WO2019054541A1 - 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재 - Google Patents

상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재 Download PDF

Info

Publication number
WO2019054541A1
WO2019054541A1 PCT/KR2017/010362 KR2017010362W WO2019054541A1 WO 2019054541 A1 WO2019054541 A1 WO 2019054541A1 KR 2017010362 W KR2017010362 W KR 2017010362W WO 2019054541 A1 WO2019054541 A1 WO 2019054541A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcm
denim
fiber
yarn
polymer
Prior art date
Application number
PCT/KR2017/010362
Other languages
English (en)
French (fr)
Inventor
황승태
Original Assignee
티씨이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티씨이 주식회사 filed Critical 티씨이 주식회사
Publication of WO2019054541A1 publication Critical patent/WO2019054541A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/225Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based artificial, e.g. viscose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Definitions

  • the present invention relates to a technique for manufacturing a denim material having a thermally reversible characteristic by using a phase change material (PCM), and by imparting cold and warm thermal reversible characteristics to a denim material, To a technique capable of improving the feel and enhancing durability.
  • PCM phase change material
  • Phase change material refers to a substance that absorbs or emits a large amount of heat while changing phase (eg, liquid -> solid or solid -> liquid) without changing the temperature at a specific temperature.
  • the heat that is absorbed or released is called latent heat.
  • latent heat When applied to fiber materials, it gives cold feeling in hot weather like summer and gives warmth in cold weather like winter season.
  • a technique of applying the microcapsule after coating with a polymer material has been developed and applied.
  • the method of microencapsulation is not a special method of using emulsion polymerization in general, and a method of applying the microcapsule to a fiber has been heretofore applied directly, followed by drying or heat treatment.
  • this method is not good in durability, and in particular, since the microcapsule is used in a portion in direct contact with the human body, the microcapsule has no air permeability and is not soft and thus not suitable for use in clothes.
  • the cotton yarn is subjected to processes such as canning, dyeing, marine, fur, weaving, embroidery, washing, mercerization, tentering, reduction and inspection.
  • the denim material in order to manufacture the denim material, it is subjected to physicochemical processes such as mercerization, tentering, and shrinking after various processes such as weaving using a cotton yarn.
  • the present invention has been developed in view of the above circumstances of the prior art, and it is an object of the present invention to propose a technique for applying a phase change material (PCM) to a denim material to impart thermal, In the physical and chemical treatment according to the post-process, the function and the high quality of the material are maintained, and the technology for dramatically improving the durability of use for a long time is provided.
  • PCM phase change material
  • PCM phase transition material
  • the PCM fiber is characterized by being obtained by wet spinning or melt spinning.
  • the PCM fiber is characterized by being a rayon yarn or an acrylic yarn obtained by wet spinning.
  • the microcapsules are mixed in an amount of 10 to 30% by weight based on 100 parts by weight of the spinning solution.
  • the phase change material is characterized by using a material having a melting temperature falling within a range of -20 to 90 ° C.
  • the phase transfer material is characterized in that a straight chain paraffinic hydrocarbon having 10 to 44 carbon atoms is used singly or as a mixture.
  • the phase change material may be selected from the group consisting of n-octanoic acid, n-heptanoic acid, n-hexanoic acid, n-tetracholic acid, n-hexadecane, n-pentadecane, n-tetradecane, and n-tridecane, which are selected from the group consisting of n-hexadecane, Or more.
  • the phase transfer material in the microencapsulation of the phase change material (PCM), the phase transfer material is dissolved in a mixture of a polymer monomer and an emulsification aid, and the emulsion is emulsified by adding an initiator after being emulsified in water containing an emulsifier Wherein the polymeric resin formed by polymerization of the polymeric monomer forms microcapsules by forming a surface layer.
  • PCM phase change material
  • the polymer resin may be melamine resin, urea resin, gelatin, cellulose, epoxy, polyethylene or polyvinyl alcohol.
  • surface strengthening using the polymer material may be performed by mixing and dispersing the microcapsules of the phase change material in a polyurethane prepolymer to emulsify the polymer, adding a chain extender and an organosilane compound thereto, Thereby forming a surface-strengthening layer.
  • the obtained surface strengthening layer is formed of a surface polymer layer having a particle diameter of 5 to 30% of the particle diameter of the microcapsule particles.
  • a surface-reinforced microcapsule obtained by microencapsulating a phase transition material (PCM) on a relatively large number of surfaces contacted with the skin, In a weight ratio of 30 to 70: 70 to 30, with a PCM fiber obtained by spinning and adding to a fiber spinning solution, and a mixed yarn obtained by blending the plain yarn at a weight ratio of 30 to 70: 70 to 30, either singly or in combination with other fibers.
  • PCM surface-reinforced microcapsule
  • the denim fabric produced by the method according to the present invention can be thermally reversible in cold and warm sensation by applying a phase transition material (PCM), and in particular, It is possible to maintain the functionality and high quality of the material in spite of the chemical treatment, and it is possible to remarkably improve the durability and the use for a long time.
  • PCM phase transition material
  • a typical process for making denim materials consists of a series of processes that include cotton yarn, canvas, dyeing, marine, fur, weaving, fur, washing, mercerizing, tentering, shrinking and inspection.
  • the cannon is a step of preparing dyeing, and winding a cotton yarn into a rope shape with a uniform tension and a length equal to the number of rolls according to the product standard.
  • the dyeing is a step of dyeing the yarn wound in the rope shape in a predetermined color.
  • the marine is a preparation process of weaving as a process of reeling the yarn dyed in a rope shape and winding it in a sheet form in accordance with the product standard.
  • the call portion is a process of feeding the grass to the surface of the yarn in order to facilitate the weaving of the fabric in the weaving preparation process.
  • the weaving is a process in which the weft is physically expressed in the form of a fabric by staining the weft with a warp sloped to the grass.
  • the water washing is a step of removing the paste adhering to the surface of the fabric in order to enhance permeability of various chemicals in the subsequent process and to stabilize the physical properties.
  • the mercerization is a process of forcing the cotton fiber to swell by using a sodium hydroxide solution to produce a glossy touch and a smooth touch on the surface of the denim fabric. After the mercerization, the pH of the fabric is neutralized by using formic acid or the like.
  • the tentering is a process of setting the shape of the polyurethane to the intended physical property by hot hot air and imparting additional characteristics to the fabric by using various chemicals.
  • the shrinkage is due to the fact that the cotton fabric is swollen and shrunk after flushing. Therefore, in order to prevent such a shrinkage, the physical process is performed in advance. Skewing is performed in the horizontal direction and sanforizing is performed in the vertical direction.
  • the inspection is a final inspection of the product to check whether it meets the fiber quality standard.
  • the fabric is manufactured by weaving the warp yarn and general weft yarn with dyeing, marine, and furrow, and thereafter, the subsequent process of several stages such as morne, washing, mercerization, tentering, It goes through.
  • the present invention intends to provide a technique capable of imparting functional characteristics of cold and warm sensation by incorporating a PCM material in a denim manufacturing method through such a process, and maintaining physical characteristics and durability.
  • the present invention uses a plain cotton yarn that has undergone the above-mentioned weaving step as a warp yarn, microencapsulated a phase change material (PCM) as a weft yarn,
  • PCM phase change material
  • the surface reinforced microcapsules are added to the fiber spinning solution, and the blend yarn obtained by blending the PCM fibers obtained by spinning with a general cotton yarn at a weight ratio of 30 to 70: 70 to 30 is weighed singly or in combination with other fibers And a thermally reversible characteristic of the denim material.
  • the yarns before the weaving are used, that is, regular yarns passed through regular yarn, dyeing, marine yarns and yarns.
  • phase transition material As the weft, by using a material containing a phase change material (PCM), a phase transition material is mixed into a weft yarn widely used on a surface contacting with the skin, thereby imparting a cold, warm, and thermally reversible characteristic.
  • PCM phase change material
  • the phase transition material when the phase transition material is mixed into the weft yarn, microcapsules of the phase transition material are used.
  • the microcapsule alone may have weak durability and washing durability against the physicochemical treatment according to the subsequent process.
  • the surface reinforced fiber is referred to as PCM fiber.
  • the PCM fiber can be produced by wet spinning or melt spinning.
  • the PCM fiber may be rayon yarn or acrylic yarn obtained by wet spinning.
  • a PCM material specifically, a surface-reinforced microcapsule containing a PCM material
  • PCM fiber by mixing.
  • the surface-reinforced microcapsules are mixed at a ratio of about 10 to 30% by weight based on 100 parts by weight of the spinning solution for imparting cold and warm feeling.
  • the thus obtained PCM fiber is blended with a general cotton yarn to obtain a blend yarn.
  • the blend ratio is preferably 30 to 70: 70 to 30 by weight of the blend of PCM fiber and plain cotton yarn.
  • phase transition material is added to a mixture of a polymer monomer and an emulsifying aid to dissolve it, and the resulting mixture is emulsified in water containing an emulsifying agent, followed by polymerization with an initiator.
  • a phase transition material 100 parts by weight of a phase transition material is dissolved in a mixture of 100 to 180 parts by weight of a polymeric monomer and 10 to 20 parts by weight of an emulsifying aid, emulsified in 800 to 1000 parts by weight of water containing 1 to 10 parts by weight of an emulsifier, 0.1 to 5 parts by weight is added, followed by a polymerization reaction to prepare an emulsion-state microencapsulated phase change material.
  • a phase change material refers to a material that absorbs or emits heat energy while changing from a solid phase to a liquid phase or from a liquid phase to a solid phase within a certain temperature range.
  • phase transition materials can be selected from known ones, and specifically, materials having a melting temperature within a range of -20 to 90 ° C can be used.
  • the phase transition material is preferably a linear paraffinic hydrocarbon having 10 to 44 carbon atoms, either singly or as a mixture.
  • specific examples thereof include n-octanoic acid, n-heptanoic acid, n-hexanoic acid, n-octadecane, n-heptadecane, n-hexadecane, n-pentadecane, n-tetradecanoic acid, Decane, and n-tridecane, may be used.
  • the polymer resin that is polymerized by the polymer monomer and forms the surface layer of the phase change material for example, melamine resin, urea resin, gelatin, cellulose, epoxy, polyethylene or polyvinyl alcohol can be used as the polymer resin.
  • any known polymer resin that generally coats a PCM material can be used without limitation.
  • the emulsifying aid is added to maintain a stable emulsified state.
  • long-chain alcohols such as cetyl alcohol or stearyl alcohol may be used, but the present invention is not limited thereto. , which are known in the art to be used for microencapsulation of PCM materials in general, can be used without limitation.
  • the emulsifier is preferably an anionic surfactant, but is not limited thereto.
  • the anionic surfactant include carboxylic acid salts, sulfonic acid salts, sulfuric acid ester salts and phosphoric acid ester salts.
  • the carboxylic acid salt may be a higher fatty acid alkali salt, an N-acryloyl acid salt, an alkyl ether carboxylic acid salt, an acylated peptide or the like.
  • the sulfonic acid salt may include an alkyl sulfonate, an alkylbenzene and an alkyl amino acid salt, an alkyl naphthalene sulfonate, An alkyl ether sulfate, an alkyl aryl ether sulfate, an alkylamide sulfate, and the like can be used as the sulfuric acid ester salt.
  • Examples of the phosphoric acid ester salt include alkyl phosphates, alkyl ether phosphates, alkyl aryl ether phosphates, and the like. Can be used.
  • a homogenizer or an ultrasonic wave may be used as a method of emulsifying the mixture.
  • Such initiators include, for example, potassium persulfate (KPS), aminopropanesulfonic acid (APS), azobismethylpropionate
  • AIBN Azobismethylpropionitrile
  • the reaction temperature during the emulsion polymerization is preferably from about 50 to 80 ⁇ , preferably about 70 ⁇ for 1 to 8 hours, preferably about 5 hours.
  • Such a PCM microcapsule has a certain degree of durability because a polymer resin layer is formed on its surface, and when it is mixed with a spinning solution to spin the fiber, it can be used as a general fiber material.
  • the physical and chemical treatment is subjected to severe physical processes.
  • the surface of the PCM microcapsule is weakened by physical and chemical treatment only The durability and the durability of the laundry may be weakened in the course of use, and reliability of the fiber quality may deteriorate.
  • the PCM microcapsules obtained are further treated to enhance the surface characteristics in order to solve this problem.
  • a urethane coating layer is formed on the surface of the obtained PCM microcapsule for enhancing the surface property.
  • the present invention relates to a technique for stably imparting intrinsic properties of a PCM material to a denim material, and is characterized by forming a rigid and stable urethane surface reinforcing layer by using a polymer material on the surface of the PCM microcapsule.
  • a specific method of surface-strengthening the polymer material includes mixing and dispersing the PCM microcapsules in a polyurethane prepolymer to emulsify the polymer, mixing a chain extender and an organosilane compound therein, Lt; / RTI >
  • the polyurethane prepolymer is prepared by first reacting a mixture containing a polyol and an isocyanate compound to prepare a prepolymer having a degree of polymerization.
  • the polyol includes polyester polyol, carbonate polyol and the like having a number average molecular weight of about 300 to 5,000
  • a diisocyanate compound containing two isocyanate groups may be selected from toluene diisocyanate, diphenylmethane diisocyanate, xylene diisocyanate, isophorone diisocyanate, hexane diisocyanate, hexamethylene diisocyanate and the like.
  • a catalyst used in ordinary polyurethane production may be added within the usual range of addition, for example, dibutyltin dilaurate may be used.
  • the prepolymer can be prepared by neutralizing the reaction product using a predetermined neutralizing agent.
  • the PCM microcapsules are mixed with the prepolymer thus prepared and polymerized to obtain microcapsules having the surface-strengthening layer formed thereon.
  • the prepolymer and the PCM microcapsules are mixed at a predetermined ratio, and a chain extender and an organosilane compound are added to the reaction system to polymerize the prepolymer on the surface of the PCM microcapsule, whereby the surface reinforcing layer is firmly and stably formed Microcapsules can be obtained.
  • the mixing ratio of the prepolymer and the PCM microcapsule may be 50 to 200 parts by weight based on 100 parts by weight of the prepolymer solution.
  • the chain extender may be a diamine or a diol compound, and a known compound may be used.
  • the amount of the chain extender may be about 1 to 10 parts by weight based on 100 parts by weight of the prepolymer solution.
  • the organosilane compound is preferably a reactive organosilane compound.
  • the organosilane compound include alkoxysilane, aminosilane, epoxy silane, methacrylate silane, and vinyl silane. More specifically, trimethoxysilane, trie Ethoxy silane, triacetoxy silane and the like can be used.
  • the organosilane compound enhances the binding force between the outer layer polymer of the microcapsule and the outer layer polymer formed by polymerization of the prepolymer, and is used in a range of about 0.5 to 10 parts by weight based on 100 parts by weight of the prepolymer solution .
  • the reaction for forming the surface strengthening layer by the chain extender and the organosilane compound may be performed using the same reaction system, and the reaction temperature may be about 50 to 100 ° C. and the reaction time may be about 1 to 8 hours.
  • the microcapsules obtained by such a process have a solid surface-strengthening layer made of a polyurethane polymer resin, and the surface-strengthening layer preferably has a thickness of about 5 to 30% of the thickness of the microcapsules . If the thickness of the thickness layer is less than 5%, the durability improvement effect is insignificant with respect to the physicochemical treatment according to the subsequent process. If the thickness layer is more than 30%, there is a problem that the cold / It is preferable to control the reaction so as to be maintained.
  • the PCM microcapsule having the surface strengthening layer thus obtained is put into a spinning solution, and the resultant is spun to obtain a PCM fiber.
  • the PCM fiber is then woven using a part or all of the weft yarn to obtain a fabric, It is possible to manufacture a denim material in which a PCM material is stably incorporated by carrying out a process of embossing, washing, mercerizing, tentering, shrinking and inspection.
  • a denim material is a high quality material having cold sensibility due to the latent heat characteristic of the PCM material

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재에 관한 것으로서, 더욱 구체적으로는 면사를 정경, 염색, 해사, 호부, 제직, 모소, 수세, 머서화, 텐터링, 축소 및 검사 과정을 거쳐 데님 소재를 제조하는 방법으로서, 상기 제직 과정에서, 경사로서는 상기 제직 전까지의 단계를 거친 일반 면사를 사용하고, 위사로서는 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어된 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 사용하여 제직하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재를 제공한다. 본 발명에 따른 방법에 의해 제조되는 표면 강화층을 갖는 PCM 마이크로 캡슐을 이용해 방사액에 투입하고 이를 방사하여 PCM 파이버를 얻은 후, 이를 위사의 일부 또는 전부로 사용하여 제직함에 의해 원단을 얻고, 이를 이용해 이후 공정, 즉 모소, 수세, 머서화, 텐터링, 축소 및 검사 과정을 거침으로써 PCM 물질이 안정적으로 혼입된 데님 소재를 제조할 수 있으며, 이러한 데님 소재는 PCM 물질의 잠열 특성으로 인해 냉온 감성을 갖는 고급 소재로서 활용될 수 있는 장점이 있다.

Description

상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재
본 발명은 상전이 물질(phase change material: PCM)을 이용하여 열적 가역 특성을 갖는 데님 소재를 제조하기 위한 기술에 관한 것으로서, 데님 소재에 냉, 온감성의 열적 가역 특성을 부여함으로써 소재의 기능성과 고급감을 향상시키고 내구성을 증진시킬 수 있는 기술에 관한 것이다.
상전이 물질(PCM)은 특정 온도에서 온도의 변화 없이 상이 변하면서(예를 들어 액체->고체 또는 고체->액체) 많은 양의 열을 흡수하거나 방출하는 물질을 말한다. 이 때 흡수되거나 방출되는 열을 잠열이라고 하며, 이를 섬유 소재에 적용시 여름철과 같은 더운 때는 냉감을 부여하고 겨울철과 같은 추운 때는 온감을 부여하기 때문에 기능성 소재로서 각광을 받고 있다.
이러한 상전이 물질을 섬유 소재에 적용하기 위해서는 고분자 소재로 코팅하여 마이크로 캡슐화한 후에 이를 적용하는 기술이 개발되어 적용되고 있다. 마이크로 캡슐화하는 방법은 일반적인 유화 중합을 이용하는 방법으로서 특별한 것이 아니며, 이를 섬유에 적용하는 방법은 기존에 직접 도포하여 건조하거나 열처리하여 부착하는 방법이 이용된 바 있다. 그러나 이러한 방법은 내구성이 좋지 않으며, 특히 마이크로 캡슐이 인체와 직접 닿는 부분에 사용되기 때문에 통기성도 없고 부드럽지 못하여 의류용으로 사용되기에는 적합하지 않았다.
이러한 문제를 개선하기 위해 마이크로 캡슐을 섬유의 제조시 방사액에 혼입하고 이를 다양한 방법으로 방사하여 섬유 내부에 마이크로 캡슐이 혼입되도록 함으로써 PCM 물질을 적용한 섬유 소재가 다양하게 등장하고 있으며, 이에 관한 다양한 특허 기술들도 제안되고 있다.(예: 대한민국 등록특허 제10-1083817호, 대한민국 공개특허 제10-2015-0113528호, 국제공개특허 WO 2002/24992, 국제공개특허 WO2003/062513 등)
그러나, 종래의 기술들은 마이크로 캡슐을 섬유 내부에 혼입하는 방법에 관해서 제안하고 있으나, 이는 일반적인 재생 섬유 또는 합성 섬유를 제조하는 과정에 적용하는 기술에 불과하다.
한편, 데님 소재를 제조하기 위해서는 면사를 정경, 염색, 해사, 호부, 제직, 모소, 수세, 머서화, 텐터링, 축소 및 검사 등의 과정을 거친다.
즉, 데님 소재를 제조하기 위해서는 면사를 이용해 제직 과정을 거친 후에도 머서화, 텐터링, 축소 등 여러 공정의 물리 화학적 공정을 거친다.
기존의 기술들은 모두 재생 섬유 또는 합성 섬유 내에 PCM 마이크로 캡슐을 혼입하는 기술에 관해서만 언급하고 있는데, 기존 기술들은 제직 과정으로 대부분의 과정이 종료되는 것이므로 데님 소재와 같은 제직 후에 여러 단계의 후공정을 거치는 것이 아니므로 내구성과 관련해서는 크게 고려하지 못하고 있었다.
따라서 기존 기술만으로는 재생 섬유 또는 합성 섬유를 이용하여 데님 소재에 PCM 특성을 적용하기는 쉽지 않다.
또한, 일부 기술에서는 레이온이나 아크릴사와 같은 재생 섬유를 제조하는 과정에 PCM 마이크로 캡슐을 혼입하여 방사하는 과정에 관해서 기술하고 있으나, PCM 마이크로 캡슐은 시간이 경과함에 따라, 또한 여러 번의 세탁을 거침에 따라 표면 특성이 약화되어 내구성이 떨어지게 되며, 따라서 이에 대한 개선의 필요성이 큰 상황이라고 할 수 있다.
<기타 선행기술 문헌>
1. 대한민국 공개특허 제10-2044-0073987호
본 발명은 상기와 같은 종래 기술의 상황을 감안하여 개발된 것으로서, 상전이 물질(PCM)을 데님 소재에 적용하여 냉, 온감성의 열적 가역 특성을 부여하기 위한 기술을 제안하기 위한 것이며, 특히 제직 후의 후공정에 따른 물리, 화학적 처리에도 소재의 기능성과 고급감이 유지되고, 장시간의 사용과 세탁 내구성을 획기적으로 증진시킬 수 있는 기술을 제공하고자 한다.
상기 과제를 달성하기 위하여 본 발명의 제 1 구현예는
면사를 정경, 염색, 해사, 호부, 제직, 모소, 수세, 머서화, 텐터링, 축소 및 검사 과정을 거쳐 데님 소재를 제조하는 방법으로서,
상기 제직 과정에서, 경사로서는 상기 제직 전까지의 단계를 거친 일반 면사를 사용하고, 위사로서는 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어된 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 사용하여 제직하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법을 제공한다.
본 발명의 일 실시예에 있어서, 상기 PCM 파이버는 습식방사 또는 용융방사에 의해 얻어지는 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 PCM 파이버는 습식방사에 의해 얻어지는 레이온사 또는 아크릴사인 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 마이크로 캡슐은 상기 방사액 100 중량부를 기준으로 10~30 중량%의 범위로 혼합되어 사용되는 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 상전이 물질은 용융 온도가 -20~90℃ 내에 속하는 물질을 사용하는 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 상전이 물질은 탄소수 10~44의 직쇄형 파라핀계 탄화수소를 단독 또는 혼합으로 사용하는 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상기 상전이 물질은 n-옥타코산, n-헵타코산, n-헥사코산, n-테트라코산, n-트리코산, n-도코산, n-헤네이코산, n-아이코산, n-노나데칸, n-옥타데칸, n-헵타데칸, n-헥사데칸, n-펜타데칸, n-테트라데칸 및 n-트리데칸으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 한다.
본 발명의 일 실시예에 있어서, 상전이 물질(PCM)을 마이크로 캡슐화함에 있어서 상전이 물질을 고분자 단량체 및 유화보조제의 혼합물에 용해시키고, 유화제를 함유한 물에 넣고 유화시킨 후에 개시제를 넣고 유화 중합함에 의해 상기 고분자 단량체가 중합되면서 형성되는 고분자 수지가 표면층을 형성하도록 하여 마이크로 캡슐화하는 것을 특징으로 하는 한다.
이때, 상기 고분자 수지는 멜라민 수지, 요소 수지, 젤라틴, 셀룰로오스, 에폭시, 폴리에틸렌 또는 폴리비닐알콜을 사용할 수 있다.
본 발명의 일 실시예에 있어서, 상기 고분자물질을 이용하여 표면 강화하는 것은 상기 상전이물질의 마이크로 캡슐을 폴리우레탄 프리폴리머에 혼합, 분산시켜 에멀젼화하고 여기에 사슬연장제 및 유기 실란 화합물을 혼입하여 중합함에 의해 표면 강화층을 형성하는 것을 특징으로 한다.
이때, 상기 얻어지는 표면 강화층은 마이크로 캡슐 입자의 입경 대비 5~30%의 표면 고분자층에 의해 형성되는 것을 특징으로 한다.
상기 과제를 달성하기 위하여 본 발명의 제 2 구현예는
본 발명에 따른 상기 제조 방법에 의해 제조되는 데님 소재로서, 피부에 접촉되는 면이 상대적으로 많은 위사에 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어진 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 포함하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재를 제공한다.
본 발명에 따른 방법에 의해 제조되는 데님 소재는 상전이 물질(PCM)이 적용되어 냉, 온감성의 열적 가역 특성될 수 있으며, 특히 제직 후의 머서화, 텐터링, 축소 공정 등 후공정에 따른 물리, 화학적 처리에도 불구하고 소재의 기능성과 고급감을 유지할 수 있으며, 장시간의 사용과 세탁 내구성을 획기적으로 증진시킬 수 있는 효과가 있다.
데님 소재를 제조하는 일반적인 공정은 면사를 정경, 염색, 해사, 호부, 제직, 모소, 수세, 머서화, 텐터링, 축소 및 검사를 포함하는 일련의 공정으로 이루어진다.
이하에서는 데님 소재를 제조하기 위한 필수 공정에 관해 간단히 설명한다.
먼저, 상기 정경은 염색을 준비하는 공정으로 면사를 제품의 규격에 맞는 올수의 경사로 균일한 장력과 길이로 로프 형태로 감는 공정이다.
상기 염색은 상기 로프 형태로 감긴 실을 소정의 색상으로 염색하는 공정이다.
상기 해사는 로프 형태로 염색된 실을 한올 한올 다시 풀어서 제품 규격에 맞게 시트 형태로 빔에 감는 공정으로서 제직의 준비 공정이다.
상기 호부는 제직의 준비 공정으로 원단 제직을 용이하게 하기 위해 실 표면에 풀을 먹이는 공정이다.
상기 제직은 염색되어 풀까지 입힌 경사에 위사를 물리적으로 표차시켜 직물의 형태로 만드는 공정이다.
상기 모소는 원단을 빠른 속도로 가스 버너의 불꽃은 통과시켜 원단 표면의 불순물과 먼지를 태워 원단 표면을 깨끗하고 균일하게 만드는 공정이다.
상기 수세는 이후 공정에서의 각종 약품의 침투성을 높이고 물성 안정화를 위해 원단 표면에 고착되어 있는 풀을 제거하는 공정이다.
상기 머서화(Mercerization)는 수산화 나트륨 용액을 이용하여 면섬유를 강제 팽윤시켜 데님 원단 표면의 광택과 부드러운 터치를 만들어 내는 공정이며, 머서화 이후 포름산 등을 이용해 원단의 pH를 중화시킨다.
상기 텐터링(Tentering)은 고온의 열풍으로 폴리우레탄의 형태를 의도하는 물성으로 세팅하고 여러 가지 약품을 사용하여 원단에 부가적인 특성을 부여하는 공정이다.
상기 축소는, 면직물은 수세 후 틀어지고 줄어드는 성질이 있으므로 이런 형상을 방지하기 위해 미리 물리적 공정을 수행하는 것으로서 수평 방향으로 틀어주는 것은 Skewing, 수직 방향으로 수축시키는 것은 Sanforizing이라고 한다.
상기 검사는 제품의 최종 검사로서 섬유 품질 기준을 만족하는지 검사하는 것이다.
이와 같은 제조 공정에서 보듯이 데님 소재를 제조하기 위해서는 염색, 해사, 호부를 거친 경사와 일반 위사를 제직하여 직물을 제조하고 이후 모소, 수세, 머서화, 텐터링, 축소 등 여러 단계의 후속 공정을 거친다.
본 발명은 이와 같은 공정을 거치는 데님 소재의 제조 방법에 있어서 PCM 물질을 혼입하여 냉, 온감성의 기능성 특성을 부여함과 동시에 물리적 특성 및 내구성을 유지할 수 있는 기술을 제공하고자 한다.
이를 위해 본 발명은 상기 제조 공정을 수행함에 있어서, 경사로서는 상기 제직 전까지의 단계를 거친 일반 면사를 사용하고, 위사로서는 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어된 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 사용하여 제직하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법을 제공한다.
이하에서는 본 발명의 상기 특징에 관하여 상세하게 설명한다.
본 발명에서는 경사로서는 상기 제직 전까지의 단계, 즉 정경, 염색, 해사 및 호부를 거친 일반 면사를 사용한다.
위사로서는 상전이 물질(PCM)이 함유된 것을 사용함으로써 피부와 접촉하는 면에 많이 사용되는 위사에 상전이 물질이 혼입되도록 함으로써 냉, 온감성의 열적 가역 특성을 부여하는 것을 특징으로 한다.
이때, 상기 위사에 상기 상전이 물질을 혼입함에 있어서는 상전이 물질을 마이크로 캡슐화한 것을 사용하되, 마이크로 캡슐만으로는 후속 공정에 따른 물리 화학적 처리에 대한 내구성 및 세탁 내구성이 약할 수 있으므로 별도의 표면 강화 처리를 추가로 수행한다. 본 발명에서는 이와 같이 표면 강화 처리된 섬유를 PCM 파이버로 칭한다.
본 발명에서 상기 PCM 파이버는 습식방사 또는 용융방사에 의해 제조될 수 있다.
더욱 구체적으로 상기 PCM 파이버는 습식 방사에 의해 얻어지는 레이온사 또는 아크릴사일 수 있다. 상기 레이온사는 통상 침지, 분쇄, 노성, 황화, 숙성, 방사 및 연신 공정에 의해 얻어지는데, 본 발명에서는 이와 같은 레이온사의 제조과정에 PCM 물질(구체적으로는 PCM 물질을 포함하는 표면 강화 마이크로 캡슐)을 혼입하여 PCM 파이버를 제조하는 것이 바람직하다.
이때, 상기 표면 강화 마이크로 캡슐을 이용하여 섬유를 방사함에 있어서는 방사액 100 중량부를 기준으로 상기 표면 강화 마이크로 캡슐은 약 10~30 중량%의 비율로 혼합되는 것이 냉, 온감성 부여를 위해 바람직하다.
이와 같이 얻어지는 PCM 파이버를 일반 면사와 혼방적하여 혼방사를 얻는데, 이 때 혼방 비율은 PCM 파이버와 일반 면사를 각각 30~70:70~30의 중량비로 혼방적하는 것이 바람직하다.
이하에서는, 상전이 물질을 마이크로 캡슐화하는 공정 및 표면 강화 처리하는 공정에 관하여 설명한다.
먼저, 마이크로 캡슐화하는 공정에 관하여 설명하면, 상전이 물질을 고분자 단량체 및 유화보조제의 혼합물에 투입하여 용해시키고 이를 유화제가 포함된 물에 넣고 유화시킨 다음, 개시제를 넣고 중합시킨다.
본 발명에서는 상전이 물질 100 중량부를 고분자 단량체 100 내지 180 중량부 및 유화보조제 10 내지 20중량부의 혼합물에 용해시키고, 이를 유화제 1 내지 10 중량부가 포함된 물 800 내지 1000 중량부에 넣고 에멀젼화시킨 다음 개시제 0.1 내지 5 중량부를 첨가한 후 중합 반응시켜 에멀젼 상태의 마이크로 캡슐화된 상전이 물질을 제조할 수 있다.
본 발명에서 상전이 물질(Phase Change Material, PCM)은 일정한 온도범위 내에서 고상으로부터 액상으로 또는 액상으로부터 고상으로 변화하면서 열에너지를 흡수 또는 방출하는 물질을 의미한다.
이러한 상전이 물질은 공지된 것에서 선택하여 사용할 수 있으며, 구체적으로는 용융 온도가 -20~90℃ 내에 속하는 물질을 사용할 수 있다.
더욱 구체적으로 상기 상전이 물질은 탄소수 10~44의 직쇄형 파라핀계 탄화수소를 단독 또는 혼합으로 사용하는 것이 바람직하며, 구체적인 예로서는 n-옥타코산, n-헵타코산, n-헥사코산, n-테트라코산, n-트리코산, n-도코산, n-헤네이코산, n-아이코산, n-노나데칸, n-옥타데칸, n-헵타데칸, n-헥사데칸, n-펜타데칸, n-테트라데칸 및 n-트리데칸으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물을 사용할 수 있다.
상기 고분자 단량체에 의해 중합되어 상기 상전이 물질의 표면층을 이루는 고분자 수지로서는 예를 들어, 고분자 수지는 멜라민 수지, 요소 수지, 젤라틴, 셀룰로오스, 에폭시, 폴리에틸렌 또는 폴리비닐알콜 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 일반적으로 PCM 물질을 코팅하는 고분자 수지로서 알려진 것은 제한없이 사용될 수 있다.
상기 유화 보조제는 안정한 유화상태를 유지할 수 있도록 하기 위하여 첨가하는 것으로서, 예를 들어, 세틸알코올(cetyl alcohol) 또는 스테아릴알코올(stearyl alcohol) 등의 장쇄 알코올류를 사용할 수 있으나, 이에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 일반적으로 PCM 물질의 마이크로 캡슐화에 사용되는 것으로서 알려진 것은 제한없이 사용될 수 있다.
또한, 상기 유화제는 바람직하게는 음이온계 계면활성제를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 상기 음이온계 계면활성제의 구체적인 예로서는 카르복시산염, 설폰산염, 황산에스테르염 및 인산에스테르염에서 선택된 것을 사용할 수 있다. 여기서 카르복시산염은 고급지방산 알칼리염, N-아크릴아미노산염, 알킬에테르 카본산염, 아실화펩티트 등이 사용될 수 있고, 설폰산염에는 알킬설폰산염, 알킬벤젠 및 알킬아미노산염, 알킬나프탈렌 설폰산염, 설포호박산염 등이 사용될 수 있으며, 황산에스테르염에는 알킬황산염, 알킬에테르황산염, 알킬아릴에테르황산염, 알킬아미드황산염 등이 사용될 수 있고, 인산에스테르염에는 알킬인산염, 알킬에테르인산염, 알킬아릴에테르인산염 등이 사용될 수 있다.
상기 혼합물을 유화시키는 방법은 예를 들어 호모지나이저 또는 초음파기를 이용할 수 있다.
상기 개시제는 예를 들면 포타슘 퍼셀페이트(Potassiumpersulfate; KPS), 아미노프로판술폰산(Aminopropanesulfonic acid; APS), 아조비스 메틸프로피오니
트릴(Azobismethylpropionitrile; AIBN) 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
유화 중합 반응시의 반응 온도는 약 50 내지 80℃, 바람직하게는 약 70℃에서 1 내지 8시간, 바람직하게는 약 5시간 동안 중합시키는 것이 바람직하다. 이와 같은 반응에 의해 표면에 고분자 수지층이 형성된 PCM 마이크로 캡슐이 얻어질 수 있다.
이와 같은 PCM 마이크로 캡슐은 표면에 고분자 수지층이 형성되어 있으므로 일정 정도의 내구성이 부여되며, 이를 방사액에 혼입시켜 파이버를 방사할 경우 일반적인 섬유 소재로서는 사용이 가능할 수 있다.
그러나, 데님 소재로 사용되기 위해서는 상기에서도 설명된 바와 같이 여러 단계의 후속 공정을 거치게 되며 이때 가혹한 물리, 화학적 처리를 거치게 되는데 이 과정에서 상기 얻어지는 PCM 마이크로 캡슐만으로는 물리, 화학적 처리에 의해 표면이 약화되어 이후 사용과정에서 내구성과 세탁 내구성이 약화되어 섬유 품질에 대한 신뢰성이 떨어질 수 있다.
본 발명에서는 이와 같은 점을 해결하기 위해 상기 얻어지는 PCM 마이크로 캡슐을 추가 처리하여 표면 특성을 강화하는 것을 특징으로 한다.
본 발명에서는 표면 특성 강화를 위해 상기 얻어지는 PCM 마이크로 캡슐의 표면에 우레탄 코팅층을 형성하는 것을 특징으로 한다.
기존에도 마이크로 캡슐의 외층에 우레탄이나 에폭시 층을 형성하는 것을 제안하는 일부 기술이 있었으나 이와 같은 기술들은 대부분 마이크로 캡슐의 크기를 확대시켜 표면적을 늘림에 의해 잠열특성과 냉, 온감성 특성을 향상시키기 위한 기술들이며, 데님 소재를 제조함에 있어 물리 화학적 처리를 하는 후속 공정에서의 내구성을 향상시키기 위한 것과는 관련이 없다. 또한, 기존 기술들은 마이크로 캡슐의 외층을 형성하는 우레탄이나 에폭시의 결합력이 약하여 쉽게 분리되는 단점이 있다.
본 발명은 데님 소재에 PCM 물질의 고유 특성을 안정적으로 부여하기 위한 기술에 관한 것으로서, PCM 마이크로 캡슐의 표면에 고분자물질을 이용하여 견고하고 안정적인 우레탄 표면 강화층을 형성하는 것을 특징으로 한다.
본 발명에서 상기 고분자물질을 이용하여 표면 강화하는 구체적인 방법은 상기 PCM 마이크로 캡슐을 폴리우레탄 프리폴리머에 혼합, 분산시켜 에멀젼화하고 여기에 사슬연장제 및 유기 실란 화합물을 혼입하여 중합함에 의해 표면 강화층을 형성하는 것이다.
상기 폴리우레탄 프리폴리머는 폴리올과 이소시아네이트 화합물을 포함하는 혼합물을 1차 반응시켜 일정 정도의 중합도를 갖는 프리폴리머를 제조하는 것으로서 상기 폴리올은 수평균분자량이 약 300 내지 5000 정도인 폴리에스테르 폴리올, 카보네이트 폴리올 등을 사용할 수 잇고, 상기 이소시아네이트로는 두개의 이소시아네이트기를 함유한 디이소시아네이트 화합물로서, 톨루엔디이소시아네이트, 디페닐메탄디이소시아네이트, 자일렌디이소시아네이트, 이소포론디이소시아네이트, 헥산디이소시아네이트, 헥사메틸렌디이소시아네이트 등에서 선택된 것을 사용할 수 있다.
이때, 반응의 촉진을 위하여 통상의 폴리우레탄 제조시 사용되는 촉매를 통상의 첨가범위 내에서 첨가할 수 있으며, 예를 들어 디부틸틴 디라우레이트 등을 사용할 수 있다.
이후, 소정의 중화제를 이용하여 반응 생성물을 중화시킴에 의해 프리폴리머를 제조할 수 있다.
이와 같이 제조되는 프리폴리머에 상기 PCM 마이크로 캡슐을 혼입하여 중합함에 의해 표면 강화층이 형성된 마이크로 캡슐이 얻어질 수 있다.
이때는 상기 프리폴리머와 상기 PCM 마이크로 캡슐을 일정 비율로 혼합하고 반응계에 사슬 연장제 및 유기 실란 화합물을 투입하여 상기 프리폴리머가 상기 PCM 마이크로 캡슐의 표면에서 중합되도록 함에 의해 상기 표면 강화층이 견고하고 안정적으로 형성된 마이크로 캡슐을 얻을 수 있다.
상기 프리폴리머와 상기 PCM 마이크로 캡슐의 혼합 비율은 상기 프리폴리머 용액 100 중량부를 기준으로 상기 PCM 마이크로 캡슐을 포함하는 용액을 50~200 중량부의 비율로 혼합할 수 있다.
상기 사슬 연장제는 디아민류 또는 디올 화합물을 사용할 수 있고, 공지된 화합물을 사용할 수 있으며, 사용량은 상기 프리폴리머 용액 100 중량부를 기준으로 약 1 내지 10 중량부의 범위로 사용될 수 있다.
상기 유기 실란 화합물은 반응성 유기 실란 화합물인 것이 바람직하며, 예를 들어 알콕시 실란, 아미노 실란, 에폭시 실란, 메타크릴레이트 실란, 비닐 실란 등이 사용될 수 있으며, 더욱 구체적으로는 트리메톡시실란, 트리에톡시실란, 트리아세톡시실란 등이 사용될 수 있다.
본 발명에서 상기 유기 실란 화합물은 마이크로 캡슐의 외층 고분자와 상기 프리폴리머의 중합에 의해 형성되는 외층 고분자 간의 결합력을 강화하는 역할을 하며, 상기 프리폴리머 용액 100 중량부를 기준으로 약 0.5 내지 10 중량부의 범위로 사용될 수 있다.
이때, 사슬 연장제 및 유기 실란 화합물에 의한 표면 강화층 형성을 위한 반응은 동일한 반응계를 이용할 수 있고, 반응 온도는 약 50~100 ℃, 반응시간은 약 1~8시간 동안 실시될 수 있다.
이와 같은 공정에 의해 얻어지는 마이크로 캡슐은 폴리우레탄 고분자 수지로 이루어진 표면 강화층이 견고하게 형성되어 있으며, 이러한 표면 강화층은 최초 마이크로 캡슐의 입경 대비하여 약 5~30%의 두께층을 갖는 것이 바람직하다. 상기 두께층이 5% 미만이면 후속 공정에 따른 물리 화학적 처리에 대하여 내구성 향상 효과가 미미하고 상기 두께층이 30%를 초과하면 냉, 온감성 특성이 발휘되기 어려운 문제가 있으므로 표면 강화층은 상기 범위에서 유지되도록 반응을 조절하는 것이 바람직하다.
상기와 같이 얻어지는 표면 강화층을 갖는 PCM 마이크로 캡슐을 이용해 방사액에 투입하고 이를 방사하여 PCM 파이버를 얻은 후, 이를 위사의 일부 또는 전부로 사용하여 제직함에 의해 원단을 얻고, 이를 이용해 이후 공정, 즉 모소, 수세, 머서화, 텐터링, 축소 및 검사 과정을 거침으로써 PCM 물질이 안정적으로 혼입된 데님 소재를 제조할 수 있으며, 이러한 데님 소재는 PCM 물질의 잠열 특성으로 인해 냉온 감성을 갖는 고급 소재로서 활용될 수 있는 장점이 있다.

Claims (12)

  1. 면사를 정경, 염색, 해사, 호부, 제직, 모소, 수세, 머서화, 텐터링, 축소 및 검사 과정을 거쳐 데님 소재를 제조하는 방법으로서,
    상기 제직 과정에서, 경사로서는 상기 제직 전까지의 단계를 거친 일반 면사를 사용하고, 위사로서는 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어된 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 사용하여 제직하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  2. 청구항 1에 있어서, 상기 PCM 파이버는 습식방사 또는 용융방사에 의해 얻어지는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  3. 청구항 1에 있어서, 상기 PCM 파이버는 습식방사에 의해 얻어지는 레이온사 또는 아크릴사인 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  4. 청구항 1에 있어서, 상기 마이크로 캡슐은 상기 방사액 100 중량부를 기준으로 10~30 중량%의 범위로 혼합되어 사용되는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  5. 청구항 1에 있어서, 상기 상전이 물질은 용융 온도가 -20~90℃ 내에 속하는 물질을 사용하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  6. 청구항 1에 있어서, 상기 상전이 물질은 탄소수 10~44의 직쇄형 파라핀계 탄화수소를 단독 또는 혼합으로 사용하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  7. 청구항 1에 있어서, 상기 상전이 물질은 n-옥타코산, n-헵타코산, n-헥사코산, n-테트라코산, n-트리코산, n-도코산, n-헤네이코산, n-아이코산, n-노나데칸, n-옥타데칸, n-헵타데칸, n-헥사데칸, n-펜타데칸, n-테트라데칸 및 n-트리데칸으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  8. 청구항 1에 있어서, 상전이 물질(PCM)을 마이크로 캡슐화함에 있어서 상전이 물질을 고분자 단량체 및 유화보조제의 혼합물에 용해시키고, 유화제를 함유한 물에 넣고 유화시킨 후에 개시제를 넣고 유화 중합함에 의해 상기 고분자 단량체가 중합되면서 형성되는 고분자 수지가 표면층을 형성하도록 하여 마이크로 캡슐화하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  9. 청구항 8에 있어서, 상기 고분자 수지는 멜라민 수지, 요소 수지, 젤라틴, 셀룰로오스, 에폭시, 폴리에틸렌 또는 폴리비닐알콜인 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  10. 청구항 1에 있어서, 상기 고분자물질을 이용하여 표면 강화하는 것은 상기 상전이물질의 마이크로 캡슐을 폴리우레탄 프리폴리머에 혼합, 분산시켜 에멀젼화하고 여기에 사슬연장제 및 유기 실란 화합물을 혼입하여 중합함에 의해 표면 강화층을 형성하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  11. 청구항 10에 있어서, 상기 얻어지는 표면 강화층은 마이크로 캡슐 입자의 입경 대비 5~30%의 표면 고분자층에 의해 형성되는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재의 제조 방법.
  12. 청구항 1에 따른 제조 방법에 의해 제조되는 데님 소재로서, 피부에 접촉되는 면이 상대적으로 많은 위사에 상전이 물질(PCM)을 마이크로 캡슐화하고 이를 고분자물질을 이용하여 표면 강화함에 의해 얻어진 표면 강화 마이크로 캡슐을 섬유 방사액에 첨가하여 방사함에 의해 얻어진 PCM 파이버와 일반 면사를 30~70:70~30의 중량비율로 혼방적하여 얻어진 혼방사를 단독 또는 타 섬유와 혼합으로 포함하는 것을 특징으로 하는 열적 가역 특성을 갖는 데님 소재.
PCT/KR2017/010362 2017-09-12 2017-09-21 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재 WO2019054541A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0116336 2017-09-12
KR1020170116336A KR101806818B1 (ko) 2017-09-12 2017-09-12 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재

Publications (1)

Publication Number Publication Date
WO2019054541A1 true WO2019054541A1 (ko) 2019-03-21

Family

ID=60919870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010362 WO2019054541A1 (ko) 2017-09-12 2017-09-21 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재

Country Status (2)

Country Link
KR (1) KR101806818B1 (ko)
WO (1) WO2019054541A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005600A (zh) * 2019-12-18 2021-06-22 上海飞谦实业有限公司 一种具有抗菌、温度调节功能的家纺产品织造工艺
CN115088587A (zh) * 2022-07-07 2022-09-23 青海九零六工程勘察设计院有限责任公司 一种用于矿山修复的植生护坡土工毡及其制备方法
CN118727175A (zh) * 2024-07-02 2024-10-01 合肥芯能相变新材料科技有限公司 一种微胶囊纤维的制造方法及其设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001927A (ja) * 2007-06-20 2009-01-08 Toho Tenax Co Ltd 光を熱に変換する混紡糸及びそれを用いた発熱性布帛
KR101083817B1 (ko) * 2008-11-26 2011-11-18 김중현 나노 캡슐화된 상변화물질 혼성 폴리우레탄 에멀젼 및 그 제조방법
KR101494961B1 (ko) * 2013-06-13 2015-03-03 연세대학교 산학협력단 상변이 물질을 함유한 복합 캡슐이 분산된 고분자 섬유 및 그 제조방법
KR20150113528A (ko) * 2014-03-31 2015-10-08 이원목 PCM(phase change material, 상변화물질)이 함유된 fiber를 이용하여 제조된 냉, 온감성 직물, 편성물과 부직포 및 이를 사용한 의복과 섬유제품
KR101597086B1 (ko) * 2016-01-13 2016-02-23 황기준 보온성 데님 원단 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001927A (ja) * 2007-06-20 2009-01-08 Toho Tenax Co Ltd 光を熱に変換する混紡糸及びそれを用いた発熱性布帛
KR101083817B1 (ko) * 2008-11-26 2011-11-18 김중현 나노 캡슐화된 상변화물질 혼성 폴리우레탄 에멀젼 및 그 제조방법
KR101494961B1 (ko) * 2013-06-13 2015-03-03 연세대학교 산학협력단 상변이 물질을 함유한 복합 캡슐이 분산된 고분자 섬유 및 그 제조방법
KR20150113528A (ko) * 2014-03-31 2015-10-08 이원목 PCM(phase change material, 상변화물질)이 함유된 fiber를 이용하여 제조된 냉, 온감성 직물, 편성물과 부직포 및 이를 사용한 의복과 섬유제품
KR101597086B1 (ko) * 2016-01-13 2016-02-23 황기준 보온성 데님 원단 및 그 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005600A (zh) * 2019-12-18 2021-06-22 上海飞谦实业有限公司 一种具有抗菌、温度调节功能的家纺产品织造工艺
CN115088587A (zh) * 2022-07-07 2022-09-23 青海九零六工程勘察设计院有限责任公司 一种用于矿山修复的植生护坡土工毡及其制备方法
CN115088587B (zh) * 2022-07-07 2023-07-07 青海九零六工程勘察设计院有限责任公司 一种用于矿山修复的植生护坡土工毡及其制备方法
CN118727175A (zh) * 2024-07-02 2024-10-01 合肥芯能相变新材料科技有限公司 一种微胶囊纤维的制造方法及其设备

Also Published As

Publication number Publication date
KR101806818B1 (ko) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2019054541A1 (ko) 상전이 물질을 이용한 열적 가역 특성을 갖는 데님 소재의 제조 방법 및 상기 방법에 의해 제조되는 열적 가역 특성을 갖는 데님 소재
CN108570281B (zh) 一种双组分改性水性聚氨酯阻燃涂层胶及其制备方法
KR100349041B1 (ko) 피혁형 시트의 제조방법
Zhang et al. Room-temperature, energy storage textile with multicore-sheath structure obtained via in-situ coaxial electrospinning
CN102597344B (zh) 纤维和纤维结构体
EP2006439B1 (en) Artificial leather and method for producing the same
TWI481753B (zh) 抗靜電性丙烯腈纖維及其製造方法
CN101545207A (zh) 一种纯棉针织物抗起毛起球整理剂及其制备方法
CN101405453A (zh) 包含陶瓷颗粒的织物和制备它们的方法
CN115434044B (zh) 一种无溶剂双组分纺丝油剂及其制备方法和应用
CN113279256A (zh) 一种抗起球耐磨纱线的制备方法
EP3818119A1 (en) Coating composition and printable medium
WO2015084074A1 (ko) 기능성 물질을 포함하는 고분자 미세 캡슐과 그 제조방법
WO2021246609A1 (ko) 섬유 올 풀림 방지용 수지 조성물
US7122596B2 (en) Artificial leather and method of producing the same
JP3959738B2 (ja) 反応染料可染性架橋アクリレート系繊維及び繊維構造体並びにそれらの製造方法
JPS61160480A (ja) コ−テイング布帛の製造方法
JP2837408B2 (ja) アクリル系繊維の処理方法
KR20040086729A (ko) 아크릴계 합성섬유용 합성수지, 이것으로 이루어진아크릴계 합성섬유 및 아크릴계 합성섬유의 제조방법
US3709656A (en) Process for dyeing and finishing fibrous material
JP3756886B2 (ja) 高収縮性アクリル系繊維
JPH0473211A (ja) 熱変色性ポリビニルアルコール系繊維及びその製造方法
JPS6197466A (ja) 合成繊維編織物の防水・透湿加工方法
JPH0711108B2 (ja) 柔軟処理剤
CN117661183A (zh) 一种可机洗真丝纱线面料的加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925173

Country of ref document: EP

Kind code of ref document: A1