WO2019052135A1 - 节能voc废气处理系统 - Google Patents

节能voc废气处理系统 Download PDF

Info

Publication number
WO2019052135A1
WO2019052135A1 PCT/CN2018/078909 CN2018078909W WO2019052135A1 WO 2019052135 A1 WO2019052135 A1 WO 2019052135A1 CN 2018078909 W CN2018078909 W CN 2018078909W WO 2019052135 A1 WO2019052135 A1 WO 2019052135A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
voc exhaust
heat exchange
heat exchanger
Prior art date
Application number
PCT/CN2018/078909
Other languages
English (en)
French (fr)
Inventor
刘效洲
张宇
周俊博
刘文星
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to AU2018256597A priority Critical patent/AU2018256597B2/en
Publication of WO2019052135A1 publication Critical patent/WO2019052135A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/15043Preheating combustion air by heat recovery means located in the chimney, e.g. for home heating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an exhaust gas treatment system, and more particularly to a VOC exhaust gas treatment system.
  • VOC Volatile Organic Compound
  • VOC waste gas contains formaldehyde, xylene, toluene, acetone, methyl ethyl ketone, halogen compounds, etc., in petrochemical, pharmaceutical, paint, coating, electronics manufacturing,
  • a large amount of VOC waste gas is produced during the production and use of surface anti-corrosion, shoe-making, printing and transportation industries.
  • Most of these compounds have irritating odors, which not only have a great impact on air quality, but also direct contact. Human health causes harm, and the flammability of VOC exhaust gas also poses a safety hazard.
  • VOC exhaust gas has become the focus of air handling problems in various countries due to its large amount of emissions, various types, difficult to degrade, strong toxicity and high safety hazards.
  • the main technologies for treating VOC exhaust gas are: catalytic combustion, activated carbon adsorption, low temperature plasma, ultraviolet light irradiation, and the like.
  • the most ideal treatment method for VOC waste gas is to reduce the VOC waste gas into the CO 2 and water by relying on the combustion heat of the combustion furnace or the combustion of the burner to the combustion temperature to 800 ° C or higher, and then discharge the gas. To the atmosphere.
  • a regenerative incineration apparatus and method for treating dust-containing VOC exhaust gas disclosed in Chinese Patent Application No. 201610617956.5, for the ultimate realization of high-efficiency energy-saving treatment of high-dust VOC exhaust gas.
  • the utility model comprises a linkage valve combination, a heat storage and cleaning device, a regenerator, an oxidation incineration chamber, a burner, a waste heat boiler and a quenching absorption device, wherein the upper part of the regenerator is a connected oxidation incineration chamber, and the lower part of the regenerator is arranged for heat storage and cleaning.
  • the device the regenerator is connected to the exhaust pipe, the anti-blowing pipe and the flue gas pipe through a linkage valve; a plurality of burners for assisting combustion are arranged on the oxidation incineration chamber; the regenerator comprises a plurality of regenerators, each under the regenerator All have the same linkage valve combination.
  • the oxidation incineration chamber requires a large amount of gas to thermally decompose the VOC exhaust gas; (2) the energy of the VOC exhaust gas itself and the utilization of the heat energy generated by the oxidation incineration chamber are insufficient, and rapid absorption is required.
  • the device absorbs heat.
  • Another example is a low-pollution cigarette package printing VOC processing apparatus disclosed in Chinese Patent Application No. 201610138264.2, which comprises an exhaust gas storage device, a violet light purification device, a fiber carbon adsorption filter device and a purified exhaust gas which are sequentially arranged along the exhaust gas discharge and purification lines.
  • the pipeline, the exhaust gas storage device and the factory building are connected through the first exhaust pipe, and the first exhaust pipe is provided with a VOC detector that cooperates with the first exhaust pipe and a first row that exhausts the exhaust gas in the plant.
  • the air pump; the exhaust gas storage device comprises a volumetric elastic airbag, the first exhaust duct is connected with the elastic airbag, and the elastic airbag is connected with the purple light purifying device.
  • the equipment for purifying the VOC exhaust gas is costly; (2) The energy carried by the VOC exhaust gas itself is not fully utilized.
  • the object of the present invention is to provide an energy-saving VOC exhaust gas treatment system, which can fully utilize the self-energy and the carried heat energy of the VOC exhaust gas, and the hot flue gas generated by burning and decomposing the VOC exhaust gas can not only be used for the heat exchange of the VOC exhaust gas but also can be used for heat exchange.
  • the cold air is preheated to form hot air for use as a drying gas in the paint drying chamber.
  • the present invention provides an energy-saving VOC exhaust gas treatment system, comprising: a paint film drying chamber, the paint film drying chamber comprises a drying chamber, and a plurality of drying are arranged on the top wall of the drying chamber. Dry gas inlet and VOC exhaust gas collection port, a plurality of drying gas inlets are connected to the drying gas manifold through respective drying gas pipes, and a plurality of VOC exhaust gas collecting ports are connected to the VOC exhaust gas collecting manifold through respective VOC exhaust gas collecting pipes.
  • the energy-saving VOC exhaust gas treatment system further includes an incineration chamber and a first heat exchanger, wherein the incineration chamber includes an incineration chamber for combustion decomposition of the VOC exhaust gas, and the incineration chamber is provided with a first gas inlet connected to the VOC exhaust gas collection manifold a second gas inlet for supplying gas to the incineration chamber, a third gas inlet for supplying a combustion gas to the incineration chamber, and a flue gas discharge port; the first heat exchanger is provided with a cold air inlet and a medium temperature flue gas An inlet, a hot air outlet, and a low temperature flue gas outlet, wherein the medium temperature flue gas inlet is connected to the flue gas outlet of the incineration chamber through a pipeline, so that the flue gas enters the first heat exchanger to heat the cold air from the cold air inlet to The hot air and the hot air outlet are connected to the dry gas main pipe through the hot air line to supply the hot air formed after the heat exchange to the drying chamber to
  • the product coated with the paint is conveyed by the conveyor belt in the paint drying chamber, and under the action of the drying gas, the paint is gradually dried to form a paint film adhered to the product, and the organic matter in the paint is evaporated and volatilized.
  • the formed VOC exhaust gas is also gradually discharged, and is guided to the VOC exhaust gas collection manifold for uniform treatment with the guidance of the VOC exhaust gas collection pipe.
  • the first heat exchanger is a heat pipe heat exchanger comprising an outer casing, an intermediate partition separating the inner space of the outer casing into a reverse parallel smoke flow path and an air flow path, and a plurality of intermediate partitions disposed in the intermediate partition
  • the heat pipe wherein the evaporation end of the heat pipe extends in the smoke flow path, and the condensation end of the heat pipe extends in the air flow path.
  • a cold air inlet and a hot air outlet are respectively formed at both ends of the air flow path, and the intermediate temperature flue gas inlet and the low temperature flue gas outlet are respectively formed at both ends of the flue gas flow path.
  • the working fluid in the heat pipe of the heat pipe heat exchanger is a liquid medium such as sodium, potassium or naphthalene suitable for working conditions of about 500-800 degrees Celsius.
  • the system further comprises a second heat exchanger connected between the VOC exhaust gas collection manifold and the incineration chamber, wherein the second heat exchanger is provided with a low temperature VOC exhaust gas inlet, a high temperature VOC exhaust gas outlet, a high temperature flue gas inlet and a medium temperature
  • the flue gas outlet, the low temperature VOC exhaust gas inlet is connected with the VOC exhaust gas collecting main pipe
  • the high temperature VOC exhaust gas outlet is connected to the first gas inlet of the incineration chamber through a pipeline
  • the high temperature flue gas inlet and the flue gas exhausting outlet of the incineration chamber are connected through the pipeline.
  • the medium temperature flue gas outlet is connected to the intermediate temperature flue gas inlet of the first heat exchanger through a pipeline.
  • the VOC exhaust gas from 180 to 190 degrees Celsius in the paint drying chamber is heated by the second heat exchanger to form a high temperature VOC exhaust gas of 550 to 650 degrees Celsius, and then mixed with the gas in the incineration chamber of 750 to 850 degrees Celsius and burned and decomposed.
  • the high-temperature flue gas formed after combustion of 750-850 degrees Celsius enters the second heat exchanger through the high-temperature flue gas inlet, and forms a medium-temperature flue gas of 290-300 degrees Celsius after heat exchange with the VOC exhaust gas, and then passes through the medium-temperature flue gas inlet.
  • the formed hot air of 180 to 190 degrees Celsius is sent to the drying gas manifold through the hot air pipeline to paint the product film in the drying chamber. Drying.
  • a VOC exhaust gas collecting branch pipe is disposed at a distal end of the VOC exhaust gas collecting manifold adjacent to the second heat exchanger, and the VOC exhaust gas collecting branch pipe is connected with the drying gas main pipe to share a VOC of 20% to 40% of the total amount of VOC exhaust gas.
  • the exhaust gas is returned to the drying chamber for drying.
  • a filter is provided on the VOC exhaust gas collection branch to remove foreign particles from the VOC exhaust gas.
  • the hot air line is provided with a first hot air line and a second hot air line, and the first hot air line is connected with the dry gas main pipe to add 60% to 90% of the total amount of heated hot air.
  • % of hot air is supplied to the drying chamber for drying, and the second hot air line is connected to the third gas inlet of the incineration chamber to heat 10% to 40% of the total amount of hot air after heating
  • the air is supplied to the incineration chamber as a combustion-supporting gas.
  • a high pressure fan disposed in the VOC exhaust gas collection manifold for introducing VOC exhaust gas into the second heat exchanger, and a first induced draft fan for delivering pressurized cold air into the first heat exchanger.
  • a second induced draft fan disposed in the VOC exhaust gas collection branch pipe for introducing VOC exhaust gas into the dry gas main pipe, and a third air guide provided in the first hot air pipe for introducing hot air into the dry gas main pipe a fan, and a fourth induced draft fan disposed in the second hot air line for introducing hot air into the incineration chamber.
  • the second heat exchanger is a porous nozzle heat exchanger
  • the porous nozzle heat exchanger comprises a heat exchange gas passage disposed between the high temperature flue gas inlet and the intermediate temperature flue gas outlet, and is disposed in the heat exchange gas passage
  • At least one heat exchange cylinder the at least one heat exchange cylinder includes a first end forming an annular end wall and centrally forming an intake hole, a tail end forming an open end, and a first end of the at least one heat exchange cylinder surrounding the intake hole
  • a porous nozzle extending end to the end, the head end is in communication with the low temperature VOC exhaust gas inlet, and the tail end is in communication with the high temperature VOC exhaust gas outlet.
  • the tail end of the at least one heat exchange cylinder is provided with an air outlet chamber communicating therewith, and the high temperature VOC exhaust gas outlet is disposed on the chamber wall of the air outlet chamber.
  • the low temperature VOC exhaust enters the porous nozzle heat exchanger via the intake port, the preheated high temperature VOC exhaust exits the porous nozzle heat exchanger via the trailing end, and the porous nozzle includes a closed end adjacent the trailing end and a pipe body extending between the air inlet hole and the closed end, and a plurality of VOC exhaust gas injection holes are arranged on the peripheral wall of the pipe body such that: the low temperature VOC exhaust gas entering the at least one heat exchange cylinder through the air inlet hole is sprayed through at least one VOC waste gas injection hole to at least The inner wall of a heat exchange cylinder is configured to rapidly exchange heat with the high temperature flue gas flowing through the outer wall of the at least one heat exchange cylinder.
  • the second heat exchanger comprises a first heat exchange cylinder, a second heat exchange cylinder and a third heat exchange cylinder, which are sequentially disposed in the heat exchange gas passage along the flow direction of the high temperature flue gas, and the second exchange
  • the heat exchanger further includes a first connecting passage and a second connecting passage disposed outside the heat exchange gas passage, and the first connecting passage connects the first heat exchange cylinder and the third heat exchange cylinder to the tail end in the flow direction of the VOC exhaust gas,
  • the second connecting passage connects the third heat exchange cylinder and the second heat exchange cylinder to the tail end in the flow direction of the VOC exhaust gas, wherein the low temperature VOC exhaust gas enters the first heat exchange cylinder through the air inlet hole of the first heat exchange cylinder and
  • the first connecting passage, the third heat exchange cylinder, the second connecting passage, and the second heat exchange cylinder are sequentially flowed, and the preheated high-temperature VOC exhaust gas flows out through the tail end of the second heat exchange cylinder.
  • burners are respectively disposed in each of the drying gas pipes, and each of the burners is connected to the gas source through a pipeline.
  • the gas used to incinerate the VOC exhaust gas is biomass gas, methane, gas, liquefied petroleum gas or natural gas.
  • the energy-saving VOC exhaust gas treatment system can be used for the treatment of VOC gas generated when the paint film or paint is dried, such as in a factory such as an automobile factory, a parts factory, a furniture factory, or the like.
  • the beneficial effects of the invention are as follows: (1) The VOC exhaust gas is preheated and then enters the incineration chamber for high temperature combustion, which can greatly recover the waste heat of the flue gas and improve the combustion decomposition efficiency, thereby ensuring that the flue gas meets the environmental discharge standard; 2)
  • the first heat exchanger can be further utilized to effectively utilize the heat of the flue gas after the combustion of the VOC exhaust gas, and the cold air is heated into hot air.
  • the hot air can be used not only as a drying gas but also as a combustion gas in the incineration chamber.
  • FIG. 1 is a schematic view showing the configuration of an energy-saving VOC exhaust gas treatment system of the present invention.
  • Fig. 2 is a view showing the configuration of a second heat exchanger of the present invention.
  • an energy-saving VOC exhaust gas treatment system includes: a paint film drying chamber 100, acinating chamber 200, a first heat exchanger 300, a second heat exchanger 400, and a chimney. 500.
  • the paint drying chamber 100 includes a drying chamber 110.
  • the top wall of the drying chamber 110 is provided with four drying gas inlets 120 and three VOC exhaust gas collecting ports 130.
  • the drying gas inlet 120 is dried.
  • the dry gas manifold 140 is in communication with the dry gas manifold 160, and the VOC exhaust gas collection port 130 is in communication with the VOC exhaust gas collection manifold 170 via the VOC exhaust gas collection manifold 150.
  • the incineration chamber 200 includes an incineration chamber 210 for combustion decomposition of the VOC exhaust gas, the incineration chamber 210 is provided with a first gas inlet 220 that opens into the VOC exhaust gas, and supplies gas to the incineration chamber 210.
  • the first heat exchanger 300 is provided with a cold air inlet 310, a medium temperature flue gas inlet 320, a hot air outlet 330, and a low temperature flue gas outlet 340.
  • the cold air is input into the first heat exchanger 300 through the cold air inlet 310 by the first fan F1, and the cold air exchanges with the medium temperature flue gas of about 300 degrees Celsius entering from the medium temperature flue gas inlet 320 to form 200 degrees Celsius.
  • the hot air to the left and right, the hot air outlet 330 is connected to the drying gas manifold 160 through the hot air line 350, so that the hot air formed after the heat exchange is supplied to the drying chamber 110 to dry the product, and the heat is formed.
  • the low temperature flue gas of about 120 degrees Celsius is discharged to the chimney 500 through the low temperature flue gas outlet 340.
  • the VOC exhaust gas is introduced into the second heat exchanger 400 connected between the VOC exhaust gas collection manifold 170 and the incineration chamber 200 by the high pressure blower HF before the VOC exhaust gas enters the incineration chamber 200.
  • the second heat exchanger 400 is provided with a low temperature VOC exhaust gas inlet 410, a high temperature VOC exhaust gas outlet 420, a high temperature flue gas inlet 430, and a medium temperature flue gas outlet 440.
  • the low temperature VOC exhaust gas inlet 410 is connected to the VOC exhaust gas collecting manifold 170 so that The VOC exhaust gas discharged from the paint drying chamber 110 is heat-exchanged, and the high-temperature VOC exhaust gas outlet 420 is connected to the first gas inlet 220 of the incineration chamber 200 through a pipeline, and the high-temperature flue gas inlet 430 and the flue gas discharge port 250 of the incineration chamber 200
  • the intermediate temperature flue gas outlet 440 is connected to the intermediate temperature flue gas inlet 320 of the first heat exchanger 300 through a pipeline by a pipeline connection.
  • a VOC exhaust gas collection manifold 180 is disposed at a distal end of the VOC exhaust gas collection manifold 170 adjacent to the second heat exchanger 400.
  • the VOC exhaust gas collection manifold 180 is coupled to the drying gas manifold 160 due to bake
  • the temperature of the VOC exhaust gas discharged from the dry cavity 110 is higher than 180 degrees Celsius, and the oxygen content thereof is high, and the second induced draft fan F2 disposed in the VOC gas collecting branch pipe 180 can be utilized, which accounts for about 30% of the total amount of VOC exhaust gas.
  • the VOC exhaust gas is circulated back to the drying gas manifold 160 to be mixed with the hot air from the first heat exchanger 300, and the mixture of flue gas and air is used to dry the product 800 on the conveyor belt 900 in the drying chamber 110. operation.
  • a filter 600 is disposed on the VOC exhaust gas collection branch pipe 180 adjacent to the second induced draft fan F2, thereby removing a part of the impurity particles in the VOC exhaust gas.
  • a burner 190 connected to the gas source through a pipeline is respectively disposed in each of the drying gas sub-pipes 140, so that not only the combustion of the gas and the air but also the temperature in the drying chamber 110 can be improved, and the drying chamber is provided. More heat is provided in the body 110, and the VOC exhaust gas collection manifold 180 can be burned back to the solid particles in the VOC exhaust gas in the drying chamber 110 to ensure that the gas entering the drying chamber 110 is more clean.
  • the hot air line 350 is provided with a first hot air line 3501 and a second hot air line 3502.
  • the first hot air line 3501 is provided with a third induced draft fan F3, and a second A fourth induced draft fan F4 is disposed in the hot air line 3502, and the first hot air line 3501 is connected to the dry gas main pipe 160, so that the total amount of heated hot air can be about 80% by using the third induced draft fan F3.
  • the (volume) hot air is supplied to the drying chamber 110 for drying operation, and the second hot air line 3502 is connected to the third gas inlet 240 of the incineration chamber 200, thereby using the fourth induced draft fan F4 to heat
  • the heated hot air of about 20% by volume of the heated air enters the incineration chamber 200 and is used as a combustion-supporting gas.
  • the high-temperature air can greatly increase the furnace temperature of the incineration chamber 200 after being introduced into the incineration chamber 200, thereby effectively reducing the furnace temperature.
  • the amount of gas used saves energy.
  • the 180 degrees Celsius VOC exhaust gas from the paint film drying chamber is exchanged by the second heat exchanger 400 to form a high temperature VOC exhaust gas of about 600 degrees Celsius, and the high temperature VOC exhaust gas is about 800 degrees Celsius.
  • the high temperature combustion decomposition is performed in the incineration chamber 200, and the high-temperature flue gas of about 800 degrees Celsius formed after combustion enters the second heat exchanger 400 through the high-temperature flue gas inlet 430, and heat exchange with the VOC exhaust gas to form a medium temperature flue gas of 300 degrees Celsius. Thereafter, it enters the first heat exchanger 300 through the intermediate temperature flue gas inlet 320, and exchanges heat with cold air of about 20 degrees Celsius to form hot air of about 190 degrees Celsius.
  • the second heat exchanger 400 is a porous nozzle heat exchanger, and the porous nozzle heat exchanger includes a high temperature flue gas inlet 430 and a medium temperature flue gas outlet 440.
  • the heat exchange gas passage 450 and the first heat exchange cylinder 460, the second heat exchange cylinder 470, and the third heat exchange cylinder 480 are disposed in the heat exchange gas passage 450 in the direction of the high temperature flue gas flow.
  • a first connecting passage 481 is provided, which is disposed outside the heat exchange gas passage 450 for connecting the first heat exchange cylinder 460 and the third heat exchange cylinder 480 in the VOC gas flow direction, and further includes The third heat exchange cylinder 480 and the second heat exchange cylinder 470 are connected to the second connecting passage 482 in the VOC gas flow direction.
  • the rear end of the second heat exchange cylinder 470 is provided with an outlet chamber 471 communicating therewith, and the outlet of the high temperature VOC exhaust gas 420 is disposed on the chamber wall of the outlet chamber 471.
  • the first heat exchange cylinder 460, the second heat exchange cylinder 470, and the third heat exchange cylinder 480 are similar in structure, and each has a straight cylindrical shape and protrudes into the inner wall of the heat exchange gas passage 450.
  • the first connecting passage 481 and the second connecting passage 482 are both disposed outside the tube wall of the heat exchange gas passage 450.
  • the first heat exchange cylinder 460 is connected to the third heat exchange cylinder 480 via the bent first connecting passage 481, and the third heat exchange cylinder 480 is realized with the second heat exchange cylinder via the second connecting passage 482.
  • the first heat exchange cylinder 460, the second heat exchange cylinder 470, and the third heat exchange cylinder 480 each include a porous nozzle 461.
  • the first heat exchange cylinder 460 includes a first end forming an annular end wall and centrally forming an air inlet hole 462, and a tail end adjacent to the first connection passage 481, wherein the tail end forms an open end and is in direct communication with the first connection passage 481 .
  • a perforated nozzle 461 extends from the leading end to the trailing end within the first heat exchange cylinder 460 around the inlet aperture 462.
  • the porous nozzle 461 includes a closed end 4611 adjacent the first connecting passage 481 and a tubular body 4612 extending between the intake aperture 462 and the closed end 4611.
  • a plurality of VOC gas injection holes 4613 are disposed in the peripheral wall of the pipe body 4612 so as to be injected into the pipe body 4612 via the intake holes 462, and then ejected toward the inner wall of the first heat exchange cylinder 460 through the plurality of VOC gas injection holes 4613 at a high speed.
  • the heat exchange with the high temperature flue gas flowing through the outer wall of the first heat exchange cylinder 460 is rapidly exchanged, the VOC exhaust gas is quickly preheated, and the first heat exchange cylinder 460 is cooled in time.
  • the VOC exhaust gas Since the VOC exhaust gas is pressurized by the high pressure blower HF, it enters the porous nozzle heat exchanger, and when the high pressure VOC exhaust gas enters the porous nozzle, the pore size of the VOC gas injection hole is small, so the high pressure VOC gas passes quickly and at high pressure.
  • the VOC gas injection hole is sprayed out from the porous nozzle and hits the inner wall of the heat exchange cylinder at high speed and high pressure. The high speed and high pressure impact can ensure the low temperature gas and heat exchange cylinder inside the heat exchange cylinder. Rapid and efficient heat exchange between the external high-temperature flue gases causes the VOC gas temperature to rise rapidly.
  • the structure and working process of the porous nozzle 461 are described by taking the first heat exchange cylinder 460 as an example.
  • the second heat exchange cylinder 470 and the third heat exchange cylinder 480 have The same structure as the first heat exchange cylinder 460, their construction and operation will not be described again.
  • the low temperature VOC exhaust gas enters the first heat exchange cylinder 460 via the intake hole 462 of the first heat exchange cylinder 460 and sequentially flows through the first connection passage 481, the third heat exchange cylinder 480, and the second connection passage 482.
  • the second heat exchange cylinder 470 the preheated high temperature VOC gas flows out of the second heat exchanger 400 through the tail end of the second heat exchange cylinder 470.
  • the first or second heat exchanger may be a heat pipe heat exchanger or a tubular heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Air Supply (AREA)

Abstract

一种节能VOC废气处理系统包括:漆膜烘干室(100)、焚烧室(200)、第一换热器(300)、第二换热器(400)及烟囱(500)。漆膜烘干室(100)烘干腔体(110)的顶壁上间隔设有四个烘干气体入口(120)及三个VOC废气收集口(130)。焚烧室(200)焚烧腔体(210)设有通入VOC废气的第一气体入口(220)、向焚烧腔体(210)内供应燃气的第二气体入口(230)、向焚烧腔体(210)内供应助燃气体的第三气体入口(240)及将燃烧腔体(210)中的高温烟气排出的烟气排出口(250)。第一换热器(300)设有冷空气入口(310)、中温烟气入口(320)、热空气出口(330)及低温烟气出口(340)。该节能VOC废气处理系统,其能够充分利用废气的自身能量及携带的热能,燃烧分解废气产生的热烟气不仅可供废气自身换热使用,而且还可以对冷空气进行预热形成热空气作为烘干气体使用。

Description

节能VOC废气处理系统 技术领域
本发明涉及一种废气处理系统,特别涉及一种VOC废气处理系统。
背景技术
VOC(Volatile Organic Compound)是指常温下挥发性有机化合物的总称,VOC废气中含有甲醛、二甲苯、甲苯、丙酮、丁酮、卤素化合物等,在石油化工、制药、油漆、涂料、电子制造、表面防腐、制鞋、印刷以及交通运输等行业中的生产及使用过程中会产生大量的VOC废气,该些化合物多数具有刺激性气味,不仅对空气质量造成极大的影响,直接接触也会对人体健康造成危害,并且VOC废气易燃的特点也造成安全隐患。
目前,VOC废气由于排放量大、种类多、难降解、毒性强、安全隐患大,其已成为各国对空气处理问题的焦点。现有技术中,处理VOC废气的主要技术有:催化燃烧、活性炭吸附、低温等离子、紫外光照射等。其中,VOC废气最理想的处理方式是将VOC废气在燃烧炉中依靠自身燃烧热或是燃烧器助燃升温至800摄氏度以上,使废气中的VOC分解成CO 2和水,然后再将这些气体排放至大气中。
如中国专利申请201610617956.5号公开的一种处理含尘VOC废气的蓄热式焚烧装置和方法,以最终实现高含尘VOC废气的高效节能处理。其包括联动阀门组合、蓄热清灰装置、蓄热室、氧化焚烧室、燃烧器、余热锅炉和急冷吸收装置,蓄热室上部为连通的氧化焚烧室,蓄热室下部布置蓄热清灰装置,蓄热室通过联动阀门组合连接废气管道、反吹风管道和烟气管道;氧化焚烧室上布置用于助燃的若干个燃烧器;蓄热室包括若干个蓄热仓,每蓄热仓下方均布有相同的联动阀门组合。然而,该存在以下缺点或不足:(1)氧化焚烧室需要大量的燃气以对VOC 废气进行加热分解;(2)VOC废气自身的能量及氧化焚烧室产生的热能的利用不够充分,需要急冷吸收装置对于热量进行吸收。
又如中国专利申请201610138264.2号公开的一种低污染香烟包装印刷VOC处理装置,其包括沿废气的排出和净化线路依次设置的废气存储装置、紫光灯净化装置、纤维碳吸附过滤装置和净化排气管道,废气存储装置与厂房通过第一排气管道连通,第一排气管道上沿净化路线依次设有与第一排气管道配合检测的VOC检测仪和将厂房内的废气排出的第一排气泵;废气存储装置包括体积伸缩的弹性气囊,第一排气管道与弹性气囊连通,弹性气囊与紫光灯净化装置连通。然而,该存在以下缺点或不足:(1)、净化VOC废气的设备成本较高;(2)、没有充分利用VOC废气自身携带的能量。
因此,提供一种节能减排的VOC废气处理系统成为业内急需解决的问题。
发明内容
本发明的目的是提供一种节能VOC废气处理系统,其能够充分利用VOC废气的自身能量及携带的热能,燃烧分解VOC废气产生的热烟气不仅可供VOC废气自身换热使用,而且还可以对冷空气进行预热形成热空气作为漆膜烘干室内的烘干气体使用。
为了实现上述目的,本发明提供了一种节能VOC废气处理系统,包括:漆膜烘干室,漆膜烘干室包括烘干腔体,烘干腔体的顶壁上间隔设有若干个烘干气体入口及VOC废气收集口,若干个烘干气体入口通过各自的烘干气体分管与烘干气体总管相连通,若干个VOC废气收集口通过各自的VOC废气收集分管与VOC废气收集总管相连通。节能VOC废气处理系统还包括焚烧室及第一换热器,其中,焚烧室包括用于供VOC废气燃烧分解的焚烧腔体,焚烧腔体设有与VOC废气收集总管相连接的第一气体入口、用于向焚烧腔体内供应燃气的第二气体入口、用于向焚烧腔体内供应助燃气体的第三气体入口、以及烟气排出口;第一换热器设有冷空气入口、中温烟气入口、热空气出口、以及低温烟气出口,其中,中温烟气入口通过管线与焚烧室的烟气排出口相连接, 使得烟气进入第一换热器将来自冷空气入口的冷空气加热成热空气,热空气出口通过热空气管线与烘干气体总管相连接以将换热后形成的热空气提供至烘干腔体内对产品漆膜进行烘干,低温烟气出口与烟囱相连接。
其中,涂敷有涂料的产品在漆膜烘干室内随着传送带的传送,在烘干气体的作用下,涂料逐渐被烘干形成黏附于产品上的漆膜,涂料中的有机物经过烘干挥发形成的VOC废气也逐渐排放出来,随VOC废气收集分管的引导,汇聚至VOC废气收集总管中进行统一处理。
可选择地,第一换热器为热管换热器,包括外壳、将外壳内部空间分隔为逆向平行的烟气流路和空气流路的中隔板、以及穿设在中隔板中的若干热管,其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于空气流路中。冷空气入口和热空气出口分别形成于空气流路的两端,中温烟气入口和低温烟气出口分别形成于烟气流路的两端。
优选地,热管换热器的热管内的工质为适用于500-800摄氏度左右工况的液态钠、钾、萘等工质。
优选地,该系统还包括连接于VOC废气收集总管及焚烧室之间的第二热交换器,其中,第二换热器设有低温VOC废气入口、高温VOC废气出口、高温烟气入口及中温烟气出口,低温VOC废气入口与VOC废气收集总管相连通,高温VOC废气出口与焚烧室的第一气体入口通过管线相连接,高温烟气入口与焚烧室的烟气排出口通过管线相连接,中温烟气出口与第一换热器的中温烟气入口通过管线相连接。
其中,来自漆膜烘干室的180~190摄氏度的VOC废气经过第二换热器换热后形成550~650摄氏度的高温VOC废气后,于750~850摄氏度的焚烧室内与燃气混合并燃烧分解,燃烧后形成的750~850摄氏度的高温烟气通过高温烟气入口进入第二换热器内,与VOC废气进行热交换后形成290~300摄氏度的中温烟气后,再通过中温烟气入口进入第一换热器中,与20~25摄氏度的冷空气进行热交换,形成的180~190摄氏度的热空气通过热空气管线输送至烘干气体总管内以对烘干腔体内的产品漆膜进行烘干。
优选地,于邻近第二换热器的VOC废气收集总管的远端设有VOC废气收集支管,VOC废气收集支管与烘干气体总管相连接以将占VOC 废气总量20%~40%的VOC废气回流至烘干腔体内用于烘干。
优选地,VOC废气收集支管上设有过滤器以去除来自VOC废气中的杂质颗粒。
优选地,热空气管线设有第一热空气管路及第二热空气管路,第一热空气管路与烘干气体总管相连接以将加热后的占热空气总量的60%~90%的热空气提供至烘干腔体内用于烘干,第二热空气管路与焚烧室的第三气体入口相连接以将热加热后的占热空气总量的10%~40%的热空气提供焚烧室内作为助燃气体。
可选择地,还包括于VOC废气收集总管中设置的用于向第二换热器内引入VOC废气的高压风机、用于向第一换热器内输送加压的冷空气的第一引风机、于VOC废气收集支管中设置的用于向烘干气体总管引入VOC废气的第二引风机、于第一热空气管路中设置的用于向烘干气体总管中引入热空气的第三引风机、以及于第二热空气管路中设置的用于向焚烧室引入热空气的第四引风机。
可选择地,第二换热器为多孔喷管换热器,多孔喷管换热器包括设置于高温烟气入口及中温烟气出口之间的换热气体通道以及设于换热气体通道中的至少一个热交换筒体,至少一个热交换筒体包括形成环形端壁且中央形成进气孔的首端、形成敞口端的尾端、以及围绕进气孔在至少一个热交换筒体内从首端向尾端延伸的多孔喷管,首端与低温VOC废气入口相连通,尾端与高温VOC废气出口相连通。
可选择地,至少一个热交换筒体的尾端设有与其相连通的出气室,高温VOC废气出口设置于出气室的室壁上。
可选择地,低温VOC废气经由进气孔进入多孔喷管换热器,预热后的高温VOC废气经由尾端流出多孔喷管换热器,并且,多孔喷管包括邻近尾端的封闭端以及在进气孔与封闭端之间延伸的管体,管体的周壁上设置若干VOC废气喷孔使得:经由进气孔进入至少一个热交换筒体内的低温VOC废气通过若干VOC废气喷孔喷射至至少一个热交换筒体的内壁以便与流经至少一个热交换筒体的外壁的高温烟气快速换热。
可选择地,第二换热器包括沿着高温烟气流动方向依次设于换热气 体通道中的第一热交换筒体、第二热交换筒体及第三热交换筒体,第二换热器还包括设于换热气体通道外部的第一连接通道及第二连接通道,第一连接通道将第一热交换筒体与第三热交换筒体在VOC废气流动方向上尾首相连,第二连接通道将第三热交换筒体与第二热交换筒体在VOC废气流动方向上尾首相连,其中,低温VOC废气经由第一热交换筒体的进气孔进入第一热交换筒体并依次流经第一连接通道、第三热交换筒体、第二连接通道、以及第二热交换筒体,预热后的高温VOC废气经由第二热交换筒体的尾端流出。
可选择地,每个烘干气体分管中分别设有燃烧器,每个燃烧器通过管线与燃气源相连接。
可选择地,用于焚烧VOC废气所用的燃气为生物质气体、甲烷、煤气、液化石油气或天然气。
可选择地,节能VOC废气处理系统可用于漆膜或涂料烘干时产生的VOC气体的处理,诸如应用在汽车厂、零配件厂、家具厂等工厂中。
本发明的有益效果是:(1)、VOC废气先经过预热后再进入焚烧室内高温燃烧,可极大回收烟气余热,提高了燃烧分解效率,从而保证了烟气符合环境排放标准;(2)、设置第一换热器可以进一步有效利用VOC废气燃烧分解后烟气的热量,将冷空气加热成热空气,热空气不仅可以作为烘干气体使用,还可以提供给焚烧室作为助燃气体,这充分利用了VOC废气的自身能量及携带的热能,提高了能量利用率;(3)、采用作为第二换热器的多孔喷管换热器,提高了换热效率,更加节能环保;(4)、20%~40%的VOC废气回流至烘干气体总管中,再次对烘干腔体内的产品漆膜进行烘干,实现了能量的循环利用,同时减少了烟气中氮氧化合物含量。
附图说明
图1示出了本发明的节能VOC废气处理系统的构造示意图。
图2示出了本发明的第二换热器的构造示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参照图1,根据本发明的一种非限制性实施方式,节能VOC废气处理系统包括:漆膜烘干室100、焚烧室200、第一换热器300、第二换热器400以及烟囱500。
其中,漆膜烘干室100包括烘干腔体110,烘干腔体110的顶壁上间隔设有四个烘干气体入口120及三个VOC废气收集口130,烘干气体入口120通过烘干气体分管140与烘干气体总管160相连通,VOC废气收集口130通过VOC废气收集分管150与VOC废气收集总管170相连通。
在该非限制性实施例中,焚烧室200包括供VOC废气燃烧分解的焚烧腔体210,焚烧腔体210设有通入VOC废气的第一气体入口220、向焚烧腔体210内供应燃气的第二气体入口230、向焚烧腔体210内供应助燃气体的第三气体入口240、以及将燃烧腔体210中的高温烟气排出的烟气排出口250。
第一换热器300设有冷空气入口310、中温烟气入口320、热空气出口330以及低温烟气出口340。其中,利用第一风机F1将冷空气通过冷空气入口310输入至第一换热器300内,冷空气与从中温烟气入口320进入的300摄氏度左右的中温烟气进行热交换后形成200摄氏度左右的热空气,热空气出口330通过热空气管线350与烘干气体总管160相连接,从而将换热后形成的热空气提供至烘干腔体110内对产品进行烘干,换热后形成的120摄氏度左右的低温烟气通过低温烟气出口340排至烟囱500处。
作为一种可替代的实施方式,在VOC废气进入焚烧室200之前先通过高压风机HF将VOC废气引入连接于VOC废气收集总管170及焚烧室200之间的第二换热器400中。其中,第二换热器400设有低温 VOC废气入口410、高温VOC废气出口420、高温烟气入口430及中温烟气出口440,低温VOC废气入口410与VOC废气收集总管170相连通,从而可以对漆膜烘干室110排出的VOC废气进行热交换,高温VOC废气出口420与焚烧室200的第一气体入口220通过管线相连接,高温烟气入口430与焚烧室200的烟气排出口250通过管线相连接,中温烟气出口440与第一换热器300的中温烟气入口320通过管线相连接。
在该非限制性实施例中,于邻近第二换热器400的VOC废气收集总管170的远端设有VOC废气收集支管180,VOC废气收集支管180与烘干气体总管160相连接,由于烘干腔体110中排出的VOC废气的温度高于180摄氏度,其含氧量较高,可以利用VOC气体收集支管180中设置的第二引风机F2,将占VOC废气总量约30%(体积)的VOC废气循环返回至烘干气体总管160中与来自第一换热器300的热空气混合,烟气与空气的混合气在烘干腔体110中对传送带900上的产品800进行烘干作业。
由于VOC废气中含有一定量的杂质,在邻近第二引风机F2的VOC废气收集支管180上设置过滤器600,从而去除VOC废气中的部分杂质颗粒。
此外,在每个烘干气体分管140中分别设有通过管线与燃气源相连接的燃烧器190,从而不仅可以通过燃气与空气的燃烧,提高烘干腔体110内的温度,为烘干腔体110内提供更多的热能,而且还可以通过燃烧,烧掉VOC废气收集支管180回流至烘干腔体110内VOC废气中的固体颗粒,确保进入烘干腔体110中的气体更加清洁。
作为另一种可替代的实施方式,热空气管线350设有第一热空气管路3501及第二热空气管路3502,第一热空气管路3501中设有第三引风机F3,第二热空气管路3502中设有第四引风机F4,第一热空气管路3501与烘干气体总管160相连接,从而可以利用第三引风机F3将加热后的占热空气总量约80%(体积)的热空气提供至烘干腔体110内进行烘干作业,而第二热空气管路3502则与焚烧室200的第三气体入口240相连接,从而利用第四引风机F4将热加热后的占热空气总量约20%(体积)的热空气进入焚烧室200内作为助燃气体使用,高温的空气在通入焚烧室200后可极大地提高焚烧室200的炉温,有效降低燃气的使用量, 节省能源。
由此,当节能VOC废气处理系统工作时,来自漆膜烘干室的180摄氏度的VOC废气经过第二换热器400换热后形成约600摄氏度的高温VOC废气,高温VOC废气在约800摄氏度的焚烧室200内进行高温燃烧分解,燃烧后形成的约800摄氏度的高温烟气通过高温烟气入口430进入第二换热器400内,与VOC废气进行热交换后形成300摄氏度的中温烟气后,再通过中温烟气入口320进入第一换热器300中,与约20摄氏度的冷空气进行热交换,形成约190摄氏度的热空气。
请参考图2,在该非限制性实施例中,第二换热器400为多孔喷管换热器,多孔喷管换热器包括设置于高温烟气入口430及中温烟气出口440之间的换热气体通道450以及设于换热气体通道450中沿着高温烟气流动方向依次设置的第一热交换筒体460、第二热交换筒体470及第三热交换筒体480。此外,还包括设于换热气体通道450外部的用于将第一热交换筒体460与第三热交换筒体480在VOC气体流动方向上尾首相连第一连接通道481,并且还包括用于将第三热交换筒体480与第二热交换筒体470在VOC气体流动方向上尾首相连第二连接通道482。在该非限制性实施方式中,第二热交换筒体470的尾端设有与其相连通的出气室471,高温VOC废气420出口设置于出气室471的室壁上。
如图2所示,第一热交换筒体460、第二热交换筒体470及第三热交换筒体480的结构相似,均为直筒形且伸入到换热气体通道450的管壁内部,而第一连接通道481和第二连接通道482均设置于换热气体通道450的管壁外侧。第一热交换筒体460经由弯折的第一连接通道481而实现与第三热交换筒体480的连接,第三热交换筒体480经由第二连接通道482而实现与第二热交换筒体470的连接。第一热交换筒体460、第二热交换筒体470及第三热交换筒体480中均包括一个多孔喷管461。
下面以第一热交换筒体460为例,说明各热交换筒体的构造。第一热交换筒体460包括形成环形端壁且中央形成进气孔462的首端、邻近第一连接通道481的尾端,其中,尾端形成敞口端并且与第一连接通道481直接连通。多孔喷管461围绕进气孔462在第一热交换筒体460内从首端向尾端延伸。多孔喷管461包括邻近第一连接通道481的封闭端4611以及在进气孔462与封闭端4611之间延伸的管体4612。
管体4612的周壁上设置多个VOC气体喷孔4613,从而使得经由进气孔462进入管体4612后,经由多个VOC气体喷孔4613向着第一热交换筒体460的内壁高速喷射,从而与流经第一热交换筒体460外壁的高温烟气快速换热,VOC废气被快速预热,第一热交换筒体460被及时冷却。由于VOC废气是经过高压风机HF的加压后才进入多孔喷管换热器,且当高压VOC废气进入多孔喷管后,VOC气体喷孔的孔径小,因此高压VOC气体会快速且以高压通过VOC气体喷孔从多孔喷管向外喷出,并以高速和高压撞击到热交换筒体的筒体内壁,该高速和高压的撞击可以保证热交换筒体内部的低温气体与热交换筒体外部的高温烟气之间发生迅速有效的热交换,使得VOC气体温度迅速升高。
上述仅仅以第一热交换筒体460为例说明了多孔喷管461的结构与工作过程,在该非限制性实施方式中,第二热交换筒体470及第三热交换筒体480均具有与第一热交换筒体460相同的结构,它们的构造和工作原理不再赘述。
由此,低温VOC废气经由第一热交换筒体460的进气孔462进入第一热交换筒体460并依次流经第一连接通道481、第三热交换筒体480、第二连接通道482、以及第二热交换筒体470,预热后的高温VOC气体经由第二热交换筒体470的尾端流出第二热交换器400。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。比如,第一或第二换热器可以采用热管换热器或列管式换热器。

Claims (10)

  1. 一种节能VOC废气处理系统,包括:漆膜烘干室,所述漆膜烘干室包括烘干腔体,所述烘干腔体的顶壁上间隔设有若干个烘干气体入口及VOC废气收集口,所述若干个烘干气体入口通过各自的烘干气体分管与烘干气体总管相连通,所述若干个VOC废气收集口通过各自的VOC废气收集分管与VOC废气收集总管相连通,其特征在于:
    所述节能VOC废气处理系统还包括焚烧室及第一换热器,其中,
    所述焚烧室包括用于供VOC废气燃烧分解的焚烧腔体,所述焚烧腔体设有与VOC废气收集总管相连接的第一气体入口、用于向所述焚烧腔体内供应燃气的第二气体入口、用于向所述焚烧腔体内供应助燃气体的第三气体入口、以及烟气排出口;
    所述第一换热器设有冷空气入口、中温烟气入口、热空气出口、以及低温烟气出口,其中,所述中温烟气入口通过管线与所述焚烧室的烟气排出口相连接,使得烟气进入所述第一换热器将来自所述冷空气入口的冷空气加热成热空气,所述热空气出口通过热空气管线与所述烘干气体总管相连接以将换热后形成的热空气提供至所述烘干腔体内对产品漆膜进行烘干,所述低温烟气出口与烟囱相连接。
  2. 如权利要求1所述的节能VOC废气处理系统,其特征在于,还包括连接于所述VOC废气收集总管及所述焚烧室之间的第二热交换器,其中,所述第二换热器设有低温VOC废气入口、高温VOC废气出口、高温烟气入口及中温烟气出口,所述低温VOC废气入口与所述VOC废气收集总管相连通,所述高温VOC废气出口与所述焚烧室的所述第一气体入口通过管线相连接,所述高温烟气入口与所述焚烧室的所述烟气排出口通过管线相连接,所述中温烟气出口与所述第一换热器的所述中温烟气入口通过管线相连接。
  3. 如权利要求1所述的节能VOC废气处理系统,其特征在于,所述第一换热器为热管换热器,所述热管换热器包括外壳、将所述外壳内部空间分隔为逆向平行的烟气流路和空气流路的中隔板、以及穿设在中隔板中的若干热管,其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于空气流路中。
  4. 如权利要求2所述的节能VOC废气处理系统,其特征在于,于邻近所述第二换热器的所述VOC废气收集总管的远端设有VOC废气收集支管,所述VOC废气收集支管与所述烘干气体总管相连接以将占VOC废气总量20%~40%的VOC废气回流至所述烘干腔体内用于烘干。
  5. 如权利要求4所述的节能VOC废气处理系统,其特征在于,所述热空气管线设有第一热空气管路及第二热空气管路,所述第一热空气管路与所述烘干气体总管相连接以将加热后的占热空气总量的60%~90%的热空气提供至所述烘干腔体内用于烘干,所述第二热空气管路与所述焚烧室的第三气体入口相连接以将热加热后的占热空气总量的10%~40%的热空气提供所述焚烧室内作为助燃气体。
  6. 如权利要求5所述的节能VOC废气处理系统,其特征在于,还包括于所述VOC废气收集总管中设置的用于向所述第二换热器内引入VOC废气的高压风机、用于向所述第一换热器内输送加压的冷空气的第一引风机、于所述VOC废气收集支管中设置的用于向所述烘干气体总管引入VOC废气的第二引风机、于所述第一热空气管路中设置的用于向所述烘干气体总管中引入热空气的第三引风机、以及于所述第二热空气管路中设置的用于向所述焚烧室引入热空气的第四引风机。
  7. 如权利要求2所述的节能VOC废气处理系统,其特征在于,所述第二换热器为多孔喷管换热器,所述多孔喷管换热器包括设置于所述高温烟气入口及所述中温烟气出口之间的换热气体通道以及设于所述换热气体通道中的至少一个热交换筒体,所述至少一个热交换筒体包括形成环形端壁且中央形成进气孔的首端、形成敞口端的尾端、以及围绕所述进气孔在所述至少一个热交换筒体内从所述首端向所述尾端延伸的多孔喷管,所述首端与所述低温VOC废气入口相连通,所述尾端与所述高温VOC废气出口相连通。
  8. 如权利要求7所述的节能VOC废气处理系统,其特征在于,低 温VOC废气经由所述进气孔进入所述多孔喷管换热器,预热后的高温VOC废气经由所述尾端流出所述多孔喷管换热器,并且,所述多孔喷管包括邻近所述尾端的封闭端以及在所述进气孔与所述封闭端之间延伸的管体,所述管体的周壁上设置若干VOC废气喷孔使得:经由所述进气孔进入所述至少一个热交换筒体内的低温VOC废气通过所述若干VOC废气喷孔喷射至所述至少一个热交换筒体的内壁以便与流经所述至少一个热交换筒体的外壁的高温烟气快速换热。
  9. 如权利要求8所述的节能VOC废气处理系统,其特征在于,所述第二换热器包括沿着高温烟气流动方向依次设于所述换热气体通道中的第一热交换筒体、第二热交换筒体及第三热交换筒体,所述第二换热器还包括设于所述换热气体通道外部的第一连接通道及第二连接通道,所述第一连接通道将所述第一热交换筒体与所述第三热交换筒体在VOC废气流动方向上尾首相连,所述第二连接通道将所述第三热交换筒体与所述第二热交换筒体在VOC废气流动方向上尾首相连,其中,低温VOC废气经由所述第一热交换筒体的进气孔进入所述第一热交换筒体并依次流经所述第一连接通道、所述第三热交换筒体、所述第二连接通道、以及所述第二热交换筒体,预热后的高温VOC废气经由所述第二热交换筒体的尾端流出。
  10. 如权利要求9所述的漆膜烘干室VOC废气处理系统,其特征在于,每个所述烘干气体分管中分别设有燃烧器,每个所述燃烧器通过管线与燃气源相连接。
PCT/CN2018/078909 2017-09-18 2018-03-14 节能voc废气处理系统 WO2019052135A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018256597A AU2018256597B2 (en) 2017-09-18 2018-03-14 Energy-saving system for treating VOC waste gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710839338.X 2017-09-18
CN201710839338.XA CN107676797B (zh) 2017-09-18 2017-09-18 节能voc废气处理系统

Publications (1)

Publication Number Publication Date
WO2019052135A1 true WO2019052135A1 (zh) 2019-03-21

Family

ID=61135940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078909 WO2019052135A1 (zh) 2017-09-18 2018-03-14 节能voc废气处理系统

Country Status (3)

Country Link
CN (1) CN107676797B (zh)
AU (1) AU2018256597B2 (zh)
WO (1) WO2019052135A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898961A (zh) * 2021-11-15 2022-01-07 广德龙泰电子科技有限公司 一种废气焚烧炉预热通气装置
CN114151806A (zh) * 2021-11-30 2022-03-08 山东蓝天新材料科技有限公司 彩涂固化废气处理装置及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107676797B (zh) * 2017-09-18 2024-08-16 广东工业大学 节能voc废气处理系统
CN108916894A (zh) * 2018-07-17 2018-11-30 郑州外思创造力文化传播有限公司 一种含VOCs有机废气的处理工艺及装置
CN109307275A (zh) * 2018-10-09 2019-02-05 广东中元海能新能源技术有限公司 一种一体式高效节能VOCs废气焚烧处理系统及方法
CN110961326A (zh) * 2019-11-04 2020-04-07 江苏顿科智能装备有限公司 一种带voc回收功能的一体化漆层烘干装置
CN113046101A (zh) * 2021-03-16 2021-06-29 山东驰盛新能源设备有限公司 一种焦炉处理化产voc烟道废气循环系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528449A (en) * 1978-08-19 1980-02-29 Ebara Infilco Co Ltd High temperature melting treatment method
US4343769A (en) * 1980-08-11 1982-08-10 W. R. Grace & Co. Catalytic solvent vapor incinerating apparatus
CN2092076U (zh) * 1990-11-17 1992-01-01 王钊 引喷式汽—水直接换热器
JPH10281425A (ja) * 1997-04-04 1998-10-23 Osaka Gas Eng Kk 処理設備
CN201621709U (zh) * 2010-02-23 2010-11-03 浙江华东轻钢建材有限公司 带有焚烧炉和多级换热器的彩涂钢板涂料固化系统
CN201940352U (zh) * 2011-01-13 2011-08-24 北京中竞同创能源环境技术有限公司 废气循环焚烧固化系统
CN102553286A (zh) * 2012-01-17 2012-07-11 青岛华世洁环保科技有限公司 一种涂布生产线烘干车间的溶剂回收与焚烧处理及能量综合利用方法与装置
CN202470691U (zh) * 2012-02-02 2012-10-03 常州市鼎龙环保设备有限公司 集中供热系统
CN202747843U (zh) * 2012-03-12 2013-02-20 段宝 常压型低温三回程余热回收器
CN107676797A (zh) * 2017-09-18 2018-02-09 广东工业大学 节能voc废气处理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074826A (ja) * 2001-08-28 2003-03-12 Babcock Hitachi Kk 蓄熱燃焼装置
CN101074777A (zh) * 2006-05-19 2007-11-21 盐城市宏达人工环境工程有限公司 一种新型废气焚烧余热回收系统
CN208536007U (zh) * 2017-09-18 2019-02-22 广东工业大学 节能voc废气处理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528449A (en) * 1978-08-19 1980-02-29 Ebara Infilco Co Ltd High temperature melting treatment method
US4343769A (en) * 1980-08-11 1982-08-10 W. R. Grace & Co. Catalytic solvent vapor incinerating apparatus
CN2092076U (zh) * 1990-11-17 1992-01-01 王钊 引喷式汽—水直接换热器
JPH10281425A (ja) * 1997-04-04 1998-10-23 Osaka Gas Eng Kk 処理設備
CN201621709U (zh) * 2010-02-23 2010-11-03 浙江华东轻钢建材有限公司 带有焚烧炉和多级换热器的彩涂钢板涂料固化系统
CN201940352U (zh) * 2011-01-13 2011-08-24 北京中竞同创能源环境技术有限公司 废气循环焚烧固化系统
CN102553286A (zh) * 2012-01-17 2012-07-11 青岛华世洁环保科技有限公司 一种涂布生产线烘干车间的溶剂回收与焚烧处理及能量综合利用方法与装置
CN202470691U (zh) * 2012-02-02 2012-10-03 常州市鼎龙环保设备有限公司 集中供热系统
CN202747843U (zh) * 2012-03-12 2013-02-20 段宝 常压型低温三回程余热回收器
CN107676797A (zh) * 2017-09-18 2018-02-09 广东工业大学 节能voc废气处理系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898961A (zh) * 2021-11-15 2022-01-07 广德龙泰电子科技有限公司 一种废气焚烧炉预热通气装置
CN114151806A (zh) * 2021-11-30 2022-03-08 山东蓝天新材料科技有限公司 彩涂固化废气处理装置及系统
CN114151806B (zh) * 2021-11-30 2024-03-12 山东蓝天新材料科技有限公司 彩涂固化废气处理装置及系统

Also Published As

Publication number Publication date
CN107676797B (zh) 2024-08-16
AU2018256597B2 (en) 2019-08-29
CN107676797A (zh) 2018-02-09
AU2018256597A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2019052135A1 (zh) 节能voc废气处理系统
CN106196100B (zh) 一种节能型有机废气处理系统
CN208536007U (zh) 节能voc废气处理装置
CN101832568A (zh) 一种自预热废气焚烧炉
CN208536008U (zh) 新型蓄热式焚烧炉
CN205402751U (zh) 一种废气焚烧炉
CN204554840U (zh) 一种工业废气燃烧装置
CN109297038A (zh) 一种VOCs气体治理多联供的方法及治理装置
KR101447918B1 (ko) 에너지 절감 및 환경 친화형 화장설비
CN101539298A (zh) 一种用于钢板彩涂线的废气处理方法及焚烧炉
CN108317526A (zh) 一种有机废气处理装置
CN109631056A (zh) 一种环氧丙烷氯醇化尾气和三氯乙烯车间废气联合治理的工艺
CN207576075U (zh) 利用氮气循环脱附及与燃烧装置组合的废气处理装置
CN206176412U (zh) 节能型有机废气余热利用装置
CN208936175U (zh) 一种VOCs气体用于发电的高温处理装置
CN217431389U (zh) 一种非甲烷总烃废气燃烧处理再利用装置
CN208205408U (zh) 一种分级预热节能环保型热水锅炉
CN206637835U (zh) 一种带有热量回收利用的环保型立式锅炉
CN107642789A (zh) 一种分级配风型蓄热式焚烧炉
CN206176411U (zh) 一种节能型有机废气处理装置
CN212339278U (zh) 一种废气燃烧式灭菌脱臭装置
CN104606999A (zh) 一种废气净化装置
CN105485911B (zh) Voc气体助燃的燃煤导热油炉
CN205316365U (zh) 一种家具烘干用锅炉废气净化装置
CN113375172A (zh) 一种回流式废气焚烧炉及其废气环保处理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018256597

Country of ref document: AU

Date of ref document: 20180314

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855226

Country of ref document: EP

Kind code of ref document: A1