of each phase (U phase, V phase, W phase) of one system coil group (the first system coil group 7). Similarly, the second system neutral point bus bar 82 is connected to the lead 33a of the coil 33 of each phase (U phase, V phase, W phase) of one system coil group (second system coil group 8) Be done. The coil terminals 71a, 72a, 73a of the phase bus bars 71, 72, 73 and the coil terminals 81a, 82a of the neutral point bus bars 81, 82 are alternately arranged in the circumferential direction.
 図6に示すように、複数の中性点バスバー81、82は、バスバーホルダ61の下側に固定される。複数の中性点バスバー81、82は、少なくとも一部が軸方向から見て互いに重なる。 As shown in FIG. 6, the plurality of neutral point bus bars 81 and 82 are fixed to the lower side of the bus bar holder 61. The plurality of neutral point bus bars 81, 82 at least partially overlap each other when viewed in the axial direction.
 複数の中性点バスバー81、82は、少なくともバスバー本体部81b、82bが軸方向を厚さ方向として配置される板材である。すなわち、本実施形態の中性点バスバー81、82は、いわゆる平置きタイプである。このため、複数の中性点バスバー81、82を、軸方向に重ねて配置する場合であっても軸方向の寸法が大きくなりにくい。 The plurality of neutral point bus bars 81 and 82 are plate members in which at least the bus bar main body portions 81 b and 82 b are arranged with the axial direction as the thickness direction. That is, the neutral point bus bars 81 and 82 of the present embodiment are so-called flat type. For this reason, even when the plurality of neutral point bus bars 81 and 82 are arranged in an axial direction, the axial dimension is unlikely to be large.
 本実施形態によれば、相用バスバー71、72、73および中性点バスバー81、82のうち、中性点バスバー81、82が平置きタイプとされている。一方で、相用バスバー71、72、73は、バスバー本体部71b、72b、73bが軸方向を厚さ方向として配置される、いわゆる縦置きタイプである。一般的に、相用バスバー71、72、73は、U相、V相、W相のコイル33に対応して少なくとも3つ必要となる。このため、相用バスバー71、72、73を平置きタイプにして軸方向に重ねて配置する場合、各相のバスバーに対応して3層以上の積層配置が必要となる。また、積層されたバスバー同士の間には、絶縁層が設けられる。このため、3層以上の積層配置が必要となる場合には、軸方向の寸法が、3つのバスバーの板厚と、その間の絶縁層の厚さと、の合計となり、重ね合わせて配置することによる軸方向の小型化の効果が小さくなってしまう。本実施形態によれば、2系統の中性点バスバー81、82を平置きタイプとして積層することによって、軸方向の寸法抑制の効果を高めることができる。なお、上述した軸方向に重ね合わせるバスバー同士の間に設けられる絶縁層は、本実施形態において空気層である。 According to the present embodiment, of the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82, the neutral point bus bars 81, 82 are flat type. On the other hand, the phase bus bars 71, 72, 73 are so-called vertical type, in which the bus bar main portions 71b, 72b, 73b are arranged with the axial direction as the thickness direction. Generally, at least three phase bus bars 71, 72, 73 are required to correspond to the U-phase, V-phase, and W-phase coils 33, respectively. Therefore, in the case where the phase bus bars 71, 72, 73 are placed flat and stacked in the axial direction, three or more layers are required to be stacked corresponding to the bus bars of the respective phases. In addition, insulating layers are provided between the stacked bus bars. For this reason, in the case where a stacked arrangement of three or more layers is required, the axial dimension is the sum of the plate thicknesses of the three bus bars and the thickness of the insulating layer between them, and by overlapping and arranging The effect of axial miniaturization is diminished. According to the present embodiment, by stacking the two neutral point bus bars 81 and 82 as flat type, the effect of axial dimension suppression can be enhanced. The insulating layer provided between the bus bars superimposed in the axial direction described above is an air layer in the present embodiment.
 図9に示す様に、複数の中性点バスバー81、82は、ホルダ本体部62に設けられた第1の壁部62cと第2の壁部62dとの間に配置されて、周方向に沿って延びる。第1の壁部62cおよび第2の壁部62dは、径方向において中性点バスバー81、82のバスバー本体部81b、82bを挟んで配置される。 As shown in FIG. 9, the plurality of neutral point bus bars 81, 82 are disposed between the first wall 62c and the second wall 62d provided in the holder main body 62, and are circumferentially It extends along. The first wall portion 62c and the second wall portion 62d are disposed with the bus bar main portions 81b and 82b of the neutral point bus bars 81 and 82 interposed therebetween in the radial direction.
 本実施形態によれば、第1の壁部62cが、軸方向から見て、中性点バスバー81、82のバスバー本体部81b、82bと引出線33aとの間に位置する。これにより、中性点バスバー81、82と、引出線33aとを容易に絶縁することができる。 According to the present embodiment, the first wall 62 c is located between the bus bar main portions 81 b and 82 b of the neutral point bus bars 81 and 82 and the lead wires 33 a when viewed from the axial direction. Thereby, neutral point bus bars 81 and 82 and lead wires 33a can be easily insulated.
 本実施形態によれば、中性点バスバー81、82が径方向内外から第1の壁部62cと第2の壁部62dとの間に挟まれる。このため、中性点バスバー81、82を径方向に容易に位置決めすることができる。 According to the present embodiment, the neutral point bus bars 81 and 82 are sandwiched between the first wall 62 c and the second wall 62 d from inside and outside in the radial direction. Therefore, neutral point bus bars 81 and 82 can be easily positioned in the radial direction.
 本実施形態によれば、ホルダ本体部62に第1の壁部62cおよび第2の壁部62dが設けられることにより、ホルダ本体部62の剛性を高めることができる。 According to the present embodiment, by providing the first wall 62 c and the second wall 62 d in the holder body 62, the rigidity of the holder body 62 can be enhanced.
 第1の壁部62cには、第1の切欠部62caおよび第2の切欠部62cbが設けられる。また、第2の壁部62dには、第2の切欠部62dbのみが設けられる。中性点バスバー81、82は、第1の切欠部62ca又は第2の切欠部62cb、62dbにおいて、径方向に露出する。 The first wall 62c is provided with a first notch 62ca and a second notch 62cb. Further, only the second notch 62db is provided in the second wall 62d. The neutral point bus bars 81 and 82 are exposed in the radial direction in the first notch 62 ca or the second notch 62 cb and 62 db.
 第1の切欠部62caには、中性点バスバー81、82のコイル用端子81a、82aが通過する。第1の切欠部62caが設けられることで、コイル用端子81a、82aを、バスバー本体部81b、82bから径方向外側に直接的に延ばす構造を採用できる。すなわち、コイル用端子81a、82aに、下側に延びて第1の壁部62cを乗り越える部分を設ける必要がなく、中性点バスバー81、82を安価に製造できる。 The coil terminals 81a and 82a of the neutral point bus bars 81 and 82 pass through the first cutouts 62ca. By providing the first notches 62ca, it is possible to adopt a structure in which the coil terminals 81a and 82a are extended directly outward in the radial direction from the bus bar main portions 81b and 82b. That is, it is not necessary to provide the coil terminals 81a and 82a with a portion extending downward and over the first wall 62c, and the neutral point bus bars 81 and 82 can be manufactured at low cost.
 第2の切欠部62cb、62dbは、後段において説明する中性点バスバー81、82の幅広部81s、82sと径方向に重なる。第2の切欠部62cb、62dbが設けられることで、幅広部81s、82sがバスバーホルダ61に干渉することを抑制できる。 The second notches 62cb and 62db radially overlap the wide portions 81s and 82s of the neutral point bus bars 81 and 82 described later. By providing the second notches 62 cb and 62 db, interference of the wide portions 81 s and 82 s with the bus bar holder 61 can be suppressed.
 なお、本実施形態において、一部の第2の切欠部62cbは、コイル用端子81aを通過させる。すなわち、一部の第2の切欠部62cbは、コイル用端子81aを通過させる切欠部としても機能する。 In the present embodiment, a part of the second notches 62cb allows the coil terminal 81a to pass through. That is, some of the second notches 62cb also function as notches that allow the coil terminals 81a to pass through.
 第1の壁部62cに設けられた複数の第2の切欠部62cbのうち、少なくとも一部の第2の切欠部62cbは、径方向において引出線33aとずれて配置される。第2の切欠部62cbが、径方向において引出線33aとずれて配置されることで、第2の切欠部62cbから露出するバスバー本体部81b、82bと引出線33aとの絶縁を確保しやすい。なお、全ての第2の切欠部62cbが径方向において引出線33aとずれて配置されていてもよい。 Of the plurality of second cutouts 62cb provided in the first wall 62c, at least a portion of the second cutouts 62cb are arranged to be offset from the lead 33a in the radial direction. By arranging the second notches 62cb to be offset from the lead wires 33a in the radial direction, it is easy to ensure insulation between the bus bar main portions 81b and 82b exposed from the second notches 62cb and the leads 33a. In addition, all the 2nd notch parts 62cb may be shifted | deviated from the lead wire 33a in radial direction, and may be arrange | positioned.
 以下の説明において、複数の中性点バスバー81、82のうち、ホルダ本体部62側(すなわち、バスバーホルダ61側)に位置する一方を第1層バスバー81とする。また、複数の中性点バスバー81、82のうち、ホルダ本体部62(バスバーホルダ61側)に対し第1層バスバー81より外側に位置する他方を第2層バスバー82とする。また、以下の説明において、第1層バスバー81および第2層バスバー82をまとめて、中性点バスバー81、82と呼ぶ。第1層バスバー81は、第1系統のコイル群7に接続される第1系統中性点バスバー81であり、第2系統のコイル群8に接続される第2層バスバー82は、第2系統中性点バスバー82である。 In the following description, one of the plurality of neutral point bus bars 81 and 82 located on the holder main body 62 side (that is, the bus bar holder 61 side) is referred to as a first layer bus bar 81. Further, of the plurality of neutral point bus bars 81 and 82, the other of the plurality of neutral point bus bars 81 and 82 located outside the first layer bus bar 81 with respect to the holder main body 62 (bus bar holder 61 side) is taken as a second layer bus bar 82. Further, in the following description, the first layer bus bar 81 and the second layer bus bar 82 are collectively referred to as neutral point bus bars 81 and 82. The first layer bus bar 81 is a first system neutral point bus bar 81 connected to the coil group 7 of the first system, and the second layer bus bar 82 connected to the coil group 8 of the second system is a second system It is a neutral point bus bar 82.
 図10は、図9のX-X線に沿う断面模式図である。第1層バスバー81のバスバー本体部81bには、軸方向に貫通する固定孔(貫通孔)81hおよび通過孔(貫通孔)81iが設けられる。第2層バスバー82のバスバー本体部82bには、軸方向に貫通する固定孔(貫通孔)82hおよび退避孔(貫通孔)82iが設けられる。 FIG. 10 is a schematic cross-sectional view along the line XX in FIG. A fixing hole (through hole) 81 h and a passing hole (through hole) 81 i penetrating in the axial direction are provided in the bus bar main body portion 81 b of the first layer bus bar 81. In the bus bar main body portion 82b of the second layer bus bar 82, a fixing hole (through hole) 82h and a retraction hole (through hole) 82i penetrating in the axial direction are provided.
 なお、本実施形態において、固定孔81h、82h、通過孔81iおよび退避孔82iは、内部領域がバスバー本体部81b、82bに四方から囲まれている。しかしながら、固定孔81h、82h、通過孔81iおよび退避孔82iは、軸方向に貫通していれば、切欠形状であってもよい。すなわち、固定孔81h、82h、通過孔81iおよび退避孔82iは、内部領域がバスバー本体部81b、82bに三方から囲まれていればよく、内部領域の全てがバスバー本体部81b、82bに囲まれていなくてもよい。 In the present embodiment, in the fixing holes 81h and 82h, the passage hole 81i and the retraction hole 82i, the inner regions are surrounded by the bus bar main portions 81b and 82b from four directions. However, the fixing holes 81h and 82h, the passing hole 81i and the retracting hole 82i may have a cutout shape as long as they penetrate in the axial direction. That is, in the fixing holes 81h and 82h, the passage holes 81i and the retraction holes 82i, the inner regions may be surrounded by the bus bar main portions 81b and 82b from three sides, and all the inner regions are surrounded by the bus bar main portions 81b and 82b. You do not have to.
 ホルダ本体部62の下面62bには、複数の軸部67a、68a、69aと、それぞれの軸部67a、68a、69aの先端に位置する複数の溶着部67b、68b、69bと、が設けられる。溶着部67b、68b、69bは、下側に凸となる半球状である。溶着部67b、68b、69bは、軸部67a、68a、69aの先端部を熱によって溶融させることで成形される。 The lower surface 62b of the holder main body 62 is provided with a plurality of shaft portions 67a, 68a, 69a and a plurality of welded portions 67b, 68b, 69b located at the tip of each of the shaft portions 67a, 68a, 69a. The welds 67 b, 68 b, 69 b are hemispherical in shape, which are convex downward. The welded portions 67b, 68b, 69b are formed by melting the tip portions of the shaft portions 67a, 68a, 69a by heat.
 図9に示す様に、複数の軸部67a、68a、69aは、3つの第1軸部67aと、2つの第2軸部68aと、1つの第3軸部69aを含む。また、複数の溶着部67b、68b、69bは、第1軸部67aの先端に位置する第1溶着部67bと、第2軸部68aの先端に位置する第2溶着部68bと、第3軸部69aの先端に位置する第3溶着部69bと、を含む。 As shown in FIG. 9, the plurality of shaft portions 67a, 68a, 69a include three first shaft portions 67a, two second shaft portions 68a, and one third shaft portion 69a. The plurality of welds 67b, 68b and 69b are a first weld 67b located at the tip of the first shaft 67a, a second weld 68b located at the tip of the second shaft 68a, and a third shaft And a third welding portion 69b located at the tip of the portion 69a.
 第1軸部67aおよび第1溶着部67bは、第1層バスバー81を固定する為に設けられる。第2軸部68a、第3軸部69a、第2溶着部68bおよび第3溶着部69bは、第2層バスバー82を固定するために設けられる。したがって、第1層バスバー81および第2層バスバー82は、それぞれ3つの溶着部によって固定される。 The first shaft portion 67 a and the first welded portion 67 b are provided to fix the first layer bus bar 81. The second shaft portion 68 a, the third shaft portion 69 a, the second welded portion 68 b and the third welded portion 69 b are provided to fix the second layer bus bar 82. Therefore, first layer bus bar 81 and second layer bus bar 82 are each fixed by three welds.
 第1溶着部67b、第2溶着部68bおよび第3溶着部69bは、中心軸J周りの単一の仮想円上に並ぶ。このため、第1溶着部67b、第2溶着部68bおよび第3溶着部69bを成形する熱かしめ工程において、バスバーユニット60を中心軸J周りに回転させることで、熱かしめ治具を径方向に移動させる必要がない。これにより、熱かしめ工程を簡素化できる。なお、図9では、第1溶着部67b、第2溶着部68bおよび第3溶着部69bが並ぶ仮想円の図示を省略した。この仮想円は、図9に示す円弧状のX-X線を含む円である。 The first welded portion 67 b, the second welded portion 68 b, and the third welded portion 69 b are arranged on a single virtual circle around the central axis J. Therefore, in the heat caulking step of forming the first welded portion 67b, the second welded portion 68b, and the third welded portion 69b, the bus bar unit 60 is rotated around the central axis J, whereby the heat caulking jig is made in the radial direction. There is no need to move it. This can simplify the heat staking process. In Drawing 9, illustration of a virtual circle in which the 1st welding part 67b, the 2nd welding part 68b, and the 3rd welding part 69b are located in a line is omitted. This virtual circle is a circle including an arc-shaped XX line shown in FIG.
 図10に示す様に、第1軸部67aは、第1層バスバー81の固定孔81hを通過する。第1溶着部67bは、第1層バスバー81の下側に位置する。第1溶着部67bは、軸方向から見て第1層バスバー81の固定孔81hの外側まで広がる。第1溶着部67bは、第1軸部67aに対して外側に広がる部分に、上側を向く第1固定面67dを有する。第1固定面67dは、第1層バスバー81の下面81pに接触する。また、第1層バスバー81の上面81qは、ホルダ本体部62の下面62bに接触する。すなわち、第1層バスバー81は、ホルダ本体部62と第1溶着部67bとの間に挟まれる。これにより、第1溶着部67bは、第1層バスバー81を固定する。 As shown in FIG. 10, the first shaft portion 67a passes through the fixing hole 81h of the first layer bus bar 81. The first welded portion 67 b is located below the first layer bus bar 81. The first welded portion 67 b extends to the outside of the fixing hole 81 h of the first layer bus bar 81 when viewed in the axial direction. The first welded portion 67 b has a first fixing surface 67 d facing upward at a portion extending outward with respect to the first shaft portion 67 a. The first fixing surface 67 d contacts the lower surface 81 p of the first layer bus bar 81. Further, the upper surface 81 q of the first layer bus bar 81 contacts the lower surface 62 b of the holder main body 62. That is, the first layer bus bar 81 is sandwiched between the holder main body 62 and the first welded portion 67 b. Thereby, the first welded portion 67 b fixes the first layer bus bar 81.
 第2層バスバー82の退避孔82iは、第1層バスバー81と第2層バスバー82とが軸方向から見て重なる領域に位置し第1層バスバー81を固定する第1溶着部67bの下側に位置する。すなわち、退避孔82iは、軸方向から見て第1溶着部67bと重なる。図9に示す様に、軸方向から見て、第1溶着部67bは、退避孔82iの内周面より内側に位置する。すなわち、第1溶着部67bは、軸方向から見て退避孔82iの孔内に配置される。 The retracting hole 82i of the second layer bus bar 82 is located in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap when viewed in the axial direction, and the lower side of the first welded portion 67b that fixes the first layer bus bar 81. Located in That is, the retraction hole 82i overlaps the first welded portion 67b when viewed from the axial direction. As shown in FIG. 9, when viewed from the axial direction, the first welded portion 67b is located inside the inner peripheral surface of the retraction hole 82i. That is, the first welded portion 67b is disposed in the hole of the retraction hole 82i when viewed from the axial direction.
 本実施形態によれば、第2層バスバー82に退避孔82iが設けられることで、第1層バスバー81と第2層バスバー82が重なった領域で第1層バスバー81を固定する場合に、第1層バスバー81と第2層バスバー82とを軸方向に近接して配置しても第1溶着部67bと第2層バスバー82との干渉を抑制できる。 According to the present embodiment, the first layer bus bar 81 is fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap by providing the retraction holes 82i in the second layer bus bar 82. Even when the one-layer bus bar 81 and the second-layer bus bar 82 are arranged close to each other in the axial direction, the interference between the first welded portion 67 b and the second-layer bus bar 82 can be suppressed.
 すなわち、本実施形態によれば、第1層バスバー81と第2層バスバー82とが重なった領域で第1層バスバー81を固定できる。このため、第1層バスバー81を固定する溶着部67bを、第1層バスバー81のバスバー本体部81bの長さ方向においてバランスよく配置できる。加えて、第1層バスバー81と第2層バスバー82とを近接して配置できるため、バスバーユニット60を軸方向に小型化できる。 That is, according to the present embodiment, the first layer bus bar 81 can be fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap. Therefore, welded portion 67 b fixing first layer bus bar 81 can be arranged in a well-balanced manner in the length direction of bus bar main portion 81 b of first layer bus bar 81. In addition, since the first layer bus bar 81 and the second layer bus bar 82 can be disposed close to each other, the bus bar unit 60 can be miniaturized in the axial direction.
 図10に示す様に、第2軸部68aには、ホルダ本体部62と反対側(すなわち、バスバーホルダ61と反対側、下側)を向く段差面68cが設けられる。第2軸部68aは、段差面68cより基端側(上側)の直径が、段差面68cより先端側(下側)の直径より大きい。 As shown in FIG. 10, the second shaft 68a is provided with a step surface 68c facing the side opposite to the holder body 62 (that is, the side opposite to the bus bar holder 61, the lower side). The diameter of the second shaft portion 68a at the proximal end side (upper side) than the step surface 68c is larger than the diameter at the tip end side (lower side) than the step surface 68c.
 第2軸部68aは、第1層バスバー81の通過孔81iおよび第2層バスバー82の固定孔82hを通過する。第1層バスバー81の下面81pは、段差面68cより上側に位置する。したがって、第1層バスバー81の通過孔81iは、段差面68cより基端側で第2軸部68aに挿通される。 The second shaft portion 68 a passes through the passage hole 81 i of the first layer bus bar 81 and the fixing hole 82 h of the second layer bus bar 82. The lower surface 81 p of the first layer bus bar 81 is located above the stepped surface 68 c. Therefore, the passage hole 81i of the first layer bus bar 81 is inserted into the second shaft portion 68a at the base end side with respect to the step surface 68c.
 一方で、第2層バスバー82は、段差面68cより下側に位置する。第2層バスバー82の上面82qは、段差面68cに接触する。したがって、第2層バスバー82の固定孔82hは、段差面68cより先端側で第2軸部68aに挿通される。 On the other hand, second layer bus bar 82 is located below step surface 68 c. The upper surface 82 q of the second layer bus bar 82 contacts the step surface 68 c. Therefore, the fixing holes 82h of the second layer bus bar 82 are inserted into the second shaft portion 68a at the tip end side of the step surface 68c.
 第2溶着部68bは、第2層バスバー82の下側に位置する。第2溶着部68bは、軸方向から見て第2層バスバー82の固定孔82hの外側まで広がる。第2溶着部68bは、第2軸部68aに対して外側に広がる部分に、上側を向く第2固定面68dを有する。第2固定面68dは、第2層バスバー82の下面82pに接触する。第2層バスバー82の上面82qは、段差面68cに接触するため、第2層バスバー82は、段差面68cと第2溶着部68bとの間に挟まれる。これにより、第2溶着部68bは、第2層バスバー82を固定する。 The second welded portion 68 b is located below the second layer bus bar 82. The second welded portion 68 b extends to the outside of the fixing hole 82 h of the second layer bus bar 82 when viewed in the axial direction. The second welding portion 68 b has a second fixing surface 68 d facing upward at a portion that spreads outward with respect to the second shaft portion 68 a. The second fixing surface 68 d contacts the lower surface 82 p of the second layer bus bar 82. Since the upper surface 82 q of the second layer bus bar 82 contacts the step surface 68 c, the second layer bus bar 82 is sandwiched between the step surface 68 c and the second welded portion 68 b. Thereby, the second welded portion 68 b fixes the second layer bus bar 82.
 本実施形態によれば、第1層バスバー81と第2層バスバー82が重なった領域において、第2層バスバー82を固定することができる。また、第2軸部68aが第1層バスバー81の通過孔81iを通過するため、軸方向と直交する面内において第1層バスバー81を位置決めできる。なお、第2軸部68aの外周面の少なくとも一部が、段差面68cより基端側(上側)の領域において、通過孔81iの内周面と接触していてもよい。この場合には、第2軸部68aによる第1層バスバー81の位置決めの精度を高めることができる。 According to the present embodiment, the second layer bus bar 82 can be fixed in a region where the first layer bus bar 81 and the second layer bus bar 82 overlap. Further, since the second shaft portion 68a passes through the passage hole 81i of the first layer bus bar 81, the first layer bus bar 81 can be positioned in a plane orthogonal to the axial direction. Note that at least a part of the outer peripheral surface of the second shaft portion 68a may be in contact with the inner peripheral surface of the passage hole 81i in the region on the proximal end side (upper side) than the step surface 68c. In this case, the positioning accuracy of the first layer bus bar 81 by the second shaft portion 68a can be enhanced.
 図10に示す様に、ホルダ本体部62の下面62bには、下側に突出する段部62eが設けられる。段部62eには、下側を向く段部下面62fを有する。第3軸部69aは、段部下面62fから下側に突出する。段部下面62fは、ホルダ本体部62の下面62bにおいて、第2層バスバー82のみが設けられる領域に配置される。段部下面62fには、第2層バスバー82の上面82qが接触する。 As shown in FIG. 10, the lower surface 62b of the holder main body 62 is provided with a stepped portion 62e that protrudes downward. The step 62e has a step lower surface 62f facing downward. The third shaft portion 69a protrudes downward from the step lower surface 62f. The stepped lower surface 62 f is disposed in the area where only the second layer bus bar 82 is provided in the lower surface 62 b of the holder main body 62. The upper surface 82 q of the second layer bus bar 82 is in contact with the step lower surface 62 f.
 第3軸部69aは、第1層バスバー81と第2層バスバー82とが重ならない領域において、第2層バスバー82の固定孔82hを通過する。第3溶着部69bは、第2層バスバー82の下側に位置する。第3溶着部69bは、軸方向から見て第2層バスバー82の固定孔82hの外側まで広がる。第3溶着部69bは、第3軸部69aに対して外側に広がる部分に、上側を向く第3固定面69dを有する。第3固定面69dは、第2層バスバー82の下面82pに接触する。すなわち、第2層バスバー82は、ホルダ本体部62の段部62eと第3溶着部69bとの間に挟まれる。これにより、第3溶着部69bは、第2層バスバー82を固定する。 The third shaft portion 69 a passes through the fixing hole 82 h of the second layer bus bar 82 in a region where the first layer bus bar 81 and the second layer bus bar 82 do not overlap. The third welded portion 69 b is located below the second layer bus bar 82. The third welded portion 69 b extends to the outside of the fixing hole 82 h of the second layer bus bar 82 when viewed in the axial direction. The third welded portion 69 b has a third fixed surface 69 d facing upward at a portion that spreads outward with respect to the third shaft portion 69 a. The third fixed surface 69 d contacts the lower surface 82 p of the second layer bus bar 82. That is, the second layer bus bar 82 is sandwiched between the step 62 e of the holder main body 62 and the third welded portion 69 b. Thereby, the third welded portion 69 b fixes the second layer bus bar 82.
 図10に仮想線(二点鎖線)として示す様に、第1層バスバー81と第2層バスバー82との間には、絶縁シート(絶縁部材)4が挟み込まれていてもよい。すなわち、バスバーユニット60は、複数の中性点バスバー81、82の間に介在する絶縁シート4を有してもよい。絶縁シート4には、第1溶着部67bおよび第2軸部68aとの干渉を避けるための孔部4hが設けられる。第1層バスバー81と第2層バスバー82との間に絶縁シート4を設けることで、第1層バスバー81と第2層バスバー82との絶縁の確実性を高めることができる。 As shown as a virtual line (two-dot chain line) in FIG. 10, an insulating sheet (insulating member) 4 may be sandwiched between the first layer bus bar 81 and the second layer bus bar 82. That is, the bus bar unit 60 may have the insulating sheet 4 interposed between the plurality of neutral point bus bars 81 and 82. The insulating sheet 4 is provided with a hole 4 h for avoiding interference with the first welded portion 67 b and the second shaft portion 68 a. By providing the insulating sheet 4 between the first layer bus bar 81 and the second layer bus bar 82, the insulation reliability between the first layer bus bar 81 and the second layer bus bar 82 can be enhanced.
 図9には、バスバーホルダ61の上側に配置される相用バスバー71、72、73を隠れ線(破線)として示す。図9に示す様に、中性点バスバー81、82と相用バスバー71、72、73とは、軸方向から見て少なくとも一部が互いに重なる。これにより、バスバーユニット60を径方向に小型化することができる。また、相用バスバー71、72、73と中性点バスバー81、82との軸方向の間には、バスバーホルダ61のホルダ本体部62が介在する。これにより、相用バスバー71、72、73と中性点バスバー81、82とを、軸方向から見て互いに重ねた場合であっても、相用バスバー71、72、73と中性点バスバー81、82との絶縁を確保しやすい。 In FIG. 9, the phase bus bars 71, 72, 73 disposed above the bus bar holder 61 are shown as hidden lines (broken lines). As shown in FIG. 9, at least a part of the neutral point bus bars 81 and 82 and the phase bus bars 71, 72 and 73 overlap each other when viewed from the axial direction. Thereby, bus bar unit 60 can be miniaturized in the radial direction. Further, the holder main body portion 62 of the bus bar holder 61 is interposed between the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 in the axial direction. As a result, even when the phase bus bars 71, 72, 73 and the neutral point bus bars 81, 82 are overlapped with each other as viewed from the axial direction, the phase bus bars 71, 72, 73 and the neutral point bus bar 81 , 82 and easy to ensure insulation.
 溶着部67b、68b、69bは、軸方向から見て相用バスバー71、72、73からずれて配置される。上述したように、溶着部67b、68b、69bは、軸部67a、68a、69aの先端において樹脂を溶融させることで成形される。したがって、溶着部67b、68b、69bを成形するために、バスバーホルダ61には熱が加えられる。ホルダ本体部62の、軸方向から見て溶着部67b、68b、69bと重なる部分が、溶着部67b、68b、69bの成形時の熱によってわずかに変形する虞がある。軸方向から見て、溶着部67b、68b、69bを相用バスバー71、72、73からずらして配置することで、溶着部67b、68b、69bを溶融させた際の変形が相用バスバー71、72、73の位置精度に影響を与えることを抑制できる。これにより、相用バスバー71、72、73の位置精度を高めることができる。 Welds 67 b, 68 b, 69 b are arranged offset from phase bus bars 71, 72, 73 as viewed in the axial direction. As described above, the welds 67 b, 68 b, 69 b are formed by melting the resin at the tips of the shanks 67 a, 68 a, 69 a. Therefore, heat is applied to the bus bar holder 61 in order to form the welds 67 b, 68 b, 69 b. The portions of the holder main body 62 overlapping the welds 67 b, 68 b, 69 b when viewed in the axial direction may be slightly deformed by heat at the time of molding the welds 67 b, 68 b, 69 b. When welding sections 67b, 68b, 69b are arranged by shifting welding sections 67b, 68b, 69b from phase bus bars 71, 72, 73 when viewed from the axial direction, the deformation when melting sections 67b, 68b, 69b is It is possible to suppress the influence on the positional accuracy of 72, 73. Thereby, the positional accuracy of the phase bus bars 71, 72, 73 can be enhanced.
 本実施形態において、複数の相用バスバー71、72、73のうち、バスバー本体部71b、72b、73bの周方向に沿う長さが最も大きいU相用バスバー71は、溶着部67b、68bより径方向内側を通過する。U相用バスバー71が、溶着部67b、68bより径方向内側を通って周方向に沿って延びることで、U相用バスバー71を短くすることができる。結果的にモータ1の重量を軽減するとともに、U相用バスバー71の材料費を節約できる。 In the present embodiment, among the plurality of phase bus bars 71, 72, 73, the U-phase bus bar 71 having the largest length along the circumferential direction of the bus bar main portions 71b, 72b, 73b has a diameter larger than that of the welded portions 67b, 68b. Go inside the direction. The U-phase bus bar 71 can be shortened by extending the U-phase bus bar 71 along the circumferential direction through the radially inner side of the welded portions 67 b and 68 b. As a result, the weight of the motor 1 can be reduced, and the material cost of the U-phase bus bar 71 can be saved.
 本実施形態において、複数の相用バスバー71、72、73は、板状であり、バスバー本体部71b、72b、73bが軸方向に直交する方向を厚さ方向として配置された縦置きタイプである。相用バスバー71、72、73を縦置きタイプとすることで、軸方向から見て、相用バスバー71、72、73と溶着部67b、68b、69bとが重ならいように配置する場合であっても、バスバーユニット60の径方向の寸法が大きくなりにくい。 In the present embodiment, the plurality of phase bus bars 71, 72, 73 are plate-shaped, and the bus bar main body portions 71b, 72b, 73b are vertically disposed with the direction orthogonal to the axial direction as the thickness direction. . When the phase bus bars 71, 72, 73 are set vertically, the phase bus bars 71, 72, 73 and the welds 67b, 68b, 69b are arranged to overlap when viewed from the axial direction. However, the radial dimension of the bus bar unit 60 does not easily increase.
 本実施形態において、6つの溶着部67b、68b、69bのうち、1つの溶着部67bは、第1層バスバー81のコイル用端子81aの根元に位置する。すなわち、1つの溶着部67bは、コイル用端子81aと径方向に重なる。このように配置することで、コイル用端子81aの位置精度を確保するとともに、コイル用端子81aの振動を抑制し易い。なお、本実施形態では、1つの溶着部67bのみがコイル用端子81aの根元に位置する場合を説明した。しかしながら、全ての溶着部67b、68b、69bが、コイル用端子81aの根元に位置していてもよい。 In the present embodiment, one of the six welds 67 b, 68 b, 69 b is located at the root of the coil terminal 81 a of the first layer bus bar 81. That is, one welded portion 67 b radially overlaps with the coil terminal 81 a. By arranging in this manner, the positional accuracy of the coil terminal 81a can be secured, and the vibration of the coil terminal 81a can be easily suppressed. In the present embodiment, the case where only one welding portion 67 b is located at the root of the coil terminal 81 a has been described. However, all welds 67 b, 68 b, 69 b may be located at the root of the coil terminal 81 a.
 第1層バスバー81のバスバー本体部81bは、通過孔81iの周囲に設けられた幅広部81sを有する。同様に、第2層バスバー82のバスバー本体部82bは、退避孔82iの周囲に設けられた幅広部82sを有する。幅広部81s、82sは、通過孔81i又は退避孔82iの中心と中心が一致する円形状に幅方向外側に傍出する。 The bus bar main portion 81b of the first layer bus bar 81 has a wide portion 81s provided around the passage hole 81i. Similarly, the bus bar main portion 82b of the second layer bus bar 82 has a wide portion 82s provided around the retraction hole 82i. The wide portions 81s and 82s extend outward in the width direction in a circular shape whose center coincides with the center of the passage hole 81i or the retraction hole 82i.
 本実施形態によれば、幅広部81s、82sを設けることで、中性点バスバー81、82に、通過孔81i又は退避孔82iを設けても、バスバー本体部81b、82bの断面積が小さくなることがない。中性点バスバー81、82の電気抵抗が大きくなることを抑制できる。 According to the present embodiment, by providing the wide portions 81s and 82s, even if the neutral point bus bars 81 and 82 are provided with the passage holes 81i or the retraction holes 82i, the cross-sectional areas of the busbar main portions 81b and 82b decrease. I have not. It can suppress that the electrical resistance of neutral point bus bars 81 and 82 becomes large.
 なお、本実施形態では、ステータ30が、2系統のコイル群(第1系統のコイル群7および第2系統のコイル群8)を有し、バスバーユニット60が、2系統各相に対応する6つの相用バスバー71、72、73と、2系統に対応する2つの中性点バスバー81、82と、を有するモータ1について説明した。しかしながら、系統数については、限定されない。例えば、ステータ30が、3系統以上のコイル群のみを有し、バスバーユニット60が、コイル群に対応する3以上の系統数の相用バスバーおよび中性点バスバーを有していてもよい。 In the present embodiment, the stator 30 includes two coil groups (the first coil group 7 and the second coil group 8), and the bus bar unit 60 corresponds to two phases of each phase. The motor 1 having the two phase bus bars 71, 72, 73 and the two neutral point bus bars 81, 82 corresponding to the two systems has been described. However, the number of strains is not limited. For example, stator 30 may have only three or more coil groups, and bus bar unit 60 may have three or more phases of phase bus bars and neutral point bus bars corresponding to the coil groups.
 次に、本実施形態のモータ1を搭載する装置の実施形態について説明する。図11は、本実施形態のモータ1を搭載する電動パワーステアリング装置の模式図である。電動パワーステアリング装置2は、自動車の車輪の操舵機構に搭載される。電動パワーステアリング装置2は、操舵力を油圧により軽減する装置である。電動パワーステアリング装置2は、モータ1と、操舵軸214と、オイルポンプ216と、コントロールバルブ217と、を備える。 Next, an embodiment of a device on which the motor 1 of the present embodiment is mounted will be described. FIG. 11 is a schematic view of an electric power steering apparatus on which the motor 1 of the present embodiment is mounted. The electric power steering device 2 is mounted on a steering mechanism of a wheel of a car. The electric power steering device 2 is a device that reduces the steering force by hydraulic pressure. The electric power steering apparatus 2 includes a motor 1, a steering shaft 214, an oil pump 216, and a control valve 217.
 操舵軸214は、ステアリング211からの入力を、車輪212を有する車軸213に伝える。オイルポンプ216は、車軸213に油圧による駆動力を伝えるパワーシリンダ215に油圧を発生させる。コントロールバルブ217は、オイルポンプ216のオイルを制御する。電動パワーステアリング装置2において、モータ1は、オイルポンプ216の駆動源として搭載されている。 なお、本実施形態のモータ1は、電動パワーステアリング装置に限られず、いかなる装置に搭載されてもよい。 The steering shaft 214 transmits an input from the steering 211 to an axle 213 having wheels 212. The oil pump 216 generates hydraulic pressure in a power cylinder 215 that transmits hydraulic driving force to the axle 213. The control valve 217 controls the oil of the oil pump 216. In the electric power steering apparatus 2, the motor 1 is mounted as a drive source of the oil pump 216. In addition, the motor 1 of this embodiment is not restricted to an electric-power-steering apparatus, You may be mounted in what kind of apparatus.
 以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiment and the modified example of the present invention have been described above, each configuration and the combination thereof in the embodiment and the modified example are an example, and addition and omission of the configuration are possible without departing from the spirit of the present invention , Substitution and other modifications are possible. Further, the present invention is not limited by the embodiments.

Claims (11)

  1.  上下方向に延びる中心軸を中心として回転するロータと、前記ロータと隙間を介して径方向に対向するステータと、前記ステータの上側に設けられるバスバーユニットと、を備え、
     前記ステータは、U相コイル、V相コイルおよびW相コイルを一系統のコイル群として、複数の系統の前記コイル群を有し、
     互いに異なる系統の前記コイル群同士は、中心軸周りに対称に配置され、
     前記バスバーユニットは、
      各相のコイルから引き出された引出線にそれぞれ接続される複数の相用バスバーと、複数の前記相用バスバーを保持するバスバーホルダと、を有し、
     前記相用バスバーは、
      周方向に沿って延びるバスバー本体部と、前記バスバー本体部の一端に位置し前記バスバー本体部に対し径方向一方側に延びて前記引出線に接続されるコイル用端子と、前記バスバー本体部の他端に位置し上側に延びる外部接続端子と、を有し、
     前記相用バスバーは、板状であり、少なくとも前記バスバー本体部が軸方向に直交する方向を厚さ方向として配置され、
     複数の前記相用バスバーのうち、前記バスバー本体部の周方向に沿う長さが最も大きい前記相用バスバーは、他の前記相用バスバーのうち少なくとも一部と径方向に重なり、径方向において他の前記相用バスバーのコイル用端子が延び出る方向と反対側を通過する、モータ。
    A rotor rotating about a central axis extending in the vertical direction, a stator radially opposed to the rotor via a gap, and a bus bar unit provided on the upper side of the stator;
    The stator includes the coil groups of a plurality of systems, with a U-phase coil, a V-phase coil and a W-phase coil as one system coil group,
    The coil groups of different systems are arranged symmetrically about a central axis,
    The bus bar unit is
    A plurality of phase bus bars each connected to a lead wire drawn from a coil of each phase, and a bus bar holder for holding the plurality of phase bus bars;
    The phase bus bar is
    A bus bar main body extending along a circumferential direction, a coil terminal located at one end of the bus bar main body, extending radially to one side of the bus bar main body, and connected to the lead wire; An external connection terminal located at the other end and extending upward,
    The phase bus bar has a plate shape, and at least the bus bar main body portion is disposed with a direction orthogonal to the axial direction as a thickness direction.
    Among the plurality of phase bus bars, the phase bus bar having the largest length along the circumferential direction of the bus bar main body portion overlaps in a radial direction with at least a portion of the other phase bus bars, A motor through which the coil terminal of the phase bus bar is passed in the direction opposite to the extending direction.
  2.  前記ステータは、第1系統のコイル群と第2系統のコイル群とに分類される2系統の前記コイル群を有し、
     複数の前記相用バスバーは、前記第1系統のコイル群および前記第2系統のコイル群のU相コイル、V相コイルおよびW相コイルにそれぞれ接続される前記相用バスバーを含む、請求項1に記載のモータ。
    The stator includes two coil groups classified into a first coil group and a second coil group.
    The plurality of phase bus bars include the phase bus bars connected to the U-phase coil, the V-phase coil, and the W-phase coil of the first coil group and the second coil group, respectively. The motor described in.
  3.  前記第1系統のコイル群および前記第2系統のコイル群の互いに同じ相のコイルに接続される一対の前記相用バスバーの外部接続端子は、中心軸を挟んで反対側に配置される、請求項2に記載のモータ。 The external connection terminals of the pair of phase bus bars connected to the coils of the same phase of the coil group of the first system and the coil group of the second system are disposed on opposite sides of the central axis. A motor according to item 2.
  4.  複数の前記相用バスバーのうち、前記バスバー本体部の周方向に沿う長さが最も大きい前記相用バスバーは、コイル用端子と前記外部接続端子とが、中心軸を挟んで反対側に配置される、請求項1~3の何れか一項に記載のモータ。 Among the plurality of phase bus bars, in the phase bus bar having the longest length along the circumferential direction of the bus bar main body, the coil terminal and the external connection terminal are disposed on the opposite side across the central axis. The motor according to any one of claims 1 to 3.
  5.  前記バスバーホルダは、複数の前記相用バスバーを厚さ方向から保持する挟持部を有し、
     複数の前記相用バスバーのうち、前記バスバー本体部の周方向に沿う長さが最も大きい前記相用バスバーは、他の前記相用バスバーと径方向に重ならない領域で、前記バスバー本体部が前記挟持部に保持される、請求項1~4の何れか一項に記載のモータ。
    The bus bar holder has a holding portion for holding the plurality of phase bus bars in the thickness direction,
    Among the plurality of phase bus bars, the phase bus bar having the largest length along the circumferential direction of the bus bar main body portion is a region that does not overlap with the other phase bus bars in the radial direction. The motor according to any one of claims 1 to 4, which is held by the clamping unit.
  6.  複数の前記相用バスバーにおいて前記コイル用端子は、前記バスバー本体部に対し径方向外側に延び、
     複数の前記相用バスバーのうち、前記バスバー本体部の周方向に沿う長さが最も大きい前記相用バスバーは、他の前記相用バスバーのうち少なくとも一部と径方向に重なり当該相用バスバーの径方向内側に位置する、請求項1~5の何れか一項に記載のモータ。
    In the plurality of phase bus bars, the coil terminals extend radially outward with respect to the bus bar main body portion,
    Among the plurality of phase bus bars, the phase bus bar having the largest length along the circumferential direction of the bus bar main body overlaps in a radial direction with at least a portion of the other phase bus bars, and the phase bus bar The motor according to any one of claims 1 to 5, which is located radially inward.
  7.  前記バスバーユニットは、前記バスバーホルダに保持され、前記コイル群の系統数と同数の中性点バスバーを有し、
     前記中性点バスバーは、1つの系統の前記コイル群の各相のコイルの前記引出線に接続され、
     前記中性点バスバーは、軸方向と直交する平面に沿って延びるバスバー本体部と、前記バスバー本体部に対し径方向一方側に延びて前記引出線に接続される複数のコイル用端子と、を有し、
     前記中性点バスバーの前記コイル用端子と前記相用バスバーの前記コイル用端子とは、それぞれの前記バスバー本体部に対して径方向の同方向に延びる、請求項1~6の何れか一項に記載のモータ。
    The bus bar unit is held by the bus bar holder and has as many neutral point bus bars as the number of systems of the coil group.
    The neutral point bus bar is connected to the lead wire of the coil of each phase of the coil group of one system;
    The neutral point bus bar includes a bus bar main body extending along a plane orthogonal to the axial direction, and a plurality of coil terminals extending radially to one side of the bus bar main body and connected to the lead wire. Have
    The coil terminal of the neutral point bus bar and the coil terminal of the phase bus bar extend in the same radial direction with respect to each of the bus bar main portions. The motor described in.
  8.  前記中性点バスバーと前記相用バスバーとは、軸方向から見て少なくとも一部が互いに重なる、請求項7に記載のモータ。 The motor according to claim 7, wherein at least a part of the neutral point bus bar and the phase bus bar overlap each other when viewed in the axial direction.
  9.  前記中性点バスバーは、板状であり、少なくとも前記バスバー本体部が軸方向を厚さ方向として配置される、請求項7又は8に記載のモータ。 The motor according to claim 7, wherein the neutral point bus bar has a plate shape, and at least the bus bar main body portion is disposed with an axial direction as a thickness direction.
  10.  前記ステータは、コイルが巻き付けられる複数のティース部を有し、それぞれの系統において、U相コイル、V相コイルおよびW相コイルはそれぞれ複数設けられ、渡り線を介して複数の前記ティース部に跨って設けられる、請求項1~9の何れか一項に記載のモータ。 The stator has a plurality of tooth portions around which a coil is wound, and in each system, a plurality of U-phase coils, V-phase coils and W-phase coils are respectively provided, and they straddle the plurality of teeth portions via crossovers. The motor according to any one of claims 1 to 9, which is provided.
  11.  前記ステータは、コイルが巻き付けられる12個のティース部を有する、請求項1~10の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 10, wherein the stator has 12 teeth on which a coil is wound.
PCT/JP2018/035330 2017-09-28 2018-09-25 Motor WO2019065584A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880053883.9A CN111052557B (en) 2017-09-28 2018-09-25 Motor
JP2019545108A JP7192776B2 (en) 2017-09-28 2018-09-25 motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188951 2017-09-28
JP2017-188951 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065584A1 true WO2019065584A1 (en) 2019-04-04

Family

ID=65902712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035330 WO2019065584A1 (en) 2017-09-28 2018-09-25 Motor

Country Status (3)

Country Link
JP (1) JP7192776B2 (en)
CN (1) CN111052557B (en)
WO (1) WO2019065584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010252A (en) * 2019-07-02 2021-01-28 日本電産株式会社 motor
EP4020769A4 (en) * 2019-08-22 2022-11-16 LG Innotek Co., Ltd. Motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247715A (en) * 2012-05-23 2013-12-09 Asmo Co Ltd Stator and motor
JP2014176213A (en) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd Busbar unit
WO2015060058A1 (en) * 2013-10-21 2015-04-30 日本電産株式会社 Bus bar unit and motor
JP2015216714A (en) * 2014-05-07 2015-12-03 日本精工株式会社 Motor, electrically-driven power steering device and vehicle
JP2016101035A (en) * 2014-11-25 2016-05-30 日本電産株式会社 motor
WO2017026412A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Motor
WO2017026491A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Motor
WO2017061608A1 (en) * 2015-10-09 2017-04-13 日本電産株式会社 Motor
JP2018133934A (en) * 2017-02-16 2018-08-23 株式会社ミツバ Brushless motor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261611A1 (en) * 2002-12-27 2004-07-08 Robert Bosch Gmbh Connection element for a winding of an electrical machine
JP2008259259A (en) * 2007-04-02 2008-10-23 Nippon Densan Corp Bus bar unit
JP5842361B2 (en) * 2010-10-29 2016-01-13 日本電産株式会社 Motor and motor manufacturing method
JP2013042633A (en) * 2011-08-19 2013-02-28 Nippon Densan Corp Motor
JP6135982B2 (en) * 2013-01-17 2017-05-31 日本電産株式会社 motor
JP6190599B2 (en) * 2013-03-08 2017-08-30 Kyb株式会社 Manufacturing method of bus bar unit
JP6053000B2 (en) * 2013-03-08 2016-12-27 Kyb株式会社 Bus bar unit and manufacturing method thereof
DE102014221188A1 (en) * 2014-10-20 2016-04-21 Bayerische Motoren Werke Aktiengesellschaft Switching ring arrangement for an electrical machine
KR102270422B1 (en) * 2014-11-11 2021-06-29 엘지이노텍 주식회사 Motor
DE102015225088A1 (en) * 2014-12-26 2016-06-30 Nidec Corporation Engine and method of making same
CN107534343B (en) * 2015-07-22 2019-08-13 株式会社Top The manufacturing method of bus bar unit, the rotating electric machine for having the bus bar unit and bus bar unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247715A (en) * 2012-05-23 2013-12-09 Asmo Co Ltd Stator and motor
JP2014176213A (en) * 2013-03-08 2014-09-22 Kayaba Ind Co Ltd Busbar unit
WO2015060058A1 (en) * 2013-10-21 2015-04-30 日本電産株式会社 Bus bar unit and motor
JP2015216714A (en) * 2014-05-07 2015-12-03 日本精工株式会社 Motor, electrically-driven power steering device and vehicle
JP2016101035A (en) * 2014-11-25 2016-05-30 日本電産株式会社 motor
WO2017026412A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Motor
WO2017026491A1 (en) * 2015-08-10 2017-02-16 日本電産株式会社 Motor
WO2017061608A1 (en) * 2015-10-09 2017-04-13 日本電産株式会社 Motor
JP2018133934A (en) * 2017-02-16 2018-08-23 株式会社ミツバ Brushless motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010252A (en) * 2019-07-02 2021-01-28 日本電産株式会社 motor
EP4020769A4 (en) * 2019-08-22 2022-11-16 LG Innotek Co., Ltd. Motor

Also Published As

Publication number Publication date
CN111052557A (en) 2020-04-21
CN111052557B (en) 2022-04-22
JP7192776B2 (en) 2022-12-20
JPWO2019065584A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US7755231B2 (en) Resolver and manufacturing method of the same
CN109586471B (en) Motor with a stator having a stator core
JP5028869B2 (en) Brushless motor
CN109586473B (en) Bus bar unit and motor
JP5223259B2 (en) motor
CN110495076B (en) Bus bar unit and motor
US11075558B2 (en) Bus bar unit and motor
JP2015173596A (en) Rotary electric machine
US11075562B2 (en) Bus bar unit and motor
JP7192776B2 (en) motor
JP7000780B2 (en) Busbar unit, motor
CN109586472B (en) Bus bar unit and motor
WO2019065452A1 (en) Busbar unit and motor
CN109586475B (en) Bus bar unit and motor
CN109586477B (en) Motor
JP2019068505A (en) Bus bar unit, motor and manufacturing method of bus bar unit
JP5301170B2 (en) Resolver stator and resolver
US11901792B2 (en) Bus bar unit, stator, and motor
WO2022014455A1 (en) Rotating electric machine
JP5283945B2 (en) Wiring method and brushless motor manufacturing method
JP7044106B2 (en) Busbar unit and motor
WO2018180818A1 (en) Busbar unit and motor
JP2019068514A (en) Motor and electric power steering device
WO2019021678A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860350

Country of ref document: EP

Kind code of ref document: A1