WO2019054072A1 - Liquid recovery apparatus - Google Patents

Liquid recovery apparatus Download PDF

Info

Publication number
WO2019054072A1
WO2019054072A1 PCT/JP2018/028878 JP2018028878W WO2019054072A1 WO 2019054072 A1 WO2019054072 A1 WO 2019054072A1 JP 2018028878 W JP2018028878 W JP 2018028878W WO 2019054072 A1 WO2019054072 A1 WO 2019054072A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pipe
phase fluid
liquid phase
gas
Prior art date
Application number
PCT/JP2018/028878
Other languages
French (fr)
Japanese (ja)
Inventor
和寿 西中村
小原 公和
祐一 坂上
佐藤 博道
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2019054072A1 publication Critical patent/WO2019054072A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/02Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising gravity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a liquid recovery apparatus that separates and recovers a liquid-phase fluid from a gas-liquid two-phase fluid.
  • a liquid recovery device is disposed in a system using fluids such as steam, compressed air, and various gases.
  • the liquid recovery apparatus is configured to separate a gas-liquid two-phase fluid into a gas phase and a liquid phase, and recovers the separated liquid-phase fluid for use in various applications.
  • the gas-liquid separator described in Patent Document 1 has a double structure of a tubular member by arranging a cylindrical liquid collecting member along the inner peripheral wall surface of the separator casing through which the gas-liquid two-phase fluid flows. It is configured to be
  • the gas-liquid two-phase fluid is separated into the gas phase fluid and the liquid phase fluid when flowing into the gap between the inner peripheral wall surface of the separator casing and the surface of the liquid collecting member.
  • the separated liquid phase fluid flows along the inner circumferential wall surface of the separator casing. Further, since the liquid outlet is provided in the gap between the separator casing and the liquid collecting member, the separated liquid phase fluid is recovered via the liquid outlet.
  • the state of the gas-liquid two-phase fluid flowing into the liquid recovery device is not always the predetermined state.
  • the exhaust state of the fuel cell as a gas-liquid two-phase fluid changes in various ways due to load fluctuation and the like.
  • the present disclosure is made in view of these points, and an object of the present disclosure is to provide a liquid recovery apparatus capable of achieving a high recovery rate of liquid phase fluid under a wide range of conditions of gas-liquid two-phase fluid.
  • a liquid recovery apparatus includes an outer pipe, an inner pipe, a double pipe section, a liquid phase recovery section, and a drainage pipe.
  • the outer pipe has an introduction part into which a gas-liquid two-phase fluid is introduced.
  • the inner pipe is disposed inside the outer pipe at a position where the introducing portion extends downstream with respect to the flow direction of the gas-liquid two-phase fluid at the introducing portion, and the gas phase fluid separated from the gas-liquid two-phase fluid is discharged Do.
  • the double pipe portion is configured by arranging the inner pipe at a predetermined distance with respect to the inner side of the outer pipe on the downstream side in the flow direction of the outer pipe.
  • the liquid phase recovery unit is configured to have a flow passage cross-sectional area larger than the flow passage cross-sectional area on the flow direction upstream side of the double pipe portion on the flow direction downstream side of the double pipe portion.
  • the liquid phase fluid separated from is recovered.
  • the drain pipe is connected to the lower portion of the liquid phase recovery unit, and drains the liquid phase fluid recovered in the liquid phase recovery unit.
  • the gas-liquid two-phase fluid introduced from the introduction part of the outer pipe is separated from the liquid phase fluid by passing through the double pipe formed of the outer pipe and the inner pipe. While being collected in the liquid phase recovery unit, the separated gas phase fluid can be discharged from the exhaust pipe. And the said liquid collection
  • recovery apparatus can drain the liquid phase fluid collect
  • the flow channel cross-sectional area of the liquid phase recovery unit is formed larger than the flow channel cross-sectional area on the upstream side in the flow direction of the double pipe portion, and the liquid phase recovery unit It is disposed downstream of the pipe in the flow direction.
  • the fluid flow is introduced into the double pipe section, and then generates a vortex in the liquid phase recovery section. That is, since the liquid recovery device generates a vortex flow downstream of the portion where the fluid flows into the double pipe portion, the movement of the liquid phase fluid along the inner surface of the outer pipe is performed in the double pipe portion. It is not disturbed by the vortex when it flows in.
  • liquid phase fluid moving along the inner surface of the outer tube can smoothly flow into the liquid phase recovery unit, and high recovery is possible under a wide range of conditions of the gas-liquid two-phase fluid.
  • Liquid phase fluid can be recovered at a rate.
  • the flow channel cross-sectional area of the liquid phase recovery unit is formed larger than the flow channel cross-sectional area on the upstream side in the flow direction of the double pipe portion, a large amount of liquid phase fluid is stored inside the liquid phase recovery unit. can do.
  • the liquid recovery apparatus can suppress the outflow of the liquid phase fluid through the inner pipe even when the flow rate of the liquid phase fluid flowing into the liquid phase recovery unit is increased. That is, the liquid recovery apparatus can cope with a wide range of conditions regarding the amount of liquid phase fluid contained in the gas-liquid two-phase fluid, and can recover the liquid phase fluid with a high recovery rate.
  • FIG. 1 is a block diagram of a fuel cell system including a liquid recovery apparatus according to a first embodiment.
  • FIG. 1 is an external perspective view of a liquid recovery apparatus according to a first embodiment. It is sectional drawing which shows the internal structure of the liquid collection
  • the liquid recovery apparatus 10 is mounted on an electric car (fuel cell vehicle) traveling with the fuel cell 1 as a power source, and constitutes a part of the fuel cell system 100.
  • the fuel cell system 100 is configured to supply the electric power generated by the fuel cell 1 to an electric device (not shown) such as a traveling electric motor or a battery.
  • the fuel cell system 100 according to the first embodiment includes a fuel cell 1 (FC stack) that generates electric power by using a chemical reaction of hydrogen and oxygen.
  • FC stack fuel cell 1
  • the fuel cell 1 is a solid polymer electrolyte fuel cell (PEFC), and is configured by combining a large number of cells. Each cell is formed by sandwiching an electrolyte membrane between a pair of electrodes.
  • PEFC solid polymer electrolyte fuel cell
  • the fuel cell 1 is supplied with air containing oxygen through the air passage 2.
  • An air pump 6 is disposed in the air passage 2, and air is pumped by the operation of the air pump 6 and supplied to the fuel cell 1. Further, hydrogen is supplied to the fuel cell 1 via the hydrogen passage 3.
  • the following electrochemical reaction of hydrogen and oxygen occurs to generate electric energy.
  • Unreacted oxygen and hydrogen which are not used for the electrochemical reaction are discharged from the fuel cell 1 as exhaust gas and hydrogen.
  • the unreacted exhaust hydrogen is returned to the hydrogen passage 3 again with the operation of the hydrogen pump 9 and supplied to the fuel cell 1.
  • the electrolyte membrane in the fuel cell 1 needs to be in a wet state containing water.
  • the fuel cell system 100 humidifies the electrolyte membrane in the fuel cell 1 by humidifying the air and hydrogen supplied to the fuel cell 1 and supplying the humidified gas to the fuel cell 1. Is configured.
  • the fuel cell 1 heat and moisture are generated by the electrochemical reaction at the time of power generation.
  • the fuel cell 1 needs to be maintained at a constant temperature (for example, about 80 ° C.) while the fuel cell system 100 is operating.
  • the electrolyte membrane inside the fuel cell 1 exceeds the predetermined allowable upper limit temperature, the electrolyte membrane is broken due to the high temperature. Therefore, it is necessary to keep the temperature of the fuel cell 1 below the allowable temperature.
  • a cooling water circuit is disposed in the fuel cell system 100, and the temperature of the fuel cell 1 is controlled by cooling the fuel cell 1 using the cooling water as a heat medium.
  • cooling water which is a heat medium
  • a mixed solution of ethylene glycol and water can be used to prevent freezing at low temperature.
  • the cooling water circuit is configured to include the radiator 4, the fan 5, the cooling water flow path 7, and the water pump 8, and by circulating the cooling water between the fuel cell 1 and the radiator 4, The heat generated in the fuel cell 1 is configured to be released out of the system.
  • the radiator 4 is a heat exchanger configured to dissipate the heat generated by the fuel cell 1 to the outside of the system.
  • the cooling water of the cooling water circuit absorbs heat generated by the electrochemical reaction in the process of flowing through the fuel cell 1 and flows out, and flows into the radiator 4 through the cooling water flow path 7. Do.
  • the radiator 4 heat exchange between the cooling water and the atmosphere is performed, and the heat of the cooling water is dissipated to the atmosphere. Thereafter, the cooling water flows from the radiator 4 toward the fuel cell 1 and circulates through the cooling water flow path 7 of the cooling water circuit. That is, the radiator 4 dissipates heat generated by the electrochemical reaction of the fuel cell 1 by heat exchange with cooling water as a heat medium, thereby cooling the fuel cell 1.
  • the radiator 4 has a fan 5.
  • the fan 5 assists the heat exchange of the cooling water in the radiator 4 by blowing the outside air which is the heat exchange object in the radiator 4 to the radiator 4.
  • the water pump 8 is disposed in the cooling water flow path 7 as a circulation path including the fuel cell 1 and the radiator 4 and pumps the cooling water to circulate the cooling water inside the cooling water flow path 7.
  • temperature control of the cooling water in the cooling water circuit is performed by flow control by the water pump 8 and air flow control of the fan 5.
  • a coolant temperature sensor (not shown) is disposed on the outlet side of the fuel cell 1 in the coolant channel 7. The water temperature sensor detects the temperature of the cooling water flowing out from the outlet side of the fuel cell 1.
  • the water generated at the time of power generation by the fuel cell 1 is discharged from the fuel cell 1 through the air passage 2 in a state contained in air (that is, a gas-liquid two-phase state). . Therefore, the liquid recovery device 10 is disposed downstream of the fuel cell 1 in the air passage 2. That is, the flow direction of the fluid from the fuel cell 1 to the liquid recovery device 10 corresponds to the flow direction of the gas-liquid two-phase fluid in the present disclosure.
  • the liquid recovery apparatus 10 takes in the moisture generated during the power generation in the fuel cell 1 together with the air discharged from the air passage 2 and separates it into water vapor and water. Then, the water vapor separated by the liquid recovery device 10 is discharged to the outside of the fuel cell system 100.
  • the water separated by the liquid recovery device 10 is recovered inside the liquid recovery device 10 in a state where the temperature is lowered by condensation, and is used for humidifying the fuel cell 1 or the like. That is, the liquid recovery device 10 functions as a liquid recovery device in the present disclosure.
  • the specific configuration of the liquid recovery apparatus 10 will be described in detail later with reference to the drawings.
  • the recovered water recovered inside the liquid recovery apparatus 10 can be used for various applications.
  • the recovered water is used to humidify the electrolyte membrane in the fuel cell 1 and to cool the radiator 4.
  • a recovered water flow path 11 is connected.
  • the recovered water flow path 11 is configured to use the recovered water stored inside the liquid recovery apparatus 10.
  • the recovered water flow path 11 connects the lower portion of the liquid recovery device 10 and the flow rate adjustment valve 13, and in the recovered water flow path 11, the distribution pump 12 is disposed. It is done. Therefore, in the fuel cell system 100, the recovery water stored inside the liquid recovery apparatus 10 can be pressure-fed to the flow rate adjustment valve 13 by operating the distribution pump 12.
  • the radiator side flow passage 14 and the humidification flow passage 15 are connected to the flow rate adjustment valve 13.
  • the radiator side flow passage 14 is a flow passage configured to disperse the recovered water pressure-fed from the inside of the liquid recovery device 10 via the flow rate adjustment valve 13 to the radiator 4 by the operation of the dispersion pump 12.
  • a water spray nozzle configured to spray (spray) water in the form of a mist is disposed at a tip end portion of the radiator side flow passage 14.
  • the flow rate adjustment valve 13 is configured to be able to independently adjust the valve opening degree with respect to the radiator side flow path 14 and the valve opening degree with respect to the humidification flow path 15, The dispersed flow rate of the recovered water at 14 and the dispersed flow rate of the recovered water in the humidification flow path 15 are adjusted.
  • the humidifying flow path 15 is a flow path configured to disperse the recovered water pressure-fed from the inside of the liquid recovery device 10 through the flow rate adjustment valve 13 to the fuel cell 1 by the operation of the distribution pump 12. It is.
  • a water spray nozzle configured to spray (spray) water in the form of a mist is disposed at the tip end portion of the humidification flow path 15.
  • the sprinkler nozzle in the humidification flow path 15 is disposed so as to disperse the recovered water on the downstream side of the air pump 6 in the air passage 2 and to supply the fuel cell 1 with the air in the air passage 2 There is.
  • the fuel cell system 100 has a control device (not shown).
  • the control device is a control unit that controls the operation of each control target device that constitutes the fuel cell system 100.
  • the control device is composed of a known microcomputer including a CPU, a ROM, a RAM and the like, and peripheral circuits thereof.
  • the fuel cell 1 and a water temperature sensor are connected to the input side of the control device. Therefore, the control device can acquire the output of the fuel cell 1 and the coolant temperature by the water temperature sensor.
  • control target devices such as the hydrogen pump 9, the distribution pump 12, and the flow rate adjustment valve 13 are connected to the output side of the control device. Therefore, the operation of the fuel cell system 100 can be controlled based on the control program stored in the ROM of the control device.
  • FIG. 3 shows a state of being cut at a longitudinal cross section including the central axis C of the outer pipe 20 in the liquid recovery apparatus 10.
  • the vertical direction shown in FIG. 2 and the like indicates the vertical direction in the state where the liquid recovery apparatus 10 is attached in the fuel cell system 100.
  • the flow direction in the following description means the flow direction of the gas-liquid two-phase fluid when flowing into the liquid recovery apparatus 10, and conforms to the central axis C of the introducing unit 21 described later. .
  • the liquid recovery apparatus 10 As described above, on the downstream side of the fuel cell 1 in the air passage 2, the liquid recovery apparatus 10 generates water vapor (i.e., water-vapor two-phase fluid) containing water discharged from the fuel cell 1. It separates into gas phase fluid Fg) and water (ie, liquid phase fluid Fl), and recovers water as a liquid and exhausts water vapor.
  • water vapor i.e., water-vapor two-phase fluid
  • the liquid recovery apparatus 10 includes an outer pipe 20 constituting an outer shell of the liquid recovery apparatus 10, an inner pipe 30 disposed inside the outer pipe 20, and two-phase gas-liquid An exhaust pipe 31 from which a gas phase fluid Fg (that is, water vapor) separated from the fluid is discharged, and a drainage pipe 45 from which a liquid phase fluid Fl (that is, water) separated from the gas-liquid two-phase fluid is mainly drained. And are configured.
  • the outer tube 20 constitutes an outer shell of the liquid recovery device 10, and has an introducing portion 21, an expanded tube portion 23, and a large diameter portion 24.
  • the outer tube 20 functions as an outer tube in the present disclosure.
  • the introduction portion 21 is a portion for introducing the gas-liquid two-phase fluid flowing out of the fuel cell 1 into the inside of the outer pipe 20, and constitutes the upstream side in the flow direction of the outer pipe 20.
  • the introducing unit 21 functions as an introducing unit in the present disclosure.
  • the flow path of the cross-sectional circular shape is formed in the inside of the circular introduction part 21.
  • the central axis of the flow passage in the circular tubular introduction portion 21 is taken as a central axis C, and the central axis C is used as a reference.
  • the flow passage cross section in the introduction part 21 has a circular shape centering on the central axis C and having a radius that is a predetermined introduction part inner diameter Ra.
  • An inlet 22 is disposed at one end of the introduction unit 21.
  • the inlet 22 is connected to an air passage 2 extending downstream in the flow direction from the fuel cell 1. Therefore, a gas-liquid two-phase fluid containing water and water vapor discharged from the fuel cell 1 is introduced into the outer tube 20 through the air passage 2 and the inlet 22.
  • the expanded pipe part 23 is arrange
  • the expanded tube portion 23 according to the first embodiment is formed in a tubular shape coaxially disposed with the central axis C of the introducing portion 21, and the flow passage cross-sectional area is continuously expanded toward the downstream side in the flow direction Is configured.
  • the expanded portion 23 corresponds to the expanded portion in the present disclosure.
  • the flow passage cross section on the upstream side in the flow direction of the expanded tube portion 23 is circular with the central axis C as a center and the introducing portion inner diameter Ra as a radius.
  • the flow-path cross-sectional area in the expanded pipe part 23 becomes continuously large, as it goes to the flow direction downstream.
  • the flow passage cross section on the downstream side in the flow direction of the expanded tube portion 23 is circular with the central axis C as a center and the expanded tube portion maximum inner diameter Rb as a radius.
  • the expanded-tube maximum internal diameter Rb shows a larger value than the introduction inner diameter Ra.
  • the large diameter portion 24 is disposed on the downstream side in the flow direction of the expanded tube portion 23.
  • the large diameter portion 24 according to the first embodiment is configured to have a step portion 24 a having a step in a direction away from the central axis C, and is formed in a circular tubular shape coaxially arranged with the central axis C. ing.
  • the internal cross section of the large diameter portion 24 has a circular shape with the central axis C as a center and the large diameter inner diameter Rc as a radius.
  • the large diameter portion inner diameter Rc indicates a value larger than the introduction portion inner diameter Ra and the expanded portion maximum inner diameter Rb, and is determined to have a difference of a predetermined value with the expanded portion maximum inner diameter Rb.
  • the size of the step in the step portion 24a can be expressed by the difference between the inner diameter Rc of the large diameter portion and the maximum inner diameter Rb of the expanded portion.
  • the internal cross-sectional area of the large diameter portion 24 is larger than the flow passage cross-sectional area on the downstream side in the flow direction of the expanded tube portion 23. That is, when the large diameter portion 24 is reached, the internal cross-sectional area of the outer tube 20 rapidly and largely expands.
  • the inner surface of the outer tube 20 is subjected to a treatment for imparting hydrophilicity.
  • a treatment for imparting hydrophilicity By providing the hydrophilicity, it is possible to suppress the separation of the liquid phase fluid Fl moving along the inner surface of the outer tube 20.
  • the treatment for imparting hydrophilicity include chemical treatments in which a hydrophilic functional group (for example, a hydroxyl group, a carboxyl group or the like) is directly applied to the inner surface of the outer tube 20.
  • hydrophilicity is imparted to the inner surface of the introduction portion 21 and the expanded tube portion 23 in the outer tube 20, and the process is omitted for the inner surface of the large diameter portion 24. It is also possible.
  • the inner pipe 30 is disposed inside the outer pipe 20 at a downstream portion in the flow direction of the outer pipe 20, and is formed in a circular tubular shape.
  • the inner pipe 30 is disposed coaxially with the central axis C at the introduction portion of the outer pipe 20.
  • the inner pipe 30 functions as an inner pipe in the present disclosure.
  • the gas phase fluid Fg separated from the gas-liquid two-phase fluid mainly flows into the inner pipe 30.
  • the flow passage cross section in the inner pipe 30 has a circular shape centered on the central axis C and having a radius that is a predetermined inner pipe inner diameter Rd.
  • the inner pipe inner diameter Rd according to the first embodiment has the same value as the introduction portion inner diameter Ra.
  • the flow passage in the inner pipe 30 has the same shape as the flow passage in the introduction portion 21 of the outer pipe 20, and the flow passage of the introduction portion 21 is disposed on the extension extending in the flow direction downstream Be done.
  • the upstream end of the inner pipe 30 in the flow direction is disposed inside the downstream portion of the expanded pipe portion 23 of the outer pipe 20, and the downstream end of the inner pipe 30 in the flow direction Extends to the downstream side wall 25 that constitutes the downstream side of the large diameter portion 24.
  • the inner pipe 30 is arranged to provide a predetermined distance from the inner surface of the outer pipe 20 (i.e., the expanded portion 23 and the large diameter portion 24). That is, on the downstream side in the flow direction of the outer pipe 20, the inner pipe 30 is disposed at a distance from the inside of the outer pipe 20, so the double pipe portion 35 in the liquid recovery apparatus 10 is configured.
  • An exhaust pipe 31 is connected to the downstream side in the flow direction of the inner pipe 30, and is constituted by a circular pipe formed to extend from the large diameter portion 24 of the outer pipe 20. Accordingly, the gas phase fluid Fg having passed through the inner pipe 30 flows into the exhaust pipe 31.
  • a gas phase outlet 32 is disposed downstream of the exhaust pipe 31 in the flow direction.
  • the gas phase exhaust port 32 communicates the inside of the exhaust pipe 31 with the outside of the fuel cell system 100. Therefore, the exhaust pipe 31 discharges the gas phase fluid Fg to the outside of the fuel cell system 100 via the gas phase outlet 32.
  • the liquid recovery apparatus 10 has a double pipe portion 35 constituted by an outer pipe 20 and an inner pipe 30.
  • the double pipe portion 35 according to the first embodiment is a portion formed by arranging the expanded portion 23 and the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner, and There is a predetermined spacing between the tubes 20.
  • the double pipe portion 35 constitutes a double pipe portion in the present disclosure.
  • the double pipe portion 35 is configured such that the flow of the gas-liquid two-phase fluid flowing in from the introduction portion 21 flows into the inner pipe 30 and the gap between the outer pipe 20 and the inner pipe 30 in the double pipe portion 35. It functions to branch into the incoming flow.
  • the double pipe portion 35 on the upstream side in the flow direction is constituted by the expanded portion 23 of the outer pipe 20 and the inner pipe 30.
  • the double pipe portion 35 on the downstream side in the flow direction is constituted by the large diameter portion 24 of the outer pipe 20 and the inner pipe 30, and the gap between the large diameter portion 24 on the downstream side thereof and the inner pipe 30 is large. It is closed by the downstream side wall 25 at the diameter 24.
  • the liquid recovery apparatus 10 has a liquid phase recovery unit 40 in a part of the double pipe 35.
  • the liquid phase recovery unit 40 is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner, and constitutes the downstream side of the double pipe portion 35 in the flow direction doing.
  • the liquid phase recovery unit 40 is disposed so as to surround the outer periphery of the inner pipe 30, and includes the lower portion of the outer periphery of the inner pipe 30. Therefore, the liquid phase recovery unit 40 can recover the liquid phase fluid Fl that has passed between the expanded portion 23 and the inner pipe 30 via the inflow port 41, and store the liquid phase fluid Fl inside.
  • the liquid phase recovery unit 40 functions as a liquid phase recovery unit in the present disclosure.
  • the inflow port 41 is a portion where the liquid phase fluid Fl or the like flows into the liquid phase recovery portion 40, and in the first embodiment, a connection portion of the expanded portion 23 and the large diameter portion 24 in the outer pipe 20; It is comprised by the clearance gap formed between the inner tubes 30. As shown in FIG.
  • the flow passage cross-sectional area of the double pipe portion 35 on the upstream side in the flow direction is determined by subtracting the outer cross-sectional area of the inner pipe 30 from the inner cross-sectional area of the expanded pipe portion 23 of the outer pipe 20.
  • the flow passage cross-sectional area of the liquid phase recovery unit 40 corresponding to the downstream side in the flow direction can be obtained by subtracting the outer cross-sectional area of the inner pipe 30 from the inner cross-sectional area of the large diameter portion 24 of the outer pipe 20.
  • the large diameter inner diameter Rc of the large diameter portion 24 has the step 24 a on the downstream side of the expanded pipe portion 23, it is more sufficient than the expanded inner diameter Rb of the expanded pipe portion 23. large. Also, the outer shape of the inner pipe 30 is constant.
  • the flow passage cross-sectional area of the liquid phase recovery unit 40 has a larger value than the flow passage cross-sectional area of the double pipe portion 35 on the upstream side in the flow direction.
  • the internal volume of the liquid phase recovery unit 40 can be increased, so that the liquid phase fluid Fl separated from the gas-liquid two-phase fluid can be recovered and stored more.
  • a drain pipe 45 is connected to the lower portion of the liquid phase recovery unit 40, and has a liquid phase outlet 46 at its end. Since the drain pipe 45 is connected to the recovered water flow path 11 of the fuel cell system 100 via the liquid phase outlet 46, the liquid phase fluid Fl recovered by the liquid phase recovery unit 40 (ie, the generated water) ) Can be discharged into the recovered water channel 11.
  • the drain 45 corresponds to the drain in the present disclosure.
  • the liquid phase fluid Fl recovered by the liquid phase recovery unit 40 is used in various applications in order to improve the power generation capacity of the fuel cell system 100.
  • it is used for cooling of the radiator 4 and humidification of the electrolyte membrane in the fuel cell 1.
  • the drainage pipe 45 may be connected to the lower portion of the liquid phase recovery unit 40, and various modes can be adopted for the method of taking it out. For example, as shown in FIG. 2, FIG. 3 etc., it is not limited to the example which connects the drainage pipe 45 so that it may extend below from the undersurface of liquid phase recovery part 40, The side of liquid phase recovery part 40 The drainage pipe 45 may be connected so as to extend horizontally from the lower portion thereof.
  • the gas-liquid separator S is configured using an outer pipe Po and an inner pipe Pi having different diameters.
  • the outer pipe Po is a large-diameter cylindrical straight pipe constituting the casing of the gas-liquid separator S, and has an inlet I at the end of which a gas-liquid two-phase fluid is introduced.
  • the inner pipe Pi is a cylindrical straight pipe having a diameter smaller than the inner diameter of the outer pipe Po, and is coaxially attached to the outer pipe Po inside the outer pipe Po by welding.
  • the end E of the inner pipe Pi on the inlet I side does not extend to the inlet I of the outer pipe Po, and is located downstream of the inlet I.
  • a gas outlet Og is disposed on the opposite side of the inner pipe Pi.
  • a clearance Is is formed between the large-diameter outer pipe Po and the small-diameter inner pipe Pi so as to surround the outer circumference of the inner pipe Pi.
  • the downstream side of the gap portion Is is closed by the downstream side wall portion Wd.
  • a liquid discharge port Ol is disposed in the lower part of the outer pipe Po that constitutes the gap portion Is, and is connected to a tank or the like (not shown) via a liquid discharge pipe D.
  • the flow of the gas-liquid two-phase fluid inside the gas-liquid separator S will be described.
  • the liquid phase fluid Fl contained in the gas-liquid two-phase fluid flows along the inner peripheral wall surface of the outer pipe Po.
  • the gas phase fluid Fg in the gas-liquid two-phase fluid is diverted at the end E of the inner pipe Pi into the gap Is disposed inside the inner pipe Pi and around the inner pipe Pi.
  • the gas phase fluid Fg which has flowed into the inside of the inner pipe Pi flows as it is through the inside of the inner pipe Pi, and is discharged to the outside of the gas-liquid separator S from the gas outlet Og.
  • the liquid phase fluid Fl adhering to the inner peripheral wall surface of the outer pipe Po is flushed while passing through the clearance Is while It flows into the outlet Ol and the liquid discharge pipe D.
  • the flow passage cross-sectional area in the gap portion Is is very small compared to the flow passage cross-sectional area inside the inner pipe Pi, and the liquid discharge port Ol
  • the flow passage cross-sectional area of the liquid discharge pipe D is also formed small.
  • the gas phase fluid Fg divided at the end E flows along the outer peripheral surface of the inner pipe Pi.
  • the gas phase fluid Fg around the end E may flow into the gap portion Is further. Can not.
  • the flow of the gas phase fluid Fg around the end E changes the flow direction to the inner peripheral wall surface side of the outer pipe Po, and then the inner peripheral wall surface of the outer pipe Po is directed to the inlet I side. It will flow. That is, as shown in FIG. 4, in the gas-liquid separator S, a vortex flows around the end E of the inner pipe Pi, and the vortex flows along the inner peripheral wall surface of the outer pipe Po. Act to push Fl back to the inlet I side.
  • the flow of the gas phase fluid Fg from the end E toward the inside of the inner pipe Pi may act on the liquid phase fluid Fl accumulated around the end E of the inner pipe Pi by the vortex flow. That is, the flow of the gas phase fluid Fg directed to the inside of the inner pipe Pi may cause part of the staying liquid phase fluid Fl to be scattered.
  • the flow of the gas-liquid two-phase fluid in the liquid recovery apparatus 10 according to the first embodiment will be described with reference to FIG.
  • the gas-liquid two-phase fluid discharged from the fuel cell 1 flows into the inside from the introduction part 21 of the outer pipe 20 via the air passage 2.
  • the liquid phase fluid Fl contained in the gas-liquid two-phase fluid flows along the inner surface of the outer pipe 20 in the process of flowing from the introduction portion 21 to the double pipe portion 35.
  • the gas phase fluid Fg flows in the central portion of the flow passage remote from the inner surface of the outer tube 20. At the center of the flow passage of the outer tube 20, the gas phase fluid Fg occupies most, and contains a small amount of mist-like liquid phase fluid Fl which can not be confirmed visually.
  • the liquid phase fluid Fl basically flows throughout.
  • the liquid phase fluid Fl in the lower part of the inner surface of the outer pipe 20 flows more than the upper part or the side part in the inner surface of the outer pipe 20.
  • the inner pipe 30 is formed to have the same flow channel cross-sectional area as the flow channel cross-sectional area of the introduction portion 21 and coaxially with the central axis C of the introduction portion 21 Is located in
  • the flow of the gas phase fluid Fg flowing in the central portion of the flow path in the introduction unit 21 can smoothly flow into the inside of the inner pipe 30, and from the introduction unit 21 to the exhaust pipe
  • the pressure loss up to 31 can be kept small.
  • the liquid phase fluid Fl adhering to the inner surface of the outer pipe 20 moves toward the double pipe portion 35 by the wind force of the gas-liquid two-phase fluid flowing on the inner surface of the outer pipe 20.
  • the gas-liquid two-phase fluid flows into the liquid phase recovery portion 40 and flows along the outer peripheral surface of the inner pipe 30.
  • the liquid phase recovery unit 40 is constituted by the large diameter portion 24 having the step portion 24 a and the inner pipe 30, and the flow passage cross sectional area between the two is compared with the upstream side of the double pipe portion 35. It is getting bigger rapidly. Therefore, even when the flow rate of the gas-liquid two-phase fluid introduced from the introducing part 21 is increased, a sufficient space can be secured inside the liquid phase recovery part 40, so the double pipe part 35 It can suppress that the flow of the gaseous fluid Fg from the liquid phase recovery part 40 stops.
  • the gas phase fluid Fg changes the flow direction by the downstream side wall 25 and forms a vortex in the inside of the liquid phase recovery unit 40.
  • the gap between the expanded portion 23 and the inner pipe 30 is formed sufficiently short on the downstream side in the flow direction, and the inflow port 41 is disposed on the inner diameter side of the step portion 24a. An eddy current can be reliably generated inside the liquid phase recovery unit 40.
  • the center of the vortex generated inside the liquid phase recovery unit 40 is at a position farther from the central axis C than the inlet 41, so the inlet 41 is around the inlet 41.
  • the gas phase fluid Fg and the liquid phase fluid Fl flow smoothly into the liquid phase recovery unit 40 from the inflow port 41.
  • the liquid recovery device 10 can suppress the generation of the eddy current in the gap between the expanded pipe portion 23 and the inner pipe 30 (that is, the portion on the upstream side of the inflow port 41 in the double pipe portion 35).
  • liquid phase recovery unit 40 is located on the downstream side of the upstream end of the inner pipe 30 in the flow direction, and a vortex is generated inside the liquid phase recovery unit 40, so the gas phase fluid Fg Flows into the gap between the expanded portion 23 and the inner pipe 30 without being disturbed by the vortex flow, and reaches the inside of the liquid phase recovery portion 40.
  • the gas phase fluid Fg smoothly passes through the gap between the expanded pipe portion 23 and the inner pipe 30 so that the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 is recovered by the wind force of the gas phase fluid Fg. It smoothly flows into the inside of the part 40.
  • the liquid recovery apparatus 10 the occurrence of the eddy current in the gap between the outer pipe 20 and the inner pipe 30 is suppressed, whereby the liquid phase fluid Fl is retained around the opening edge of the inner pipe 30. It can be suppressed. Thereby, the liquid recovery apparatus 10 can suppress the flow of a part of the liquid phase fluid Fl into the inner pipe 30 by the gas phase fluid Fg flowing into the inner pipe 30, and the liquid separated from the gas-liquid two-phase fluid The recovery rate of the phase fluid Fl can be improved.
  • tube 20 is comprised so that the flow-path cross-sectional area may be continuously expanded, as it goes to the flow direction downstream.
  • the distance between the inner surface of the expanded portion 23 and the opening edge of the inner pipe 30 can be increased, so the gas phase fluid Fg directed from the inner surface of the outer pipe 20 to the inner pipe 30 Flow can be suppressed.
  • the liquid recovery apparatus 10 can suppress separation and flow of the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 into the inside of the inner pipe 30, and the recovery rate of the liquid phase fluid Fl is It is possible to suppress the decline.
  • the liquid recovery apparatus 10 can suppress the separation of the liquid phase fluid Fl attached to the inner surface of the outer tube 20. As a result, the liquid recovery apparatus 10 can suppress the inflow of the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 into the inside of the inner pipe 30, and can promote the inflow to the liquid phase recovery unit 40. The recovery rate of the liquid phase fluid Fl can be further enhanced.
  • the liquid phase recovery unit 40 is disposed so as to surround the outer periphery of the inner pipe 30, and includes a lower portion of the outer periphery of the inner pipe 30. It is. Therefore, according to the liquid recovery apparatus 10, the liquid phase fluid Fl attached to the inner surface of the outer tube 20 can be recovered without being affected by the deviation of distribution due to gravity.
  • the gas-liquid two-phase fluid introduced from the introduction part 21 of the outer pipe 20 is formed by the outer pipe 20 and the inner pipe 30.
  • the liquid phase fluid Fl can be separated and recovered in the liquid phase recovery unit 40, and the separated gas phase fluid Fg can be discharged from the exhaust pipe 31.
  • the liquid recovery apparatus 10 can discharge the liquid phase fluid Fl recovered inside the liquid phase recovery unit 40 to the outside through the drain pipe 45.
  • the liquid phase recovery unit 40 is disposed on the downstream side in the flow direction of the double pipe portion 35, and is configured by the large diameter portion 24 including the step portion 24a and the inner pipe 30. . Further, as shown in FIG. 3, since the large diameter inner diameter Rc is larger than the largest diameter Rb of the expanded tube portion, the flow channel cross-sectional area of the liquid phase recovery portion 40 is the flow passage upstream of the double pipe portion 35 in the flow direction. It is formed larger than the cross-sectional area.
  • a flow of fluid generates a vortex in the liquid phase recovery unit 40 after being introduced into the double pipe 35. That is, since the liquid recovery device 10 generates a vortex flow downstream of the portion where the fluid flows into the double pipe portion 35, the movement of the liquid phase fluid Fl along the inner surface of the outer pipe 20 is When flowing into the heavy pipe portion 35, it is not disturbed by the vortex flow.
  • the liquid phase fluid Fl moving along the inner surface of the outer pipe 20 can smoothly flow into the liquid phase recovery unit 40, and a wide range of conditions of the gas-liquid two-phase fluid
  • the liquid phase fluid Fl can be recovered at a high recovery rate.
  • liquid phase recovery unit 40 since the flow passage cross-sectional area of the liquid phase recovery unit 40 is formed larger than the flow passage cross-sectional area on the upstream side in the flow direction of the double pipe portion 35, there are many in the liquid phase recovery unit 40. Liquid phase fluid Fl can be stored.
  • the liquid recovery apparatus 10 can suppress the outflow of the liquid phase fluid Fl via the inner pipe 30. That is, the liquid recovery device 10 can cope with a wide range of conditions regarding the amount of the liquid phase fluid Fl contained in the gas-liquid two-phase fluid, and can recover the liquid phase fluid Fl with a high recovery rate.
  • the liquid phase recovery unit 40 is disposed so as to surround the entire circumference of the inner pipe 30, and includes the lower portion of the inner pipe 30, so all liquid phase fluids flowing into the double pipe portion 35 Fl can be recovered. That is, the liquid recovery apparatus 10 can improve the recovery rate of the liquid phase fluid Fl in the outer pipe 20. Then, the liquid phase recovery unit 40 reliably recovers the liquid phase fluid Fl to improve the recovery rate even when the distribution of the liquid phase fluid Fl along the inner surface of the outer tube 20 is uneven due to gravity. Can.
  • the outer pipe 20 has the expanded portion 23 downstream of the introduction portion 21 in the flow direction, and the expanded portion 23 has a flow passage
  • the cross-sectional area is configured to increase continuously.
  • the liquid recovery apparatus 10 increases the distance from the inner surface of the expanded portion 23 to the inside of the inner pipe 30 to suppress the flow of the gas phase fluid Fg from the inner surface of the expanded portion 23 toward the inside of the inner pipe 30. can do. That is, the liquid recovery apparatus 10 can prevent separation of the liquid phase fluid Fl from the inner surface of the outer tube 20 by the flow of the gas phase fluid Fg, and can improve the recovery rate of the liquid phase fluid Fl.
  • the inner pipe 30 is disposed coaxially with the central axis C in the introduction portion 21 of the outer pipe 20. Therefore, according to the liquid recovery apparatus 10, the gas phase fluid Fg flowing through the central portion of the introduction portion 21 can smoothly flow into the inside of the inner pipe 30, and the pressure loss from the outer pipe 20 to the inner pipe 30. Can be kept small.
  • the liquid recovery apparatus 10 smooths the gas phase fluid Fg flowing through the central portion of the introducing portion 21. Can flow into the interior of the inner pipe 30. As a result, the liquid recovery device 10 can suppress the pressure loss from the outer pipe 20 to the inner pipe 30 to a low level.
  • the liquid recovery apparatus 10 according to the second embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle) as in the first embodiment.
  • the liquid recovery apparatus 10 is disposed on the downstream side of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the first embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
  • the liquid recovery apparatus 10 is configured to include an outer pipe 20, an inner pipe 30, an exhaust pipe 31, and a drainage pipe 45, as in the first embodiment.
  • the outer tube 20 according to the second embodiment includes the introduction portion 21, the expanded portion 23, and the large diameter portion 24, but the shape of the large diameter portion 24 is different from that of the first embodiment.
  • the large diameter portion 24 according to the second embodiment is configured to have a stepped portion 24 a such that a portion corresponding to the lower side of the inner pipe 30 is largely separated from the central axis C. That is, in the liquid recovery apparatus 10 according to the second embodiment, the liquid phase recovery unit 40 is formed to bulge downward of the inner pipe 30, and the flow path cross-sectional area in the liquid phase recovery unit 40 is It is formed larger than the flow passage cross-sectional area of the upstream side portion of the double pipe portion 35 in the flow direction.
  • the liquid recovery apparatus 10 generates a vortex flow of the gas phase fluid Fg in the liquid phase recovery unit 40 disposed on the downstream side in the flow direction of the double pipe unit 35 as in the first embodiment. It is possible to improve the recovery rate of the liquid phase fluid Fl.
  • the exhaust pipe 31 is connected to the downstream side in the flow direction of the inner pipe 30, and the drainage pipe 45 is connected to the lower portion of the liquid phase recovery unit 40. Accordingly, the liquid recovery apparatus 10 according to the second embodiment discharges the gas phase fluid Fg separated from the gas-liquid two-phase fluid to the outside of the fuel cell system 100 as in the first embodiment, and the liquid phase recovery unit 40 The liquid phase fluid Fl (that is, generated water) collected in the above can be discharged to the collected water channel 11.
  • the liquid phase fluid Fl that is, generated water
  • the flow passage cross-sectional area of the liquid phase recovery unit 40 is formed larger than the flow passage cross-sectional area of the double pipe portion 35 corresponding to the upstream portion in the flow direction It is done.
  • the liquid recovery apparatus 10 generates an eddy current of the gas phase fluid Fg in the liquid phase recovery unit 40 disposed on the downstream side of the double pipe 35 in the flow direction. And the recovery rate of the liquid phase fluid Fl can be improved.
  • the liquid recovery apparatus 10 enlarges the cross-sectional area of the flow passage corresponding to the lower portion of the exhaust pipe 31 to configure the liquid phase recovery unit 40, so that the distribution of the liquid phase fluid Fl inside the outer pipe 20 is The liquid phase fluid Fl can be recovered efficiently.
  • the liquid recovery apparatus 10 of the second embodiment it is possible to improve the recovery rate of the liquid phase fluid Fl while suppressing the increase in size of the apparatus.
  • the liquid recovery apparatus 10 according to the third embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle) as in the above-described embodiment.
  • the liquid recovery apparatus 10 is disposed on the downstream side of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the above-described embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
  • the liquid recovery apparatus 10 is configured to include the outer pipe 20, the inner pipe 30, the exhaust pipe 31, and the drainage pipe 45 as in the above-described embodiment, and in the liquid phase recovery unit 40. Except for the configuration around the inlet 41, it is the same as the first embodiment described above. Therefore, in the following description, the periphery of the inflow port 41 in the liquid phase recovery unit 40 will be described.
  • the liquid phase recovery unit 40 is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner. , And the downstream side of the double pipe portion 35 in the flow direction.
  • the large diameter portion 24 according to the third embodiment is also configured to have the stepped portion 24 a as in the above-described embodiment.
  • And inflow mouth 41 in a 3rd embodiment is constituted by the crevice formed between the connection part of expanded tube part 23 and large diameter part 24 in outer pipe 20, and inner pipe 30, and double pipe part
  • the liquid phase fluid Fl and the like that have passed 35 flow into the liquid phase recovery unit 40.
  • a protrusion 42 is formed at the opening edge of the inflow port 41.
  • the protrusion 42 is formed to project downstream in the flow direction from the opening edge of the inflow port 41, and has a tubular shape surrounding the inflow port 41.
  • this protrusion 42 should just be formed so that it may protrude from the opening edge of the inflow port 41 to the flow direction downstream, and it can implement
  • the expanded pipe portion 23 may extend to the downstream side in the flow direction at the connection portion of the expanded pipe portion 23 and the large diameter portion 24 which constitute the inflow port 41.
  • the protrusion 42 may be relatively formed by forming a groove-shaped recess on the inner wall surface of the large diameter portion 24 that constitutes the outer peripheral portion of the connection portion.
  • the gas-liquid two-phase fluid that has flowed in from the inflow port 41 is led to the inside of the liquid phase recovery unit 40 by the projection 42, and thus a vortex is generated inside the liquid phase recovery unit 40. It can be done. Moreover, since the said protrusion 42 is formed so that the inflow port 41 may be enclosed, the influence which the gas-liquid two-phase fluid which flows in from the inflow port 41 receives from the gaseous-phase fluid Fg which became a vortex can be suppressed.
  • the inside of the liquid phase recovery unit 40 is formed by forming the protrusion 42 projecting to the downstream side in the flow direction from the opening edge of the inflow port 41
  • the smooth inflow of the liquid phase fluid Fl or the like to the liquid phase recovery unit 40 can be realized while promoting the generation of the vortex flow in the above.
  • the liquid recovery apparatus 10 can further smooth the flow of the gas-liquid two-phase fluid to the double pipe portion 35 and the liquid phase recovery unit 40, so that the recovery rate of the liquid phase fluid Fl can be improved. Can.
  • the liquid recovery apparatus 10 according to the fourth embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle), as in the above-described embodiment.
  • the liquid recovery apparatus 10 is disposed downstream of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the above-described embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
  • the liquid recovery apparatus 10 is configured to include the outer pipe 20, the inner pipe 30, the exhaust pipe 31, and the drainage pipe 45, as in the above-described embodiment. Except for this, it is the same as the first embodiment described above. Therefore, in the following description, the configuration of the outer pipe 20 will be described.
  • the outer tube 20 according to the fourth embodiment is constituted by the introduction portion 21 and the large diameter portion 24.
  • the outer pipe 20 of the liquid recovery apparatus 10 is configured by the introduction portion 21, the expanded pipe portion 23, and the large diameter portion 24, and thus the difference is that the expanded pipe portion 23 is not provided. It becomes.
  • the introduction portion 21 according to the fourth embodiment is a portion for introducing the gas-liquid two-phase fluid that has flowed out of the fuel cell 1 into the inside of the outer pipe 20 as in the first embodiment. Make up the side.
  • a flow passage having a circular cross section is formed inside the introduction portion 21.
  • the flow passage cross section of the introducing portion 21 in the fourth embodiment has a circular shape with the central axis C as a center and a radius of a predetermined introducing portion inner diameter Ra.
  • the inner diameter Ra of the introduction portion according to the fourth embodiment shows a value larger than the inner diameter Rd of the inner pipe.
  • the large diameter portion 24 provided with the stepped portion 24 a is disposed on the downstream side in the flow direction of the introduction portion 21.
  • the large diameter portion 24 according to the fourth embodiment is formed in a circular tubular shape coaxially arranged with the central axis C, and the internal cross section is centered on the central axis C and the large diameter portion inner diameter Rc is a radius It has a round shape.
  • the large diameter portion inner diameter Rc shows a value larger than the introduction portion inner diameter Ra in this case, and is determined to have a difference of a predetermined value with the introduction portion inner diameter Ra. It is done. Therefore, when the inner cross sectional area of the outer tube 20 reaches the large diameter part 24, the inner cross sectional area of the outer pipe 20 rapidly and largely expands relative to the internal cross sectional area of the introduction part 21.
  • the inner pipe 30 according to the fourth embodiment is disposed inside the outer pipe 20 at a downstream portion in the flow direction of the outer pipe 20.
  • the inner pipe 30 is formed in the shape of a circular tube having an inner pipe inner diameter Rd, and is disposed coaxially with the central axis C.
  • An exhaust pipe 31 is connected to the flow direction downstream side of the inner pipe 30.
  • the inner pipe 30 is arranged to provide a predetermined distance from the inner surface of the outer pipe 20 (that is, the introduction portion 21 and the large diameter portion 24), and the fourth The double pipe part 35 which concerns on embodiment is comprised.
  • the double pipe portion 35 is configured such that the flow of the gas-liquid two-phase fluid flowing in from the introduction portion 21 flows into the inner pipe 30 and the gap between the outer pipe 20 and the inner pipe 30 in the double pipe portion 35. It functions to branch into the incoming flow.
  • the liquid phase recovery unit 40 is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 doubly, and the downstream side of the double pipe portion 35 in the flow direction is Configured.
  • the flow passage cross-sectional area on the downstream side of the double pipe portion 35 is the flow on the upstream side of the double pipe portion 35 due to the difference between the inner diameter Ra of the introduction portion 21 and the inner diameter Rc of the large diameter portion 24 of the large diameter portion 24. It is larger than the road cross section and is rapidly enlarged.
  • the liquid recovery apparatus 10 separates the liquid phase fluid Fl from the gas-liquid two-phase fluid that has passed through the double pipe portion 35, and the liquid phase recovery unit 40. Can be collected and stored.
  • the internal volume of the liquid phase recovery unit 40 can be made sufficiently large, so that more recovered liquid phase fluid Fl can be stored, and a large amount of liquid phase fluid Fl is obtained. It can cope with the case of flowing into the liquid phase recovery unit 40
  • the liquid recovery apparatus 10 even when the outer pipe 20 is configured by the introduction portion 21 and the large diameter portion 24, the gas phase from the gas-liquid two-phase fluid
  • the fluid Fg and the liquid phase fluid Fl can be separated, and the liquid phase fluid Fl can be recovered.
  • the liquid recovery apparatus 10 can smoothly move the liquid phase fluid Fl along the inner surface of the outer pipe 20 to flow into the liquid phase recovery unit 40, so that the recovery rate of the liquid phase fluid can be increased. It can be improved.
  • the liquid recovery apparatus according to the present disclosure is applied to the fuel cell system 100, but the present invention is not limited to this aspect.
  • the liquid recovery apparatus according to the present disclosure can be applied to various apparatuses and systems as long as it has an application of separating a gas-liquid two-phase fluid into a gas phase fluid and a liquid phase fluid and recovering the liquid phase fluid. .
  • the double pipe part 35 which concerns on this indication is not limited to a structure like embodiment mentioned above, the front-end
  • the flow direction upstream side of the liquid phase recovery unit 40 in the double pipe portion 35 has a predetermined flow path length. If this portion is longer than necessary, a vortex may be generated before flowing into the inside of the large diameter portion 24. Therefore, it is preferable that the vortex is generated in the liquid phase recovery unit 40. .
  • the inner surface of the outer tube 20 is subjected to chemical treatment to directly impart hydrophilic functional groups (for example, hydroxyl group, carboxyl group) to the surface to obtain hydrophilicity.
  • hydrophilic functional groups for example, hydroxyl group, carboxyl group
  • the inner surface of the outer tube 20 can be provided with hydrophilicity
  • various methods can be adopted. For example, plasma treatment, photocatalyst, formation of fine irregularities, coating, etc. may be performed.
  • the exhaust pipe 31 is connected to the downstream side of the flow direction of the inner pipe 30, and the drainage pipe 45 is connected to the lower part of the liquid phase recovery unit 40, but this embodiment is limited It is not something to be done.
  • the shape may be any shape capable of discharging the gas phase fluid Fg or the shape capable of discharging the liquid phase fluid Fl, and does not have to protrude in a tubular shape toward the outside of the liquid recovery apparatus 10.
  • outer tube 20, inner tube 30, exhaust pipe 31, and drainage pipe 45 are explained as a cylindrical shape pipe, this indication is not limited to this. Absent. Each configuration in the present disclosure only needs to constitute a flow path through which a fluid can pass, and the cross-sectional shape is not limited.
  • the outer pipe 20, the exhaust pipe 31, and the drainage pipe 45 in the liquid recovery apparatus 10 can be appropriately changed in appearance.

Abstract

This liquid recovery apparatus is provided with an outer tube (20), an inner tube (30), a double-tube portion (35), a liquid phase recovery portion (40), and a liquid discharge tube (45). The outer tube has an introduction portion (21) through which a gas-liquid two-phase fluid is introduced. The inner tube is disposed, at a position extended from the introduction portion to the downstream side with respect to the flow direction of the gas-liquid two-phase fluid in the introduction portion, inside the outer tube, and discharges a gas-phase fluid separated from the gas-liquid two-phase fluid. The double-tube portion is formed on the downstream side of the flow direction in the outer tube, by disposing the inner tube inside the outer tube with a predetermined space provided relative to the inner side of the outer tube. The liquid phase recovery portion is formed on the downstream side of the flow direction in the double-tube portion, so as to have a flow path cross-sectional area larger than the flow path cross-sectional area of the double-tube portion on the upstream side of the flow direction, and recovers a liquid-phase fluid separated from the gas-liquid two-phase fluid. The liquid discharge tube is connected to the lower part of the liquid phase recovery portion, and discharges the liquid-phase fluid recovered by the liquid phase recovery portion.

Description

液体回収装置Liquid recovery device 関連出願の相互参照Cross-reference to related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年9月15日に出願された日本特許出願2017-177362号を基にしている。 This application is based on Japanese Patent Application No. 2017-177362 filed on Sep. 15, 2017, the disclosure of which is incorporated by reference into the present application.
 本開示は、気液二相流体から液相流体を分離して回収する液体回収装置に関する。 The present disclosure relates to a liquid recovery apparatus that separates and recovers a liquid-phase fluid from a gas-liquid two-phase fluid.
 従来、蒸気や圧縮空気や各種ガス等の流体を用いたシステムにおいて、液体回収装置が配置されている。当該液体回収装置は、気液二相状態の流体を気相と液相に分離するように構成されており、分離した液相状態の流体を回収して種々の用途に利用している。 Conventionally, in a system using fluids such as steam, compressed air, and various gases, a liquid recovery device is disposed. The liquid recovery apparatus is configured to separate a gas-liquid two-phase fluid into a gas phase and a liquid phase, and recovers the separated liquid-phase fluid for use in various applications.
 このような液体回収装置に係る開示として、特許文献1に記載された開示が知られている。特許文献1に記載された気液分離器は、気液二相流体が流れる分離器ケーシングの内周壁面に沿って、円筒形状の液体集合部材を配置することによって、管状部材の二重構造となるように構成されている。 As a disclosure related to such a liquid recovery apparatus, the disclosure described in Patent Document 1 is known. The gas-liquid separator described in Patent Document 1 has a double structure of a tubular member by arranging a cylindrical liquid collecting member along the inner peripheral wall surface of the separator casing through which the gas-liquid two-phase fluid flows. It is configured to be
 当該気液分離器では、気液二相流体は、分離器ケーシングの内周壁面と液体集合部材表面との間の間隙部分に流入する際に、気相流体と液相流体に分離される。分離された液相流体は、分離器ケーシングの内周壁面に沿って流れる。そして、分離器ケーシングと液体集合部材の間の間隙部分には、液体排出口が設けられている為、分離された液相流体は、当該液体排出口を介して回収されている。 In the gas-liquid separator, the gas-liquid two-phase fluid is separated into the gas phase fluid and the liquid phase fluid when flowing into the gap between the inner peripheral wall surface of the separator casing and the surface of the liquid collecting member. The separated liquid phase fluid flows along the inner circumferential wall surface of the separator casing. Further, since the liquid outlet is provided in the gap between the separator casing and the liquid collecting member, the separated liquid phase fluid is recovered via the liquid outlet.
特開2005-147482号公報JP, 2005-147482, A
 ここで、液体回収装置を用いたシステムにおいて、液体回収装置に流入する気液二相流体の状態は、常に所定の状態であるとは限らない。例えば、燃料電池システムに適用した場合には、気液二相流体としての燃料電池の排気の状態は、負荷変動などによって様々に変化してしまう。この為、液体回収装置としては、幅広い条件下で液相流体の回収率を高く維持することが必要とされる。 Here, in the system using the liquid recovery device, the state of the gas-liquid two-phase fluid flowing into the liquid recovery device is not always the predetermined state. For example, when applied to a fuel cell system, the exhaust state of the fuel cell as a gas-liquid two-phase fluid changes in various ways due to load fluctuation and the like. For this reason, as a liquid recovery apparatus, it is necessary to maintain a high recovery rate of the liquid phase fluid under a wide range of conditions.
 特許文献1の気液分離器のような液体回収装置では、気液二相流体の流量が大きい場合には、間隙部分にて気相流体による渦流が発生して流体の流れが阻害されてしまう。これにより、当該液体回収装置では、間隙部分を通過する液相流体の流れが阻害される為、液相流体の回収率が低下してしまう。 In the liquid recovery apparatus such as the gas-liquid separator of Patent Document 1, when the flow rate of the gas-liquid two-phase fluid is large, the vortex flow by the gas phase fluid is generated in the gap portion and the flow of the fluid is obstructed . As a result, in the liquid recovery apparatus, the flow of the liquid phase fluid passing through the gap portion is obstructed, and the recovery rate of the liquid phase fluid is lowered.
 又、液相流体の流量が一時的に増大した場合、液相流体の水位が間隙部分を越え、液体集合部材の下部よりも上方になってしまうことが想定される。この場合、液相流体の一部が液体集合部材の内部を介して流出してしまう為、結果として、液相流体の回収率が低下してしまう。 In addition, when the flow rate of the liquid phase fluid temporarily increases, it is assumed that the water level of the liquid phase fluid exceeds the gap portion and is higher than the lower portion of the liquid collecting member. In this case, part of the liquid phase fluid flows out through the inside of the liquid collecting member, and as a result, the recovery rate of the liquid phase fluid is lowered.
 本開示は、これらの点に鑑みてなされており、気液二相流体の幅広い条件下において、液相流体の高い回収率を実現可能な液体回収装置を提供することを目的とする。 The present disclosure is made in view of these points, and an object of the present disclosure is to provide a liquid recovery apparatus capable of achieving a high recovery rate of liquid phase fluid under a wide range of conditions of gas-liquid two-phase fluid.
 本開示の一態様に係る液体回収装置は、外管、内管、二重管部、液相回収部、および排液管を備える。外管は、気液二相流体が導入される導入部を有する。内管は、導入部における気液二相流体の流れ方向に関し、導入部を下流側に延長した位置にて外管の内部に配置され、気液二相流体から分離された気相流体を排出する。二重管部は、外管における流れ方向下流側にて、外管の内側に対して予め定められた間隔を設けて内管を配置して構成される。液相回収部は、二重管部における流れ方向下流側において、二重管部の流れ方向上流側における流路断面積よりも大きな流路断面積を有して構成され、気液二相流体から分離された液相流体を回収する。排液管は、液相回収部の下部に接続され、液相回収部に回収された液相流体を排出する。 A liquid recovery apparatus according to an aspect of the present disclosure includes an outer pipe, an inner pipe, a double pipe section, a liquid phase recovery section, and a drainage pipe. The outer pipe has an introduction part into which a gas-liquid two-phase fluid is introduced. The inner pipe is disposed inside the outer pipe at a position where the introducing portion extends downstream with respect to the flow direction of the gas-liquid two-phase fluid at the introducing portion, and the gas phase fluid separated from the gas-liquid two-phase fluid is discharged Do. The double pipe portion is configured by arranging the inner pipe at a predetermined distance with respect to the inner side of the outer pipe on the downstream side in the flow direction of the outer pipe. The liquid phase recovery unit is configured to have a flow passage cross-sectional area larger than the flow passage cross-sectional area on the flow direction upstream side of the double pipe portion on the flow direction downstream side of the double pipe portion. The liquid phase fluid separated from is recovered. The drain pipe is connected to the lower portion of the liquid phase recovery unit, and drains the liquid phase fluid recovered in the liquid phase recovery unit.
 当該液体回収装置によれば、外管の導入部から導入された気液二相流体を、外管と内管により構成された二重管部を通過させることで、液相流体を分離させて液相回収部に回収すると共に、分離された気相流体を排気管から排出させることができる。そして、当該液体回収装置は、液相回収部の内部に回収した液相流体を、排液管を介して外部へ排出することができる。 According to the liquid recovery apparatus, the gas-liquid two-phase fluid introduced from the introduction part of the outer pipe is separated from the liquid phase fluid by passing through the double pipe formed of the outer pipe and the inner pipe. While being collected in the liquid phase recovery unit, the separated gas phase fluid can be discharged from the exhaust pipe. And the said liquid collection | recovery apparatus can drain the liquid phase fluid collect | recovered inside the liquid phase collection | recovery part outside via a drain pipe.
 ここで、当該液体回収装置において、液相回収部の流路断面積は、二重管部の流れ方向上流側における流路断面積よりも大きく形成されており、液相回収部は、二重管部の流れ方向下流側に配置されている。 Here, in the liquid recovery apparatus, the flow channel cross-sectional area of the liquid phase recovery unit is formed larger than the flow channel cross-sectional area on the upstream side in the flow direction of the double pipe portion, and the liquid phase recovery unit It is disposed downstream of the pipe in the flow direction.
 この為、当該液体回収装置において、流体の流れは、二重管部に導入された後、液相回収部の内部にて渦流を発生させる。即ち、当該液体回収装置は、流体が二重管部に流入する部分よりも流れ方向下流側で渦流を発生させる為、外管の内面に沿った液相流体の移動は、二重管部に流入する際に渦流によって妨げられることはない。 For this reason, in the liquid recovery apparatus, the fluid flow is introduced into the double pipe section, and then generates a vortex in the liquid phase recovery section. That is, since the liquid recovery device generates a vortex flow downstream of the portion where the fluid flows into the double pipe portion, the movement of the liquid phase fluid along the inner surface of the outer pipe is performed in the double pipe portion. It is not disturbed by the vortex when it flows in.
 これにより、当該液体回収装置によれば、外管の内面に沿って移動する液相流体を円滑に液相回収部に流入させることができ、気液二相流体の幅広い条件下において、高い回収率で液相流体を回収することができる。 Thus, according to the liquid recovery apparatus, the liquid phase fluid moving along the inner surface of the outer tube can smoothly flow into the liquid phase recovery unit, and high recovery is possible under a wide range of conditions of the gas-liquid two-phase fluid. Liquid phase fluid can be recovered at a rate.
 又、液相回収部の流路断面積は、二重管部の流れ方向上流側における流路断面積よりも大きく形成されている為、液相回収部の内部に多くの液相流体を貯留することができる。 In addition, since the flow channel cross-sectional area of the liquid phase recovery unit is formed larger than the flow channel cross-sectional area on the upstream side in the flow direction of the double pipe portion, a large amount of liquid phase fluid is stored inside the liquid phase recovery unit. can do.
 即ち、当該液体回収装置は、液相回収部に流入する液相流体の流量が増大した場合であっても、内管を介して液相流体が流出することを抑制できる。つまり、液体回収装置は、気液二相流体に含まれる液相流体の量に関する幅広い条件に対応することができ、高い回収率で液相流体を回収することができる。 That is, the liquid recovery apparatus can suppress the outflow of the liquid phase fluid through the inner pipe even when the flow rate of the liquid phase fluid flowing into the liquid phase recovery unit is increased. That is, the liquid recovery apparatus can cope with a wide range of conditions regarding the amount of liquid phase fluid contained in the gas-liquid two-phase fluid, and can recover the liquid phase fluid with a high recovery rate.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。 The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings.
第1実施形態に係る液体回収装置を含む燃料電池システムの構成図である。FIG. 1 is a block diagram of a fuel cell system including a liquid recovery apparatus according to a first embodiment. 第1実施形態に係る液体回収装置の外観斜視図である。FIG. 1 is an external perspective view of a liquid recovery apparatus according to a first embodiment. 第1実施形態に係る液体回収装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the liquid collection | recovery apparatus which concerns on 1st Embodiment. 従来の気液分離器における気液二相流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the gas-liquid two-phase fluid in the conventional gas-liquid separator. 第1実施形態に係る液体回収装置における気液二相流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the gas-liquid two-phase fluid in the liquid collection | recovery apparatus which concerns on 1st Embodiment. 第2実施形態に係る液体回収装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the liquid collection | recovery apparatus which concerns on 2nd Embodiment. 第3実施形態に係る液体回収装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the liquid collection | recovery apparatus which concerns on 3rd Embodiment. 第4実施形態に係る液体回収装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the liquid collection | recovery apparatus which concerns on 4th Embodiment.
 以下、実施形態について図に基づいて説明する。以下の実施形態において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described based on the drawings. In the following embodiments, parts which are the same as or equivalent to each other are given the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係る液体回収装置10は、燃料電池1を電源として走行する電気自動車(燃料電池車両)に搭載されており、燃料電池システム100の一部を構成している。当該燃料電池システム100は、走行用電動モータやバッテリ等の電気機器(図示せず)に対して、燃料電池1で発電された電力を供給するように構成されている。
First Embodiment
The liquid recovery apparatus 10 according to the first embodiment is mounted on an electric car (fuel cell vehicle) traveling with the fuel cell 1 as a power source, and constitutes a part of the fuel cell system 100. The fuel cell system 100 is configured to supply the electric power generated by the fuel cell 1 to an electric device (not shown) such as a traveling electric motor or a battery.
 先ず、第1実施形態に係る燃料電池システム100の構成について、図1を参照しつつ説明する。第1実施形態に係る燃料電池システム100は、図1に示すように、水素と酸素との化学反応を利用して電力を発生する燃料電池1(FCスタック)を有している。 First, the configuration of the fuel cell system 100 according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the fuel cell system 100 according to the first embodiment includes a fuel cell 1 (FC stack) that generates electric power by using a chemical reaction of hydrogen and oxygen.
 当該燃料電池1は、固体高分子電解質型燃料電池(PEFC)であり、多数のセルを組み合わせて構成されている。各セルは、電解質膜を一対の電極で挟み込んで形成されている。 The fuel cell 1 is a solid polymer electrolyte fuel cell (PEFC), and is configured by combining a large number of cells. Each cell is formed by sandwiching an electrolyte membrane between a pair of electrodes.
 燃料電池1には、空気通路2を介して、酸素を含む空気が供給される。この空気通路2には、エアポンプ6が配置されており、エアポンプ6の作動によって空気を圧送して、燃料電池1に供給している。又、燃料電池1には、水素通路3を介して水素が供給される。 The fuel cell 1 is supplied with air containing oxygen through the air passage 2. An air pump 6 is disposed in the air passage 2, and air is pumped by the operation of the air pump 6 and supplied to the fuel cell 1. Further, hydrogen is supplied to the fuel cell 1 via the hydrogen passage 3.
 そして、燃料電池1では、以下の水素と酸素の電気化学反応が起こり、電気エネルギが発生する。この電気化学反応に用いられなかった未反応の酸素及び水素は、排気ガス及び排気水素として燃料電池1から排出される。尚、未反応の排気水素は、水素ポンプ9の作動に伴って、再び水素通路3に戻され、燃料電池1に対して供給される。
 (負極側)H→2H+2e
 (正極側)2H+1/2O+2e→H
 当該電気化学反応の為には、燃料電池1の内部の電解質膜は、水分を含んだ湿潤状態となっている必要がある。当該燃料電池システム100は、燃料電池1に供給される空気及び水素に加湿を行い、これらの加湿されたガスを燃料電池1に供給することで、燃料電池1の内部の電解質膜を加湿するように構成されている。
Then, in the fuel cell 1, the following electrochemical reaction of hydrogen and oxygen occurs to generate electric energy. Unreacted oxygen and hydrogen which are not used for the electrochemical reaction are discharged from the fuel cell 1 as exhaust gas and hydrogen. The unreacted exhaust hydrogen is returned to the hydrogen passage 3 again with the operation of the hydrogen pump 9 and supplied to the fuel cell 1.
(Negative electrode) H 2 → 2H + + 2e -
(Positive side) 2H + + 1 / 2O 2 + 2e - → H 2 O
For the electrochemical reaction, the electrolyte membrane in the fuel cell 1 needs to be in a wet state containing water. The fuel cell system 100 humidifies the electrolyte membrane in the fuel cell 1 by humidifying the air and hydrogen supplied to the fuel cell 1 and supplying the humidified gas to the fuel cell 1. Is configured.
 又、燃料電池1では、発電の際の電気化学反応により熱及び水分が発生する。当該燃料電池1の発電効率を考慮すると、燃料電池1は、燃料電池システム100が作動している間、一定温度(例えば80℃程度)に維持されている必要がある。又、燃料電池1の内部の電解質膜は、所定の許容上限温度を超えると、高温により破壊されてしまう。この為、燃料電池1の温度が許容温度以下となるようにしておく必要がある。 Further, in the fuel cell 1, heat and moisture are generated by the electrochemical reaction at the time of power generation. In consideration of the power generation efficiency of the fuel cell 1, the fuel cell 1 needs to be maintained at a constant temperature (for example, about 80 ° C.) while the fuel cell system 100 is operating. In addition, when the electrolyte membrane inside the fuel cell 1 exceeds the predetermined allowable upper limit temperature, the electrolyte membrane is broken due to the high temperature. Therefore, it is necessary to keep the temperature of the fuel cell 1 below the allowable temperature.
 図1に示すように、当該燃料電池システム100には、冷却水回路が配置されており、熱媒体としての冷却水を用いて、燃料電池1を冷却して当該燃料電池1の温度を制御している。この熱媒体である冷却水としては、低温時における凍結を防止する為に、例えば、エチレングリコールと水の混合溶液を用いることができる。 As shown in FIG. 1, a cooling water circuit is disposed in the fuel cell system 100, and the temperature of the fuel cell 1 is controlled by cooling the fuel cell 1 using the cooling water as a heat medium. ing. As cooling water which is a heat medium, for example, a mixed solution of ethylene glycol and water can be used to prevent freezing at low temperature.
 当該冷却水回路は、ラジエータ4と、ファン5と、冷却水流路7と、ウォータポンプ8とを有して構成されており、燃料電池1とラジエータ4の間で冷却水を循環させることで、燃料電池1で発生した熱を系外へ放出するように構成されている。 The cooling water circuit is configured to include the radiator 4, the fan 5, the cooling water flow path 7, and the water pump 8, and by circulating the cooling water between the fuel cell 1 and the radiator 4, The heat generated in the fuel cell 1 is configured to be released out of the system.
 ラジエータ4は、燃料電池1で発生した熱を系外に放熱するように構成された熱交換器である。当該燃料電池システム100においては、冷却水回路の冷却水は、燃料電池1を流れる過程で、電気化学反応で発生した熱を吸熱して流出し、冷却水流路7を介して、ラジエータ4へ流入する。 The radiator 4 is a heat exchanger configured to dissipate the heat generated by the fuel cell 1 to the outside of the system. In the fuel cell system 100, the cooling water of the cooling water circuit absorbs heat generated by the electrochemical reaction in the process of flowing through the fuel cell 1 and flows out, and flows into the radiator 4 through the cooling water flow path 7. Do.
 ラジエータ4では、冷却水と大気との熱交換が行われ、冷却水の熱が大気に放熱される。その後、冷却水は、ラジエータ4から燃料電池1へ向かって流れ、冷却水回路の冷却水流路7を循環する。即ち、ラジエータ4は、熱媒体としての冷却水との熱交換によって、燃料電池1の電気化学反応で生じた熱を放熱して、燃料電池1を冷却している。 In the radiator 4, heat exchange between the cooling water and the atmosphere is performed, and the heat of the cooling water is dissipated to the atmosphere. Thereafter, the cooling water flows from the radiator 4 toward the fuel cell 1 and circulates through the cooling water flow path 7 of the cooling water circuit. That is, the radiator 4 dissipates heat generated by the electrochemical reaction of the fuel cell 1 by heat exchange with cooling water as a heat medium, thereby cooling the fuel cell 1.
 又、当該ラジエータ4は、ファン5を有している。ファン5は、ラジエータ4における熱交換対象である外気をラジエータ4に送風することで、ラジエータ4における冷却水の熱交換を補助している。 Further, the radiator 4 has a fan 5. The fan 5 assists the heat exchange of the cooling water in the radiator 4 by blowing the outside air which is the heat exchange object in the radiator 4 to the radiator 4.
 ウォータポンプ8は、燃料電池1とラジエータ4を含む循環径路としての冷却水流路7に配置されており、冷却水を圧送することで、冷却水流路7の内部において冷却水を循環させている。 The water pump 8 is disposed in the cooling water flow path 7 as a circulation path including the fuel cell 1 and the radiator 4 and pumps the cooling water to circulate the cooling water inside the cooling water flow path 7.
 当該燃料電池システム100では、冷却水回路における冷却水の温度制御は、ウォータポンプ8による流量制御、ファン5の送風量制御によって行われる。そして、冷却水流路7における燃料電池1の出口側には、図示しない水温センサが配置されている。当該水温センサは、燃料電池1の出口側から流出する冷却水温度を検出する。 In the fuel cell system 100, temperature control of the cooling water in the cooling water circuit is performed by flow control by the water pump 8 and air flow control of the fan 5. A coolant temperature sensor (not shown) is disposed on the outlet side of the fuel cell 1 in the coolant channel 7. The water temperature sensor detects the temperature of the cooling water flowing out from the outlet side of the fuel cell 1.
 当該燃料電池システム100において、燃料電池1による発電の際に発生した水分は、燃料電池1から空気通路2を介して、空気に含まれた状態(即ち、気液二相状態)で排出される。この為、空気通路2における燃料電池1の下流側には、液体回収装置10が配置されている。即ち、燃料電池1から液体回収装置10へ向かう流体の流れ方向が本開示における気液二相流体の流れ方向に相当する。 In the fuel cell system 100, the water generated at the time of power generation by the fuel cell 1 is discharged from the fuel cell 1 through the air passage 2 in a state contained in air (that is, a gas-liquid two-phase state). . Therefore, the liquid recovery device 10 is disposed downstream of the fuel cell 1 in the air passage 2. That is, the flow direction of the fluid from the fuel cell 1 to the liquid recovery device 10 corresponds to the flow direction of the gas-liquid two-phase fluid in the present disclosure.
 当該液体回収装置10は、燃料電池1での発電の際に発生した水分を、空気通路2から排出された空気と共に取り込んで、水蒸気と水に分離する。そして、液体回収装置10で分離された水蒸気は、燃料電池システム100の外部に排出される。 The liquid recovery apparatus 10 takes in the moisture generated during the power generation in the fuel cell 1 together with the air discharged from the air passage 2 and separates it into water vapor and water. Then, the water vapor separated by the liquid recovery device 10 is discharged to the outside of the fuel cell system 100.
 一方、液体回収装置10で分離された水は、凝縮により温度が下げられた状態で液体回収装置10の内部に回収され、燃料電池1の加湿等に用いられる。即ち、液体回収装置10は、本開示における液体回収装置として機能する。当該液体回収装置10の具体的構成については、後に図面を参照しつつ詳細に説明する。 On the other hand, the water separated by the liquid recovery device 10 is recovered inside the liquid recovery device 10 in a state where the temperature is lowered by condensation, and is used for humidifying the fuel cell 1 or the like. That is, the liquid recovery device 10 functions as a liquid recovery device in the present disclosure. The specific configuration of the liquid recovery apparatus 10 will be described in detail later with reference to the drawings.
 当該燃料電池システム100において、液体回収装置10の内部にて回収された回収水は、種々の用途に利用することが可能である。当該燃料電池システム100において、回収水は、燃料電池1における電解質膜の加湿と、ラジエータ4の冷却に用いられる。液体回収装置10の下部には、回収水用流路11が接続されている。回収水用流路11は、当該液体回収装置10の内部に貯留されている回収水を利用するように構成されている。 In the fuel cell system 100, the recovered water recovered inside the liquid recovery apparatus 10 can be used for various applications. In the fuel cell system 100, the recovered water is used to humidify the electrolyte membrane in the fuel cell 1 and to cool the radiator 4. At the lower part of the liquid recovery apparatus 10, a recovered water flow path 11 is connected. The recovered water flow path 11 is configured to use the recovered water stored inside the liquid recovery apparatus 10.
 図1に示すように、この回収水用流路11は、液体回収装置10の下部と流量調整弁13とを接続しており、当該回収水用流路11には、散布用ポンプ12が配置されている。従って、当該燃料電池システム100においては、散布用ポンプ12を作動させることによって、液体回収装置10の内部に貯留されている回収水を、流量調整弁13へ圧送することができる。 As shown in FIG. 1, the recovered water flow path 11 connects the lower portion of the liquid recovery device 10 and the flow rate adjustment valve 13, and in the recovered water flow path 11, the distribution pump 12 is disposed. It is done. Therefore, in the fuel cell system 100, the recovery water stored inside the liquid recovery apparatus 10 can be pressure-fed to the flow rate adjustment valve 13 by operating the distribution pump 12.
 流量調整弁13には、ラジエータ側流路14と、加湿用流路15とが接続されている。ラジエータ側流路14は、散布用ポンプ12の作動によって、液体回収装置10の内部から流量調整弁13を介して圧送された回収水をラジエータ4に散布するように構成された流路である。ラジエータ側流路14の先端部分には、水を霧状に散布(噴射)するように構成された散水ノズルが配置されている。 The radiator side flow passage 14 and the humidification flow passage 15 are connected to the flow rate adjustment valve 13. The radiator side flow passage 14 is a flow passage configured to disperse the recovered water pressure-fed from the inside of the liquid recovery device 10 via the flow rate adjustment valve 13 to the radiator 4 by the operation of the dispersion pump 12. A water spray nozzle configured to spray (spray) water in the form of a mist is disposed at a tip end portion of the radiator side flow passage 14.
 当該燃料電池システム100において、当該流量調整弁13は、ラジエータ側流路14に対する弁開度と、加湿用流路15に対する弁開度を独立して調整可能に構成されており、ラジエータ側流路14における回収水の散布流量と、加湿用流路15における回収水の散布流量を調整する。 In the fuel cell system 100, the flow rate adjustment valve 13 is configured to be able to independently adjust the valve opening degree with respect to the radiator side flow path 14 and the valve opening degree with respect to the humidification flow path 15, The dispersed flow rate of the recovered water at 14 and the dispersed flow rate of the recovered water in the humidification flow path 15 are adjusted.
 そして、加湿用流路15は、散布用ポンプ12の作動によって、液体回収装置10の内部から流量調整弁13を介して圧送された回収水を燃料電池1に散布するように構成された流路である。当該加湿用流路15の先端部分には、水を霧状に散布(噴射)するように構成された散水ノズルが配置されている。 The humidifying flow path 15 is a flow path configured to disperse the recovered water pressure-fed from the inside of the liquid recovery device 10 through the flow rate adjustment valve 13 to the fuel cell 1 by the operation of the distribution pump 12. It is. A water spray nozzle configured to spray (spray) water in the form of a mist is disposed at the tip end portion of the humidification flow path 15.
 具体的には、当該加湿用流路15における散水ノズルは、空気通路2におけるエアポンプ6の下流側に回収水を散布して、空気通路2の空気と共に燃料電池1に供給するように配置されている。 Specifically, the sprinkler nozzle in the humidification flow path 15 is disposed so as to disperse the recovered water on the downstream side of the air pump 6 in the air passage 2 and to supply the fuel cell 1 with the air in the air passage 2 There is.
 そして、第1実施形態に係る燃料電池システム100は、図示しない制御装置を有している。当該制御装置は、燃料電池システム100を構成する各制御対象機器の作動を制御する制御部である。当該制御装置は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。 The fuel cell system 100 according to the first embodiment has a control device (not shown). The control device is a control unit that controls the operation of each control target device that constitutes the fuel cell system 100. The control device is composed of a known microcomputer including a CPU, a ROM, a RAM and the like, and peripheral circuits thereof.
 制御装置の入力側には、燃料電池1及び水温センサが接続されている。従って、制御装置は、燃料電池1の出力や水温センサによる冷却水温度を取得することができる。 The fuel cell 1 and a water temperature sensor are connected to the input side of the control device. Therefore, the control device can acquire the output of the fuel cell 1 and the coolant temperature by the water temperature sensor.
 又、制御装置の出力側には、水素ポンプ9、散布用ポンプ12、流量調整弁13等の各制御対象機器が接続されている。従って、当該制御装置のROMに記憶されている制御プログラムに基づいて、燃料電池システム100の作動を制御することができる。 Further, control target devices such as the hydrogen pump 9, the distribution pump 12, and the flow rate adjustment valve 13 are connected to the output side of the control device. Therefore, the operation of the fuel cell system 100 can be controlled based on the control program stored in the ROM of the control device.
 続いて、第1実施形態に係る液体回収装置10の具体的構成について、図1、図2、図3を参照しつつ詳細に説明する。尚、図3に示す断面図は、当該液体回収装置10における外管20の中心軸Cを含む縦方向の断面で切断した状態を示している。 Subsequently, a specific configuration of the liquid recovery apparatus 10 according to the first embodiment will be described in detail with reference to FIGS. 1, 2 and 3. The cross-sectional view shown in FIG. 3 shows a state of being cut at a longitudinal cross section including the central axis C of the outer pipe 20 in the liquid recovery apparatus 10.
 又、以下の説明にて、図2等に示す上下方向は、燃料電池システム100にて液体回収装置10を取り付けた状態の上下方向を示している。そして、以下の説明における流れ方向とは、液体回収装置10に流入する際の気液二相流体の流れ方向を意味しており、後述する導入部21の中心軸Cに準じているものとする。 Further, in the following description, the vertical direction shown in FIG. 2 and the like indicates the vertical direction in the state where the liquid recovery apparatus 10 is attached in the fuel cell system 100. And, the flow direction in the following description means the flow direction of the gas-liquid two-phase fluid when flowing into the liquid recovery apparatus 10, and conforms to the central axis C of the introducing unit 21 described later. .
 上述したように、当該液体回収装置10は、空気通路2における燃料電池1の下流側において、当該燃料電池1から排出された水分を含む空気(即ち、気液二相流体)から水蒸気(即ち、気相流体Fg)と水(即ち、液相流体Fl)に分離して、液体としての水を回収すると共に、水蒸気を排気する。 As described above, on the downstream side of the fuel cell 1 in the air passage 2, the liquid recovery apparatus 10 generates water vapor (i.e., water-vapor two-phase fluid) containing water discharged from the fuel cell 1. It separates into gas phase fluid Fg) and water (ie, liquid phase fluid Fl), and recovers water as a liquid and exhausts water vapor.
 図2、図3に示すように、液体回収装置10は、当該液体回収装置10の外殻を構成する外管20と、外管20の内部に配置される内管30と、気液二相流体から分離された気相流体Fg(即ち、水蒸気)が排出される排気管31と、気液二相流体から分離された液相流体Fl(即ち、水)を主に排出する排液管45とを有して構成されている。 As shown in FIGS. 2 and 3, the liquid recovery apparatus 10 includes an outer pipe 20 constituting an outer shell of the liquid recovery apparatus 10, an inner pipe 30 disposed inside the outer pipe 20, and two-phase gas-liquid An exhaust pipe 31 from which a gas phase fluid Fg (that is, water vapor) separated from the fluid is discharged, and a drainage pipe 45 from which a liquid phase fluid Fl (that is, water) separated from the gas-liquid two-phase fluid is mainly drained. And are configured.
 外管20は、液体回収装置10の外殻を構成しており、導入部21と、拡管部23と、大径部24とを有している。当該外管20は、本開示における外管として機能する。そして、導入部21は、燃料電池1から流出した気液二相流体を外管20の内部に導入する部分であり、外管20における流れ方向上流側を構成している。導入部21は、本開示における導入部として機能する。 The outer tube 20 constitutes an outer shell of the liquid recovery device 10, and has an introducing portion 21, an expanded tube portion 23, and a large diameter portion 24. The outer tube 20 functions as an outer tube in the present disclosure. The introduction portion 21 is a portion for introducing the gas-liquid two-phase fluid flowing out of the fuel cell 1 into the inside of the outer pipe 20, and constitutes the upstream side in the flow direction of the outer pipe 20. The introducing unit 21 functions as an introducing unit in the present disclosure.
 図2、図3に示すように、円管状の導入部21の内部には、断面円形状の流路が形成されている。以下の説明においては、円管状の導入部21における流路の中心軸を中心軸Cとし、当該中心軸Cを基準として用いる。導入部21における流路断面は、中心軸Cを中心とし予め定められた導入部内径Raを半径とする円形を示す。 As shown to FIG. 2, FIG. 3, the flow path of the cross-sectional circular shape is formed in the inside of the circular introduction part 21. As shown in FIG. In the following description, the central axis of the flow passage in the circular tubular introduction portion 21 is taken as a central axis C, and the central axis C is used as a reference. The flow passage cross section in the introduction part 21 has a circular shape centering on the central axis C and having a radius that is a predetermined introduction part inner diameter Ra.
 当該導入部21の一端部には、導入口22が配置されている。導入口22は、燃料電池1から流れ方向下流側に伸びる空気通路2に接続されている。従って、燃料電池1から排出された水分及び水蒸気を含む気液二相流体は、空気通路2、導入口22を介して、外管20の内部に導入される。 An inlet 22 is disposed at one end of the introduction unit 21. The inlet 22 is connected to an air passage 2 extending downstream in the flow direction from the fuel cell 1. Therefore, a gas-liquid two-phase fluid containing water and water vapor discharged from the fuel cell 1 is introduced into the outer tube 20 through the air passage 2 and the inlet 22.
 そして、導入部21における気液二相流体の流れ方向下流側には、拡管部23が配置されている。第1実施形態に係る拡管部23は、導入部21の中心軸Cと同軸上に配置された管状に形成されており、流れ方向下流側に向かうほど流路断面積が連続的に拡大するように構成されている。当該拡管部23は、本開示における拡管部に相当する。 And the expanded pipe part 23 is arrange | positioned in the flow direction downstream of the gas-liquid two-phase fluid in the introducing | transducing part 21. As shown in FIG. The expanded tube portion 23 according to the first embodiment is formed in a tubular shape coaxially disposed with the central axis C of the introducing portion 21, and the flow passage cross-sectional area is continuously expanded toward the downstream side in the flow direction Is configured. The expanded portion 23 corresponds to the expanded portion in the present disclosure.
 具体的に説明すると、拡管部23の流れ方向上流側における流路断面は、中心軸Cを中心とし導入部内径Raを半径とする円形である。そして、図3に示すように、拡管部23における流路断面積は、流れ方向下流側に向かうほど連続的に大きくなっていく。拡管部23の流れ方向下流側における流路断面は、中心軸Cを中心とし拡管部最大内径Rbを半径とする円形となる。拡管部最大内径Rbは、導入部内径Raよりも大きな値を示す。 Specifically explaining, the flow passage cross section on the upstream side in the flow direction of the expanded tube portion 23 is circular with the central axis C as a center and the introducing portion inner diameter Ra as a radius. And as shown in FIG. 3, the flow-path cross-sectional area in the expanded pipe part 23 becomes continuously large, as it goes to the flow direction downstream. The flow passage cross section on the downstream side in the flow direction of the expanded tube portion 23 is circular with the central axis C as a center and the expanded tube portion maximum inner diameter Rb as a radius. The expanded-tube maximum internal diameter Rb shows a larger value than the introduction inner diameter Ra.
 拡管部23における流れ方向下流側には、大径部24が配置されている。第1実施形態に係る大径部24は、中心軸Cから離れる方向へ段差を備えた段差部24aを有して構成されており、中心軸Cと同軸上に配置された円管状に形成されている。図3に示すように、大径部24における内部断面は、中心軸Cを中心とし大径部内径Rcを半径とする円形を為している。 The large diameter portion 24 is disposed on the downstream side in the flow direction of the expanded tube portion 23. The large diameter portion 24 according to the first embodiment is configured to have a step portion 24 a having a step in a direction away from the central axis C, and is formed in a circular tubular shape coaxially arranged with the central axis C. ing. As shown in FIG. 3, the internal cross section of the large diameter portion 24 has a circular shape with the central axis C as a center and the large diameter inner diameter Rc as a radius.
 大径部内径Rcは、導入部内径Ra及び拡管部最大内径Rbよりも大きな値を示しており、拡管部最大内径Rbに対して予め定められた値の差を有するように定められている。段差部24aにおける段差の大きさは、大径部内径Rcと拡管部最大内径Rbとの差で表現することができる。 The large diameter portion inner diameter Rc indicates a value larger than the introduction portion inner diameter Ra and the expanded portion maximum inner diameter Rb, and is determined to have a difference of a predetermined value with the expanded portion maximum inner diameter Rb. The size of the step in the step portion 24a can be expressed by the difference between the inner diameter Rc of the large diameter portion and the maximum inner diameter Rb of the expanded portion.
 当該段差部24aを有することで、大径部24の内部断面積は、拡管部23における流れ方向下流側の流路断面積よりも大きい。即ち、外管20における内部断面積は、大径部24に到達すると急激に大きく拡大することになる。 By having the step portion 24 a, the internal cross-sectional area of the large diameter portion 24 is larger than the flow passage cross-sectional area on the downstream side in the flow direction of the expanded tube portion 23. That is, when the large diameter portion 24 is reached, the internal cross-sectional area of the outer tube 20 rapidly and largely expands.
 尚、外管20の内面には、親水性を付与する処理が施されている。親水性を付与することによって、外管20の内面に沿って移動する液相流体Flの剥離を抑制することができるからである。この親水性を付与する処理としては、親水性の官能基(例えば、ヒドロキシル基、カルボキシル基等)を外管20の内面に直接付与する化学的処理を挙げることができる。 The inner surface of the outer tube 20 is subjected to a treatment for imparting hydrophilicity. By providing the hydrophilicity, it is possible to suppress the separation of the liquid phase fluid Fl moving along the inner surface of the outer tube 20. Examples of the treatment for imparting hydrophilicity include chemical treatments in which a hydrophilic functional group (for example, a hydroxyl group, a carboxyl group or the like) is directly applied to the inner surface of the outer tube 20.
 又、親水性を付与する対象としては、外管20の内、導入部21及び拡管部23の内面に親水性が付与されていれば良く、大径部24の内面については当該処理を省略することも可能である。 Moreover, as a target to which hydrophilicity is to be imparted, it is sufficient if hydrophilicity is imparted to the inner surface of the introduction portion 21 and the expanded tube portion 23 in the outer tube 20, and the process is omitted for the inner surface of the large diameter portion 24. It is also possible.
 そして、内管30は、外管20における流れ方向下流側部分において、当該外管20の内部に配置されており、円管状に形成されている。当該内管30は、外管20の導入部における中心軸Cと同軸上に配置されている。内管30は、本開示における内管として機能する。 The inner pipe 30 is disposed inside the outer pipe 20 at a downstream portion in the flow direction of the outer pipe 20, and is formed in a circular tubular shape. The inner pipe 30 is disposed coaxially with the central axis C at the introduction portion of the outer pipe 20. The inner pipe 30 functions as an inner pipe in the present disclosure.
 図5に示すように、内管30の内部には、気液二相流体から分離された気相流体Fgが主に流入する。内管30における流路断面は、中心軸Cを中心とし予め定められた内管内径Rdを半径とする円形を示す。ここで、第1実施形態に係る内管内径Rdは、導入部内径Raと同じ値を示す。 As shown in FIG. 5, the gas phase fluid Fg separated from the gas-liquid two-phase fluid mainly flows into the inner pipe 30. The flow passage cross section in the inner pipe 30 has a circular shape centered on the central axis C and having a radius that is a predetermined inner pipe inner diameter Rd. Here, the inner pipe inner diameter Rd according to the first embodiment has the same value as the introduction portion inner diameter Ra.
 即ち、第1実施形態において、内管30における流路は、外管20の導入部21における流路と同形であり、当該導入部21の流路を流れ方向下流側に延長した延長線上に配置される。 That is, in the first embodiment, the flow passage in the inner pipe 30 has the same shape as the flow passage in the introduction portion 21 of the outer pipe 20, and the flow passage of the introduction portion 21 is disposed on the extension extending in the flow direction downstream Be done.
 図3に示すように、内管30の流れ方向上流側の端部は、外管20の拡管部23における下流側部分の内部に配置されており、内管30の流れ方向下流側の端部は、大径部24における下流側を構成する下流側壁部25まで伸びている。 As shown in FIG. 3, the upstream end of the inner pipe 30 in the flow direction is disposed inside the downstream portion of the expanded pipe portion 23 of the outer pipe 20, and the downstream end of the inner pipe 30 in the flow direction Extends to the downstream side wall 25 that constitutes the downstream side of the large diameter portion 24.
 そして、内管30は、外管20(即ち、拡管部23及び大径部24)の内側面に対して予め定められた間隔を設けるように配置されている。つまり、外管20の流れ方向下流側において、外管20の内部に対して間隔を隔てて内管30が配置されている為、当該液体回収装置10における二重管部35を構成する。 The inner pipe 30 is arranged to provide a predetermined distance from the inner surface of the outer pipe 20 (i.e., the expanded portion 23 and the large diameter portion 24). That is, on the downstream side in the flow direction of the outer pipe 20, the inner pipe 30 is disposed at a distance from the inside of the outer pipe 20, so the double pipe portion 35 in the liquid recovery apparatus 10 is configured.
 内管30における流れ方向下流側には、排気管31が接続されており、外管20の大径部24から延出するように形成された円管によって構成されている。従って、排気管31には、内管30を通過した気相流体Fgが流入する。 An exhaust pipe 31 is connected to the downstream side in the flow direction of the inner pipe 30, and is constituted by a circular pipe formed to extend from the large diameter portion 24 of the outer pipe 20. Accordingly, the gas phase fluid Fg having passed through the inner pipe 30 flows into the exhaust pipe 31.
 そして、排気管31における流れ方向下流側には、気相排出口32が配置されている。当該気相排出口32は、排気管31の内部と燃料電池システム100の外部とを連通している。従って、排気管31は、気相排出口32を介して、気相流体Fgを燃料電池システム100の外部に排出する。 A gas phase outlet 32 is disposed downstream of the exhaust pipe 31 in the flow direction. The gas phase exhaust port 32 communicates the inside of the exhaust pipe 31 with the outside of the fuel cell system 100. Therefore, the exhaust pipe 31 discharges the gas phase fluid Fg to the outside of the fuel cell system 100 via the gas phase outlet 32.
 図3に示すように、当該液体回収装置10は、外管20と内管30により構成される二重管部35を有している。第1実施形態に係る二重管部35は、外管20の拡管部23及び大径部24と、内管30とが二重に配置されて構成された部分であり、内管30と外管20の間に予め定められた間隔を有している。二重管部35は、本開示における二重管部を構成している。 As shown in FIG. 3, the liquid recovery apparatus 10 has a double pipe portion 35 constituted by an outer pipe 20 and an inner pipe 30. The double pipe portion 35 according to the first embodiment is a portion formed by arranging the expanded portion 23 and the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner, and There is a predetermined spacing between the tubes 20. The double pipe portion 35 constitutes a double pipe portion in the present disclosure.
 当該二重管部35は、導入部21から流入した気液二相流体の流れを、内管30の内部に流入する流れと、二重管部35における外管20と内管30の隙間に流入する流れに分岐させる機能を果たす。 The double pipe portion 35 is configured such that the flow of the gas-liquid two-phase fluid flowing in from the introduction portion 21 flows into the inner pipe 30 and the gap between the outer pipe 20 and the inner pipe 30 in the double pipe portion 35. It functions to branch into the incoming flow.
 流れ方向上流側における二重管部35は、外管20の拡管部23と内管30によって構成されている。そして、流れ方向下流側における二重管部35は、外管20の大径部24と内管30によって構成されており、その下流側における大径部24と内管30との隙間は、大径部24における下流側壁部25によって閉塞されている。 The double pipe portion 35 on the upstream side in the flow direction is constituted by the expanded portion 23 of the outer pipe 20 and the inner pipe 30. The double pipe portion 35 on the downstream side in the flow direction is constituted by the large diameter portion 24 of the outer pipe 20 and the inner pipe 30, and the gap between the large diameter portion 24 on the downstream side thereof and the inner pipe 30 is large. It is closed by the downstream side wall 25 at the diameter 24.
 そして、当該液体回収装置10は、当該二重管部35の一部に液相回収部40を有している。図3に示すように、液相回収部40は、外管20の大径部24と内管30を二重に配置して構成されており、二重管部35における流れ方向下流側を構成している。 The liquid recovery apparatus 10 has a liquid phase recovery unit 40 in a part of the double pipe 35. As shown in FIG. 3, the liquid phase recovery unit 40 is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner, and constitutes the downstream side of the double pipe portion 35 in the flow direction doing.
 即ち、第1実施形態に係る液相回収部40は、内管30の外周を囲むように配置されており、内管30の外周の下部を含んでいる。従って、当該液相回収部40は、拡管部23と内管30の間を通過した液相流体Flを、流入口41を介して回収し、その内部に貯留することができる。当該液相回収部40は、本開示における液相回収部として機能する。 That is, the liquid phase recovery unit 40 according to the first embodiment is disposed so as to surround the outer periphery of the inner pipe 30, and includes the lower portion of the outer periphery of the inner pipe 30. Therefore, the liquid phase recovery unit 40 can recover the liquid phase fluid Fl that has passed between the expanded portion 23 and the inner pipe 30 via the inflow port 41, and store the liquid phase fluid Fl inside. The liquid phase recovery unit 40 functions as a liquid phase recovery unit in the present disclosure.
 尚、流入口41は、液相回収部40に対して液相流体Fl等が流入する部分であり、第1実施形態では、外管20における拡管部23及び大径部24の接続部分と、内管30との間に形成される隙間によって構成される。 The inflow port 41 is a portion where the liquid phase fluid Fl or the like flows into the liquid phase recovery portion 40, and in the first embodiment, a connection portion of the expanded portion 23 and the large diameter portion 24 in the outer pipe 20; It is comprised by the clearance gap formed between the inner tubes 30. As shown in FIG.
 ここで、流れ方向上流側における二重管部35の流路断面積は、外管20の拡管部23における内部断面積から内管30の外形断面積を減算して求められる。流れ方向下流側にあたる液相回収部40の流路断面積は、外管20の大径部24における内部断面積から内管30の外形断面積を減算して求められる。 Here, the flow passage cross-sectional area of the double pipe portion 35 on the upstream side in the flow direction is determined by subtracting the outer cross-sectional area of the inner pipe 30 from the inner cross-sectional area of the expanded pipe portion 23 of the outer pipe 20. The flow passage cross-sectional area of the liquid phase recovery unit 40 corresponding to the downstream side in the flow direction can be obtained by subtracting the outer cross-sectional area of the inner pipe 30 from the inner cross-sectional area of the large diameter portion 24 of the outer pipe 20.
 図3に示すように、大径部24の大径部内径Rcは、拡管部23の下流側に段差部24aを有している為、拡管部23に係る拡管部最大内径Rbよりも十分に大きい。又、内管30の外形は一定である。 As shown in FIG. 3, since the large diameter inner diameter Rc of the large diameter portion 24 has the step 24 a on the downstream side of the expanded pipe portion 23, it is more sufficient than the expanded inner diameter Rb of the expanded pipe portion 23. large. Also, the outer shape of the inner pipe 30 is constant.
 従って、液相回収部40に係る流路断面積は、流れ方向上流側における二重管部35の流路断面積よりも大きな値を示す。これにより、液相回収部40の内部容積を増大させることができる為、気液二相流体から分離された液相流体Flを回収して、より多く貯留することができる。 Therefore, the flow passage cross-sectional area of the liquid phase recovery unit 40 has a larger value than the flow passage cross-sectional area of the double pipe portion 35 on the upstream side in the flow direction. As a result, the internal volume of the liquid phase recovery unit 40 can be increased, so that the liquid phase fluid Fl separated from the gas-liquid two-phase fluid can be recovered and stored more.
 そして、液相回収部40の下部には、排液管45が接続されており、その端部に液相排出口46を有している。排液管45は、液相排出口46を介して、燃料電池システム100の回収水用流路11に接続されている為、液相回収部40で回収した液相流体Fl(即ち、生成水)を回収水用流路11に排出することができる。当該排液管45は、本開示における排液管に相当する。 A drain pipe 45 is connected to the lower portion of the liquid phase recovery unit 40, and has a liquid phase outlet 46 at its end. Since the drain pipe 45 is connected to the recovered water flow path 11 of the fuel cell system 100 via the liquid phase outlet 46, the liquid phase fluid Fl recovered by the liquid phase recovery unit 40 (ie, the generated water) ) Can be discharged into the recovered water channel 11. The drain 45 corresponds to the drain in the present disclosure.
 上述したように、燃料電池システム100では、液相回収部40で回収された液相流体Flは、燃料電池システム100の発電能力を向上させる為に、種々の用途に用いられる。例えば、ラジエータ4の冷却や燃料電池1における電解質膜の加湿等に用いられる。 As described above, in the fuel cell system 100, the liquid phase fluid Fl recovered by the liquid phase recovery unit 40 is used in various applications in order to improve the power generation capacity of the fuel cell system 100. For example, it is used for cooling of the radiator 4 and humidification of the electrolyte membrane in the fuel cell 1.
 尚、排液管45は、液相回収部40の下部に接続されていればよく、その取出方法は種々の態様を採用することができる。例えば、図2、図3等に示すように、液相回収部40の下面から下方に伸びるように、排液管45を接続する例に限定されるものではなく、液相回収部40の側面における下部から水平方向に伸びるように、排液管45を接続してもよい。 The drainage pipe 45 may be connected to the lower portion of the liquid phase recovery unit 40, and various modes can be adopted for the method of taking it out. For example, as shown in FIG. 2, FIG. 3 etc., it is not limited to the example which connects the drainage pipe 45 so that it may extend below from the undersurface of liquid phase recovery part 40, The side of liquid phase recovery part 40 The drainage pipe 45 may be connected so as to extend horizontally from the lower portion thereof.
 ここで、第1実施形態に係る液体回収装置10に対する理解を容易にする為に、従来から知られている気液分離器Sについて、図4を参照しつつ説明する。 Here, in order to facilitate understanding of the liquid recovery apparatus 10 according to the first embodiment, a conventionally known gas-liquid separator S will be described with reference to FIG.
 先ず、図4に示す従来の気液分離器Sの構成について説明する。この気液分離器Sは、直径の異なる外管Po及び内管Piを用いて構成されている。外管Poは、気液分離器Sのケーシングを構成する大径の円筒状の直管であり、その端部に気液二相流体が導入される導入口Iを有している。 First, the configuration of the conventional gas-liquid separator S shown in FIG. 4 will be described. The gas-liquid separator S is configured using an outer pipe Po and an inner pipe Pi having different diameters. The outer pipe Po is a large-diameter cylindrical straight pipe constituting the casing of the gas-liquid separator S, and has an inlet I at the end of which a gas-liquid two-phase fluid is introduced.
 内管Piは、当該外管Poの内径よりも小径の円筒状の直管であり、溶接によって外管Poの内部において、当該外管Poと同軸上に取り付けられている。導入口I側における内管Piの端部Eは、外管Poの導入口Iまで延長することはなく、導入口Iよりも下流側に位置している。そして、内管Piの逆側には、気体排出口Ogが配置されている。 The inner pipe Pi is a cylindrical straight pipe having a diameter smaller than the inner diameter of the outer pipe Po, and is coaxially attached to the outer pipe Po inside the outer pipe Po by welding. The end E of the inner pipe Pi on the inlet I side does not extend to the inlet I of the outer pipe Po, and is located downstream of the inlet I. A gas outlet Og is disposed on the opposite side of the inner pipe Pi.
 図4に示すように、大径の外管Poと小径の内管Piの間には、隙間部Isが内管Piの外周を囲むように形成されている。当該隙間部Isの下流側は、下流側壁部Wdにより閉塞されている。隙間部Isを構成する外管Poの下部には、液体排出口Olが配置されており、液体排出管Dを介して、図示しないタンク等に接続されている。 As shown in FIG. 4, a clearance Is is formed between the large-diameter outer pipe Po and the small-diameter inner pipe Pi so as to surround the outer circumference of the inner pipe Pi. The downstream side of the gap portion Is is closed by the downstream side wall portion Wd. A liquid discharge port Ol is disposed in the lower part of the outer pipe Po that constitutes the gap portion Is, and is connected to a tank or the like (not shown) via a liquid discharge pipe D.
 次に、当該気液分離器Sの内部における気液二相流体の流れについて説明する。導入口Iから気液分離器S内に至る過程で、気液二相流体に含まれていた液相流体Flは、外管Poの内周壁面に沿って流れていく。この時、気液二相流体における気相流体Fgは、内管Piの端部Eにて、内管Piの内部とその周囲に配置された隙間部Isに分流される。 Next, the flow of the gas-liquid two-phase fluid inside the gas-liquid separator S will be described. In the process from the inlet I to the inside of the gas-liquid separator S, the liquid phase fluid Fl contained in the gas-liquid two-phase fluid flows along the inner peripheral wall surface of the outer pipe Po. At this time, the gas phase fluid Fg in the gas-liquid two-phase fluid is diverted at the end E of the inner pipe Pi into the gap Is disposed inside the inner pipe Pi and around the inner pipe Pi.
 内管Piの内部に流入した気相流体Fgは、そのまま内管Piの内部を流れ、気体排出口Ogから気液分離器Sの外部へ排出される。一方、隙間部Isに流入した気相流体Fgについては、理想的には、外管Poの内周壁面に付着している液相流体Flを押し流しつつ、隙間部Isを通過して、液体排出口Ol及び液体排出管Dに流入する。 The gas phase fluid Fg which has flowed into the inside of the inner pipe Pi flows as it is through the inside of the inner pipe Pi, and is discharged to the outside of the gas-liquid separator S from the gas outlet Og. On the other hand, with regard to the gas phase fluid Fg having flowed into the clearance Is, ideally, the liquid phase fluid Fl adhering to the inner peripheral wall surface of the outer pipe Po is flushed while passing through the clearance Is while It flows into the outlet Ol and the liquid discharge pipe D.
 ここで、図4に示すような気液分離器Sにおいては、隙間部Isにおける流路断面積は内管Piの内部の流路断面積に比べて非常に小さくなっており、液体排出口Ol及び液体排出管Dの流路断面積も小さく形成されている。 Here, in the gas-liquid separator S as shown in FIG. 4, the flow passage cross-sectional area in the gap portion Is is very small compared to the flow passage cross-sectional area inside the inner pipe Pi, and the liquid discharge port Ol The flow passage cross-sectional area of the liquid discharge pipe D is also formed small.
 この為、当該気液分離器Sでは、導入口Iから導入される気液二相流体の流量が大きい場合、隙間部Isにおける圧損が大きくなってしまい、内管Piの端部Eから隙間部Isへ向かう気相流体Fgの流れが滞ってしまう。 For this reason, in the gas-liquid separator S, when the flow rate of the gas-liquid two-phase fluid introduced from the inlet I is large, the pressure loss in the clearance Is increases, and the clearance E from the end E of the inner pipe Pi The flow of the gas-phase fluid Fg toward Is is stagnant.
 この時、内管Piの端部Eの周辺では、端部Eで分流された気相流体Fgは、内管Piの外周面に沿って流れていく。しかしながら、隙間部Isの内部における気相流体Fg及び液相流体Flの流れが滞ってしまっている為、端部E周辺の気相流体Fgは、それ以上隙間部Isの内部に流入することができない。 At this time, around the end E of the inner pipe Pi, the gas phase fluid Fg divided at the end E flows along the outer peripheral surface of the inner pipe Pi. However, since the flow of the gas phase fluid Fg and the liquid phase fluid Fl within the gap portion Is stagnant, the gas phase fluid Fg around the end E may flow into the gap portion Is further. Can not.
 その結果、端部Eの周辺における気相流体Fgの流れは、その流れの向きを外管Poの内周壁面側に変えた後、外管Poの内周壁面を導入口I側へ向かって流れるようになる。即ち、図4に示すように、当該気液分離器Sでは、内管Piにおける端部Eの周辺で渦流が発生し、当該渦流は、外管Poの内周壁面に沿って流れる液相流体Flを導入口I側へ押し戻す方向に作用する。 As a result, the flow of the gas phase fluid Fg around the end E changes the flow direction to the inner peripheral wall surface side of the outer pipe Po, and then the inner peripheral wall surface of the outer pipe Po is directed to the inlet I side. It will flow. That is, as shown in FIG. 4, in the gas-liquid separator S, a vortex flows around the end E of the inner pipe Pi, and the vortex flows along the inner peripheral wall surface of the outer pipe Po. Act to push Fl back to the inlet I side.
 これにより、気液分離器Sでは、外管Poの内周壁面に沿った液相流体Flの流れは、内管Piにおける端部Eの周辺に発生した渦流によって妨げられる為、液相流体Flの回収率が低下してしまう。 Thereby, in the gas-liquid separator S, the flow of the liquid phase fluid Fl along the inner peripheral wall surface of the outer pipe Po is interrupted by the vortex generated around the end E in the inner pipe Pi, so the liquid phase fluid Fl is Recovery rate of
 又、渦流によって内管Piにおける端部Eの周辺に滞留した液相流体Flには、端部Eから内管Piの内部へ向かう気相流体Fgの流れが作用する場合がある。即ち、内管Piの内部へ向かう気相流体Fgの流れによって、滞留している液相流体Flの一部を飛散させてしまう場合がある。 In addition, the flow of the gas phase fluid Fg from the end E toward the inside of the inner pipe Pi may act on the liquid phase fluid Fl accumulated around the end E of the inner pipe Pi by the vortex flow. That is, the flow of the gas phase fluid Fg directed to the inside of the inner pipe Pi may cause part of the staying liquid phase fluid Fl to be scattered.
 この場合、気相流体Fgによって飛散した液相流体Flの一部は、内管Piの内部を介して、気体排出口Ogから排出されてしまう。即ち、この点においても、当該気液分離器Sは、液相流体Flの回収率を低下させてしまう。 In this case, a part of the liquid phase fluid Fl scattered by the gas phase fluid Fg is discharged from the gas outlet Og through the inside of the inner pipe Pi. That is, also in this point, the gas-liquid separator S reduces the recovery rate of the liquid phase fluid Fl.
 続いて、第1実施形態に係る液体回収装置10における気液二相流体の流れについて、図5を参照しつつ説明する。上述のように構成された液体回収装置10では、燃料電池1から排出された気液二相流体が、空気通路2を介して、外管20の導入部21からその内部に流入する。 Subsequently, the flow of the gas-liquid two-phase fluid in the liquid recovery apparatus 10 according to the first embodiment will be described with reference to FIG. In the liquid recovery apparatus 10 configured as described above, the gas-liquid two-phase fluid discharged from the fuel cell 1 flows into the inside from the introduction part 21 of the outer pipe 20 via the air passage 2.
 導入部21から二重管部35へ向かって流れる過程で、気液二相流体に含まれる液相流体Flは、外管20の内面に沿って流れていく。一方、外管20の内面から離れた流路中心部においては、気相流体Fgが流れていく。外管20の流路中心部では、気相流体Fgが大部分を占めており、目視では確認することができないミスト状の液相流体Flを少量含んでいる。 The liquid phase fluid Fl contained in the gas-liquid two-phase fluid flows along the inner surface of the outer pipe 20 in the process of flowing from the introduction portion 21 to the double pipe portion 35. On the other hand, the gas phase fluid Fg flows in the central portion of the flow passage remote from the inner surface of the outer tube 20. At the center of the flow passage of the outer tube 20, the gas phase fluid Fg occupies most, and contains a small amount of mist-like liquid phase fluid Fl which can not be confirmed visually.
 そして、外管20の内面においては、基本的に全体にわたって液相流体Flが流れていく。このとき、液相流体Flに作用する重力に起因して、外管20の内面における下側部分における液相流体Flは、外管20の内面における上側部分や側面部分よりも多く流れていく。 Then, on the inner surface of the outer tube 20, the liquid phase fluid Fl basically flows throughout. At this time, due to the gravity acting on the liquid phase fluid Fl, the liquid phase fluid Fl in the lower part of the inner surface of the outer pipe 20 flows more than the upper part or the side part in the inner surface of the outer pipe 20.
 図5に示すような状態で流れる気液二相流体が二重管部35に到達すると、気液二相流体の流れは、二重管部35における内管30の端部において、内管30の内部に流入する流れと、二重管部35における外管20と内管30の隙間に流入する流れに分岐される。 When the gas-liquid two-phase fluid flowing in the state as shown in FIG. 5 reaches the double pipe portion 35, the flow of the gas-liquid two-phase fluid is carried out at the end of the inner pipe 30 in the double pipe portion 35. And the flow flowing into the gap between the outer pipe 20 and the inner pipe 30 in the double pipe portion 35.
 第1実施形態に係る液体回収装置10において、内管30は、導入部21の流路断面積と同じ流路断面積となるように形成されており、導入部21の中心軸Cと同軸上に配置されている。 In the liquid recovery apparatus 10 according to the first embodiment, the inner pipe 30 is formed to have the same flow channel cross-sectional area as the flow channel cross-sectional area of the introduction portion 21 and coaxially with the central axis C of the introduction portion 21 Is located in
 従って、当該液体回収装置10によれば、導入部21における流路の中心部を流れる気相流体Fgの流れを、円滑に内管30の内部に流入させることができ、導入部21から排気管31までの圧力損失を小さく抑えることができる。 Therefore, according to the liquid recovery apparatus 10, the flow of the gas phase fluid Fg flowing in the central portion of the flow path in the introduction unit 21 can smoothly flow into the inside of the inner pipe 30, and from the introduction unit 21 to the exhaust pipe The pressure loss up to 31 can be kept small.
 そして、外管20の内面に付着している液相流体Flは、外管20の内面を流れる気液二相流体の風力によって二重管部35へ向かって移動していく。二重管部35における拡管部23と内管30の隙間を通過すると、気液二相流体は、液相回収部40の内部に流入して、内管30の外周面に沿って流れる。 Then, the liquid phase fluid Fl adhering to the inner surface of the outer pipe 20 moves toward the double pipe portion 35 by the wind force of the gas-liquid two-phase fluid flowing on the inner surface of the outer pipe 20. When passing through the gap between the expanded portion 23 and the inner pipe 30 in the double pipe portion 35, the gas-liquid two-phase fluid flows into the liquid phase recovery portion 40 and flows along the outer peripheral surface of the inner pipe 30.
 上述したように、液相回収部40は、段差部24aを備える大径部24と内管30とによって構成されており、その間の流路断面積を二重管部35の上流側に比べて急激に大きくしている。この為、導入部21から導入される気液二相流体の流量が増大した場合であっても、液相回収部40の内部に十分なスペースを確保することができるので、二重管部35から液相回収部40への気相流体Fgの流れが滞ることを抑制することができる。 As described above, the liquid phase recovery unit 40 is constituted by the large diameter portion 24 having the step portion 24 a and the inner pipe 30, and the flow passage cross sectional area between the two is compared with the upstream side of the double pipe portion 35. It is getting bigger rapidly. Therefore, even when the flow rate of the gas-liquid two-phase fluid introduced from the introducing part 21 is increased, a sufficient space can be secured inside the liquid phase recovery part 40, so the double pipe part 35 It can suppress that the flow of the gaseous fluid Fg from the liquid phase recovery part 40 stops.
 又、液相回収部40の内部に流入すると、気相流体Fgは、下流側壁部25によって流れ方向を変え、液相回収部40の内部にて渦流を形成する。当該液体回収装置10においては、拡管部23と内管30との隙間は、流れ方向下流側に十分に短く形成されており、段差部24aの内径側に流入口41が配置されている為、確実に液相回収部40の内部で渦流を発生させることができる。 Further, when flowing into the inside of the liquid phase recovery unit 40, the gas phase fluid Fg changes the flow direction by the downstream side wall 25 and forms a vortex in the inside of the liquid phase recovery unit 40. In the liquid recovery apparatus 10, the gap between the expanded portion 23 and the inner pipe 30 is formed sufficiently short on the downstream side in the flow direction, and the inflow port 41 is disposed on the inner diameter side of the step portion 24a. An eddy current can be reliably generated inside the liquid phase recovery unit 40.
 図4、図5に示すように、液相回収部40の内部で生じる渦流の中心は、流入口41よりも中心軸Cから離れた位置となる為、流入口41の周辺では、流入口41を通過した液相流体Flを液相回収部へ引き込む方向の流れを形成する。これにより、気相流体Fg及び液相流体Flは流入口41から液相回収部40の内部へ円滑に流入する。換言すると、液体回収装置10は、拡管部23と内管30との隙間(即ち、二重管部35における流入口41よりも上流側部分)における渦流の発生を抑制することができる。 As shown in FIGS. 4 and 5, the center of the vortex generated inside the liquid phase recovery unit 40 is at a position farther from the central axis C than the inlet 41, so the inlet 41 is around the inlet 41. Form a flow in the direction of drawing the liquid phase fluid Fl that has passed through the liquid phase recovery unit into the liquid phase recovery unit. Thereby, the gas phase fluid Fg and the liquid phase fluid Fl flow smoothly into the liquid phase recovery unit 40 from the inflow port 41. In other words, the liquid recovery device 10 can suppress the generation of the eddy current in the gap between the expanded pipe portion 23 and the inner pipe 30 (that is, the portion on the upstream side of the inflow port 41 in the double pipe portion 35).
 又、液相回収部40は、内管30の上流側端部よりも流れ方向下流側に位置しており、当該液相回収部40の内部で渦流が発生している為、気相流体Fgは、渦流によって妨げられることなく、拡管部23と内管30との隙間に流入して、液相回収部40の内部に到達する。 In addition, the liquid phase recovery unit 40 is located on the downstream side of the upstream end of the inner pipe 30 in the flow direction, and a vortex is generated inside the liquid phase recovery unit 40, so the gas phase fluid Fg Flows into the gap between the expanded portion 23 and the inner pipe 30 without being disturbed by the vortex flow, and reaches the inside of the liquid phase recovery portion 40.
 そして、気相流体Fgが拡管部23と内管30との隙間を円滑に通過することにより、外管20の内面に付着した液相流体Flは、気相流体Fgの風力によって、液相回収部40の内部へ円滑に流入する。 Then, the gas phase fluid Fg smoothly passes through the gap between the expanded pipe portion 23 and the inner pipe 30 so that the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 is recovered by the wind force of the gas phase fluid Fg. It smoothly flows into the inside of the part 40.
 この点、当該液体回収装置10によれば、外管20と内管30との隙間における渦流の発生を抑制することで、内管30の開口縁の周辺に液相流体Flが滞留することを抑制できる。これにより、当該液体回収装置10は、内管30に流入する気相流体Fgによって当該液相流体Flの一部が内管30に流入することを抑制でき、気液二相流体から分離した液相流体Flの回収率を向上させることができる。 In this point, according to the liquid recovery apparatus 10, the occurrence of the eddy current in the gap between the outer pipe 20 and the inner pipe 30 is suppressed, whereby the liquid phase fluid Fl is retained around the opening edge of the inner pipe 30. It can be suppressed. Thereby, the liquid recovery apparatus 10 can suppress the flow of a part of the liquid phase fluid Fl into the inner pipe 30 by the gas phase fluid Fg flowing into the inner pipe 30, and the liquid separated from the gas-liquid two-phase fluid The recovery rate of the phase fluid Fl can be improved.
 又、外管20を構成する拡管部23は、その流路断面積が流れ方向下流側に向かうほど連続的に拡大するように構成されている。この結果、図3に示すように、拡管部23の内面と内管30の開口縁との間の距離を大きくすることができるので、外管20の内面から内管30へ向かう気相流体Fgの流れを抑制できる。 Moreover, the expanded pipe part 23 which comprises the outer pipe | tube 20 is comprised so that the flow-path cross-sectional area may be continuously expanded, as it goes to the flow direction downstream. As a result, as shown in FIG. 3, the distance between the inner surface of the expanded portion 23 and the opening edge of the inner pipe 30 can be increased, so the gas phase fluid Fg directed from the inner surface of the outer pipe 20 to the inner pipe 30 Flow can be suppressed.
 これにより、当該液体回収装置10は、外管20の内面に付着した液相流体Flが剥離して内管30の内部に流入することを抑制することができ、液相流体Flの回収率の低下を抑制できる。 Thereby, the liquid recovery apparatus 10 can suppress separation and flow of the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 into the inside of the inner pipe 30, and the recovery rate of the liquid phase fluid Fl is It is possible to suppress the decline.
 更に、外管20の内面には親水性が付与されている為、当該液体回収装置10は、外管20の内面に付着した液相流体Flの剥離を抑制することができる。この結果、液体回収装置10は、外管20の内面に付着した液相流体Flが内管30の内部への流入を抑制すると共に、液相回収部40への流入を促進させることができ、液相流体Flの回収率を更に高めることができる。 Furthermore, since the inner surface of the outer tube 20 is provided with hydrophilicity, the liquid recovery apparatus 10 can suppress the separation of the liquid phase fluid Fl attached to the inner surface of the outer tube 20. As a result, the liquid recovery apparatus 10 can suppress the inflow of the liquid phase fluid Fl attached to the inner surface of the outer pipe 20 into the inside of the inner pipe 30, and can promote the inflow to the liquid phase recovery unit 40. The recovery rate of the liquid phase fluid Fl can be further enhanced.
 又、図2、図3等に示すように、液体回収装置10では、液相回収部40は、内管30の外周を囲むように配置されており、内管30の外周の下方部分を含んでいる。従って、当該液体回収装置10によれば、外管20の内面に付着した液相流体Flを、重力による分布の偏りの影響を受けることなく回収することができる。 Further, as shown in FIGS. 2 and 3 etc., in the liquid recovery apparatus 10, the liquid phase recovery unit 40 is disposed so as to surround the outer periphery of the inner pipe 30, and includes a lower portion of the outer periphery of the inner pipe 30. It is. Therefore, according to the liquid recovery apparatus 10, the liquid phase fluid Fl attached to the inner surface of the outer tube 20 can be recovered without being affected by the deviation of distribution due to gravity.
 以上説明したように、第1実施形態に係る液体回収装置10によれば、外管20の導入部21から導入された気液二相流体を、外管20と内管30により構成された二重管部35を通過させることで、液相流体Flを分離させて液相回収部40に回収すると共に、分離された気相流体Fgを排気管31から排出させることができる。そして、当該液体回収装置10は、液相回収部40の内部に回収した液相流体Flを、排液管45を介して外部へ排出することができる。 As described above, according to the liquid recovery apparatus 10 according to the first embodiment, the gas-liquid two-phase fluid introduced from the introduction part 21 of the outer pipe 20 is formed by the outer pipe 20 and the inner pipe 30. By passing the heavy pipe portion 35, the liquid phase fluid Fl can be separated and recovered in the liquid phase recovery unit 40, and the separated gas phase fluid Fg can be discharged from the exhaust pipe 31. Then, the liquid recovery apparatus 10 can discharge the liquid phase fluid Fl recovered inside the liquid phase recovery unit 40 to the outside through the drain pipe 45.
 ここで、当該液体回収装置10において、液相回収部40は二重管部35の流れ方向下流側に配置されており、段差部24aを備える大径部24と内管30によって構成されている。又、図3に示すように、大径部内径Rcは拡管部最大内径Rbよりも大きい為、液相回収部40の流路断面積は、二重管部35の流れ方向上流側における流路断面積よりも大きく形成されている。 Here, in the liquid recovery apparatus 10, the liquid phase recovery unit 40 is disposed on the downstream side in the flow direction of the double pipe portion 35, and is configured by the large diameter portion 24 including the step portion 24a and the inner pipe 30. . Further, as shown in FIG. 3, since the large diameter inner diameter Rc is larger than the largest diameter Rb of the expanded tube portion, the flow channel cross-sectional area of the liquid phase recovery portion 40 is the flow passage upstream of the double pipe portion 35 in the flow direction. It is formed larger than the cross-sectional area.
 この為、当該液体回収装置10において、流体の流れは、二重管部35に導入された後で、液相回収部40の内部にて渦流を発生させる。即ち、当該液体回収装置10は、流体が二重管部35に流入する部分よりも流れ方向下流側で渦流を発生させる為、外管20の内面に沿った液相流体Flの移動は、二重管部35に流入する際に渦流によって妨げられることはない。 For this reason, in the liquid recovery apparatus 10, a flow of fluid generates a vortex in the liquid phase recovery unit 40 after being introduced into the double pipe 35. That is, since the liquid recovery device 10 generates a vortex flow downstream of the portion where the fluid flows into the double pipe portion 35, the movement of the liquid phase fluid Fl along the inner surface of the outer pipe 20 is When flowing into the heavy pipe portion 35, it is not disturbed by the vortex flow.
 これにより、当該液体回収装置10によれば、外管20の内面に沿って移動する液相流体Flを円滑に液相回収部40に流入させることができ、気液二相流体の幅広い条件下において、高い回収率で液相流体Flを回収することができる。 Thereby, according to the liquid recovery apparatus 10, the liquid phase fluid Fl moving along the inner surface of the outer pipe 20 can smoothly flow into the liquid phase recovery unit 40, and a wide range of conditions of the gas-liquid two-phase fluid The liquid phase fluid Fl can be recovered at a high recovery rate.
 上述したように、液相回収部40の流路断面積は、二重管部35の流れ方向上流側における流路断面積よりも大きく形成されている為、液相回収部40の内部に多くの液相流体Flを貯留することができる。 As described above, since the flow passage cross-sectional area of the liquid phase recovery unit 40 is formed larger than the flow passage cross-sectional area on the upstream side in the flow direction of the double pipe portion 35, there are many in the liquid phase recovery unit 40. Liquid phase fluid Fl can be stored.
 即ち、当該液体回収装置10は、液相回収部40に流入する液相流体Flの流量が増大した場合であっても、内管30を介して液相流体Flが流出することを抑制できる。つまり、液体回収装置10は、気液二相流体に含まれる液相流体Flの量に関する幅広い条件に対応することができ、高い回収率で液相流体Flを回収することができる。 That is, even when the flow rate of the liquid phase fluid Fl flowing into the liquid phase recovery unit 40 is increased, the liquid recovery apparatus 10 can suppress the outflow of the liquid phase fluid Fl via the inner pipe 30. That is, the liquid recovery device 10 can cope with a wide range of conditions regarding the amount of the liquid phase fluid Fl contained in the gas-liquid two-phase fluid, and can recover the liquid phase fluid Fl with a high recovery rate.
 又、当該液相回収部40は、内管30の全周を全て囲むように配置されており、内管30の下部を含んでいる為、二重管部35に流入した全ての液相流体Flを回収することができる。即ち、当該液体回収装置10は、外管20の、液相流体Flの回収率を向上させることができる。そして、当該液相回収部40は、外管20の内面に沿った液相流体Flの分布に重力による偏りがあった場合でも、確実に液相流体Flを回収して回収率を向上させることができる。 Further, the liquid phase recovery unit 40 is disposed so as to surround the entire circumference of the inner pipe 30, and includes the lower portion of the inner pipe 30, so all liquid phase fluids flowing into the double pipe portion 35 Fl can be recovered. That is, the liquid recovery apparatus 10 can improve the recovery rate of the liquid phase fluid Fl in the outer pipe 20. Then, the liquid phase recovery unit 40 reliably recovers the liquid phase fluid Fl to improve the recovery rate even when the distribution of the liquid phase fluid Fl along the inner surface of the outer tube 20 is uneven due to gravity. Can.
 図2、図3、図5に示すように、外管20は導入部21の流れ方向下流側に拡管部23を有しており、当該拡管部23は、流れ方向下流側に向かうにつれて流路断面積が連続的に大きくなるように構成されている。 As shown in FIG. 2, FIG. 3 and FIG. 5, the outer pipe 20 has the expanded portion 23 downstream of the introduction portion 21 in the flow direction, and the expanded portion 23 has a flow passage The cross-sectional area is configured to increase continuously.
 これにより、当該液体回収装置10は、拡管部23の内面から内管30の内部までの距離を大きくして、拡管部23の内面から内管30の内へ向かう気相流体Fgの流れを抑制することができる。即ち、当該液体回収装置10は、気相流体Fgの流れによって、外管20の内面から液相流体Flが剥離することを防止して、液相流体Flの回収率を向上させることができる。 Thus, the liquid recovery apparatus 10 increases the distance from the inner surface of the expanded portion 23 to the inside of the inner pipe 30 to suppress the flow of the gas phase fluid Fg from the inner surface of the expanded portion 23 toward the inside of the inner pipe 30. can do. That is, the liquid recovery apparatus 10 can prevent separation of the liquid phase fluid Fl from the inner surface of the outer tube 20 by the flow of the gas phase fluid Fg, and can improve the recovery rate of the liquid phase fluid Fl.
 図2、図3等に示すように、当該液体回収装置10において、内管30は、外管20の導入部21における中心軸Cと同軸上に配置されている。従って、当該液体回収装置10によれば、導入部21の中央部分を流れる気相流体Fgを、円滑に内管30の内部に流入させることができ、外管20から内管30までの圧力損失を小さく抑えることができる。 As shown in FIG. 2, FIG. 3, etc., in the liquid recovery apparatus 10, the inner pipe 30 is disposed coaxially with the central axis C in the introduction portion 21 of the outer pipe 20. Therefore, according to the liquid recovery apparatus 10, the gas phase fluid Fg flowing through the central portion of the introduction portion 21 can smoothly flow into the inside of the inner pipe 30, and the pressure loss from the outer pipe 20 to the inner pipe 30. Can be kept small.
 又、内管30の内管内径Rdは、導入部21の導入部内径Raと等しい寸法である為、当該液体回収装置10は、導入部21の中央部分を流れる気相流体Fgを、より円滑に内管30の内部に流入させることができる。これにより、液体回収装置10は、外管20から内管30までの圧力損失を小さく抑えることができる。 Further, since the inner pipe inner diameter Rd of the inner pipe 30 is equal to the inner diameter Ra of the introducing portion 21 of the introducing portion 21, the liquid recovery apparatus 10 smooths the gas phase fluid Fg flowing through the central portion of the introducing portion 21. Can flow into the interior of the inner pipe 30. As a result, the liquid recovery device 10 can suppress the pressure loss from the outer pipe 20 to the inner pipe 30 to a low level.
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図6を参照しつつ説明する。第2実施形態に係る液体回収装置10は、第1実施形態と同様に、電気自動車(燃料電池車両)に搭載された燃料電池システム100の一部を構成している。
Second Embodiment
Subsequently, a second embodiment different from the above-described first embodiment will be described with reference to FIG. The liquid recovery apparatus 10 according to the second embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle) as in the first embodiment.
 第2実施形態に係る液体回収装置10は、第1実施形態と同様に、燃料電池システム100の空気通路2における燃料電池1の下流側に配置されており、燃料電池1から排出された気液二相流体から、気相流体Fgと液相流体Flを分離して、液相流体Flを回収している。 The liquid recovery apparatus 10 according to the second embodiment is disposed on the downstream side of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the first embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
 当該液体回収装置10は、第1実施形態と同様に、外管20と、内管30と、排気管31と、排液管45とを有して構成されている。第2実施形態に係る外管20は、導入部21と、拡管部23と、大径部24とを有しているが、大径部24の形状が第1実施形態と異なっている。 The liquid recovery apparatus 10 is configured to include an outer pipe 20, an inner pipe 30, an exhaust pipe 31, and a drainage pipe 45, as in the first embodiment. The outer tube 20 according to the second embodiment includes the introduction portion 21, the expanded portion 23, and the large diameter portion 24, but the shape of the large diameter portion 24 is different from that of the first embodiment.
 図6に示すように、第2実施形態に係る大径部24は、内管30の下方にあたる部分が中心軸Cから大きく離れるような段差部24aを有して構成されている。即ち、第2実施形態に係る液体回収装置10において、液相回収部40は、内管30の下方に膨出するように形成されており、当該液相回収部40における流路断面積は、二重管部35の流れ方向上流側部分の流路断面積よりも大きく形成されている。 As shown in FIG. 6, the large diameter portion 24 according to the second embodiment is configured to have a stepped portion 24 a such that a portion corresponding to the lower side of the inner pipe 30 is largely separated from the central axis C. That is, in the liquid recovery apparatus 10 according to the second embodiment, the liquid phase recovery unit 40 is formed to bulge downward of the inner pipe 30, and the flow path cross-sectional area in the liquid phase recovery unit 40 is It is formed larger than the flow passage cross-sectional area of the upstream side portion of the double pipe portion 35 in the flow direction.
 これにより、当該液体回収装置10は、第1実施形態と同様に、二重管部35の流れ方向下流側に配置された液相回収部40内にて、気相流体Fgの渦流を発生させることができ、液相流体Flの回収率を向上させることができる。 Thereby, the liquid recovery apparatus 10 generates a vortex flow of the gas phase fluid Fg in the liquid phase recovery unit 40 disposed on the downstream side in the flow direction of the double pipe unit 35 as in the first embodiment. It is possible to improve the recovery rate of the liquid phase fluid Fl.
 又、第1実施形態と同様に、内管30における流れ方向下流側には、排気管31が接続されており、液相回収部40の下部には、排液管45が接続されている。従って、第2実施形態に係る液体回収装置10は、第1実施形態と同様に、気液二相流体から分離した気相流体Fgを燃料電池システム100の外部に排出し、液相回収部40で回収した液相流体Fl(即ち、生成水)を回収水用流路11に排出することができる。 Further, as in the first embodiment, the exhaust pipe 31 is connected to the downstream side in the flow direction of the inner pipe 30, and the drainage pipe 45 is connected to the lower portion of the liquid phase recovery unit 40. Accordingly, the liquid recovery apparatus 10 according to the second embodiment discharges the gas phase fluid Fg separated from the gas-liquid two-phase fluid to the outside of the fuel cell system 100 as in the first embodiment, and the liquid phase recovery unit 40 The liquid phase fluid Fl (that is, generated water) collected in the above can be discharged to the collected water channel 11.
 以上説明したように、第2実施形態に係る液体回収装置10においても、液相回収部40の流路断面積は、流れ方向上流部にあたる二重管部35の流路断面積よりも大きく形成されている。 As described above, also in the liquid recovery apparatus 10 according to the second embodiment, the flow passage cross-sectional area of the liquid phase recovery unit 40 is formed larger than the flow passage cross-sectional area of the double pipe portion 35 corresponding to the upstream portion in the flow direction It is done.
 従って、当該液体回収装置10は、第1実施形態と同様に、二重管部35の流れ方向下流側に配置された液相回収部40内にて、気相流体Fgの渦流を発生させることができ、液相流体Flの回収率を向上させることができる。 Therefore, as in the first embodiment, the liquid recovery apparatus 10 generates an eddy current of the gas phase fluid Fg in the liquid phase recovery unit 40 disposed on the downstream side of the double pipe 35 in the flow direction. And the recovery rate of the liquid phase fluid Fl can be improved.
 ここで、外管20の内面における液相流体Flの分布には、液相流体Flに作用する重力等の影響によって、外管20の下方ほど多く分布する傾向にある。従って、当該液体回収装置10は、排気管31の下部にあたる流路断面積を拡大して液相回収部40を構成しているので、外管20の内部における液相流体Flの分布に応じて効率よく液相流体Flを回収することができる。 Here, the distribution of the liquid phase fluid Fl on the inner surface of the outer pipe 20 tends to be distributed more toward the lower side of the outer pipe 20 due to the influence of gravity acting on the liquid phase fluid Fl. Therefore, the liquid recovery apparatus 10 enlarges the cross-sectional area of the flow passage corresponding to the lower portion of the exhaust pipe 31 to configure the liquid phase recovery unit 40, so that the distribution of the liquid phase fluid Fl inside the outer pipe 20 is The liquid phase fluid Fl can be recovered efficiently.
 又、排気管31の下部を除いた部分については、大径部24による流路断面積の拡大を図る必要がない為、流路断面積の変化を最小限度に抑えることができる。即ち、第2実施形態に係る液体回収装置10によれば、装置の大型化を抑制しつつ、液相流体Flの回収率を向上させることができる。 Further, in the portion excluding the lower portion of the exhaust pipe 31, there is no need to increase the cross sectional area of the flow path by the large diameter portion 24, so that the change in the cross sectional area of the flow path can be minimized. That is, according to the liquid recovery apparatus 10 of the second embodiment, it is possible to improve the recovery rate of the liquid phase fluid Fl while suppressing the increase in size of the apparatus.
 (第3実施形態)
 次に、上述した各実施形態とは異なる第3実施形態について、図7を参照しつつ説明する。第3実施形態に係る液体回収装置10は、上述した実施形態と同様に、電気自動車(燃料電池車両)に搭載された燃料電池システム100の一部を構成している。
Third Embodiment
Next, a third embodiment different from the above-described embodiments will be described with reference to FIG. The liquid recovery apparatus 10 according to the third embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle) as in the above-described embodiment.
 第3実施形態に係る液体回収装置10は、上述した実施形態と同様に、燃料電池システム100の空気通路2における燃料電池1の下流側に配置されており、燃料電池1から排出された気液二相流体から、気相流体Fgと液相流体Flを分離して、液相流体Flを回収している。 The liquid recovery apparatus 10 according to the third embodiment is disposed on the downstream side of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the above-described embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
 当該液体回収装置10は、上述した実施形態と同様に、外管20と、内管30と、排気管31と、排液管45とを有して構成されており、液相回収部40における流入口41の周辺の構成を除いて、上述した第1実施形態と同様である。従って、以下の説明においては、液相回収部40における流入口41の周辺について説明する。 The liquid recovery apparatus 10 is configured to include the outer pipe 20, the inner pipe 30, the exhaust pipe 31, and the drainage pipe 45 as in the above-described embodiment, and in the liquid phase recovery unit 40. Except for the configuration around the inlet 41, it is the same as the first embodiment described above. Therefore, in the following description, the periphery of the inflow port 41 in the liquid phase recovery unit 40 will be described.
 図7に示すように、第3実施形態に係る液体回収装置10においては、液相回収部40は、外管20の大径部24と内管30を二重に配置して構成されており、二重管部35における流れ方向下流側を構成している。第3実施形態に係る大径部24も、上述した実施形態と同様に段差部24aを有して構成されている。 As shown in FIG. 7, in the liquid recovery apparatus 10 according to the third embodiment, the liquid phase recovery unit 40 is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 in a double manner. , And the downstream side of the double pipe portion 35 in the flow direction. The large diameter portion 24 according to the third embodiment is also configured to have the stepped portion 24 a as in the above-described embodiment.
 そして、第3実施形態における流入口41は、外管20における拡管部23及び大径部24の接続部分と、内管30との間に形成される隙間によって構成されており、二重管部35を通過した液相流体Fl等が液相回収部40に流入する。 And inflow mouth 41 in a 3rd embodiment is constituted by the crevice formed between the connection part of expanded tube part 23 and large diameter part 24 in outer pipe 20, and inner pipe 30, and double pipe part The liquid phase fluid Fl and the like that have passed 35 flow into the liquid phase recovery unit 40.
 第3実施形態においては、流入口41の開口縁には突部42が形成されている。当該突部42は、流入口41の開口縁から流れ方向下流側に突出するように形成されており、流入口41を囲む筒状を構成している。 In the third embodiment, a protrusion 42 is formed at the opening edge of the inflow port 41. The protrusion 42 is formed to project downstream in the flow direction from the opening edge of the inflow port 41, and has a tubular shape surrounding the inflow port 41.
 尚、この突部42は、流入口41の開口縁から流れ方向下流側に突出するように形成されていればよく、様々な方法を用いて実現することができる。例えば、流入口41を構成する拡管部23及び大径部24の接続部分にて、拡管部23を流れ方向下流側に延出しても良い。又、当該接続部分の外周部分を構成する大径部24の内壁面に、溝状の凹部を形成することで、相対的に突部42を形成しても良い。 In addition, this protrusion 42 should just be formed so that it may protrude from the opening edge of the inflow port 41 to the flow direction downstream, and it can implement | achieve using various methods. For example, the expanded pipe portion 23 may extend to the downstream side in the flow direction at the connection portion of the expanded pipe portion 23 and the large diameter portion 24 which constitute the inflow port 41. Alternatively, the protrusion 42 may be relatively formed by forming a groove-shaped recess on the inner wall surface of the large diameter portion 24 that constitutes the outer peripheral portion of the connection portion.
 当該液体回収装置10によれば、流入口41から流入した気液二相流体は、突部42によって液相回収部40の内部まで導かれる為、液相回収部40の内部にて渦流を発生させることができる。又、当該突部42は流入口41を囲むように形成されている為、流入口41から流入する気液二相流体が渦流となった気相流体Fgから受ける影響を抑制することができる。 According to the liquid recovery apparatus 10, the gas-liquid two-phase fluid that has flowed in from the inflow port 41 is led to the inside of the liquid phase recovery unit 40 by the projection 42, and thus a vortex is generated inside the liquid phase recovery unit 40. It can be done. Moreover, since the said protrusion 42 is formed so that the inflow port 41 may be enclosed, the influence which the gas-liquid two-phase fluid which flows in from the inflow port 41 receives from the gaseous-phase fluid Fg which became a vortex can be suppressed.
 以上説明したように、第3実施形態に係る液体回収装置10によれば、流入口41の開口縁から流れ方向下流側に突出する突部42を形成することによって、液相回収部40の内部における渦流の発生を促しつつ、液相回収部40に対する液相流体Fl等の円滑な流入を実現することができる。 As described above, according to the liquid recovery apparatus 10 according to the third embodiment, the inside of the liquid phase recovery unit 40 is formed by forming the protrusion 42 projecting to the downstream side in the flow direction from the opening edge of the inflow port 41 The smooth inflow of the liquid phase fluid Fl or the like to the liquid phase recovery unit 40 can be realized while promoting the generation of the vortex flow in the above.
 これにより、当該液体回収装置10は、二重管部35及び液相回収部40に対する気液二相流体の流れを更に円滑にすることができるので、液相流体Flの回収率を向上させることができる。 Thereby, the liquid recovery apparatus 10 can further smooth the flow of the gas-liquid two-phase fluid to the double pipe portion 35 and the liquid phase recovery unit 40, so that the recovery rate of the liquid phase fluid Fl can be improved. Can.
 (第4実施形態)
 続いて、上述した各実施形態とは異なる第4実施形態について、図8を参照しつつ説明する。第4実施形態に係る液体回収装置10は、上述した実施形態と同様に、電気自動車(燃料電池車両)に搭載された燃料電池システム100の一部を構成している。
Fourth Embodiment
Then, 4th Embodiment different from each embodiment mentioned above is described, referring FIG. The liquid recovery apparatus 10 according to the fourth embodiment constitutes a part of a fuel cell system 100 mounted on an electric vehicle (fuel cell vehicle), as in the above-described embodiment.
 第4実施形態に係る液体回収装置10は、上述した実施形態と同様に、燃料電池システム100の空気通路2における燃料電池1の下流側に配置されており、燃料電池1から排出された気液二相流体から、気相流体Fgと液相流体Flを分離して、液相流体Flを回収している。 The liquid recovery apparatus 10 according to the fourth embodiment is disposed downstream of the fuel cell 1 in the air passage 2 of the fuel cell system 100 as in the above-described embodiment, and the gas and liquid discharged from the fuel cell 1 From the two-phase fluid, the gas phase fluid Fg and the liquid phase fluid Fl are separated to recover the liquid phase fluid Fl.
 当該液体回収装置10は、上述した実施形態と同様に、外管20と、内管30と、排気管31と、排液管45とを有して構成されており、外管20の構成を除いて、上述した第1実施形態と同様である。従って、以下の説明においては、外管20の構成について説明する。 The liquid recovery apparatus 10 is configured to include the outer pipe 20, the inner pipe 30, the exhaust pipe 31, and the drainage pipe 45, as in the above-described embodiment. Except for this, it is the same as the first embodiment described above. Therefore, in the following description, the configuration of the outer pipe 20 will be described.
 第4実施形態に係る外管20は、導入部21と、大径部24によって構成されている。上述した実施形態においては、液体回収装置10の外管20は、導入部21と、拡管部23と、大径部24によって構成されていた為、拡管部23を有していない点が相違点となる。 The outer tube 20 according to the fourth embodiment is constituted by the introduction portion 21 and the large diameter portion 24. In the embodiment described above, the outer pipe 20 of the liquid recovery apparatus 10 is configured by the introduction portion 21, the expanded pipe portion 23, and the large diameter portion 24, and thus the difference is that the expanded pipe portion 23 is not provided. It becomes.
 第4実施形態に係る導入部21は、第1実施形態と同様に、燃料電池1から流出した気液二相流体を外管20の内部に導入する部分であり、外管20における流れ方向上流側を構成している。当該導入部21の内部には、断面円形状の流路が形成されている。 The introduction portion 21 according to the fourth embodiment is a portion for introducing the gas-liquid two-phase fluid that has flowed out of the fuel cell 1 into the inside of the outer pipe 20 as in the first embodiment. Make up the side. A flow passage having a circular cross section is formed inside the introduction portion 21.
 第4実施形態における導入部21の流路断面は、中心軸Cを中心とし予め定められた導入部内径Raを半径とする円形を示す。この点、第4実施形態に係る導入部内径Raは、内管内径Rdよりも大きな値を示す。 The flow passage cross section of the introducing portion 21 in the fourth embodiment has a circular shape with the central axis C as a center and a radius of a predetermined introducing portion inner diameter Ra. In this respect, the inner diameter Ra of the introduction portion according to the fourth embodiment shows a value larger than the inner diameter Rd of the inner pipe.
 そして、第4実施形態に係る外管20において、導入部21の流れ方向下流側には、段差部24aを備えた大径部24が配置されている。第4実施形態に係る大径部24は、中心軸Cと同軸上に配置された円管状に形成されており、その内部断面は、中心軸Cを中心とし大径部内径Rcを半径とする円形を為している。 In the outer tube 20 according to the fourth embodiment, the large diameter portion 24 provided with the stepped portion 24 a is disposed on the downstream side in the flow direction of the introduction portion 21. The large diameter portion 24 according to the fourth embodiment is formed in a circular tubular shape coaxially arranged with the central axis C, and the internal cross section is centered on the central axis C and the large diameter portion inner diameter Rc is a radius It has a round shape.
 段差部24aを有することで、大径部内径Rcは、この場合における導入部内径Raよりも大きな値を示しており、導入部内径Raに対して予め定められた値の差を有するように定められている。従って、外管20における内部断面積は、大径部24に到達すると、導入部21における内部断面積に対して急激に大きく拡大する。 By having the step portion 24a, the large diameter portion inner diameter Rc shows a value larger than the introduction portion inner diameter Ra in this case, and is determined to have a difference of a predetermined value with the introduction portion inner diameter Ra. It is done. Therefore, when the inner cross sectional area of the outer tube 20 reaches the large diameter part 24, the inner cross sectional area of the outer pipe 20 rapidly and largely expands relative to the internal cross sectional area of the introduction part 21.
 第4実施形態に係る内管30は、外管20における流れ方向下流側部分において、当該外管20の内部に配置されている。当該内管30は、内管内径Rdの円管状に形成されており、中心軸Cと同軸上に配置されている。内管30の流れ方向下流側には、排気管31が接続されている。 The inner pipe 30 according to the fourth embodiment is disposed inside the outer pipe 20 at a downstream portion in the flow direction of the outer pipe 20. The inner pipe 30 is formed in the shape of a circular tube having an inner pipe inner diameter Rd, and is disposed coaxially with the central axis C. An exhaust pipe 31 is connected to the flow direction downstream side of the inner pipe 30.
 図8に示すように、当該内管30は、外管20(即ち、導入部21及び大径部24)の内側面に対して予め定められた間隔を設けるように配置されており、第4実施形態に係る二重管部35を構成する。 As shown in FIG. 8, the inner pipe 30 is arranged to provide a predetermined distance from the inner surface of the outer pipe 20 (that is, the introduction portion 21 and the large diameter portion 24), and the fourth The double pipe part 35 which concerns on embodiment is comprised.
 当該二重管部35は、導入部21から流入した気液二相流体の流れを、内管30の内部に流入する流れと、二重管部35における外管20と内管30の隙間に流入する流れに分岐させる機能を果たす。 The double pipe portion 35 is configured such that the flow of the gas-liquid two-phase fluid flowing in from the introduction portion 21 flows into the inner pipe 30 and the gap between the outer pipe 20 and the inner pipe 30 in the double pipe portion 35. It functions to branch into the incoming flow.
 そして、第4実施形態に係る液相回収部40は、外管20の大径部24と内管30を二重に配置して構成されており、二重管部35における流れ方向下流側を構成している。そして、導入部21の導入部内径Raと大径部24の大径部内径Rcの差によって、二重管部35の下流側における流路断面積は、二重管部35の上流側における流路断面積よりも大きく、急激に拡大されている。 The liquid phase recovery unit 40 according to the fourth embodiment is configured by arranging the large diameter portion 24 of the outer pipe 20 and the inner pipe 30 doubly, and the downstream side of the double pipe portion 35 in the flow direction is Configured. The flow passage cross-sectional area on the downstream side of the double pipe portion 35 is the flow on the upstream side of the double pipe portion 35 due to the difference between the inner diameter Ra of the introduction portion 21 and the inner diameter Rc of the large diameter portion 24 of the large diameter portion 24. It is larger than the road cross section and is rapidly enlarged.
 従って、第4実施形態に係る液体回収装置10は、第1実施形態と同様に、二重管部35を通過した気液二相流体から液相流体Flを分離して、液相回収部40に回収して貯留することができる。 Therefore, as in the first embodiment, the liquid recovery apparatus 10 according to the fourth embodiment separates the liquid phase fluid Fl from the gas-liquid two-phase fluid that has passed through the double pipe portion 35, and the liquid phase recovery unit 40. Can be collected and stored.
 又、当該液体回収装置10によれば、液相回収部40の内部容積を充分に大きくすることができるので、回収した液相流体Flをより多く貯留することができ、液相流体Flが大量に流入した場合にも対応することができる。 Further, according to the liquid recovery apparatus 10, the internal volume of the liquid phase recovery unit 40 can be made sufficiently large, so that more recovered liquid phase fluid Fl can be stored, and a large amount of liquid phase fluid Fl is obtained. It can cope with the case of flowing into the
 以上説明したように、第4実施形態に係る液体回収装置10によれば、外管20を導入部21と大径部24とで構成した場合であっても、気液二相流体から気相流体Fg及び液相流体Flを分離することができ、液相流体Flを回収することができる。 As described above, according to the liquid recovery apparatus 10 according to the fourth embodiment, even when the outer pipe 20 is configured by the introduction portion 21 and the large diameter portion 24, the gas phase from the gas-liquid two-phase fluid The fluid Fg and the liquid phase fluid Fl can be separated, and the liquid phase fluid Fl can be recovered.
 そして、この場合においても、二重管部35を通過した気液二相流体は、液相回収部40の内部にて渦流を発生させる為、二重管部35へ流入する際の流れを渦流によって妨げることはない。 Also in this case, since the gas-liquid two-phase fluid that has passed through the double pipe portion 35 generates an eddy current inside the liquid phase recovery portion 40, the flow when flowing into the double pipe portion 35 is an eddy current. There is no hindrance.
 これにより、当該液体回収装置10は、外管20の内面に沿って液相流体Flを円滑に移動させ、液相回収部40の内部に流入させることができるので、液相流体の回収率を向上させることができる。 As a result, the liquid recovery apparatus 10 can smoothly move the liquid phase fluid Fl along the inner surface of the outer pipe 20 to flow into the liquid phase recovery unit 40, so that the recovery rate of the liquid phase fluid can be increased. It can be improved.
 (他の実施形態)
 以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。
(Other embodiments)
Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above-described embodiments. That is, various improvements and modifications are possible without departing from the scope of the present disclosure. For example, the above-described embodiments may be combined as appropriate, or various modifications of the above-described embodiments may be made.
 (1)上述した実施形態においては、本開示に係る液体回収装置を燃料電池システム100に適用していたが、この態様に限定されるものではない。本開示に係る液体回収装置は、気液二相状態の流体を気相流体と液相流体に分離し、液相流体を回収する用途があれば、種々の装置やシステムに適用することができる。 (1) In the embodiment described above, the liquid recovery apparatus according to the present disclosure is applied to the fuel cell system 100, but the present invention is not limited to this aspect. The liquid recovery apparatus according to the present disclosure can be applied to various apparatuses and systems as long as it has an application of separating a gas-liquid two-phase fluid into a gas phase fluid and a liquid phase fluid and recovering the liquid phase fluid. .
 (2)又、本開示に係る二重管部35は、上述した実施形態のような構成に限定されるものではないが、二重管部35における内管30の先端部と大径部24の上流面の位置関係については、所定の寸法範囲であることが望ましい。 (2) Moreover, although the double pipe part 35 which concerns on this indication is not limited to a structure like embodiment mentioned above, the front-end | tip part of the inner pipe 30 and the large diameter part 24 in the double pipe part 35 It is desirable that the positional relationship of the upstream face of the above is within a predetermined size range.
 換言すると、二重管部35における液相回収部40の流れ方向上流側は、所定の流路長であることが望ましい。この部分が必要以上に長いと、大径部24の内部に流入する前に渦流を発生させてしまう虞がある為、液相回収部40の内部で渦流が発生する範囲内であることが望ましい。 In other words, it is desirable that the flow direction upstream side of the liquid phase recovery unit 40 in the double pipe portion 35 has a predetermined flow path length. If this portion is longer than necessary, a vortex may be generated before flowing into the inside of the large diameter portion 24. Therefore, it is preferable that the vortex is generated in the liquid phase recovery unit 40. .
 (3)そして、上述した実施形態においては、外管20の内面に対して、親水性の官能基(例えば、ヒドロキシル基、カルボキシル基)を表面に直接付与する化学的処理を施して親水性を付与していたが、この態様に限定されるものではない。 (3) Then, in the above-described embodiment, the inner surface of the outer tube 20 is subjected to chemical treatment to directly impart hydrophilic functional groups (for example, hydroxyl group, carboxyl group) to the surface to obtain hydrophilicity. Although applied, it is not limited to this aspect.
 外管20の内面に対して親水性を付与することができれば、種々の方法を採用することができ、例えば、プラズマ処理、光触媒、微細な凹凸形状やコーティングの形成等を行っても良い。 As long as the inner surface of the outer tube 20 can be provided with hydrophilicity, various methods can be adopted. For example, plasma treatment, photocatalyst, formation of fine irregularities, coating, etc. may be performed.
 (4)又、上述した実施形態では、内管30の流れ方向下流側に排気管31を接続し、液相回収部40の下部に排液管45を接続していたが、この態様に限定されるものではない。それぞれ、気相流体Fgを排出可能な形状や、液相流体Flを排出可能な形状であればよく、液体回収装置10の外部に向かって管状に突出している必要はない。 (4) In the embodiment described above, the exhaust pipe 31 is connected to the downstream side of the flow direction of the inner pipe 30, and the drainage pipe 45 is connected to the lower part of the liquid phase recovery unit 40, but this embodiment is limited It is not something to be done. The shape may be any shape capable of discharging the gas phase fluid Fg or the shape capable of discharging the liquid phase fluid Fl, and does not have to protrude in a tubular shape toward the outside of the liquid recovery apparatus 10.
 (5)そして、上述した実施形態においては、外管20、内管30、排気管31、排液管45を円筒形状の管として説明しているが、本開示はこれに限定されるものではない。本開示における各構成は、流体が通過可能な流路を構成することができればよく、その断面形状が限定されるものではない。 (5) And in the embodiment mentioned above, although outer tube 20, inner tube 30, exhaust pipe 31, and drainage pipe 45 are explained as a cylindrical shape pipe, this indication is not limited to this. Absent. Each configuration in the present disclosure only needs to constitute a flow path through which a fluid can pass, and the cross-sectional shape is not limited.
 例えば、断面形状が多角形である流路としても良いし、断面形状が楕円形である流路とすることも可能である。又、当該液体回収装置10における外管20、排気管31、排液管45については、その外観を適宜変更することも可能である。

 
For example, it may be a channel whose cross-sectional shape is a polygon, or it may be a channel whose cross-sectional shape is an oval. In addition, the outer pipe 20, the exhaust pipe 31, and the drainage pipe 45 in the liquid recovery apparatus 10 can be appropriately changed in appearance.

Claims (8)

  1.  気液二相流体が導入される導入部(21)を有する外管(20)と、
     前記導入部における前記気液二相流体の流れ方向に関し、前記導入部を下流側に延長した位置にて前記外管の内部に配置され、前記気液二相流体から分離された気相流体を排出する内管(30)と、
     前記外管における前記流れ方向下流側にて、前記外管の内側に対して予め定められた間隔を設けて前記内管を配置して構成される二重管部(35)と、
     前記二重管部における前記流れ方向下流側において、当該二重管部の前記流れ方向上流側における流路断面積よりも大きな流路断面積を有して構成され、前記気液二相流体から分離された液相流体を回収する液相回収部(40)と、
     前記液相回収部の下部に接続され、当該液相回収部に回収された前記液相流体を排出する排液管(45)と、を有する液体回収装置。
    An outer pipe (20) having an inlet (21) into which a gas-liquid two-phase fluid is introduced;
    The gas phase fluid separated from the gas-liquid two-phase fluid is disposed inside the outer pipe at a position where the introduction portion extends downstream with respect to the flow direction of the gas-liquid two-phase fluid in the introduction portion. With the inner pipe (30) to discharge,
    A double pipe portion (35) configured by arranging the inner pipe at a predetermined interval with respect to the inner side of the outer pipe on the downstream side in the flow direction of the outer pipe;
    At the downstream side in the flow direction in the double pipe portion, it is configured to have a flow channel cross-sectional area larger than the flow channel cross-sectional area on the upstream side in the flow direction of the double pipe portion. A liquid phase recovery unit (40) for recovering the separated liquid phase fluid;
    And a drainage pipe (45) connected to a lower portion of the liquid phase recovery unit and discharging the liquid phase fluid recovered by the liquid phase recovery unit.
  2.  前記二重管部の流れ方向下流側における前記外管には、前記内管から離れる方向に形成された段差部(24a)を有して構成される大径部(24)が配置され、
     前記液相回収部は、前記外管の前記大径部によって、当該二重管部の前記流れ方向上流側における流路断面積よりも流路断面積を大きく構成している請求項1に記載の液体回収装置。
    A large diameter portion (24) configured to have a stepped portion (24a) formed in a direction away from the inner pipe is disposed in the outer pipe on the downstream side in the flow direction of the double pipe portion,
    The liquid phase recovery unit according to claim 1, wherein the large diameter portion of the outer pipe makes the flow passage cross sectional area larger than the flow passage cross sectional area on the upstream side in the flow direction of the double pipe portion. Liquid recovery equipment.
  3.  前記液相回収部は、少なくとも前記内管の外周の下部を含むように配置されている請求項1又は2に記載の液体回収装置。 The liquid recovery apparatus according to claim 1, wherein the liquid phase recovery unit is disposed so as to include at least a lower portion of an outer periphery of the inner pipe.
  4.  前記液相回収部は、前記内管の外周を全て囲むように配置されている請求項1ないし3の何れか1つに記載の液体回収装置。 The liquid recovery apparatus according to any one of claims 1 to 3, wherein the liquid phase recovery unit is disposed so as to surround the entire outer periphery of the inner pipe.
  5.  前記外管は、前記流れ方向下流側に向かうにつれて流路断面積が連続的に大きくなる拡管部(23)を、前記導入部に対する前記流れ方向下流側に有している請求項1ないし4の何れか1つに記載の液体回収装置。 5. The outer pipe according to claim 1, wherein the outer pipe has an expanded portion (23) whose flow passage cross-sectional area continuously increases as it goes downstream in the flow direction on the downstream side in the flow direction with respect to the introduction portion. The liquid recovery device according to any one.
  6.  前記内管は、前記外管の前記導入部に対して同軸上に配置されている請求項1ないし5の何れか1つに記載の液体回収装置。 The liquid recovery device according to any one of claims 1 to 5, wherein the inner pipe is coaxially disposed with respect to the introduction portion of the outer pipe.
  7.  前記内管の内径(Rd)は、前記導入部の内径(Ra)と等しい請求項1ないし6の何れか1つに記載の液体回収装置。 The liquid recovery apparatus according to any one of claims 1 to 6, wherein an inner diameter (Rd) of the inner pipe is equal to an inner diameter (Ra) of the introduction portion.
  8.  前記液相回収部に対して前記気液二相流体の一部が流入する流入口(41)には、前記流れ方向下流側に突出する突部(42)が形成されている請求項1ないし7の何れか1つに記載の液体回収装置。

     
    The inflow port (41) into which a part of the gas-liquid two-phase fluid flows into the liquid phase recovery part is formed with a protrusion (42) projecting to the downstream side in the flow direction. The liquid recovery apparatus according to any one of 7.

PCT/JP2018/028878 2017-09-15 2018-08-01 Liquid recovery apparatus WO2019054072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177362 2017-09-15
JP2017177362A JP2019051478A (en) 2017-09-15 2017-09-15 Liquid recovery device

Publications (1)

Publication Number Publication Date
WO2019054072A1 true WO2019054072A1 (en) 2019-03-21

Family

ID=65722867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028878 WO2019054072A1 (en) 2017-09-15 2018-08-01 Liquid recovery apparatus

Country Status (2)

Country Link
JP (1) JP2019051478A (en)
WO (1) WO2019054072A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250213A1 (en) * 2020-06-11 2021-12-16 Liebherr-Aerospace Toulouse Sas System for cooling a fuel cell and fuel cell equipped with such a system
US11577189B2 (en) * 2017-09-29 2023-02-14 Denso Corporation Liquid recovery device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168864A (en) * 1982-03-26 1983-10-05 クラリオン株式会社 Oil separator
JPH0317479A (en) * 1989-03-06 1991-01-25 Nippondenso Co Ltd Refrigerator
US20030033791A1 (en) * 2001-08-15 2003-02-20 Elliott Michael R. Cyclonic separator for mist collectors
JP2005147482A (en) * 2003-11-14 2005-06-09 Tlv Co Ltd Gas-liquid separator
US20060021356A1 (en) * 2004-07-28 2006-02-02 Bertram Milde Water separator for air-conditioning systems
JP2007503296A (en) * 2003-08-26 2007-02-22 ハイドロジェニクス コーポレイション Apparatus for separating liquid from process gas stream of an electrochemical cell stack
WO2009046794A1 (en) * 2007-10-09 2009-04-16 Daimler Ag Apparatus and method for separation of a liquid from a gas flow, as well as a fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168864A (en) * 1982-03-26 1983-10-05 クラリオン株式会社 Oil separator
JPH0317479A (en) * 1989-03-06 1991-01-25 Nippondenso Co Ltd Refrigerator
US20030033791A1 (en) * 2001-08-15 2003-02-20 Elliott Michael R. Cyclonic separator for mist collectors
JP2007503296A (en) * 2003-08-26 2007-02-22 ハイドロジェニクス コーポレイション Apparatus for separating liquid from process gas stream of an electrochemical cell stack
JP2005147482A (en) * 2003-11-14 2005-06-09 Tlv Co Ltd Gas-liquid separator
US20060021356A1 (en) * 2004-07-28 2006-02-02 Bertram Milde Water separator for air-conditioning systems
WO2009046794A1 (en) * 2007-10-09 2009-04-16 Daimler Ag Apparatus and method for separation of a liquid from a gas flow, as well as a fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577189B2 (en) * 2017-09-29 2023-02-14 Denso Corporation Liquid recovery device
WO2021250213A1 (en) * 2020-06-11 2021-12-16 Liebherr-Aerospace Toulouse Sas System for cooling a fuel cell and fuel cell equipped with such a system
FR3111477A1 (en) * 2020-06-11 2021-12-17 Liebherr-Aerospace Toulouse Sas COOLING SYSTEM WITH A FUEL CELL AND FUEL CELL EQUIPPED WITH SUCH A SYSTEM

Also Published As

Publication number Publication date
JP2019051478A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US11018354B2 (en) Fuel cell system
US11577189B2 (en) Liquid recovery device
US11018356B2 (en) Humidifying and cooling apparatus for fuel cell
WO2019054072A1 (en) Liquid recovery apparatus
JP2016072183A (en) Centrifugal water separation device for fuel battery system
JP2010015845A (en) Exhaust device of fuel cell system
US20170187050A1 (en) Fuel cell unit including an exchangeable deionization device and a vehicle including such a fuel cell unit
JP2008103263A (en) Fuel cell system
JP2008269844A (en) Fuel cell system
JP6330059B2 (en) PROCESSING DEVICE FOR PROCESSING EXHAUST OF FUEL CELL STACK, FUEL CELL SYSTEM, AND VEHICLE HAVING FUEL CELL SYSTEM
JP2020056564A (en) Water spraying cooling device
KR20190099392A (en) Evaporators and Methods for Evaporating Materials in Evaporators
JP2021003669A (en) Liquid recovery device
JP2022001355A (en) Liquid recovery device
JP2021022535A (en) Fuel cell system
KR101601438B1 (en) Thermal management system for fuel cell vehicles
JP2019045000A (en) Water spray cooling device
JP7120983B2 (en) fuel cell system
WO2020066864A1 (en) Water-spraying cooling device
JP4269270B2 (en) Vehicle fuel cell system
JP2008130484A (en) Fuel cell system
CN216909797U (en) Self-cooling gas-liquid separator
CN114464843B (en) Humidification system and humidification method for hydrogen fuel cell
JP2008098019A (en) Humidifier for fuel cell
JP2007503295A (en) Energy and / or mass exchanger integrated with fluid separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856981

Country of ref document: EP

Kind code of ref document: A1