WO2019053954A1 - Multilayer capacitor and circuit module - Google Patents

Multilayer capacitor and circuit module Download PDF

Info

Publication number
WO2019053954A1
WO2019053954A1 PCT/JP2018/019988 JP2018019988W WO2019053954A1 WO 2019053954 A1 WO2019053954 A1 WO 2019053954A1 JP 2018019988 W JP2018019988 W JP 2018019988W WO 2019053954 A1 WO2019053954 A1 WO 2019053954A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
multilayer capacitor
internal electrode
internal
multilayer
Prior art date
Application number
PCT/JP2018/019988
Other languages
French (fr)
Japanese (ja)
Inventor
貴仁 串間
高広 松岡
直美 滝本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019053954A1 publication Critical patent/WO2019053954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a multilayer capacitor and a circuit module.
  • circuit modules in which a semiconductor element of a power element, a multilayer capacitor, and the like are mounted on a substrate have been developed.
  • the current supplied from the power supply to the power supply line is output to the load through the power supply line, the semiconductor element, the multilayer capacitor, and the like.
  • the influence of the magnetic field due to the current that is, the influence of the parasitic inductance generated between the wirings becomes a problem.
  • a specific influence for example, when the semiconductor element mounted on the circuit module is switched, a surge voltage is generated due to the parasitic inductance.
  • Non-Patent Document 1 in the circuit module of the converter, in order to reduce the parasitic inductance of the current loop flowing through the wiring, the layout of the substrate and the arrangement of components are changed. Specifically, in Non-Patent Document 1, the current loop is formed only by the wiring in the surface layer of the substrate, and the current loop is formed using the wiring in the surface layer of the substrate and the wiring in the middle layer of the substrate. It has changed. By changing the configuration, Non-Patent Document 1 can reduce the area of the current loop, and can reduce the distance between two opposing wires through which current flows in the reverse direction. Therefore, in Non-Patent Document 1, the magnetic fluxes generated by the currents flowing through the respective wires cancel each other, and the parasitic inductance can be reduced.
  • Patent Document 1 discloses a circuit module provided with a semiconductor element and a multilayer capacitor, and a semiconductor such that the current flowing through the wiring on the surface layer of the substrate and the current flowing through the wiring on the back surface are opposite.
  • An element and a multilayer capacitor are disposed and mounted. Therefore, in Patent Document 1, the current flowing in the wiring on the surface layer of the substrate and the wiring on the back surface is in the opposite direction, and the magnetic flux generated by the current cancels each other to reduce the parasitic inductance.
  • a circuit module mounting a capacitor includes a current loop including the capacitor in a current path, and a closed conductor loop formed by a wiring pattern parallel and opposite to the current loop. Therefore, in Patent Document 2, the closed conductor loop is coupled to the current loop in a ceramic manner, and the first inductor, which is a parasitic inductor component of the capacitor, is coupled to the closed conductor loop with a magnetically large coupling coefficient. Thus, the parasitic inductance of the capacitor can be reduced.
  • Non-Patent Document 1 the current loop is reduced by optimizing the layout of the substrate and the arrangement of components, and the distance between the two opposing wires through which the current flows in the opposite direction is reduced. Therefore, in Non-Patent Document 1, the current flowing inside the component mounted on the substrate is not considered, and there is a limit in reducing the parasitic inductance.
  • Patent Document 1 the wiring and component layout are optimized to reduce the parasitic inductance so that the current flowing in the wiring in the surface layer of the substrate and the current flowing in the wiring in the back surface are opposite. Therefore, even in Patent Document 1, the current flowing in the inside of the component mounted on the substrate is not considered, and there is a limit to reducing the parasitic inductance.
  • Patent Document 2 the parasitic inductance of the capacitor is reduced by configuring a closed conductor loop for magnetically coupling to a current loop including a capacitor in the current path. Therefore, in Patent Document 2, if the resonance frequency of the impedance of the current loop including the capacitor in the current path and the impedance of the closed conductor loop are not matched, strong magnetic coupling does not occur, and there is a problem that the parasitic inductance can not be reduced.
  • an object of the present invention is to provide a multilayer capacitor and a circuit module including the multilayer capacitor in consideration of the current flowing inside when mounted in a circuit module.
  • a multilayer body in which first internal electrodes and second internal electrodes are alternately stacked with a dielectric layer interposed therebetween, and a first electrically connected to the first internal electrodes At least one or more first electrodes stacked on the laminated body, the second external electrode electrically connected to the second internal electrode, and not electrically connected to the first external electrode and the second external electrode;
  • the third internal electrode is provided at a position where an eddy current is generated by the current flowing between the first external electrode and the second external electrode, and the external is electrically connected from the outside of the laminate There is no electrode.
  • a circuit module includes the multilayer capacitor described above and a wiring board on which the multilayer capacitor is mounted.
  • the third inner electrode in which an eddy current is generated by the current flowing inside the multilayer capacitor, the magnetic flux due to the eddy current and the magnetic flux due to the current loop of the current path flowing inside the multilayer capacitor cancel each other. Therefore, parasitic inductance can be reduced. Further, according to the present invention, since the eddy current is generated not in the wiring pattern but in the internal electrode, the eddy current can be generated according to the magnetic flux generated by the current loop, and the parasitic inductance can be generated for the current of any frequency. Can be made smaller.
  • FIG. 1 is a schematic view for illustrating the configuration of the multilayer capacitor in accordance with a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the first embodiment of the present invention is mounted. It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor which concerns on Embodiment 1 of this invention. It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor of comparison object.
  • FIG. 7 is a schematic diagram for illustrating the configuration of the multilayer capacitor in accordance with Embodiment 2 of the present invention.
  • FIG. 7 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with Embodiment 2 of the present invention.
  • FIG. 10 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the third embodiment of the present invention is mounted.
  • FIG. 7 is a schematic diagram for illustrating the configuration of the multilayer capacitor in accordance with Embodiment 3 of the present invention.
  • FIG. 13 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with Embodiment 3 of the present invention. It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor which concerns on Embodiment 3 of this invention.
  • FIG. 13 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with the fourth embodiment of the present invention. It is the schematic for demonstrating the structure of the multilayer capacitor which concerns on Embodiment 5 of this invention.
  • FIG. 18 is a schematic diagram for illustrating the shape of the internal electrode of the first block of the multilayer capacitor in accordance with Embodiment 5 of the present invention.
  • FIG. 16 is a schematic diagram for illustrating the shape of the internal electrode of the second block of the multilayer capacitor in accordance with Embodiment 5 of the present invention.
  • FIG. 21 is a schematic diagram for illustrating the shape of the internal electrode of the third block of the multilayer capacitor in accordance with Embodiment 5 of the present invention.
  • FIG. 8 is a schematic view for explaining the configuration of the multilayer capacitor in accordance with the modification of the present invention.
  • FIG. 1 is a schematic diagram for explaining the configuration of the multilayer capacitor 10 in accordance with the first embodiment of the present invention.
  • 1 (a) is a plan view of the multilayer capacitor 10 viewed from the surface on which the external electrodes 4 and 5 are formed
  • FIG. 1 (b) is a cross-sectional view of the multilayer capacitor 10.
  • the multilayer capacitor 10 shown in FIG. 1 is a multilayer ceramic capacitor, in which a plurality of internal electrodes 1 and 2 for obtaining capacitance and dielectric ceramic layers 3 are alternately stacked. That is, the laminated body is configured by alternately laminating the internal electrode 1 (first internal electrode) and the internal electrode 2 (second internal electrode) with the dielectric ceramic layer 3 interposed therebetween.
  • the stacked internal electrodes 1 and 2 are alternately drawn out at one end and the other end of the multilayer capacitor 10.
  • the internal electrodes 1 and 2 drawn out to the respective end portions are connected to external electrodes 4 and 5 provided to the respective end portions of the multilayer capacitor 10. That is, the external electrode 4 (first external electrode) is formed at one end (first side surface) of the laminate, and the external electrode 5 (second external electrode) is a laminate of the one facing the one end. It is formed at the other end (second side surface).
  • the multilayer capacitor 10 includes the internal electrode 6 (third internal electrode) not electrically connected to the external electrode 4 and the external electrode 5 as shown on the upper side of the laminated body shown in FIG. They are respectively provided on the upper side of the upper layer and the lower side (lower side of the lowermost layer of the internal electrode 2).
  • the internal electrode 6 may be provided on one of the upper side and the lower side of the laminate.
  • the internal electrode 6 is provided at a position where an eddy current is generated by the current flowing between the external electrode 4 and the external electrode 5, and the external electrode electrically connected from the outside of the laminate is not provided. That is, the internal electrode 6 can not supply current from the outside. Further, in the internal electrode 6, since the eddy current is generated by the magnetic flux generated in the current loop flowing between the external electrode 4 and the external electrode 5, the magnetic flux by the current loop and the magnetic flux by the eddy current cancel each other to reduce the parasitic inductance. can do.
  • the internal electrode 6 is a plate-like electrode, it is not restricted by the size of the current path if in the plane of the electrode, and an eddy current can be generated in accordance with the magnetic flux generated by the current loop. That is, when the size is fixed as in the wiring pattern, the eddy current can be generated only when a current of a specific frequency flows in the current loop, but in the internal electrode 6, any frequency can be generated in the current loop The eddy current can be generated even if the current of Therefore, the multilayer capacitor 10 can reduce the parasitic inductance with respect to the current of any frequency by providing the internal electrode 6.
  • the multilayer capacitor 10 is formed, for example, by laminating a plurality of barium titanate ceramic green sheets (dielectric ceramic layer 3) on which an electrode pattern is formed by printing a conductive paste (Ni paste) by a screen printing method. It can be formed.
  • the internal electrode 6 is an electrode other than an electrode for forming a capacitance, but as shown in FIG. 1B, it is parallel to the internal electrodes 1 and 2 which are electrodes for forming a capacitance It is laminated on a laminate. Since the internal electrode 6 and the internal electrodes 1 and 2 are arranged in parallel, the magnetic flux generated by the current loop flowing through the internal electrodes 1 and 2 and the magnetic flux generated by the eddy current generated in the internal electrode 6 are more It is possible to cancel each other to make the parasitic inductance smaller. Of course, even if the internal electrode 6 and the internal electrodes 1 and 2 are not arranged in parallel, the multilayer capacitor 10 is arranged such that the magnetic flux generated by the current loop and the magnetic flux generated by the eddy current cancel each other. Any arrangement may be used.
  • the distance between the internal electrode 1 and the internal electrode 6 or the distance between the internal electrode 2 and the internal electrode 6 is the same as the distance between the internal electrode 1 and the internal electrode 2. That is, in the multilayer capacitor 10, the internal electrode 1, the internal electrode 2 and the internal electrode 6 are laminated at equal intervals. Therefore, the internal electrode 6 can be formed in the same process as the internal electrodes 1 and 2 and the manufacture becomes easy. Of course, in the multilayer capacitor 10, the distance between the internal electrode 1 and the internal electrode 6 or the distance between the internal electrode 2 and the internal electrode 6 may be shorter than the distance between the internal electrode 1 and the internal electrode 2.
  • the thickness of the internal electrode 6 (up and down direction in FIG. 1B) is made as large as possible in the range included in the dielectric ceramic layer 3. By thickening the internal electrode 6, a large eddy current can be generated in accordance with the magnetic flux generated by the current loop.
  • the electrode material of the internal electrode 6 is the same as the electrode material of the internal electrode 1 and the internal electrode 2.
  • the electrode material of the internal electrode 6 is the same as the electrode material of the internal electrode 1 and the internal electrode 2, for example, a conductive paste (Ni paste). Therefore, the internal electrode 6 can be formed in the same process as the internal electrodes 1 and 2 and the manufacture becomes easy.
  • the electrode material of the internal electrode 6 may be different from the electrode material of the internal electrode 1 and the internal electrode 2.
  • FIG. 2 is a circuit diagram of a circuit module on which the multilayer capacitor 10 according to the first embodiment of the present invention is mounted.
  • one electrode of the multilayer capacitor 10 and the switching element S1 are connected by the VDD wiring V
  • the switching element S1 and the switching element S2 are connected by the intermediate wiring N
  • the switching element S2 and the multilayer capacitor The other electrode 10 is connected by the GND wiring G.
  • FIG. 3 is a schematic diagram for explaining the configuration of a circuit module 100 on which the multilayer capacitor in accordance with the first embodiment of the present invention is mounted.
  • 3A shows a plan view of the circuit module 100 as viewed from the surface on which the multilayer capacitor 10 is mounted
  • FIG. 3B shows a cross-sectional view of the circuit module 100.
  • the switching elements S1 and S2 and the multilayer capacitor 10 are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20.
  • the GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20 as shown in FIG. 3B. There is. Therefore, in the circuit module 100, a current loop R as shown by the arrow in FIG. 3 (b) is formed.
  • a current loop R flowing inside the multilayer capacitor 10 generates a magnetic flux penetrating from the back to the front of FIG. 3B.
  • An eddy current P is generated in the internal electrode 6 by the magnetic flux generated by the current loop R.
  • the eddy current P flows in the direction opposite to the current direction of the current loop R, and the eddy current P generates a magnetic flux in the opposite direction which penetrates from the front to the back of FIG. 3B. Therefore, in the circuit module 100, the magnetic flux due to the current loop R and the magnetic flux due to the eddy current P cancel each other, and the parasitic inductance can be reduced.
  • FIG. 4 is a schematic diagram for explaining the configuration of a circuit module 100z on which multilayer capacitors to be compared are mounted.
  • 4 (a) is a plan view of the circuit module 100z as viewed from the surface on which the multilayer capacitor is mounted
  • FIG. 4 (b) is a cross-sectional view of the circuit module 100z.
  • the switching elements S1 and S2 and the multilayer capacitor 10z are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20.
  • the GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20, as shown in FIG. 4B. There is.
  • the multilayer capacitor 10 z does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P is not generated by the magnetic flux generated by the current loop R. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R.
  • the circuit module 100 shown in FIG. 3 (b) Comparing the circuit module 100 shown in FIG. 3 (b) with the circuit module 100z shown in FIG. 4 (b), the circuit module 100 shown in FIG. 3 (b) is provided with the internal electrode 6, so the internal electrode An eddy current P is generated at 6 and a magnetic flux due to the eddy current P is generated.
  • the circuit module 100 shown in FIG. 3 since the magnetic flux due to the eddy current P offsetting the magnetic flux generated by the current loop R is generated as compared with the circuit module 100z shown in FIG. Can. That is, in the circuit module 100 shown in FIG. 3, in consideration of the current flowing inside the multilayer capacitor 10, the internal electrode 6 for generating the eddy current P is provided in the multilayer body to reduce the parasitic inductance.
  • the circuit module 100 includes the multilayer capacitor 10 and the substrate 20 on which the multilayer capacitor 10 is mounted. Furthermore, in the multilayer capacitor 10, the internal electrode 6 is provided at a position where an eddy current is generated by the current flowing between the external electrode 4 and the external electrode 5. The internal electrode 6 is not further provided with an external electrode electrically connected from the outside of the laminate. Further, the substrate 20 is provided with a wire that allows current to flow between the external electrodes 4 and 5 when the multilayer capacitor 10 is mounted.
  • the internal electrode 6 generating eddy current is provided in the multilayer body, so that the magnetic flux due to the eddy current and the multilayer capacitor The magnetic flux due to the current loop of the current path flowing inside the can cancel each other to reduce the parasitic inductance. Further, in the circuit module 100 according to the first embodiment, since the eddy current is generated not in the wiring pattern but in the internal electrode 6, the eddy current can be generated in accordance with the magnetic flux generated by the current loop. The parasitic inductance can be reduced with respect to the current of
  • FIG. 5 is a schematic diagram for explaining the configuration of the multilayer capacitor 10b according to the second embodiment of the present invention.
  • 5 (a) is a plan view of the multilayer capacitor 10b viewed from the surface on which the external electrodes 4 and 5 are formed
  • FIG. 5 (b) is a front view of the multilayer capacitor 10b viewed from the laminating direction. It shows.
  • FIG. 5A the external electrodes 4 and 5 are shown by broken lines in order to explain the arrangement of the internal electrodes 1, 2 and 6.
  • the multilayer capacitor 10b shown in FIG. 5 (a) is a multilayer ceramic capacitor, in which a plurality of internal electrodes 1 and 2 for obtaining capacitance and dielectric ceramic layers 3 are alternately stacked in the horizontal direction in the figure. ing. That is, the laminated body is configured by alternately laminating the internal electrode 1 (first internal electrode) and the internal electrode 2 (second internal electrode) with the dielectric ceramic layer 3 interposed therebetween. Furthermore, in the multilayer capacitor 10 b, the internal electrode 6 is laminated between the internal electrode 1 and the internal electrode 2.
  • FIG. 6 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10b according to the second embodiment of the present invention.
  • FIG. 6A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided.
  • the internal electrode 1 has the lead-out electrode part 1a of width a and height h as shown to Fig.6 (a).
  • An external electrode 4 electrically connected to the lead electrode portion 1a is formed on the surface of the multilayer capacitor 10b from which the lead electrode portion 1a is drawn.
  • FIG. 6B a layer provided with an internal electrode 6 which is an electrode other than an electrode for forming a capacitance is illustrated.
  • the internal electrode 6 is an electrode having a width x and a height y as shown in FIG. 6 (b).
  • the internal electrodes 6 are provided at positions not overlapping with the lead-out electrode portion 1a as viewed from the stacking direction.
  • capacitance in FIG.6 (c) is shown in figure.
  • the internal electrode 2 has the lead-out electrode part 2a of width b and height h as shown in FIG.6 (c).
  • the lead-out electrode portions 2a are stacked as shown in FIG. 5B, the lead-out electrode portions 2a are provided at positions not overlapping with the lead-out electrode portions 1a and the internal electrodes 6 when viewed in the stacking direction.
  • An external electrode 5 electrically connected to the lead electrode portion 2a is formed on the surface of the multilayer capacitor 10b from which the lead electrode portion 2a is drawn.
  • the internal electrodes 1 and 2 to be laminated are alternately drawn out at one end and the other end of the multilayer capacitor 10b.
  • the internal electrode 6 to be laminated is provided in the middle of the multilayer capacitor 10b sandwiched between the internal electrodes 1 and 2.
  • the internal electrode 1 drawn out at one end is connected to the external electrode 4 provided at one end of the multilayer capacitor 10b, and the internal electrode 2 drawn out at the other end is the other side of the multilayer capacitor 10b. It is connected to the external electrode 5 provided at the end of the. That is, the internal electrode 6 is formed on the same surface side of the laminate in which the external electrode 4 (first external electrode) and the external electrode 5 (second external electrode) are formed.
  • the extraction electrode portion 1a is a portion not facing the internal electrode 2 in the internal electrode 1
  • the extraction electrode portion 2a is a portion not facing the internal electrode 1 in the internal electrode 2 (see FIG. b) see).
  • the internal electrode 6 is formed in the dielectric ceramic layer 3 so as to be stacked in parallel with the electrode surface of the internal electrodes 1 and 2.
  • the material and thickness thereof (vertical direction in the drawing of FIG. 5A) are the same as the internal electrodes 1 and 2. Since the internal electrode 6 and the internal electrodes 1 and 2 are arranged in parallel, the internal electrode 6 can be adjusted to the magnetic flux generated by the current loop flowing between the external electrodes 4 and 5 via the internal electrodes 1 and 2. Large eddy currents can be generated.
  • indicates the gap between the lead-out electrode portions 1a and 2a and the internal electrode 6, and it is possible to secure a sufficient distance such that the lead-out electrode portions 1a and 2a and the inner electrode 6 do not short. It is a value.
  • the reason that the height y of the internal electrode 6 is the same as the height h of the lead-out electrode portions 1a and 2a is to prevent the internal electrode 6 and the internal electrodes 1 and 2 from overlapping to form a capacitance.
  • a gap is generated between the internal electrode 6 and the internal electrodes 1 and 2 to prevent a magnetic flux from being generated in the gap to form a parasitic inductance.
  • the internal electrodes 6 are stacked on the laminate at an equal interval of 1 per internal electrode 1 and 2. With such a stacking relationship, the distance A between the internal electrode 1 and the adjacent internal electrode 1 or the distance A between the internal electrode 2 and the adjacent internal electrode 2 is greater than when the internal electrode 6 is not provided. It becomes long (see FIG. 5 (a)).
  • the rate at which the internal electrodes 6 are stacked is not limited to the above ratio.
  • the internal electrodes 6 are stacked in the laminate at an equal ratio of one to two each of the internal electrodes 1 and 2 You may
  • FIG. 7 is a schematic diagram for describing a configuration of a circuit module 100b mounting the multilayer capacitor in accordance with the second embodiment of the present invention.
  • 7 (a) is a plan view of the circuit module 100b as viewed from the surface on which the multilayer capacitor 10b is mounted
  • FIG. 7 (b) is a cross-sectional view of the circuit module 100b.
  • the switching elements S1 and S2 and the multilayer capacitor 10b are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20.
  • the GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20, as shown in FIG. 7B. There is. Therefore, in the circuit module 100b, a current loop R2 as shown by the arrow in FIG. 7B is formed.
  • the current loop R2 flowing inside the multilayer capacitor 10b generates a magnetic flux penetrating from the back to the front of FIG. 7B.
  • An eddy current P2 is generated in the internal electrode 6 by the magnetic flux generated by the current loop R2.
  • a current flows in the opposite direction to the current direction of the current loop R2, and the eddy current P2 generates a magnetic flux in the opposite direction which penetrates from the front to the back of FIG. 7B by the eddy current P2. Therefore, in the circuit module 100b, the magnetic flux due to the current loop R2 and the magnetic flux due to the eddy current P2 cancel each other, and the parasitic inductance can be reduced.
  • FIG. 8 is a schematic diagram for illustrating the configuration of a circuit module 100x mounting the multilayer capacitor to be compared.
  • 8 (a) is a plan view of the circuit module 100x as viewed from the surface on which the multilayer capacitor is mounted
  • FIG. 8 (b) is a cross-sectional view of the circuit module 100x.
  • the switching elements S1 and S2 and the multilayer capacitor 10x are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20.
  • the GND wires G provided at both ends of the substrate 20 are connected by the wires formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20 as shown in FIG. 8B. There is.
  • the multilayer capacitor 10 x does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P2 is not generated by the magnetic flux generated by the current loop R2. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R2.
  • the circuit module 100b shown in FIG. 7 (b) Comparing the circuit module 100b shown in FIG. 7 (b) with the circuit module 100x shown in FIG. 8 (b), the circuit module 100b shown in FIG. An eddy current P2 is generated at 6 and a magnetic flux is generated by the eddy current P2. As a result, in the circuit module 100b shown in FIG. 7, a magnetic flux is generated due to the eddy current P2 that offsets the magnetic flux generated by the current loop R2 compared to the circuit module 100x shown in FIG. Can. That is, in the circuit module 100b shown in FIG. 7, in consideration of the current flowing inside the multilayer capacitor 10b, the internal electrode 6 for generating the eddy current P2 is provided in the multilayer body to reduce the parasitic inductance.
  • the multilayer capacitor 10b there is a gap B between the lead electrode portions 1a and 2a and the internal electrode 6 as shown in FIG. 5 (b). Therefore, when the multilayer capacitor 10b is mounted on the herb bridge circuit as shown in FIG. 7B, the current indicated by the arrow of the current loop R2 flows around the gap B in the multilayer capacitor 10b, and the current flows A magnetic flux T is generated in the direction of penetrating the gap B (see FIG. 5A).
  • multilayer capacitor 10 b has lead electrode portion 1 a (first lead portion) for connecting internal electrode 1 to external electrode 4 in a portion where internal electrode 1 does not face internal electrode 2. It has a lead-out electrode portion 2a (second lead-out portion) for connecting to the external electrode 5 in a portion where the internal electrode 2 does not face the internal electrode 1. Furthermore, in the multilayer capacitor 10b, the internal electrode 6 is laminated on the layer of the laminated body between the internal electrode 1 and the internal electrode 2, and viewed from the laminating direction, between the lead electrode portion 1a and the lead electrode portion 2a. And, it is disposed at a position not overlapping the internal electrode 1 and the internal electrode 2.
  • the internal electrode 6 that generates an eddy current is provided in the multilayer body, so that the magnetic flux due to the eddy current and the multilayer capacitor The magnetic flux due to the current loop of the current path flowing inside the can cancel each other to reduce the parasitic inductance.
  • the eddy current since the eddy current is generated not in the wiring pattern but in the internal electrode 6, the eddy current can be generated in accordance with the magnetic flux generated by the current loop.
  • the parasitic inductance can be reduced with respect to the current of
  • the configuration in which the internal electrode 6 is disposed between the lead-out electrode portion 1a and the lead-out electrode portion 2a as viewed from the stacking direction explained.
  • the arrangement of the internal electrodes 6 is not limited to between the lead electrode portion 1a and the lead electrode portion 2a. Therefore, in the third embodiment of the present invention, the configuration in which the internal electrode 6 is formed on the surface of the laminate facing the surface of the laminate on which the external electrode 4 and the external electrode 5 are formed will be described.
  • the multilayer capacitor according to the third embodiment is not the half bridge circuit shown in FIG. 2, but two switching elements on the high side, two switching elements on the low side, and one multilayer capacitor in series. It is possible to implement in the connected half bridge circuit.
  • FIG. 9 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the third embodiment of the present invention is mounted.
  • one electrode of the multilayer capacitor 10c and the switching element S1 are connected by the VDD wiring V, and the switching element S1 and the switching element S2 are connected by the wiring N1.
  • the switching element S2, the switching element S3, and the wiring N1 are connected by the intermediate wiring N, the switching element S3 and the switching element S4 are connected by the wiring N2, and the switching element S4 and the multilayer capacitor 10c.
  • the other electrode of is connected by the GND wiring G.
  • FIG. 10 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10c according to the third embodiment of the present invention.
  • 10 (a) is a plan view of the multilayer capacitor 10c viewed from the surface on which the external electrodes 4 and 5 are formed
  • FIG. 10 (b) is a front view of the multilayer capacitor 10c viewed from the stacking direction. It shows.
  • FIG. 11 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10c in accordance with the third preferred embodiment of the present invention.
  • the same components as those in the multilayer capacitor 10b shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the detailed description will not be repeated.
  • FIG. 10A the external electrodes 4 and 5 are shown by broken lines in order to explain the arrangement of the internal electrodes 1, 2 and 6.
  • FIG. 11A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided.
  • the internal electrode 1 is formed on the opposite side of the side on which the lead electrode portion 1a is formed from the inside by a height l from the surface of the laminate.
  • FIG. 11B a layer provided with an internal electrode 6 which is an electrode other than an electrode for forming a capacitance is illustrated.
  • the internal electrode 6 is an electrode having a width x1 and a height y1 formed on the lower side in the drawing of the laminate as shown in FIG. 11 (b).
  • 11C shows a layer on which the internal electrode 2 which is an electrode for forming a capacitance is provided.
  • the internal electrode 2 is formed on the opposite side of the side on which the lead electrode portion 2a is formed from the inside by a height l from the surface of the laminate.
  • the internal electrode 6 (third internal electrode) is formed on the surface side of the laminate facing the surface of the laminate on which the external electrode 4 (first external electrode) and the external electrode 5 (second external electrode) are formed. ing.
  • the internal electrode 6 is formed in the dielectric ceramic layer 3 so as to be stacked in parallel with the electrode surface of the internal electrodes 1 and 2, and its material and thickness (vertical direction in the drawing of FIG. 10A) Are the same as the internal electrodes 1 and 2.
  • the arrangement of the internal electrode 6 and the internal electrodes 1 and 2 in parallel causes a current flowing through the internal electrode 6 and a current loop flowing between the external electrodes 4 and 5 through the internal electrodes 1 and 2.
  • a large eddy current can be generated in accordance with the magnetic flux.
  • the reason that the height y1 of the internal electrode 6 is the same as the height l is to prevent the internal electrode 6 and the internal electrodes 1 and 2 from overlapping to form a capacitance, and the internal electrode 6 and the internal A gap is generated between the electrodes 1 and 2 to prevent a magnetic flux from being generated in the gap to form a parasitic inductance.
  • the internal electrode 6 may be configured as one electrode or divided into a plurality of components.
  • the width x1 is x1 ⁇ c, the longer the distance between the internal electrodes 1, 2 and the internal electrode 6 becomes longer, the magnetic flux due to the current flowing through the internal electrodes 1, 2 and the vortex flowing into the internal current 6 Since the effect of the magnetic flux due to the current mutually cancels out, from the viewpoint of the effect, the width x1 is preferably x1 ⁇ c.
  • FIG. 12 is a schematic diagram for illustrating the configuration of a circuit module 100c on which the multilayer capacitor 10c according to the third embodiment of the present invention is mounted.
  • 12 (a) is a schematic diagram for explaining the configuration of the circuit module 100c
  • FIG. 12 (b) is a schematic diagram for explaining the configuration of the circuit module 100w on which the multilayer capacitor to be compared is mounted. Respectively.
  • the multilayer capacitor 10c is embedded in the substrate 20, and the VDD wiring V, the wirings N1 and N2, and the GND wiring G formed on the surface of the substrate 20 have switching elements S1 and S4 respectively. It is connected. Further, in the circuit module 100c, the switching elements S2 and S3 are connected to the wirings N1 and N2 and the middle wiring N formed on the back surface of the substrate 20, respectively.
  • the wirings N1 and N2 provided at both ends of the substrate 20 are, as shown in FIG. 12A, the wirings N1 and N2 formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20. Connected to each other. Therefore, in the circuit module 100c, a current loop R3 as shown by an arrow in FIG. 12A is formed.
  • a magnetic flux penetrating from the back to the front of FIG. 12A is generated by the current loop R3 flowing inside the multilayer capacitor 10c.
  • An eddy current P3 is generated in the internal electrode 6 by the magnetic flux generated by the current loop R3.
  • a current flows in the eddy current P3 in the direction opposite to the current direction of the current loop R3, and the eddy current P3 generates a magnetic flux in the opposite direction penetrating from the front to the back of FIG. Therefore, in the circuit module 100c, the magnetic flux due to the current loop R3 and the magnetic flux due to the eddy current P3 cancel each other, and the parasitic inductance can be reduced.
  • the multilayer capacitor 10w is embedded in the substrate 20, and the VDD wiring V, the wirings N1, N2 and the GND wiring G formed on the surface of the substrate 20 are switching elements S1 and S4, respectively. It is connected. Further, in the circuit module 100 w, the switching elements S 2 and S 3 are respectively connected to the wirings N 1 and N 2 and the middle wiring N formed on the back surface of the substrate 20.
  • the wirings N1 and N2 provided at both ends of the substrate 20 are, as shown in FIG. 12B, the wirings N1 and N2 formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20. Connected to each other.
  • the multilayer capacitor 10 w does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P3 is not generated by the magnetic flux generated by the current loop R3. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R3.
  • the circuit module 100c shown in FIG. 12 (a) Comparing the circuit module 100c shown in FIG. 12 (a) with the circuit module 100w shown in FIG. 12 (b), the circuit module 100c shown in FIG. An eddy current P3 is generated at 6 and a magnetic flux is generated by the eddy current P3.
  • a magnetic flux due to the eddy current P3 that cancels out the magnetic flux generated by the current loop R3 is generated as compared to the circuit module 100w shown in FIG. Parasitic inductance can be reduced. That is, in the circuit module 100c shown in FIG. 12A, in consideration of the current flowing inside the multilayer capacitor 10c, the internal electrode 6 for generating the eddy current P3 is provided in the multilayer body to reduce the parasitic inductance.
  • the internal electrode 6 is formed on the surface of the laminate facing the surface of the laminate on which the external electrode 4 and the external electrode 5 are formed. Therefore, in the multilayer capacitor 10c, the capacitor itself can be embedded in the substrate to make it easy to use, and the internal electrode 6 can be formed without being restricted by the shapes of the lead electrode portions 1a and 2a.
  • Embodiment 4 In the multilayer capacitor 10b according to the second embodiment, as shown in FIG. 5A, the distance A between the internal electrode 1 and the adjacent internal electrode 1 or the distance A between the internal electrode 2 and the adjacent internal electrode 2 is internal It became long by having provided the electrode 6.
  • the external electrodes 4 and 5 When forming the external electrodes 4 and 5 in the plating step, when the distance A is long, the lead electrode portions 1a of the plurality of internal electrodes 1 and the lead electrode portions 2a of the plurality of internal electrodes 2 are plated. It is difficult to form the external electrodes 4 and 5 so as to short. Therefore, in the fourth embodiment of the present invention, a configuration in which a dummy electrode is formed to shorten the distance between the internal electrodes forming the external electrodes 4 and 5 will be described.
  • FIG. 13 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10d according to the fourth embodiment of the present invention.
  • 13 (a) is a plan view of the multilayer capacitor 10d viewed from the surface on which the external electrodes 4 and 5 are formed
  • FIG. 13 (b) is a front view of the multilayer capacitor 10d viewed from the stacking direction. It shows.
  • FIG. 14 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10d in accordance with the fourth embodiment of the present invention.
  • the same components as those in the multilayer capacitor 10b shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the detailed description will not be repeated.
  • FIG. 13A in order to explain the arrangement of the internal electrodes 1, 2, 6, the external electrodes 4, 5, 7 are shown by broken lines.
  • FIG. 14A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided.
  • the internal electrode 1 has an extraction electrode portion 1a on the left side of the drawing of FIG. 14 (a).
  • the dummy electrode 2b is provided at a position corresponding to the lead-out electrode portion 2a of the layer in which the internal electrode 2 is provided (right side in the drawing of FIG.
  • the lead-out electrode portion 1 a is electrically connected to the internal electrode 1, but the dummy electrode 2 b is not electrically connected to the internal electrode 1.
  • the external electrode 5 is formed on the dummy electrode 2b.
  • FIG. 14B shows a layer on which the internal electrode 6, which is an electrode other than the electrode for forming a capacitance, is provided.
  • FIG. 14C shows a layer on which the internal electrode 2 is provided, which is an electrode for forming a capacitance.
  • the internal electrode 2 has an extraction electrode portion 2a on the right side of the drawing of FIG. 14 (c).
  • the dummy electrode 1b is provided at a position corresponding to the lead-out electrode portion 1a of the layer in which the internal electrode 1 is provided (left side in the drawing of FIG. 14C).
  • the extraction electrode portion 2 a is electrically connected to the internal electrode 2
  • the dummy electrode 1 b is not electrically connected to the internal electrode 2.
  • the external electrode 4 is formed on the dummy electrode 1 b.
  • the external electrode 4 is formed by forming the dummy electrode 1b, even if the distance A between the internal electrode 1 and the adjacent internal electrode 1 is the same.
  • the distance C between the lead-out electrode portion 1a and the dummy electrode 1b becomes shorter than the distance A.
  • the lead-out electrode portion 2a and the dummy electrode in which the external electrode 5 is formed even if the distance A between the internal electrode 2 and the adjacent internal electrode 2 is the same.
  • the distance C to 2 b is shorter than the distance A.
  • the dummy electrode 1b and the lead-out electrode portion 1a, and the dummy electrode 2b and the lead-out electrode portion 2a at a distance C shorter than the distance A are shorted by plating. It becomes easy to form.
  • the multilayer capacitor 10d according to the fourth embodiment is provided at a position corresponding to the lead electrode portion 2a of the layer in which the internal electrode 1 is laminated, and is a dummy electrode 2b (first electrode isolated from the internal electrode 1).
  • a dummy electrode) and a dummy electrode 1 b (second dummy electrode) provided at a position corresponding to the extraction electrode portion 1 a of the layer in which the internal electrode 2 is laminated and insulated from the internal electrode 2.
  • the dummy electrodes 1b and 2b are formed, whereby the internal electrodes 1 and 2 shown in FIG. 5 and the dielectric ceramic layer 3 are alternately stacked in the horizontal direction in the figure.
  • the dummy electrode 1b and the lead-out electrode portions 1a, and the dummy electrode 2b and the lead-out electrode portion 2a are shorted by plating, the external electrodes 4 and 5 can be easily formed.
  • FIG. 15 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10e according to the fifth embodiment of the present invention.
  • 15 (a) is a plan view of the multilayer capacitor 10e as viewed from the surface on which the external electrodes 4 and 5 are formed
  • FIG. 15 (b) is a front view of the multilayer capacitor 10e as viewed from the laminating direction. It shows.
  • the same components as those in the multilayer capacitor 10b shown in FIG. 5 are designated by the same reference numerals and their detailed description will not be repeated.
  • the shapes of the internal electrodes are made different by dividing into several blocks.
  • the internal electrodes 1, 2, and 6 may have different shapes by being divided into three blocks (first block B1 to third block B3). I'm sorry.
  • the gap B penetrating in the stacking direction as shown in FIG. 5B does not occur (see FIG. 15B).
  • FIG. 16 is a schematic diagram for illustrating the shape of the internal electrode of the first block B1 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention.
  • FIG. 17 is a schematic diagram for illustrating the shape of the internal electrode of the second block B2 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention.
  • FIG. 18 is a schematic diagram for illustrating the shape of the internal electrode of the third block B3 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention.
  • the same components as those of the internal electrode shown in FIG. 6 are designated by the same reference numerals and their detailed description will not be repeated.
  • the internal electrode 1 of the first block B1 has a shape in which the width of the lead electrode portion 1a is wide as shown in FIG. 16 (a).
  • the internal electrode 2 of the first block B1 has a shape in which the width of the lead-out electrode portion 2a is wide. Therefore, as shown in FIG. 16B, the internal electrode 6 of the first block B1 is sandwiched between the wide lead-out electrode part 1a and the lead-out electrode part 2a, and has a narrow width.
  • FIG. 16 (d) is a view in which the internal electrodes of FIGS. 16 (a) to 16 (c) are overlapped.
  • the internal electrode 1 of 2nd block B2 is a shape where the width
  • the internal electrode 2 of the second block B2 has a shape in which the width of the lead-out electrode portion 2a is narrow.
  • the internal electrode 6 of the second block B2 has a narrow width as shown in FIG. 17 (b).
  • FIG. 17 (d) is a diagram in which the internal electrodes of FIGS. 17 (a) to 17 (c) are overlapped.
  • the internal electrode 1 of 3rd block B3 is a shape where the width
  • the internal electrode 2 of the third block B3 has a shape in which the width of the lead-out electrode portion 2a is narrow. Therefore, as shown in FIG. 18B, the internal electrode 6 of the third block B3 is sandwiched between the narrow lead-out electrode 1a and the lead-out electrode 2a, and has a wide width.
  • FIG. 18 (d) is a diagram in which the internal electrodes of FIGS. 18 (a) to 18 (c) are overlapped.
  • the multilayer capacitor 10e by laminating the first block B1 to the third block B3 in the order shown in FIG. 15A, the magnetic flux does not penetrate between the lead electrode portions 1a and 2a and the internal electrode 6 In addition, the conductor is disposed at a position perpendicular to the magnetic flux.
  • the multilayer capacitor 10e an example has been described in which the shapes of the internal electrodes 1, 2, and 6 in each block (the first block B1 to the third block B3) are divided into a plurality of blocks.
  • the multilayer capacitor may have a plurality of different shapes in each of the shapes of the extraction electrode portions 1 a and 2 a and the internal electrode 6.
  • the internal electrode 1 has a wide and narrow shape of the lead electrode portion 1a
  • the internal electrode 2 has a wide and narrow shape of the lead electrode portion 2a
  • the internal electrode 6 has a wide width
  • Each has a wide shape and a narrow shape. That is, by combining the internal electrodes having different shapes, it is possible to arrange the conductor at a position perpendicular to the magnetic flux so that the magnetic flux can not penetrate between the lead-out electrode portions 1a and 2a and the internal electrode 6 Good.
  • the multilayer capacitor 10e according to the fifth embodiment has different shapes from the plurality of internal electrodes 1 having different shapes of the lead electrode portion 1a and the plurality of inner electrodes 2 having different shapes of the lead electrode portion 2a.
  • a plurality of internal electrodes 6 are stacked in combination. Therefore, in the multilayer capacitor 10e, a conductor perpendicular to the magnetic flux can be disposed so that the magnetic flux does not penetrate between the lead-out electrode portions 1a and 2a and the internal electrode 6.
  • an eddy current is generated in the conductor due to the magnetic flux.
  • the generated eddy current generates a magnetic flux in the opposite direction to the magnetic flux penetrating between the lead-out electrode portions 1 a and 2 a and the internal electrode 6, thereby canceling out the magnetic flux and reducing the parasitic inductance.
  • the dielectric constant of the dielectric layer sandwiched between the internal electrodes 1, 2 and the dielectric layer interposed between the internal electrodes 1, 2 and the internal electrode 6 was described as being the same as the
  • the present invention is not limited to this, and in the multilayer capacitor, the dielectric constant of the dielectric layer sandwiched between the internal electrode 6 and the internal electrodes 1 and 2 is the permittivity of the dielectric layer sandwiched between the internal electrodes 1 and 2 It may be configured to be smaller than.
  • FIG. 19 is a schematic diagram for explaining the configuration of the multilayer capacitor in accordance with the modification of the present invention.
  • the multilayer capacitor 10f shown in FIG. 19 (a) has substantially the same configuration as the multilayer capacitor 10 shown in FIG. 1 (b).
  • multilayer capacitor 10 f has a dielectric constant higher than dielectric ceramic layer 3 a sandwiched between internal electrodes 1 and 2 between internal electrode 6 and internal electrode 1 and between internal electrode 6 and internal electrode 2. The difference is that the small dielectric layer 3b is sandwiched.
  • the configuration other than the dielectric layer 3b is the same as the configuration of the multilayer capacitor 10 shown in FIG. 1B, and therefore the detailed description will not be repeated.
  • the multilayer capacitor 10g shown in FIG. 19 (b) has substantially the same configuration as the multilayer capacitor 10b shown in FIG. 5 (b). However, the multilayer capacitor 10g has a smaller dielectric constant than the dielectric ceramic layer 3a sandwiched between the internal electrodes 1 and 2 between the internal electrodes 6 and the lead-out electrode portions 1a and 2a of the internal electrodes 1 and 2. It differs in that it sandwiches the body layer 3b. In multilayer capacitor 10g, the configuration other than dielectric layer 3b is the same as the configuration of multilayer capacitor 10b shown in FIG. 5 (b), and therefore the detailed description will not be repeated.
  • the multilayer capacitor 10h shown in FIG. 19 (c) has substantially the same configuration as the multilayer capacitor 10c shown in FIG. 10 (b). However, multilayer capacitor 10 h has a point in which dielectric layer 3 b having a smaller dielectric constant than dielectric ceramic layer 3 a sandwiched between internal electrodes 1 and 2 is interposed between internal electrode 6 and internal electrodes 1 and 2. It is different. In multilayer capacitor 10h, the configuration other than dielectric layer 3b is the same as the configuration of multilayer capacitor 10c shown in FIG. 10 (b), and therefore the detailed description will not be repeated.
  • the parasitic capacitance formed between the internal electrodes 1 and 2 and the internal electrode 6 can be reduced by reducing the dielectric constant of the dielectric layer 3b.
  • the parasitic capacitance is large, there is a problem that when the circuit module including the multilayer capacitors 10f to 10h is operated, charging and discharging to the parasitic capacitance occur to increase the power loss.
  • the parasitic capacitances of the multilayer capacitors are formed in parallel to the switching elements S1 and S2. Therefore, charging and discharging to the parasitic capacitance occur each time the switching elements S1 and S2 perform switching. Therefore, in the multilayer capacitors 10f to 10h, the above problem can be solved by reducing the parasitic capacitance formed between the internal electrodes 1, 2 and the internal electrode 6.
  • the length of the internal electrode 6 is in the direction orthogonal to the laminating direction (left and right direction in FIG. 1B).
  • the length may be longer than the length facing the internal electrodes 1 and 2.
  • the internal electrode 6 is disposed inside the dielectric ceramic layer 3 in parallel to the electrode surface of the internal electrodes 1 and 2
  • the configuration formed by stacking has been described.
  • the present invention is not limited to this configuration, and the internal electrode 6 may be provided inside the dielectric ceramic layer 3 as long as it does not overlap the lead electrode portion 1 a and the lead electrode portion 2 a when viewed in the stacking direction. It may be shaped.
  • the internal electrode 6 may have a rectangular parallelepiped shape extending in the stacking direction between the extraction electrode portion 1 a and the extraction electrode portion 2 a. By making the shape of the internal electrode 6 into a rectangular solid (a lump of metal), the resistance value of the internal electrode 6 decreases, and eddy current easily flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

The present invention provides a multilayer capacitor in which, when mounted in a circuit module, a current that flows internally is taken into consideration, and a circuit module provided with the multilayer capacitor. The multilayer capacitor (10) of the present invention is provided with: a multilayer body in which internal electrodes (1) and internal electrodes (2) are alternately layered with a dielectric layer therebetween; an external electrode (4) electrically connected to the internal electrodes (1); an external electrode (5) electrically connected to the internal electrodes (2); and at least one internal electrode (6) which is layered on the multilayer body and not electrically connected to the external electrodes (4, 5). The internal electrode (6) is disposed in a position in which an eddy current is generated due to a current flowing between the external electrode (4) and the external electrode (5), and is not provided with an external electrode for electrical connection from the outside of the multilayer body.

Description

積層コンデンサおよび回路モジュールMultilayer capacitor and circuit module
 本発明は、積層コンデンサおよび回路モジュールに関する。 The present invention relates to a multilayer capacitor and a circuit module.
 電力を制御するため、基板にパワー素子の半導体素子や積層コンデンサなどを実装した回路モジュールが開発されている。回路モジュールでは、電源から電源ラインへ供給された電流が、電源ライン、半導体素子や積層コンデンサなどを通り、負荷へ出力される。回路モジュールでは、電源ラインの配線に流れる電流が大きいため、電流による磁界の影響、つまり、配線間に発生する寄生インダクタンスによる影響が問題となる。具体的な影響として、例えば、回路モジュールに実装した半導体素子をスイッチングさせた場合に、寄生インダクタンスによりサージ電圧が発生する。 In order to control power, circuit modules in which a semiconductor element of a power element, a multilayer capacitor, and the like are mounted on a substrate have been developed. In the circuit module, the current supplied from the power supply to the power supply line is output to the load through the power supply line, the semiconductor element, the multilayer capacitor, and the like. In the circuit module, since the current flowing through the wiring of the power supply line is large, the influence of the magnetic field due to the current, that is, the influence of the parasitic inductance generated between the wirings becomes a problem. As a specific influence, for example, when the semiconductor element mounted on the circuit module is switched, a surge voltage is generated due to the parasitic inductance.
 非特許文献1では、コンバータの回路モジュールにおいて、配線を流れる電流ループの寄生インダクタンスを小さくするため、基板のレイアウトと部品配置を変更している。具体的に、非特許文献1では、基板の表層にある配線のみで電流ループを形成する構成から、基板の表層にある配線と基板の中層にある配線とを使って電流ループを形成する構成に変更している。当該構成に変更することで、非特許文献1は、電流ループの面積を小さくすることができ、逆向きに電流が流れる対向する2つの配線間の距離を近づけることができる。そのため、非特許文献1では、それぞれの配線を流れる電流によって発生する磁束が互いに打ち消し合い、寄生インダクタンスを小さくすることができる。 In Non-Patent Document 1, in the circuit module of the converter, in order to reduce the parasitic inductance of the current loop flowing through the wiring, the layout of the substrate and the arrangement of components are changed. Specifically, in Non-Patent Document 1, the current loop is formed only by the wiring in the surface layer of the substrate, and the current loop is formed using the wiring in the surface layer of the substrate and the wiring in the middle layer of the substrate. It has changed. By changing the configuration, Non-Patent Document 1 can reduce the area of the current loop, and can reduce the distance between two opposing wires through which current flows in the reverse direction. Therefore, in Non-Patent Document 1, the magnetic fluxes generated by the currents flowing through the respective wires cancel each other, and the parasitic inductance can be reduced.
 また、特許文献1には、半導体素子および積層コンデンサを備えた回路モジュールが開示されており、基板の表層にある配線を流れる電流と裏面にある配線を流れる電流とが逆向きとなるように半導体素子および積層コンデンサを配置して実装してある。そのため、特許文献1では、基板の表層にある配線と裏面にある配線とを流れる電流が逆向きとなることで、電流によって発生する磁束が互いに打ち消し合い寄生インダクタンスを小さくしている。 Further, Patent Document 1 discloses a circuit module provided with a semiconductor element and a multilayer capacitor, and a semiconductor such that the current flowing through the wiring on the surface layer of the substrate and the current flowing through the wiring on the back surface are opposite. An element and a multilayer capacitor are disposed and mounted. Therefore, in Patent Document 1, the current flowing in the wiring on the surface layer of the substrate and the wiring on the back surface is in the opposite direction, and the magnetic flux generated by the current cancels each other to reduce the parasitic inductance.
 さらに、特許文献2では、コンデンサを実装した回路モジュールにおいて、電流経路に当該コンデンサを含む電流ループと、当該電流ループに対して平行かつ向かい合う配線パターンで形成した閉導体ループとを有している。そのため、特許文献2では、電流ループに対して閉導体ループが磁器結合することになり、コンデンサの寄生インダクタ成分である第1のインダクタと閉導体ループとが磁気的に大きな結合係数で結合することになり、コンデンサの寄生インダクタンスを小さくすることができる。 Furthermore, according to Patent Document 2, a circuit module mounting a capacitor includes a current loop including the capacitor in a current path, and a closed conductor loop formed by a wiring pattern parallel and opposite to the current loop. Therefore, in Patent Document 2, the closed conductor loop is coupled to the current loop in a ceramic manner, and the first inductor, which is a parasitic inductor component of the capacitor, is coupled to the closed conductor loop with a magnetically large coupling coefficient. Thus, the parasitic inductance of the capacitor can be reduced.
特開2016-207783号公報JP, 2016-207783, A 国際公開第2017/033950号International Publication No. 2017/033950
 しかし、非特許文献1では、基板のレイアウトと部品配置を最適にすることで電流ループを小さくして、逆向きに電流が流れる対向する2つの配線間の距離を近づけたものである。そのため、非特許文献1では、基板に実装された部品の内部を流れる電流について考慮されておらず、寄生インダクタンスを小さくことには限界があった。 However, in Non-Patent Document 1, the current loop is reduced by optimizing the layout of the substrate and the arrangement of components, and the distance between the two opposing wires through which the current flows in the opposite direction is reduced. Therefore, in Non-Patent Document 1, the current flowing inside the component mounted on the substrate is not considered, and there is a limit in reducing the parasitic inductance.
 また、特許文献1では、基板の表層にある配線を流れる電流と裏面にある配線を流れる電流とが逆向きとなるように、配線および部品配置を最適化して寄生インダクタンスを小さくしている。そのため、特許文献1でも、基板に実装された部品の内部を流れる電流について考慮されておらず、寄生インダクタンスを小さくことには限界があった。 Further, in Patent Document 1, the wiring and component layout are optimized to reduce the parasitic inductance so that the current flowing in the wiring in the surface layer of the substrate and the current flowing in the wiring in the back surface are opposite. Therefore, even in Patent Document 1, the current flowing in the inside of the component mounted on the substrate is not considered, and there is a limit to reducing the parasitic inductance.
 さらに、特許文献2では、電流経路にコンデンサを含む電流ループに対して、磁気結合させるための閉導体ループを構成することで、コンデンサの寄生インダクタンスを小さくしている。そのため、特許文献2では、コンデンサを電流経路に含む電流ループと閉導体ループとのインピーダンスの共振周波数を一致させなければ強い磁気結合が生じず、寄生インダクタンスを小さくすることができない問題があった。 Furthermore, in Patent Document 2, the parasitic inductance of the capacitor is reduced by configuring a closed conductor loop for magnetically coupling to a current loop including a capacitor in the current path. Therefore, in Patent Document 2, if the resonance frequency of the impedance of the current loop including the capacitor in the current path and the impedance of the closed conductor loop are not matched, strong magnetic coupling does not occur, and there is a problem that the parasitic inductance can not be reduced.
 そこで、本発明の目的は、回路モジュールに実装した場合に、内部を流れる電流を考慮した積層コンデンサおよび積層コンデンサを備える回路モジュールを提供する。 Therefore, an object of the present invention is to provide a multilayer capacitor and a circuit module including the multilayer capacitor in consideration of the current flowing inside when mounted in a circuit module.
 本発明の一形態に係る積層コンデンサは、誘電体層を挟んで第1内部電極と第2内部電極とが交互に積層された積層体と、第1内部電極に電気的に接続された第1外部電極と、第2内部電極に電気的に接続された第2外部電極と、積層体に積層され、第1外部電極および第2外部電極と電気的に接続されていない少なくとも1つ以上の第3内部電極とを備え、第3内部電極は、第1外部電極と第2外部電極との間に流れる電流により渦電流が発生する位置に設けられ、積層体の外側から電気的に接続する外部電極が設けられていない。 In the multilayer capacitor in accordance with an embodiment of the present invention, a multilayer body in which first internal electrodes and second internal electrodes are alternately stacked with a dielectric layer interposed therebetween, and a first electrically connected to the first internal electrodes At least one or more first electrodes stacked on the laminated body, the second external electrode electrically connected to the second internal electrode, and not electrically connected to the first external electrode and the second external electrode; The third internal electrode is provided at a position where an eddy current is generated by the current flowing between the first external electrode and the second external electrode, and the external is electrically connected from the outside of the laminate There is no electrode.
 本発明の一形態に係る回路モジュールは、上記に記載の積層コンデンサと、積層コンデンサが実装された配線基板とを備える。 A circuit module according to an aspect of the present invention includes the multilayer capacitor described above and a wiring board on which the multilayer capacitor is mounted.
 本発明によれば、積層コンデンサの内部を流れる電流により渦電流が発生する第3内部電極を備えることで、渦電流による磁束と積層コンデンサの内部を流れる電流経路の電流ループによる磁束とが相殺し合って、寄生インダクタンスを小さくすることができる。また、本発明によれば、配線パターンではなく内部電極に渦電流が発生するので、電流ループによって生じた磁束に合わせて渦電流を発生させることができ、任意の周波数の電流に対して寄生インダクタンスを小さくすることができる。 According to the present invention, by providing the third inner electrode in which an eddy current is generated by the current flowing inside the multilayer capacitor, the magnetic flux due to the eddy current and the magnetic flux due to the current loop of the current path flowing inside the multilayer capacitor cancel each other. Therefore, parasitic inductance can be reduced. Further, according to the present invention, since the eddy current is generated not in the wiring pattern but in the internal electrode, the eddy current can be generated according to the magnetic flux generated by the current loop, and the parasitic inductance can be generated for the current of any frequency. Can be made smaller.
本発明の実施の形態1に係る積層コンデンサの構成を説明するための概略図である。FIG. 1 is a schematic view for illustrating the configuration of the multilayer capacitor in accordance with a first embodiment of the present invention. 本発明の実施の形態1に係る積層コンデンサを実装した回路モジュールの回路図である。FIG. 2 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the first embodiment of the present invention is mounted. 本発明の実施の形態1に係る積層コンデンサを実装した回路モジュールの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor which concerns on Embodiment 1 of this invention. 比較対象の積層コンデンサを実装した回路モジュールの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor of comparison object. 本発明の実施の形態2に係る積層コンデンサの構成を説明するための概略図である。FIG. 7 is a schematic diagram for illustrating the configuration of the multilayer capacitor in accordance with Embodiment 2 of the present invention. 本発明の実施の形態2に係る積層コンデンサの内部電極の形状を説明するための概略図である。FIG. 7 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with Embodiment 2 of the present invention. 本発明の実施の形態2に係る積層コンデンサを実装した回路モジュールの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor which concerns on Embodiment 2 of this invention. 比較対象の積層コンデンサを実装した回路モジュールの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor of comparison object. 本発明の実施の形態3に係る積層コンデンサを実装した回路モジュールの回路図である。FIG. 10 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the third embodiment of the present invention is mounted. 本発明の実施の形態3に係る積層コンデンサの構成を説明するための概略図である。FIG. 7 is a schematic diagram for illustrating the configuration of the multilayer capacitor in accordance with Embodiment 3 of the present invention. 本発明の実施の形態3に係る積層コンデンサの内部電極の形状を説明するための概略図である。FIG. 13 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with Embodiment 3 of the present invention. 本発明の実施の形態3に係る積層コンデンサを実装した回路モジュールの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the circuit module which mounted the multilayer capacitor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る積層コンデンサの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the multilayer capacitor which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る積層コンデンサの内部電極の形状を説明するための概略図である。FIG. 13 is a schematic view for illustrating the shape of the internal electrode of the multilayer capacitor in accordance with the fourth embodiment of the present invention. 本発明の実施の形態5に係る積層コンデンサの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the multilayer capacitor which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る積層コンデンサの第1ブロックの内部電極の形状を説明するための概略図である。FIG. 18 is a schematic diagram for illustrating the shape of the internal electrode of the first block of the multilayer capacitor in accordance with Embodiment 5 of the present invention. 本発明の実施の形態5に係る積層コンデンサの第2ブロックの内部電極の形状を説明するための概略図である。FIG. 16 is a schematic diagram for illustrating the shape of the internal electrode of the second block of the multilayer capacitor in accordance with Embodiment 5 of the present invention. 本発明の実施の形態5に係る積層コンデンサの第3ブロックの内部電極の形状を説明するための概略図である。FIG. 21 is a schematic diagram for illustrating the shape of the internal electrode of the third block of the multilayer capacitor in accordance with Embodiment 5 of the present invention. 本発明の変形例に係る積層コンデンサの構成を説明するための概略図である。FIG. 8 is a schematic view for explaining the configuration of the multilayer capacitor in accordance with the modification of the present invention.
 以下に、本発明の実施の形態に係る積層コンデンサおよび回路モジュールについて図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。 Hereinafter, multilayer capacitors and circuit modules according to embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 (実施の形態1)
 以下に、本発明の実施の形態1に係る積層コンデンサおよび回路モジュールについて図面を参照しながら説明する。図1は、本発明の実施の形態1に係る積層コンデンサ10の構成を説明するための概略図である。なお、図1(a)は、積層コンデンサ10を外部電極4,5が形成された面から見た平面図を、図1(b)は、積層コンデンサ10の断面図をそれぞれ示している。
Embodiment 1
Hereinafter, the multilayer capacitor and the circuit module according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining the configuration of the multilayer capacitor 10 in accordance with the first embodiment of the present invention. 1 (a) is a plan view of the multilayer capacitor 10 viewed from the surface on which the external electrodes 4 and 5 are formed, and FIG. 1 (b) is a cross-sectional view of the multilayer capacitor 10.
 図1に示す積層コンデンサ10は、積層セラミックコンデンサであり、静電容量を取得するための複数の内部電極1,2と、誘電体セラミック層3が交互に積層されている。つまり、誘電体セラミック層3を挟んで内部電極1(第1内部電極)と内部電極2(第2内部電極)とが交互に積層することで積層体を構成している。積層する内部電極1,2は、積層コンデンサ10の一方の端部と他方の端部とで交互に引き出されている。それぞれの端部に引き出された内部電極1,2は、積層コンデンサ10のそれぞれの端部に設けられた外部電極4,5に接続されている。つまり、外部電極4(第1外部電極)は、積層体の一方の端部(第1側面)に形成され、外部電極5(第2外部電極)は、一方の端部に対向する積層体の他方の端部(第2側面)に形成されている。 The multilayer capacitor 10 shown in FIG. 1 is a multilayer ceramic capacitor, in which a plurality of internal electrodes 1 and 2 for obtaining capacitance and dielectric ceramic layers 3 are alternately stacked. That is, the laminated body is configured by alternately laminating the internal electrode 1 (first internal electrode) and the internal electrode 2 (second internal electrode) with the dielectric ceramic layer 3 interposed therebetween. The stacked internal electrodes 1 and 2 are alternately drawn out at one end and the other end of the multilayer capacitor 10. The internal electrodes 1 and 2 drawn out to the respective end portions are connected to external electrodes 4 and 5 provided to the respective end portions of the multilayer capacitor 10. That is, the external electrode 4 (first external electrode) is formed at one end (first side surface) of the laminate, and the external electrode 5 (second external electrode) is a laminate of the one facing the one end. It is formed at the other end (second side surface).
 さらに、積層コンデンサ10は、外部電極4および外部電極5と電気的に接続されていない内部電極6(第3内部電極)を、図1(b)に示す積層体の上側(内部電極1の最上位層の上側)および下側(内部電極2の最下位層の下側)にそれぞれ設けている。なお、内部電極6は、積層体の上側および下側のうちの一方に設けてもよい。 Furthermore, the multilayer capacitor 10 includes the internal electrode 6 (third internal electrode) not electrically connected to the external electrode 4 and the external electrode 5 as shown on the upper side of the laminated body shown in FIG. They are respectively provided on the upper side of the upper layer and the lower side (lower side of the lowermost layer of the internal electrode 2). The internal electrode 6 may be provided on one of the upper side and the lower side of the laminate.
 内部電極6は、外部電極4と外部電極5との間に流れる電流により渦電流が発生する位置に設けられ、積層体の外側から電気的に接続する外部電極が設けられていない。つまり、内部電極6は、外部から電流を供給することができない構成になっている。さらに、内部電極6は、外部電極4と外部電極5との間に流れる電流ループに生じる磁束によって渦電流が発生するため、電流ループによる磁束と渦電流による磁束が相殺し合って寄生インダクタンスを小さくすることができる。 The internal electrode 6 is provided at a position where an eddy current is generated by the current flowing between the external electrode 4 and the external electrode 5, and the external electrode electrically connected from the outside of the laminate is not provided. That is, the internal electrode 6 can not supply current from the outside. Further, in the internal electrode 6, since the eddy current is generated by the magnetic flux generated in the current loop flowing between the external electrode 4 and the external electrode 5, the magnetic flux by the current loop and the magnetic flux by the eddy current cancel each other to reduce the parasitic inductance. can do.
 また、内部電極6は、板状の電極であるため電極の面内であれば電流経路の大きさに制約を受けず、電流ループによって生じた磁束に合わせて渦電流を発生させることができる。つまり、配線パターンのように大きさが固定されている場合、電流ループに特定の周波数の電流を流したときしか渦電流を発生させることができないが、内部電極6では、電流ループに任意の周波数の電流を流しても渦電流を発生させることができる。よって、積層コンデンサ10は、内部電極6を設けることで、任意の周波数の電流に対して寄生インダクタンスを小さくすることができる。 Further, since the internal electrode 6 is a plate-like electrode, it is not restricted by the size of the current path if in the plane of the electrode, and an eddy current can be generated in accordance with the magnetic flux generated by the current loop. That is, when the size is fixed as in the wiring pattern, the eddy current can be generated only when a current of a specific frequency flows in the current loop, but in the internal electrode 6, any frequency can be generated in the current loop The eddy current can be generated even if the current of Therefore, the multilayer capacitor 10 can reduce the parasitic inductance with respect to the current of any frequency by providing the internal electrode 6.
 なお、積層コンデンサ10は、例えば、導電性ペースト(Niペースト)をスクリーン印刷法により印刷して電極パターンを形成したチタン酸バリウム系のセラミックグリーンシート(誘電体セラミック層3)を複数積層することで形成することができる。 The multilayer capacitor 10 is formed, for example, by laminating a plurality of barium titanate ceramic green sheets (dielectric ceramic layer 3) on which an electrode pattern is formed by printing a conductive paste (Ni paste) by a screen printing method. It can be formed.
 内部電極6は容量を形成するための電極以外の電極であるが、図1(b)に示すように、容量を形成するための電極である内部電極1,2に対して平行となるように積層体に積層されている。内部電極6と内部電極1,2とが平行に配置されていることで、内部電極1,2を流れる電流ループによって生じた磁束と、内部電極6に発生する渦電流によって生じた磁束とがより相殺し合って寄生インダクタンスをより小さくすることができる。もちろん、積層コンデンサ10は、内部電極6と内部電極1,2とが平行に配置されていなくても、電流ループによって生じた磁束と、渦電流によって生じた磁束とが相殺し合うような配置であれば何れの配置であってもよい。 The internal electrode 6 is an electrode other than an electrode for forming a capacitance, but as shown in FIG. 1B, it is parallel to the internal electrodes 1 and 2 which are electrodes for forming a capacitance It is laminated on a laminate. Since the internal electrode 6 and the internal electrodes 1 and 2 are arranged in parallel, the magnetic flux generated by the current loop flowing through the internal electrodes 1 and 2 and the magnetic flux generated by the eddy current generated in the internal electrode 6 are more It is possible to cancel each other to make the parasitic inductance smaller. Of course, even if the internal electrode 6 and the internal electrodes 1 and 2 are not arranged in parallel, the multilayer capacitor 10 is arranged such that the magnetic flux generated by the current loop and the magnetic flux generated by the eddy current cancel each other. Any arrangement may be used.
 積層コンデンサ10では、内部電極1と内部電極6との距離、または内部電極2と内部電極6との距離が、内部電極1と内部電極2との距離と同じである。つまり、積層コンデンサ10では、内部電極1、内部電極2および内部電極6が等間隔で積層されている。そのため、内部電極6を、内部電極1,2と同じような工程で形成することができ、製造が容易になる。もちろん、積層コンデンサ10は、内部電極1と内部電極6との距離、または内部電極2と内部電極6との距離が、内部電極1と内部電極2との距離より短くてもよい。 In the multilayer capacitor 10, the distance between the internal electrode 1 and the internal electrode 6 or the distance between the internal electrode 2 and the internal electrode 6 is the same as the distance between the internal electrode 1 and the internal electrode 2. That is, in the multilayer capacitor 10, the internal electrode 1, the internal electrode 2 and the internal electrode 6 are laminated at equal intervals. Therefore, the internal electrode 6 can be formed in the same process as the internal electrodes 1 and 2 and the manufacture becomes easy. Of course, in the multilayer capacitor 10, the distance between the internal electrode 1 and the internal electrode 6 or the distance between the internal electrode 2 and the internal electrode 6 may be shorter than the distance between the internal electrode 1 and the internal electrode 2.
 積層コンデンサ10では、内部電極6の厚さ(図1(b)の紙面上下方向)が、誘電体セラミック層3の内部に含まれる範囲で可能な限り厚くする。内部電極6を厚くすることで、電流ループによって生じた磁束に合わせて大きな渦電流を発生させることができる。 In the multilayer capacitor 10, the thickness of the internal electrode 6 (up and down direction in FIG. 1B) is made as large as possible in the range included in the dielectric ceramic layer 3. By thickening the internal electrode 6, a large eddy current can be generated in accordance with the magnetic flux generated by the current loop.
 積層コンデンサ10では、内部電極6の電極材料が、内部電極1および内部電極2の電極材料と同じである。例えば、内部電極6の電極材料は、内部電極1および内部電極2の電極材料と同じ、例えば導電性ペースト(Niペースト)である。そのため、内部電極6を、内部電極1,2と同じような工程で形成することができ、製造が容易になる。もちろん、積層コンデンサ10は、内部電極6の電極材料が、内部電極1および内部電極2の電極材料と異なってもよい。 In the multilayer capacitor 10, the electrode material of the internal electrode 6 is the same as the electrode material of the internal electrode 1 and the internal electrode 2. For example, the electrode material of the internal electrode 6 is the same as the electrode material of the internal electrode 1 and the internal electrode 2, for example, a conductive paste (Ni paste). Therefore, the internal electrode 6 can be formed in the same process as the internal electrodes 1 and 2 and the manufacture becomes easy. Of course, in the multilayer capacitor 10, the electrode material of the internal electrode 6 may be different from the electrode material of the internal electrode 1 and the internal electrode 2.
 次に、積層コンデンサ10を実装した回路モジュールについて説明する。回路モジュールとして、例えば、2個のスイッチング素子と、1個の積層コンデンサ10とを直列に接続したハーフブリッジ回路である場合について説明する。図2は、本発明の実施の形態1に係る積層コンデンサ10を実装した回路モジュールの回路図である。図2に示す回路図では、積層コンデンサ10の一方の電極とスイッチング素子S1とがVDD配線Vで接続され、スイッチング素子S1とスイッチング素子S2とが中間配線Nで接続され、スイッチング素子S2と積層コンデンサ10の他方の電極とがGND配線Gで接続されている。 Next, a circuit module on which the multilayer capacitor 10 is mounted will be described. The case where it is a half bridge circuit which connected two switching elements and one laminated capacitor 10 in series as a circuit module, for example is explained. FIG. 2 is a circuit diagram of a circuit module on which the multilayer capacitor 10 according to the first embodiment of the present invention is mounted. In the circuit diagram shown in FIG. 2, one electrode of the multilayer capacitor 10 and the switching element S1 are connected by the VDD wiring V, the switching element S1 and the switching element S2 are connected by the intermediate wiring N, and the switching element S2 and the multilayer capacitor The other electrode 10 is connected by the GND wiring G.
 図2に示す回路図に基づいて、基板上にスイッチング素子S1,S2および積層コンデンサ10を実装した回路モジュールが図3に示されている。図3は、本発明の実施の形態1に係る積層コンデンサを実装した回路モジュール100の構成を説明するための概略図である。なお、図3(a)は、回路モジュール100を積層コンデンサ10が実装された面から見た平面図を、図3(b)は、回路モジュール100の断面図をそれぞれ示している。 Based on the circuit diagram shown in FIG. 2, a circuit module in which the switching elements S1 and S2 and the multilayer capacitor 10 are mounted on the substrate is shown in FIG. FIG. 3 is a schematic diagram for explaining the configuration of a circuit module 100 on which the multilayer capacitor in accordance with the first embodiment of the present invention is mounted. 3A shows a plan view of the circuit module 100 as viewed from the surface on which the multilayer capacitor 10 is mounted, and FIG. 3B shows a cross-sectional view of the circuit module 100. As shown in FIG.
 図3に示す回路モジュール100では、基板20の表面に形成されたVDD配線V、中間配線NおよびGND配線Gに、スイッチング素子S1,S2および積層コンデンサ10がそれぞれ接続されている。基板20の両端に設けられたGND配線Gは、図3(b)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線により接続されている。そのため、回路モジュール100では、図3(b)の矢印に示すような電流ループRが形成される。 In the circuit module 100 shown in FIG. 3, the switching elements S1 and S2 and the multilayer capacitor 10 are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20. The GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20 as shown in FIG. 3B. There is. Therefore, in the circuit module 100, a current loop R as shown by the arrow in FIG. 3 (b) is formed.
 回路モジュール100では、積層コンデンサ10の内部を流れる電流ループRによって、図3(b)の奥から手前に貫く磁束が発生する。この電流ループRによって生じた磁束で内部電極6に渦電流Pが発生する。当該渦電流Pは、電流ループRの電流方向と反対向きに電流が流れ、当該渦電流Pによって、図3(b)の手前から奥に貫く反対方向の磁束が発生する。そのため、回路モジュール100では、電流ループRによる磁束と渦電流Pによる磁束が相殺し合って寄生インダクタンスを小さくすることができる。 In the circuit module 100, a current loop R flowing inside the multilayer capacitor 10 generates a magnetic flux penetrating from the back to the front of FIG. 3B. An eddy current P is generated in the internal electrode 6 by the magnetic flux generated by the current loop R. The eddy current P flows in the direction opposite to the current direction of the current loop R, and the eddy current P generates a magnetic flux in the opposite direction which penetrates from the front to the back of FIG. 3B. Therefore, in the circuit module 100, the magnetic flux due to the current loop R and the magnetic flux due to the eddy current P cancel each other, and the parasitic inductance can be reduced.
 ここで、比較のため内部電極6を有していない積層コンデンサを実装した回路モジュールについて説明する。図4は、比較対象の積層コンデンサを実装した回路モジュール100zの構成を説明するための概略図である。なお、図4(a)は、回路モジュール100zを積層コンデンサが実装された面から見た平面図を、図4(b)は、回路モジュール100zの断面図をそれぞれ示している。 Here, a circuit module mounted with a multilayer capacitor without the internal electrode 6 will be described for comparison. FIG. 4 is a schematic diagram for explaining the configuration of a circuit module 100z on which multilayer capacitors to be compared are mounted. 4 (a) is a plan view of the circuit module 100z as viewed from the surface on which the multilayer capacitor is mounted, and FIG. 4 (b) is a cross-sectional view of the circuit module 100z.
 図4に示す回路モジュール100zでも、基板20の表面に形成されたVDD配線V、中間配線NおよびGND配線Gに、スイッチング素子S1,S2および積層コンデンサ10zがそれぞれ接続されている。基板20の両端に設けられたGND配線Gは、図4(b)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線により接続されている。 Also in the circuit module 100z shown in FIG. 4, the switching elements S1 and S2 and the multilayer capacitor 10z are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20. The GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20, as shown in FIG. 4B. There is.
 しかし、積層コンデンサ10zは、積層コンデンサ10のように内部電極6を有していない。そのため、電流ループRによって生じた磁束で渦電流Pが発生しない。つまり、電流ループRによって生じた磁束と相殺し合う磁束が発生しない。 However, the multilayer capacitor 10 z does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P is not generated by the magnetic flux generated by the current loop R. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R.
 図3(b)に示す回路モジュール100と図4(b)に示す回路モジュール100zとを比較すると、図3(b)に示す回路モジュール100の方は内部電極6を備えているので、内部電極6に渦電流Pが発生し、この渦電流Pによる磁束が生じる。その結果、図3に示す回路モジュール100では、図4に示す回路モジュール100zに比べて、電流ループRによって生じた磁束と相殺し合う渦電流Pによる磁束が発生するので、寄生インダクタンスを小さくすることができる。つまり、図3に示す回路モジュール100では、積層コンデンサ10の内部を流れる電流を考慮して、積層体内に渦電流Pが発生する内部電極6を設けて寄生インダクタンスを小さくしている。 Comparing the circuit module 100 shown in FIG. 3 (b) with the circuit module 100z shown in FIG. 4 (b), the circuit module 100 shown in FIG. 3 (b) is provided with the internal electrode 6, so the internal electrode An eddy current P is generated at 6 and a magnetic flux due to the eddy current P is generated. As a result, in the circuit module 100 shown in FIG. 3, since the magnetic flux due to the eddy current P offsetting the magnetic flux generated by the current loop R is generated as compared with the circuit module 100z shown in FIG. Can. That is, in the circuit module 100 shown in FIG. 3, in consideration of the current flowing inside the multilayer capacitor 10, the internal electrode 6 for generating the eddy current P is provided in the multilayer body to reduce the parasitic inductance.
 以上のように、本実施の形態1に係る回路モジュール100は、積層コンデンサ10と、積層コンデンサ10が実装された基板20とを備えている。さらに、積層コンデンサ10は、外部電極4と外部電極5との間に流れる電流により渦電流が発生する位置に内部電極6が設けられている。内部電極6には、さらに積層体の外側から電気的に接続する外部電極が設けられていない。また、基板20は、積層コンデンサ10を実装した場合に、外部電極4,5の間に電流を流す配線を備えている。 As described above, the circuit module 100 according to the first embodiment includes the multilayer capacitor 10 and the substrate 20 on which the multilayer capacitor 10 is mounted. Furthermore, in the multilayer capacitor 10, the internal electrode 6 is provided at a position where an eddy current is generated by the current flowing between the external electrode 4 and the external electrode 5. The internal electrode 6 is not further provided with an external electrode electrically connected from the outside of the laminate. Further, the substrate 20 is provided with a wire that allows current to flow between the external electrodes 4 and 5 when the multilayer capacitor 10 is mounted.
 そのため、本実施の形態1に係る回路モジュール100では、積層コンデンサ10の内部を流れる電流を考慮して、積層体内に渦電流が発生する内部電極6を備えることで、渦電流による磁束と積層コンデンサの内部を流れる電流経路の電流ループによる磁束とが相殺し合って、寄生インダクタンスを小さくすることができる。また、本実施の形態1に係る回路モジュール100では、配線パターンではなく内部電極6に渦電流が発生するので、電流ループによって生じた磁束に合わせて渦電流を発生させることができ、任意の周波数の電流に対して寄生インダクタンスを小さくすることができる。 Therefore, in the circuit module 100 according to the first embodiment, by considering the current flowing inside the multilayer capacitor 10, the internal electrode 6 generating eddy current is provided in the multilayer body, so that the magnetic flux due to the eddy current and the multilayer capacitor The magnetic flux due to the current loop of the current path flowing inside the can cancel each other to reduce the parasitic inductance. Further, in the circuit module 100 according to the first embodiment, since the eddy current is generated not in the wiring pattern but in the internal electrode 6, the eddy current can be generated in accordance with the magnetic flux generated by the current loop. The parasitic inductance can be reduced with respect to the current of
 (実施の形態2)
 実施の形態1に係る積層コンデンサ10では、図1(b)に示すように複数の誘電体セラミック層を図中垂直方向に積層する構成について説明した。しかし、誘電体セラミック層を積層する方向は垂直方向に限定されない。そこで、本発明の実施の形態2では、複数の誘電体セラミック層を水平方向に積層した積層コンデンサ10bについて説明する。図5は、本発明の実施の形態2に係る積層コンデンサ10bの構成を説明するための概略図である。なお、図5(a)は、積層コンデンサ10bを外部電極4,5が形成された面から見た平面図を、図5(b)は、積層方向から見た積層コンデンサ10bの正面図をそれぞれ示している。また、図5(a)では、内部電極1,2,6の配置を説明するために、外部電極4,5を破線で図示している。
Second Embodiment
In the multilayer capacitor 10 according to the first embodiment, as shown in FIG. 1B, the configuration in which the plurality of dielectric ceramic layers are stacked in the vertical direction in the drawing has been described. However, the direction in which the dielectric ceramic layers are stacked is not limited to the vertical direction. Therefore, in the second embodiment of the present invention, a multilayer capacitor 10b in which a plurality of dielectric ceramic layers are horizontally stacked will be described. FIG. 5 is a schematic diagram for explaining the configuration of the multilayer capacitor 10b according to the second embodiment of the present invention. 5 (a) is a plan view of the multilayer capacitor 10b viewed from the surface on which the external electrodes 4 and 5 are formed, and FIG. 5 (b) is a front view of the multilayer capacitor 10b viewed from the laminating direction. It shows. Further, in FIG. 5A, the external electrodes 4 and 5 are shown by broken lines in order to explain the arrangement of the internal electrodes 1, 2 and 6.
 図5(a)に示す積層コンデンサ10bは、積層セラミックコンデンサであり、静電容量を取得するための複数の内部電極1,2と、誘電体セラミック層3が交互に図中水平方向に積層されている。つまり、誘電体セラミック層3を挟んで内部電極1(第1内部電極)と内部電極2(第2内部電極)が交互に積層することで積層体を構成している。さらに、積層コンデンサ10bは、内部電極1と内部電極2との間に内部電極6が積層されている。図6は、本発明の実施の形態2に係る積層コンデンサ10bの内部電極1,2,6の形状を説明するための概略図である。 The multilayer capacitor 10b shown in FIG. 5 (a) is a multilayer ceramic capacitor, in which a plurality of internal electrodes 1 and 2 for obtaining capacitance and dielectric ceramic layers 3 are alternately stacked in the horizontal direction in the figure. ing. That is, the laminated body is configured by alternately laminating the internal electrode 1 (first internal electrode) and the internal electrode 2 (second internal electrode) with the dielectric ceramic layer 3 interposed therebetween. Furthermore, in the multilayer capacitor 10 b, the internal electrode 6 is laminated between the internal electrode 1 and the internal electrode 2. FIG. 6 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10b according to the second embodiment of the present invention.
 図6(a)には、容量を形成するための電極である内部電極1を設ける層が図示されている。内部電極1は、図6(a)に示すように幅aで高さhの引出電極部1aを有している。この引出電極部1aを引き出す積層コンデンサ10bの面に、引出電極部1aと電気的に接続される外部電極4が形成されている。図6(b)には、容量を形成するための電極以外の電極である内部電極6を設ける層が図示されている。内部電極6は、図6(b)に示すように幅xで高さyの電極である。この内部電極6は、図5(b)のように積層した場合に、積層方向から見て引出電極部1aとは重ならない位置に設けられている。図6(c)には、容量を形成するための電極である内部電極2を設ける層が図示されている。内部電極2は、図6(c)に示すように幅bで高さhの引出電極部2aを有している。この引出電極部2aは、図5(b)のように積層した場合、積層方向から見て引出電極部1aおよび内部電極6とは重ならない位置に設けられている。引出電極部2aを引き出す積層コンデンサ10bの面に、引出電極部2aと電気的に接続される外部電極5が形成されている。 FIG. 6A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided. The internal electrode 1 has the lead-out electrode part 1a of width a and height h as shown to Fig.6 (a). An external electrode 4 electrically connected to the lead electrode portion 1a is formed on the surface of the multilayer capacitor 10b from which the lead electrode portion 1a is drawn. In FIG. 6B, a layer provided with an internal electrode 6 which is an electrode other than an electrode for forming a capacitance is illustrated. The internal electrode 6 is an electrode having a width x and a height y as shown in FIG. 6 (b). When the internal electrodes 6 are stacked as shown in FIG. 5B, the internal electrodes 6 are provided at positions not overlapping with the lead-out electrode portion 1a as viewed from the stacking direction. The layer which provides the internal electrode 2 which is an electrode for forming a capacity | capacitance in FIG.6 (c) is shown in figure. The internal electrode 2 has the lead-out electrode part 2a of width b and height h as shown in FIG.6 (c). When the lead-out electrode portions 2a are stacked as shown in FIG. 5B, the lead-out electrode portions 2a are provided at positions not overlapping with the lead-out electrode portions 1a and the internal electrodes 6 when viewed in the stacking direction. An external electrode 5 electrically connected to the lead electrode portion 2a is formed on the surface of the multilayer capacitor 10b from which the lead electrode portion 2a is drawn.
 つまり、積層する内部電極1,2は、積層コンデンサ10bの一方の端部と他方の端部とで交互に引き出されている。積層する内部電極6は、内部電極1,2の間に挟まれた積層コンデンサ10bの中部に設けられている。一方の端部に引き出された内部電極1は、積層コンデンサ10bの一方の端部に設けられた外部電極4に接続され、他方の端部に引き出された内部電極2は、積層コンデンサ10bの他方の端部に設けられた外部電極5に接続されている。つまり、内部電極6は、外部電極4(第1外部電極)および外部電極5(第2外部電極)が形成される積層体の同一面側に形成されている。ここで、引出電極部1aは、内部電極1のうちで内部電極2と対向しない部分であり、引出電極部2aは、内部電極2のうちで内部電極1と対向しない部分である(図5(b)参照)。 That is, the internal electrodes 1 and 2 to be laminated are alternately drawn out at one end and the other end of the multilayer capacitor 10b. The internal electrode 6 to be laminated is provided in the middle of the multilayer capacitor 10b sandwiched between the internal electrodes 1 and 2. The internal electrode 1 drawn out at one end is connected to the external electrode 4 provided at one end of the multilayer capacitor 10b, and the internal electrode 2 drawn out at the other end is the other side of the multilayer capacitor 10b. It is connected to the external electrode 5 provided at the end of the. That is, the internal electrode 6 is formed on the same surface side of the laminate in which the external electrode 4 (first external electrode) and the external electrode 5 (second external electrode) are formed. Here, the extraction electrode portion 1a is a portion not facing the internal electrode 2 in the internal electrode 1, and the extraction electrode portion 2a is a portion not facing the internal electrode 1 in the internal electrode 2 (see FIG. b) see).
 内部電極6は、誘電体セラミック層3の内部に内部電極1,2の電極面に対して平行に積層して形成されており、その材料、厚さ(図5(a)の紙面上下方向)が内部電極1,2と同じである。内部電極6と内部電極1,2とが平行に配置されていることで、内部電極1,2を介して外部電極4,5の間に流れる電流ループによって生じた磁束に合わせて内部電極6に大きな渦電流を発生させることができる。 The internal electrode 6 is formed in the dielectric ceramic layer 3 so as to be stacked in parallel with the electrode surface of the internal electrodes 1 and 2. The material and thickness thereof (vertical direction in the drawing of FIG. 5A) Are the same as the internal electrodes 1 and 2. Since the internal electrode 6 and the internal electrodes 1 and 2 are arranged in parallel, the internal electrode 6 can be adjusted to the magnetic flux generated by the current loop flowing between the external electrodes 4 and 5 via the internal electrodes 1 and 2. Large eddy currents can be generated.
 内部電極6は、内部電極1,2の引出電極部1a,2aの間に設置され、幅xがx=c-(a+b)-2αと表すことができ、高さyがy=hと表すことができる。ここで、αは、引出電極部1a,2aと内部電極6との隙間を示しており、引出電極部1a,2aと内部電極6とがショートしない程度の十分な間隔を確保することが可能な値である。内部電極6の高さyが、引出電極部1a,2aの高さhと同じであるとした理由は、内部電極6と内部電極1,2とが重なり合って容量を形成することを防止するためと、内部電極6と内部電極1,2との間に隙間が生じて、その隙間に磁束が発生して寄生インダクタンスが形成されることを防止するためである。 The internal electrode 6 is disposed between the lead-out electrode portions 1a and 2a of the internal electrodes 1 and 2, the width x can be expressed as x = c- (a + b) -2α, and the height y is expressed as y = h be able to. Here, α indicates the gap between the lead-out electrode portions 1a and 2a and the internal electrode 6, and it is possible to secure a sufficient distance such that the lead-out electrode portions 1a and 2a and the inner electrode 6 do not short. It is a value. The reason that the height y of the internal electrode 6 is the same as the height h of the lead-out electrode portions 1a and 2a is to prevent the internal electrode 6 and the internal electrodes 1 and 2 from overlapping to form a capacitance. In addition, a gap is generated between the internal electrode 6 and the internal electrodes 1 and 2 to prevent a magnetic flux from being generated in the gap to form a parasitic inductance.
 内部電極6は、図5(a)に示すように、1枚の内部電極1,2に対して1枚の割合で等間隔に積層体に積層される。このような積層関係とすることで、内部電極1と隣の内部電極1との距離A、または内部電極2と隣の内部電極2との距離Aは、内部電極6を設けない場合に比べて長くなる(図5(a)参照)。なお、内部電極6が積層される割合は、上記の割合に限定されず、例えば、内部電極6は、内部電極1,2それぞれ2枚に対して1枚の割合で等間隔に積層体に積層してもよい。 As shown in FIG. 5A, the internal electrodes 6 are stacked on the laminate at an equal interval of 1 per internal electrode 1 and 2. With such a stacking relationship, the distance A between the internal electrode 1 and the adjacent internal electrode 1 or the distance A between the internal electrode 2 and the adjacent internal electrode 2 is greater than when the internal electrode 6 is not provided. It becomes long (see FIG. 5 (a)). The rate at which the internal electrodes 6 are stacked is not limited to the above ratio. For example, the internal electrodes 6 are stacked in the laminate at an equal ratio of one to two each of the internal electrodes 1 and 2 You may
 次に、積層コンデンサ10bを実装した回路モジュールについて説明する。回路モジュールとして、例えば、2個のスイッチング素子と、1個の積層コンデンサ10bとを直列に接続したハーフブリッジ回路である場合について説明する。回路図は、図2に示す回路図と同じであるため、詳細な説明を繰返さない。図7は、本発明の実施の形態2に係る積層コンデンサを実装した回路モジュール100bの構成を説明するための概略図である。なお、図7(a)は、回路モジュール100bを積層コンデンサ10bが実装された面から見た平面図を、図7(b)は、回路モジュール100bの断面図をそれぞれ示している。 Next, a circuit module on which the multilayer capacitor 10b is mounted will be described. The case where it is a half bridge circuit which connected two switching elements and one laminated capacitor 10b in series as a circuit module, for example is explained. Since the circuit diagram is the same as the circuit diagram shown in FIG. 2, detailed description will not be repeated. FIG. 7 is a schematic diagram for describing a configuration of a circuit module 100b mounting the multilayer capacitor in accordance with the second embodiment of the present invention. 7 (a) is a plan view of the circuit module 100b as viewed from the surface on which the multilayer capacitor 10b is mounted, and FIG. 7 (b) is a cross-sectional view of the circuit module 100b.
 図7に示す回路モジュール100bでは、基板20の表面に形成されたVDD配線V、中間配線NおよびGND配線Gに、スイッチング素子S1,S2および積層コンデンサ10bがそれぞれ接続されている。基板20の両端に設けられたGND配線Gは、図7(b)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線により接続されている。そのため、回路モジュール100bでは、図7(b)の矢印に示すような電流ループR2が形成される。 In the circuit module 100b shown in FIG. 7, the switching elements S1 and S2 and the multilayer capacitor 10b are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20. The GND wirings G provided at both ends of the substrate 20 are connected by the wirings formed on the back surface of the substrate 20 through the vias 21 provided at the end of the substrate 20, as shown in FIG. 7B. There is. Therefore, in the circuit module 100b, a current loop R2 as shown by the arrow in FIG. 7B is formed.
 回路モジュール100bでは、積層コンデンサ10bの内部を流れる電流ループR2によって、図7(b)の奥から手前に貫く磁束が発生する。この電流ループR2によって生じた磁束で内部電極6に渦電流P2が発生する。当該渦電流P2は、電流ループR2の電流方向と反対向きに電流が流れ、当該渦電流P2によって、図7(b)の手前から奥に貫く反対方向の磁束が発生する。そのため、回路モジュール100bでは、電流ループR2による磁束と渦電流P2による磁束が相殺し合って寄生インダクタンスを小さくすることができる。 In the circuit module 100b, the current loop R2 flowing inside the multilayer capacitor 10b generates a magnetic flux penetrating from the back to the front of FIG. 7B. An eddy current P2 is generated in the internal electrode 6 by the magnetic flux generated by the current loop R2. A current flows in the opposite direction to the current direction of the current loop R2, and the eddy current P2 generates a magnetic flux in the opposite direction which penetrates from the front to the back of FIG. 7B by the eddy current P2. Therefore, in the circuit module 100b, the magnetic flux due to the current loop R2 and the magnetic flux due to the eddy current P2 cancel each other, and the parasitic inductance can be reduced.
 ここで、比較のため内部電極6を有していない積層コンデンサを実装した回路モジュールについて説明する。図8は、比較対象の積層コンデンサを実装した回路モジュール100xの構成を説明するための概略図である。なお、図8(a)は、回路モジュール100xを積層コンデンサが実装された面から見た平面図を、図8(b)は、回路モジュール100xの断面図をそれぞれ示している。 Here, a circuit module mounted with a multilayer capacitor without the internal electrode 6 will be described for comparison. FIG. 8 is a schematic diagram for illustrating the configuration of a circuit module 100x mounting the multilayer capacitor to be compared. 8 (a) is a plan view of the circuit module 100x as viewed from the surface on which the multilayer capacitor is mounted, and FIG. 8 (b) is a cross-sectional view of the circuit module 100x.
 図8に示す回路モジュール100xでも、基板20の表面に形成されたVDD配線V、中間配線NおよびGND配線Gに、スイッチング素子S1,S2および積層コンデンサ10xがそれぞれ接続されている。基板20の両端に設けられたGND配線Gは、図8(b)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線により接続されている。 Also in the circuit module 100x shown in FIG. 8, the switching elements S1 and S2 and the multilayer capacitor 10x are respectively connected to the VDD wiring V, the middle wiring N and the GND wiring G formed on the surface of the substrate 20. The GND wires G provided at both ends of the substrate 20 are connected by the wires formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20 as shown in FIG. 8B. There is.
 しかし、積層コンデンサ10xは、積層コンデンサ10のように内部電極6を有していない。そのため、電流ループR2によって生じた磁束で渦電流P2が発生しない。つまり、電流ループR2によって生じた磁束と相殺し合う磁束が発生しない。 However, the multilayer capacitor 10 x does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P2 is not generated by the magnetic flux generated by the current loop R2. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R2.
 図7(b)に示す回路モジュール100bと図8(b)に示す回路モジュール100xとを比較すると、図7(b)に示す回路モジュール100bの方は内部電極6を備えているので、内部電極6に渦電流P2が発生し、この渦電流P2による磁束が生じる。その結果、図7に示す回路モジュール100bでは、図8に示す回路モジュール100xに比べて、電流ループR2によって生じた磁束と相殺し合う渦電流P2による磁束が発生するので、寄生インダクタンスを小さくすることができる。つまり、図7に示す回路モジュール100bでは、積層コンデンサ10bの内部を流れる電流を考慮して、積層体内に渦電流P2が発生する内部電極6を設けて寄生インダクタンスを小さくしている。 Comparing the circuit module 100b shown in FIG. 7 (b) with the circuit module 100x shown in FIG. 8 (b), the circuit module 100b shown in FIG. An eddy current P2 is generated at 6 and a magnetic flux is generated by the eddy current P2. As a result, in the circuit module 100b shown in FIG. 7, a magnetic flux is generated due to the eddy current P2 that offsets the magnetic flux generated by the current loop R2 compared to the circuit module 100x shown in FIG. Can. That is, in the circuit module 100b shown in FIG. 7, in consideration of the current flowing inside the multilayer capacitor 10b, the internal electrode 6 for generating the eddy current P2 is provided in the multilayer body to reduce the parasitic inductance.
 なお、積層コンデンサ10bは、図5(b)に示すように引出電極部1a,2aと内部電極6との間に隙間Bがある。そのため、積層コンデンサ10bを、図7(b)に示すようなハーブブリッジ回路に実装した場合、積層コンデンサ10bには、隙間Bの周りに電流ループR2の矢印で示した電流が流れ、当該電流により隙間Bを貫く方向に磁束Tが発生する(図5(a)参照)。 In the multilayer capacitor 10b, there is a gap B between the lead electrode portions 1a and 2a and the internal electrode 6 as shown in FIG. 5 (b). Therefore, when the multilayer capacitor 10b is mounted on the herb bridge circuit as shown in FIG. 7B, the current indicated by the arrow of the current loop R2 flows around the gap B in the multilayer capacitor 10b, and the current flows A magnetic flux T is generated in the direction of penetrating the gap B (see FIG. 5A).
 以上のように、本実施の形態2に係る積層コンデンサ10bは、内部電極1が内部電極2と対向しない部分であって外部電極4と接続するための引出電極部1a(第1引出し部)を有し、内部電極2が内部電極1と対向しない部分であって外部電極5と接続するための引出電極部2a(第2引出し部)を有している。さらに、積層コンデンサ10bは、内部電極6が、内部電極1と内部電極2との間の積層体の層に積層され、積層方向から見て、引出電極部1aと引出電極部2aとの間で、かつ、内部電極1および内部電極2と重ならない位置に配置されている。 As described above, multilayer capacitor 10 b according to the second embodiment has lead electrode portion 1 a (first lead portion) for connecting internal electrode 1 to external electrode 4 in a portion where internal electrode 1 does not face internal electrode 2. It has a lead-out electrode portion 2a (second lead-out portion) for connecting to the external electrode 5 in a portion where the internal electrode 2 does not face the internal electrode 1. Furthermore, in the multilayer capacitor 10b, the internal electrode 6 is laminated on the layer of the laminated body between the internal electrode 1 and the internal electrode 2, and viewed from the laminating direction, between the lead electrode portion 1a and the lead electrode portion 2a. And, it is disposed at a position not overlapping the internal electrode 1 and the internal electrode 2.
 そのため、本実施の形態2に係る回路モジュール100bでは、積層コンデンサ10bの内部を流れる電流を考慮して、積層体内に渦電流が発生する内部電極6を備えることで、渦電流による磁束と積層コンデンサの内部を流れる電流経路の電流ループによる磁束とが相殺し合って、寄生インダクタンスを小さくすることができる。また、本実施の形態2に係る回路モジュール100bでは、配線パターンではなく内部電極6に渦電流が発生するので、電流ループによって生じた磁束に合わせて渦電流を発生させることができ、任意の周波数の電流に対して寄生インダクタンスを小さくすることができる。 Therefore, in the circuit module 100b according to the second embodiment, in consideration of the current flowing inside the multilayer capacitor 10b, the internal electrode 6 that generates an eddy current is provided in the multilayer body, so that the magnetic flux due to the eddy current and the multilayer capacitor The magnetic flux due to the current loop of the current path flowing inside the can cancel each other to reduce the parasitic inductance. Further, in the circuit module 100b according to the second embodiment, since the eddy current is generated not in the wiring pattern but in the internal electrode 6, the eddy current can be generated in accordance with the magnetic flux generated by the current loop. The parasitic inductance can be reduced with respect to the current of
 (実施の形態3)
 実施の形態2に係る積層コンデンサ10bでは、図5(b)に示すように内部電極6が、積層方向から見て、引出電極部1aと引出電極部2aとの間に配置されている構成について説明した。しかし、内部電極6の配置は、引出電極部1aと引出電極部2aとの間に限定されない。そこで、本発明の実施の形態3では、内部電極6を外部電極4および外部電極5を形成した積層体の面に対向する積層体の面に形成した構成について説明する。
Third Embodiment
In the multilayer capacitor 10b according to the second embodiment, as shown in FIG. 5B, the configuration in which the internal electrode 6 is disposed between the lead-out electrode portion 1a and the lead-out electrode portion 2a as viewed from the stacking direction explained. However, the arrangement of the internal electrodes 6 is not limited to between the lead electrode portion 1a and the lead electrode portion 2a. Therefore, in the third embodiment of the present invention, the configuration in which the internal electrode 6 is formed on the surface of the laminate facing the surface of the laminate on which the external electrode 4 and the external electrode 5 are formed will be described.
 本実施の形態3に係る積層コンデンサは、図2に示したハーフブリッジ回路ではなく、ハイサイドに2個のスイッチング素子と、ローサイドに2個のスイッチング素子と、1個の積層コンデンサとを直列に接続したハーフブリッジ回路に実装することが可能である。 The multilayer capacitor according to the third embodiment is not the half bridge circuit shown in FIG. 2, but two switching elements on the high side, two switching elements on the low side, and one multilayer capacitor in series. It is possible to implement in the connected half bridge circuit.
 図9は、本発明の実施の形態3に係る積層コンデンサを実装した回路モジュールの回路図である。図9に示す回路図では、積層コンデンサ10cの一方の電極とスイッチング素子S1とがVDD配線Vで接続され、スイッチング素子S1とスイッチング素子S2とが配線N1で接続されている。さらに、図9に示す回路図では、スイッチング素子S2とスイッチング素子S3と配線N1が中間配線Nで接続され、スイッチング素子S3とスイッチング素子S4とが配線N2で接続され、スイッチング素子S4と積層コンデンサ10cの他方の電極とがGND配線Gで接続されている。 FIG. 9 is a circuit diagram of a circuit module on which the multilayer capacitor in accordance with the third embodiment of the present invention is mounted. In the circuit diagram shown in FIG. 9, one electrode of the multilayer capacitor 10c and the switching element S1 are connected by the VDD wiring V, and the switching element S1 and the switching element S2 are connected by the wiring N1. Further, in the circuit diagram shown in FIG. 9, the switching element S2, the switching element S3, and the wiring N1 are connected by the intermediate wiring N, the switching element S3 and the switching element S4 are connected by the wiring N2, and the switching element S4 and the multilayer capacitor 10c. The other electrode of is connected by the GND wiring G.
 次に、積層コンデンサ10cの構成を図を用いて説明する。図10は、本発明の実施の形態3に係る積層コンデンサ10cの構成を説明するための概略図である。なお、図10(a)は、積層コンデンサ10cを外部電極4,5が形成された面から見た平面図を、図10(b)は、積層方向から見た積層コンデンサ10cの正面図をそれぞれ示している。また、図11は、本発明の実施の形態3に係る積層コンデンサ10cの内部電極1,2,6の形状を説明するための概略図である。なお、図10および図11に示す積層コンデンサ10cのうち、図5および図6に示す積層コンデンサ10bと同じ構成については同じ符号を付して詳しい説明を繰返さない。また、図10(a)では、内部電極1,2,6の配置を説明するために、外部電極4,5を破線で図示している。 Next, the configuration of the multilayer capacitor 10c will be described with reference to the drawings. FIG. 10 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10c according to the third embodiment of the present invention. 10 (a) is a plan view of the multilayer capacitor 10c viewed from the surface on which the external electrodes 4 and 5 are formed, and FIG. 10 (b) is a front view of the multilayer capacitor 10c viewed from the stacking direction. It shows. FIG. 11 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10c in accordance with the third preferred embodiment of the present invention. In the multilayer capacitor 10c shown in FIGS. 10 and 11, the same components as those in the multilayer capacitor 10b shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the detailed description will not be repeated. Further, in FIG. 10A, the external electrodes 4 and 5 are shown by broken lines in order to explain the arrangement of the internal electrodes 1, 2 and 6.
 図11(a)には、容量を形成するための電極である内部電極1を設ける層が図示されている。内部電極1は、引出電極部1aが形成してある側の反対側が積層体の面から高さlだけ内側から形成されている。図11(b)には、容量を形成するための電極以外の電極である内部電極6を設ける層が図示されている。内部電極6は、図11(b)に示すように積層体の図中下側に形成された幅x1で高さy1の電極である。この内部電極6は、図10(b)のように積層した場合に、積層方向から見て内部電極1,2とは重ならない位置に設けられている。図11(c)には、容量を形成するための電極である内部電極2を設ける層が図示されている。内部電極2は、引出電極部2aが形成してある側の反対側が積層体の面から高さlだけ内側から形成されている。 FIG. 11A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided. The internal electrode 1 is formed on the opposite side of the side on which the lead electrode portion 1a is formed from the inside by a height l from the surface of the laminate. In FIG. 11B, a layer provided with an internal electrode 6 which is an electrode other than an electrode for forming a capacitance is illustrated. The internal electrode 6 is an electrode having a width x1 and a height y1 formed on the lower side in the drawing of the laminate as shown in FIG. 11 (b). When the internal electrodes 6 are stacked as shown in FIG. 10B, they are provided at positions not overlapping with the internal electrodes 1 and 2 when viewed in the stacking direction. FIG. 11C shows a layer on which the internal electrode 2 which is an electrode for forming a capacitance is provided. The internal electrode 2 is formed on the opposite side of the side on which the lead electrode portion 2a is formed from the inside by a height l from the surface of the laminate.
 つまり、内部電極6(第3内部電極)は、外部電極4(第1外部電極)および外部電極5(第2外部電極)を形成した積層体の面に対向する積層体の面側に形成されている。 That is, the internal electrode 6 (third internal electrode) is formed on the surface side of the laminate facing the surface of the laminate on which the external electrode 4 (first external electrode) and the external electrode 5 (second external electrode) are formed. ing.
 内部電極6は、誘電体セラミック層3の内部に内部電極1,2の電極面に対して平行に積層して形成されており、その材料、厚さ(図10(a)の紙面上下方向)が内部電極1,2と同じである。内部電極6と内部電極1,2とが平行に配置されていることで、内部電極6に流れる電流と、内部電極1,2を介して外部電極4,5の間に流れる電流ループによって生じた磁束に合わせて大きな渦電流を発生させることができる。 The internal electrode 6 is formed in the dielectric ceramic layer 3 so as to be stacked in parallel with the electrode surface of the internal electrodes 1 and 2, and its material and thickness (vertical direction in the drawing of FIG. 10A) Are the same as the internal electrodes 1 and 2. The arrangement of the internal electrode 6 and the internal electrodes 1 and 2 in parallel causes a current flowing through the internal electrode 6 and a current loop flowing between the external electrodes 4 and 5 through the internal electrodes 1 and 2. A large eddy current can be generated in accordance with the magnetic flux.
 内部電極6は、外部電極4,5を形成した積層体の面に対向する積層体の面の内側に配置され、幅x1がx1≦cと表すことができ、高さy1がy1=lと表すことができる。内部電極6の高さy1が、高さlと同じであるとした理由は、内部電極6と内部電極1,2とが重なり合って容量を形成することを防止するためと、内部電極6と内部電極1,2との間に隙間が生じて、その隙間に磁束が発生して寄生インダクタンスが形成されることを防止するためである。内部電極6は、1つの電極として構成しても、複数に分割して構成してもよい。なお、幅x1はx1≦cであると説明したが、内部電極1,2と内部電極6との隣接する距離が長くなるほど、内部電極1,2に流れる電流による磁束と内部電流6に流れる渦電流による磁束とが互いに打ち消し合う効果が強くなるため、当該効果の観点からは、幅x1はx1≧cである方が望ましい。 The internal electrode 6 is disposed inside the surface of the laminate facing the surface of the laminate on which the external electrodes 4 and 5 are formed, and the width x1 can be expressed as x1 ≦ c, and the height y1 is y1 = l. Can be represented. The reason that the height y1 of the internal electrode 6 is the same as the height l is to prevent the internal electrode 6 and the internal electrodes 1 and 2 from overlapping to form a capacitance, and the internal electrode 6 and the internal A gap is generated between the electrodes 1 and 2 to prevent a magnetic flux from being generated in the gap to form a parasitic inductance. The internal electrode 6 may be configured as one electrode or divided into a plurality of components. Although it has been described that the width x1 is x1 ≦ c, the longer the distance between the internal electrodes 1, 2 and the internal electrode 6 becomes longer, the magnetic flux due to the current flowing through the internal electrodes 1, 2 and the vortex flowing into the internal current 6 Since the effect of the magnetic flux due to the current mutually cancels out, from the viewpoint of the effect, the width x1 is preferably x1 ≧ c.
 次に、積層コンデンサ10cを実装した回路モジュールについて説明する。図12は、本発明の実施の形態3に係る積層コンデンサ10cを実装した回路モジュール100cの構成を説明するための概略図である。なお、図12(a)は、回路モジュール100cの構成を説明するための概略図を、図12(b)は、比較対象の積層コンデンサを実装した回路モジュール100wの構成を説明するための概略図をそれぞれ示している。 Next, a circuit module on which the multilayer capacitor 10c is mounted will be described. FIG. 12 is a schematic diagram for illustrating the configuration of a circuit module 100c on which the multilayer capacitor 10c according to the third embodiment of the present invention is mounted. 12 (a) is a schematic diagram for explaining the configuration of the circuit module 100c, and FIG. 12 (b) is a schematic diagram for explaining the configuration of the circuit module 100w on which the multilayer capacitor to be compared is mounted. Respectively.
 図12(a)に示す回路モジュール100cでは、基板20に積層コンデンサ10cが埋め込まれ、基板20の表面に形成されたVDD配線V、配線N1,N2およびGND配線Gにスイッチング素子S1,S4がそれぞれ接続されている。また、回路モジュール100cでは、基板20の裏面に形成された配線N1,N2および中間配線Nにスイッチング素子S2,S3がそれぞれ接続されている。基板20の両端に設けられた配線N1,N2は、図12(a)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線N1,N2にそれぞれ接続されている。そのため、回路モジュール100cでは、図12(a)の矢印に示すような電流ループR3が形成される。 In the circuit module 100c shown in FIG. 12A, the multilayer capacitor 10c is embedded in the substrate 20, and the VDD wiring V, the wirings N1 and N2, and the GND wiring G formed on the surface of the substrate 20 have switching elements S1 and S4 respectively. It is connected. Further, in the circuit module 100c, the switching elements S2 and S3 are connected to the wirings N1 and N2 and the middle wiring N formed on the back surface of the substrate 20, respectively. The wirings N1 and N2 provided at both ends of the substrate 20 are, as shown in FIG. 12A, the wirings N1 and N2 formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20. Connected to each other. Therefore, in the circuit module 100c, a current loop R3 as shown by an arrow in FIG. 12A is formed.
 回路モジュール100cでは、積層コンデンサ10cの内部を流れる電流ループR3によって、図12(a)の奥から手前に貫く磁束が発生する。この電流ループR3によって生じた磁束で内部電極6に渦電流P3が発生する。当該渦電流P3は、電流ループR3の電流方向と反対向きに電流が流れ、当該渦電流P3によって、図12(a)の手前から奥に貫く反対方向の磁束が発生する。そのため、回路モジュール100cでは、電流ループR3による磁束と渦電流P3による磁束が相殺し合って寄生インダクタンスを小さくすることができる。 In the circuit module 100c, a magnetic flux penetrating from the back to the front of FIG. 12A is generated by the current loop R3 flowing inside the multilayer capacitor 10c. An eddy current P3 is generated in the internal electrode 6 by the magnetic flux generated by the current loop R3. A current flows in the eddy current P3 in the direction opposite to the current direction of the current loop R3, and the eddy current P3 generates a magnetic flux in the opposite direction penetrating from the front to the back of FIG. Therefore, in the circuit module 100c, the magnetic flux due to the current loop R3 and the magnetic flux due to the eddy current P3 cancel each other, and the parasitic inductance can be reduced.
 ここで、比較のため内部電極6を有していない積層コンデンサを実装した回路モジュールについて説明する。図12(b)に示す回路モジュール100wでも、基板20に積層コンデンサ10wが埋め込まれ、基板20の表面に形成されたVDD配線V、配線N1,N2およびGND配線Gにスイッチング素子S1,S4がそれぞれ接続されている。また、回路モジュール100wでは、基板20の裏面に形成された配線N1,N2および中間配線Nにスイッチング素子S2,S3がそれぞれ接続されている。基板20の両端に設けられた配線N1,N2は、図12(b)に示すように、基板20の端部に設けられたビア21を介して基板20の裏面に形成された配線N1,N2にそれぞれ接続されている。 Here, a circuit module mounted with a multilayer capacitor without the internal electrode 6 will be described for comparison. Also in the circuit module 100w shown in FIG. 12B, the multilayer capacitor 10w is embedded in the substrate 20, and the VDD wiring V, the wirings N1, N2 and the GND wiring G formed on the surface of the substrate 20 are switching elements S1 and S4, respectively. It is connected. Further, in the circuit module 100 w, the switching elements S 2 and S 3 are respectively connected to the wirings N 1 and N 2 and the middle wiring N formed on the back surface of the substrate 20. The wirings N1 and N2 provided at both ends of the substrate 20 are, as shown in FIG. 12B, the wirings N1 and N2 formed on the back surface of the substrate 20 via the vias 21 provided at the end of the substrate 20. Connected to each other.
 しかし、積層コンデンサ10wは、積層コンデンサ10のように内部電極6を有していない。そのため、電流ループR3によって生じた磁束で渦電流P3が発生しない。つまり、電流ループR3によって生じた磁束と相殺し合う磁束が発生しない。 However, the multilayer capacitor 10 w does not have the internal electrode 6 as the multilayer capacitor 10 does. Therefore, the eddy current P3 is not generated by the magnetic flux generated by the current loop R3. That is, no magnetic flux is generated that offsets the magnetic flux generated by the current loop R3.
 図12(a)に示す回路モジュール100cと図12(b)に示す回路モジュール100wとを比較すると、図12(a)に示す回路モジュール100cの方は内部電極6を備えているので、内部電極6に渦電流P3が発生し、この渦電流P3による磁束が生じる。その結果、図12(a)に示す回路モジュール100cでは、図12(b)に示す回路モジュール100wに比べて、電流ループR3によって生じた磁束と相殺し合う渦電流P3による磁束が発生するので、寄生インダクタンスを小さくすることができる。つまり、図12(a)に示す回路モジュール100cでは、積層コンデンサ10cの内部を流れる電流を考慮して、積層体内に渦電流P3が発生する内部電極6を設けて寄生インダクタンスを小さくしている。 Comparing the circuit module 100c shown in FIG. 12 (a) with the circuit module 100w shown in FIG. 12 (b), the circuit module 100c shown in FIG. An eddy current P3 is generated at 6 and a magnetic flux is generated by the eddy current P3. As a result, in the circuit module 100c shown in FIG. 12A, a magnetic flux due to the eddy current P3 that cancels out the magnetic flux generated by the current loop R3 is generated as compared to the circuit module 100w shown in FIG. Parasitic inductance can be reduced. That is, in the circuit module 100c shown in FIG. 12A, in consideration of the current flowing inside the multilayer capacitor 10c, the internal electrode 6 for generating the eddy current P3 is provided in the multilayer body to reduce the parasitic inductance.
 以上のように、本実施の形態3に係る積層コンデンサ10cは、内部電極6を外部電極4および外部電極5を形成した積層体の面に対向する積層体の面に形成する。そのため、積層コンデンサ10cでは、コンデンサ自体を基板に埋め込んで使用しやすい構造とすることができ、さらに引出電極部1a,2aの形状の制約を受けずに内部電極6を形成することができる。 As described above, in the multilayer capacitor 10c according to the third embodiment, the internal electrode 6 is formed on the surface of the laminate facing the surface of the laminate on which the external electrode 4 and the external electrode 5 are formed. Therefore, in the multilayer capacitor 10c, the capacitor itself can be embedded in the substrate to make it easy to use, and the internal electrode 6 can be formed without being restricted by the shapes of the lead electrode portions 1a and 2a.
 (実施の形態4)
 実施の形態2に係る積層コンデンサ10bでは、図5(a)に示すように内部電極1と隣の内部電極1との距離A、または内部電極2と隣の内部電極2との距離Aが内部電極6を設けたことで長くなった。めっき工程において外部電極4,5を形成する場合、距離Aが長いと、複数枚ある内部電極1の引出電極部1a同士、および複数枚ある内部電極2の引出電極部2a同士のそれぞれをめっきでショートするように外部電極4,5を形成することは困難である。そこで、本発明の実施の形態4では、外部電極4,5を形成する内部電極の間隔を短くするためにダミー電極を形成した構成について説明する。
Embodiment 4
In the multilayer capacitor 10b according to the second embodiment, as shown in FIG. 5A, the distance A between the internal electrode 1 and the adjacent internal electrode 1 or the distance A between the internal electrode 2 and the adjacent internal electrode 2 is internal It became long by having provided the electrode 6. When forming the external electrodes 4 and 5 in the plating step, when the distance A is long, the lead electrode portions 1a of the plurality of internal electrodes 1 and the lead electrode portions 2a of the plurality of internal electrodes 2 are plated. It is difficult to form the external electrodes 4 and 5 so as to short. Therefore, in the fourth embodiment of the present invention, a configuration in which a dummy electrode is formed to shorten the distance between the internal electrodes forming the external electrodes 4 and 5 will be described.
 図13は、本発明の実施の形態4に係る積層コンデンサ10dの構成を説明するための概略図である。なお、図13(a)は、積層コンデンサ10dを外部電極4,5が形成された面から見た平面図を、図13(b)は、積層方向から見た積層コンデンサ10dの正面図をそれぞれ示している。また、図14は、本発明の実施の形態4に係る積層コンデンサ10dの内部電極1,2,6の形状を説明するための概略図である。なお、図13および図14に示す積層コンデンサ10dのうち、図5および図6に示す積層コンデンサ10bと同じ構成については同じ符号を付して詳しい説明を繰返さない。また、図13(a)では、内部電極1,2,6の配置を説明するために、外部電極4,5,7を破線で図示している。 FIG. 13 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10d according to the fourth embodiment of the present invention. 13 (a) is a plan view of the multilayer capacitor 10d viewed from the surface on which the external electrodes 4 and 5 are formed, and FIG. 13 (b) is a front view of the multilayer capacitor 10d viewed from the stacking direction. It shows. FIG. 14 is a schematic diagram for illustrating the shapes of the internal electrodes 1, 2, 6 of the multilayer capacitor 10d in accordance with the fourth embodiment of the present invention. In the multilayer capacitor 10d shown in FIGS. 13 and 14, the same components as those in the multilayer capacitor 10b shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the detailed description will not be repeated. Further, in FIG. 13A, in order to explain the arrangement of the internal electrodes 1, 2, 6, the external electrodes 4, 5, 7 are shown by broken lines.
 図14(a)には、容量を形成するための電極である内部電極1を設ける層が図示されている。内部電極1は、図14(a)の紙面左側に引出電極部1aを有している。さらに、内部電極1を設ける層には、内部電極2を設ける層の引出電極部2aに対応する位置(図14(a)の紙面右側)にダミー電極2bを有している。引出電極部1aは、内部電極1と電気的に接続されているが、ダミー電極2bは、内部電極1と電気的に接続されていない。また、ダミー電極2bには、外部電極5が形成される。図14(b)には、容量を形成するための電極以外の電極である内部電極6を設ける層が図示されている。図14(c)には、容量を形成するための電極である内部電極2を設ける層が図示されている。内部電極2は、図14(c)の紙面右側に引出電極部2aを有している。さらに、内部電極2を設ける層には、内部電極1を設ける層の引出電極部1aに対応する位置(図14(c)の紙面左側)にダミー電極1bを有している。引出電極部2aは、内部電極2と電気的に接続されているが、ダミー電極1bは、内部電極2と電気的に接続されていない。また、ダミー電極1bには、外部電極4が形成される。 FIG. 14A shows a layer on which the internal electrode 1 which is an electrode for forming a capacitance is provided. The internal electrode 1 has an extraction electrode portion 1a on the left side of the drawing of FIG. 14 (a). Further, in the layer in which the internal electrode 1 is provided, the dummy electrode 2b is provided at a position corresponding to the lead-out electrode portion 2a of the layer in which the internal electrode 2 is provided (right side in the drawing of FIG. The lead-out electrode portion 1 a is electrically connected to the internal electrode 1, but the dummy electrode 2 b is not electrically connected to the internal electrode 1. In addition, the external electrode 5 is formed on the dummy electrode 2b. FIG. 14B shows a layer on which the internal electrode 6, which is an electrode other than the electrode for forming a capacitance, is provided. FIG. 14C shows a layer on which the internal electrode 2 is provided, which is an electrode for forming a capacitance. The internal electrode 2 has an extraction electrode portion 2a on the right side of the drawing of FIG. 14 (c). Further, in the layer in which the internal electrode 2 is provided, the dummy electrode 1b is provided at a position corresponding to the lead-out electrode portion 1a of the layer in which the internal electrode 1 is provided (left side in the drawing of FIG. 14C). Although the extraction electrode portion 2 a is electrically connected to the internal electrode 2, the dummy electrode 1 b is not electrically connected to the internal electrode 2. In addition, the external electrode 4 is formed on the dummy electrode 1 b.
 図13(a)に示すように、積層コンデンサ10dは、ダミー電極1bを形成することで、内部電極1と隣の内部電極1との距離Aが同じであっても、外部電極4が形成される引出電極部1aとダミー電極1bとの距離Cが距離Aよりも短くなる。同様に、積層コンデンサ10dは、ダミー電極2bを形成することで、内部電極2と隣の内部電極2との距離Aが同じであっても外部電極5が形成される引出電極部2aとダミー電極2bとの距離Cが距離Aよりも短くなる。 As shown in FIG. 13A, in the multilayer capacitor 10d, the external electrode 4 is formed by forming the dummy electrode 1b, even if the distance A between the internal electrode 1 and the adjacent internal electrode 1 is the same. The distance C between the lead-out electrode portion 1a and the dummy electrode 1b becomes shorter than the distance A. Similarly, in the multilayer capacitor 10d, by forming the dummy electrode 2b, the lead-out electrode portion 2a and the dummy electrode in which the external electrode 5 is formed even if the distance A between the internal electrode 2 and the adjacent internal electrode 2 is the same. The distance C to 2 b is shorter than the distance A.
 そのため、積層コンデンサ10dでは、距離Aより短い距離Cにあるダミー電極1bと引出電極部1a同士、およびダミー電極2bと引出電極部2a同士のそれぞれをめっきでショートするので、外部電極4,5の形成が容易となる。 Therefore, in the multilayer capacitor 10d, the dummy electrode 1b and the lead-out electrode portion 1a, and the dummy electrode 2b and the lead-out electrode portion 2a at a distance C shorter than the distance A are shorted by plating. It becomes easy to form.
 以上のように、本実施の形態4に係る積層コンデンサ10dは、内部電極1を積層する層の引出電極部2aに対応する位置に設けられ、内部電極1と絶縁されたダミー電極2b(第1ダミー電極)と、内部電極2を積層する層の引出電極部1aに対応する位置に設けられ、内部電極2と絶縁されたダミー電極1b(第2ダミー電極)とを有する。 As described above, the multilayer capacitor 10d according to the fourth embodiment is provided at a position corresponding to the lead electrode portion 2a of the layer in which the internal electrode 1 is laminated, and is a dummy electrode 2b (first electrode isolated from the internal electrode 1). A dummy electrode) and a dummy electrode 1 b (second dummy electrode) provided at a position corresponding to the extraction electrode portion 1 a of the layer in which the internal electrode 2 is laminated and insulated from the internal electrode 2.
 そのため、積層コンデンサ10dでは、ダミー電極1b,2bを形成することで、図5で示した内部電極1,2と、誘電体セラミック層3が交互に図中水平方向に積層されている構造であっても、ダミー電極1bと引出電極部1a同士、およびダミー電極2bと引出電極部2a同士のそれぞれをめっきでショートするので、外部電極4,5の形成を容易に行うことが可能である。 Therefore, in the multilayer capacitor 10d, the dummy electrodes 1b and 2b are formed, whereby the internal electrodes 1 and 2 shown in FIG. 5 and the dielectric ceramic layer 3 are alternately stacked in the horizontal direction in the figure. However, since the dummy electrode 1b and the lead-out electrode portions 1a, and the dummy electrode 2b and the lead-out electrode portion 2a are shorted by plating, the external electrodes 4 and 5 can be easily formed.
 (実施の形態5)
 実施の形態2に係る積層コンデンサ10bでは、図5(b)で示したように引出電極部1a,2aと内部電極6との間に隙間Bがあることで、その隙間Bを貫く磁束Tが発生する(図5(a)参照)。そこで、本発明の実施の形態5では、隙間Bを貫く磁束の発生を防止するための構成について説明する。
Fifth Embodiment
In the multilayer capacitor 10b according to the second embodiment, as shown in FIG. 5B, there is a gap B between the lead electrode portions 1a and 2a and the internal electrode 6, so that the magnetic flux T penetrating the gap B is It occurs (see FIG. 5 (a)). Therefore, in the fifth embodiment of the present invention, a configuration for preventing the generation of a magnetic flux passing through gap B will be described.
 図15は、本発明の実施の形態5に係る積層コンデンサ10eの構成を説明するための概略図である。なお、図15(a)は、積層コンデンサ10eを外部電極4,5が形成された面から見た平面図を、図15(b)は、積層方向から見た積層コンデンサ10eの正面図をそれぞれ示している。なお、図15に示す積層コンデンサ10eのうち、図5に示す積層コンデンサ10bと同じ構成については同じ符号を付して詳しい説明を繰返さない。 FIG. 15 is a schematic diagram for illustrating the configuration of the multilayer capacitor 10e according to the fifth embodiment of the present invention. 15 (a) is a plan view of the multilayer capacitor 10e as viewed from the surface on which the external electrodes 4 and 5 are formed, and FIG. 15 (b) is a front view of the multilayer capacitor 10e as viewed from the laminating direction. It shows. In the multilayer capacitor 10e shown in FIG. 15, the same components as those in the multilayer capacitor 10b shown in FIG. 5 are designated by the same reference numerals and their detailed description will not be repeated.
 積層コンデンサ10eでは、引出電極部1a,2aと内部電極6との間の隙間を磁束が貫けないように、いくつかのブロックに分けて内部電極の形状を異ならせている。具体的に、積層コンデンサ10eでは、図15(a)のように3つのブロック(第1ブロックB1~第3ブロックB3)に分けて、それぞれのブロックで内部電極1,2,6の形状を異ならせている。これにより、積層コンデンサ10eでは、図5(b)で示したような積層方向に貫通する隙間Bが生じない(図15(b)参照)。 In the multilayer capacitor 10e, in order to prevent the magnetic flux from penetrating the gaps between the lead electrode portions 1a and 2a and the internal electrode 6, the shapes of the internal electrodes are made different by dividing into several blocks. Specifically, in the multilayer capacitor 10e, as shown in FIG. 15A, the internal electrodes 1, 2, and 6 may have different shapes by being divided into three blocks (first block B1 to third block B3). I'm sorry. Thus, in the multilayer capacitor 10e, the gap B penetrating in the stacking direction as shown in FIG. 5B does not occur (see FIG. 15B).
 次に、各ブロック(第1ブロックB1~第3ブロックB3)での内部電極1,2,6の形状について説明する。図16は、本発明の実施の形態5に係る積層コンデンサ10eの第1ブロックB1の内部電極の形状を説明するための概略図である。図17は、本発明の実施の形態5に係る積層コンデンサ10eの第2ブロックB2の内部電極の形状を説明するための概略図である。図18は、本発明の実施の形態5に係る積層コンデンサ10eの第3ブロックB3の内部電極の形状を説明するための概略図である。なお、図16~図18に示す積層コンデンサ10eのうち、図6に示す内部電極と同じ構成については同じ符号を付して詳しい説明を繰返さない。 Next, the shapes of the internal electrodes 1, 2, and 6 in each block (first block B1 to third block B3) will be described. FIG. 16 is a schematic diagram for illustrating the shape of the internal electrode of the first block B1 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention. FIG. 17 is a schematic diagram for illustrating the shape of the internal electrode of the second block B2 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention. FIG. 18 is a schematic diagram for illustrating the shape of the internal electrode of the third block B3 of the multilayer capacitor 10e in accordance with the fifth embodiment of the present invention. In the multilayer capacitor 10e shown in FIGS. 16 to 18, the same components as those of the internal electrode shown in FIG. 6 are designated by the same reference numerals and their detailed description will not be repeated.
 第1ブロックB1の内部電極1は、図16(a)に示すように引出電極部1aの幅が広い形状である。同様に、第1ブロックB1の内部電極2は、図16(c)に示すように引出電極部2aの幅が広い形状である。そのため、第1ブロックB1の内部電極6は、図16(b)に示すように幅の広い引出電極部1aおよび引出電極部2aに挟まれ、幅が狭い形状である。図16(d)は、図16(a)~図16(c)の内部電極を重ね合せた図である。 The internal electrode 1 of the first block B1 has a shape in which the width of the lead electrode portion 1a is wide as shown in FIG. 16 (a). Similarly, as shown in FIG. 16C, the internal electrode 2 of the first block B1 has a shape in which the width of the lead-out electrode portion 2a is wide. Therefore, as shown in FIG. 16B, the internal electrode 6 of the first block B1 is sandwiched between the wide lead-out electrode part 1a and the lead-out electrode part 2a, and has a narrow width. FIG. 16 (d) is a view in which the internal electrodes of FIGS. 16 (a) to 16 (c) are overlapped.
 次に、第2ブロックB2の内部電極1は、図17(a)に示すように引出電極部1aの幅が狭い形状である。同様に、第2ブロックB2の内部電極2は、図17(c)に示すように引出電極部2aの幅が狭い形状である。また、第2ブロックB2の内部電極6は、図17(b)に示すように幅が狭い形状である。図17(d)は、図17(a)~図17(c)の内部電極を重ね合せた図である。 Next, as shown to Fig.17 (a), the internal electrode 1 of 2nd block B2 is a shape where the width | variety of the lead-out electrode part 1a is narrow. Similarly, as shown in FIG. 17C, the internal electrode 2 of the second block B2 has a shape in which the width of the lead-out electrode portion 2a is narrow. Further, the internal electrode 6 of the second block B2 has a narrow width as shown in FIG. 17 (b). FIG. 17 (d) is a diagram in which the internal electrodes of FIGS. 17 (a) to 17 (c) are overlapped.
 次に、第3ブロックB3の内部電極1は、図18(a)に示すように引出電極部1aの幅が狭い形状である。同様に、第3ブロックB3の内部電極2は、図18(c)に示すように引出電極部2aの幅が狭い形状である。そのため、第3ブロックB3の内部電極6は、図18(b)に示すように幅の狭い引出電極部1aおよび引出電極部2aに挟まれ、幅が広い形状である。図18(d)は、図18(a)~図18(c)の内部電極を重ね合せた図である。 Next, as shown to Fig.18 (a), the internal electrode 1 of 3rd block B3 is a shape where the width | variety of the extraction electrode part 1a is narrow. Similarly, as shown in FIG. 18C, the internal electrode 2 of the third block B3 has a shape in which the width of the lead-out electrode portion 2a is narrow. Therefore, as shown in FIG. 18B, the internal electrode 6 of the third block B3 is sandwiched between the narrow lead-out electrode 1a and the lead-out electrode 2a, and has a wide width. FIG. 18 (d) is a diagram in which the internal electrodes of FIGS. 18 (a) to 18 (c) are overlapped.
 積層コンデンサ10eは、第1ブロックB1~第3ブロックB3を、図15(a)に示した順で積層することで、引出電極部1a,2aと内部電極6との間を磁束が貫けないように、磁束に対して垂直な位置に導体を配置した構成となっている。なお、積層コンデンサ10eでは、複数のブロックに分けて、各ブロック(第1ブロックB1~第3ブロックB3)での内部電極1,2,6の形状を異ならせる例を説明した。しかし、積層コンデンサは、引出電極部1a,2aおよび内部電極6のそれぞれの形状において、異なる複数の形状を有していればよい。例えば、積層コンデンサ10eでは、内部電極1は、引出電極部1aの幅が広い形状と狭い形状、内部電極2は、引出電極部2aの幅が広い形状と狭い形状、内部電極6は、幅が広い形状と狭い形状をそれぞれ有している。つまり、これら形状の異なる内部電極を組み合わせることで、引出電極部1a,2aと内部電極6との間を磁束が貫けないように、磁束に対して垂直な位置に導体を配置できる構成であればよい。 In the multilayer capacitor 10e, by laminating the first block B1 to the third block B3 in the order shown in FIG. 15A, the magnetic flux does not penetrate between the lead electrode portions 1a and 2a and the internal electrode 6 In addition, the conductor is disposed at a position perpendicular to the magnetic flux. In the multilayer capacitor 10e, an example has been described in which the shapes of the internal electrodes 1, 2, and 6 in each block (the first block B1 to the third block B3) are divided into a plurality of blocks. However, the multilayer capacitor may have a plurality of different shapes in each of the shapes of the extraction electrode portions 1 a and 2 a and the internal electrode 6. For example, in the multilayer capacitor 10e, the internal electrode 1 has a wide and narrow shape of the lead electrode portion 1a, the internal electrode 2 has a wide and narrow shape of the lead electrode portion 2a, and the internal electrode 6 has a wide width Each has a wide shape and a narrow shape. That is, by combining the internal electrodes having different shapes, it is possible to arrange the conductor at a position perpendicular to the magnetic flux so that the magnetic flux can not penetrate between the lead-out electrode portions 1a and 2a and the internal electrode 6 Good.
 以上のように、本実施の形態5に係る積層コンデンサ10eは、引出電極部1aの形状が異なる複数の内部電極1と、引出電極部2aの形状が異なる複数の内部電極2と、形状が異なる複数の内部電極6とが組み合わせて積層されている。そのため、積層コンデンサ10eは、引出電極部1a,2aと内部電極6との間を磁束が貫けないように、磁束に対して垂直な導体を配置することができる。磁束に対して垂直な導体を配置した場合、当該導体には磁束による渦電流が発生する。発生した渦電流は、引出電極部1a,2aと内部電極6との間を貫く磁束とは反対向きの磁束を発生させるので、磁束が打ち消しあい、寄生インダクタンスを低減させることができる。 As described above, the multilayer capacitor 10e according to the fifth embodiment has different shapes from the plurality of internal electrodes 1 having different shapes of the lead electrode portion 1a and the plurality of inner electrodes 2 having different shapes of the lead electrode portion 2a. A plurality of internal electrodes 6 are stacked in combination. Therefore, in the multilayer capacitor 10e, a conductor perpendicular to the magnetic flux can be disposed so that the magnetic flux does not penetrate between the lead-out electrode portions 1a and 2a and the internal electrode 6. When a conductor perpendicular to the magnetic flux is disposed, an eddy current is generated in the conductor due to the magnetic flux. The generated eddy current generates a magnetic flux in the opposite direction to the magnetic flux penetrating between the lead-out electrode portions 1 a and 2 a and the internal electrode 6, thereby canceling out the magnetic flux and reducing the parasitic inductance.
 (その他の変形例)
 (1)前述の実施の形態に係る積層コンデンサでは、内部電極1,2の間に挟まれる誘電体層の誘電率と、内部電極1,2と内部電極6との間に挟まれる誘電体層の誘電率とは同じであると説明した。しかし、これに限定されず、積層コンデンサは、内部電極6と内部電極1,2の間に挟まれる誘電体層の誘電率が、内部電極1,2の間に挟まれる誘電体層の誘電率に比べて小さくなるように構成してもよい。
(Other modifications)
(1) In the multilayer capacitor in accordance with the above-described embodiment, the dielectric constant of the dielectric layer sandwiched between the internal electrodes 1, 2 and the dielectric layer interposed between the internal electrodes 1, 2 and the internal electrode 6 Was described as being the same as the However, the present invention is not limited to this, and in the multilayer capacitor, the dielectric constant of the dielectric layer sandwiched between the internal electrode 6 and the internal electrodes 1 and 2 is the permittivity of the dielectric layer sandwiched between the internal electrodes 1 and 2 It may be configured to be smaller than.
 図19は、本発明の変形例に係る積層コンデンサの構成を説明するための概略図である。図19(a)に示す積層コンデンサ10fは、図1(b)で示した積層コンデンサ10とほぼ構成が同じである。しかし、積層コンデンサ10fは、内部電極6と内部電極1との間および内部電極6と内部電極2との間に、内部電極1,2の間に挟まれる誘電体セラミック層3aよりも誘電率の小さい誘電体層3bを挟む点で異なっている。なお、積層コンデンサ10fにおいて、誘電体層3b以外の構成は、図1(b)で示した積層コンデンサ10の構成と同じであるため詳細な説明を繰返さない。 FIG. 19 is a schematic diagram for explaining the configuration of the multilayer capacitor in accordance with the modification of the present invention. The multilayer capacitor 10f shown in FIG. 19 (a) has substantially the same configuration as the multilayer capacitor 10 shown in FIG. 1 (b). However, multilayer capacitor 10 f has a dielectric constant higher than dielectric ceramic layer 3 a sandwiched between internal electrodes 1 and 2 between internal electrode 6 and internal electrode 1 and between internal electrode 6 and internal electrode 2. The difference is that the small dielectric layer 3b is sandwiched. In the multilayer capacitor 10f, the configuration other than the dielectric layer 3b is the same as the configuration of the multilayer capacitor 10 shown in FIG. 1B, and therefore the detailed description will not be repeated.
 図19(b)に示す積層コンデンサ10gは、図5(b)で示した積層コンデンサ10bとほぼ構成が同じである。しかし、積層コンデンサ10gは、内部電極6と内部電極1,2の引出電極部1a,2aとの間に、内部電極1,2の間に挟まれる誘電体セラミック層3aよりも誘電率の小さい誘電体層3bを挟む点で異なっている。なお、積層コンデンサ10gにおいて、誘電体層3b以外の構成は、図5(b)で示した積層コンデンサ10bの構成と同じであるため詳細な説明を繰返さない。 The multilayer capacitor 10g shown in FIG. 19 (b) has substantially the same configuration as the multilayer capacitor 10b shown in FIG. 5 (b). However, the multilayer capacitor 10g has a smaller dielectric constant than the dielectric ceramic layer 3a sandwiched between the internal electrodes 1 and 2 between the internal electrodes 6 and the lead-out electrode portions 1a and 2a of the internal electrodes 1 and 2. It differs in that it sandwiches the body layer 3b. In multilayer capacitor 10g, the configuration other than dielectric layer 3b is the same as the configuration of multilayer capacitor 10b shown in FIG. 5 (b), and therefore the detailed description will not be repeated.
 図19(c)に示す積層コンデンサ10hは、図10(b)で示した積層コンデンサ10cとほぼ構成が同じである。しかし、積層コンデンサ10hは、内部電極6と内部電極1,2との間に、内部電極1,2の間に挟まれる誘電体セラミック層3aよりも誘電率の小さい誘電体層3bを挟む点で異なっている。なお、積層コンデンサ10hにおいて、誘電体層3b以外の構成は、図10(b)で示した積層コンデンサ10cの構成と同じであるため詳細な説明を繰返さない。 The multilayer capacitor 10h shown in FIG. 19 (c) has substantially the same configuration as the multilayer capacitor 10c shown in FIG. 10 (b). However, multilayer capacitor 10 h has a point in which dielectric layer 3 b having a smaller dielectric constant than dielectric ceramic layer 3 a sandwiched between internal electrodes 1 and 2 is interposed between internal electrode 6 and internal electrodes 1 and 2. It is different. In multilayer capacitor 10h, the configuration other than dielectric layer 3b is the same as the configuration of multilayer capacitor 10c shown in FIG. 10 (b), and therefore the detailed description will not be repeated.
 積層コンデンサ10f~10hでは、誘電体層3bの誘電率を小さくすることで内部電極1,2と内部電極6との間に形成される寄生容量を低減することができる。この寄生容量が大きい場合、積層コンデンサ10f~10hを含む回路モジュールを動作させたときに、寄生容量への充放電が発生して電力損失が増える課題があった。具体的に、図2に示した回路図において積層コンデンサの寄生容量は、スイッチング素子S1,S2に対して並列に形成される。そのため、スイッチング素子S1,S2がスイッチングする度に寄生容量への充放電が発生することになる。そのため、積層コンデンサ10f~10hでは、内部電極1,2と内部電極6との間に形成される寄生容量を低減することで、上記の課題を解決することができる。 In the multilayer capacitors 10f to 10h, the parasitic capacitance formed between the internal electrodes 1 and 2 and the internal electrode 6 can be reduced by reducing the dielectric constant of the dielectric layer 3b. When the parasitic capacitance is large, there is a problem that when the circuit module including the multilayer capacitors 10f to 10h is operated, charging and discharging to the parasitic capacitance occur to increase the power loss. Specifically, in the circuit diagram shown in FIG. 2, the parasitic capacitances of the multilayer capacitors are formed in parallel to the switching elements S1 and S2. Therefore, charging and discharging to the parasitic capacitance occur each time the switching elements S1 and S2 perform switching. Therefore, in the multilayer capacitors 10f to 10h, the above problem can be solved by reducing the parasitic capacitance formed between the internal electrodes 1, 2 and the internal electrode 6.
 (2)前述の実施の形態に係る回路モジュールでは、ハーフブリッジ回路を説明したが、これに限定されず、積層コンデンサが実装される回路であれば何れの回路であってもよい。 (2) Although the half bridge circuit has been described in the circuit module according to the above-described embodiment, the present invention is not limited to this, and any circuit may be used as long as a multilayer capacitor is mounted.
 (3)前述の実施の形態に係る積層コンデンサでは、図1(b)に示すように、積層方向において、内部電極6の厚みを、内部電極1および内部電極2の厚みよりも厚くしてもよい。内部電極6の厚みを厚くすることで、内部電極6に流せる電流量を増やすことができる。なお、内部電極1,2は、それぞれn層ずつ積層されているので、厚さの総和が1枚の内部電極1,2の厚さのn倍となり、多くの電流を流すことができる。一方、内部電極6、積層体の上側、もしくは下側に1枚しか存在していないため、1枚の厚みを1枚の内部電極1,2の厚みより厚くして流せる電流量を確保する必要がある。 (3) In the multilayer capacitor in accordance with the above-described embodiment, as shown in FIG. 1B, even if the thickness of the internal electrode 6 is made thicker than the thicknesses of the internal electrode 1 and the internal electrode 2 in the stacking direction Good. By increasing the thickness of the internal electrode 6, the amount of current that can be supplied to the internal electrode 6 can be increased. In addition, since the internal electrodes 1 and 2 are respectively laminated by n layers, the sum of the thicknesses becomes n times the thickness of one internal electrode 1 and 2 and a large amount of current can flow. On the other hand, since only one internal electrode 6 is present on the upper side or lower side of the laminated body, it is necessary to make the thickness of one sheet thicker than the thickness of the internal electrodes 1 and 2 to ensure an amount of current flowable There is.
 (4)前述の実施の形態に係る積層コンデンサでは、図1(b)に示すように、積層方向に対して直交する方向(図1(b)の紙面左右方向)において、内部電極6の長さが、内部電極1,2と対向している長さよりも長くてもよい。内部電極6の長さを長くすることで、渦電流が流れる電極面積が大きくなり、内部電極1,2を流れる電流による磁束と内部電極6に流れる渦電流による磁束とが打ち消しあう効果が大きくなる。 (4) In the multilayer capacitor in accordance with the above-described embodiment, as shown in FIG. 1B, the length of the internal electrode 6 is in the direction orthogonal to the laminating direction (left and right direction in FIG. 1B). The length may be longer than the length facing the internal electrodes 1 and 2. By lengthening the length of the internal electrode 6, the area of the electrode through which the eddy current flows increases, and the effect of canceling out the magnetic flux due to the current flowing through the internal electrodes 1 and 2 and the magnetic flux due to the eddy current flowing through the internal electrode 6 increases. .
 (5)前述の実施の形態に係る積層コンデンサでは、図5(a)に示すように、内部電極6が、誘電体セラミック層3の内部に内部電極1,2の電極面に対して平行に積層して形成されている構成を説明した。しかし、当該構成に限定されず、内部電極6は、誘電体セラミック層3の内部に、積層方向から見て引出電極部1aおよび引出電極部2aと重ならない位置に設けられていれば、何れの形状であってもよい。例えば、内部電極6は、引出電極部1aと引出電極部2aとの間で、積層方向に延びる直方体の形状であってもよい。内部電極6の形状を直方体(金属の塊)とすることで、内部電極6の抵抗値が下がり、渦電流が流れ易くなる。 (5) In the multilayer capacitor in accordance with the above-described embodiment, as shown in FIG. 5A, the internal electrode 6 is disposed inside the dielectric ceramic layer 3 in parallel to the electrode surface of the internal electrodes 1 and 2 The configuration formed by stacking has been described. However, the present invention is not limited to this configuration, and the internal electrode 6 may be provided inside the dielectric ceramic layer 3 as long as it does not overlap the lead electrode portion 1 a and the lead electrode portion 2 a when viewed in the stacking direction. It may be shaped. For example, the internal electrode 6 may have a rectangular parallelepiped shape extending in the stacking direction between the extraction electrode portion 1 a and the extraction electrode portion 2 a. By making the shape of the internal electrode 6 into a rectangular solid (a lump of metal), the resistance value of the internal electrode 6 decreases, and eddy current easily flows.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description but by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 1,2,6 内部電極、1a,2a 引出電極部、1b,2b ダミー電極、3 誘電体セラミック層、3a 誘電体層、4,5 外部電極、10 積層コンデンサ、20 基板、100 回路モジュール。 1, 2, 6 internal electrodes, 1a, 2a lead electrode portions, 1b, 2b dummy electrodes, 3 dielectric ceramic layers, 3a dielectric layers, 4, 5 external electrodes, 10 multilayer capacitors, 20 substrates, 100 circuit modules.

Claims (14)

  1.  誘電体層を挟んで第1内部電極と第2内部電極とが交互に積層された積層体と、
     前記第1内部電極に電気的に接続された第1外部電極と、
     前記第2内部電極に電気的に接続された第2外部電極と、
     前記積層体に積層され、前記第1外部電極および前記第2外部電極と電気的に接続されていない少なくとも1つ以上の第3内部電極とを備え、
     前記第3内部電極は、前記第1外部電極と前記第2外部電極との間に流れる電流により渦電流が発生する位置に設けられ、前記積層体の外側から電気的に接続する外部電極が設けられていない、積層コンデンサ。
    A stacked body in which first internal electrodes and second internal electrodes are alternately stacked with a dielectric layer interposed therebetween;
    A first external electrode electrically connected to the first internal electrode;
    A second external electrode electrically connected to the second internal electrode;
    At least one third internal electrode which is laminated on the laminate and is not electrically connected to the first external electrode and the second external electrode;
    The third inner electrode is provided at a position where an eddy current is generated by a current flowing between the first outer electrode and the second outer electrode, and an outer electrode electrically connected from the outside of the laminate is provided. Not a laminated capacitor.
  2.  前記第3内部電極は、前記第1内部電極または前記第2内部電極に対して平行となるように前記積層体に積層される、請求項1に記載の積層コンデンサ。 The multilayer capacitor according to claim 1, wherein the third inner electrode is stacked on the multilayer body in parallel to the first inner electrode or the second inner electrode.
  3.  前記第3内部電極と前記第1内部電極または前記第2内部電極との距離は、前記第1内部電極と前記第2内部電極との距離と同じである、請求項1または請求項2に記載の積層コンデンサ。 The distance between the third internal electrode and the first internal electrode or the second internal electrode is equal to the distance between the first internal electrode and the second internal electrode. Multilayer capacitors.
  4.  前記第3内部電極の電極材料は、前記第1内部電極および前記第2内部電極の電極材料と同じである、請求項1~請求項3のいずれか1項に記載の積層コンデンサ。 The multilayer capacitor according to any one of claims 1 to 3, wherein an electrode material of the third inner electrode is the same as an electrode material of the first inner electrode and the second inner electrode.
  5.  前記第1内部電極または前記第2内部電極と前記第3内部電極との間に挟まれる誘電体層の誘電率は、前記第1内部電極と前記第2内部電極との間に挟まれる誘電体層の誘電率に比べて小さい、請求項1~請求項4のいずれか1項に記載の積層コンデンサ。 The dielectric constant of the dielectric layer sandwiched between the first internal electrode or the second internal electrode and the third internal electrode is equal to that of the dielectric interposed between the first internal electrode and the second internal electrode. The multilayer capacitor according to any one of claims 1 to 4, which is smaller than the dielectric constant of a layer.
  6.  前記第1外部電極は、前記積層体の第1側面に形成され、
     前記第2外部電極は、前記第1側面に対向する前記積層体の第2側面に形成されている、請求項1~請求項5のいずれか1項に記載の積層コンデンサ。
    The first external electrode is formed on a first side of the laminate,
    The multilayer capacitor according to any one of claims 1 to 5, wherein the second external electrode is formed on a second side surface of the multilayer body facing the first side surface.
  7.  前記第1外部電極および前記第2外部電極は、前記第1内部電極および前記第2内部電極に対して垂直な前記積層体の単一面にそれぞれ形成されている、請求項1~請求項5のいずれか1項に記載の積層コンデンサ。 The first external electrode and the second external electrode are respectively formed on a single surface of the laminate perpendicular to the first internal electrode and the second internal electrode. The multilayer capacitor according to any one of the above.
  8.  前記第3内部電極は、前記第1外部電極および前記第2外部電極の少なくとも一部と前記積層体の同一面側に形成されている、請求項6または請求項7に記載の積層コンデンサ。 The multilayer capacitor according to claim 6, wherein the third inner electrode is formed on the same surface side of the multilayer body as at least a part of the first outer electrode and the second outer electrode.
  9.  前記第3内部電極は、前記第1外部電極および前記第2外部電極を形成した前記積層体の面に対向する前記積層体の面側に形成されている、請求項7に記載の積層コンデンサ。 The multilayer capacitor according to claim 7, wherein the third inner electrode is formed on the surface side of the multilayer body facing the surface of the multilayer body on which the first outer electrode and the second outer electrode are formed.
  10.  前記第1内部電極は、前記第2内部電極と対向しない部分であって前記第1外部電極と接続するための第1引出し部を有し、
     前記第2内部電極は、前記第1内部電極と対向しない部分であって前記第2外部電極と接続するための第2引出し部を有し、
     前記第3内部電極は、
     前記第1内部電極と前記第2内部電極との間の前記積層体の層に積層され、
     積層方向から見て、前記第1引出し部と前記第2引出し部との間で、かつ、前記第1内部電極および前記第2内部電極と重ならない位置に配置されている、請求項7に記載の積層コンデンサ。
    The first internal electrode is a portion not facing the second internal electrode, and has a first lead-out portion for connecting to the first external electrode.
    The second internal electrode is a portion not facing the first internal electrode, and has a second lead-out portion for connecting to the second external electrode.
    The third internal electrode is
    Laminated on a layer of the laminate between the first internal electrode and the second internal electrode,
    8. The display device according to claim 7, wherein the first internal electrode and the second internal electrode are disposed so as not to overlap with the first internal electrode and the second internal electrode, as viewed in the stacking direction. Multilayer capacitors.
  11.  前記積層体は、
     前記第1内部電極を積層する層の前記第2引出し部に対応する位置に設けられ、前記第1内部電極と絶縁された第1ダミー電極と、
     前記第2内部電極を積層する層の前記第1引出し部に対応する位置に設けられ、前記第2内部電極と絶縁された第2ダミー電極とを有する、請求項10に記載の積層コンデンサ。
    The laminate is
    A first dummy electrode provided at a position corresponding to the second lead-out portion of the layer in which the first inner electrode is stacked, and insulated from the first inner electrode;
    The multilayer capacitor according to claim 10, further comprising: a second dummy electrode provided at a position corresponding to the first lead-out portion of the layer in which the second inner electrode is stacked, and insulated from the second inner electrode.
  12.  前記積層体は、
     前記第1引出し部の形状が異なる複数の前記第1内部電極と、
     前記第2引出し部の形状が異なる複数の前記第2内部電極と、
     形状が異なる複数の前記第3内部電極とが組み合わせて積層されている、請求項10または請求項11に記載の積層コンデンサ。
    The laminate is
    A plurality of first internal electrodes different in shape of the first lead-out portion;
    A plurality of second internal electrodes different in shape of the second lead-out portion;
    The multilayer capacitor according to claim 10, wherein the plurality of third internal electrodes having different shapes are combined and stacked.
  13.  前記第3内部電極の形状が、直方体である、請求項1~請求項12のいずれか1項に記載の積層コンデンサ。 The multilayer capacitor according to any one of claims 1 to 12, wherein a shape of the third inner electrode is a rectangular solid.
  14.  請求項1~請求項13のいずれか1項に記載の前記積層コンデンサと、
     前記積層コンデンサが実装された配線基板とを備える、回路モジュール。
    The multilayer capacitor according to any one of claims 1 to 13.
    And a wiring board on which the multilayer capacitor is mounted.
PCT/JP2018/019988 2017-09-12 2018-05-24 Multilayer capacitor and circuit module WO2019053954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-175102 2017-09-12
JP2017175102 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019053954A1 true WO2019053954A1 (en) 2019-03-21

Family

ID=65723250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019988 WO2019053954A1 (en) 2017-09-12 2018-05-24 Multilayer capacitor and circuit module

Country Status (1)

Country Link
WO (1) WO2019053954A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316087A (en) * 1995-05-11 1996-11-29 Tokin Corp Laminated ceramic electronic component and its manufacturing
JPH09320887A (en) * 1996-06-03 1997-12-12 Matsushita Electric Ind Co Ltd Laminated ceramic capacitor and its manufacture
JP2006278556A (en) * 2005-03-28 2006-10-12 Tdk Corp Multilayer ceramic electronic component
JP2010165975A (en) * 2009-01-19 2010-07-29 Murata Mfg Co Ltd Laminated inductor
JP2013026323A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Multilayer ceramic electronic component
JP2014508410A (en) * 2011-02-08 2014-04-03 エプコス アクチエンゲゼルシャフト Electroceramic parts with electrostatic shields
JP2014165472A (en) * 2013-02-28 2014-09-08 Murata Mfg Co Ltd Electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316087A (en) * 1995-05-11 1996-11-29 Tokin Corp Laminated ceramic electronic component and its manufacturing
JPH09320887A (en) * 1996-06-03 1997-12-12 Matsushita Electric Ind Co Ltd Laminated ceramic capacitor and its manufacture
JP2006278556A (en) * 2005-03-28 2006-10-12 Tdk Corp Multilayer ceramic electronic component
JP2010165975A (en) * 2009-01-19 2010-07-29 Murata Mfg Co Ltd Laminated inductor
JP2014508410A (en) * 2011-02-08 2014-04-03 エプコス アクチエンゲゼルシャフト Electroceramic parts with electrostatic shields
JP2013026323A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Multilayer ceramic electronic component
JP2014165472A (en) * 2013-02-28 2014-09-08 Murata Mfg Co Ltd Electronic component

Similar Documents

Publication Publication Date Title
US10861635B2 (en) Electronic component
US9373441B2 (en) Composite electronic component
JP5234135B2 (en) Feed-through multilayer capacitor
JP7238937B2 (en) Coil parts and filter circuits including them
JP2011119482A (en) Variable capacitance device
US10264676B2 (en) Passive element array and printed wiring board
JP2016006816A (en) Transformer and multilayer substrate
JP4911036B2 (en) Multilayer capacitor and its mounting structure
KR20090098698A (en) Multilayer capacitor and mounted structure thereof
JP5870674B2 (en) Multilayer capacitor array
JP5708245B2 (en) Feed-through multilayer capacitor
US7746198B2 (en) Electric circuit device
KR20140058920A (en) Common mode filter and manufacturing method thereof
KR20090067044A (en) Multilayer condensor array
JP2017092434A (en) Common mode noise filter
US8310806B2 (en) Multilayer capacitor having high ESR
JP6197882B2 (en) Noise filter
WO2019053954A1 (en) Multilayer capacitor and circuit module
JP5741416B2 (en) Electronic component mounting structure
WO2018008422A1 (en) Inductor with esd protection function
WO2019053953A1 (en) Laminated capacitor and circuit module
JP2017208531A (en) Capacitor module
JP6167872B2 (en) Electronic components
JP2013192312A (en) Dc-dc converter module and multilayer substrate
US20240297631A1 (en) Circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP