WO2019052300A1 - 取暖器 - Google Patents

取暖器 Download PDF

Info

Publication number
WO2019052300A1
WO2019052300A1 PCT/CN2018/100701 CN2018100701W WO2019052300A1 WO 2019052300 A1 WO2019052300 A1 WO 2019052300A1 CN 2018100701 W CN2018100701 W CN 2018100701W WO 2019052300 A1 WO2019052300 A1 WO 2019052300A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
heat source
end portion
heat sink
Prior art date
Application number
PCT/CN2018/100701
Other languages
English (en)
French (fr)
Inventor
岳宝
王文鹏
尹洪
Original Assignee
美的集团股份有限公司
广东美的环境电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710842594.4A external-priority patent/CN109520005A/zh
Priority claimed from CN201721194555.XU external-priority patent/CN207231270U/zh
Application filed by 美的集团股份有限公司, 广东美的环境电器制造有限公司 filed Critical 美的集团股份有限公司
Publication of WO2019052300A1 publication Critical patent/WO2019052300A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations

Definitions

  • the present invention relates to the field of household appliances, and more particularly to a heater.
  • the working principle of a heater such as a oil heater is to heat the internal heat transfer oil with a heat source (for example, a heating rod) to form a circulating hot oil.
  • a heat source for example, a heating rod
  • the oil path is arranged on the heat sink, and the heat is transferred to the heat when the hot oil flows in the oil path.
  • the sheet is delivered to the air via the heat sink to achieve a heating effect.
  • FIG. 1 to 4 are schematic views showing the structure of an existing heater 100'.
  • the overall structure is mainly composed of a heat sink 10', a heat source 30', and an upper cover 20' on the heat sink.
  • the heat sink has a periodic structure, and each cycle unit has the same basic shape, and both tend to taper outward from the inner side (near the heat source).
  • the heat source is located between the fins on both sides, generally a thin heat generating body.
  • the temperature after the power is on can reach 200 degrees Celsius or higher.
  • the heat of the high temperature heat source is transmitted to the air through the heat sink to reach the user's heating purpose, and the heat sink and the air in the process. They are all heated.
  • the heat sink structure also has insufficient heat dissipation, which causes the temperature of the edge of the heat sink (the end facing the user) to be too high, posing a potential burn hazard to the user.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • an embodiment of the present invention provides a heater including: a heat source; and a plurality of spaced-apart first heat sinks disposed on one side of the heat source; wherein two adjacent ones Forming a heat dissipation cavity between the heat sinks, the heat dissipation cavity includes a first end portion and a second end portion, the first end portion of the heat dissipation cavity is open, and a width of the first end portion of the heat dissipation cavity is smaller than the a width of the second end of the heat dissipation cavity, wherein the first end of the heat dissipation cavity is disposed away from the heat source, and the second end of the heat dissipation cavity is disposed adjacent to the heat source.
  • the plurality of first heat sinks are spaced apart from each other and located on the same side of the heat source, and the heat generated by the heat source is transmitted to the first heat sink and transmitted to the air through the first heat sink to achieve a heating effect.
  • the width of the first end portion of the heat dissipation cavity is smaller than the width of the second end portion of the heat dissipation cavity, that is, the cross-sectional area of the first end portion of the heat dissipation cavity is smaller than the cross-sectional area of the second end portion of the heat dissipation cavity, that is, the horizontal direction of the heat dissipation cavity
  • the cross section has a shape in which the first end portion is small and the second end portion is large.
  • the first heat dissipation cavity is disposed between the adjacent two first heat sinks.
  • the cross-sectional area of the end is greater than the cross-sectional area of the second end.
  • the first heat sink In a thickness direction of the heat source, the first heat sink includes opposite first and second ends, the first end of the first heat dissipation cavity is away from the heat source, and the second end of the first heat sink is adjacent to the heat source, ie
  • the first end of the first heat sink corresponds to the first end of the heat dissipation cavity and is disposed near the user
  • the second end of the first heat sink corresponds to the second end of the heat dissipation cavity, such that the first heat sink is
  • the temperature at one end is also lowered, thereby avoiding the danger of the use of the heater due to the excessive temperature of the edge of the first end of the first fin, and improving the safety of the use of the heater.
  • the cross-sectional area of the heat dissipation cavity gradually increases in a direction from the first end of the heat dissipation cavity to the second end of the heat dissipation cavity.
  • the heater provided by the above embodiment of the present invention further has the following additional technical features:
  • the first heat dissipation fin includes a first heat dissipation body, and the first heat dissipation body and the first heat dissipation fin each include a first end portion and a second end portion disposed opposite to each other, the first An extension is disposed at the first end of the heat dissipation body, wherein the first end of the first heat sink and the first end of the first heat dissipation body are disposed away from the heat source, the first heat sink The second end portion and the second end portion of the first heat dissipation body are disposed adjacent to the heat source.
  • the first end of the first heat dissipation body corresponds to the first end of the first heat sink and the first end of the heat dissipation cavity
  • the second end of the first heat dissipation body corresponds to the second end of the first heat sink and the heat dissipation cavity The second end.
  • the first end portion of the first heat dissipation body extends outward to form an extension portion, thereby increasing the heat dissipation area of the first end portion of the first heat dissipation fin, thereby enhancing the heat transfer area between the first end portion and the air, and further The temperature of the first end portion is lowered to prevent the edge temperature of the first end portion from being excessively high.
  • the extension portion is formed such that the width of the first end portion of the heat dissipation cavity is smaller than the width of the second end portion of the heat dissipation cavity.
  • the first end of the heat dissipation cavity is open, and the width of the first end opening of the heat dissipation cavity is such that the width of the first end of the first heat sink is different from the width of the second end substrate.
  • the cross-sectional area of the heat dissipation cavity is gradually increased in a direction from the first end of the heat dissipation cavity to the second end of the heat dissipation cavity, that is, the width of the heat dissipation cavity is gradually increased.
  • the first heat sink includes a first heat dissipation body, and the first heat dissipation body includes opposite first and second ends, and the first end of the first heat dissipation body Extending to form an extension such that a cross-sectional area of the first end of the first fin is greater than a cross-sectional area of the second end of the first fin, wherein the first fin
  • the one end portion and the first end portion of the first heat dissipation body are disposed away from the heat source, and the second end portion of the first heat dissipation fin is disposed adjacent to the heat source.
  • the first end of the first heat dissipating body extends and the extension increases the cross-sectional area of the first end.
  • the extending portion includes a first extending portion and a second extending portion formed by extending the first end portion of the first heat dissipating body toward both sides.
  • the first end portion of the first heat dissipation body extends to the opposite sides to form a first extension portion and a second extension portion respectively, that is, the first extension portion and the second extension portion are respectively located on opposite sides of the first heat dissipation body.
  • the opening width of the first end portion of the heat dissipation cavity ranges from 3 mm to 6 mm, and preferably, the opening width of the heat dissipation cavity is 3 mm, 4 mm, 5 mm or 6 mm, and the airflow outside the heat dissipation cavity may be Passing through the opening of the heat dissipation cavity into the heat dissipation cavity, facilitating the heat dissipation cavity to fully utilize the chimney effect to dissipate heat; and/or, between the first end of the first heat dissipation body and the second end of the first heat dissipation body The distance of the distance is 60 mm to 80 mm, and the greater the distance between the first end portion of the first heat dissipation body and the second end portion thereof, the greater the difficulty of processing the first heat sink, the first end portion of the first heat sink and Too small a distance between the second ends may result in insufficient length of the first fin and poor heating effect on the surrounding air.
  • the first end portion of the first heat dissipation body extends to one side to form the extension portion.
  • two adjacent first heat dissipation bodies extend toward the same side to form the extension portion or two adjacent first heat dissipation bodies extend toward each other to form the extension portion; and/or
  • the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body ranges from 50 mm to 75 mm; and/or the opening of the first end of the heat dissipation cavity
  • the ratio of the width to the width of the extension located in the heat dissipation cavity ranges from 1/3 to 1/4.
  • the two adjacent first heat dissipation bodies may respectively extend toward the same side of the first heat dissipation body to form an extension portion, that is, the adjacent two first heat dissipation bodies are in the same direction. Extending, at this time, the extension is located on the same side of the first heat dissipation body to which it is connected.
  • the adjacent two first heat dissipation bodies respectively extend in opposite directions to form an extension portion, and at this time, the extension portions of the adjacent two first heat dissipation fins are disposed to face each other.
  • the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body is 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, and the first end portion of the first heat dissipation body
  • the distance between the second ends of the heat dissipating body is related to the heating power of the heater, and is also related to the setting of the extending portion.
  • the heating power is 2000 W
  • the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body ranges from 50 mm to 70 mm
  • two adjacent first heat dissipation bodies extend toward each other to form an extension portion
  • the heating power is 2000 W
  • the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body ranges from 55 mm to 75 mm.
  • the ratio of the opening width of the first end portion of the heat dissipation cavity to the width of the extension portion in the heat dissipation cavity ranges from 1/3 to 1/4. That is, at the first end of the heat dissipation cavity, the ratio of the opening width of the heat dissipation cavity to the width of the shielding portion (the extension portion blocks the first end portion of the heat dissipation cavity) is 1/3 to 1/4, preferably, the opening width is The ratio of the width of the occlusion portion is 1/3 or 1/4.
  • the first heat dissipation body has a curved shape, on the one hand, the strength of the first heat dissipation body is increased, and on the other hand, the cross-sectional area of the first heat dissipation body is increased, or the first heat dissipation body is a linear shape for facilitating processing of the first heat dissipation body; and/or, the first heat dissipation body is disposed obliquely or the first heat dissipation body is disposed perpendicular to the heat source; and/or the first heat sink is The ratio of the width of the one end portion to the width of the second end portion of the first heat sink ranges from 3 to 6, such that the cross-sectional area of the first end portion of the first heat sink is greater than the second portion of the first heat sink a cross-sectional area of the end, the ratio of the width of the first end of the first fin to the width of the second end of the first fin is 3, 4, 5 or 6; and/or the
  • the thickness of the first heat sink ranges from 0.5 mm to 1.2 mm, which avoids the difficulty of processing due to the smaller thickness, and avoids excessive cost and heating of the first heat sink caused by excessive thickness.
  • the weight of the first heat sink is 0.5mm, 0.8mm, 1.0mm or 1.2mm; and/or the first heat sink is a metal first heat sink, and the first heat dissipation
  • the sheet is formed by an extrusion process
  • the first fin is made of a metal material, preferably a metal having good thermal conductivity, such as aluminum, stainless steel, etc., the first fin is extruded (also called a stretching process); and/or
  • the thickness of the heat source ranges from 0.6 mm to 1.5 mm, preferably, the thickness of the heat source is 0.6 mm, 0.9 mm, 1.2 mm or 1.5 mm; and/or the heat source comprises a resistance wire and is wrapped around the resistor a mica heating element made of mica on the outer surface of the wire; and/or a
  • the first end portion of the first heat dissipation body extends toward the heat source to form the extension portion; or the first end portion of the first heat dissipation body faces away from the The direction of the heat source extends to form the extension.
  • the extending portion is sleeved with a protective cover to further prevent the first end edge of the first heat sink from scalding the user.
  • the heater further includes: a plurality of second heat sinks on the other side of the heat source, and the plurality of the second heat sinks are related to the plurality of the first heat sinks
  • the heat source is symmetrical or asymmetrical with respect to the heat source.
  • the structure of the second heat sink and the structure of the heat dissipation cavity enclosed between the two adjacent second heat sinks are the same as the first heat sink
  • the structure of the heat dissipation cavity enclosed between the two adjacent first heat sinks is the same.
  • the first heat sink, the heat source and the second heat sink are respectively provided with a first connecting hole, a second connecting hole and a third connecting hole, and the fastener passes through the a first connection hole, the second connection hole, and the third connection hole to connect the first heat sink, the second heat sink, and the heat source; and/or the first heat sink and The heat source is snapped; and/or the second heat sink is in contact with the heat source; and/or the second end of the first heat sink extends to form a first connecting portion, adjacent to the two The first connecting portion of the first heat sink is snapped or connected or soldered by a fastener.
  • the second end of the first heat radiating body extends to the two sides in a direction parallel to the heat source to form a connecting portion.
  • the first heat dissipation fin has an I-shaped or similar I-shaped shape; and/or the second heat dissipation sheet
  • the first end portion and the second end portion are oppositely disposed, and the second end portion of the second heat sink is extended a second connecting portion, the second connecting portions of the two adjacent second fins are engaged or connected by a fastener, wherein the first end of the second fin and the a second end of the second heat sink is disposed along a thickness direction of the heat source, a first end of the second heat sink is disposed away from the heat source, and a second end of the second heat sink is adjacent to the heat source Settings.
  • the first connecting portion and the second connecting portion are disposed parallel to the heat source, and the pro
  • FIG. 1 is a schematic structural view of a first viewing angle of a heater in the related art
  • Figure 2 is a schematic view showing the structure of the second angle of view of the heater shown in Figure 1;
  • Figure 3 is a schematic structural view of a portion of the heater shown in Figure 1;
  • FIG. 4 is a schematic structural view of a third angle of view of the heater shown in FIG. 1.
  • Figure 5 is a schematic structural view of a first viewing angle of the heater according to the first embodiment of the present invention.
  • Figure 6 is a schematic structural view of the second viewing angle of the heater shown in Figure 5;
  • Figure 7 is a schematic structural view of a portion of the heater shown in Figure 6;
  • Figure 8 is a schematic structural view of a heater according to a first specific embodiment of the first embodiment
  • Figure 9 is a schematic structural view of a heater according to a second specific embodiment of the first embodiment.
  • Figure 10 is a schematic structural view of a heater according to a third specific embodiment of the first embodiment.
  • Figure 11 is a schematic structural view of a heater according to a fourth specific embodiment of the first embodiment.
  • Figure 12 is a schematic structural view of a heater according to a fifth specific embodiment of the first embodiment
  • Figure 13 is a schematic structural view of a heater according to a sixth specific embodiment of the first embodiment
  • Figure 14 is a schematic structural view of a heater according to a seventh specific embodiment of the first embodiment
  • FIG. 15 is a schematic structural view of a first viewing angle of the heater according to Embodiment 2 of the present invention.
  • Figure 16 is a schematic structural view of the second viewing angle of the heater shown in Figure 15;
  • Figure 17 is a schematic structural view of a portion of the heater shown in Figure 16;
  • Figure 18 is a schematic structural view of a heater according to a first specific embodiment of the second embodiment
  • Figure 19 is a schematic structural view of a heater according to a second specific embodiment of the second embodiment.
  • Figure 20 is a schematic structural view of a heater according to a third specific embodiment of the second embodiment.
  • 21 is a schematic structural view of a first viewing angle of a heater according to an embodiment of the present invention.
  • Figure 22 is a schematic view showing the structure of the second angle of view of the heater shown in Figure 21;
  • Figure 23 is a view showing the relationship between the edge height of the first heat sink and the corresponding edge temperature of the heater according to the embodiment of the present invention and the related art.
  • a heater 100 in accordance with some embodiments of the present invention is described below with reference to the drawings.
  • a heater includes a heat source 1 and a plurality of spaced-apart first heat sinks 2, and a plurality of first heat sinks.
  • the sheet 2 is disposed on one side of the heat source; wherein a heat dissipation cavity 4 is formed between the adjacent two first heat sinks 2, and the heat dissipation cavity 4 includes a first end portion 28 and a second end portion 29, and the first end of the heat dissipation cavity 4
  • the portion 28 is open, and the width of the first end of the heat dissipation cavity 4 is smaller than the width of the second end of the heat dissipation cavity 4, wherein the first end of the heat dissipation cavity 4 and the second end of the heat dissipation cavity 4 are along the thickness of the heat source In the direction setting, the first end of the heat dissipation cavity 4 is disposed away from the heat source, and the second end of the heat dissipation
  • the plurality of first heat sinks 2 are spaced apart from each other and located on the same side of the heat source, and the heat generated by the heat source is transferred to the first heat sink 2 and transmitted to the air through the first heat sink 2.
  • the width of the first end portion of the heat dissipation cavity 4 is smaller than the width of the second end portion of the heat dissipation cavity, that is, the cross-sectional area of the first end portion of the heat dissipation cavity is smaller than the cross-sectional area of the second end portion of the heat dissipation cavity 4, that is, the heat dissipation cavity
  • the cross section of 4 has a shape in which the first end portion is small and the second end portion is large.
  • the heat dissipation cavity 4 enclosed between the two adjacent first heat sinks 2 is caused.
  • the cross-sectional area of the first end portion is greater than the cross-sectional area of the second end portion.
  • the first fin 2 In the thickness direction of the heat source, the first fin 2 includes opposite first and second ends, the first end of the first heat sink 4 is away from the heat source, and the second end of the first fin 2 is adjacent.
  • the heat source that is, the first end of the first heat sink 2 corresponds to the first end of the heat dissipation cavity 4 and is disposed close to the user, and the second end of the first heat sink 2 corresponds to the second end of the heat dissipation cavity 4, such that The temperature of the first end portion of the first heat sink 2 is also lowered, thereby avoiding the danger of the use of the heater 100 in the use of the edge temperature of the first end portion of the first heat sink 2, thereby improving the safety of the use of the heater 100. Sex.
  • the curve Z represents the relationship between the edge of the first end portion at different heights (the height direction in the up and down direction) and the temperature at the edge on the first heat sink in the related art
  • the curve W represents the present application.
  • the relationship of the edge of the first end at different heights on the first fin to the temperature at the edge It can be seen that for the temperature of the edge of the first end at the same height, the temperature of the edge in the related art is higher than the temperature of the edge in the present application.
  • the cross-sectional area of the heat dissipation chamber 4 gradually increases in a direction from the first end portion of the heat dissipation chamber 4 to the second end portion of the heat dissipation chamber 4.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a heater 100 includes a heat source and a plurality of spaced-apart first fins 2 disposed on one side of the heat source; wherein a heat dissipation cavity is formed between two adjacent first heat sinks 2 4, the heat dissipation cavity 4 includes a first end portion and a second end portion, the first end portion of the heat dissipation cavity 4 is open, and the width of the first end portion of the heat dissipation cavity 4 is smaller than the width of the second end portion of the heat dissipation cavity 4, wherein The first end of the heat dissipation cavity 4 and the second end of the heat dissipation cavity 4 are disposed along the thickness direction of the heat source. The first end of the heat dissipation cavity 4 is disposed away from the heat source, and the second end of the heat dissipation cavity 4 is disposed adjacent to the heat source.
  • the cross-sectional area of the heat dissipation chamber 4 is gradually increased, that is, the width of the heat dissipation chamber is gradually increased.
  • the first heat sink 2 includes a first heat dissipation body 27 , and the first heat dissipation body 27 includes opposite first and second ends, and the first end of the first heat dissipation body is disposed.
  • the first end portion of the first heat dissipation body 27 is extended to form an extending portion 23, and the extending portion 23 increases the cross-sectional area of the first end portion of the first heat sink 2, that is, the first end of the first heat sink is increased.
  • the width of the portion increases the heat exchange area between the first end of the first fin and the air, further reducing the temperature of the first end of the first fin.
  • the extension portion 23 includes a first extension portion 231 and a second extension portion 232 formed by extending the first end portion of the first heat dissipation body to both sides.
  • the first end portion of the first heat dissipation body extends to the opposite sides to form a first extension portion 231 and a second extension portion 232 , that is, the first extension portion 231 and the second extension portion 232 . They are respectively located on opposite sides of the first heat dissipation body.
  • the opening width of the first end portion of the heat dissipation cavity ranges from 3 mm to 6 mm (the width direction is disposed in the left-right direction in FIG. 7), and the opening width of the first end portion of the heat dissipation cavity 4 ranges from 3 mm to 6 mm.
  • the opening width of the heat dissipation cavity 4 is 3 mm, 4 mm, 5 mm or 6 mm, and the airflow outside the heat dissipation cavity 4 can enter the heat dissipation cavity 4 through the opening of the heat dissipation cavity 4, which is beneficial to the heat dissipation cavity 4 to fully utilize the chimney effect for heat dissipation.
  • the distance between the first end of the first heat dissipation body 27 and the second end of the first heat dissipation body 27 is as shown by E in FIG. 6 , E in FIG. 11 , and N in FIG. 17 .
  • the range shown is 60mm to 80mm.
  • the width of the first end portion of the first heat sink (shown as F in FIG. 6 and M in FIG. 17) and the width of the second end portion of the first heat sink (as shown in G of FIG. 6)
  • the ratio of the width of the display portion is in the range of 3 to 6, such that the cross-sectional area of the first end portion of the first fin 2 is larger than the cross-sectional area of the second end portion of the first fin 2, and the first fin 2
  • the ratio of the width of the first end portion to the width of the second end portion of the first fin 2 is 3, 4, 5 or 6.
  • the first end portion of the first heat dissipation body extends toward the heat source 1 to form an extension portion 23, or, as shown in FIG. 12, the first end portion of the first heat dissipation body is away from the heat source.
  • the direction of 1 extends to form an extension 23.
  • a protective sleeve is sleeved on the extension.
  • the first heat sink 2 has a curved shape, or, as shown in FIG. 14, the first heat sink 2 has a linear shape.
  • the first heat sink 2 is disposed obliquely, and preferably, the first heat sink body is disposed obliquely.
  • the first heat sink 2 is disposed perpendicular to the heat source 1, and preferably, the first heat sink body is disposed perpendicular to the heat source.
  • the first fin protrudes to form the rib 26.
  • the first heat dissipation body protrudes to form a reinforcing rib, or, as shown in FIG. 8 and FIG. 18 , the extension portion protrudes to form a reinforcing rib, or, as shown in FIG. 9 .
  • the first connecting portion 24 is convex to form a reinforcing rib.
  • the thickness of the first heat sink 2 ranges from 0.5 mm to 1.2 mm, which avoids the difficulty of processing due to the smaller thickness, and avoids the cost of the first heat sink 2 being too high and the weight of the heater 100 being too large due to excessive thickness.
  • the first fin 2 has a thickness of 0.5 mm, 0.8 mm, 1.0 mm or 1.2 mm.
  • the first heat sink 2 is a metal first heat sink 2, and the first heat sink 2 is formed by an extrusion process, and the first heat sink 2 is made of a metal material, preferably a metal having good heat conductivity, such as aluminum.
  • the first fin 2 is formed by extrusion (also called a stretching process).
  • the thickness of the heat source 1 ranges from 0.6 mm to 1.5 mm, and preferably, the thickness of the heat source 1 is 0.6 mm, 0.9 mm, 1.2 mm or 1.5 mm.
  • the heat source is in the form of a sheet and the height direction is disposed in the up and down direction.
  • the heat source 1 includes a resistance wire and a mica heating element made of mica wrapped around the outer surface of the electric resistance wire.
  • the distance from the heat source 1 to the first heat sink 2 is less than or equal to 0.5 mm, so as to reduce the distance between the heat source 1 and the first heat sink 2, and ensure that the heat generated by the heat source 1 can be smoothly and efficiently transferred to the first heat sink 2, preferably,
  • the distance from the heat source 1 to the first fin 2 is 0, 0.2 mm or 0.5 mm.
  • the heater 100 further includes: a plurality of second heat sinks 3 on the other side of the heat source 1, the plurality of second heat sinks 3 and the plurality of first heat sinks 2 being symmetric with respect to the heat source 1 or asymmetric about the heat source 1 .
  • the first heat sink 2, the heat source 1 and the second heat sink 3 are respectively provided with a first connecting hole, a second connecting hole and a third connecting hole, and the fastener passes through the first connecting hole and the second connecting hole.
  • the first heat sink 2 is in contact with the heat source 1; and/or the second heat sink 3 is in contact with the heat source 1.
  • the second end of the first fin 2 extends to form a first connecting portion 24, and the first connecting portions 24 of the adjacent first fins 2 are engaged or connected or soldered by fasteners.
  • the second heat sink comprises opposite first and second ends, and the second end of the second heat sink extends to form a second connecting portion, and the second connecting portion of the adjacent two second heat sinks
  • the first end of the second heat sink and the second end of the second heat sink are disposed along a thickness direction of the heat source, and the first end of the second heat sink is connected or soldered by a fastener. Keep away from the heat source setting, the second end of the second heat sink is placed close to the heat source.
  • the first connecting portion and the second connecting portion are disposed parallel to the heat source, and the protruding ribs may also be disposed on the first connecting portion and the second connecting portion.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the first end portion of the first heat dissipation body extends to one side to form an extension portion 23.
  • adjacent first heat dissipation bodies extend toward the same side to form an extension portion 23, or, as shown in FIG. 15 and FIG. 16, two adjacent first heat dissipation bodies extend toward each other.
  • An extension 23 is formed.
  • the adjacent two first heat dissipation bodies may respectively extend toward the same side of the first heat dissipation body to form an extension portion 23, that is, adjacent two first heat dissipation bodies. Extending in the same direction, at this time, the extension portion 23 is located on the same side of the first heat dissipation body connected thereto.
  • the two adjacent first heat dissipation bodies respectively extend in opposite directions to form an extension portion 23, and the extension portions 23 of the adjacent two first heat dissipation bodies are disposed opposite to each other.
  • the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body ranges from 50 mm to 75 mm, preferably, the first heat dissipation body
  • the distance between the first end portion and the second end portion of the first heat dissipation body is 50 mm, 55 mm, 60 mm, 65 mm, 70 mm, 75 mm, and the first end portion of the first heat dissipation body and the second end portion of the first heat dissipation body
  • the distance between the heaters 100 is related to the heating power of the heater 100, and is also related to the installation of the extension portion 23.
  • the heating power is 2000 W
  • the distance between the first end of the first heat dissipating body and the second end of the first heat dissipating body is in the range of 50 mm to 70 mm, and when the two adjacent heat dissipating bodies are opposed to each other to form the extending portion 23, the heating power is 2000W, the distance between the first end of the first heat dissipation body and the second end of the first heat dissipation body ranges from 55 mm to 75 mm.
  • the first end of the heat dissipation cavity 4 has an opening, and the ratio of the opening width of the heat dissipation cavity 4 to the width of the extension portion 23 located in the heat dissipation cavity 4 ranges from 1/3 to 1/4, that is, the heat dissipation cavity 4 At the first end, the ratio of the opening width of the heat dissipation cavity 4 to the width of the shielding portion (the extension portion 23 blocks the first end portion of the heat dissipation cavity 4) is 1/3 to 1/4, preferably, the opening width is The ratio of the width of the occlusion portion is 1/3 or 1/4.
  • the extending portion and the first connecting portion and the second connecting portion are provided with reinforcing ribs.
  • the first heat dissipating body is provided with reinforcing ribs.
  • the cross-sectional area of the first end portion of the first heat sink 2 is larger than the cross-sectional area of the second end portion of the second heat sink 3, thereby increasing the first end portion.
  • the heat dissipation area between the air and the air reduces the temperature of the first end edge, and the cross-sectional area of the first end portion of the heat dissipation cavity 4 formed between the adjacent two first heat sinks 2 is smaller than that of the second end portion
  • the cross-sectional area further reduces the temperature of the first end edge of the first fin 2 by the chimney effect.
  • connection means two or more unless specifically stated or defined otherwise; unless otherwise specified or stated, the terms “connected”, “fixed”, etc. It is understood that, for example, the “connection” may be a fixed connection, a detachable connection, or an integral connection, or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium.
  • connection may be a fixed connection, a detachable connection, or an integral connection, or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium.
  • the description of the terms “one embodiment”, “some embodiments”, “specific embodiments” and the like means that the specific features, structures, materials or characteristics described in connection with the embodiments or examples are included in the present invention. At least one embodiment or example.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种取暖器(100),包括热源(1)和多个间隔设置的第一散热片(2),多个第一散热片(2)设置在热源(1)的一侧;其中,相邻两个第一散热片(2)之间形成散热腔(4),散热腔(4)包括第一端部(21)和第二端部(22),散热腔(4)的第一端部(21)开口,且散热腔(4)的第一端部(21)的宽度小于散热腔(4)的第二端部(22)的宽度,其中,散热腔(4)的第一端部(21)和散热腔(4)的第二端部(22)沿热源(1)的厚度方向设置,散热腔(4)的第一端部(21)远离热源(1)设置,散热腔(4)的第二端部(22)靠近热源(1)设置。该取暖器(100)充分利用烟囱效应,增加单位时间内在自下而上的方向上流过散热腔(4)的空气量,同时强化侧面的空气进入散热腔(4)体内,降低第一散热片(2)的温度,尤其是第一散热片(2)最边缘处的温度。

Description

取暖器
本申请要求于2017年9月18日提交中国专利局、申请号为201710842594.4、发明创造名称为“取暖器”和于2017年9月18日提交中国专利局、申请号为201721194555.X、发明创造名称为“取暖器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及家用电器领域,更具体而言,涉及一种取暖器。
背景技术
取暖器例如油汀取暖器的工作原理是用热源(例如加热棒)加热内部导热油形成循环流动的热油,油路布置于散热片上,当热油在油路中流动时把热量传递给散热片,经由散热片传递给空气从而达到取暖效果。
如图1至图4所示为现有取暖器100’结构示意图,整体结构主要由散热片10’、热源30’和位于散热片上的上盖20’组成。散热片为周期结构,每个周期单元的基本形状一样,均为由内侧(靠近热源)向外侧渐缩的趋势。热源位于两侧散热片之间,一般为厚度较薄的发热体,通电后温度可达200摄氏度以上,高温热源的热量通过散热片传递到空气到达用户取暖的目的,这个过程中散热片和空气都被加热。
由以上结构可知,当热源通电发热后,热量通过散热片的散热效果传递到空气达到取暖目的。但是该散热片结构还存在散热不充分导致散热片的边缘(面向用户的一端)温度过高,对用户造成潜在的烫伤危险。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明的目的在于提供一种取暖器。
为实现上述目的,本发明的实施例提供了一种取暖器,包括:热源;和多个间隔设置的第一散热片,设置在所述热源的一侧;其中,相邻两个所述第一散热片之间形成散热腔,所述散热腔包括第一端部和第二端部,所述散热腔的第一端部开口,且所述散热腔的第一端部的宽度小于所述散热腔的第二端部的宽度,其中,所述散热腔的第一端部远离所述热源设置,所述散热腔的第二端部靠近所述热源设置。
本发明上述实施例提供的取暖器,多个第一散热片间隔设置,并位于热源的同一侧,热源产生的热量传递到第一散热片,并经第一散热片传递到空气,实现取暖效果。散热腔的第一端部的宽度小于散热腔的第二端部的宽度,即散热腔的第一端部的横截面积小于散热腔的第二端部的横截面积,即散热腔的横截面呈第一端部小、第二端部大的形状。而相关技术中,由于第一散热片第一端部的横截面积小、第二端部的横截面积大,导致相邻两个第一散热片之间围设出的散热腔的第一端部的横截面积大于第二端部的横截面积。相比于相关技术,本申请中空气在散热腔中自下而上运动时,更能够充分利用烟囱效应,增大空气在散热腔中的流动量,从而增大空气带走的热量,同时强化侧面的空气进入散热腔内,降低第一散热片的温度,尤其是降低第一散热片的第一端部最边缘的温度。沿热源的厚度方向,第一散热片包括相对设置的第一端部和第二端部,第一散热腔片的第一端部远离热源,第一散热片的第二端部靠近热源,即第一散热片的第一端部对应散热腔的第一端部、并靠近使用者设置,第一散热片的第二端部对应散热腔的第二端部,这样,第一散热片的第一端部的温度也会降低,从而避免第一散热片的第一端部的边缘温度过高造成取暖器使用中的危险,提高取暖器使用的安全性。
优选地,沿从散热腔的第一端部到散热腔的第二端部的方向,散热腔的横截面积逐渐增大。
另外,本发明上述实施例提供的取暖器还具有如下附加技术特征:
上述技术方案中,优选地,所述第一散热片包括第一散热本体,所述第一散热本体和第一散热片均包括相对设置的第一端部和第二端部,所述第一散热本体的第一端部处设有延伸部,其中,所述第一散热片的第一端部和所述第一散热本体的第一端部远离所述热源设置,所述第一散热片的第二端部和所述第 一散热本体的第二端部靠近所述热源设置。
第一散热本体的第一端部对应第一散热片的第一端部和散热腔的第一端部,第一散热本体的第二端部对应第一散热片的第二端部和散热腔的第二端部。第一散热本体的第一端部向外延伸形成延伸部,这样一方面增大了第一散热片第一端部的散热面积,从而增强第一端部与空气之间的热传递面积,进一步降低第一端部的温度,避免第一端部的边缘温度过高,另一方面,延伸部的形成使得散热腔的第一端部的宽度小于散热腔的第二端部的宽度。
优选地,散热腔第一端部开口,散热腔的第一端部开口的宽度为第一散热片第一端部的宽度与第二端部基板的宽度差。
优选地,沿从散热腔的第一端部到散热腔的第二端部的方向,散热腔的横截面积逐渐增大,即散热腔的宽度逐渐增大。
上述技术方案中,优选地,所述第一散热片包括第一散热本体,所述第一散热本体包括相对设置的第一端部和第二端部,所述第一散热本体的第一端部延伸形成延伸部,以使所述第一散热片的第一端部的横截面积大于所述第一散热片的第二端部的横截面积,其中,所述第一散热片的第一端部和所述第一散热本体的第一端部远离所述热源设置,所述第一散热片的第二端部靠近所述热源设置。
第一散热本体的第一端部发生延伸,延伸部增大了第一端部的横截面积。
上述技术方案中,优选地,所述延伸部包括所述第一散热本体的第一端部向两侧延伸形成的第一延伸部和第二延伸部。
第一散热本体的第一端部向相对的两侧延伸分别形成第一延伸部和第二延伸部,即第一延伸部和第二延伸部分别位于第一散热本体相对的两侧。
上述技术方案中,优选地,所述散热腔的第一端部的开口宽度的范围为3mm~6mm,优选地,散热腔的开口宽度为3mm、4mm、5mm或6mm,散热腔外侧的气流可以通过散热腔的开口进入散热腔内,有利于散热腔充分利用烟囱效应进行散热;和/或,所述第一散热本体的第一端部与所述第一散热本体的第二端部之间的距离的范围为60mm~80mm,第一散热本体的第一端部与其第二端部之间的距离越大,第一散热片的加工难度越大,第一散热片的第一端部与第二端部之间的距离过小会导致第一散热片长度不足,对周围空气的加热 效果差。优选地,第一散热本体的第一端部与第一散热本体的第二端部之间的距离的范围为60mm、65mm、70mm、75mm、80mm。
上述技术方案中,优选地,所述第一散热本体的第一端部向一侧延伸形成所述延伸部。
上述技术方案中,优选地,相邻两个所述第一散热本体向其同一侧延伸形成所述延伸部或者相邻两个所述第一散热本体相向延伸形成所述延伸部;和/或,所述第一散热本体的第一端部与所述第一散热本体的第二端部之间的距离的范围为50mm~75mm;和/或,所述散热腔的第一端部的开口宽度与位于所述散热腔内的所述延伸部的宽度的比值的范围为1/3~1/4。
当第一散热本体的第一端部向一侧延伸形成延伸部时,相邻两个第一散热本体可以分别向自身的同一侧延伸形成延伸部,即相邻两个第一散热本体同向延伸,此时,延伸部位于与其相连的第一散热本体的同一侧。或者,相邻两个第一散热本体分别向相反的方向延伸形成延伸部,此时相邻两个第一散热片的延伸部相向设置。优选地,第一散热本体的第一端部与第一散热本体的第二端部之间的距离为50mm、55mm、60mm、65mm、70mm、75mm,第一散热本体的第一端部与第一散热本体的第二端部之间的距离与取暖器的发热功率有关,还与延伸部的设置情况有关,具体地,相邻第一散热本体分别向其同一侧延伸形成延伸部时,若发热功率为2000W,第一散热本体的第一端部与第一散热本体的第二端部之间的距离的范围为50mm~70mm,相邻两个第一散热本体相向延伸形成延伸部时,若发热功率为2000W,第一散热本体的第一端部与第一散热本体的第二端部之间的距离的范围为55mm~75mm。
所述散热腔的第一端部的开口宽度与位于所述散热腔内的所述延伸部的宽度的比值的范围为1/3~1/4。即散热腔第一端部处,散热腔的开口宽度与遮挡部分(延伸部对散热腔的第一端部进行遮挡)的宽度之比为1/3~1/4,优选地,开口宽度与遮挡部分的宽度的比值为1/3或1/4。
上述技术方案中,优选地,所述第一散热本体呈曲线状,一方面增强第一散热本体的强度,另一方面增大第一散热本体的横截面积,或者,所述第一散热本体呈直线状,方便第一散热本体的加工;和/或,所述第一散热本体倾斜设置或所述第一散热本体垂直于所述热源设置;和/或,所述第一散热片的第 一端部的宽度与所述第一散热片的第二端部的宽度的比值的范围为3~6,使得第一散热片的第一端部的横截面积大于第一散热片的第二端部的横截面积,第一散热片的第一端部的宽度与第一散热片的第二端部的宽度的比值的为3、4、5或6;和/或,所述第一散热本体的第二端部延伸形成第一连接部,相邻两所述第一散热本体的第一连接部相卡接或通过紧固件相连接或相焊接。
上述技术方案中,优选地,所述第一散热片的厚度的范围为0.5mm~1.2mm,避免厚度越小导致加工难度大,也避免厚度过大导致的第一散热片成本过高、取暖器重量过大,优选地,第一散热片的厚度为0.5mm、0.8mm、1.0mm或1.2mm;和/或,所述第一散热片为金属第一散热片,且所述第一散热片通过挤压工艺成型,第一散热片为金属材质,优选地,为导热性能好的金属,例如铝、不锈钢等,第一散热片通过挤压成型(也叫拉伸工艺);和/或,所述热源的厚度的范围为0.6mm~1.5mm,优选地,热源的厚度为0.6mm、0.9mm、1.2mm或1.5mm;和/或,所述热源包括电阻丝和包裹在所述电阻丝外表面的云母制成的云母发热体;和/或,所述热源到所述第一散热片距离小于或等于0.5mm,以减小热源到第一散热片的距离,保证热源产生的热量能够顺利高效的传递到第一散热片,优选地,热源到第一散热片的距离为0、0.2mm或0.5mm;和/或,所述第一散热片凸出形成加强筋,加强筋位于所述第一散热本体的第一端部与所述第一散热本体的第二端部之间,或者,位于延伸部上,加强筋的数量可以一个或多个,加强筋可以呈直线状或延伸状。
上述技术方案中,优选地,所述第一散热本体的第一端部向靠近所述热源的方向延伸形成所述延伸部;或者,所述第一散热本体的第一端部向远离所述热源的方向延伸形成所述延伸部。
上述技术方案中,优选地,所述延伸部上套设有保护套,进一步防止第一散热片第一端部边缘烫伤使用者。
上述技术方案中,优选地,所述的取暖器还包括:多个第二散热片,位于所述热源的另一侧,多个所述第二散热片与多个所述第一散热片关于所述热源对称或关于所述热源不对称。
当多个第二散热片与多个第一散热片关于热源对称时,第二散热片的结构、相邻两个第二散热片之间围设出的散热腔的结构均与第一散热片的结构、 相邻两个第一散热片之间围设出的散热腔的结构相同。
上述技术方案中,优选地,所述第一散热片、所述热源和所述第二散热片上分别设有第一连接孔、第二连接孔和第三连接孔,紧固件穿过所述第一连接孔、所述第二连接孔和所述第三连接孔,以连接所述第一散热片、所述第二散热片和所述热源;和/或,所述第一散热片与所述热源相卡接;和/或,所述第二散热片与所述热源相卡接;和/或,所述第一散热片的第二端部延伸形成第一连接部,相邻两所述第一散热片的第一连接部相卡接或通过紧固件相连接或相焊接,优选地,第一散热本体的第二端部沿平行于热源的方向向两侧延伸形成连接部,对于第一散热本体向两侧延伸形成第一连接部、向两侧延伸形成延伸部的情况,第一散热片呈工字型或类似工字型;和/或,所述第二散热片包括相对设置的第一端部和第二端部,所述第二散热片的第二端部延伸形成第二连接部,相邻两所述第二散热片的第二连接部相卡接或通过紧固件相连接或相焊接,其中,所述第二散热片的第一端部和所述第二散热片的第二端部沿所述热源的厚度方向设置,所述第二散热片的第一端部远离所述热源设置,所述第二散热片的第二端部靠近所述热源设置。优选地,第一连接部和第二连接部平行于热源设置,第一连接部和第二连接部上也可以设置凸出的加强筋。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术中取暖器第一个视角的结构示意图;
图2是图1所示的取暖器第二个视角的结构示意图;
图3是图1所示的取暖器局部的结构示意图;
图4是图1所示的取暖器第三个视角的结构示意图。
其中,图1至图4中附图标记与部件名称之间的对应关系为:
100’取暖器,10’散热片,20’上盖,30’热源。
图5是本发明的实施例一所述的取暖器第一个视角的结构示意图;
图6是图5所示的取暖器第二个视角的结构示意图;
图7是图6所示的取暖器局部的结构示意图;
图8是实施例一中第一个具体的实施例所述的取暖器的结构示意图;
图9是实施例一中第二个具体的实施例所述的取暖器的结构示意图;
图10是实施例一中第三个具体的实施例所述的取暖器的结构示意图;
图11是实施例一中第四个具体的实施例所述的取暖器的结构示意图;
图12是实施例一中第五个具体的实施例所述的取暖器的结构示意图;
图13是实施例一中第六个具体的实施例所述的取暖器的结构示意图;
图14是实施例一中第七个具体的实施例所述的取暖器的结构示意图;
图15是本发明的实施例二所述的取暖器第一个视角的结构示意图;
图16是图15所示的取暖器第二个视角的结构示意图;
图17是图16所示的取暖器局部的结构示意图;
图18是实施例二中第一个具体的实施例所述的取暖器的结构示意图;
图19是实施例二中第二个具体的实施例所述的取暖器的结构示意图;
图20是实施例二中第三个具体的实施例所述的取暖器的结构示意图;
图21是本发明的一个实施例所述的取暖器第一个视角的结构示意图;
图22是图21所示的取暖器第二个视角的结构示意图;
图23是本发明的实施例所述的取暖器与相关技术中的取暖器,第一散热片的边缘高度与对应的边缘温度之间的关系。
其中,图5至图22中附图标记与部件名称之间的对应关系为:
1热源,2第一散热片,21第一端部,22第二端部,23延伸部,231第一延伸部,232第二延伸部,24第一连接部,26加强筋,27第一散热本体,3第二散热片,4散热腔,100取暖器。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是, 本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照附图描述根据本发明一些实施例的取暖器100。
如图5、图6、图21和图22所示,根据本发明一些实施例提供的一种取暖器,取暖器包括热源1和多个间隔设置的第一散热片2,多个第一散热片2设置在热源的一侧;其中,相邻两个第一散热片2之间形成散热腔4,散热腔4包括第一端部28和第二端部29,散热腔4的第一端部28开口,且散热腔4的第一端部的宽度小于散热腔4的第二端部的宽度,其中,散热腔4的第一端部和散热腔4的第二端部沿热源的厚度方向设置,散热腔4的第一端部远离热源设置,散热腔4的第二端部靠近热源1设置。
本发明上述实施例提供的取暖器100,多个第一散热片2间隔设置,并位于热源的同一侧,热源产生的热量传递到第一散热片2,并经第一散热片2传递到空气,实现取暖效果。散热腔4的第一端部的宽度小于散热腔的第二端部的宽度,即散热腔的第一端部的横截面积小于散热腔4的第二端部的横截面积,即散热腔4的横截面呈第一端部小、第二端部大的形状。而相关技术中,由于第一散热片2第一端部的横截面积小、第二端部的横截面积大,导致相邻两个第一散热片2之间围设出的散热腔4的第一端部的横截面积大于第二端部的横截面积。相比于相关技术,本申请中空气在散热腔4中自下而上运动时,更能够充分利用烟囱效应,增大空气在散热腔4中的流动量,从而增大空气带走的热量,降低第一散热片2的温度。沿热源的厚度方向,第一散热片2包括相对设置的第一端部和第二端部,第一散热腔4片的第一端部远离热源,第一散热片2的第二端部靠近热源,即第一散热片2的第一端部对应散热腔4的第一端部、并靠近使用者设置,第一散热片2的第二端部对应散热腔4的第二端部,这样,第一散热片2的第一端部的温度也会降低,从而避免第一散热片2的第一端部的边缘温度过高造成取暖器100使用中的危险,提高取暖器100使用的安全性。
如图23所示,曲线Z代表相关技术中第一散热片上位于不同高度处(沿上下方向为高度方向)的第一端部的边缘与该边缘处的温度的关系,曲线W代表本申请中第一散热片上位于不同高度处的第一端部的边缘与该边缘处的 温度的关系。可以看出,对于同一高度处第一端部的边缘的温度,相关技术中该边缘的温度高于本申请中该边缘的温度。
优选地,沿从散热腔4的第一端部到散热腔4的第二端部的方向,散热腔4的横截面积逐渐增大。
实施例一:
一种取暖器100,包括热源和多个间隔设置的第一散热片2,多个第一散热片2设置在热源的一侧;其中,相邻两个第一散热片2之间形成散热腔4,散热腔4包括第一端部和第二端部,散热腔4的第一端部开口,且散热腔4的第一端部的宽度小于散热腔4的第二端部的宽度,其中,散热腔4的第一端部和散热腔4的第二端部沿热源的厚度方向设置,散热腔4的第一端部远离热源设置,散热腔4的第二端部靠近热源设置。
优选地,沿从散热腔4的第一端部到散热腔4的第二端部的方向,散热腔4的横截面积逐渐增大,即散热腔的宽度逐渐增大。
如图7至图14所示,第一散热片2包括第一散热本体27,第一散热本体27包括相对设置的第一端部和第二端部,第一散热本体的第一端部设有延伸部23,其中,第一散热片的第一端部和第一散热本体的第一端部远离热源设置,第一散热片的第二端部和第一散热本体的第二端部靠近热源设置。
第一散热本体27的第一端部发生延伸,形成延伸部23,延伸部23增大了第一散热片2第一端部的横截面积,即增大了第一散热片的第一端部的宽度,增大了第一散热片的第一端部与空气之间的换热面积,进一步降低了第一散热片的第一端部的温度。
优选地,延伸部23包括第一散热本体的第一端部向两侧延伸形成的第一延伸部231和第二延伸部232。
如图5至图7所示,第一散热本体的第一端部向相对的两侧延伸分别形成第一延伸部231和第二延伸部232,即第一延伸部231和第二延伸部232分别位于第一散热本体相对的两侧。
优选地,散热腔的第一端部的开口宽度的范围为3mm~6mm(宽度方向沿图图7中左右方向设置),散热腔4的第一端部的开口宽度的范围为3mm~6mm,优选地,散热腔4的开口宽度为3mm、4mm、5mm或6mm,散 热腔4外侧的气流可以通过散热腔4的开口进入散热腔4内,有利于散热腔4充分利用烟囱效应进行散热。
优选地,第一散热本体27的第一端部与所述第一散热本体27的第二端部之间的距离(如图6中E所示、图11中E所示、图17中N所示)的范围为60mm~80mm。
优选地,第一散热片的第一端部的宽度(如图6中F所示、图17中M所示)与第一散热片的第二端部的宽度(如图6中G处所示部位的宽度)的比值的范围为3~6,使得第一散热片2的第一端部的横截面积大于第一散热片2的第二端部的横截面积,第一散热片2的第一端部的宽度与第一散热片2的第二端部的宽度的比值的为3、4、5或6。
优选地,如图11所示,第一散热本体的第一端部向靠近热源1的方向延伸形成延伸部23,或者,如图12所示,第一散热本体的第一端部向远离热源1的方向延伸形成延伸部23。延伸部上套设有保护套。
优选地,如图18和图21所示,第一散热片2呈曲线状,或者,如图14所示,第一散热片2呈直线状。
优选地,如图10所示,第一散热片2倾斜设置,优选地,第一散热本体倾斜设置。或如图9所示第一散热片2垂直于热源1设置,优选地,第一散热本体垂直于热源设置。
优选地,第一散热片凸出形成加强筋26。具体地,如图14、图19、图20所示,第一散热本体凸出形成加强筋,或者,如图8、图18所示,延伸部凸出形成加强筋,或者,如图9所示,第一连接部24凸出形成加强筋。
优选地,第一散热片2的厚度的范围为0.5mm~1.2mm,避免厚度越小导致加工难度大,也避免厚度过大导致的第一散热片2成本过高、取暖器100重量过大,优选地,第一散热片2的厚度为0.5mm、0.8mm、1.0mm或1.2mm。
优选地,第一散热片2为金属第一散热片2,且第一散热片2通过挤压工艺成型,第一散热片2为金属材质,优选地,为导热性能好的金属,例如铝,第一散热片2通过挤压成型(也叫拉伸工艺)。
优选地,热源1的厚度的范围为0.6mm~1.5mm,优选地,热源1的厚度为0.6mm、0.9mm、1.2mm或1.5mm。优选地,热源呈薄片状,高度方向沿上 下方向设置。
优选地,热源1包括电阻丝和包裹在电阻丝外表面的云母制成的云母发热体。
热源1到第一散热片2距离小于或等于0.5mm,以减小热源1到第一散热片2的距离,保证热源1产生的热量能够顺利高效的传递到第一散热片2,优选地,热源1到第一散热片2的距离为0、0.2mm或0.5mm。
优选地,取暖器100还包括:多个第二散热片3,位于热源1的另一侧,多个第二散热片3与多个第一散热片2关于热源1对称或关于热源1不对称。
当多个第二散热片3与多个第一散热片2关于热源1对称时,第二散热片3的结构、相邻两个第二散热片3之间围设出的散热腔4的结构均与第一散热片2的结构、相邻两个第一散热片2之间围设出的散热腔4的结构相同。
优选地,第一散热片2、热源1和第二散热片3上分别设有第一连接孔、第二连接孔和第三连接孔,紧固件穿过第一连接孔、第二连接孔和第三连接孔,以连接第一散热片2、第二散热片3和热源1,使热源1夹在第一散热片2和第二散热片3之间。
优选地,第一散热片2与热源1相卡接;和/或,第二散热片3与热源1相卡接。优选地,第一散热片2的第二端部延伸形成第一连接部24,相邻两第一散热片2的第一连接部24相卡接或通过紧固件相连接或相焊接。
优选地,第二散热片包括相对设置的第一端部和第二端部,第二散热片的第二端部延伸形成第二连接部,相邻两第二散热片的第二连接部相卡接或通过紧固件相连接或相焊接,其中,第二散热片的第一端部和第二散热片的第二端部沿热源的厚度方向设置,第二散热片的第一端部远离热源设置,第二散热片的第二端部靠近热源设置。优选地,第一连接部和第二连接部平行于热源设置,第一连接部和第二连接部上也可以设置凸出的加强筋。
实施例二:
与实施例一的不同在于,如图15至图22所示,第一散热本体的第一端部向一侧延伸形成延伸部23。
优选地,如图21和图22所示,相邻两第一散热本体向其同一侧延伸形成延伸部23,或者,如图15和图16所示,相邻两个第一散热本体相向延伸形 成延伸部23。
当第一散热本体的第一端部向一侧延伸形成延伸部23时,相邻两个第一散热本体可以分别向自身的同一侧延伸形成延伸部23,即相邻两个第一散热本体同向延伸,此时,延伸部23位于与其相连的第一散热本体的同一侧。或者,相邻两个第一散热本体分别向相反的方向延伸形成延伸部23,此时相邻两个第一散热本体的延伸部23相向设置。
优选地,第一散热本体的第一端部与第一散热本体的第二端部之间的距离(如图17中N所示)的范围为50mm~75mm,优选地,第一散热本体的第一端部与第一散热本体的第二端部之间的距离为50mm、55mm、60mm、65mm、70mm、75mm,第一散热本体的第一端部与第一散热本体的第二端部之间的距离与取暖器100的发热功率有关,还与延伸部23的设置情况有关,具体地,相邻第一散热本体分别向其同一侧延伸形成延伸部23时,若发热功率为2000W,第一散热本体的第一端部与第一散热本体的第二端部之间的距离的范围为50mm~70mm,相邻两个第一散热本体相向延伸形成延伸部23时,若发热功率为2000W,第一散热本体的第一端部与第一散热本体的第二端部之间的距离的范围为55mm~75mm。
优选地,散热腔4的第一端部具有开口,且散热腔4的开口宽度与位于散热腔4内的延伸部23的宽度的比值的范围为1/3~1/4,即散热腔4第一端部处,散热腔4的开口宽度与遮挡部分(延伸部23对散热腔4的第一端部进行遮挡)的宽度之比为1/3~1/4,优选地,开口宽度与遮挡部分的宽度的比值为1/3或1/4。
如图18所示,延伸部和第一连接部、第二连接部上设有加强筋,如图19和图20所示,第一散热本体上设有加强筋。
综上所述,本发明实施例提供的取暖器100,第一散热片2第一端部的横截面积大于第二散热片3第二端部的横截面积,从而增大第一端部与空气之间的散热面积,降低第一端部边缘的温度,且相邻两个第一散热片2之间的形成的散热腔4的第一端部的横截面积小于第二端部的横截面积,进一步利用烟囱效应降低第一散热片2第一端部边缘的温度。
在本发明的描述中,除非另有明确的规定和限定,术语“多个”是指两个或 两个以上;除非另有规定或说明,术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本说明书的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本发明的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种取暖器,其特征在于,包括:
    热源;和
    多个间隔设置的第一散热片,设置在所述热源的一侧;
    其中,相邻两个所述第一散热片之间形成散热腔,所述散热腔包括第一端部和第二端部,所述散热腔的第一端部开口,且所述散热腔的第一端部的宽度小于所述散热腔的第二端部的宽度,其中,所述散热腔的第一端部远离所述热源设置,所述散热腔的第二端部靠近所述热源设置。
  2. 根据权利要求1所述的取暖器,其特征在于,
    所述第一散热片包括第一散热本体,所述第一散热本体和所述第一散热片均包括相对设置的第一端部和第二端部,所述第一散热本体的第一端部处设有延伸部,其中,所述第一散热片的第一端部和所述第一散热本体的第一端部远离所述热源设置,所述第一散热片的第二端部和所述第一散热本体第二端部靠近所述热源设置。
  3. 根据权利要求2所述的取暖器,其特征在于,
    所述延伸部包括所述第一散热本体的第一端部向两侧延伸形成的第一延伸部和第二延伸部。
  4. 根据权利要求3所述的取暖器,其特征在于,
    所述散热腔的第一端部的开口宽度的范围为3mm~6mm;和/或,
    所述第一散热本体的第一端部与所述第一散热本体的第二端部之间的距离的范围为60mm~80mm。
  5. 根据权利要求2所述的取暖器,其特征在于,
    所述第一散热本体的第一端部向一侧延伸形成所述延伸部。
  6. 根据权利要求5所述的取暖器,其特征在于,
    相邻两个所述第一散热本体向其同一侧延伸形成所述延伸部或者相邻两个所述第一散热本体相向延伸形成所述延伸部;和/或,
    所述第一散热本体的第一端部与所述第一散热本体的第二端部之间的距离的范围为50mm~75mm;和/或,
    所述散热腔的第一端部的开口宽度与位于所述散热腔内的所述延伸部的宽度的比值的范围为1/3~1/4。
  7. 根据权利要求2至6中任一项所述的取暖器,其特征在于,
    所述第一散热本体呈曲线状,或者,所述第一散热本体呈直线状;和/或,
    所述第一散热本体倾斜设置或所述第一散热本体垂直于所述热源设置;和/或,
    所述第一散热片的第一端部的宽度与所述第一散热片的第二端部的宽度的比值的范围为3~6;和/或,
    所述第一散热本体的第二端部延伸形成第一连接部,相邻两所述第一散热本体的第一连接部相卡接或通过紧固件相连接或相焊接。
  8. 根据权利要求1至6中任一项所述的取暖器,其特征在于,
    所述第一散热片的厚度的范围为0.5mm~1.2mm;和/或,
    所述第一散热片为金属第一散热片,且所述第一散热片通过挤压工艺成型;和/或,
    所述热源到所述第一散热片的距离小于或等于0.5mm;和/或,
    所述热源的厚度的范围为0.6mm~1.5mm;和/或,
    所述热源包括电阻丝和包裹在所述电阻丝外表面的云母;和/或,
    所述第一散热片凸出形成加强筋。
  9. 根据权利要求2至6中任一项所述的取暖器,其特征在于,
    所述第一散热本体的第一端部向靠近所述热源的方向延伸形成所述延伸部;或者,
    所述第一散热本体的第一端部向远离所述热源的方向延伸形成所述延伸部。
  10. 根据权利要求9所述的取暖器,其特征在于,
    所述延伸部上套设有保护套。
  11. 根据权利要求1至6中任一项所述的取暖器,其特征在于,还包括:
    多个第二散热片,位于所述热源的另一侧,多个所述第二散热片与多个所述第一散热片关于所述热源对称或关于所述热源不对称。
  12. 根据权利要求11所述的取暖器,其特征在于,
    所述第一散热片、所述热源和所述第二散热片上分别设有第一连接孔、第二连接孔和第三连接孔,紧固件穿过所述第一连接孔、所述第二连接孔和所述第三连接孔,以连接所述第一散热片、所述第二散热片和所述热源;和/或,
    所述第一散热片与所述热源相卡接;
    和/或,所述第二散热片与所述热源相卡接;
    和/或,所述第二散热片包括相对设置的第一端部和第二端部,所述第二散热片的第二端部延伸形成第二连接部,相邻两所述第二散热片的第二连接部相卡接或通过紧固件相连接或相焊接,其中,所述第二散热片的第一端部和所述第二散热片的第二端部沿所述热源的厚度方向设置,所述第二散热片的第一端部远离所述热源设置,所述第二散热片的第二端部靠近所述热源设置。
PCT/CN2018/100701 2017-09-18 2018-08-15 取暖器 WO2019052300A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710842594.4 2017-09-18
CN201710842594.4A CN109520005A (zh) 2017-09-18 2017-09-18 取暖器
CN201721194555.XU CN207231270U (zh) 2017-09-18 2017-09-18 取暖器
CN201721194555.X 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019052300A1 true WO2019052300A1 (zh) 2019-03-21

Family

ID=65723444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100701 WO2019052300A1 (zh) 2017-09-18 2018-08-15 取暖器

Country Status (1)

Country Link
WO (1) WO2019052300A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101493A (zh) * 1985-03-07 1987-04-08 三菱电机株式会社 换热器
CN201387077Y (zh) * 2009-01-19 2010-01-20 美的集团有限公司 一种取暖器的散热片
WO2015170456A1 (ja) * 2014-05-09 2015-11-12 パナソニックIpマネジメント株式会社 オフセットフィンとそれを有する熱交換器
CN106524786A (zh) * 2016-10-28 2017-03-22 广东美的环境电器制造有限公司 油汀换热器
JP2017101904A (ja) * 2015-12-04 2017-06-08 三桜工業株式会社 熱交換器用フィン
CN207231269U (zh) * 2017-09-18 2018-04-13 美的集团股份有限公司 取暖器
CN207231270U (zh) * 2017-09-18 2018-04-13 美的集团股份有限公司 取暖器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101493A (zh) * 1985-03-07 1987-04-08 三菱电机株式会社 换热器
CN201387077Y (zh) * 2009-01-19 2010-01-20 美的集团有限公司 一种取暖器的散热片
WO2015170456A1 (ja) * 2014-05-09 2015-11-12 パナソニックIpマネジメント株式会社 オフセットフィンとそれを有する熱交換器
JP2017101904A (ja) * 2015-12-04 2017-06-08 三桜工業株式会社 熱交換器用フィン
CN106524786A (zh) * 2016-10-28 2017-03-22 广东美的环境电器制造有限公司 油汀换热器
CN207231269U (zh) * 2017-09-18 2018-04-13 美的集团股份有限公司 取暖器
CN207231270U (zh) * 2017-09-18 2018-04-13 美的集团股份有限公司 取暖器

Similar Documents

Publication Publication Date Title
WO2018076544A1 (zh) 油汀取暖器
WO2018076543A1 (zh) 油汀取暖器
CN207231270U (zh) 取暖器
WO2018176830A1 (zh) 散热组件及电热油汀
CN207231271U (zh) 取暖器
WO2019052300A1 (zh) 取暖器
CN207231269U (zh) 取暖器
CN208222643U (zh) 电暖器的散热组件及电暖器
CN208490001U (zh) 一种翅片式电加热器
CN208139412U (zh) 油汀散热片及其油汀
CN109520326B (zh) 取暖器
CN212157371U (zh) 一种速热散热单片、组件和取暖器
CN109520005A (zh) 取暖器
WO2018176832A1 (zh) 散热单片及电热油汀
CN103247584A (zh) 一种微槽群平板热管散片模块及其生产方法
CN109520327B (zh) 取暖器
CN209419895U (zh) 高效率加热元件
CN206191727U (zh) 油汀取暖器
CN208475442U (zh) 一种散热片及取暖器
CN206191725U (zh) 油汀取暖器
TWM511174U (zh) 具有增大受風面積的陶瓷加熱器
JP5145975B2 (ja) 流体加熱装置
CN220648393U (zh) 换热器及具有其的风暖浴霸
CN214038601U (zh) 一种取暖器用散热装置
CN213040624U (zh) 一种一体化ptc加热器散热片结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856090

Country of ref document: EP

Kind code of ref document: A1