WO2019051728A1 - 基于相位映射的折叠相位三维数字成像方法及装置 - Google Patents

基于相位映射的折叠相位三维数字成像方法及装置 Download PDF

Info

Publication number
WO2019051728A1
WO2019051728A1 PCT/CN2017/101764 CN2017101764W WO2019051728A1 WO 2019051728 A1 WO2019051728 A1 WO 2019051728A1 CN 2017101764 W CN2017101764 W CN 2017101764W WO 2019051728 A1 WO2019051728 A1 WO 2019051728A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
imaging
dimensional
candidate
pixel
Prior art date
Application number
PCT/CN2017/101764
Other languages
English (en)
French (fr)
Inventor
刘晓利
杨洋
蔡泽伟
彭翔
汤其剑
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/101764 priority Critical patent/WO2019051728A1/zh
Publication of WO2019051728A1 publication Critical patent/WO2019051728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the invention belongs to the technical field of optical three-dimensional digital imaging, and in particular relates to a folding phase three-dimensional digital imaging method and device based on phase mapping.
  • the trinocular three-dimensional imaging system is a non-contact, full-field optical three-dimensional digital imaging system.
  • the system uses a projection device to project a set of sinusoidal gratings or quasi-sinusoidal gratings onto the surface of the object, and uses an imaging device to collect the fringe pattern modulated by the surface of the object surface, and combines the phase shift technique to calculate the spatial folding phase value of each measuring point, and then directly
  • the three-dimensional information of the surface of the object is calculated by using the folded phase information.
  • the trinocular three-dimensional imaging system is widely used due to its high imaging density, high imaging speed, high measurement accuracy, and high measurement universality.
  • the three-dimensional imaging and measurement process mainly includes two processes of information acquisition and information processing of the measured object.
  • the information acquisition process of the measured object mainly refers to: the projection device projects a set of sinusoidal or quasi-sinusoidal stripe light onto the surface of the object to be measured, and uses the imaging device to collect the fringe pattern modulated by the surface of the measured object.
  • the most effective method is to reduce the number of images projected and acquired.
  • Existing phase 3D imaging techniques typically project a series of sinusoidal fringes and corresponding Gray code maps or project a series of sinusoidal fringes and speckle patterns during the acquisition process. Both of the above processes need to be projected in addition to the sinusoidal fringe pattern.
  • the sequence of images which obviously increases the number of images acquired, and prolongs the time the system collects information.
  • the information processing process mainly refers to: reconstructing the three-dimensional information of the measured object by using the collected information of the measured object.
  • the existing reconstruction of 3D information technology is mainly based on the method of stereo vision based on triangle
  • the measurement principle is three-dimensional reconstruction. The method needs to search for the corresponding points between the two imaging devices, which greatly increases the computational complexity and time cost, and significantly reduces the efficiency of the three-dimensional reconstruction.
  • the invention provides a folding phase three-dimensional digital imaging method and device based on phase mapping, which aims to solve the problem that the processing speed is slow and the time is long in the whole process of projection acquisition and three-dimensional reconstruction.
  • the present invention provides a folded phase three-dimensional digital imaging method based on phase mapping, the three-dimensional digital imaging method is applied to a three-dimensional imaging system, the three-dimensional imaging system comprising: a first imaging device, a projection device, and a second imaging device, The first imaging device and the second imaging device are located on both sides of the projection device, and the three-dimensional digital imaging method comprises:
  • Step S1 using the projection device to project a sinusoidal stripe sequence to the surface of the object to be measured, and using the first imaging device to acquire an image containing the measured object information, and calculating each pixel on the imaging plane of the first imaging device according to the image.
  • a folding phase value ⁇ l of the point obtaining a first folding phase distribution map composed of a folding phase value ⁇ l of each pixel point on the imaging plane of the first imaging device; and collecting and including the measured by the second imaging device image object information, according to the folding phase values ⁇ r each pixel of the image on the imaging plane calculating a second image forming apparatus obtained from the phase value ⁇ r folding each pixel on the imaging plane of the second imaging apparatus composed of a second folded phase profile;
  • Step S2 using the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the preset first calibration data, and calculate the three candidate spatial three-dimensional points corresponding to each pixel point by using the phase map. coordinate of;
  • Step S3 using the preset second calibration data to reproject the n candidate spatial three-dimensional points of each pixel on the imaging plane of the first imaging device onto the imaging plane of the second imaging device, to obtain n and a candidate projection point corresponding to the candidate spatial three-dimensional point one by one, and interpolating a folding phase value of the candidate projection point by using a folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device;
  • Step S4 comparing the absolute value of the difference between the folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device and the folding phase value of the corresponding n candidate projection points, and the determination threshold.
  • the correct spatial three-dimensional points are selected from the n candidate spatial three-dimensional points corresponding to the n candidate projection points one by one to realize three-dimensional digital reconstruction.
  • phase mapping formula is:
  • the values of the polynomial coefficients a i , b i , c i , k n are the first calibration data
  • the first calibration data further includes a determination threshold ⁇ min , in the formula Forming, for the first imaging device, a folding phase value of a pixel on a plane, X n , Y n , Z n being the calculated n candidates in the first imaging device coordinate system corresponding to the pixel a coordinate value of the spatial three-dimensional point
  • the second calibration data includes: internal fixed parameters of the first imaging device and the second imaging device, and further includes a rotation matrix R, a translation matrix T, and the rotation matrix R and the translation matrix T are used A mutual conversion calculation between the first imaging device coordinate system and the second imaging device coordinate system.
  • step S2 is specifically: using the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the first calibration data k n , and calculating the first phase by using a phase calculation formula
  • the imaging device outputs n phase values ⁇ l + k n ⁇ 2 ⁇ corresponding to each pixel on the imaging plane; the calculated n phase values ⁇ l + k n corresponding to each pixel on the imaging plane of the first imaging device are 2 ⁇ brought into the phase mapping formula:
  • the n candidate spatial three-dimensional point coordinates X n , Y n and Z n corresponding to each pixel point on the imaging plane of the first imaging device are calculated.
  • the step S3 is specifically: converting the calculated n candidate spatial three-dimensional point coordinates X n , Y n , Z n into the second imaging device coordinate system by using the rotation matrix R and the translation matrix T And then get it Performing projection and distortion calculation to obtain coordinates of n candidate projection points corresponding to n candidate spatial three-dimensional points And calculating, according to the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device, the folding phase values of the n candidate projection points
  • the specific formula is:
  • x n_nor X n_r /Z n_r
  • y n_nor Y n_r /Z n_r ,
  • X n_r , Y n_r , and Z n_r are three-dimensional point coordinates of the n candidate spatial three-dimensional points in the second imaging device coordinate system.
  • step S4 is specifically: folding the phase value of each pixel on the imaging plane according to the first imaging device And the calculated folding phase of the n candidate projection points of the pixel Combine the formula:
  • the candidate projection point is determined by the next step, and the correct projection point of the pixel of the correct projection point has been determined within a range of pixels around the pixel on the imaging plane of the first imaging device corresponding to the candidate projection point smaller than the determination threshold ⁇ min
  • the candidate projection point closest to the standard projection point among the candidate projection points smaller than the determination threshold ⁇ min is determined as the correct projection point, and the candidate space 3D point corresponding to the correct projection point is the correct space.
  • the present invention also provides a folded phase three-dimensional digital imaging device based on phase mapping, the three-dimensional digital imaging device being applied to a three-dimensional imaging system, the three-dimensional imaging system comprising: a first imaging device, a projection device, and a second imaging device, The first imaging device and the second imaging device are located on both sides of the projection device, and the three-dimensional digital imaging device includes:
  • a first folding phase information acquiring module configured to project a sinusoidal stripe sequence to the surface of the object to be measured by using the projection device, and acquire an image containing the measured object information by using the first imaging device, and calculate the first imaging according to the image a folding phase value ⁇ l of each pixel on the imaging plane of the device, obtaining a first folded phase distribution map composed of a folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device;
  • the second imaging device collects an image containing the information of the measured object, and calculates a folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device according to the image, to obtain each pixel on the imaging plane by the second imaging device. a second folded phase distribution of the folded phase value ⁇ r ;
  • a candidate spatial three-dimensional point coordinate calculation module configured to calculate a folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device and a preset first calibration data, and calculate a corresponding pixel point by using a phase map The coordinates of the three candidate points of the n candidate spaces;
  • a second folding phase information acquiring module configured to reproject the n candidate spatial three-dimensional points of each pixel point on the imaging plane of the first imaging device to the second imaging device by using preset second calibration data Plane, obtain n candidate projection points corresponding to the candidate spatial three-dimensional point one by one, and interpolate the candidate projection point by using the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device Folding the phase value;
  • a correct spatial three-dimensional point screening module for using an absolute value of a difference between a folded phase value ⁇ l of each pixel on the imaging plane of the first imaging device and a folded phase value of the n candidate projection points corresponding thereto Compared with the determination threshold, the correct spatial three-dimensional point is selected from the n candidate spatial three-dimensional points corresponding to the n candidate projection points one by one to realize three-dimensional digital reconstruction.
  • phase mapping formula is:
  • the values of the polynomial coefficients a i , b i , c i , k n are the first calibration data
  • the first calibration data further includes a determination threshold ⁇ min , in the formula Forming, for the first imaging device, a folding phase value of a pixel on a plane, X n , Y n , Z n being the calculated n candidates in the first imaging device coordinate system corresponding to the pixel a coordinate value of the spatial three-dimensional point
  • the second calibration data includes: internal fixed parameters of the first imaging device and the second imaging device, and further includes a rotation matrix R, a translation matrix T, and the rotation matrix R and the translation matrix T are used A mutual conversion calculation between the first imaging device coordinate system and the second imaging device coordinate system.
  • the candidate spatial three-dimensional point coordinate calculation module is specifically configured to: use the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the first calibration data k n , and use a phase calculation formula Calculating n phase values ⁇ l + k n ⁇ 2 ⁇ corresponding to each pixel point on the imaging plane of the first imaging device; and for n calculating n corresponding pixels of each pixel on the imaging plane of the first imaging device
  • the phase value ⁇ l + k n ⁇ 2 ⁇ is brought into the phase mapping formula:
  • the n candidate spatial three-dimensional point coordinates X n , Y n and Z n corresponding to each pixel point on the imaging plane of the first imaging device are calculated.
  • the second folding phase information acquiring module is specifically configured to: convert the calculated n candidate spatial three-dimensional point coordinates X n , Y n , Z n by using the rotation matrix R and the translation matrix T to In the coordinate system of the two imaging devices, the obtained Performing projection and distortion calculation to obtain coordinates of n candidate projection points corresponding to n candidate spatial three-dimensional points And calculating, according to the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device, the folding phase values of the n candidate projection points
  • the specific formula is:
  • x n_nor X n_r /Z n_r
  • y n_nor Y n_r /Z n_r ,
  • X n_r , Y n_r , and Z n_r are three-dimensional point coordinates of the n candidate spatial three-dimensional points in the second imaging device coordinate system.
  • the correct spatial three-dimensional point screening module is specifically configured to: according to the folding phase value of each pixel on the imaging plane of the first imaging device And the calculated folding phase of the n candidate projection points of the pixel Combine the formula:
  • the candidate projection point is determined by the next step, and the correct projection point of the pixel of the correct projection point has been determined within a range of pixels around the pixel on the imaging plane of the first imaging device corresponding to the candidate projection point smaller than the determination threshold ⁇ min
  • the candidate projection point closest to the standard projection point among the candidate projection points smaller than the determination threshold ⁇ min is determined as the correct projection point, and the candidate space 3D point corresponding to the correct projection point is the correct space.
  • the present invention has the beneficial effects that the present invention provides a folding phase three-dimensional digital imaging method and apparatus based on phase mapping, in which a sinusoidal stripe light is projected by a projection device in a three-dimensional three-dimensional imaging system.
  • the first imaging device and the second imaging device respectively collect patterns modulated by the surface of the measured object, and respectively calculate the folding phase values of all the pixels on the imaging plane of the two imaging devices, using the first
  • the folded phase value on the imaging plane of the imaging device is brought into the phase mapping formula to directly calculate the candidate spatial three-dimensional point, and then the correct spatial three-dimensional point is obtained by screening, thereby obtaining a correct three-dimensional model of the measured object; the present invention is compared with the prior art.
  • the information is processed and three-dimensionally reconstructed, using phase mapping
  • the method directly calculates the three-dimensional point of the candidate space of the measured object by folding the phase, and then, after simple screening, quickly obtains the final three-dimensional model of the measured object space, and realizes the rapid three-dimensional reconstruction of the measured object by the three-dimensional imaging system, thereby avoiding
  • the cumbersome corresponding point search process greatly improves the calculation speed of 3D reconstruction and saves time; meets the requirements of high-speed, high-precision and high-precision three-dimensional digital imaging and measurement.
  • FIG. 1 is a schematic diagram of a process of a folded phase three-dimensional digital imaging method based on phase mapping according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a phase-fracture three-dimensional digital imaging method based on phase mapping according to an embodiment of the present invention
  • 3-1 is a folded phase distribution diagram of a first imaging device calculated by the measured object model acquired by the first imaging device according to an embodiment of the present invention
  • 3-2 is a folded phase distribution diagram of a second imaging device calculated by the measured object model acquired by the second imaging device according to the embodiment of the present invention
  • FIG. 4 is a three-dimensional reconstruction model of a measured object composed of three-dimensional coordinate points in a correct space obtained by screening according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a module of a folded phase three-dimensional digital imaging device based on phase mapping according to an embodiment of the present invention.
  • the main implementation idea of the present invention is to realize fast three-dimensional reconstruction by using folded phase combined with phase mapping method.
  • a set of sinusoidal stripe light is projected onto the surface of the measured object by using a projection device, and the first imaging device is utilized.
  • the second imaging device separately collects the patterns modulated by the surface of the measured object, and respectively calculates the folding phase values of all the pixels on the imaging plane of the two imaging devices, and uses the folded phase values on the imaging plane of the first imaging device to bring in
  • the phase mapping formula directly calculates the candidate spatial three-dimensional points, and then obtains the correct spatial three-dimensional points through screening, thereby obtaining the correct three-dimensional model of the measured object.
  • the folding phase three-dimensional digital imaging method based on phase mapping is specifically described below, and is combined with FIG. 1 and FIG.
  • the method is based on the three-dimensional imaging system, which is a trinocular structure comprising: a first imaging device, a projection device, and a second imaging device, the first imaging device and the second imaging device being located at On both sides of the projection device, the first imaging device, the second imaging device, and the projection device are arranged in a triangle.
  • the imaging device is a camera
  • the projection device is a projector.
  • the first imaging device is located at an upper left orientation of the projection device
  • the second imaging device is located at an upper right orientation of the projector, and is measured.
  • the object is placed in the field of view and depth of field of the first imaging device and the second imaging device; the intermediate projector projects a series of sinusoidal or quasi-sinusoidal stripe light as a projection device to the surface of the object to be measured, the first imaging device and the second The imaging device collects a fringe pattern modulated by the surface shape of the measured object.
  • the three-dimensional imaging system is calibrated to obtain first calibration data and second calibration data, and the first calibration data is used to substitute a phase mapping formula Calculating the values X n , Y n , Z n of the n candidate spatial three-dimensional point coordinates of the measured object in the first imaging device coordinate system; R, T in the second calibration data is used for The spatial three-dimensional point coordinates X n , Y n , Z n of the measured object are converted into a coordinate system of the second imaging device, and the internal fixed parameters in the second calibration data are used for dedistortion.
  • the phase mapping formula is:
  • the values of the polynomial coefficients a i , b i , c i , k n are the first calibration data
  • the first calibration data further includes a decision threshold ⁇ min
  • the polynomial coefficients a i , b i , c i are calibrated
  • the value of the folding phase and the phase of the folding phase k n are used to calculate the values of X n , Y n , Z n .
  • is the folding phase value of a pixel on the imaging plane of the first imaging device
  • k n is the basis.
  • the second calibration data includes internal fixed parameters of the first imaging device and the second imaging device, and further includes a spatial rigid body transformation of the first imaging device and the second imaging device position: a rotation matrix R, a translation matrix T, and the rotation matrix R
  • the translation matrix T is used for mutual conversion calculation between the first imaging device coordinate system and the second imaging device coordinate system.
  • the method includes:
  • Step S1 using the projection device to project a sinusoidal stripe sequence to the surface of the object to be measured, and using the first imaging device to acquire an image containing the measured object information, and calculating each pixel on the imaging plane of the first imaging device according to the image.
  • a folding phase value ⁇ l of the point obtaining a first folding phase distribution map composed of a folding phase value ⁇ l of each pixel point on the imaging plane of the first imaging device; and collecting and including the measured by the second imaging device image object information, according to the folding phase values ⁇ r each pixel of the image on the imaging plane calculating a second image forming apparatus obtained by each of the phase values ⁇ r folded pixel point on the second imaging plane of the imaging apparatus composed of a second folded phase profile;
  • the projector projects a series of sinusoidal or quasi-sinusoidal stripe light to illuminate the surface of the object to be measured
  • the first imaging device and the second imaging device synchronously collect a series of stripe images modulated by the object to be measured, and then utilize a series of fringe images acquired by the first imaging device obtains a folding phase value ⁇ l of each point collected by the first imaging device by dephasing the phase, and forms a first imaging device from the folded phase value ⁇ l a first folded phase distribution map of the imaging plane;
  • a series of fringe images acquired by the second imaging device are used to obtain a folding phase value ⁇ r of each point collected by the second imaging device by the phase calculation a second folded phase distribution map of the imaging plane of the second imaging device formed by the folded phase value ⁇ r ;
  • the folded phase profile IL and the second imaging device folded phase profile IR are shown in Figures 3-1
  • n candidate spatial three-dimensional point coordinates of each point in the first imaging device coordinate system may be calculated by phase mapping using the folding phase value of each pixel point in the first folded phase distribution map;
  • the folding phase values of each pixel in the folded phase profile are calculated by phase mapping to obtain n candidate spatial three-dimensional point coordinates of each point in the second imaging device coordinate system.
  • Step S2 using the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the preset first calibration data, and calculate the three candidate spatial three-dimensional points corresponding to each pixel point by using the phase map. coordinate of;
  • n candidate spatial three-dimensional points are a set of several possible points including the correct spatial three-dimensional points, and the subsequent steps use a certain method to select the correct spatial three-dimensional points.
  • the folded phase distribution map of the measured object collected and calculated by the first imaging device or the second imaging device can be used to calculate the three candidate spatial three-dimensional point coordinates of the measured object. If the first folded phase distribution map corresponding to the first imaging device is used in the process, the calculated n candidate spatial three-dimensional point coordinates are projected onto the second folded phase distribution map corresponding to the second imaging device. The candidate projection point; if the second folding phase distribution map corresponding to the second imaging device is used, the projection camera is the first imaging device. In the embodiment of the present invention, the provisions The candidate spatial three-dimensional point coordinates are calculated using the first folded phase distribution map acquired and calculated by the first imaging device.
  • the step S2 is specifically: using the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the first calibration data k n , and calculating the imaging of the first imaging device by using a phase calculation formula.
  • the n candidate spatial three-dimensional point coordinates X n , Y n and Z n corresponding to each pixel point on the imaging plane of the first imaging device are calculated.
  • Step S3 using the preset second calibration data to reproject the n candidate spatial three-dimensional points of each pixel on the imaging plane of the first imaging device onto the imaging plane of the second imaging device, to obtain n and a candidate projection point corresponding to the candidate spatial three-dimensional point one by one, and interpolating a folding phase value of the candidate projection point by using a folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device;
  • the re-projection process in the step S3 is divided into two steps: the first step is to calculate the three candidate spatial three-dimensional corresponding to each pixel point on the first folded phase distribution map corresponding to the first imaging device. Point conversion into a second imaging device coordinate system; second step, projecting the candidate spatial three-dimensional point in the second imaging device coordinate system onto the second imaging device imaging plane, ie, the second corresponding to the second imaging device Fold the phase map.
  • the step S3 is specifically: converting the calculated n candidate spatial three-dimensional point coordinates X n , Y n , Z n into the second imaging device coordinate system by using the rotation matrix R and the translation matrix T, and combining Positioning the calculated three-dimensional point of the candidate space to the plane of the second folded phase distribution map to obtain a position corresponding to the three three-dimensional points of the candidate space, and the positional relationship of the plane in which the second folded phase distribution map is located Coordinates of candidate projection points And calculating, according to the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device, the folding phase values of the n candidate projection points
  • the specific formula is:
  • x n_nor X n_r /Z n_r
  • y n_nor Y n_r /Z n_r ,
  • X n_r , Y n_r , Z n_r are three-dimensional point coordinates of the n candidate spatial three-dimensional points in the second imaging device coordinate system; Performing projection and distortion calculation to obtain coordinates of n candidate projection points of the imaging plane of the second imaging device
  • Step S4 comparing the absolute value of the difference between the folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device and the folding phase value of the corresponding n candidate projection points, and the determination threshold.
  • the correct spatial three-dimensional points are selected from the n candidate spatial three-dimensional points corresponding to the n candidate projection points one by one to realize three-dimensional digital reconstruction.
  • the step S4 is specifically: folding the phase value of each pixel on the imaging plane according to the first imaging device And the calculated folding phase of the n candidate projection points of the pixel Combine the formula:
  • the candidate projection point is determined by the next step, and the correct projection point of the pixel of the correct projection point has been determined within a range of pixels around the pixel on the imaging plane of the first imaging device corresponding to the candidate projection point smaller than the determination threshold ⁇ min
  • the candidate projection point closest to the standard projection point among the candidate projection points smaller than the determination threshold ⁇ min is determined as the correct projection point, and the candidate space 3D point corresponding to the correct projection point is the correct space.
  • the invention provides a folded phase three-dimensional digital imaging method based on phase mapping.
  • a sinusoidal or quasi-sinusoidal pattern is projected, which reduces the number of pattern acquisitions of the projection and shortens compared with the prior art.
  • the time of the process; in the process of 3D reconstruction, only the obtained and calculated folded phase values can be used to obtain the preliminary 3D model of the measured object.
  • the correct 3D model can be obtained without Complex point search is performed like the existing stereo imaging technology, which greatly improves the efficiency of 3D reconstruction.
  • FIG. 4 is a three-dimensional digital image of a measured object reconstructed by the method provided by the present invention for a model of an object to be measured according to an embodiment of the present invention.
  • the present invention also provides a folded phase three-dimensional digital imaging device based on phase mapping, the three-dimensional digital imaging device being applied to a three-dimensional imaging system, the three-dimensional imaging system comprising: a first imaging device, a projection device, and a second imaging device, The first imaging device and the second imaging device are located on both sides of the projection device.
  • the three-dimensional digital imaging device includes: a first folding phase information acquiring module, and a candidate spatial three-dimensional point coordinate.
  • the calculation module 2 the second folding phase information acquisition module 3 and the correct spatial three-dimensional point screening module 4.
  • the first folding phase information acquiring module 1 is configured to project a sinusoidal stripe sequence to the surface of the object to be measured by using the projection device, and collect an image containing the measured object information by using the first imaging device, and calculate according to the image a folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device, obtaining a first folded phase distribution map composed of a folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device; and utilizing
  • the second imaging device collects an image including the measured object information, and calculates a folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device according to the image, and obtains an image on the imaging plane by the second imaging device. a second folded phase distribution of the folded phase values ⁇ r of the pixels;
  • the candidate spatial three-dimensional point coordinate calculation module 2 is configured to calculate a folding phase value ⁇ l of each pixel on the imaging plane and the preset first calibration data by using the first imaging device, and calculate each pixel by using a phase map.
  • phase mapping formula is:
  • the values of the polynomial coefficients a i , b i , c i , k n are the first calibration data
  • the first calibration data further includes a determination threshold ⁇ min , in the formula Forming, for the first imaging device, a folding phase value of a pixel on a plane, X n , Y n , Z n being the calculated n candidates in the first imaging device coordinate system corresponding to the pixel a coordinate value of the spatial three-dimensional point
  • the second calibration data includes: internal fixed parameters of the first imaging device and the second imaging device, and further includes a rotation matrix R, a translation matrix T, and the rotation matrix R and the translation matrix T are used A mutual conversion calculation between the first imaging device coordinate system and the second imaging device coordinate system.
  • the candidate spatial three-dimensional point coordinate calculation module 2 is specifically configured to: use the first imaging device to image the folding phase value ⁇ l of each pixel on the plane and the first calibration data k n , and calculate the phase calculation formula
  • the first imaging device images n phase values ⁇ l + k n ⁇ 2 ⁇ corresponding to each pixel point on the plane; and is used to calculate n phase values corresponding to each pixel point on the imaging plane of the first imaging device ⁇ l + k n ⁇ 2 ⁇ brought into the phase mapping formula:
  • the n candidate spatial three-dimensional point coordinates X n , Y n and Z n corresponding to each pixel point on the imaging plane of the first imaging device are calculated.
  • the second folding phase information acquiring module 3 is configured to reproject the n candidate spatial three-dimensional points of each pixel point on the imaging plane of the first imaging device to the second by using preset second calibration data. Obtaining candidate projection points corresponding to the candidate spatial three-dimensional points one by one on the imaging plane of the imaging device, and interpolating the candidate by using the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device. The folding phase value of the projection point;
  • the second folding phase information acquiring module 3 is specifically configured to: convert the calculated n candidate spatial three-dimensional point coordinates X n , Y n , Z n to the second imaging by using the rotation matrix R and the translation matrix T In the device coordinate system, the resulting Performing projection and distortion calculation to obtain coordinates of n candidate projection points corresponding to n candidate spatial three-dimensional points And calculating, according to the folding phase value ⁇ r of each pixel on the imaging plane of the second imaging device, the folding phase values of the n candidate projection points
  • the specific formula is:
  • x n_nor X n_r /Z n_r
  • y n_nor Y n_r /Z n_r ,
  • X n_r , Y n_r , and Z n_r are three-dimensional point coordinates of the n candidate spatial three-dimensional points in the second imaging device coordinate system.
  • the correct spatial three-dimensional point screening module 4 is configured to compare a difference between a folding phase value ⁇ l of each pixel on the imaging plane of the first imaging device and a folding phase value of the n candidate projection points corresponding thereto The absolute value is compared with the determination threshold to select the correct spatial three-dimensional point from the n candidate spatial three-dimensional points corresponding to the n candidate projection points, thereby realizing three-dimensional digital reconstruction.
  • the correct spatial three-dimensional point screening module 4 is specifically configured to: according to the folding phase value of each pixel on the imaging plane of the first imaging device And the calculated folding phase of the n candidate projection points of the pixel Combine the formula:
  • the candidate projection point is determined by the next step, and the correct projection point of the pixel of the correct projection point has been determined within a range of pixels around the pixel on the imaging plane of the first imaging device corresponding to the candidate projection point smaller than the determination threshold ⁇ min
  • the candidate projection point closest to the standard projection point among the candidate projection points smaller than the determination threshold ⁇ min is determined as the correct projection point, and the candidate space 3D point corresponding to the correct projection point is the correct space.
  • the invention provides a phase-phase-based folded phase three-dimensional digital imaging device, which reduces the number of projections and acquisitions in the process of three-dimensional imaging and measurement projection acquisition, and greatly reduces the time of the process; in the three-dimensional imaging calculation process, there is no Using triangulation like traditional stereo vision, without phase unwrapping and corresponding point finding, the computational speed of 3D reconstruction is greatly improved; the shortening of projection acquisition time and 3D reconstruction calculation time greatly improves the overall efficiency of 3D imaging and measurement.
  • the 3D imaging system quickly reconstructs the measured object; it meets the requirements of high-speed, high-precision, and high-precision 3D digital imaging and measurement.
  • All or part of the steps in the above embodiments are controlled by a program to control related hardware, and the program may be stored in a computer readable storage medium, such as a ROM/RAM, a disk, or the like. CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明适用于光学三维数字成像技术领域,提供了一种基于相位映射的折叠相位三维数字成像方法及装置,包括:采集包含被测物体信息的图像,并根据图像计算两个成像装置成像平面上每个像素点的折叠相位值;利用第一成像装置成像平面上每个像素点的折叠相位值和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点坐标;将n个候选空间三维点重投影到第二成像装置成像平面上,得到n个候选投影点,并插值出候选投影点的折叠相位值;以第一成像装置成像平面上每个像素点的折叠相位值和与之对应的n个候选投影点的折叠相位值为依据,从候选空间三维点中筛选出正确的空间三维点,实现三维数字重建;本发明提供的方法缩短了三维重建时间。

Description

基于相位映射的折叠相位三维数字成像方法及装置 技术领域
本发明属于光学三维数字成像技术领域,尤其涉及一种基于相位映射的折叠相位三维数字成像方法及装置。
背景技术
三目三维成像系统是一种非接触式、全场测量的光学三维数字成像系统。该系统采用投影装置投影一组正弦光栅或准正弦光栅到物体表面,采用成像装置采集经物体表面面形调制后的条纹图,结合相移技术计算每一测量点的空间折叠相位值,之后直接利用折叠相位信息计算得到物体表面的三维信息。三目三维成像系统由于其高成像密度、高成像速度、高测量精度和高测量普适性而得到广泛应用。
随着三维成像和测量技术的快速发展,缩短测量时间和提高测量精度成为目前主要的研究方向。三维成像和测量过程主要包括:被测物体信息采集和信息处理两个过程。
被测物体信息采集过程主要指:投影装置投射一组正弦或准正弦条纹光到被测物体表面,并利用成像装置采集经被测物体表面调制后的条纹图。为了缩短该过程的测量时间,最有效的方法为减少投影和采集图像的数量。现有的利用相位三维成像技术在采集过程中通常投射一系列正弦条纹图和相对应的格雷码图或投射一系列正弦条纹图和散斑图,以上两个过程都需要投射除正弦条纹图以外的图像序列,这样明显会增加采集图像的数量,延长系统采集信息的时间。
信息处理过程主要指:利用采集到的被测物体的信息通过计算重建被测物体的三维信息。现有的重建三维信息技术主要是利用立体视觉的方法根据三角 测量原理进行三维重建,该方法需要搜索两个成像装置之间的对应点,大大增加了计算复杂度和时间成本,显著降低了三维重建的效率。
发明内容
本发明提供一种基于相位映射的折叠相位三维数字成像方法及装置,旨在解决投影采集和三维重建的整个过程中处理速度较慢,耗时较长的问题。
本发明提供了一种基于相位映射的折叠相位三维数字成像方法,所述三维数字成像方法应用于三维成像系统,所述三维成像系统包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,所述三维数字成像方法包括:
步骤S1,利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像素点的折叠相位值φr组成的第二折叠相位分布图;
步骤S2,利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
步骤S3,利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
步骤S4,将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来 从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
进一步地,相位映射公式为:
Figure PCTCN2017101764-appb-000001
Figure PCTCN2017101764-appb-000002
Figure PCTCN2017101764-appb-000003
其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin,公式中
Figure PCTCN2017101764-appb-000004
为所述第一成像装置成像平面上某个像素点的折叠相位值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
进一步地,所述步骤S2具体为:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π;将计算出的第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π带入相位映射公式:
Figure PCTCN2017101764-appb-000005
Figure PCTCN2017101764-appb-000006
Figure PCTCN2017101764-appb-000007
计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点坐标Xn、Yn和Zn
进一步地,所述步骤S3具体为:将计算出的n个所述候选空间三维点坐标Xn、Yn、Zn利用所述旋转矩阵R、平移矩阵T转换到第二成像装置坐标系中,再对得到的
Figure PCTCN2017101764-appb-000008
进行投影和加畸变计算,从而得到与n个所述候选空间三维点相对应的n个候选投影点的坐标
Figure PCTCN2017101764-appb-000009
并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
Figure PCTCN2017101764-appb-000010
具体公式为:
Figure PCTCN2017101764-appb-000011
xn_nor=Xn_r/Zn_r
yn_nor=Yn_r/Zn_r
其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标。
进一步地,所述步骤S4具体为:根据第一成像装置成像平面上每个像素点的折叠相位值
Figure PCTCN2017101764-appb-000012
和计算出的该像素点的n个候选投影点的折叠相位
Figure PCTCN2017101764-appb-000013
结合公式:
Figure PCTCN2017101764-appb-000014
求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点 中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
本发明还提供了一种基于相位映射的折叠相位三维数字成像装置,所述三维数字成像装置应用于三维成像系统,所述三维成像系统包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,所述三维数字成像装置包括:
第一折叠相位信息获取模块,用于利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像素点的折叠相位值φr组成的第二折叠相位分布图;
候选空间三维点坐标计算模块,用于利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
第二折叠相位信息获取模块,用于利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
正确空间三维点筛选模块,用于将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
进一步地,相位映射公式为:
Figure PCTCN2017101764-appb-000015
Figure PCTCN2017101764-appb-000016
Figure PCTCN2017101764-appb-000017
其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin,公式中
Figure PCTCN2017101764-appb-000018
为所述第一成像装置成像平面上某个像素点的折叠相位值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
进一步地,所述候选空间三维点坐标计算模块具体用于:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π;并用于将计算出的第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π带入相位映射公式:
Figure PCTCN2017101764-appb-000019
Figure PCTCN2017101764-appb-000020
Figure PCTCN2017101764-appb-000021
计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点坐标Xn、Yn和Zn
进一步地,所述第二折叠相位信息获取模块具体用于:将计算出的n个所述候选空间三维点坐标Xn、Yn、Zn利用所述旋转矩阵R、平移矩阵T转换到第 二成像装置坐标系中,再对得到的
Figure PCTCN2017101764-appb-000022
进行投影和加畸变计算,从而得到与n个所述候选空间三维点相对应的n个候选投影点的坐标
Figure PCTCN2017101764-appb-000023
并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
Figure PCTCN2017101764-appb-000024
具体公式为:
Figure PCTCN2017101764-appb-000025
xn_nor=Xn_r/Zn_r
yn_nor=Yn_r/Zn_r
其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标。
进一步地,所述正确空间三维点筛选模块具体用于:根据第一成像装置成像平面上每个像素点的折叠相位值
Figure PCTCN2017101764-appb-000026
和计算出的该像素点的n个候选投影点的折叠相位
Figure PCTCN2017101764-appb-000027
结合公式:
Figure PCTCN2017101764-appb-000028
求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
本发明与现有技术相比,有益效果在于:本发明提供了一种基于相位映射的折叠相位三维数字成像方法及装置,在三目三维成像系统中,利用投影装置投射一组正弦条纹光到被测物体表面上,利用第一成像装置和第二成像装置分别采集经被测物体表面调制后的图案,并分别计算出两个成像装置成像平面上所有像素点的折叠相位值,利用第一成像装置成像平面上的折叠相位值带入相位映射公式直接计算出候选空间三维点,再经过筛选得到正确的空间三维点,从而得到被测物体的正确三维模型;本发明与现有技术相比,一方面,在三维成像测量系统采集被测物体信息的过程中,只需投影采集正弦条纹光而无需再投影其它编码图案,明显缩短了采集过程的时间;另一方面,在获取到被测物体信息之后,将信息处理并进行三维重建的过程中,利用相位映射的方法,直接通过折叠相位计算出被测物体的候选空间三维点,再经过简单筛选之后,快速得到最终的被测物体空间三维模型,实现了三维成像系统对被测物体的快速三维重建,避免了繁琐的对应点查找过程,极大地提升了三维重建的计算速度,节省了时间;满足高速、高精度、高普适性的三维数字成像和测量的要求。
附图说明
图1是本发明实施例提供的一种基于相位映射的折叠相位三维数字成像方法的过程示意图;
图2是本发明实施例提供的一种基于相位映射的折叠相位三维数字成像方法的流程示意图;
图3-1是本发明实施例提供的第一成像装置获取的被测物体模型计算得到的第一成像装置折叠相位分布图;
图3-2是本发明实施例提供的第二成像装置获取的被测物体模型计算得到的第二成像装置折叠相位分布图;
图4是本发明实施例提供的用筛选得到的正确空间三维坐标点组成的被测物体三维重建模型;
图5是本发明实施例提供的一种基于相位映射的折叠相位三维数字成像装置的模块示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的主要实现思想为:利用折叠相位结合相位映射的方法实现快速三维重建,在三目三维成像系统中,利用投影装置投射一组正弦条纹光到被测物体表面上,利用第一成像装置和第二成像装置分别采集经被测物体表面调制后的图案,并分别计算出两个成像装置成像平面上所有像素点的折叠相位值,利用第一成像装置成像平面上的折叠相位值带入相位映射公式直接计算出候选空间三维点,再经过筛选得到正确的空间三维点,从而得到被测物体的正确三维模型。
下面具体介绍这种基于相位映射的折叠相位三维数字成像方法,结合图1和图2所示。所述方法基于所述三维成像系统,所述三维成像系统为三目结构,包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,所述第一成像装置、第二成像装置和投影装置呈三角形排布。本发明实施例提供的三维成像系统中,成像装置为相机,投影装置为投影仪,图1中,第一成像装置位于投影装置的左上方位,第二成像装置位于投影仪的右上方位,被测物体置于所述第一成像装置和第二成像装置的视场和景深范围内;中间的投影仪作为投影装置投射正弦或准正弦条纹光系列到被测物体表面,第一成像装置和第二成像装置采集经被测物体表面面形调制后的条纹图。
在执行这种基于相位映射的折叠相位三维数字成像方法之前,会对所述三维成像系统进行标定,从而获取第一标定数据和第二标定数据,所述第一标定 数据用于代入相位映射公式中,从而计算出被测物体在第一成像装置坐标系下的n个候选空间三维点坐标的值Xn、Yn、Zn;所述第二标定数据中的R、T用于将被测物体的所述空间三维点坐标Xn、Yn、Zn转换到第二成像装置的坐标系中,所述第二标定数据中的内部固定参数用于去畸变。具体地,相位映射公式为:
Figure PCTCN2017101764-appb-000029
Figure PCTCN2017101764-appb-000030
Figure PCTCN2017101764-appb-000031
其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin;标定出多项式系数ai、bi、ci的值和折叠相位所在级次kn以便于计算Xn、Yn、Zn的值,上述公式中,φ为第一成像装置成像平面上某个像素点的折叠相位值,kn为依据测量空间标定出的n个整数值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括第一成像装置与第二成像装置位置的空间刚体变换:旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
结合图1和图2所示,所述方法包括:
步骤S1,利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像 素点的折叠相位值φr组成的第二折叠相位分布图;
具体地,所述投影仪投射一系列正弦或准正弦条纹光照射到被测物体表面,第一成像装置和第二成像装置同步采集被所述被测物体调制过的一系列条纹图像后,利用第一成像装置采集到的一系列条纹图像通过解相位计算得到被测物体被第一成像装置采集到的每个点的折叠相位值φl,由所述折叠相位值φl形成第一成像装置成像平面的第一折叠相位分布图;同理,利用第二成像装置采集到的一系列条纹图像通过解相位计算得到被测物体被第二成像装置采集到的每个点的折叠相位值φr,由所述折叠相位值φr形成第二成像装置成像平面的第二折叠相位分布图;本发明实施例提供的第一成像装置和第二成像装置获取的被测物体模型的第一成像装置折叠相位分布图IL和第二成像装置折叠相位分布图IR分别如图3-1、3-2所示。
进一步地,可以利用第一折叠相位分布图中的每个像素点的折叠相位值通过相位映射计算得到每个点在第一成像装置坐标系下的n个候选空间三维点坐标;可以利用第二折叠相位分布图中的每个像素点的折叠相位值通过相位映射计算得到每个点在第二成像装置坐标系下的n个候选空间三维点坐标。
步骤S2,利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
需要说明的是,所述n个候选空间三维点为包含正确空间三维点的几个可能点的集合,后续步骤会利用一定的方法从中筛选出正确的空间三维点。
具体地,由图1可知,在三维成像系统中可以利用第一成像装置或第二成像装置采集并经计算得到的被测物体折叠相位分布图计算出被测物体的n个候选空间三维点坐标;若在此过程中是利用第一成像装置对应的第一折叠相位分布图,那么计算出的n个候选空间三维点坐标则要投影到第二成像装置对应的第二折叠相位分布图上作为候选投影点;若利用的是第二成像装置对应的第二折叠相位分布图,则被投影相机则为第一成像装置。在本发明实施例中,规定 利用第一成像装置采集并计算得到的第一折叠相位分布图计算候选空间三维点坐标。
所述步骤S2具体为:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π;将计算出的第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π带入相位映射公式:
Figure PCTCN2017101764-appb-000032
Figure PCTCN2017101764-appb-000033
Figure PCTCN2017101764-appb-000034
计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点坐标Xn、Yn和Zn
步骤S3,利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
具体地,所述步骤S3中的重投影过程分为两步:第一步,将计算出的第一成像装置所对应的第一折叠相位分布图上每个像素点对应的n个候选空间三维点转换到第二成像装置坐标系中;第二步,将在第二成像装置坐标系中的所述候选空间三维点投影到第二成像装置成像平面上即第二成像装置所对应的第二折叠相位分布图。
所述步骤S3具体为:将计算出的n个所述候选空间三维点坐标Xn、Yn、Zn利用所述旋转矩阵R、平移矩阵T转换到第二成像装置坐标系中,并结合与第二折叠相位分布图所在的平面的位置关系,将计算得到的所述候选空间三维点投影到第二折叠相位分布图所在的平面,得到与n个所述候选空间三维点相对 应的n个候选投影点的坐标
Figure PCTCN2017101764-appb-000035
并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
Figure PCTCN2017101764-appb-000036
具体公式为:
Figure PCTCN2017101764-appb-000037
xn_nor=Xn_r/Zn_r
yn_nor=Yn_r/Zn_r
其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标;对
Figure PCTCN2017101764-appb-000038
进行投影和加畸变计算得到第二成像装置成像平面的n个候选投影点的坐标
Figure PCTCN2017101764-appb-000039
步骤S4,将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
所述步骤S4具体为:根据第一成像装置成像平面上每个像素点的折叠相位值
Figure PCTCN2017101764-appb-000040
和计算出的该像素点的n个候选投影点的折叠相位
Figure PCTCN2017101764-appb-000041
结合公式:
Figure PCTCN2017101764-appb-000042
求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点 所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
本发明提供的一种基于相位映射的折叠相位三维数字成像方法,在三维成像系统投影采集过程中,只需投射正弦或准正弦图案,相对现有的技术减少了投影采集的图案副数,缩短了该过程的时间;在三维重建的过程中,只需要利用所获取并经计算得到的折叠相位值即可得到被测物体的初步三维模型,经过简单的筛选便可得到正确的三维模型,无需像现有立体成像技术一样进行复杂的对应点搜索,大大提升了三维重建的效率。
图4所示为本发明实施例提供的对被测物体的模型用本发明提供的方法重建的被测物体的三维数字图像。
本发明还提供了一种基于相位映射的折叠相位三维数字成像装置,所述三维数字成像装置应用于三维成像系统,所述三维成像系统包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,如图5所示,所述三维数字成像装置包括:第一折叠相位信息获取模块1、候选空间三维点坐标计算模块2、第二折叠相位信息获取模块3和正确空间三维点筛选模块4。
所述第一折叠相位信息获取模块1,用于利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像素点的折叠相位值φr组成的第二折叠相位分布图;
所述候选空间三维点坐标计算模块2,用于利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
相位映射公式为:
Figure PCTCN2017101764-appb-000043
Figure PCTCN2017101764-appb-000044
Figure PCTCN2017101764-appb-000045
其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin,公式中
Figure PCTCN2017101764-appb-000046
为所述第一成像装置成像平面上某个像素点的折叠相位值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
所述候选空间三维点坐标计算模块2具体用于:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π;并用于将计算出的第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π带入相位映射公式:
Figure PCTCN2017101764-appb-000047
Figure PCTCN2017101764-appb-000048
Figure PCTCN2017101764-appb-000049
计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点 坐标Xn、Yn和Zn
所述第二折叠相位信息获取模块3,用于利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
所述第二折叠相位信息获取模块3具体用于:将计算出的n个所述候选空间三维点坐标Xn、Yn、Zn利用所述旋转矩阵R、平移矩阵T转换到第二成像装置坐标系中,再对得到的
Figure PCTCN2017101764-appb-000050
进行投影和加畸变计算,从而得到与n个所述候选空间三维点相对应的n个候选投影点的坐标
Figure PCTCN2017101764-appb-000051
并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
Figure PCTCN2017101764-appb-000052
具体公式为:
Figure PCTCN2017101764-appb-000053
xn_nor=Xn_r/Zn_r
yn_nor=Yn_r/Zn_r
其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标。
所述正确空间三维点筛选模块4,用于将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
所述正确空间三维点筛选模块4具体用于:根据第一成像装置成像平面上每个像素点的折叠相位值
Figure PCTCN2017101764-appb-000054
和计算出的该像素点的n个候选投影点的折叠相位
Figure PCTCN2017101764-appb-000055
结合公式:
Figure PCTCN2017101764-appb-000056
求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
本发明提供的一种基于相位映射的折叠相位三维数字成像装置,在三维成像及测量投影采集过程中减少了投影和采集的次数,大大减少了该过程的时间;在三维成像计算过程中,没有使用像传统立体视觉的三角测量法,无需相位展开和对应点查找,极大地提升了三维重建的计算速度;投影采集时间和三维重建计算时间的缩短大大提升了三维成像及测量的整体效率,实现了三维成像系统对被测物体的快速三维重建;满足高速、高精度、高普适性的三维数字成像和测量的要求。
上述实施例方法中的全部或部分步骤是通过程序来控制相关的硬件完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于相位映射的折叠相位三维数字成像方法,其特征在于,所述三维数字成像方法应用于三维成像系统,所述三维成像系统包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,所述三维数字成像方法包括:
    步骤S1,利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像素点的折叠相位值φr组成的第二折叠相位分布图;
    步骤S2,利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
    步骤S3,利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
    步骤S4,将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
  2. 如权利要求1所述的折叠相位三维数字成像方法,其特征在于,相位映射公式为:
    Figure PCTCN2017101764-appb-100001
    Figure PCTCN2017101764-appb-100002
    Figure PCTCN2017101764-appb-100003
    其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin,公式中
    Figure PCTCN2017101764-appb-100004
    为所述第一成像装置成像平面上某个像素点的折叠相位值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
  3. 如权利要求2所述的折叠相位三维数字成像方法,其特征在于,所述步骤S2具体为:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值
    Figure PCTCN2017101764-appb-100005
    将计算出的第一成像装置成像平面上每个像素点对应的n个相位值
    Figure PCTCN2017101764-appb-100006
    带入相位映射公式:
    Figure PCTCN2017101764-appb-100007
    Figure PCTCN2017101764-appb-100008
    Figure PCTCN2017101764-appb-100009
    计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点坐标Xn、Yn和Zn
  4. 如权利要求1所述的折叠相位三维数字成像方法,其特征在于,所述步骤S3具体为:将计算出的n个所述候选空间三维点坐标Xn、Yn、Zn利用所述旋 转矩阵R、平移矩阵T转换到第二成像装置坐标系中,再对得到的
    Figure PCTCN2017101764-appb-100010
    进行投影和加畸变计算,从而得到与n个所述候选空间三维点相对应的n个候选投影点的坐标
    Figure PCTCN2017101764-appb-100011
    并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
    Figure PCTCN2017101764-appb-100012
    具体公式为:
    Figure PCTCN2017101764-appb-100013
    xn_nor=Xn_r/Zn_r
    yn_nor=Yn_r/Zn_r
    其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标。
  5. 如权利要求1所述的折叠相位三维数字成像方法,其特征在于,所述步骤S4具体为:根据第一成像装置成像平面上每个像素点的折叠相位值
    Figure PCTCN2017101764-appb-100014
    和计算出的该像素点的n个候选投影点的折叠相位
    Figure PCTCN2017101764-appb-100015
    结合公式:
    Figure PCTCN2017101764-appb-100016
    求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
  6. 一种基于相位映射的折叠相位三维数字成像装置,其特征在于,所述三维数字成像装置应用于三维成像系统,所述三维成像系统包括:第一成像装置、投影装置和第二成像装置,所述第一成像装置和所述第二成像装置位于所述投影装置的两侧,所述三维数字成像装置包括:
    第一折叠相位信息获取模块,用于利用所述投影装置投影正弦条纹序列到被测物体表面,并利用所述第一成像装置采集包含被测物体信息的图像,根据所述图像计算第一成像装置成像平面上每个像素点的折叠相位值φl,得到由所述第一成像装置成像平面上每个像素点的折叠相位值φl组成的第一折叠相位分布图;并利用所述第二成像装置采集包含被测物体信息的图像,根据所述图像计算第二成像装置成像平面上每个像素点的折叠相位值φr,得到由所述第二成像装置成像平面上每个像素点的折叠相位值φr组成的第二折叠相位分布图;
    候选空间三维点坐标计算模块,用于利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和预置的第一标定数据,用相位映射计算出每个像素点相对应的n个候选空间三维点的坐标;
    第二折叠相位信息获取模块,用于利用预置的第二标定数据将所述第一成像装置成像平面上的每个像素点的n个候选空间三维点重投影到所述第二成像装置成像平面上,得到n个与所述候选空间三维点一一对应的候选投影点,并利用所述第二成像装置成像平面上每个像素点的折叠相位值φr插值出所述候选投影点的折叠相位值;
    正确空间三维点筛选模块,用于将所述第一成像装置成像平面上每个像素点的折叠相位值φl和与之对应的n个候选投影点的折叠相位值之间差值的绝对值与判定阈值比较,来从所述n个候选投影点一一对应的n个候选空间三维点中筛选出正确的空间三维点,实现三维数字重建。
  7. 如权利要求6所述的折叠相位三维数字成像装置,其特征在于,相位映射公式为:
    Figure PCTCN2017101764-appb-100017
    Figure PCTCN2017101764-appb-100018
    Figure PCTCN2017101764-appb-100019
    其中,多项式系数ai、bi、ci、kn的值为所述第一标定数据,所述第一标定数据还包括判定阈值φmin,公式中
    Figure PCTCN2017101764-appb-100020
    为所述第一成像装置成像平面上某个像素点的折叠相位值,Xn、Yn、Zn为计算出的与该像素点相对应的在第一成像装置坐标系下的n个候选空间三维点的坐标值;所述第二标定数据包括:第一成像装置和第二成像装置的内部固定参数,还包括旋转矩阵R、平移矩阵T,所述旋转矩阵R、平移矩阵T用于第一成像装置坐标系与第二成像装置坐标系之间的相互转换计算。
  8. 如权利要求7所述的折叠相位三维数字成像装置,其特征在于,所述候选空间三维点坐标计算模块具体用于:利用所述第一成像装置成像平面上每个像素点的折叠相位值φl和所述第一标定数据kn,用相位计算公式计算出所述第一成像装置成像平面上每个像素点对应的n个相位值
    Figure PCTCN2017101764-appb-100021
    并用于将计算出的第一成像装置成像平面上每个像素点对应的n个相位值φl+kn·2π带入相位映射公式:
    Figure PCTCN2017101764-appb-100022
    Figure PCTCN2017101764-appb-100023
    Figure PCTCN2017101764-appb-100024
    计算出第一成像装置成像平面上每个像素点相对应的n个候选空间三维点坐标Xn、Yn和Zn
  9. 如权利要求6所述的折叠相位三维数字成像装置,其特征在于,所述第二折叠相位信息获取模块具体用于:将计算出的n个所述候选空间三维点坐标 Xn、Yn、Zn利用所述旋转矩阵R、平移矩阵T转换到第二成像装置坐标系中,再对得到的
    Figure PCTCN2017101764-appb-100025
    进行投影和加畸变计算,从而得到与n个所述候选空间三维点相对应的n个候选投影点的坐标
    Figure PCTCN2017101764-appb-100026
    并依据第二成像装置成像平面上每个像素点的折叠相位值φr插值计算出n个所述候选投影点的折叠相位值
    Figure PCTCN2017101764-appb-100027
    具体公式为:
    Figure PCTCN2017101764-appb-100028
    xn_nor=Xn_r/Zn_r
    yn_nor=Yn_r/Zn_r
    其中,Xn_r、Yn_r、Zn_r为所述n个候选空间三维点在第二成像装置坐标系中的三维点坐标。
  10. 如权利要求6所述的折叠相位三维数字成像装置,其特征在于,所述正确空间三维点筛选模块具体用于:根据第一成像装置成像平面上每个像素点的折叠相位值
    Figure PCTCN2017101764-appb-100029
    和计算出的该像素点的n个候选投影点的折叠相位
    Figure PCTCN2017101764-appb-100030
    结合公式:
    Figure PCTCN2017101764-appb-100031
    求出φn,将φn即:φ1、φ2、φ3...φn与判定阈值φmin比较,若φ1到φn全部比阈值φmin大,则判定误差过大,第一成像装置成像平面上该像素点所对应的n个候选空间三维点中没有正确的空间三维点,做不存储处理;若φ1到φn只有一个比判定阈值φmin小,则判定该候选投影点所对应的候选空间三维点为正确的空间三维点,做存储处理;若φ1到φn有两个或两个以上的值比判定阈值φmin小,则将比判定阈值φmin小的候选投影点做下一步判定,选择比判定阈值φmin小的候选投影点所对应的第一成像装置成像平面上像素点的周围1个像素范围内已经确定正确投影点像素的正确投影点记为标准投影点,判定比判定阈值φmin小的候选投影点 中离所述标准投影点距离最近的候选投影点为正确投影点,所述正确投影点所对应的候选空间三维点为正确的空间三维点,存储所述正确的空间三维点。
PCT/CN2017/101764 2017-09-14 2017-09-14 基于相位映射的折叠相位三维数字成像方法及装置 WO2019051728A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101764 WO2019051728A1 (zh) 2017-09-14 2017-09-14 基于相位映射的折叠相位三维数字成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101764 WO2019051728A1 (zh) 2017-09-14 2017-09-14 基于相位映射的折叠相位三维数字成像方法及装置

Publications (1)

Publication Number Publication Date
WO2019051728A1 true WO2019051728A1 (zh) 2019-03-21

Family

ID=65722293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101764 WO2019051728A1 (zh) 2017-09-14 2017-09-14 基于相位映射的折叠相位三维数字成像方法及装置

Country Status (1)

Country Link
WO (1) WO2019051728A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697065A (zh) * 2021-01-25 2021-04-23 东南大学 基于相机阵列的三维形貌重构方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046839B1 (en) * 2000-09-19 2006-05-16 Spg Hydro International Inc. Techniques for photogrammetric systems
CN102032878A (zh) * 2009-09-24 2011-04-27 甄海涛 基于双目立体视觉测量系统的精确在线测量方法
CN102322823A (zh) * 2011-09-13 2012-01-18 四川大学 基于相位级次自编码的光学三维测量方法
CN102376089A (zh) * 2010-12-09 2012-03-14 深圳大学 一种标靶校正方法及系统
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN106767405A (zh) * 2016-12-15 2017-05-31 深圳大学 相位映射辅助三维成像系统快速对应点匹配的方法及装置
CN106767533A (zh) * 2016-12-28 2017-05-31 深圳大学 基于条纹投影轮廓术的高效相位‑三维映射方法及系统
CN107504919A (zh) * 2017-09-14 2017-12-22 深圳大学 基于相位映射的折叠相位三维数字成像方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046839B1 (en) * 2000-09-19 2006-05-16 Spg Hydro International Inc. Techniques for photogrammetric systems
CN102032878A (zh) * 2009-09-24 2011-04-27 甄海涛 基于双目立体视觉测量系统的精确在线测量方法
CN102376089A (zh) * 2010-12-09 2012-03-14 深圳大学 一种标靶校正方法及系统
CN102322823A (zh) * 2011-09-13 2012-01-18 四川大学 基于相位级次自编码的光学三维测量方法
CN102654391A (zh) * 2012-01-17 2012-09-05 深圳大学 基于光束平差原理的条纹投影三维测量系统及其标定方法
CN106767405A (zh) * 2016-12-15 2017-05-31 深圳大学 相位映射辅助三维成像系统快速对应点匹配的方法及装置
CN106767533A (zh) * 2016-12-28 2017-05-31 深圳大学 基于条纹投影轮廓术的高效相位‑三维映射方法及系统
CN107504919A (zh) * 2017-09-14 2017-12-22 深圳大学 基于相位映射的折叠相位三维数字成像方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697065A (zh) * 2021-01-25 2021-04-23 东南大学 基于相机阵列的三维形貌重构方法
CN112697065B (zh) * 2021-01-25 2022-07-15 东南大学 基于相机阵列的三维形貌重构方法

Similar Documents

Publication Publication Date Title
CN109506589B (zh) 一种基于结构光场成像的三维轮廓测量方法
CN110288642B (zh) 基于相机阵列的三维物体快速重建方法
CN110514143B (zh) 一种基于反射镜的条纹投影系统标定方法
WO2018107427A1 (zh) 相位映射辅助三维成像系统快速对应点匹配的方法及装置
CN109307483B (zh) 一种基于结构光系统几何约束的相位展开方法
WO2018119771A1 (zh) 基于条纹投影轮廓术的高效相位-三维映射方法及系统
CN113205592B (zh) 一种基于相位相似性的光场三维重建方法及系统
CN112967342B (zh) 一种高精度三维重建方法、系统、计算机设备及存储介质
WO2013058710A1 (en) Apparatus and method for 3d surface measurement
CN108195313A (zh) 一种基于光强响应函数的高动态范围三维测量方法
CN111189416B (zh) 基于特征相位约束的结构光360°三维面形测量方法
CN110006365B (zh) 基于二维查找表的相位展开方法、装置及电子设备
CN108596008B (zh) 针对三维人脸测量的面部抖动补偿方法
CN114111637A (zh) 一种基于虚拟双目的条纹结构光三维重建方法
CN106568394A (zh) 一种手持式三维实时扫描方法
CN117450955B (zh) 基于空间环形特征的薄型物体三维测量方法
CN107504919B (zh) 基于相位映射的折叠相位三维数字成像方法及装置
Liu et al. A novel phase unwrapping method for binocular structured light 3D reconstruction based on deep learning
CN115063468A (zh) 双目立体匹配方法、计算机存储介质以及电子设备
CN111815697B (zh) 一种热变形动态三维测量方法
WO2019051728A1 (zh) 基于相位映射的折叠相位三维数字成像方法及装置
CN113551617B (zh) 基于条纹投影的双目双频互补三维面型测量方法
CN113432550A (zh) 一种基于相位匹配的大尺寸零件三维测量拼接方法
CN113450460A (zh) 一种基于人脸面形空间分布的无相位展开三维人脸重建方法及系统
CN113686264B (zh) 一种基于极线几何的三维测量方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17925232

Country of ref document: EP

Kind code of ref document: A1