WO2019056778A1 - 自动标定装置和离子迁移谱仪 - Google Patents

自动标定装置和离子迁移谱仪 Download PDF

Info

Publication number
WO2019056778A1
WO2019056778A1 PCT/CN2018/087302 CN2018087302W WO2019056778A1 WO 2019056778 A1 WO2019056778 A1 WO 2019056778A1 CN 2018087302 W CN2018087302 W CN 2018087302W WO 2019056778 A1 WO2019056778 A1 WO 2019056778A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
eccentric
automatic
calibration device
conduit
Prior art date
Application number
PCT/CN2018/087302
Other languages
English (en)
French (fr)
Inventor
张阳天
李广勤
薛斌
贾战洪
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2019056778A1 publication Critical patent/WO2019056778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1208Angular position of the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump

Definitions

  • Embodiments of the present disclosure relate to the field of ion mobility spectrometry, and more particularly to an auto-calibration device and an ion mobility spectrometer.
  • Ion mobility spectrometers are a widely used instrument. Typically, ion mobility spectrometers require the introduction of a certain amount of calibration material to calibrate the peak position inside the instrument.
  • the existing equipment it is necessary to equip the instrument with a calibration device containing a calibration substance. Since the calibration substance is mostly a volatile organic substance and cannot be stored for a long time, it is time-consuming and labor-intensive to store the calibration substance, and the operation is inconvenient. In addition, the calibration capacity of the existing calibration device is relatively large, so that the calibration material is consumed quickly, and the cleaning room of the instrument is too long, which affects the detection efficiency of the ion mobility spectrometer.
  • Embodiments of the present disclosure provide an automatic calibration device and an ion mobility spectrometer for an ion mobility spectrometer that enable quantitative, continuous automatic delivery and ejection of liquid calibration samples with high precision, ease of use, and easy portability, and one-time addition of calibration samples The life cycle is long.
  • an automatic calibration apparatus for an ion mobility spectrometer comprising:
  • An automatic transfer portion for communicating a liquid calibration sample in the reservoir is in communication with the reservoir.
  • the automatic conveying portion includes: a piston tube disposed within the automatic conveying portion, the piston tube being in fluid communication with the reservoir; and
  • the automatic conveying unit further includes:
  • first eccentric configured to abut against a baffle coupled to the piston such that the baffle is pushed by rotation to urge the piston to move in a radial direction of the first eccentric
  • the outer shape of the first eccentric is fixed such that each time the first eccentric rotates one revolution, the baffle is pushed in the radial direction to push the piston to move a fixed distance in the radial direction of the first eccentric, thereby The piston provides a quantitative liquid calibration sample with one revolution of the first eccentric.
  • the first eccentric is replaceable, enabling the use of eccentric wheels of different sizes to vary the amount of calibrated sample delivered.
  • the first eccentric wheel continuously rotates, and the liquid calibration sample provided by the piston along with the continuous rotation of the first eccentric wheel is the amount of the liquid calibration sample provided by the automatic calibration device for each rotation of the first eccentric wheel multiplied by the first The number of turns of an eccentric wheel.
  • the automatic transport portion further includes an elastic member configured to provide an elastic force that acts in a direction opposite to a direction in which the first eccentric drive piston moves.
  • the automatic conveying portion further includes: a communication pipe, an inlet of the communication pipe is connected to the accumulator, an outlet of the communication pipe is connected to the piston pipe, and an outlet of the communication pipe is disposed at the piston pipe Near the end, the liquid calibration sample in the communication conduit is drawn into the piston conduit by the piston as it moves, forming a space between the end face of the piston and the end face of the piston conduit.
  • the automated delivery portion further includes a delivery tube in fluid communication with the piston conduit such that a liquid calibration sample within the piston conduit is delivered to the ion mobility spectrometer through the delivery tube.
  • the delivery tube includes an inner capillary and an outer capillary, and a gap is provided between the outer capillary and the inner capillary for delivery of the liquid.
  • the automatic conveying portion further includes: a second eccentric having the same shape as the first eccentric, the second eccentric abutting the baffle and disposed on the baffle and the An opposite side of an eccentric, rotating in the same or opposite direction with the first eccentric to abut against the baffle such that the baffle reciprocates.
  • Embodiments of the present disclosure also provide an ion mobility spectrometer comprising the above-described automatic calibration device.
  • FIG. 1 is a schematic diagram of an automatic calibration device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an automatic calibration device according to another embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an automatic calibration device 10 for an ion mobility spectrometer comprising: a reservoir 18 for storing a liquid calibration sample; and in communication with the reservoir 18 for delivery in the reservoir 18 The liquid is automatically calibrated to the sample.
  • the volume of the reservoir 18 is large, and the volume of the reservoir 18 is sufficiently large relative to the amount of calibration sample used or consumed each time, such that after the reservoir 18 is filled with the calibration sample, It can be used for a long time without the need to add calibration samples frequently.
  • the accumulator 18 in the embodiment of the present disclosure is an integral structure with the automatic conveying portion. Since the automatic calibration device 10 includes the accumulator 18, the automatic calibration device is convenient to carry without worrying that the automatic calibration device 10 is moved or transported.
  • the calibration sample can be directly transported from the accumulator 18 to the automatic conveying portion inside the automatic calibration device 10, so that the calibration sample has less loss and the calibration accuracy is improved.
  • the automatic conveying portion includes: a piston pipe disposed in the automatic conveying portion, the piston pipe being in fluid communication with the accumulator 18; and a piston 14 disposed in the piston pipe, A piston 14 reciprocates within the piston conduit to deliver a metered amount of liquid calibration sample from the reservoir 18 into the piston conduit.
  • the piston pipe extends in the horizontal direction, and the piston 14 reciprocates in the horizontal direction in the piston pipe. It is to be understood that it is not necessary to extend the piston tube in the horizontal direction.
  • Figure 1 only shows an extension of the piston tube. The extension of the piston tube in other directions does not affect the delivery of the calibration sample.
  • movement of the piston 14 can draw a liquid calibration sample in the reservoir 18, and the push of the piston 14 can deliver the liquid calibration sample from the piston conduit.
  • the automatic conveying portion further includes: a first eccentric 12 configured to abut against the baffle 13 connected to the piston for pushing by rotation
  • the baffle 13 thereby urges the piston 14 to move in the radial direction of the first eccentric 12; and the motor 11 for driving the first eccentric 12 to rotate.
  • the baffle 13 which is susceptible to wear during use, which is particularly desirable in precision injections, which can result in a change in the amount of each injection.
  • the material of the baffle 13 can select the wear resistant material without being the same as the material of the piston, which reduces the cost of the apparatus.
  • the outer diameter of the first eccentric 12 is varied, so that when the first eccentric 12 rotates about its axis of rotation, the distance of the outer surface from the axis of rotation constantly changes, that is, the shortest distance from the axis of rotation gradually becomes a distance rotation
  • the longest distance of the axis then gradually becomes the shortest distance from the axis of rotation as the first eccentric 12 continues to rotate; of course, vice versa, that is, the farthest distance from the axis of rotation gradually becomes the distance from the axis of rotation.
  • the shortest distance then gradually becomes the furthest distance from the axis of rotation as the first eccentric 12 continues to rotate.
  • Embodiments of the present disclosure by providing the motor 11 such that the delivery of the calibration sample can be removed from the manual form; since the amount of calibration sample delivered each time is fixed using the eccentric, this improves calibration accuracy; the motor 11 and the eccentric The cooperation allows the automated calibration of the sample to be delivered.
  • the eccentricity of the first eccentric 12 may be set between 0.5 mm and 2 mm, that is, the difference between the maximum outer diameter and the minimum outer diameter of the first eccentric 12 may be 4 mm, may be 1 mm, or may be 1 to 4 Any one of them.
  • the eccentricity of the first eccentric 12 may be other sizes, which may be set according to actual needs. By setting the size of the first eccentric 12, it is possible to achieve a micro-upgrade of another capacity delivery.
  • the first eccentric 12 abuts against one end of the piston 14 such that it is rotated to urge the piston 14 to move in the radial direction of the first eccentric 12.
  • the outer shape of the first eccentric 12 is fixed such that each time the first eccentric 12 rotates one turn, the baffle is pushed in the radial direction to push The piston 14 is moved a fixed distance in the radial direction of the first eccentric 12 such that the piston 14 provides a quantitative liquid calibration sample with one revolution of the first eccentric 12 .
  • the first eccentric 12 is replaceable
  • different sized eccentrics can deliver different amounts of calibration samples.
  • the first eccentric 12 is replaceable, and eccentric wheels of different sizes are provided, that is, the difference between the maximum outer diameter and the minimum outer diameter of the eccentric is designed as needed, so that the piston 14 can be designed.
  • the stroke further, determines the amount of calibration sample delivered.
  • the automatic calibration device 10 is further advantageous in that the first eccentric 12 can be continuously rotated, and the liquid calibration sample provided by the piston 14 along with the continuous rotation of the first eccentric 12 is the first eccentric
  • the amount of the liquid calibration sample supplied by each of the rotation automatic calibration devices 10 is multiplied by the number of rotations of the first eccentric wheel 12.
  • the first eccentric wheel 12 conveys a corresponding fixed amount of calibration sample every one rotation, and when more calibration samples are needed, the first eccentric wheel 12 can be rotated multiple times to achieve accurate calibration, and driven by the motor 11
  • the transportation process is particularly fast and convenient, which greatly facilitates the detection process and shortens the detection time.
  • the automatic conveying portion may further include a second eccentric 12' having the same shape as the first eccentric 12, the second eccentric 12' abutting against the baffle 13 and disposed at the baffle 13 On the opposite side of the first eccentric 12, the first eccentric 12 is fitted together in the same or opposite direction to abut against the baffle 13 such that the baffle 13 reciprocates.
  • the two eccentrics move left and right along the baffle 13 on the piston 14 as shown in the figures.
  • the minimum outer diameter of the first eccentric 12 abuts against the baffle 13
  • the maximum outer diameter of the second eccentric 12' abuts against the baffle 13
  • the first eccentric 12 and the second eccentric 12' rotating in the same direction
  • the outer diameter of the first eccentric 12 is continuously increased
  • the outer diameter of the second eccentric 12' is continuously decreased
  • the piston 14 is pushed to move to the right
  • the maximum outer diameter of the first eccentric 12 is
  • the baffle 13 is pressed, the minimum outer diameter of the second eccentric 12' just abuts against the baffle 13, when the baffle 13 moves to the most right; the first eccentric 12 continues to rotate, and the baffle 13 is second eccentric
  • the ever-increasing outer radial left of the wheel 12' pushes the piston 14 to the left, pushing the liquid out of the piston conduit.
  • first eccentric 12 and the second eccentric 12' are driven by a motor 11. In another embodiment, the first eccentric 12 and the second eccentric 12' are driven by two motors 11, respectively. It is advantageous to use two eccentric wheels, the baffle being sandwiched by the first eccentric 12 and the second eccentric 12' so that the translation of the baffle is more stable, avoiding the occurrence of a baffle between the baffle and the first eccentric during rapid translation. The phenomenon of detachment.
  • the automatic conveying portion further includes an elastic member 15 configured to provide an elastic force that acts in a direction opposite to a direction in which the first eccentric 12 drives the piston 14 to move.
  • the elastic member 15 provides a pulling force to pull the piston 14 (as shown in FIG. 1) to the left, and the first eccentric 12 pushes the baffle to the right against the tensile force of the elastic member 15 to push the piston 13.
  • the maximum outer diameter of the first eccentric 12 abuts against the shutter 13, as the outer diameter of the first eccentric 12 continues to decrease, the piston 14 is pulled to the left by the elastic member 15.
  • the elastic member 15 provides an elastic thrust to the right to push the piston 14 to the right, and at this time, an eccentric 12' is disposed on the right side of the baffle 13, for example, a second eccentric 12', a second eccentric
  • the elastic force of the 12' resisting elastic member 15 pushes the baffle to push the piston 13 to move.
  • the automatic conveying portion further includes: a communication pipe 19, an inlet of the communication pipe 19 is connected to the accumulator 18, and an outlet of the communication pipe 19 is connected to the piston pipe, and An outlet of the communication conduit 19 is disposed adjacent the end of the piston conduit such that a liquid calibration sample within the communication conduit 19 is allowed to be drawn into the piston conduit by the piston 14 as the piston 14 moves The space defined between the end face of the piston 14 and the end face of the piston pipe.
  • the liquid storage tank 18 and the communication passage 19 are provided inside the automatic calibration device 10, so that the calibration sample is conveyed inside the automatic calibration device 10, which is advantageous for the volatile sample, and the sample does not follow With external contact, the amount delivered can thus be accurately fixed, which is advantageous for comparison of the tests.
  • the inlet diameter of the communication conduit 19 can be between 0.5 mm and 1 mm; however, other inlet diameter dimensions are also available.
  • a check valve 17 may also be provided at the outlet of the communication conduit 19, when the first eccentric 12 as shown in Fig. 1 causes the piston 14 to move to the right, the check valve 17 is opened, and the calibration sample in the reservoir 18 Flowing into the piston conduit, i.e., calibrating the sample into the gap between the end face of the piston 14 and the end face of the opposing piston pipe; when the piston 14 is moving to the left, the check valve 17 closes the outlet of the communication pipe 19, and the liquid calibration sample is only It can be discharged from the outlet of the end face of the piston pipe.
  • a rubber stopper 16 may be provided at the end of the piston tube, the rubber stopper 16 is provided with an outlet, and the liquid calibration sample may be discharged from the outlet.
  • the check valve 17 allows the liquid calibration sample to pass from the outlet of the communication conduit 19 through the one-way valve 17 into the piston conduit, but the one-way valve 17 prevents liquid from entering the communication conduit 19.
  • the rubber stopper 16 is also unidirectional, and the liquid calibration sample can flow from the right side of the rubber stopper 16 to the left side as shown in FIG. 1, however, it cannot flow from the left side to the right side, that is, the liquid calibration sample can be from the piston.
  • the pipe is discharged through the rubber stopper 16 to the outside of the piston pipe, but the rubber stopper 16 prevents liquid or gas outside the piston pipe from entering the piston pipe.
  • the automatic conveying portion further includes: a conveying pipe 110, the conveying pipe 110 is in fluid communication with the piston pipe, so that the liquid calibration sample in the piston pipe is conveyed through the conveying pipe 110 To the ion mobility spectrometer.
  • the delivery tube 110 may be configured to include an inner capillary 112 and an outer capillary 111 with a gap between the outer capillary 111 and the inner capillary 112 for liquid delivery.
  • the portion of the delivery tube 100 at the circle in Fig. 1 is shown enlarged, with a magnification of about 8 times.
  • the capillary inner diameter may be 0.1 mm
  • the outer diameter may be 0.3 mm
  • the thick capillary may have an inner diameter of 0.5 mm
  • the outer diameter may be 0.8 mm.
  • a gap is formed between the outer diameter of the inner capillary 112 and the inner diameter of the outer capillary 111, so that liquid can be ejected through the gap.
  • the delivery tube 110 provided by the embodiments of the present disclosure is advantageous in that it is possible to micro-scale the injection of other calibration samples.
  • the automatic calibration device 10 by using the cooperation of the eccentric-driven piston injection and the delivery tube 110, the automatic calibration device 10 achieves ejection of the liquid-calibrated sample, and the ejected liquid-calibrated sample can be sufficiently dispersed.
  • the motor 11 is driven, automatic continuous rotation of the eccentric can be achieved, thereby achieving a micro-upgrade of continuous injection of other calibration samples.
  • Embodiments of the present disclosure also provide an ion mobility spectrometer comprising the automatic calibration device 10 of the above embodiment.
  • the ion mobility spectrometer may further include a circuit control board, a display screen, etc. to facilitate control and operation of the device.
  • the operator can input a predetermined amount of liquid calibration sample through the display screen, and the circuit control board can control the motor 11 to rotate the first eccentric 12 for a predetermined number of turns.
  • the piston 14 reciprocates by a predetermined stroke, thereby discharging a predetermined amount of the calibration sample, and feeding it into the ion mobility spectrometer through the delivery tube 110 for measurement.

Abstract

一种用于离子迁移谱仪的自动标定装置和离子迁移谱仪。离子迁移谱仪包括自动标定装置(10),自动标定装置(10)包括:用于存储液体标定样品的储液器(18);和与储液器(18)连通用于输送储液器(18)中的液体标定样品的自动输送部。

Description

自动标定装置和离子迁移谱仪 技术领域
本公开的实施例涉及离子迁移谱检测技术领域,特别涉及自动标定装置和离子迁移谱仪。
背景技术
离子迁移谱仪是一种广泛应用的仪器。通常,离子迁移谱仪需要引入一定量的校准物质到仪器内部对峰位进行校准。
在现有的设备中,需要随仪器配备含有标定物质的标定装置,由于标定物质大多为易挥发的有机物,且不能长时间保存,从而导致保存标定物质费时费力,操作不便。此外,现有的标定装置标定物质的加入量较大,使得标定物质消耗快,并且导致仪器的清洁间过长,影响离子迁移谱仪器的检测效率。
发明内容
本公开的实施例提供用于离子迁移谱仪的自动标定装置和离子迁移谱仪,其实现液体标定样品的定量、连续自动输送和喷射,精确度高,使用方便,携带方便,一次添加标定样品的使用周期长。
根据本公开的一个方面,提供一种用于离子迁移谱仪的自动标定装置,包括:
用于存储液体标定样品的储液器;和
与储液器连通用于输送储液器中的液体标定样品的自动输送部。
一方面,所述自动输送部包括:设置在自动输送部内的活塞管道,所述活塞管道与储液器流体连通;和
设置在所述活塞管道内的活塞,所述活塞在所述活塞管道内往复移动以将从储液器中进入所述活塞管道内的定量的液体标定样品送出。
一方面,所述自动输送部还包括:
第一偏心轮,所述第一偏心轮配置成抵靠与活塞连接的挡板使得通过 转动推动挡板从而推动活塞沿第一偏心轮的径向方向移动;和
电机,用于驱动所述第一偏心轮转动。
一方面,所述第一偏心轮的外形是固定的,使得每次第一偏心轮转动一圈沿径向方向推动挡板从而推动活塞沿第一偏心轮的径向方向移动固定的距离,从而活塞在第一偏心轮转动一圈的情况下提供定量的液体标定样品。
一方面,第一偏心轮是可替换的,使得能够使用不同尺寸的偏心轮改变输送的标定样品的量。
一方面,所述第一偏心轮连续转动,活塞随着第一偏心轮的连续转动所提供的液体标定样品为第一偏心轮每一圈转动自动标定装置提供的液体标定样品的量乘以第一偏心轮的转动圈数。
一方面,所述自动输送部还包括弹性件,所述弹性件配置成提供弹性力,所述弹性力的作用方向与第一偏心轮驱动活塞运动的力的方向相反。
一方面,所述自动输送部还包括:连通管道,所述连通管道的入口连接储液器,所述连通管道的出口连接所述活塞管道,并且所述连通管道的出口设置在所述活塞管道的端部附近,使得在所述活塞移动时所述连通管道内的液体标定样品被活塞抽吸入所述活塞管道内由所述活塞的端面与所述活塞管道的端面之间形成空间内。
一方面,所述自动输送部还包括:输送管,所述输送管与所述活塞管道流体连通,以便所述活塞管道内的液体标定样品通过输送管输送至离子迁移谱仪。
一方面,所述输送管包括内毛细管和外毛细管,在外毛细管和内毛细管之间具有缝隙用于液体的输送。
一方面,所述自动输送部还包括:第二偏心轮,具有与第一偏心轮相同的形状,所述第二偏心轮抵靠所述挡板并且设置在所述挡板的与所述第一偏心轮相反侧,与所述第一偏心轮配合一起沿相同或相反方向转动使得抵靠所述挡板,使得所述挡板往复移动。
本公开的实施例还提供一种离子迁移谱仪,包括上述的自动标定装置。
附图说明
图1为本公开一个实施例的自动标定装置的示意图;
图2是本公开另一实施例的自动标定装置的示意图。
具体实施方式
尽管本公开容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
下面根据附图说明根据本公开的多个实施例。
本公开的实施例提供一种用于离子迁移谱仪的自动标定装置10,包括:用于存储液体标定样品的储液器18;和与储液器18连通用于输送储液器18中的液体标定样品的自动输送部。在本公开的实施例中,储液器18的体积大,相对于每次使用或消耗的标定样品的量,储液器18的容积足够大,从而在储液器18被充满标定样品之后,可以使用较长时间,而不需要频繁添加标定样品。本公开的实施例中的储液器18与自动输送部是一体的结构,由于自动标定装置10包括储液器18,因而自动标定装置便于携带,不用担心在自动标定装置10被移动或输运时例如易挥发的标定样品会泄漏。由于储液器18与自动输送部是一体的结构,因而标定样品可以在自动标定装置10内部从储液器18直接被输送到自动输送部,因而标定样品损失少,标定精确度提高。
在本公开的一个实施例中,自动输送部包括:设置在自动输送部内的活塞管道,所述活塞管道与储液器18流体连通;和,设置在所述活塞管道内的活塞14,所述活塞14在所述活塞管道内往复移动以将从储液器18中进入所述活塞管道内的定量的液体标定样品送出。如图1所示,当自动标定装置10水平放置时,活塞管道沿水平方向延伸,活塞14在所述活塞管道内沿水平方向左右往复移动。要知道,活塞管道沿水平方向延伸并不 是必须的,图1仅示出活塞管道的一种延伸方式,活塞管道沿其他方向延伸并不影响输送标定样品。当活塞14在活塞管道内往复往复移动,活塞14的移动可以抽取储液器18中的液体标定样品,活塞14的推动可以将液体标定样品从活塞管道中输送出去。
在本公开的自动标定装置的一个实施例中,所述自动输送部还包括:第一偏心轮12,所述第一偏心轮12配置成抵靠与活塞连接的挡板13以便通过转动而推动挡板13从而推动活塞14沿第一偏心轮12的径向方向移动;和电机11,用于驱动所述第一偏心轮12转动。设置挡板13是有利的,挡板13在使用过程中容易磨损,这在精密注射时尤其需要考虑,磨损会导致每次注射的量发生改变。本实施例由于使用了挡板13,因而挡板13的材料可以选择耐磨材料,而不必与活塞的材料相同,这样降低了设备的成本。此外,更换挡板更容易,而不必更换整个活塞。第一偏心轮12的外径是变化的,因而当第一偏心轮12围绕其旋转轴线转动的时候,外表面距离旋转轴线的距离不断改变,即由距离旋转轴线的最短距离逐渐变成距离旋转轴线的最长距离,然后随着第一偏心轮12的继续转动,逐渐变成距离旋转轴线的最短距离;当然,反之亦然,即由距离旋转轴线的最远距离逐渐变成距离旋转轴线的最短距离,然后随着第一偏心轮12的继续转动,逐渐变成距离旋转轴线的最远距离。本公开的实施例,通过设置电机11,使得输送标定样品可以脱离手动形式;由于使用偏心轮使得每次输送的标定样品的量是固定的,这样提高了标定精确度;电机11和偏心轮的配合使得自动完成定量标定样品的输送。第一偏心轮12的偏心距可以设置在0.5mm至2mm之间,即第一偏心轮12的最大外径与最小外径的差可以是4mm,也可以是1mm,或者可以是1至4之间的任一个。然而,第一偏心轮12的偏心距可以是其他尺寸,这可以根据实际需要设定。通过设置第一偏心轮12的尺寸可以实现微升级别的容量输送。
在本公开的另一实施例中,第一偏心轮12抵靠活塞14的一个端部,使得通过转动以推动活塞14沿第一偏心轮12的径向方向移动。
根据本公开的实施例,一旦第一偏心轮12选定之后,所述第一偏心轮12的外形是固定的,使得每次第一偏心轮12转动一圈沿径向方向推动 挡板从而推动活塞14沿第一偏心轮12的径向方向移动固定的距离,从而活塞14在第一偏心轮12转动一圈的情况下提供定量的液体标定样品。
根据本公开的实施例,此处第一偏心轮12是可更换的,不同尺寸的偏心轮可以输送不同量的标定样品。根据本公开的实施例,第一偏心轮12是可替换的,设置不同尺寸的偏心轮,即偏心轮最大外径和最小外径之间的差值是可以根据需要设计,从而可以设计活塞14的行程,进一步地,确定输送的标定样品的量。
根据本公开的实施例,自动标定装置10的优点还在于,所述第一偏心轮12可以连续转动,活塞14随着第一偏心轮12的连续转动所提供的液体标定样品为第一偏心轮12每一圈转动自动标定装置10提供的液体标定样品的量乘以第一偏心轮12的转动圈数。第一偏心轮12每转动一圈输送对应的固定量的标定样品,在需要较多的标定样品的时候,可以转动第一偏心轮12多圈,从而实现精确的标定,并且由于电机11的驱动,使得输送过程尤为快速方便,大大方便了检测过程,缩短了检测时间。
所述自动输送部还可以包括第二偏心轮12’,具有与第一偏心轮12相同的形状,所述第二偏心轮12’抵靠所述挡板13并且设置在所述挡板13的与所述第一偏心轮12相反侧,与所述第一偏心轮12配合一起沿相同或相反方向转动使得抵靠所述挡板13,使得所述挡板13往复移动。
在另一实施例中,两个偏心轮夹着活塞14上的挡板13沿图中所示左右运动。例如,第一偏心轮12的最小外径抵靠所述挡板13的时候,第二偏心轮12’的最大外径抵靠所述挡板13;第一偏心轮12可以与第二偏心轮12’沿相同方向转动,第一偏心轮12的外径不断增大,第二偏心轮12’的外径不断减小,活塞14被推动朝向右移动;当第一偏心轮12最大外径抵靠挡板13时,第二偏心轮12’的最小外径刚好抵靠挡板13,此时挡板13运动到最靠右边;第一偏心轮12继续转动,则挡板13被第二偏心轮12’不断增大的外径向左推动,活塞14向左移动,推动液体,将液体排出活塞管道。在一个实施例中,第一偏心轮12和第二偏心轮12’通过一个电机11驱动。在另一个实施例中,第一偏心轮12和第二偏心轮12’分别通过两个电机11驱动。使用两个偏心轮是有利的,挡板被第一偏心轮12和第二 偏心轮12’夹在中间因而挡板的平移更加稳定,避免在快速平移时出现挡板与第一偏心轮之间的脱离的现象。
在本公开的一个实施例中,仅使用第一偏心轮12。自动输送部还包括弹性件15,所述弹性件15配置成提供弹性力,所述弹性力的作用方向与第一偏心轮12驱动活塞14运动的力的方向相反。例如,所述弹性件15提供拉力,将活塞14(如图1)向左拉,而第一偏心轮12抵抗弹性件15的拉力向右推动挡板从而推动活塞13。当第一偏心轮12最大外径抵靠挡板13时,随着第一偏心轮12的外径不断减小,活塞14被弹性件15向左拉动。
在另一实施例中,弹性件15提供向右的弹性推力,将活塞14向右推动,此时在挡板13的右边设置偏心轮12’,例如第二偏心轮12’,第二偏心轮12’抵抗弹性件15的弹性力推动挡板从而推动活塞13移动。
在本公开的另一实施例中,所述自动输送部还包括:连通管道19,所述连通管道19的入口连接储液器18,所述连通管道19的出口连接所述活塞管道,并且所述连通管道19的出口设置在所述活塞管道的端部附近,使得在所述活塞14移动时允许所述连通管道19内的液体标定样品被活塞14抽吸入所述活塞管道内的由所述活塞14的端面与所述活塞管道的端面之间限定的空间内。根据本公开的实施例的设置,在自动标定装置10内部提供了储液罐18和连通通道19,使得标定样品在自动标定装置10内部输送,这对易挥发样品是有利的,样品不会跟外界接触,输送的量因而可以被精确地固定下来,对检测的对比是有利的。连通管道19的入口直径可以为0.5mm至1mm之间;然而,其他的入口直径尺寸也是可以使用的。
在连通管道19的出口处还可以设置单向阀17,当如图1所示的第一偏心轮12使得活塞14向右运动时,单向阀17被打开,储液器18中的标定样品流入活塞管道中,即标定样品流入活塞14的端面和相对的活塞管道的端面之间的间隙内;在活塞14向左运动的时候,单向阀17关闭连通管道19的出口,液体标定样品只能够从活塞管道的端面的出口排出。在活塞管道的端部可以设置橡胶塞16,橡胶塞16设置有出口,液体标定样品可以从出口排出。此处,单向阀17使得液体标定样品可以从连通管道 19的出口经过单向阀17进入活塞管道,但是单向阀17阻止液体进入连通管道19中。进一步,橡胶塞16也是单向的,液体标定样品可以从橡胶塞16的如图1所示的右侧流向左侧,然而,不能够从左侧流向右侧,即,液体标定样品可以从活塞管道经过橡胶塞16排出到活塞管道外,但是橡胶塞16阻止活塞管道外的液体或气体进入活塞管道内。
在本公开的另一实施例中,所述自动输送部还包括:输送管110,所述输送管110与所述活塞管道流体连通,以便所述活塞管道内的液体标定样品通过输送管110输送至离子迁移谱仪。所述输送管110可以设置成包括内毛细管112和外毛细管111,在外毛细管111和内毛细管112之间具有缝隙用于液体的输送。图1中圆圈处输送管100的部分被放大示出,放大倍数大约8倍。细毛细管内径可以为0.1mm,外径可以为0.3mm,粗毛细管的内径可以为0.5mm,外径可以为0.8mm。在内毛细管112的外径和外毛细管111的内径之间形成有间隙,因而液体可以通过所述间隙喷射。本公开的实施例提供的输送管110是有利的,可以实现微升级别的标定样品的喷射。根据本公开的实施例的自动标定装置10,通过使用偏心轮驱动的活塞注射和输送管110的配合,自动标定装置10实现液体标定样品的喷射,喷射的液体标定样品能够充分散开。当电机11驱动时,可以实现偏心轮的自动连续转动,从而实现微升级别的标定样品的连续喷射。
本公开的实施例还提供一种离子迁移谱仪,包括上述实施例中的自动标定装置10。
在本公开的实施例中,离子迁移谱仪还可以包括电路控制板、显示屏等,便于设备的控制和操作。
例如,操作者可以通过显示屏输入液体标定样品的预定量,电路控制板可以控制电机11以便转动第一偏心轮12预定圈数。在第一偏心轮12的驱动下,活塞14往复移动预定个行程,从而排出预定量的标定样品,通过输送管110送入离子迁移谱仪内进行测量。
虽然本总体专利构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体专利构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (12)

  1. 一种用于离子迁移谱仪的自动标定装置,包括:
    用于存储液体标定样品的储液器;和
    与储液器连通用于输送储液器中的液体标定样品的自动输送部。
  2. 如权利要求1所述的自动标定装置,所述自动输送部包括:
    设置在自动输送部内的活塞管道,所述活塞管道与储液器流体连通;和
    设置在所述活塞管道内的活塞,所述活塞在所述活塞管道内往复移动以将从储液器中进入所述活塞管道内的定量的液体标定样品送出。
  3. 如权利要求1所述的自动标定装置,所述自动输送部还包括:
    第一偏心轮,所述第一偏心轮配置成抵靠与活塞连接的挡板以便通过转动而推动挡板从而推动活塞沿第一偏心轮的径向方向移动;和
    电机,用于驱动所述第一偏心轮转动。
  4. 如权利要求3所述的自动标定装置,其中,第一偏心轮是可替换的,使得能够使用不同尺寸的偏心轮改变输送的标定样品的量。
  5. 如权利要求3所述的自动标定装置,其中,所述第一偏心轮连续转动,活塞随着第一偏心轮的连续转动所提供的液体标定样品的量为第一偏心轮每一圈时由转动自动标定装置提供的液体标定样品的量乘以第一偏心轮的转动圈数。
  6. 如权利要求1所述的自动标定装置,所述自动输送部还包括:
    弹性件,所述弹性件配置成提供弹性力,所述弹性力的作用方向与第一偏心轮驱动活塞运动的力的方向相反。
  7. 如权利要求2所述的自动标定装置,所述自动输送部还包括:
    连通管道,所述连通管道的入口连接储液器,所述连通管道的出口连接所述活塞管道,并且所述连通管道的出口设置在所述活塞管道的端部附近,使得在所述活塞移动时所述连通管道内的液体标定样品被活塞抽吸入所述活塞管道内由所述活塞的端面与所述活塞管道的端面之间形成空间内。
  8. 如权利要求7所述的自动标定装置,所述自动输送部还包括:单向 阀,设置在连通管道的出口处,配置成允许液体标定样品从所述储液器进入所述活塞管道,而阻止液体标定样品从所述活塞管道进入所述储液器。
  9. 如权利要求1所述的自动标定装置,所述自动输送部还包括:
    输送管,所述输送管与所述活塞管道流体连通,以便所述活塞管道内的液体标定样品通过输送管输送至离子迁移谱仪。
  10. 如权利要求9所述的自动标定装置,其中,所述输送管包括内毛细管和外毛细管,在外毛细管和内毛细管之间具有缝隙用于液体的输送。
  11. 如权利要求1所述的自动标定装置,所述自动输送部还包括:
    第二偏心轮,具有与第一偏心轮相同的形状,所述第二偏心轮抵靠所述挡板并且设置在所述挡板的与所述第一偏心轮相反侧,与所述第一偏心轮配合一起沿相同或相反方向转动使得抵靠所述挡板,使得所述挡板往复移动。
  12. 一种离子迁移谱仪,包括如权利要求1-11中任一项所述的自动标定装置。
PCT/CN2018/087302 2017-09-19 2018-05-17 自动标定装置和离子迁移谱仪 WO2019056778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710856368.1 2017-09-19
CN201710856368.1A CN107505382A (zh) 2017-09-19 2017-09-19 自动标定装置和离子迁移谱仪

Publications (1)

Publication Number Publication Date
WO2019056778A1 true WO2019056778A1 (zh) 2019-03-28

Family

ID=60697178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087302 WO2019056778A1 (zh) 2017-09-19 2018-05-17 自动标定装置和离子迁移谱仪

Country Status (5)

Country Link
US (1) US10861686B2 (zh)
EP (1) EP3457145A1 (zh)
CN (1) CN107505382A (zh)
RU (1) RU2767992C2 (zh)
WO (1) WO2019056778A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505382A (zh) * 2017-09-19 2017-12-22 同方威视技术股份有限公司 自动标定装置和离子迁移谱仪
CN116626273B (zh) * 2023-07-21 2023-10-03 常州科德水处理成套设备股份有限公司 一种水处理离子交换树脂分离度测试装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050159A2 (en) * 2003-10-14 2005-06-02 Washington State University Research Foundation Ion mobility spectrometry method and apparatus
CN1886724A (zh) * 2003-11-27 2006-12-27 吉尔松有限合伙公司 带显示器的电子吸移管和用于控制吸入及排出的选择器
CN103299183A (zh) * 2010-08-31 2013-09-11 Atonarp株式会社 制备向离子迁移率传感器供给的样品的装置
CN104254772A (zh) * 2011-12-28 2014-12-31 麦迪马斯责任有限公司 用于液相样品的快速蒸发电离的系统和方法
CN104653426A (zh) * 2015-01-20 2015-05-27 天津农学院 一种高精度柱塞式微量进样泵
CN205931345U (zh) * 2016-07-26 2017-02-08 武汉诺威特农业技术有限公司 液体灌装机
CN106645513A (zh) * 2016-12-07 2017-05-10 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN206235603U (zh) * 2016-12-07 2017-06-09 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN107505382A (zh) * 2017-09-19 2017-12-22 同方威视技术股份有限公司 自动标定装置和离子迁移谱仪

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877287A (en) * 1972-02-27 1975-04-15 Us Navy Low flow gas or liquid calibrator
US5547351A (en) 1994-03-01 1996-08-20 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Low pressure low volume liquid pump
US6164924A (en) * 1998-09-01 2000-12-26 Oil-Rite Corporation Piston and drive assembly for use in a pump
AU2004252114B2 (en) 2003-06-09 2010-09-09 Dako Denmark A/S Diaphram metering chamber dispensing systems
EP1589336A1 (en) * 2005-02-04 2005-10-26 Agilent Technologies, Inc. Leakage checking and calibration of a liquid delivery system
US7942652B1 (en) * 2008-11-29 2011-05-17 Murray Lawrence D Bi-directional centripetally-powered reciprocating pump
CN101936947B (zh) * 2009-06-30 2013-05-01 同方威视技术股份有限公司 离子迁移谱仪校准样品及其制备方法和使用方法
CN102565177B (zh) * 2010-12-31 2014-10-29 同方威视技术股份有限公司 标定装置
GB2518391A (en) * 2013-09-19 2015-03-25 Smiths Detection Watford Ltd Method and apparatus
JP6615764B2 (ja) * 2014-01-24 2019-12-04 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 液体をイオン源に送達するためのシステムおよび方法
JP5971289B2 (ja) * 2014-08-20 2016-08-17 株式会社 イアス 基板局所の自動分析装置及び分析方法
RU2592644C1 (ru) * 2015-03-05 2016-07-27 Закрытое акционерное общество Специальное конструкторское бюро "Хроматэк" Формирователь потока газообразных веществ для масс-спектрометра
KR101605140B1 (ko) * 2015-08-27 2016-03-21 (주)포엘디자인 듀얼펌핑 유체펌프
CN106910668B (zh) * 2017-04-07 2018-07-03 山东省科学院海洋仪器仪表研究所 一种真空定量自动进样系统及其使用方法
CN207611013U (zh) * 2017-09-19 2018-07-13 同方威视技术股份有限公司 自动标定装置和离子迁移谱仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050159A2 (en) * 2003-10-14 2005-06-02 Washington State University Research Foundation Ion mobility spectrometry method and apparatus
CN1886724A (zh) * 2003-11-27 2006-12-27 吉尔松有限合伙公司 带显示器的电子吸移管和用于控制吸入及排出的选择器
CN103299183A (zh) * 2010-08-31 2013-09-11 Atonarp株式会社 制备向离子迁移率传感器供给的样品的装置
CN104254772A (zh) * 2011-12-28 2014-12-31 麦迪马斯责任有限公司 用于液相样品的快速蒸发电离的系统和方法
CN104653426A (zh) * 2015-01-20 2015-05-27 天津农学院 一种高精度柱塞式微量进样泵
CN205931345U (zh) * 2016-07-26 2017-02-08 武汉诺威特农业技术有限公司 液体灌装机
CN106645513A (zh) * 2016-12-07 2017-05-10 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN206235603U (zh) * 2016-12-07 2017-06-09 同方威视技术股份有限公司 用于痕量分析仪器标定的标准样品的制备和送进装置
CN107505382A (zh) * 2017-09-19 2017-12-22 同方威视技术股份有限公司 自动标定装置和离子迁移谱仪

Also Published As

Publication number Publication date
CN107505382A (zh) 2017-12-22
RU2018130830A (ru) 2020-02-27
US20190088458A1 (en) 2019-03-21
EP3457145A1 (en) 2019-03-20
RU2018130830A3 (zh) 2021-10-22
RU2767992C2 (ru) 2022-03-22
US10861686B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP7404421B2 (ja) 粘度計及びその使用方法
JP6647264B2 (ja) 流体を供給するカートリッジ
WO2019056778A1 (zh) 自动标定装置和离子迁移谱仪
JP2011512538A (ja) 粘度を測定するためのピペットシステム及び方法
US8656792B2 (en) Pipette device having a throttle point in the pipette duct
JP2013257308A (ja) ピペッティング装置およびその製造方法
US8371181B2 (en) Continuous flow pump
CN202921523U (zh) 一种新型液体计量输送装置
JP2012521235A5 (zh)
JP4988382B2 (ja) 試料溶液の固相抽出装置
CN207611013U (zh) 自动标定装置和离子迁移谱仪
US10768192B2 (en) Device and method to sample liquids with high-precision in an automated sample analyzer
US20100059549A1 (en) Apparatus and method for dosing of liquids in gas filled spaces
US20210379899A1 (en) Single-particle dispensing device and single-particle dispensing method using same
CN210460974U (zh) 一种生化仪试剂的精密进量器
CN109453829A (zh) 高精度液体取用管
US3244324A (en) Volumetric dispensing apparatus
KR102574901B1 (ko) 시약 분주 장치
CN211637137U (zh) 注料装置
EP3443947B1 (fr) Dispositif pour préparer une dose de quantité de matière
JP2005069830A (ja) 分注チップとそれを用いた分析装置
TWM344498U (en) Dye-liquid bottle with regularly-metered and micro-metered injector and its automatic meter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858801

Country of ref document: EP

Kind code of ref document: A1