WO2019057148A1 - 一种电源保护装置以及使用所述装置的终端 - Google Patents

一种电源保护装置以及使用所述装置的终端 Download PDF

Info

Publication number
WO2019057148A1
WO2019057148A1 PCT/CN2018/106922 CN2018106922W WO2019057148A1 WO 2019057148 A1 WO2019057148 A1 WO 2019057148A1 CN 2018106922 W CN2018106922 W CN 2018106922W WO 2019057148 A1 WO2019057148 A1 WO 2019057148A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
sampling
current
tube group
terminal
Prior art date
Application number
PCT/CN2018/106922
Other languages
English (en)
French (fr)
Inventor
刘新宇
刘彦丁
刘策
王平华
曹勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18859083.0A priority Critical patent/EP3678271A4/en
Publication of WO2019057148A1 publication Critical patent/WO2019057148A1/zh
Priority to US16/825,332 priority patent/US20200220347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits

Definitions

  • Embodiments of the present invention relate to the field of circuits and, more particularly, to a power protection device and a terminal using the same.
  • terminal fast charging has become a common customer demand.
  • the fast charging technology used by terminals has become a hot technology at present, but the heat generated by fast charging is also a problem in the whole industry.
  • the charging current is doubled, the same The heat generated by the impedance of the charging circuit will be four times the original.
  • Lithium-ion batteries used in some common terminals need to have a protection circuit enclosed in the battery and connected to the battery cells for monitoring the charging overvoltage, discharge undervoltage, charging overcurrent of the lithium ion battery.
  • the discharge overcurrent, for the discharge overcurrent must meet the requirements of the relevant standard LPS (Limited power sources) certification, that is, the semiconductor switch (MOS) tube is turned off within 5 seconds when the current is 8 amps to achieve the power failure protection, and also to meet the requirements.
  • the pulse load of the mobile phone is 5 amps in 60 seconds, 6 amps in 5 seconds, and 7 amps in 2 seconds without shutdown.
  • a common method is to use the resistance impedance of the MOS tube of the charge and discharge circuit to perform overcurrent detection, and trigger the voltage drop generated by the current flowing through the resistance of the MOS tube of the charge and discharge circuit.
  • the lithium battery protects the internal overcurrent detection comparator of the IC, but the resistance of the MOS transistor is not a constant value, and varies with various conditions. When a large current is rapidly charged, the conduction voltage at both ends of the MOS transistor is high and The range of variation is large, resulting in a large change in the resistance of the MOS tube, which cannot meet the requirements of high precision.
  • another common method is to specifically set a current sampling resistor for the charging circuit, and use the current sampling resistor to perform overcurrent detection, and the current sampling resistor RS flowing through the charging and discharging circuit. The resulting voltage drop triggers the battery protection IC internal overcurrent detection comparator.
  • Embodiments of the present invention provide a power protection device and a terminal using the same to provide a problem that the current loop impedance is too high and the overcurrent detection accuracy is insufficient when the battery is rapidly charged at a large current in the power protection device.
  • an embodiment of the present invention provides a power protection device for protecting a battery core connected to a load, a protection IC, a switch tube group, and a sampling resistor.
  • the protection IC includes a positive and negative electrode respectively.
  • the two power input terminals connected at both ends further include a mirror current input port, a mirror current output port, an operational amplifier, a voltage regulating switch tube, and at least one charge and discharge protection terminal, wherein the operational amplifier includes an input positive pin and an input negative a pin and an output pin, the voltage regulating switch tube includes a voltage input pin connected to an output pin of the operational amplifier, a current input pin connected to the mirror current input port, and the mirror current output a current output pin connected to the port;
  • the switch tube group is connected between the positive electrode of the battery core and the load, for turning on or off the charge and discharge circuit of the battery core, and the switch tube group includes a switch a main loop portion of the tube group and a sampling portion of the switch tube group, the switch tube group including a first connection end
  • the first connecting end and the second connecting end are respectively connected to an output end and an input end respectively connected to the input end and the output end of the main circuit part of the switch tube group when charging, that is, the switch tube
  • the main loop portion of the group forms part of the charge and discharge circuit of the cell, and the current in the charge and discharge circuit flows through the main circuit mainly through the first connection end and the second connection end.
  • the protection device mainly utilizes the current mirror function of the detection field effect transistor of the switch tube group, and mirrors the current in the main current loop to a small current according to a certain proportional coefficient 1/K, by the protection IC Complete the detection of the small current from this image, and multiply by the proportional coefficient K to get the current in the main through-current loop. Finally, according to the magnitude of the value, it is determined whether the charging overcurrent or the discharging overcurrent is performed, and then the protection IC turns off the charging switch or the discharging switch to complete the functions of charging overcurrent protection and discharge overcurrent protection.
  • the operational amplifier is configured to make the input negative pin and the input positive pin have the same potential, that is, the switch tube At least one sampling loop connection of the group is the same as the potential of the primary loop detection end such that a current flowing through the sampling loop is in a proportional relationship with a current flowing through the main loop, wherein the first connection flows through The current at the terminal and the second terminal is equal to the primary loop current.
  • the switch tube group includes (X+KX) switch tube units connected in parallel with each other, where X One switching tube unit is formed in parallel to form the sampling loop, and KX tubes are connected in parallel to form the main circuit, wherein a ratio of a current flowing through the sampling loop to a current flowing through the main loop is equal to a switching tube unit of the sampling loop
  • the ratio of the number to the number of switching tube units of the main loop that is, equal to 1:K, where X is an integer value greater than or equal to 1, K is greater than 1, and KX is an integer.
  • the switch tube group includes a sampling output terminal SS 1 and a device connected to a sampling portion of the switch tube group a main loop detection output terminal S 1k connected to a main loop portion of the switch tube group, the S 1k being connected to an input negative pin of the operational amplifier, the SS 1 and an input positive pin of the operational amplifier
  • the mirror current input ports are connected at the same time.
  • the switch tube group further includes a sampling output terminal SS 2 connected to a sampling portion of the switch tube group and a main loop detection output terminal S 2k connected to the main loop portion of the switch tube group
  • the protection IC further includes a second mirror current input port, a second mirror current output port, a second operational amplifier, and a second tone a voltage regulating switch
  • the second voltage regulating switch tube includes a voltage input pin connected to an output pin of the second operational amplifier, a second current input pin connected to the second mirror current input port, and a second current output pin connected to the second mirror current output port
  • the S 2k is connected to an input negative pin of the second operational amplifier
  • the SS 2 and the input of the second operational amplifier are positive
  • the power protection device further includes a second sample detecting resistor RS2 connected in series between the second mirror current output port and the ground.
  • the switch tube group further includes a sampling output terminal SS 2 and a sample connected to a sampling portion of the switch tube group a detection output terminal SS 2k and a main loop detection output terminal S 2k connected to the main loop portion of the switch tube group
  • the protection IC further comprising a second mirror current input port and a second mirror current output port, a second operational amplifier and a second voltage regulating switch
  • the second voltage regulating switch includes a voltage input pin connected to an output pin of the second operational amplifier, and connected to the second mirror current input port a second current input pin and a second current output pin connected to the second mirror current output port, the S 2k being connected to a negative input pin of the second operational amplifier, the SS 2
  • the second mirror current input port is connected, and the SS 2k is connected to the input positive pin of the slave operational amplifier.
  • each of the switch tube units includes a first switch tube Sa and a reverse series connection with the Sa a second switch tube Sb, wherein each of the Sa or Sb is connected in parallel with a diode D1, the Sa is a discharge switch tube, the Sb is a charge switch tube, and the X switch tube units are connected in parallel to form the sampling loop And the KX switch tube units are connected in parallel to form the main circuit.
  • all the D poles of the Sa and the Sb are connected together, and the (X+KX) switch tube units are The G poles of Sa are connected together to form a discharge control terminal G1, and the G poles of the Sb of the (X+KX) switch tube units are connected together to form a charge control terminal G2, which constitutes the X switch tube units of the sampling loop.
  • All S poles of Sa are connected to the same pin to form the sampling loop output terminal SS1, and S poles of all Sbs of the X switch tube units are connected with the same pin to form the sampling loop output terminal SS2
  • the S poles of all Sa in the KX switch tube units constituting the main loop are connected to the same pin to form the first connection end S1 of the switch tube group, and all Sb of the X switch tube units
  • the S pole is connected to the same pin to form the second connection end S2 of the switch tube group.
  • the SS 1k is directly connected to all of the X switch tube units of the sampling loop by a high conductivity metal wire Forming an S pole on a wafer of Sa, the SS 2k being formed by directly connecting a high conductivity metal to an S pole on a wafer of all Sbs of the X switching tube units of the sampling loop, the main loop
  • the detection output S 1k is formed by a high conductivity metal wire directly connected to the S pole on all Sa's wafers in the KX switch tube units of the main circuit, the S 2k being directly connected by a high conductivity metal
  • the S poles on the wafers of all Sbs in the KX switching transistor units of the main circuit are formed.
  • the at least one control terminal includes a discharge control end for controlling the switch group to be turned off during discharge And a charge control terminal G2 for controlling the turn-off of the switch group during charging, at least one charge and discharge protection end of the protection IC includes respectively connecting the discharge control terminal G1 and the charge control terminal G2 The discharge protection terminal DO and the charge protection terminal CO.
  • the embodiment of the invention combines the switch tube group and the protection IC to realize charging overvoltage protection, discharge undervoltage protection, charging overcurrent protection, discharge overcurrent protection of the battery, and utilizing a current mirror function of detecting a field effect transistor,
  • the current in the main current loop is mirrored by a certain proportional coefficient 1/K to a small current.
  • the protection IC completes the detection of the small current generated by the image, and multiplies the proportional coefficient K to obtain The amount of current in the main flow loop.
  • the sampling detection resistor Rs is connected in series between the sampling detection output terminal and the output pin, not on the charging and discharging circuit, and the detection current flowing through the sampling detecting resistor Rs is on the charging and discharging circuit.
  • the current 1/K is much smaller than the current on the charge and discharge circuit. Therefore, the heat generated by the sampling detection resistor Rs is also very small, and the actual temperature of the charge and discharge circuit is not substantially affected. .
  • an embodiment of the present invention provides a power protection device for protecting a battery core connected to a load, including a protection IC, a switch tube group, and a sampling and detecting resistor Rs.
  • the protection IC includes a battery core and a battery Two power input terminals connected at both ends of the positive and negative poles, a positive current detecting terminal, a current detecting terminal negative, a mirror current input port, a mirror current output port, and at least one charge and discharge protection terminal;
  • the switch tube group is connected to the battery positive pole And a charge and discharge circuit for turning on or off the battery cell, the switch tube group including a main circuit portion and a sampling portion, the switch tube group including a first connection with the load a connection end, a second connection end connected to the positive electrode of the battery cell, and at least one control end, wherein the first connection end and the second connection end respectively input an input end and an output when charging the main circuit part of the switch tube group End connection, the control end being connected to the at least one charge and discharge protection end of
  • the protection IC can be used to make the main loop portion of the switching tube group and the voltage of the main circuit portion at the junction with the operational amplifier the same, so that the current flowing through the main loop flows through the sampling loop The current is proportional. It can be understood that in some embodiments, the effects of the voltages of the at least one sampling loop connection end and the main loop detection end can be achieved by other components. Therefore, embodiments of the present invention are not limited to the protection IC, and the protection IC Any component or integrated circuit having similar functions should be equivalent to the protection IC only for the names of current technology and cognition.
  • the first connecting end and the second connecting end are respectively connected to an output end and an input end respectively connected to the input end and the output end of the main circuit part of the switch tube group when charging, that is, the switch tube
  • the main loop portion of the group forms part of the charge and discharge circuit of the cell, and the current in the charge and discharge circuit flows through the main circuit mainly through the first connection end and the second connection end.
  • an embodiment of the present invention provides a battery, including a battery core, and the power supply for protecting the battery core according to the first aspect, the second aspect, or the implementation manner of any of the first aspect. Protection device power protection device.
  • an embodiment of the present invention provides a terminal, including a charging connector, a charging management chip, a battery, and a load, the charging connector is configured to connect a charging cable, and the charging management chip is connected to the charging connector.
  • the battery for supplying power to the load, characterized in that the battery comprises a battery cell and the first aspect, the second aspect or the first aspect described above A power protection device for protecting the battery core as described in any one of the implementation manners.
  • the embodiment of the invention combines the switch tube group and the protection IC to realize charging overvoltage protection, discharge undervoltage protection, charging overcurrent protection, and discharge overcurrent protection of the battery, and using the current mirror function of detecting the field effect transistor,
  • the current in the main current loop is mirrored to a small current according to a certain proportional coefficient 1/K.
  • the lithium battery protection IC completes the detection of the small current generated by the image, and multiplies the proportional coefficient K to obtain The amount of current in the main flow loop.
  • the sampling detection resistor Rs is connected in series between the sampling loop detection detecting end and the output pin, not on the charging and discharging circuit, and the detecting current flowing through the sampling detecting resistor Rs is the charging and discharging circuit.
  • the 1/K of the upper current is much smaller than the current on the charging and discharging circuit. Therefore, the heat generated by the sampling detecting resistor Rs is also very small, and the temperature of the charging and discharging circuit is not practically practical. influences.
  • the current flowing through the at least one sampling loop connection end and the sampling detecting resistor Rs is much smaller than the current flowing through the main circuit of the switching tube group and the charging and discharging circuit, although the sampling detection
  • the value of the resistor Rs is tens of ohms to several hundred ohms, and the loss of the practical influence is not generated on the sampling detecting resistor Rs, and the resistance of the sampling detecting resistor Rs is not affected by heat or the like. The effect is advantageous to select the appropriate resistance to achieve maximum detection accuracy.
  • the protection IC determines whether to charge an overcurrent or a discharge overcurrent according to the detection current, and further, the protection IC turns off the charging switch or the discharging switch, thereby completing the functions of charging overcurrent protection and discharging overcurrent protection, thereby eliminating the need for
  • the current sampling resistor on the charging and discharging circuit of the terminal can realize high-precision charging over-current protection and discharge over-current protection, and can greatly reduce the impedance of the current-passing loop and effectively reduce the heat generation of the charging and discharging circuit.
  • FIG. 1 is an application scenario diagram of an embodiment of the present invention.
  • Fig. 2 is a circuit diagram of a power source protection device in the first embodiment of the present invention.
  • Fig. 3 is another circuit diagram of the power source protection device in the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a switch tube group in an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of another switch tube group in the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another switch tube group in the embodiment of the present invention.
  • Fig. 7 is a circuit diagram of a power source protection device in a second embodiment of the present invention.
  • Fig. 8 is another circuit diagram of the power source protection device in the second embodiment of the present invention.
  • Fig. 9 is a circuit diagram of a power source protection device in a third embodiment of the present invention.
  • Fig. 10 is another circuit diagram of the power source protection device in the third embodiment of the present invention.
  • Figure 11 is a circuit diagram of a power source protection device in Embodiment 4 of the present invention.
  • Fig. 12 is another circuit diagram of the power source protection device in the fourth embodiment of the present invention.
  • the power protection device in the embodiment of the present invention is mainly applicable to various electronic products with rechargeable batteries, and is particularly suitable for some portable devices, such as mobile phones, tablet computers, notebook computers, and various wearable devices.
  • a power protection device is needed to prevent power failure protection due to overvoltage, overcurrent, overcharge, etc., otherwise the battery cells in the battery may be damaged, or even cause serious explosions such as battery explosion.
  • the battery involved in the embodiments of the present invention includes a rechargeable battery protection circuit or device and a battery core, and the battery core refers to an electrical energy storage carrier such as a dry battery.
  • terminals For convenience of description, all electronic products having rechargeable batteries are hereinafter referred to as terminals.
  • the power protection device in the embodiment of the present invention can be used as a lithium battery protection circuit for a consumer electronic device, such as a lithium battery protection circuit of various wearable devices such as a mobile phone and a watch, a notebook computer, a tablet computer, etc., and the lithium battery protection circuit exists in a piece.
  • a separate printed circuit board PCB
  • the PCB is connected to the cells of a lithium battery.
  • Rechargeable batteries in consumer electronics generally refer to a PCB carrying a lithium battery protection circuit, a battery of a lithium battery, and a casing to form a lithium battery package for powering the consumer electronic device.
  • the power protection device in the embodiment of the invention mainly comprises a MOS tube group and a protection integrated circuit (IC), which are combined to realize charging overvoltage protection, discharge undervoltage protection, charging overcurrent protection, discharge overcurrent protection,
  • the utility model has the advantages that high-precision charging over-current protection and discharge over-current protection can be realized without setting a current sampling resistor on the charging/discharging circuit of the terminal, thereby greatly reducing the impedance of the through-current loop and reducing heat generation.
  • the power protection device mainly uses the current mirror function of the detection field effect transistor to mirror the current in the main current loop to a small current according to a certain proportional coefficient 1/K, and the protection IC of the lithium battery completes the mirror image.
  • a small current is detected and multiplied by a scaling factor K to obtain the current in the main current loop.
  • K is the scaling factor
  • the protection IC turns off the charging switch or the discharging switch to complete the functions of charging overcurrent protection and discharge overcurrent protection.
  • the current mirroring principle of the detecting field effect transistor used in the embodiment of the present invention is to allocate the internal small switching tube unit of the switching tube group to a certain proportion on the same wafer, for example, to distribute the switching tube according to a ratio of 1 ⁇ /1000 ⁇ .
  • Unit, 1000X in the 1:1000 ratio is used for main loop flow
  • 1X in 1:1000 is used for current sampling, when the output pin of the two-part switch unit for main loop current and current sampling
  • the overall impedance ratio of the two parts of the switch unit for the main circuit through current and current sampling should also be 1:1000, and because it is used for the main circuit through current.
  • the voltages across the two parts of the current sampling unit are also equal, so the ratio of the current flowing through the main circuit and the current sampling is 1000:1.
  • the terminal using the power protection device in the embodiment of the present invention includes a connector for connecting a charger through a cable, a charging management chip, a power protection device, a battery cell, and a load, wherein the power protection device
  • the load may be any electrical component within the terminal, such as a display, a communication module, a processor, a memory, a sensor, and a speaker.
  • the component that limits the charging current during the charging process of the terminal has a charger, a charging management chip, a protection board, and when the charger or the charging management chip fails, or both fail, the overcurrent protection of the charging of the battery is obtained. It is completed by the protection board, and when the charging overcurrent is detected, the switching element on the protection board is disconnected, and the charging path is cut off.
  • the component that limits the discharge current during the discharge process is a protection plate.
  • the load is abnormal, such as a load short circuit
  • the overcurrent protection of the discharge of the lithium battery is completed by the protection board, and when the discharge overcurrent is detected, the switching element on the protection board is disconnected. Cut off the discharge path.
  • a terminal having a charging protection function includes a battery cell, a power protection device, and a load that is powered by the battery cell.
  • the power protection device mainly comprises a protection IC connected to the battery core and a switch tube group for conducting and turning off the battery core.
  • the protection IC includes a power supply terminal VCC connected to the positive electrode of the battery core, a ground terminal GND connected to the negative electrode of the battery core, a current detection terminal positive T1, a current detection terminal negative T2, a current sampling detection output terminal, a discharge protection terminal DO, and a charging protection terminal.
  • the CO wherein the power terminal VCC and the ground terminal GND are two power input ends of the protection IC, respectively connected to the positive and negative terminals of the battery.
  • the IC protection circuit includes an operational amplifier 100, the operational amplifier 100 includes an input positive pin connected to the current detecting terminal positive T1, an input negative pin negatively connected to the current detecting terminal, and the current sampling Detect the output pin connected to the output.
  • a filter capacitor C may be connected to both ends of the cell for filtering interference current and interference voltage.
  • the switch in series between the negative electrode and the load cell, comprising a first connector connected to the negative terminal of the cell S 1 and a second connection to the load connection terminal S 2.
  • the switch tube group further includes a discharge control terminal G1 for controlling the turn-off of the switch group during discharge and a charge control terminal G2 for controlling the switch group to be turned off during charging.
  • the discharge control terminal G1 and the charge control terminal G2 are respectively connected to the discharge protection terminal DO and the charge protection terminal CO of the protection IC.
  • the switch tube group further includes a sampling loop composed of a parallel sampling unit of the X sampling portions and a main circuit composed of a parallel switching unit of the KX main loop portions, wherein the X is an integer greater than or equal to 1, and K is greater than 1 value.
  • X is suitable to take appropriate values, such as X is an integer value greater than or equal to 1, for example, within the value of [1, 10000], X can take values of 100, 1000, 3000 Values such as 5000 and K are greater than or equal to 100.
  • K can take values greater than 1 such as 100, 500, 1000, 5000, 10000, etc.
  • the comparison test can be performed according to the process, the cost, and the crystal characteristics to obtain a flow resistance of the power protection device that is small enough to obtain sufficient overcurrent protection accuracy.
  • the first connecting end S 1 and the second connecting end S 2 are respectively connected to an output end and an input end respectively connected to the input end and the output end of the main circuit part of the switch tube group when charging, or
  • the main circuit portion of the switch tube group forms part of the charge and discharge circuit of the battery, and the current in the charge and discharge circuit mainly flows through the main circuit through the first connection end S1 and the second connection end S2.
  • the switch tube group further includes at least one sampling loop connection end connected to a connection end of the sampling loop and a main loop detection end connected to an input or an output end of the main loop, wherein the main loop detection end is An input positive pin connection is described, and the at least one sampling loop connection is connected to the input negative pin.
  • the at least one sampling loop connection end includes the sampling loop output terminal SS 1
  • the main loop detection end includes a detection output terminal S 1k connected to the main loop.
  • the output of the sampling circuit SS 1 through the protective current detection terminal of the operational amplifier and the negative input of IC 100 is connected to the negative pin.
  • the main loop detection output terminal S 1k is connected to the input positive pin of the operational amplifier 100 through the current detection terminal positive T1 of the protection IC.
  • the sampling loop output terminal SS 1 is also connected to the output pin of the operational amplifier 100, and the output pin is connected to the current sampling detection output terminal of the protection IC.
  • the power protection apparatus further comprises a detecting resistor Rs sampling, the sampling detection resistor Rs connected in series between the output terminal of the sampling circuit SS 1 and an output pin of the operational amplifier 100, a current detector for generating a sample.
  • the battery cell, the switch tube group and the load form a charge and discharge circuit, which is a main conduction circuit for discharging or charging the battery core.
  • the at least one sampling loop connection further includes a sampling detection output SS 1k connected to the sampling loop, and the sampling loop output SS 1 is only related to An output pin of the operational amplifier 100 is connected, and the sampling detection output terminal SS 1k is connected to an input negative pin of the operational amplifier 100, and the sampling detection resistor Rs is connected in series at the sampling loop output terminal SS 1 Between the output pin of the operational amplifier 100 and the output.
  • the switch tube group includes (X+KX) switch tube units connected in parallel with each other, wherein X MOS switch tube units are connected in parallel to form the sampling loop, and KX MOS tubes are connected in parallel to form the main loop.
  • Each of the switch tube units includes a first switch tube Sa and a second switch tube Sb connected in series with the Sa, wherein each of the Sa or Sb is connected in parallel with a diode D1, wherein the Sa and the Sb Any one of the charging switch tube and the other is a discharge switch tube.
  • the Sa is selected as a discharge switch tube, which is turned on when the battery core is discharged and the battery core is discharged.
  • the Sb When it is turned off, the Sb is a charging switch tube that is turned on when the battery is charged and turned off when the battery is discharged.
  • the D1 is used to protect the Sa and Sb from being broken down.
  • the Sa and Sb may be MOS tubes or other semiconductor switching tubes having similar characteristics.
  • the X switch tube units are connected in parallel to form the sampling loop, and the KX switch tube units are connected in parallel to form the main loop, wherein the (X+KX) switch tube units of Sa and Sb
  • the D poles are connected together, and the G poles of Sa of the (X+KX) switch tube units are connected together to form the discharge control terminal G1, and the G pole connection of the Sb of the (X+KX) switch tube unit
  • the charging control terminal G2 is formed together.
  • the S poles of all Sa in the X switch tube units constituting the sampling loop are connected to the same pin, and the lead circuit is taken out to form the sampling loop output terminal SS 1 , and all of the X switch tube units
  • the S pole of Sb is connected to the same pin, and is led out by the pin to form the sampling loop output terminal SS 2 .
  • the S poles of all Sa in the KX switching tube units constituting the main loop are connected to the same pin, and the first connecting end S1 of the switching tube group is formed by the lead, and The S poles of all the Sbs of the X switch tube units are connected to the same pin, and the second connection end S2 of the switch tube group is formed by the lead.
  • the flow through the first junction S 1 and the second connection S 2 is equal to the current flowing through the main loop, that is, the sum of the currents flowing through the KX switching tube units of the main loop.
  • the sampling detection output terminal SS 1k of the switching tube group can be directly connected to all the Sa wafers in the X switching tube units of the sampling loop by the high conductivity metal wire. Formed on the upper S pole.
  • another sampling detection output SS 2k of the switching tube group can be formed by directly connecting a high conductivity metal to the S pole on the wafer of all Sbs of the X switching tube units of the sampling loop.
  • the detection output S 1k of the main loop can be formed by directly connecting the high conductivity metal wires to the S poles on all of the Sa's wafers in the KX switching tube units of the main circuit.
  • the other detection output S 2k of the main circuit of the switching tube group can be formed by directly connecting the high conductivity metal to the S pole on the wafer of all Sbs in the KX switching tube units of the main circuit.
  • the high conductivity metal wires include high conductivity metal wires such as gold, silver, and copper, and may also include some high conductivity alloy conductors.
  • the primary loop detection end may be a first connection end S1 of all Sas connected to a main loop in the switch tube group, and a first connection end of all Sbs connecting the main loops in the switch tube group. Two connection ends Sb.
  • the positions of the Sa and Sb may be interchanged, and the operational amplifier 100 may also be connected to the other side of the switch tube group, that is, the switch tube may be associated with SS 2 , SS 2k , and S 2k connection.
  • the difference in the connection method does not bring about the implementation principle and the change of the mode, and will not be described here.
  • the switch tube group is not limited to each of the switch unit tube units shown in FIG. 4, and includes the Sa and Sb.
  • the switch tube group is a unidirectional switch.
  • the tube group, each switch tube unit includes only one switch tube, and only protects the charging or discharging of the battery cells.
  • the switch tube group is a bidirectional switch tube group, but only each switch tube unit of the main loop portion of the switch tube group includes two reverse units.
  • the switching tubes are connected in series, and each switching unit of the sampling loop portion of the switching tube group includes only one switching tube.
  • the switch tube group in the embodiment of the present invention is not limited to a specific structural design, and can be used as the switch of the embodiment of the present invention as long as the mirror relationship of the current ratio in the equal pressure between the main circuit and the sampling circuit can be realized. Tube group.
  • the operational amplifier 100 is configured to adjust the potential of the input negative pin and the input positive pin to be the same, that is, to make the sampling detection output end SS 1k of the switch tube group and the detection output end S of the main circuit
  • the I S1k is substantially equal to the current I S1 flowing through the switching tube group and the entire charging and discharging circuit
  • the protection IC determines whether to issue a shutdown signal to the switch tube group discharge control terminal G1 and the charge control terminal G2 according to the size of I S1k to turn off the switch tube group to stop charging or discharging of the battery cell.
  • the embodiment of the invention combines the switch tube group and the protection IC to realize charging overvoltage protection, discharge undervoltage protection, charging overcurrent protection, discharge overcurrent protection of the battery, and utilizing a current mirror function of detecting a field effect transistor,
  • the current in the main current loop is mirrored to a small current according to a certain proportional coefficient 1/K.
  • the lithium battery protection IC completes the detection of the small current generated by the image, and multiplies the proportional coefficient K to obtain The amount of current in the main flow loop.
  • the sampling detection resistor Rs is connected in series between the sampling detection output terminal SS 1k and the output pin, not on the charging and discharging circuit, and the detection current flowing through the sampling detecting resistor Rs is the charging and discharging.
  • the current of the current on the loop is much smaller than the current on the charge and discharge circuit. Therefore, the heat generated by the sampling and detecting resistor Rs is also very small, and the temperature of the charge and discharge circuit is substantially not practical. Sexual influence.
  • the sampling detection output terminal SS 1k and the sampling detection resistor Rs is much smaller than the current flowing through the main circuit of the switching tube group and the charging and discharging circuit, although the sampling detection The value of the resistor Rs is tens of ohms to several hundred ohms, and the loss of the practical influence is not generated on the sampling detecting resistor Rs, and the resistance of the sampling detecting resistor Rs is not affected by heat or the like. The effect is advantageous to select the appropriate resistance to achieve maximum detection accuracy.
  • the protection IC determines whether to charge an overcurrent or a discharge overcurrent according to the detection current, and further, the protection IC turns off the charging switch or the discharging switch, thereby completing the functions of charging overcurrent protection and discharging overcurrent protection, thereby eliminating the need for
  • the current sampling resistor on the charging and discharging circuit of the terminal can realize high-precision charging over-current protection and discharge over-current protection, and can greatly reduce the impedance of the current-passing loop and effectively reduce the heat generation of the charging and discharging circuit.
  • the power protection device is configured to determine that the accuracy of the comparator reference voltage of the overcurrent can reach a level of XmV ⁇ 2 mV. For example, 200mV ⁇ 2mV, then the error caused by the accuracy of the comparator reference voltage used by the power protection device to determine the overcurrent is only 1%. For example, according to the threshold of 7 ⁇ 0.7A (A) and overcurrent protection for 3.5 seconds (S), it can meet the protection of 8A in 5S, while 5A is within 60S and 6A is within 5S. 7A does not require shutdown protection within 2S.
  • 0.7A is 10% accuracy for 7A, and the error caused by the accuracy of the protection IC can be less than 1% in the 10% error, and the error caused by the precision accuracy of the current sampling resistor can be achieved. Within 1%, the error caused by the proportional accuracy of the current mirror of the MOS tube group can be within 5%, so that the cumulative target reaches less than 10%.
  • the output of the comparator When the second terminal voltage of the sampling detecting resistor Rs, that is, the amplitude of the measured signal is greater than the comparator reference voltage used by the protection IC to determine an overcurrent, the output of the comparator outputs a first level, and further Turning off the switch tube group, indicating that the charge and discharge circuit and the current in the switch tube group are overcurrent, otherwise, outputting the second level to maintain the switch tube group on, indicating the charge and discharge circuit and the The current in the switching tube group is not overcurrent.
  • the power protection device can be used for current or voltage abnormal protection of a power source or device other than the battery core, and the abnormality of the detection current of the power source or the device is too large or too small to start and turn off. Protection measures such as decompression or boosting.
  • the power protection device according to the second embodiment of the present invention is different from the power protection device of the first embodiment in that the power protection device of the first embodiment has only one operational amplifier 100, and the operational amplifier 100 is only connected to the output end of the discharge switch tube Sa in the switch tube group, and the second embodiment further includes a slave operational amplifier 200 connected to the switch tube group according to the first embodiment.
  • the output of the charging switch Sb is as follows:
  • the protection IC further includes a current detecting terminal, a current detecting terminal negative, and a current sampling detecting output terminal according to the first embodiment.
  • the slave operational amplifier 200 also includes an input positive pin that is coupled to the current sense terminal, an input negative pin that is negatively coupled to the current sense terminal, and an output pin that is coupled to the current sense detection output.
  • the sampling loop output terminal SS 2 of the switching tube group is connected to the input negative pin of the slave operational amplifier 200 through a current detecting terminal of the protection IC, and the detection output terminal S 2k of the main circuit passes the protection
  • the current sense terminal of the IC is being coupled to the input positive pin of the slave operational amplifier 200.
  • the sampling loop output terminal SS 2 is connected to the output pin of the slave operational amplifier 200, and the output pin is connected to the current sampling detection output terminal of the protection IC.
  • the power protection device further includes a sampling detection resistor Rs connected in series between the sampling loop output terminal SS 2 of the switching tube group and the output pin of the slave operational amplifier 200 for generating Sampling and detecting current.
  • the slave operational amplifier 200 of the second embodiment of the present invention is similar in connection to the operational amplifier 100 of the first embodiment, wherein the fine distinction has been as described above.
  • the current detection and overcurrent protection principles of the charging and discharging circuit in the second embodiment of the present invention are completely the same as those in the first embodiment, and are not described herein again.
  • the sampling loop output terminal SS2 is only connected to the output pin of the slave operational amplifier 200, and the sampling detection output terminal SS 2k Connected to the input negative pin of the slave operational amplifier 200, and the sampling sense resistor Rs is connected in series between the sampling loop output terminal SS2 and the output pin of the slave operational amplifier 200.
  • the protection IC has only one slave operational amplifier 200 connected to the output terminal of the charging switch tube Sb of the switch tube group, and the invention can also be implemented to achieve the use of the mirror current.
  • the detection current is used to detect the charging and discharging current value of the battery cell, and the switching of the switching tube group is controlled according to the charging and discharging current value obtained by the sampling detection and the comparison result of the comparator to realize abnormal protection of the overcurrent, overheating and the like.
  • the main difference between the third embodiment of the present application and the first and second embodiments is that the switch tube group of the power protection device in the third embodiment is connected between the positive pole of the battery and the load, and the The switch tube sets of Embodiments 1 and 2 are connected between the negative electrode of the battery and the load.
  • the power protection device in the third embodiment of the present application mainly includes a protection IC connected to the battery core and a switch tube group for conducting and turning off the battery core, wherein the structure and function of the switch tube group and the above implementation
  • the switching tube groups in the first and second examples are the same, and their specific functions and structures will not be described herein.
  • the protection IC includes a power supply terminal VCC connected to the anode of the battery core, a ground terminal GND connected to the negative pole of the battery core, a current detection terminal positive T1, a current detection terminal negative T2, a mirror current input port I, a mirror current output port O, and a discharge protection.
  • the IC protection circuit includes an operational amplifier 200 and a voltage regulating switch S.
  • the operational amplifier 200 includes an input positive pin connected to the current detecting terminal positive T1, an input negative pin connected to the current detecting terminal negative T2, and an output pin for outputting an adjustable voltage.
  • the operational amplifier 200 adjusts the magnitude of the adjustable voltage output by the output pin to make the voltage of the sampling loop of the switch tube equal to the voltage output by the main circuit, that is, the voltage of the S 1k and the SS 1 Or the voltage of SS 1k is equal.
  • the voltage regulating switch tube S includes a voltage input pin connected to an output pin of the operational amplifier 200, a current input pin connected to the mirror current input port I, and a connection with the mirror current output port O. Current output pin.
  • the power protection device may further include a filter capacitor C connected between the power terminal VCC and the ground GND, and a filter inductor connected between the power terminal VCC and the anode of the battery to interfere with the current And the interference voltage is filtered to reduce interference and improve accuracy and reliability.
  • the electrical protection terminal DO and the charging protection terminal CO of the protection IC are respectively connected to the discharge control terminal G1 and the charging control terminal G2 that are turned off by the switch tube group. It can be understood that in some embodiments, due to the switch tube group Different configurations, the electrical protection terminal DO of the protection IC and the charging protection terminal CO and the discharge control terminal G1 and the charging control terminal G2 of the switching tube group corresponding to the leveling are only required to be provided with a pair Charging or discharging protection of the cells.
  • the input positive pin of the operational amplifier 200 is connected to the SS 1 or SS 1k of the sampling loop of the switching transistor group through the current detecting terminal positive T1 of the protection IC; the input pin of the operational amplifier negatively passes the current
  • the detection terminal negative T2 is connected to the S 1k of the main circuit of the switching tube group.
  • the power protection device further includes a sampling detection resistor Rs, one end of the sampling detection resistor Rs is connected to the mirror current output port O of the protection IC, and the other end is grounded.
  • the magnitude of the mirror current can be calculated by detecting the voltage of the sampling detection resistor Rs, thereby obtaining the main loop current of the switching tube group, that is, the charging and discharging circuit of the battery cell flows through the switching tube group. Current size.
  • the power protection device further includes a filter capacitor C and a filter inductor L for filtering the interference current and the interference voltage.
  • the filter inductor L is connected in series between the power supply terminal VCC of the operational amplifier 200 and the positive electrode of the battery, and the two ends of the filter inductor L are respectively connected to the power terminal VCC and the ground GND, and the filter inductor One end of the L connected to the power supply terminal VCC is simultaneously connected to one end of the filter inductor L, and the other end of the filter inductor L connected to the ground terminal GND is connected to the negative pole of the battery while being grounded.
  • the grounding refers to a zero-level reference point and is not limited to being connected to the ground.
  • the operational amplifier 100 is basically the same as the operational principle of the first and second embodiments.
  • the operational amplifier 200 is configured to adjust the potential of the input negative pin and the input positive pin, that is, to sample the switch tube group.
  • the detection output terminal SS 1k or the sampling loop output terminal SS 1 has the same potential as the detection output terminal S 1k of the main loop.
  • the only difference is that the adjusted circuit structure and the manner of adjustment are different.
  • the switching tubes of Embodiments 1 and 2 are connected between the negative pole of the battery and the load, and the output pins of the operational amplifier are directly
  • the output adjustment voltage is such that the input negative pin and the input positive pin have the same potential.
  • the switch tube group in this embodiment is connected between the positive electrode of the battery core and the load, and not only the output of the output pin is adjusted to make the sampling detection output end SS 1k of the switch tube group and the
  • the detection output terminal S 1k of the main circuit has the same potential, and the output pin passes the adjustment to ensure that the sampling detection output terminal SS 1k of the switching tube group and the detection output terminal S 1k of the main circuit are positive.
  • the voltage switch tube S is connected to the sampling resistor Rs, and one end of the sampling resistor Rs is connected to the voltage regulating switch tube S, and the other end is grounded.
  • the operational amplifier 200 adjusts the voltage outputted by the output pin, that is, adjusts the turn-on voltage of the voltage regulating switch S to adjust the on-resistance of the voltage regulating switch S, thereby adjusting the sampling loop output.
  • the voltage of the terminal SS 1 is such that the sampling detection output terminal SS 1k of the switching tube group or the sampling loop output terminal SS 1 is the same as the detection output terminal S 1k of the main circuit.
  • the switch tube group discharge control terminal G1 and the a voltage between the sampling detection output terminal SS 1k or SS 1 is equal to a voltage between the discharge control terminal G1 and the detection output terminal S 1k of the main circuit, and a switching transistor D pole of the sampling loop and the SS
  • R DS1k relationship between the main circuit and the output terminal S 1k is R DSS1k:
  • R DS1k is K: 1, that is, the ratio of the imped
  • the switch tube group of the power protection device in the third embodiment only protects one of the discharge or charging of the battery core, that is,
  • the protection IC in the third embodiment has only the same operational amplifier, and is connected to a switch tube of the switch tube group for charging or discharging conduction.
  • the first operational amplifier 300 and the second operational amplifier 400 are respectively connected to all the first switch tubes Sa and the second switch tubes Sb of the switch tube group for conducting or discharging conduction, to the battery core Overcurrent detection and shutdown protection for charging and discharging.
  • the power protection device of the fourth embodiment of the present application mainly includes a protection IC connected to the battery core and a switch tube group for performing on and off protection of the battery core, wherein the structure and function of the switch tube group and the above embodiment
  • the switching tubes of the first, second and third are the same or similar, and their specific functions and structures will not be described herein.
  • the protection IC includes a power terminal VCC connected to the anode of the battery, a ground GND connected to the anode of the battery, a first current detecting terminal T11, a first current detecting terminal negative TT12, and a first mirror current input port I1.
  • a mirror current output port O1 a second current detecting terminal positive D21, a second current detecting terminal negative T22, a second mirror current input port I2, a second mirror current output port O2, a discharge protection terminal DO, and a charging protection terminal CO
  • the power terminal VCC and the ground terminal GND are two power input terminals of the protection IC, and are respectively connected to the positive and negative terminals of the battery.
  • the protection IC further includes a first voltage regulating switch tube S3 and a second voltage regulating switch tube S4.
  • the power protection device further includes a first sampling detecting resistor Rs1 and a second sampling detecting resistor Rs2, wherein the first operation
  • the connection manners of the current detection terminal positive T1, the current detection terminal negative T2, the mirror current input port I, the mirror current output port O, and the switch tube group are respectively the same, and are not described herein again.
  • the difference is only that the first operational amplifier 300 is connected to ports S 1 , S 1k , SS 1 , SS 1k , etc. on one side of the switch tube group, and the second operational amplifier 400 is symmetrically connected to the switch tube. Ports such as S 2 , S 2k , SS 2 , SS 2k on the other side of the group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电源保护装置包括保护IC、开关管组以及采样电阻;所述保护IC分别与所述电芯正负极两端连接且包括镜像电流输入端口、镜像电流输出端口、一运算放大器、一调压开关管以及充放电保护端,所述运算放大器包括输入正管脚、输入负管脚以及输出管脚,所述调压开关管包括与所述运算放大器的输出管脚连接的电压输入管脚、与所述镜像电流输入端口连接的电流输入管脚以及与所述镜像电流输出端口连接的电流输出管脚;所述开关管组连接在所述电芯正极与所述负载之间,用于导通或关断所述电芯的充放电回路,所述至少一控制端与所述保护IC的所述至少一充放电保护端连接并用于接收所述保护IC的控制信号以控制所述开关管组关断来实现对所述电芯的异常保护。

Description

一种电源保护装置以及使用所述装置的终端 技术领域
本发明实施例涉及电路领域,并且更具体地,涉及一种电源保护装置以及使用所述装置的终端。
背景技术
当前终端快充已经成为普遍的客户需求,终端所使用的快充技术已经成为当前的热门技术,但是快充所带来的发热也是整个业界的难题,当充电电流增大1倍时,同样的充电回路阻抗所引起的发热量将变为原来的4倍。
常见的一些终端所使用的锂离子电池在使用时,都需要有一个封装于电池内部与电芯串联起来的保护电路,用于监控锂离子电池的充电过压、放电欠压、充电过流、放电过流,对于放电过流既要满足相关规范的LPS(Limited power sources)认证的要求,就是在8安电流时5秒内关断半导体开关(MOS)管以实现断电保护,又要满足手机的脉冲负载5安电流60秒内、6安电流5秒内、7安电流2秒内下不关机的要求。
目前电池保护电路的电流检测方法中,常见的一种方法是利用充放电回路MOS管的电阻阻抗来做过流检测,用电流流过该充放电回路MOS管的电阻所形成的压降来触发锂电池保护IC内部过流检测比较器,但是MOS管的电阻不是一个恒定值,随各种条件的变化而变化,在大电流实现快速充电时,该MOS管的两端导通电压较高且变化范围较大,导致该MOS管的电阻变化也很大,无法满足高精度的要求。
目前电池保护电路的电流检测方法中,常见的另一种方法为充电回路专门设置一个电流采样电阻,并用该电流采样电阻来做过流检测,用电流流过该充放电回路的电流采样电阻RS所形成的压降来触发电池保护IC内部过流检测比较器。
然而,由于引入额外的电流采样电阻,导致该充放电回路阻抗增加,在大电流实现快速充电时,该电流采样电阻也会产生热量导致充放电回路升温影响显著增加。
因此,目前无法找到电池在大电流实现快速充电时既能不额外增加充放电回路的通流阻抗,又能有具有足够的过流检测精度的有效解决方案。
发明内容
本发明实施例提供一种电源保护装置以及使用所述装置的终端,以提供电源保护装置中在电池大电流快速充电时,通流回路阻抗过高以及过流检测精度不够的问题。
第一方面,本发明实施例提供了一种电源保护装置,用于保护与负载连接的电芯,保护IC、开关管组以及采样电阻;所述保护IC包括分别与所述电芯正负极两端连接的二电源输入端,还包括镜像电流输入端口、镜像电流输出端口、一运算放大器、一调压开关管以及至少一充放电保护端,所述运算放大器包括输入正管脚、输入负管脚以及输出管脚,所述调压开关管包括与所述运算放大器的输出管脚连接的电压输入管脚、与所述镜像电流输入端口连接的电流输入管脚以及与所述镜像电流输出端口连接的电流输出管脚;所述开关管组连接在所述电芯正极与所述负载之间,用于导通或关断所述电芯的充放电回路,所述开关管组包括开关管组的主回路部分以及开关管组的采样部分,所述开关管组包括与所 述负载连接的第一连接端、与所述电芯正极连接的第二连接端以及至少一控制端,所述第一连接端以及第二连接端分别与所述开关管组的主回路部分充电时的输入端以及输出端连接,所述至少一控制端与所述保护IC的所述至少一充放电保护端连接并用于接收所述保护IC的控制信号以控制所述开关管组关断来实现对所述电芯的异常保护;所述采样检测电阻Rs一端与所述镜像电流输出端口连接,另一端接地,用于检测所述开关管组的采样部分的电流;其中,所述开关管组的主回路部分与所述输入正管脚连接,所述开关管组的采样部分与所述输入负管脚连接,所述运算放大器主要用于使所述开关管组的主回路部分以及主回路部分的与所述运算放大器的连接处电压相同,以使流过所述主回路的电流与流过所述采样回路的电流成等比关系。可以理解,在一些实施例中可通过其它元器件来实现所述至少一个采样回路连接端以及主回路检测端的电压相同的效果,因此,本发明实施例并不局限于运算放大器,所述运算放大器仅为局限于当前技术以及认知所取的名称,任何有类似功能的元器件或集成电路都应该等同于该运算放大器。所述第一连接端以及第二连接端相当于分别与所述开关管组的主回路部分充电时的输入端以及输出端连接或者放电是的输出端和输入端连接,也就是所述开关管组的主回路部分构成所述电芯充放电回路的一部分,所述充放电回路中的电流主要通过所述第一连接端和第二连接端流经所述主回路。
所述保护装置主要利用所述开关管组的检测场效应晶体管的电流镜像功能,把主通流回路中的电流按一定的比例系数1/K镜像出一个很小的电流,由所述保护IC完成对这个镜像出来的很小的电流进行检测,再乘以比例系数K就得到主通流回路中的电流大小。最后,根据这个值大小来判断是否充电过流或者放电过流,进而由所述保护IC来关断充电开关或者放电开关,完成充电过流保护、放电过流保护的功能。
结合第一方面,在第一方面的第一种可能的实现方式中,所述运算放大器用于使所述输入负管脚与所述输入正管脚的电位相同,也就是使所述开关管组的至少一个采样回路连接端与所述主回路检测端的电位相同,以使流过所述采样回路的电流与流过所述主回路的电流成等比关系,其中流过所述第一连接端和第二连接端的电流等于所述主回路电流。
结合第一方面以及第一方面的第一种实现方式,在第一方面的第二种可能的实现方式中,所述开关管组包括(X+KX)个相互并联的开关管单元,其中X个开关管单元并联组成所述采样回路,KX个管并联组成所述主回路,其中流过所述采样回路的电流与流过所述主回路的电流的比值等于所述采样回路的开关管单元数量与所述主回路的开关管单元数量的比值,也就是等于1:K,其中X为大于等于1的整数值,K大于1,且KX为整数。
结合第一方面的第二种实现方式,在第一方面的第三种可能的实现方式中,所述开关管组包括与所述开关管组的采样部分连接的采样输出端SS 1以及与所述开关管组的主回路部分连接的主回路检测输出端S 1k,所述S 1k与所述运算放大器的输入负管脚连接,所述SS 1与所述运算放大器的输入正管脚以及所述镜像电流输入端口同时连接。
结合第一方面的第三种实现方式,在第一方面的第四种可能的实现方式中,所述开关管组还包括与所述开关管组的采样部分连接的采样输出端SS 2以及与所述开关管组的主回路部分连接的主回路检测输出端S 2k,所述保护IC还包括一第二镜像电流输入端口、第二镜像电流输出端口、一第二运算放大器以及一第二调压开关管,所述第二调压开关管包括与所述第二运算放大器的输出管脚连接的电压输入管脚、与所述第二镜像电流输入端口 连接的第二电流输入管脚以及与所述第二镜像电流输出端口连接的第二电流输出管脚,所述S 2k与所述第二运算放大器的输入负管脚连接,所述SS 2与所述第二运算放大器的输入正管脚以及所述第二镜像电流输入端口同时连接,而且所述电源保护装置还包括一第二采样检测电阻RS2串联在所述第二镜像电流输出端口与地之间。。
结合第一方面的第二种实现方式,在第一方面的第五种可能的实现方式中,所述开关管组包括与所述开关管组的采样部分连接的采样输出端SS 1、采样检测输出端SS 1k以及与所述开关管组的主回路部分连接的主回路检测输出端S 1k,所述S 1k与所述运算放大器的输入负管脚连接,所述SS 1与所述镜像电流输入端口连接,所述SS 1k与所述运算放大器的输入正管脚连接。
结合第一方面的第五种实现方式,在第一方面的第六种可能的实现方式中,所述开关管组还包括与所述开关管组的采样部分连接的采样输出端SS 2和采样检测输出端SS 2k、以及与所述开关管组的主回路部分连接的主回路检测输出端S 2k,所述保护IC还包括一第二镜像电流输入端口、以及第二镜像电流输出端口、一第二运算放大器以及一第二调压开关管,所述第二调压开关管包括与所述第二运算放大器的输出管脚连接的电压输入管脚、与所述第二镜像电流输入端口连接的第二电流输入管脚以及与所述第二镜像电流输出端口连接的第二电流输出管脚,所述S 2k与所述第二运算放大器的负输入管脚连接,所述SS 2与所述第二镜像电流输入端口连接,所述SS 2k与所述从运算放大器的输入正管脚连接。
结合第一方面的第五或六种实现方式,在第一方面的第七种可能的实现方式中,所述每个开关管单元包括一个第一开关管Sa以及与所述Sa反向串联第二开关管Sb,其中每个所述Sa或Sb均并联一个二极管D1,所述Sa为放电开关管,所述Sb为充电开关管,所述X个开关管单元并联在一起组成所述采样回路,而所述KX个开关管单元并联在一起组成所述主回路。
结合第一方面的第七种实现方式,在第一方面的第八种可能的实现方式中,所有所述Sa和Sb的D极连接在一起,所述(X+KX)个开关管单元的Sa的G极连接在一起形成放电控制端G1,所述(X+KX)个开关管单元的Sb的G极连接在一起形成充电控制端G2,组成所述采样回路的X个开关管单元中的所有Sa的S极与同一引脚连接而形成所述采样回路输出端SS1,而所述X个开关管单元中的所有Sb的S极与同一引脚连接而形成所述采样回路输出端SS2,组成所述主回路的KX个开关管单元中的所有Sa的S极与同一引脚连接而形成所述开关管组的第一连接端S1,而所述X个开关管单元中的所有Sb的S极与同一引脚连接而形成所述开关管组的第二连接端S2。
结合第一方面的第八种实现方式,在第一方面的第九种可能的实现方式中,所述SS 1k由高导电率金属导线直接连接所述采样回路的X个开关管单元中的所有Sa的晶圆上的S极而形成,所述SS 2k由高导电率金属直接连接所述采样回路的X个开关管单元中的所有Sb的晶圆上的S极而成,所述主回路的的检测输出端S 1k由高导电率金属导线直接连接所述主回路的KX个开关管单元中的所有Sa的晶圆上的S极而形成,所述S 2k由高导电率金属直接连接所述主回路的KX个开关管单元中的所有Sb的晶圆上的S极而形成。
结合第一方面的任何一种实现方式,在第一方面的第十种可能的实现方式中,所述至少一控制端包括用于在放电的时候控制所述开关管组关断的放电控制端G1以及用于在充电的时候控制所述开关管组关断的充电控制端G2,所述保护IC的至少一充放电保护端包括分别对应连接所述放电控制端G1和所述充电控制端G2的放电保护端DO以及充电 保护端CO。
本发明实施例通过所述开关管组和所述保护IC结合起来实现电池的充电过压保护、放电欠压保护、充电过流保护、放电过流保护,利用检测场效应晶体管的电流镜像功能,把主通流回路中的电流按一定的比例系数1/K镜像出一个很小的电流,由所述保护IC完成对这个镜像出来的很小的电流进行检测,再乘以比例系数K就得到主通流回路中的电流大小。所述采样检测电阻Rs串联在所述采样检测输出端与所述输出管脚之间,不在所述充放电回路上,而且流过所述采样检测电阻Rs的检测电流为所述充放电回路上电流的1/K,远小于所述充放电回路上的电流,因此,所述采样检测电阻Rs所能产生的热量也会非常小,基本不会对所述充放电回路的温度有实际性影响。
第二方面,本发明实施例提供了一种电源保护装置,用于保护与负载连接的电芯,包括保护IC、开关管组以及采样检测电阻Rs;所述保护IC包括分别与所述电芯正负极两端连接的二电源输入端、电流检测端正、电流检测端负、镜像电流输入端口、镜像电流输出端口以及至少一充放电保护端;所述开关管组连接在所述电芯正极与所述负载之间,用于导通或关断所述电芯的充放电回路,所述开关管组包括主回路部分以及采样部分,所述开关管组包括与所述负载连接的第一连接端、与所述电芯正极连接的第二连接端以及至少一控制端,所述第一连接端以及第二连接端分别与所述开关管组的主回路部充电时的输入端以及输出端连接,所述控制端与所述保护IC的所述至少一充放电保护端连接并用于接收所述保护IC的控制信号以控制所述开关管组关断来实现对所述电芯的异常保护;所述采样检测电阻Rs的一端与所述镜像电流输出端口连接,另一端接地,用于检测所述开关管组采样部分的电流;其中,所述开关管组的主回路部分与所述电流检测端负连接,所述开关管组的采样部分分别与所述电流检测端正以及所述镜像电流输入端口连接。所述保护IC可用于使所述开关管组的主回路部分以及主回路部分的与所述运算放大器的连接处的电压相同,以使流过所述主回路的电流与流过所述采样回路的电流成等比关系。可以理解,在一些实施例中可通过其它元器件来实现所述至少一个采样回路连接端以及主回路检测端的电压相同的效果,因此,本发明实施例并不局限于保护IC,所述保护IC仅为局限于当前技术以及认知所取的名称,任何有类似功能的元器件或集成电路都应该等同于该保护IC。所述第一连接端以及第二连接端相当于分别与所述开关管组的主回路部分充电时的输入端以及输出端连接或者放电是的输出端和输入端连接,也就是所述开关管组的主回路部分构成所述电芯充放电回路的一部分,所述充放电回路中的电流主要通过所述第一连接端和第二连接端流经所述主回路。
第三方面,本发明实施例提供一种电池,包括电芯以及上述第一方面、第二方面或第一方面中任一种实现方式中所述的用于对所述电芯进行保护的电源保护装置电源保护装置。
第四方面,本发明实施例提供一种终端,包括充电连接器、充电管理芯片、电池以及负载,所述充电连接器用于连接充电线缆,所述充电管理芯片连接在所述充电连接器以及所述电池之间以用于控制所述电池的充电过程,所述电池用于给所述负载供电,其特征在于,所述电池包括电芯以及上述第一方面、第二方面或第一方面中任一种实现方式中所述的用于对所述电芯进行保护的电源保护装置。
本发明实施例通过所述开关管组和所述保护IC结合起来实现电池的充电过压保护、 放电欠压保护、充电过流保护、放电过流保护,利用检测场效应晶体管的电流镜像功能,把主通流回路中的电流按一定的比例系数1/K镜像出一个很小的电流,由锂电池保护IC完成对这个镜像出来的很小的电流进行检测,再乘以比例系数K就得到主通流回路中的电流大小。所述采样检测电阻Rs串联在所述采样回路检测检测端与所述输出管脚之间,不在所述充放电回路上,而且流过所述采样检测电阻Rs的检测电流为所述充放电回路上电流的1/K,远小于所述充放电回路上的电流,因此,所述采样检测电阻Rs所能产生的热量也会非常小,基本不会对所述充放电回路的温度有实际性影响。
此外,由于流过所述至少一个采样回路连接端以及所述采样检测电阻Rs的电流远远小于流过所述开关管组的主回路以及所述充放电回路的电流,所以尽管所述采样检测电阻Rs的取值为几十欧姆到几百欧姆,也不会在所述采样检测电阻Rs上产生具有实际性影响的损耗,而且所述采样检测电阻Rs的电阻取值不受发热等因素的影响则有利选取适当的阻值来达到最大检测精度。
最后,根据所述检测电流来判断是否充电过流或者放电过流,进而由所述保护IC来关断充电开关或者放电开关,完成充电过流保护、放电过流保护的功能,从而不需要在终端的充放电通流回路上设置电流采样电阻就能实现高精度的充电过流保护和放电过流保护,还可以大大减小通流回路阻抗,有效减小充放电回路的发热。
附图说明
图1是本发明实施例的应用场景图。
图2是本发明实施例一中的电源保护装置的电路图。
图3是本发明实施例一中的电源保护装置的另一电路图。
图4是本发明实施例中一开关管组的结构示意图。
图5是本发明实施例中另一开关管组的结构示意图。
图6是本发明实施例中又一开关管组的结构示意图。
图7是本发明实施例二中的电源保护装置的电路图。
图8是本发明实施例二中的电源保护装置的另一电路图。
图9是本发明实施例三中的电源保护装置的电路图。
图10是本发明实施例三中的电源保护装置的另一电路图。
图11是本发明实施例四中的电源保护装置的电路图。
图12是本发明实施例四中的电源保护装置的另一电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例中的电源保护装置主要适用于各种具有充电电池的电子产品,尤其适用于一些便携设备,如手机、平板电脑、笔记本电脑、各种穿戴设备等终端产品。对于此类需要进行充电的终端就需要电源保护装置,以防止因为过压、过流、过充等情况进行断电保护,否则会因此电池中的电芯损坏,甚至导致电芯爆炸等严重后果。本发明实施例中涉及的电池包括充电池保护电路或装置以及电芯,所述电芯是指干电池等电能存储载体。
为了便于描述,以下将所有具有充电电池的电子产品称为终端。
本发明实施例中的电源保护装置可以作为消费电子设备的锂电池保护电路,比如手机、手表等各种穿戴设备、笔记本电脑、平板电脑等的锂电池保护电路,该锂电池保护电路存在于一块独立的印刷电路板(PCB)上,该PCB与锂电池的电芯相连。消费电子产品中的可充电电池通常是指承载锂电池保护电路的PCB、锂电池的电芯以及外壳三者一起组成锂电池封装包,用以给该消费电子设备供电。
本发明实施例中的电源保护装置主要包括MOS管组和保护集成电路(IC),此二者结合起来实现电池的充电过压保护、放电欠压保护、充电过流保护、放电过流保护,其优点在于不需要在终端的充放电通流回路上设置电流采样电阻就能实现高精度的充电过流保护和放电过流保护,从而大大减小通流回路阻抗,减小发热。所述电源保护装置主要利用检测场效应晶体管的电流镜像功能,把主通流回路中的电流按一定的比例系数1/K镜像出一个很小的电流,由锂电池的保护IC完成对这个镜像出来的很小的电流进行检测,再乘以比例系数K就得到主通流回路中的电流大小。最后,根据这个值大小来判断是否充电过流或者放电过流,进而由所述保护IC来关断充电开关或者放电开关,完成充电过流保护、放电过流保护的功能。
本发明实施例中所使用的所述检测场效应晶体管的电流镜像原理为在同一个晶元上把开关管组的内部小开关管单元按一定比例分配,比如按1X/1000X的比例分配开关管单元,把1:1000比例中的1000X用于主回路通流,1:1000中的1X用于电流采样,当用于主回路通流和电流采样的两部份开关管单元的输出管脚间电压相等时,由于在同一晶元上温度特性一致,所以用于主回路通流和电流采样的两部份开关管单元的整体阻抗比例也应该是1:1000,同时由于用于主回路通流和电流采样的两部份开关管单元的两端电压也都相等,所以流过主回路通流和电流采样两部份的电流比例为1000:1。
如图1所示,本发明实施例中使用所述电源保护装置的终端包括通过线缆连接充电器的连接器、充电管理芯片、电源保护装置、电池电芯以及负载,其中所述电源保护装置为所述电池保护板,所述负载可以是该终端内的任何用电组件,如显示器、通信模块、处理器、存储器、传感器以及扬声器等等用电组件。
在所述终端充电时电流流向如下:充电器→线缆→连接器→充电管理芯片→电源保护装置→电芯;放电时电流流向如下:电芯→保护板→负载。
在所述终端充电过程中限制充电电流的部件有充电器、充电管理芯片、保护板,当充电器或者充电管理芯片失效时,或者二者同时失效时,该电芯充电的过流保护就得依靠保护板来完成,当检测到充电过流时断开保护板上的开关元件,切断充电通路。
在放电过程中限制放电电流的部件为保护板,当负载异常例如负载短路时,锂电池放电的过流保护由保护板来完成,当检测到放电过流时断开保护板上的开关元件,切断放电通路。
实施例一
同时参阅图2和3,一种具有充电保护功能的终端,所述终端包括电芯、电源保护装置以及通过电芯进行供电的负载。所述电源保护装置主要包括与电芯连接的保护IC以及用于对电芯进行导通和关断保护的开关管组。
所述保护IC包括与电芯正极连接的电源端VCC、与电芯负极连接的接地端GND、电流检测端正T1、电流检测端负T2、电流采样检测输出端、放电保护端DO以及充电保护 端CO,其中所述电源端VCC以及接地端GND为所述保护IC的二电源输入端,分别与所述电芯的正负极连接。所述IC保护电路包括一运算放大器100,所述运算放大器100包括与所述电流检测端正T1连接的输入正管脚、与所述电流检测端负连接的输入负管脚以及与所述电流采样检测输出端连接的输出管脚。所述电芯的正负两端还可以连接一滤波电容C,用于过滤干扰电流以及干扰电压。
所述开关管组串联在所述电芯负极以及所述负载之间,包括与所述电芯负极连接的第一连接端S 1和与所述负载连接的第二连接端S 2。所述开关管组还包括用于在放电的时候控制所述开关管组关断的放电控制端G1以及用于在充电的时候控制所述开关管组关断的充电控制端G2。所述放电控制端G1和所述充电控制端G2分别对应连接所述保护IC的放电保护端DO以及充电保护端CO。
所述开关管组还包括X个采样部分的开关管单元并联组成的采样回路以及KX个主回路部分的开关管单元并联组成的主回路,其中所述X为大于等于1的整数,K为大于1数值。理论上来说,为追求比较理想的效果,X适合取适当的数值,如X为大于等于1的整数值,例如可以在[1,10000]内的数值内,X可以取值100、1000、3000、5000等数值,而K则大于等于100,例如K可以取值100、500、1000、5000、10000等大于1的数值,理论上讲K的数值越大准确度越高,而且KX为整数值。具体可以根据工艺、成本以及晶体特性来进行重复比较试验来获得既能够使所述电源保护装置的通流阻抗够小,又能获得足够的过流保护精度。所述第一连接端S 1以及第二连接端S 2相当于分别与所述开关管组的主回路部分充电时的输入端以及输出端连接或者放电是的输出端和输入端连接,也就是所述开关管组的主回路部分构成所述电芯充放电回路的一部分,所述充放电回路中的电流主要通过所述第一连接端S1和第二连接端S2流经所述主回路。
所述开关管组还包括与所述采样回路的连接端连接的至少一个采样回路连接端以及与所述主回路的输入或输出端连接的主回路检测端,其中所述主回路检测端与所述输入正管脚连接,所述至少一个采样回路连接端与所述输入负管脚连接。
在本实施例中,所述至少一个采样回路连接端包括所述采样回路输出端SS 1,所述主回路检测端包括连接所述主回路的检测输出端S 1k。所述采样回路输出端SS 1通过所述保护IC的电流检测端负与所述运算放大器100的输入负管脚连接。所述主回路检测输出端S 1k通过所述保护IC的电流检测端正T1与所述运算放大器100的输入正管脚连接。
所述采样回路输出端SS 1还与所述运算放大器100的输出管脚连接,而所述输出管脚则连接所述保护IC的电流采样检测输出端。所述电源保护装置还包括一采样检测电阻Rs,所述采样检测电阻Rs串联在所述采样回路输出端SS 1与所述运算放大器100的输出管脚之间,用于产生采样检测电流。所述电芯、所述开关管组以及所述负载构成充放电回路,为电芯放电或充电的主要导通回路。
请特别参阅图3,在一些实施例中,为了提高精度要求,所述至少一个采样回路连接端还包括连接所述采样回路的采样检测输出端SS 1k,所述采样回路输出端SS 1仅与所述运算放大器100的输出管脚连接,而所述采样检测输出端SS 1k与所述运算放大器100的输入负管脚连接,而且所述采样检测电阻Rs串联在所述采样回路输出端SS 1与所述运算放大器100的输出管脚之间。
如图4所示,所述开关管组包括(X+KX)个相互并联的开关管单元,其中X个MOS开关管单元并联组成所述采样回路,KX个MOS管并联组成所述主回路,所述每个开关 管单元包括一个第一开关管Sa以及与所述Sa反向串联第二开关管Sb,其中每个所述Sa或Sb均并联一个二极管D1,其中所述Sa和所述Sb中任一个为充电开关管而另一个为放电开关管,在本实施例中为了方便描述,所述Sa选取为放电开关管,在所述电芯放电的时候导通而所述电芯放电的时候关断,所述Sb为充电开关管,在所述电芯充电的时候导通而在所述电芯放电的时候关断。所述D1用于保护所述Sa以及Sb,防止被击穿。所述Sa以及Sb可以为MOS管也可以是其它具有类似特性的半导体开关管。
所述X个开关管单元并联在一起组成所述采样回路,而所述KX个开关管单元并联在一起组成所述主回路,其中所述(X+KX)个开关管单元的Sa和Sb的D极连接在一起,所述(X+KX)个开关管单元的Sa的G极连接在一起形成所述放电控制端G1,所述(X+KX)个开关管单元的Sb的G极连接在一起形成所述充电控制端G2。
组成所述采样回路的X个开关管单元中的所有Sa的S极与同一引脚连接,由该引脚引出形成所述采样回路输出端SS 1,而所述X个开关管单元中的所有Sb的S极与同一引脚连接,由该引脚引出形成所述采样回路输出端SS 2
与所述采样回路类似,组成所述主回路的KX个开关管单元中的所有Sa的S极与同一引脚连接,由该引脚引出形成所述开关管组的第一连接端S1,而所述X个开关管单元中的所有Sb的S极与同一引脚连接,由该引脚引出形成所述开关管组的第二连接端S2。流过所述第一接连端S 1和第二连接端S 2等于流过所述主回路的电流,也就是等于流过所述主回路的KX个开关管单元的电流的总和。
为了减少引脚自身阻抗的影响,提高检测精度,所述开关管组的采样检测输出端SS 1k可由高导电率金属导线直接连接所述采样回路的X个开关管单元中的所有Sa的晶圆上的S极而形成。同理,所述开关管组的另一个采样检测输出端SS 2k可由高导电率金属直接连接所述采样回路的X个开关管单元中的所有Sb的晶圆上的S极而形成。
与所述采样回路类似,所述主回路的的检测输出端S 1k可由高导电率金属导线直接连接所述主回路的KX个开关管单元中的所有Sa的晶圆上的S极而形成。同理,所述开关管组主回路的另一个检测输出端S 2k可由高导电率金属直接连接所述主回路的KX个开关管单元中的所有Sb的晶圆上的S极而形成。
所述高导电率金属导线包括金、银以及铜等高导金属导线,也可以包括一些高导率的合金导体。通过直接从所述开关管组的晶圆上用高导电率金属导线将电流引出,不需要经过引脚,从而避免引脚自身阻抗的影响,而影响电流检测的精度。
可以理解的,在一些实施例中,在一些对检测精度要求不是非常高或者目前检测精度完全能满足需求的情况下,可以不需要从所述开关管组的晶体管晶圆上通过高导电率金属导线直接引出所述采样检测输出端SS 1k以及SS 2k和所述主回路检测输出端S 1k以及S 2k,而是直接使用所述开关管组的引脚形成的各输出端SS 1、SS 2、S 1以及S 2。此外,在一些实施例中,所述主回路检测端可以为连接所述开关管组中的主回路的所有Sa的第一连接端S1以及连接所述开关管组中主回路的所有Sb的第二连接端Sb。
在一些实施例中,所述Sa和Sb的位置可以互换,所述运算放大器100也可以与所述开关管组的另一边连接,也就是所述开关管可以与SS 2、SS 2k以及S 2k连接,此类连接方式的不同并没有带来实施原理以及方式的变化,在此不再赘述。
在本发明一些实施例中,所述开关管组并不限于图4所示的每个开关单元管单元都包括所述Sa以及Sb,如图5所示,所述开关管组为单向开关管组,每个开关管单元仅包括 一个开关管,仅对所述电芯的充电或放电进行保护。又可以如图6所示,本发明的一些实施例中,所述开关管组为双向开关管组,但是仅是所述开关管组的主回路部分的每个开关管单元包括两个反向串联的开关管,而所述开关管组的采样回路部分的每一个开关单元仅包括一个开关管。可见,本发明实施例中的开关管组并不限于具体的结构设计,只要能够实现主回路以及采样回路之间的等压情况下电流等比的镜像关系便可以使用为本发明实施例的开关管组。
所述运算放大器100用于调整所述输入负管脚与所述输入正管脚的电位相同,也就是使所述开关管组的采样检测输出端SS 1k与所述主回路的检测输出端S 1k电位相同。由于组成所述开关管组的各个MOS管单元在同一个晶圆上,各个单元的一致性很高,温度特性也很一致,阻抗也一致,所以所述开关管组放电控制端G1与所述采样检测输出端SS 1k之间的电压等于所述放电控制端G1与所述主回路的检测输出端S 1k之间的电压,以及所述采样回路的开关管D极与所述SS 1k之间的电压等于所述主回路的开关管D极与所述S 1k之间的电压,也就是V G1SS1k=V G1S1K,V DSS1k=V DS1K,所述采样回路的开关管D极与所述采样检测输出端SS 1k之间电阻R DSS1k和所述主回路的开关管D极与所述主回路输出端S 1k之间的电阻R DS1k的关系为R DSS1k:R DS1k为=K:1,也就是所述开关管组的主回路和采样回路的阻抗之比等于所述主回路和采样回路的MOS管单元并联数量的反比1/k。
当V G1SS1k=V G1S1K时,R DSS1k:R DS1k为=K:1,所述采样检测输出端SS 1k的电流为I SS1k,所述主回路输出端S 1k的电流为I S1k,则I SS1k:I S1k=1/1/(R DSS1k:R DS1k)=1:K,也就是所述采样回路的电流I SS1k为所述主回路电流I S1k缩小了K倍的镜像电流。所以,通过检测所述采样回路的电流I SS1k就可以根据镜像比例系数K获得I S1k=K*I SS1k
当K足够大时,例如K大于等于100或1000或10000时,所述I S1k基本等于流过所述开关管组以及整个充放电回路的电流I S1,所述I SS1k基本等于流过所述I SS1的采样回路电流,因此,I SS1/I S1=1/K。所述保护IC根据I S1k的大小判断是否对所述开关管组放电控制端G1以及充电控制端G2发出关断信号,以关断所述开关管组来停止电芯的充电或放电。
所述Sb部分引出的连接端,如所述S 2、S 2k以及SS 2k与所述S 1、S 1k以及SS 1k的镜像原理相同,也就是:
当V G2SS2k=V G2S2K时,R DSS2k:R DS2k为=K:1,所述采样检测输出端SS 2k的电流为I SS2k,所述主回路输出端S 2k的电流为I S2k,则I SS2k:I S2k=1/1/(R DSS2k:R DS2k)=1:K,也就是所述采样回路的电流I SS2k为所述主回路电流I S2k缩小了K倍的镜像电流。所以,通过检测所述采样回路的电流I SS1k就可以根据镜像比例系数K获得I S1k=K*I SS1k
可以理解的是,所述开关管组中的所述Sa部分与Sb部分的特性以及工作原理是完全一致的,仅仅是导通方向相反而已,出于简洁原因,在此仅简单论述关键点,不再详细具体实现细节。
本发明实施例通过所述开关管组和所述保护IC结合起来实现电池的充电过压保护、放电欠压保护、充电过流保护、放电过流保护,利用检测场效应晶体管的电流镜像功能,把主通流回路中的电流按一定的比例系数1/K镜像出一个很小的电流,由锂电池保护IC完成对这个镜像出来的很小的电流进行检测,再乘以比例系数K就得到主通流回路中的电流大小。所述采样检测电阻Rs串联在所述采样检测输出端SS 1k与所述输出管脚之间,不在所述充放电回路上,而且流过所述采样检测电阻Rs的检测电流为所述充放电回路上电流的1/K,远小于所述充放电回路上的电流,因此,所述采样检测电阻Rs所能产生的热 量也会非常小,基本不会对所述充放电回路的温度有实际性影响。
此外,由于流过所述采样检测输出端SS 1k以及所述采样检测电阻Rs的电流远远小于流过所述开关管组的主回路以及所述充放电回路的电流,所以尽管所述采样检测电阻Rs的取值为几十欧姆到几百欧姆,也不会在所述采样检测电阻Rs上产生具有实际性影响的损耗,而且所述采样检测电阻Rs的电阻取值不受发热等因素的影响则有利选取适当的阻值来达到最大检测精度。
最后,根据所述检测电流来判断是否充电过流或者放电过流,进而由所述保护IC来关断充电开关或者放电开关,完成充电过流保护、放电过流保护的功能,从而不需要在终端的充放电通流回路上设置电流采样电阻就能实现高精度的充电过流保护和放电过流保护,还可以大大减小通流回路阻抗,有效减小充放电回路的发热。
此外,基于上述镜像检测电流以及所述采样检测电阻Rs的恰当取值,所述电源保护装置用于判断过流的比较器参考电压的精度可以达到XmV±2mV的水平。比如是200mV±2mV,那么由于所述电源保护装置用于判断过流的比较器参考电压的精度所带来的误差就只有1%。又例如,按7±0.7安(A)的阈值、3.5秒(S)时间内实现关断的过流保护来设计,就可以满足8A在5S内保护,而5A在60S内、6A在5S内、7A在2S内下不会发生关断保护的要求。0.7A对于7A来讲是10%的精度,所述10%误差中由所述保护IC精度所带来的误差可以做到1%以内,由电流采样电阻精度精度所带来的误差可以做到1%以内,由MOS管组电流镜像比例精度所带来的误差可以做到5%以内,这样累计起来达到小于10%的目标。
当所述采样检测电阻Rs的第二端电压即被测信号的幅值大于所述保护IC用于判断过流的比较器参考电压时,所述比较器的输出端输出第一电平,进而关断所述开关管组,表示所述充放电回路以及所述开关管组中的电流过流,否则,输出第二电平维持所述开关管组导通,表示所述充放电回路以及所述开关管组中的电流没有过流。
在一些实施例中,所述电源保护装置可以用于对电芯以外的电源或者器件进行电流或电压异常保护,在所述电源或器件的检测电流过大或过小等异常情况是启动关断、减压或升压等保护措施。
实施例二
如图7所示,本发明实施例二所述的电源保护装置和实施例一的所述电源保护装置的区别在于,实施例一的电源保护装置仅有一个运算放大器100,且所述运算放大器100仅连接所述开关管组中的放电开关管Sa的输出端,而实施例二在实施例一的基础上还包括一从运算放大器200,所述从运算放大器200连接所述开关管组中的充电开关管Sb的输出端,具体如下:
所述保护IC在实施例一的基础上还包括电流检测端正、电流检测端负以及电流采样检测输出端。
所述从运算放大器200也包括与所述电流检测端正连接的输入正管脚、与所述电流检测端负连接的输入负管脚以及与所述电流采样检测输出端连接的输出管脚。
所述开关管组的采样回路输出端SS 2通过所述保护IC的电流检测端负与所述从运算放大器200的输入负管脚连接,所述主回路的检测输出端S 2k通过所述保护IC的电流检测端正与所述从运算放大器200的输入正管脚连接。
所述采样回路输出端SS 2与所述从运算放大器200的输出管脚连接,而所述输出管脚则连接所述保护IC的电流采样检测输出端。所述电源保护装置还包括一采样检测电阻Rs,所述采样检测电阻Rs串联在所述开关管组的采样回路输出端SS 2与所述从运算放大器200的输出管脚之间,用于产生采样检测电流。
本发明实施例二中的从运算放大器200在连接上与实施例一的运算放大器100类似,其中细微区别已如上述。本发明实施例二中充放电回路的电流检测以及过流过保护原理和实施例一的完全相同,在此不再赘述。
如图8所示,在本发明的一些实施例中,为了提高精度要求,所述采样回路输出端SS2仅与所述从运算放大器200的输出管脚连接,而所述采样检测输出端SS 2k与所述从运算放大器200的输入负管脚连接,而且所述采样检测电阻Rs串联在所述采样回路输出端SS2与所述从运算放大器200的输出管脚之间。
可以理解,在一些实施例中,所述保护IC仅有一个从运算放大器200,与所述开关管组的充电开关管Sb的输出端连接,也是同样可以实现本发明,达到使用镜像电流来作为采用检测电流来检测电芯的充放电流值,并根据采样检测获得的充放电流值和比较器的比较结果来控制开关管组的关断来实现过流、过热等电芯的异常保护。
实施例三
如图9和10所示,本申请实施例三和实施例一和二的主要区别在于,所述实施例三中电源保护装置的开关管组连接在电芯正极与负载之间,而所述实施例一和二中的开关管组是连接在电芯负极与负载之间。
本申请实施例三中的电源保护装置主要包括与电芯连接的保护IC以及用于对电芯进行导通和关断保护的开关管组,其中所述开关管组的结构以及功能和上述实施例一和二中的开关管组相同,在此不再赘述其具体功能以及结构。
所述保护IC包括与电芯正极连接的电源端VCC、与电芯负极连接的接地端GND、电流检测端正T1、电流检测端负T2、镜像电流输入端口I、镜像电流输出端口O、放电保护端DO以及充电保护端CO,其中所述电源端VCC以及接地端GND为所述保护IC的二电源输入端,分别与所述电芯的正负极连接。所述IC保护电路包括一运算放大器200以及一调压开关管S。所述运算放大器200包括与所述电流检测端正T1连接的输入正管脚、与所述电流检测端负T2连接的输入负管脚以及用于输出可调电压的输出管脚。所述运算放大器200通过调整所述输出管脚输出的可调电压的大小来使得所述开关管的采样回路的电压和主回路输出的电压相等,也就是使所述S 1k的电压与SS 1或SS 1k的电压相等。
所述调压开关管S包括与所述运算放大器200的输出管脚连接的电压输入管脚、与所述镜像电流输入端口I连接的电流输入管脚以及与所述镜像电流输出端口O连接的电流输出管脚。
所述电源保护装置还可以包括连接在所述电源端VCC与接地端GND之间的一滤波电容C以及连接在所述电源端VCC与所述电芯正极之间的滤波电感,以对干扰电流以及干扰电压进行滤波处理来减少干扰提高精度以及可靠性。
所述放保护IC的电保护端DO以及充电保护端CO分别与所述开关管组关断的放电控制端G1以及充电控制端G2连接,可以理解在一些实施例中,由于所述开关管组的不同结构,所述放保护IC的电保护端DO以及充电保护端CO以及对应练级的所述开关管 组关断的放电控制端G1以及充电控制端G2只需要设置有一对即可实现对所述电芯的充电或放电保护。
所述运算放大器200的输入正管脚通过所述保护IC的电流检测端正T1与所述开关管组的采样回路的SS 1或SS 1k连接;所述运算放大器的输入管脚负通过所述电流检测端负T2与所述开关管组的主回路的S 1k连接。所述电源保护装置还包括一采样检测电阻Rs,所述采样检测电阻Rs的一端连接所述保护IC的镜像电流输出端口O,另一端接地。通过检测所述采样检测电阻Rs电压可以计算出所述镜像电流的大小,从而获得所述开关管组的主回路电流大小,也就是所述电芯的充放电回路上流过所述开关管组的电流大小。
所述电源保护装置还包括一滤波电容C以及滤波电感L,用于过滤干扰电流以及干扰电压。所述滤波电感L串联在所述运算放大器200的电源端VCC与所述电芯正极之间,所述滤波电感L的两端分别连接所述电源端VCC与接地端GND,而且所述滤波电感L与所述电源端VCC连接的一端同时与所述滤波电感L的一端连接,所述滤波电感L与所述接地端GND连接的另一端连接所述电芯负极的同时接地。需要指出的是,所述接地是指零电平参考点,并非限于与大地连接。
与实施例一和二的工作原理运算放大器100基本相同,所述运算放大器200用于调整所述输入负管脚与所述输入正管脚的电位相同,也就是使所述开关管组的采样检测输出端SS 1k或所述述采样回路输出端SS 1与所述主回路的检测输出端S 1k电位相同。唯一有区别的仅是调整的电路结构以及调整的方式有所不同,例如,实施例一和二的开关管组接在所述电芯负极与负载之间,所述运算放大器的输出管脚直接对输出调整电压使所述输入负管脚与所述输入正管脚的电位相同。而本实施例中的开关管组连接在所述电芯正极以及所述负载之间,不仅要调整所述输出管脚的输出来使所述开关管组的采样检测输出端SS 1k与所述主回路的检测输出端S 1k电位相同,同时为了保证所述开关管组的采样检测输出端SS 1k与所述主回路的检测输出端S 1k电位为正,所述输出管脚通过所述调压开关管S连接所述采样电阻Rs,并且所述采样电阻Rs一端连接所述调压开关管S,另一端接地。所述运算放大器200调整输出管脚输出的电压,也就是调整所述调压开关管S的导通电压,来调整所述调压开关管S的导通电阻,从而调整所述述采样回路输出端SS 1的电压以使所述开关管组的采样检测输出端SS 1k或所述述采样回路输出端SS 1与所述主回路的检测输出端S 1k电位相同。
由于组成所述开关管组的各个MOS管单元在同一个晶圆上,各个单元的一致性很高,温度特性也很一致,阻抗也一致,所以所述开关管组放电控制端G1与所述采样检测输出端SS 1k或SS 1之间的电压等于所述放电控制端G1与所述主回路的检测输出端S 1k之间的电压,以及所述采样回路的开关管D极与所述SS 1k或SS 1之间的电压等于所述主回路的开关管D极与所述S 1k之间的电压,也就是V G1SS1k=V G1S1K,V DSS1k=V DS1K,所述采样回路的开关管D极与所述采样检测输出端SS 1k之间电阻R DSS1k和所述主回路的开关管D极与所述主回路输出端S 1k之间的电阻R DS1k的关系为R DSS1k:R DS1k为=K:1,也就是所述开关管组的主回路和采样回路的阻抗之比等于所述主回路和采样回路的MOS管单元并联数量的反比1/k。
当V G1SS1k=V G1S1K时,R DSS1k:R DS1k为=K:1,所述采样检测输出端SS 1k的电流为I SS1k,所述主回路输出端S 1k的电流为I S1k,则I SS1k:I S1k=1/1/(R DSS1k:R DS1k)=1:K,也就是所述采样回路的电流I SS1k为所述主回路电流I S1k缩小了K倍的镜像电流。所以,通过检测所 述采样回路的电流I SS1k就可以根据镜像比例系数K获得I S1k=K*I SS1k
实施四
如图11和12所示,本申请实施例四和实施例三的主要区别在于,所述实施例三中电源保护装置的开关管组仅对电芯的放电或充电之一进行保护,也就是实施例三中的保护IC仅有同一个运算放大器,并连接所述开关管组中一部分负责进行充电或放电导通的开关管。本实施例四则有第一运算放大器300以及第二运算放大器400分别连接开关管组中负责进行充电或放电导通的所有第一开关管Sa以及第二开关管Sb,以对所述电芯的充电以及放电进行过流检测和关断保护。
本申请实施例四的电源保护装置主要包括与电芯连接的保护IC以及用于对电芯进行导通和关断保护的开关管组,其中所述开关管组的结构以及功能和上述实施例一、二和三中的开关管组相同或类似,在此不再赘述其具体功能以及结构。
所述保护IC包括与电芯正极连接的电源端VCC、与电芯负极连接的接地端GND、第一电流检测端正T11、第一电流检测端负TT12、第一镜像电流输入端口I1、第一镜像电流输出端口O1、第二电流检测端正D21、第二电流检测端负T22、第二镜像电流输入端口I2、第二镜像电流输出端口O2、放电保护端DO以及充电保护端CO,其中所述电源端VCC以及接地端GND为所述保护IC的二电源输入端,分别与所述电芯的正负极连接。
所述保护IC还包括一第一调压开关管S3以及第二调压开关管S4,所述电源保护装置还包括第一采样检测电阻Rs1以及第二采样检测电阻Rs2,其中所述第一运算放大器300与所述第一调压开关管S3、所述第一采样检测电阻Rs1、所述第一电流检测端正、所述第一电流检测端负、所述第一镜像电流输入端口以、所述第一镜像电流输出端口以及所述开关管组之间的连接方式与所述第三实施例中所述第一运算放大器200与所述调压开关管S、所述采样检测电阻Rs、所述电流检测端正T1、所述电流检测端负T2、所述镜像电流输入端口I、所述镜像电流输出端口O以及所述开关管组之间的连接方式分别对应相同,在此不再赘述。
所述第二放大运算放大器400与所述第二调压开关管S4、所述第二采样检测电阻Rs2、第二电流检测端正D21、第二电流检测端负T22、第二镜像电流输入端口I2、第二镜像电流输出端口O2以及所述开关管组之间的连接方式与所述第一运算放大器300与所述第一调压开关管S3、所述第一采样检测电阻Rs1、所述第一电流检测端正T11、所述第一电流检测端负TT12、所述第一镜像电流输入端口I1、所述第一镜像电流输出端口O1以及所述开关管组之间的连接方式分别基本对应相同,区别仅仅在于,所述第一运算放大器300连接所述开关管组一侧的S 1、S 1k、SS 1、SS 1k等端口,而所述第二运算放大器400对称地连接所述开关管组另一侧的S 2、S 2k、SS 2、SS 2k等端口。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种电源保护装置,用于保护与负载连接的电芯,其特征在于,包括:
    保护IC,包括分别与所述电芯正负极两端连接的二电源输入端,所述保护IC包括镜像电流输入端口、镜像电流输出端口、一运算放大器、一调压开关管以及至少一充放电保护端,所述运算放大器包括输入正管脚、输入负管脚以及输出管脚,所述调压开关管包括与所述运算放大器的输出管脚连接的电压输入管脚、与所述镜像电流输入端口连接的电流输入管脚以及与所述镜像电流输出端口连接的电流输出管脚;
    开关管组,连接在所述电芯正极与所述负载之间,用于导通或关断所述电芯的充放电回路,所述开关管组包括开关管组的主回路部分以及开关管组的采样部分,所述开关管组包括与所述负载连接的第一连接端、与所述电芯正极连接的第二连接端以及至少一控制端,所述第一连接端以及第二连接端分别与所述开关管组的主回路部分充电时的输入端以及输出端连接,所述至少一控制端与所述保护IC的所述至少一充放电保护端连接并用于接收所述保护IC的控制信号以控制所述开关管组关断来实现对所述电芯的异常保护;
    采样检测电阻Rs,所述采样检测电阻Rs的一端与所述镜像电流输出端口连接,另一端接地,用于检测所述开关管组的采样部分的电流;
    其中,所述开关管组的主回路部分的所述输入端或输出端与所述输入正管脚连接,所述开关管组的采样部分的连接端与所述输入负管脚连接。
  2. 据权利要求1所述的电源保护装置,其特征在于,所述运算放大器用于使所述输入负管脚与所述输入正管脚的电位相同,以使流过所述开关管组的采样部分的电流与流过所述开关管组的主回路部分的电流成等比关系。
  3. 据权利要求1或2所述的电源保护装置,其特征在于,所述开关管组包括(X+KX)个相互并联的开关管单元,其中X个开关管单元并联组成所述开关管组的采样部分,KX个管并联组成所述开关管组的主回路部分,其中流过所述开关管组的采样部分的电流与流过所述开关管组的主回路部分的电流的比值等于所述开关管组的采样部分的开关管单元数量与所述开关管组的主回路部分的开关管单元数量的比值,也就是等于1:K,其中X为大于等于1的整数值,K大于1,且KX为整数。
  4. 根据权利要求3所述的电源保护装置,其特征在于,所述开关管组包括与所述采样部分的所述连接端连接的采样输出端SS 1以及与所述开关管组的主回路部分充电时的所述输入端连接的主回路检测输出端S 1k,所述S 1k与所述运算放大器的输入负管脚连接,所述SS 1与所述运算放大器的输入正管脚以及所述镜像电流输入端口同时连接。
  5. 据权利要求4所述的电源保护装置,其特征在于,所述开关管组还包括与所述采样部分的所述连接端连接的采样输出端SS 2以及与所述开关管组的主回路部分充电时的所述输出端连接的主回路检测输出端S 2k,所述保护IC还包括一第二镜像电流输入端口、第二镜像电流输出端口、一第二运算放大器以及一第二调压开关管,所述第二调压开关管包括与所述第二运算放大器的输出管脚连接的电压输入管脚、与所述第二镜像电流输入端口连接的第二电流输入管脚以及与所述第二镜像电流输出端口连接的第二电流输出管脚,所述S 2k与所述第二运算放大器的输入负管脚连接,所述SS 2与所述第二运算放大器的输入正管脚以及所述第二镜像电流输入端口同时连接,而且所述电源保护装置还包括一第二采样检测电阻RS2串联在所述第二镜像电流输出端口与地之间。
  6. 根据权利要求3所述的电源保护装置,其特征在于,所述开关管组包括与所述采样部分的所述连接端连接的采样输出端SS 1、采样检测输出端SS 1k以及与所述开关管组的主回路部分充电时的输入端连接的主回路检测输出端S 1k,所述S 1k与所述运算放大器的输入负管脚连接,所述SS 1与所述镜像电流输入端口连接,所述SS 1k与所述运算放大器的输入正管脚连接。
  7. 据权利要求6所述的电源保护装置,其特征在于,所述开关管组还包括与所述采样部分的所述连接端的采样输出端SS 2和采样检测输出端SS 2k、以及与所述开关管组的主回路部分充电时的输出端连接的主回路检测输出端S 2k,所述保护IC还包括一第二镜像电流输入端口、以及第二镜像电流输出端口、一第二运算放大器以及一第二调压开关管,所述第二调压开关管包括与所述第二运算放大器的输出管脚连接的电压输入管脚、与所述第二镜像电流输入端口连接的第二电流输入管脚以及与所述第二镜像电流输出端口连接的第二电流输出管脚,所述S 2k与所述第二运算放大器的负输入管脚连接,所述SS 2与所述第二镜像电流输入端口连接,所述SS 2k与所述从运算放大器的输入正管脚连接。
  8. 根据权利要求6或7所述的电源保护装置,其特征在于,所述每个开关管单元包括一个第一开关管Sa以及与所述Sa反向串联第二开关管Sb,其中每个所述Sa和Sb分别并联一个二极管D1,所述Sa和所述Sb中任一个为充电开关管而另一个为放电开关管,所述X个开关管单元并联在一起组成所述开关管组的采样部分,而所述KX个开关管单元并联在一起组成所述开关管组的主回路部分。
  9. 根据权利要求8所述的电源保护装置,其特征在于,所述控制端包括放电控制端G1以及充电控制端G2,所述(X+KX)个开关管单元的所有所述Sa和Sb的D极连接在一起,所述(X+KX)个开关管单元的所有Sa的G极连接在一起形成所述G1,所述(X+KX)个开关管单元的所有Sb的G极连接在一起形成所述G2,组成所述开关管组的采样部分的X个开关管单元中的所有Sa的S极与同一引脚连接而形成所述采样输出端SS1,而所述X个开关管单元中的所有Sb的S极与同一引脚连接而形成采样输出端SS2,组成所述开关管组的主回路部分的KX个开关管单元中的所有Sa的S极与同一引脚连接而形成所述开关管组的第一连接端,而所述X个开关管单元中的所有Sb的S极与同一引脚连接而形成所述开关管组的第二连接端。
  10. 根据权利要求9所述的电源保护装置,其特征在于,所述采样检测输出端SS 1k由高导电率金属导线直接连接所述开关管组的采样部分的X个开关管单元中的所有Sa的晶圆上的S极而形成,由高导电率金属直接连接所述开关管组的采样部分的X个开关管单元中的所有Sb的晶圆上的S极形成采样检测输出端SS 2k,所述主回路检测输出端S 1k由高导电率金属导线直接连接所述开关管组的主回路部分的KX个开关管单元中的所有Sa的晶圆上的S极而形成由高导电率金属直接连接所述开关管组的主回路部分的KX个开关管单元中的所有Sb的晶圆上的S极而形成主回路检测输出端S 2k
  11. 根据权利要求1至8任一项所述的电源保护装置,其特征在于,所述至少一控制端包括用于在放电的时候控制所述开关管组关断的放电控制端G1以及用于在充电的时候控制所述开关管组关断的充电控制端G2,所述保护IC的至少一充放电保护端包括分别对应连接所述放电控制端G1和所述充电控制端G2的放电保护端DO以及充电保护端CO。
  12. 一种电源保护装置,用于保护与负载连接的电芯,其特征在于,包括:
    保护IC,包括分别与所述电芯正负极两端连接的二电源输入端、电流检测端正、电 流检测端负、镜像电流输入端口、镜像电流输出端口以及至少一充放电保护端;
    开关管组,连接在所述电芯正极与所述负载之间,用于导通或关断所述电芯的充放电回路,所述开关管组包括主回路部分以及采样部分,所述开关管组包括与所述负载连接的第一连接端、与所述电芯正极连接的第二连接端以及至少一控制端,所述第一连接端以及第二连接端分别与所述开关管组的主回路部充电时的输入端以及输出端连接,所述控制端与所述保护IC的所述至少一充放电保护端连接并用于接收所述保护IC的控制信号以控制所述开关管组关断来实现对所述电芯的异常保护;
    采样检测电阻Rs,所述采样检测电阻Rs的一端与所述镜像电流输出端口连接,另一端接地,用于检测所述开关管组采样部分的电流;
    其中,所述开关管组的主回路部分的所述输入端或输出端与所述电流检测端负连接,所述开关管组的采样部分的连接端与所述电流检测端正以及所述镜像电流输入端口连接。
  13. 据权利要求12所述的电源保护装置,其特征在于,所述保护IC用于使所述电流检测端负与所述电流检测端正的电位相同,以使流过所述开关管组的采样部分的电流与流过所述开关管组的主回路部分的电流成等比关系。
  14. 据权利要求12或13所述的电源保护装置,其特征在于,所述开关管组包括(X+KX)个相互并联的开关管单元,其中X个开关管单元并联组成所述开关管组的采样部分,KX个管并联组成所述开关管组的主回路部分,其中流过所述开关管组的采样部分的电流与流过所述开关管组的主回路部分的电流的比值等于所述开关管组的采样部分的开关管单元数量与所述开关管组的主回路部分的开关管单元数量的比值,也就是等于1:K,其中X为大于等于1的整数值,K大于1,且KX为整数。
  15. 根据权利要求14所述的电源保护装置,其特征在于,所述开关管组包括与所述采样部分的所述连接端连接的采样输出端SS 1以及与所述开关管组的主回路部分充电时的所述输入端连接的主回路检测输出端S 1k,所述S 1k与所述保护IC的电流采样检测输出端连接,所述SS 1与所述保护IC的电流检测端负以及电流采样检测输出端同时连接,所述采样检测电阻Rs串联在所述SS 1与所述保护IC的电流采样检测输出端之间。
  16. 根据权利要求14所述的电源保护装置,其特征在于,所述开关管组包括与所述采样部分的所述连接端连接的采样输出端SS 1和采样检测输出端SS 1k、以及与所述开关管组的主回路部分充电时的所述输入端连接的主回路检测输出端S 1k,所述SS 1与所述保护IC的电流采样检测输出端连接,所述SS 1k与所述保护IC的电流检测端负连接,所述采样检测电阻Rs串联在所述SS 1与所述保护IC的电流采样检测输出端之间。
  17. 根据权利要求14至16任一项所述的电源保护装置,其特征在于,所述每个开关管单元包括一个开关管或两个相互反向并联的开关管,其中至少一个所述开关管中的每个开关管并联一个二极管D1,所述X个开关管单元并联在一起组成所述开关管组的采样部分,而所述KX个开关管单元并联在一起组成所述开关管组的主回路部分。
  18. 根据权利要求17所述的电源保护装置,其特征在于,所有所述开关管的D极连接在一起,所有相互并联在一起的开关管的G极连接在一起形成一所述控制端,组成所述开关管组的采样部分的X个开关管单元中的所有相互并在在一起的开关管的S极与同一引脚连接而形成与所述开关管的采样部分连接的采样输出端SS1,组成所述开关管组的主回路部分的KX个开关管单元中的所有相互并联在一起的开关管的S极与同一引脚连接而形成所述开关管组的所述第一连接端或第二连接端。
  19. 根据权利要求18所述的电源保护装置,其特征在于,所述采样检测输出端SS 1k由高导电率金属导线直接连接所述开关管组的采样部分的X个开关管单元中的所有相互并联的开关管的晶圆上的S极而形成,所述检测输出端S 1k由高导电率金属导线直接连接所述开关管组的主回路部分的KX个开关管单元中的所有Sa或Sb的晶圆上的S极而形成。
  20. 一种电池,其特征在于,所述电池包括电芯以及如权利要求1至18任一项所述的用于对所述电芯进行保护的电源保护装置。
  21. 一种终端,包括连接器、充电管理芯片、电池以及负载,所述连接器用于连接充电线缆,所述充电管理芯片连接在所述连接器以及所述电池之间并用于控制所述电池的充电过程,所述电池用于给所述负载供电,其特征在于,所述电池包括电芯以及如权利要求1至18任一项所述的用于对所述电芯进行保护的电源保护装置。
PCT/CN2018/106922 2017-09-23 2018-09-21 一种电源保护装置以及使用所述装置的终端 WO2019057148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18859083.0A EP3678271A4 (en) 2017-09-23 2018-09-21 POWER SUPPLY PROTECTION DEVICE AND END DEVICE WITH IT
US16/825,332 US20200220347A1 (en) 2017-09-23 2020-03-20 Power protection apparatus and terminal using apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710870484.9A CN107579508B (zh) 2017-09-23 2017-09-23 一种电源保护装置以及使用所述装置的终端
CN201710870484.9 2017-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/825,332 Continuation US20200220347A1 (en) 2017-09-23 2020-03-20 Power protection apparatus and terminal using apparatus

Publications (1)

Publication Number Publication Date
WO2019057148A1 true WO2019057148A1 (zh) 2019-03-28

Family

ID=61039152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106922 WO2019057148A1 (zh) 2017-09-23 2018-09-21 一种电源保护装置以及使用所述装置的终端

Country Status (4)

Country Link
US (1) US20200220347A1 (zh)
EP (1) EP3678271A4 (zh)
CN (1) CN107579508B (zh)
WO (1) WO2019057148A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217181A (zh) * 2019-07-10 2021-01-12 神讯电脑(昆山)有限公司 电子装置的电源保护方法及其电路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579508B (zh) * 2017-09-23 2019-06-11 华为技术有限公司 一种电源保护装置以及使用所述装置的终端
CN108063428B (zh) * 2017-09-23 2019-07-12 华为技术有限公司 一种电源保护装置以及使用所述装置的终端
CN111929594B (zh) * 2020-09-23 2020-12-29 深圳英集芯科技有限公司 电流检测芯片、电池及电子设备
CN113178932B (zh) * 2021-06-30 2021-10-01 深圳英集芯科技股份有限公司 短路保护电路、充电电源及电子设备
CN113809807B (zh) * 2021-10-21 2024-02-20 上海先之路微电子科技有限公司 电池保护芯片、电池充放电过流保护方法和电子设备
CN116154728B (zh) * 2021-11-22 2024-08-16 圣邦微电子(北京)股份有限公司 电池保护控制器及电池保护电路
CN115236481B (zh) * 2022-05-24 2023-10-27 上海沛塬电子有限公司 一种高精度电流检测方法及其芯片模组
CN117394508B (zh) * 2023-12-13 2024-04-02 成都利普芯微电子有限公司 一种电池保护封装体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282894A (ja) * 2003-03-14 2004-10-07 Fujitsu Access Ltd 充放電装置
CN102208802A (zh) * 2010-06-29 2011-10-05 上海山景集成电路技术有限公司 功率开关管过流检测和过流保护电路
CN103529276A (zh) * 2013-10-28 2014-01-22 无锡中星微电子有限公司 电流检测电路及充电电池
CN107579508A (zh) * 2017-09-23 2018-01-12 华为技术有限公司 一种电源保护装置以及使用所述装置的终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100536273C (zh) * 2007-09-12 2009-09-02 中兴通讯股份有限公司 一种终端设备充电过压保护装置及其方法
CN101282036B (zh) * 2008-05-29 2011-10-12 北京中星微电子有限公司 一种放电过流保护电路
JP5592073B2 (ja) * 2009-02-09 2014-09-17 富士電機株式会社 双方向スイッチの電流検出回路
WO2012148774A2 (en) * 2011-04-25 2012-11-01 Volterra Semiconductor Corporation Integrated protection devices with monitoring of electrical characteristics
US9076805B2 (en) * 2012-07-14 2015-07-07 Infineon Technologies Ag Current sense transistor with embedding of sense transistor cells
CN103018655B (zh) * 2012-11-29 2015-03-11 无锡中星微电子有限公司 一种电池保护电路的过充电压检测电路
WO2014146268A1 (zh) * 2013-03-20 2014-09-25 Xiang Zhiyong 一种过压保护电路及方法
CN204465038U (zh) * 2015-01-16 2015-07-08 荆延杰 一种串联电池组充放电均衡电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282894A (ja) * 2003-03-14 2004-10-07 Fujitsu Access Ltd 充放電装置
CN102208802A (zh) * 2010-06-29 2011-10-05 上海山景集成电路技术有限公司 功率开关管过流检测和过流保护电路
CN103529276A (zh) * 2013-10-28 2014-01-22 无锡中星微电子有限公司 电流检测电路及充电电池
CN107579508A (zh) * 2017-09-23 2018-01-12 华为技术有限公司 一种电源保护装置以及使用所述装置的终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678271A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217181A (zh) * 2019-07-10 2021-01-12 神讯电脑(昆山)有限公司 电子装置的电源保护方法及其电路
CN112217181B (zh) * 2019-07-10 2023-07-11 神讯电脑(昆山)有限公司 电子装置的电源保护方法及其电路

Also Published As

Publication number Publication date
EP3678271A1 (en) 2020-07-08
US20200220347A1 (en) 2020-07-09
CN107579508A (zh) 2018-01-12
EP3678271A4 (en) 2020-09-02
CN107579508B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2019057148A1 (zh) 一种电源保护装置以及使用所述装置的终端
WO2019057144A1 (zh) 一种电源保护装置以及使用所述装置的终端
CN101071949B (zh) 充电控制电路、充电电流校正方法、充电电路和电子设备
TWI680621B (zh) 電池保護電路及包含其之電池組
US7969176B2 (en) Voltage margin test device
WO2017201737A1 (zh) 电池保护板、电池和移动终端
KR20190032882A (ko) 배터리 보호 회로
WO2017201735A1 (zh) 电池保护板、电池和移动终端
CN115236481B (zh) 一种高精度电流检测方法及其芯片模组
CN113169385B (zh) 电池包、测量电池电流的电路系统及测量电池电流的设备
CN104577240A (zh) 具有测量电池的锂离子蓄能器及其特性的确定方法
WO2021093357A1 (zh) 一种充放电过流保护电路及其过流保护方法
US20210218259A1 (en) Battery protection circuit and over-current blocking method using same
CN103743942A (zh) 一种含固体继电器的配电模件的火工品漏电流检测方法
CN113125830A (zh) 一种双向电流检测电路和电源系统
KR102320110B1 (ko) 하나의 전류 센싱 저항을 갖는 배터리 보호 회로
CN215870843U (zh) 电流检测装置、半导体芯片、电池管理系统及用电设备
TWM542282U (zh) 充電裝置
JP6834527B2 (ja) 充放電装置
CN113675922A (zh) 电流检测装置、半导体芯片、电池管理系统及用电设备
CN111313495A (zh) 电子设备及充电控制器
CN113206306A (zh) 一种电池保护装置、电池组件及终端
JP2012043710A (ja) 二次電池装置
TW201509059A (zh) 電子裝置及其充電控制電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859083

Country of ref document: EP

Effective date: 20200331