WO2019049935A1 - 複合材料成形物製造用成形型および複合材料成形物の製造方法 - Google Patents

複合材料成形物製造用成形型および複合材料成形物の製造方法 Download PDF

Info

Publication number
WO2019049935A1
WO2019049935A1 PCT/JP2018/033055 JP2018033055W WO2019049935A1 WO 2019049935 A1 WO2019049935 A1 WO 2019049935A1 JP 2018033055 W JP2018033055 W JP 2018033055W WO 2019049935 A1 WO2019049935 A1 WO 2019049935A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
composite material
pressing
cavity
pressure
Prior art date
Application number
PCT/JP2018/033055
Other languages
English (en)
French (fr)
Inventor
佐名 俊一
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2019538460A priority Critical patent/JP6667055B2/ja
Priority to EP18854655.0A priority patent/EP3587063B1/en
Priority to KR1020207006133A priority patent/KR102218633B1/ko
Publication of WO2019049935A1 publication Critical patent/WO2019049935A1/ja
Priority to US16/809,551 priority patent/US20200198263A1/en
Priority to US16/988,725 priority patent/US20210094247A1/en
Priority to US17/575,637 priority patent/US20220134687A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • B29C2043/3261Particular pressure exerting means for making definite articles thermal expansion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs

Definitions

  • the present invention relates to a mold used for producing a composite material molding, and a method for producing a composite material molding, in particular, a composite material comprising at least a thermosetting resin composition and a fiber material.
  • CFRP carbon fiber reinforced plastic
  • a desired shape of a prepreg (a fiber material impregnated with a thermosetting resin composition which is a matrix material to be in a semi-cured state) is desired
  • a desired shape of a prepreg a fiber material impregnated with a thermosetting resin composition which is a matrix material to be in a semi-cured state
  • an autoclave pressure cooker
  • an inner mold core member
  • a bladder or an inflatable mandrel is generally used.
  • the bladder is a stretchable bag-like member, and is expanded by pressure during autoclave. Therefore, if the laminate and the bladder are accommodated in the cavity in the molding die and autoclaved, the bladder is expanded to form an inner die of a predetermined shape, and the laminate is pressurized toward the outer molding die . In addition, since the bladder shrinks after autoclaving, it can be pulled out from the hollow portion of the resulting cured product (composite material molding).
  • Patent Document 1 the hollow portion of the laminate (the "composite charge” in the prior art) is used.
  • a flexible bladder is disposed, and a reservoir for pressurizing the bladder is separately provided.
  • the reservoir and the bladder are joined together and sealed in a flexible bag. Therefore, the pressure by the autoclave is transmitted to the reservoir, and the fluid in the reservoir is pushed into the bladder. As a result, the bladder is properly pressurized, so that a hollow portion or the like is formed in the composite material molding.
  • the bladder since the bladder is expanded by pressure when it is autoclaved, it effectively functions as an "inner mold” for the "outer mold", but in a non-autoclaved state it is a contracted bag-like material It can not function as an "inner type".
  • the outer mold is generally a metal "mold”, in the case of an autoclave, a desired shape is imparted to the outer surface of the laminate by the pressure from the expanded bladder by the outer mold.
  • the expandable and contractible bladder can not impart a desired shape to the inner surface of the composite material molding only by pressing (pressurizing) the laminate from the inside to the outside during autoclave.
  • the composite material molding has a hollow portion, a bent portion or a curved portion in its cross section, and not only the outer surface but also the inner surface is formed into a desired shape, a bladder should be used. It was not possible.
  • the present invention has been made to solve such problems, and in a composite molded article having a hollow portion, a bent portion or a curved portion in a cross section, both the outer surface and the inner surface have a desired shape. It is an object of the present invention to provide a mold or manufacturing method that can be molded into
  • the mold for producing a composite material molding according to the present invention is made of a composite material comprising at least a thermosetting resin composition and a fiber material in order to solve the above-mentioned problems, and is hollow or folded in its cross section.
  • a composite material molded article having a cross-sectional shape including at least one of a curved portion and a curved portion a laminate of a prepreg obtained by impregnating the fiber material with the thermosetting resin composition and semi-curing is thermally treated.
  • a mold used for curing, wherein the hollow side or the inner or outer surface of the bent portion or the curved portion in the cross section of the composite material molded product is a pressing surface.
  • a pressure-formed surface having a shape corresponding to the shape of the pressure surface, and a thermally expanding pressure body, and a cavity for accommodating the laminate and the pressure body therein are provided.
  • the method for producing a composite material molding according to the present invention is made of a composite material constituted at least by a thermosetting resin composition and a fiber material in order to solve the above-mentioned problems, and is hollow in its cross section.
  • a method for producing a composite material molding having a cross-sectional shape including at least one of a bending portion and a bending portion, wherein the hollow side or the bending portion or the cross section in the cross section of the composite material molding is provided.
  • the laminate and the pressing body are disposed in the cavity so that the pressing surface of the pressing body abuts, and the mold body is fixed to seal the cavity;
  • the laminate is cured by heating the mold without applying pressure from the outside.
  • the pressing body by heating the pressing body disposed in the cavity by heating the mold body which is a matched die, the pressing body expands and presses the pressing surface of the laminate in the molding space. It will be. Therefore, in a composite material molding having a hollow portion, a bent portion or a curved portion, the outer surface or the inner surface (in the case of hollow, the inner surface) is set as a pressing surface, and the pressing body is brought into contact with the pressing surface. By heating and heating, not only the surface other than the pressing surface but also the pressing surface can be formed into a desired shape. In this way, it is possible to form a composite material molding having a hollow portion, a bent portion or a curved portion in the cross section into a desired shape.
  • the pressure body thermally expands inside the mold body and pressurizes the laminated body, it is not necessary to heat with pressure as in an autoclave, and the composite material molding can be obtained only by a general heating device such as an oven. Can be formed into a predetermined shape.
  • the cavity can be sealed in a state in which the laminate is accommodated, it is not necessary to bag the mold before heating or to debug the mold after heating. As a result, the manufacturing process of the composite material molding can be greatly simplified.
  • the laminate is accommodated in a closed molding space in the cavity and heat-cured while being entirely pressurized by the thermal expansion of the pressure body. Therefore, in the resulting composite material molding, the cured product of the thermosetting resin composition hardly leaks out of the cavity at the end. At this time, the thermosetting resin (composition) is softened by heating and spreads over the entire molding space. As a result, in addition to the pressing force due to the thermal expansion of the pressing body, hydrostatic pressing by the softened thermosetting resin also occurs. Therefore, since a better pressing force is generated in the entire molding space, it is possible to effectively suppress the occurrence of defects such as porosity caused by insufficient pressing in the resulting composite material formed article.
  • thermosetting resin composition
  • the thermosetting resin composition hardly leaks from the molding space, an excess portion hardly occurs in the obtained composite material molded article.
  • no trimming operation is required in the resulting composite material molding, and no need to perform trimming operation, it is possible to avoid the exposure of fibers generated at the trim end. Therefore, it is not necessary to apply an edge seal to the end of the composite molding in order to prevent moisture absorption. As a result, the manufacturing process can be further simplified.
  • FIG. 1A is a schematic perspective view showing an example of a composite material molding according to the present disclosure
  • FIGS. 1B and 1C are schematic cross-sectional views showing an example of a cross-sectional shape of the composite material molding shown in FIG. 1A. is there.
  • FIG. 2 is an example of a mold for producing a composite material molded article according to Embodiment 1 of the present disclosure, and is a schematic end view showing a configuration in a state where a lid mold portion of an end portion is not attached.
  • FIG. 3 is a schematic partial perspective view showing an example of a state in which a lid mold portion is attached to an end portion in the mold for manufacturing a composite material molded article shown in FIG.
  • FIG. 1A is a schematic perspective view showing an example of a composite material molding according to the present disclosure
  • FIGS. 1B and 1C are schematic cross-sectional views showing an example of a cross-sectional shape of the composite material molding shown in FIG. 1A. is there.
  • FIG. 2 is an example
  • FIG. 4 is an exploded end view showing an example of the arrangement of the molding die, the pressure body, and the laminate in the molding die for producing a composite material molding shown in FIG.
  • FIG. 5A is a schematic process diagram showing an example of a method for producing a composite material molded body according to the present disclosure
  • FIG. 5B is a schematic process diagram showing an example of a conventional composite material molded body
  • FIG. 6A is a schematic cross-sectional view showing an example of a schematic model of a composite material molding obtained by the method of manufacturing a composite material molding according to the present disclosure
  • FIG. 6B is a diagram showing a conventional method of manufacturing a composite material molding. It is a schematic process drawing which shows the edge process of the obtained composite material molded object by a schematic model.
  • FIG. 7A to 7F are schematic cross-sectional views showing other examples of the composite material molding according to the present disclosure.
  • FIG. 8 is a schematic end view showing a modification of the mold for producing a composite material molded article shown in FIG.
  • FIG. 9 is a schematic end view showing another modification of the mold for producing a composite material molded article shown in FIG.
  • FIG. 10 is a schematic end view showing still another modified example of the mold for producing a composite material molded article shown in FIG.
  • FIG. 11 is a schematic end view showing an example of a mold for producing a composite material molded article according to Embodiment 2 of the present disclosure.
  • FIG. 12 is a schematic end view showing an example of a mold for producing a composite material molded article according to Embodiment 3 of the present disclosure.
  • FIG. 8 is a schematic end view showing a modification of the mold for producing a composite material molded article shown in FIG.
  • FIG. 9 is a schematic end view showing another modification of the mold for producing a composite material
  • FIG. 13 is a schematic end view explaining a cavity in the mold for producing a composite material molded article shown in FIG.
  • FIG. 14 is a schematic end view showing an example of a mold for producing a composite material molded article according to Embodiment 4 of the present disclosure.
  • FIG. 15 is a schematic end view for explaining a cavity in the mold for producing a composite material molded article shown in FIG.
  • FIG. 16 is a schematic end view showing another example of the mold for producing a composite material molded article shown in FIG.
  • a composite material molding according to the present disclosure is made of a composite material constituted at least by a thermosetting resin composition and a fiber material, and is a prepreg obtained by impregnating a fiber material with the thermosetting resin composition and semi-curing it. What is necessary is just to be manufactured by thermosetting the laminate.
  • the composite material molding according to the present disclosure has a cross-sectional shape including at least one of hollow, a bent portion and a curved portion in the cross section thereof.
  • a C-shaped member 20A having a C-shaped cross section is mentioned as the composite material molding.
  • the more specific cross-sectional shape of the C-shaped member 20A is not particularly limited.
  • the flange portion 22 may have the same thickness from the position connected to the main body portion 21 to the edge thereof, and as shown in FIG.
  • the tip of at least one of the flange portions 22 (the flange portion 22 on the upper side of the drawing in FIG. 1C) may be configured as a reverse cut portion 23 whose thickness is tapered.
  • the direction indicated by the block arrow M in FIGS. 1A to 1C indicates the surface to be a “pressure surface” described later in the C-shaped member 20A.
  • the pressing surface may be a surface which is the hollow side or the inside of the bent portion or the curved portion in the cross section of the composite material molding.
  • the bending portion is constituted by the pair of flange portions 22 and the main body portion 21, the opposing surfaces of the pair of flange portions 22 and the main body portion 21 on the flange portion 22 side
  • the surface is a pressing surface.
  • the pressing surface is composed of the inner surfaces of the pair of flanges 22 and the inner surface of the main body 21 continuous with the inner surfaces.
  • the composite material which is a material of the composite material molding such as the C-shaped member 20A may be made of the fiber material and the thermosetting resin composition as described above.
  • the specific repair is not particularly limited as long as the fiber material can realize good physical properties (strength and the like) in the composite material molding.
  • the fiber material for example, carbon fiber, polyester fiber, PBO (polyparaphenylene benzobisoxazole) fiber, boron fiber, aramid fiber, glass fiber, silica fiber (quartz fiber), silicon carbide (SiC) fiber, nylon fiber, Etc. can be mentioned. Only one type of these fiber materials may be used, or two or more types may be used in combination as appropriate.
  • the use form of the fiber material is not particularly limited, but typically, it can be used as a base composed of a braid, a woven fabric, a knitted fabric, a non-woven fabric and the like.
  • thermosetting resin composition to be impregnated into the fiber material may be made of at least a thermosetting resin (matrix material), but may contain a material other than the thermosetting resin.
  • the specific type of the thermosetting resin is not particularly limited, typically, for example, epoxy resin, polyester resin, vinyl ester resin, phenol resin, cyanate ester resin, polyimide resin, polyamide resin and the like can be mentioned. These thermosetting resins may be used alone or in combination of two or more.
  • the more specific chemical structure of these thermosetting resins is not particularly limited, and may be a polymer obtained by polymerizing various known monomers, or a copolymer obtained by polymerizing plural monomers. .
  • the average molecular weight, the structure of the main chain and the side chain, etc. are not particularly limited.
  • thermosetting resin composition may contain, in addition to the above-mentioned thermosetting resin, a known curing agent, a curing accelerator, a reinforcing material or filler other than the fiber substrate, and other known additives.
  • a known curing agent e.g., a curing accelerator
  • a reinforcing material or filler other than the fiber substrate e.g., a known curing agent
  • a curing accelerator e.g., a known curing agent
  • reinforcing material or filler other than the fiber substrate e.g., a known additives, e.g., a known curing agent, a curing accelerator, a reinforcing material or filler other than the fiber substrate, and other known additives.
  • the composite molding is produced by laminating and curing the prepreg as described above.
  • a prepreg is a sheet body in which a substrate made of a fiber material is impregnated with a thermosetting resin composition to be in a semi-cured state.
  • the specific configuration of the prepreg is not particularly limited.
  • stacking a prepreg is not specifically limited, either.
  • the shape of the prepreg, the number of laminations of the prepreg, the lamination direction of the prepreg, and the like can be appropriately set according to the shape, use, type, and the like of the resulting composite material molding.
  • the mold 10A according to the first embodiment includes a female mold 11, a side cover mold 12, a pressing body 13A, an end cover mold 14 and the like.
  • a molding space 15 is formed between the female mold 11 and the pressing body 13A. In the molding space 15, a laminate 40 which becomes the C-shaped member 20A by curing is held.
  • the laminate 40 is configured by laminating a plurality of prepregs as described above.
  • the molding space 15 is formed in the mold 10A as a space corresponding to the shape of the composite material molding to be manufactured, in the first embodiment, the C-shaped member 20A.
  • the region corresponding to the molding space 15 is shown surrounded by a dotted line.
  • the C-shaped member 20A to be manufactured in the first embodiment has one flange portion 22. It has a reverse cut portion 23 at the edge of (see FIG. 1C).
  • the female mold portion 11 has a cavity 11 b as shown in FIG. 4, and the laminate 40 and the pressing body 13 A are disposed in the cavity 11 b. Therefore, the female mold portion 11 is provided with a cavity 11 b which is a concave portion that makes the pressing body 13A male.
  • the side surface lid mold 12 is fixed to the female mold 11 so as to seal the cavity 11 b in a state where the laminate 40 and the pressing body 13A are disposed in the cavity 11 b of the female mold 11.
  • the side lid mold 12 is a "male mold" corresponding to the female mold 11, and a convex part similar to that of the pressure body 13A is formed on the inner surface thereof. It will be However, in the present disclosure, since the pressurizing body 13A is configured separately from the side lid mold 12, the side lid mold 12 substantially seals the cavity 11b. Act like.
  • the female mold portion 11 and the side surface lid mold portion 12 have an elongated shape extending along the longitudinal direction (axial member direction) of the laminate 40 to be the C-shaped member 20A. Therefore, looking only at the female part 11, it is configured as a groove-like mold having an elongated cavity 11b, and the side lid mold part 12 is an elongated flat "lid member" that closes the groove (cavity 11b) It is configured as Therefore, in the elongated cavity 11b of the female part 11, the elongated laminate 40 and the elongated pressing body 13A are disposed, and the upper side surface (the elongated opening) of the cavity 11b after these are disposed is the side lid type part It is sealed by 12. This state is referred to as a "basic assembly state" for the convenience of the description.
  • both ends are open (only one end is shown in FIG. 3). Therefore, these end portions are sealed by the end face lid mold portion 14.
  • the state in which both end portions are sealed by the end face lid mold portion 14 is referred to as a “final assembled state” for the convenience of description. Therefore, the end face lid mold part 14 also seals the cavity 11 b in a state where the laminate 40 and the pressing body 13 A are disposed in the cavity 11 b of the female mold part 11 as in the side face lid mold part 12.
  • a plurality of fastening holes 11a, 12a and 14a into which the fastening members 16 are inserted are provided in the female mold portion 11, the side face lid mold portion 12 and the end face lid mold portion 14.
  • a plurality of fastening holes 11 a are provided on the end face of the female mold portion 11, and a plurality of fastening holes 12 a are also provided on the end face of the side lid mold portion 12.
  • a plurality of fastening holes 14 a are also provided in the end face lid mold portion 14.
  • a bolt is used as the fastening member 16.
  • the fastening holes 11a and 12a illustrated in FIG. 2 or FIG. 4 are for fixing the end face lid mold 14 to the end of the mold 10A (female mold 11 and side lid mold 12) in the basic assembled state. It becomes a hole to insert the bolt tip. Therefore, these fastening holes 11a and 12a may be "screw holes" in which female screw grooves in which male screw grooves at the tip of the bolt are screwed are formed. Also, the fastening holes 14a provided in the end face lid mold part 14 in FIG. 3 may be any holes that can accommodate the bolt heads so that the bolt heads are not exposed to the outer surface of the end face lid mold part 14, , As a "counterbore".
  • FIGS. 2 to 4 a total of three fastening holes 12 a are provided on the end face of the side lid mold part 12, and a total of seven fastening holes 11 a are provided on the end face of the female part 11. Therefore, when viewed as the end face of the mold 10A in the basic assembled state, a total of ten screw grooves are provided around the end face. Therefore, a total of ten counterbore holes corresponding to these screw groove holes are provided in the end face lid mold portion 14. In FIG. 3, two of the ten screw groove-counterbore holes are shown in a one-dot chain line.
  • FIGS. 2 to 4 a plurality of counterbore holes are also provided on the outer surface of side lid mold portion 12, and the same number of screw grooves are also provided on the side surface of female die portion 11. It is done. Therefore, in FIG. 2, the fastening member 16 for fixing the side lid mold portion 12 to the female mold portion 11 is illustrated by a dotted line. Furthermore, although not shown, the end face of the mold 10A in the basic assembled state (end faces of the female part 11 and the side lid mold part 12), and the side of the female part 11 to which the side lid mold part 12 is fixed. A positioning hole for inserting a positioning pin may be formed in (the surface for sealing the cavity 11b).
  • the pressing body 13A is configured separately from the mold body. Member.
  • the pressing body 13A has an outer surface shape corresponding to the pressing surface of the C-shaped member 20A (the composite material molding), and is thermally expanded by heating. Thereby, the pressure surface of the C-shaped member 20A is pressurized. Therefore, the inner surface of the mold body has a shape corresponding to the shape other than the pressing surface of the C-shaped member 20A.
  • the surface of the pressing body 13A that presses the pressing surface of the C-shaped member 20A is referred to as a "pressure forming surface".
  • the pressure forming surface has a shape corresponding to the shape of the pressing surface of C-shaped member 20A.
  • the pressure forming surface of the pressure body 13A has an outer surface shape corresponding to the inner surface of the bent portion as described above.
  • the pressure-formed surface of the pressure body has a shape corresponding to the pressure-formed surface of the composite material formed product (such as the C-shaped member 20A).
  • the inner surface of the mold body has a shape corresponding to the shape of the surface of the composite material molding other than the pressure applied by the pressure body 13A. doing.
  • the cavity 11 b of the female mold portion 11 has an inner surface shape corresponding to the shape of the most part other than the pressing surface.
  • the side lid mold portion 12 is also an edge surface of the one flange portion 22 of the C-shaped member 20A (a flat edge surface without the reverse cut portion 23. The lower side of the drawing of FIG. 2). Partially includes the inner surface shape corresponding to
  • the end face lid mold portion 14 also partially includes the inner surface shape corresponding to the flat both ends of the C-shaped member 20A. Therefore, the mold body may be configured to include an inner surface shape corresponding to the shape other than the pressing surface.
  • the pressing body 13 A is configured by two members of the expansion core portion 31 and the pressure distribution portion 32.
  • the expansion nucleus portion 31 functions as a core (center or main body) of pressurization by thermal expansion in the pressurizing body 13A because the thermal expansion coefficient is relatively large.
  • the pressure dispersion portion 32 has a thermal expansion coefficient smaller than that of the expansion core portion 31 and is located on the pressing surface side as viewed from the expansion core portion 31.
  • the expansion nucleus portion 31 is derived from its shape or the like, and at the time of thermal expansion, the expansion force is different for each portion, and hence the pressure is also different.
  • the pressure dispersion portion 32 Since the pressure dispersion portion 32 has a small coefficient of thermal expansion and rigidity, it is possible to disperse and equalize different pressing forces for each portion by the expansion core portion 31. Therefore, the pressure dispersion portion 32 can well disperse the pressure force due to the thermal expansion of the expansion core portion 31 to the entire pressure surface, and when viewed as the entire pressure body 13A, the pressure force by the pressure surface is entirely Can be equal.
  • the specific configurations of the expansion core portion 31 and the pressure distribution portion 32 which constitute the pressing body 13A are not particularly limited. Further, the specific thermal expansion coefficient of each of the expansion core portion 31 and the pressure dispersion portion 32, the difference between these thermal expansion coefficients, and the like are not particularly limited.
  • silicone rubber, fluororubber for example, vinylidene fluoride rubber (FKM), tetrafluoroethylene-propylene rubber (FEPM), tetrafluoroethylene-perfluorovinylether
  • FKM vinylidene fluoride rubber
  • FEPM tetrafluoroethylene-propylene rubber
  • tetrafluoroethylene-perfluorovinylether tetrafluoroethylene-perfluorovinylether
  • the pressure dispersion unit 32 is made of polytetrafluoroethylene (PTFE), but is of course not limited thereto.
  • the pressure dispersion portion 32 abuts on the surface (indicated by a block arrow M in the drawing) in the laminate 40 in the pressure body 13A.
  • the pressure dispersion portion 32 may be provided so as to cover the entire outer surface of the expansion core portion 31.
  • the expansion core portion 31 may be accommodated inside the pressure distribution portion 32, and the pressing body 13A may be configured.
  • the thickness of the pressure dispersion portion 32 (the thickness of the cross section from the expansion core portion 31 to the pressing surface) may be different. May exist.
  • the laminate 40 and the pressing body 13A are disposed in the cavity 11b. Do.
  • the laminate 40 is placed on the inner surface of the cavity 11 b, and the pressing body 13A is placed on the laminate 40.
  • the forming space 15 (dotted line in FIGS. 2 and 3) is formed between the inner surface of the cavity 11b and the outer surface of the pressing body 13A.
  • the laminate 40 is housed so as to be filled in the molding space 15. Further, since the cavity 11 b of the female mold portion 11 is sealed by the side surface lid mold portion 12 and the end surface lid mold portion 14, the molding space 15 is also substantially hermetically sealed. When the mold 10A is heated in this state, the pressure body 13A thermally expands. Since the molding space 15 is substantially hermetically sealed, the pressure due to the thermal expansion substantially does not leak to the outside, and presses the pressure surface of the laminate 40. As a result, since the laminate 40 is thermally cured in a pressurized state, the laminate 40 can be formed into a C-shaped member 20A (composite material molding) of a predetermined shape.
  • thermosetting resin composition
  • the thermosetting resin composition
  • the thermosetting resin composition
  • hydrostatic pressing by the softened thermosetting resin also occurs. Therefore, in the obtained C-shaped member 20A, since a favorable pressing force is generated in the entire molding space 15, it is possible to suppress the occurrence of defects such as porosity caused by insufficient pressing.
  • the molding die 10A may have a configuration (for example, a vent portion or the like) for releasing the gas or the like inside the molding die 10A, that is, the molding space 15 to the outside. Therefore, the mold 10A is not limited to the configuration in which the molding space 15 is completely hermetically sealed, as long as the configuration is substantially hermetically sealed as described above. Further, in the present disclosure, heat is softened on the mating surfaces of the mold parts (the female mold part 11, the side lid mold part 12, the end cap mold part 14 and the like) constituting the mold body of the mold 10A. A sealing material or the like may be provided to prevent or suppress the curable resin from leaking out.
  • a sealing material or the like may be provided to prevent or suppress the curable resin from leaking out.
  • the process chart shown in FIG. 5A shows a typical step in manufacturing a composite material molded product (C-shaped member 20A) using the mold 10A illustrated in FIGS. 2 to 4.
  • the process chart shown in FIG. 5B shows a typical step in producing a composite material molding by a general manufacturing method using a conventional general molding die (conventional molding die).
  • Embodiment 1 exemplifies a manufacturing method in the case where the composite material molding is an aircraft part.
  • the bagged conventional mold is taken out, this conventional mold is debugged (step P15), and then the cured product (the composite material molding) is removed from the conventional mold (step P16).
  • a matrix material thermosetting resin
  • thermosetting resin flows out and a surplus portion which is cured is generated around the periphery. Therefore, the cured product is trimmed to remove the excess portion (step P17).
  • the cured product is finished (process P18), and the cured product is subjected to non destructive inspection (NDI) (process P19).
  • NDI non destructive inspection
  • the cured product is edge-sealed to prevent moisture absorption from the fibers exposed at the trim end by the trim treatment (process P20).
  • a prepreg is laminated to prepare a laminate 40 (step P01), and this laminate 40 is disposed in the mold 10A described above. (Step P02). That is, the laminate 40 is disposed on the inner surface of the cavity 11 b of the female mold portion 11, and the pressing body 13 A is disposed to overlap the laminate 40. As a result, the laminate 40 and the pressing body 13A are disposed so as to fit inside the cavity 11b, so that the side lid mold 12 and the end lid mold 14 may be female members so as to seal the cavity 11b. It is fixed to 11 by the fastening member 16.
  • the laminate 40 and the pressing body 13A are disposed in the cavity 11b. Therefore, the laminate 40 is accommodated so as to be filled in the forming space 15 formed between the inner surface of the cavity 11b and the outer surface of the pressing body 13A. In this state, the mold 10A is heated, for example, in an oven (process P03). As described above, since the cavity 11 b is substantially hermetically sealed, the pressure due to the thermal expansion of the pressure body 13 A is well applied to the pressure surface of the laminate 40.
  • the manufacturing method according to the present disclosure there is no need for an autoclave that performs heating and pressurization as in the conventional manufacturing method. Since the autoclave is relatively expensive compared to an oven or the like, the manufacturing method according to the present disclosure can suppress an increase in the cost of manufacturing facilities. In addition, when the autoclave is not required, the bagging process and the debugging process are not required. In the bagging process and the debugging process, since the number of steps and the operation time relatively increase, the manufacturing method can be made more efficient by reducing these processes.
  • the mold 10A is disassembled to demodulate the cured product (Step P04).
  • the molding space 15 is substantially hermetically sealed, in the obtained cured product, although some burrs occur, an excess portion that requires a trimming process is substantially It does not occur. Therefore, the manufacturing method according to the present disclosure also eliminates the need for trimming.
  • the cured product may be finished (Step P05), and the cured product may be subjected to NDI (Process P06), as in the conventional case.
  • the trimming process is unnecessary, the edge sealing process is also unnecessary as in the conventional manufacturing method.
  • the cavity 11b (that is, the molding space 15) is substantially hermetically sealed. Therefore, even if the mold 10A is heated from the outside without being externally pressurized, not only can the laminate 40 be favorably pressurized by the pressurizing body 13A, but as described above, an excess portion is generated in the composite material molding Absent.
  • FIG. 6A is a model cross-sectional view in which the cross section of the C-shaped member 20A is modeled.
  • the base material 41 made of fiber material extends to the entire main body 21 and the pair of flanges 22 (entire cross section of the C-shaped member 20A), and the matrix material 42 (heat The curable resin completely covers the substrate 41. Therefore, the fiber material which is the base material 41 is not exposed at the end face 24.
  • the composite material molding obtained by the conventional manufacturing method is also modeled focusing on the base material 41 and the matrix material 42 in the same manner.
  • the entire main body portion 121 and the pair of flange portions 122 (the cross section of the conventional C-shaped member 120) as in the model cross section of the C-shaped member 20A shown in FIG.
  • the matrix material 42 thermosetting resin
  • a surplus portion 123 is generated at the tip of the flange portion 122.
  • the base material 41 Since the root of the surplus portion 123 is connected to the flange portion 122, the base material 41 is present, but the base material 41 is not present in most of them. This is because the surplus portion 123 is formed by the matrix material 42 flowing out when the conventional C-shaped material 120 is autoclaved. Therefore, as shown by the alternate long and short dash line in FIG. 6B, when the surplus portion 123 is cut by trim processing, the base material 41 is exposed at the tip end surface 124 (trim end) of the flange portion 122. Therefore, in order to prevent moisture absorption from the exposed base material 41, as shown in FIG. 6B, an edge seal 125 is applied to the tip end face 124.
  • the composite material molded product according to the present disclosure does not need to be trimmed because the surplus portion 123 is not generated as compared with the conventional composite material molded product, and the base material 41 (fiber It can be said that the base material 41 is covered with the matrix material 42 without exposing the material).
  • the C-shaped member 20A is illustrated as the composite material molding, but the composite material molding to be manufactured in the present disclosure is of course not limited to the C-shaped member 20A.
  • the composite material molding according to the present disclosure may have a cross-section that is hollow or has a cross-sectional shape including a bent portion or a curved portion.
  • the hollow side, the inside of the bent portion, or the inner side of the curved portion can be a pressing surface when the laminate 40 is thermally cured. Therefore, in the present disclosure, in the mold 10A, the pressing body 13A may be disposed in the cavity 11b so as to face the pressing surface.
  • the composite material molding according to the present disclosure may have various shapes, and is not particularly limited.
  • a C-shaped member 20A shown in FIG. 7A see FIGS. 1A to 1C.
  • a mold material having a predetermined cross-sectional shape which is stretched in the material axial direction can be mentioned.
  • Such a profile material is used as stiffeners, such as stringers or frames of aircraft, for example.
  • the specific shape of the mold material is not particularly limited, and, for example, a J-shaped material 20B shown in FIG. 7B, an H-shaped material 20C shown in FIG. 7C, an L-shaped material 20D shown in FIG. And hat-shaped (or ⁇ -type) materials not shown.
  • these mold members each have a plate-like main body portion 21 (web) and a flange portion 22 provided on at least one of the edge portions of the main body portion 21.
  • the cross section has a shape in which at least one flange 22 is bent from the main body 21.
  • the pair of flange portions 22 and the main body portion 21 form a bent portion.
  • the inner surface of the main body 21 serves as a pressure surface.
  • the J-shaped member 20B shown in FIG. 7B has three flanges 22. Among them, a pair of flanges 22 and the main body 21 which are positioned in the same direction form a bent part. Since this bent portion is substantially the same as the bent portion of the C-shaped member 20A, it will be referred to as a "C-shaped bent portion" for the sake of convenience.
  • the H-shaped member 20C shown in FIG. 7C has two pairs of flanges 22. The total number of flanges 22 is four. Therefore, the H-shaped member 20C has two C-shaped bent portions. In both of the J-shaped member 20B and the H-shaped member 20C, the inner surfaces of the pair of flanges 22 and the inner surface of the main body 21 serve as pressing surfaces.
  • FIG. 7D also in L-shaped material 20D which has only one flange part 22, it can be considered that the bending part is comprised by the main-body part 21 and one flange part 22.
  • FIG. 7D if the surface on the side of the flange portion 22 in the main body portion 21 is an inner surface, and the surface on the side of the main body portion 21 in the flange portion 22 is an inner surface, the inside of the main portion 21 and the flange portion 22 is The surface is a pressing surface.
  • the bent portion of the L-shaped member 20D is referred to as "L-shaped bent portion" for the sake of convenience.
  • the J-shaped member 20B shown in FIG. 7B has a C-shaped bent portion and an L-shaped bent portion, but in the first embodiment, attention is focused only on the C-shaped bent portion.
  • the pressure side is set. This is because not only pressurization due to thermal expansion of the pressing body but also hydrostatic pressurization due to softening of the thermosetting resin (composition) and spreading over the entire molding space 15 occurs as described above. . Therefore, as will be described in a third embodiment described later, it is possible to press a single flange portion 22 constituting an L-shaped bending portion simply by arranging the pressing body with the C-shaped bending portion as the pressing surface. it can.
  • a pressing body may be disposed with the inner surface of the L-shaped bent portion as the pressing surface.
  • a composite material molded product in which the cross section of the main body portion 21 is curved even if the flange portion 22 is not clearly bent from the main body portion 21 as in the L-shaped member 20D shown in FIG. Conceivable.
  • the inner surface of the curved portion may be a pressing surface.
  • the pressing surface indicated by the block arrow M in FIGS. 7A to 7D is the inner surface of the main body portion 21 and the flange portion 22 constituting the bent portion regardless of the cross-sectional shape of the composite material molded product.
  • the pressing body 13A is formed to have an outer surface corresponding to these pressing surfaces, and may be disposed in the cavity 11b of the mold 10A so as to abut on the pressing surface.
  • the composite material molding may be the hollow material 20E shown in FIG. 7E or the hollow material 20F shown in FIG. 7F.
  • the hollow member 20E has a substantially rectangular cross-sectional shape and the inside is the hollow portion 25.
  • the hollow member 20F has a substantially elliptical cross-sectional shape and the inside is the hollow portion 25.
  • the pressing surface indicated by the block arrow M is the inner surface of the hollow portion 25, and the pressing body 13 ⁇ / b> A may be formed in a shape corresponding to the hollow portion 25.
  • the hollow members 20E and 20F may extend in the axial direction of the material and have a predetermined cross-sectional shape like a mold, but may have a hollow portion 25 partially.
  • a mold for example, there are helicopter blades of the type in which a rotor hub is inserted and fixed at its proximal end. In this type of blade, its proximal end will have a hollow 25. Therefore, the mold 10A according to the present disclosure or the manufacturing method according to the present disclosure can be suitably applied also when manufacturing such a blade of a helicopter as a composite material molding.
  • the pressure body 13A is not particularly limited as long as it has an outer surface shape (pressure forming surface) corresponding to the shape of the pressing surface of the formed composite material and thermally expands.
  • the pressurizing body 13A is composed of a plurality of members having different thermal expansion coefficients, and the pressure dispersing portion 32 Although the coefficient of thermal expansion is reduced, the present disclosure is not limited thereto.
  • the mold 10B shown in FIG. 8 basically has the same configuration as the mold 10A shown in FIGS. 2 to 4, the pressing body 13B is configured as a single thermal expansion member.
  • thermosetting resin composition a single member can be used as the pressure body 13B shown in FIG.
  • a mold 10C shown in FIG. 9 basically includes an expansion core portion 33 and a pressure dispersion portion 32 similarly to the mold 10A shown in FIGS.
  • a plurality of convex portions 34 are formed on the entire outer surface of the core portion 33. In other words, the pressing surface of the expansion core 33 is dimpled.
  • the pressure applied to the pressure dispersion portion 32 of the expansion core portion 33 can be favorably adjusted. Therefore, the pressing force of the expansion core portion 33 can be well transmitted to the pressure distribution portion 32, and the pressure surface of the laminate 40 can be favorably pressed via the pressure distribution portion 32.
  • the uneven structure for adjusting the pressure is not limited to the plurality of convex portions 34. For example, dimple processing may be employed such that a plurality of concave portions are formed instead of the plurality of convex portions 34.
  • the shape of the plurality of convex portions 34 viewed from the processing surface may be a circular shape, but the shape of the convex portions 34 is not limited to this, and may be an oval, a triangle, a rectangle, a polygon, etc. .
  • the concavo-convex structure may be concavities and convexities in other geometric shapes other than the convex portion 34 or the concave portion. Although these uneven structures may be only one type like a plurality of circular convexes 34, a plurality of uneven structures may be mixed.
  • the plurality of convex portions 34 having the concavo-convex structure are formed on the entire outer surface of the expansion core 33, but the formation position of the concavo-convex structure is not limited thereto.
  • the concavo-convex structure may be formed on both the outer surface of the expansion core portion 33 and the outer surface of the pressure dispersion portion 32, or may be formed only on the outer surface of the pressure dispersion portion 32.
  • 32 may be formed on the inner surface (surface in contact with the outer surface of the expansion core portion 33), or a concavo-convex structure may be formed on part of the outer surface or the inner surface instead of the entire surface.
  • the configuration for adjusting the pressure is not limited to the configuration in which the outer surface of the pressing body or the member constituting the pressing body is provided with the concavo-convex structure, and the hollow box may be provided inside the pressing body or the member constituting the pressing body.
  • the configuration may be such that a unit is provided.
  • the mold 10D shown in FIG. 10 basically has the same configuration as the mold 10C shown in FIG. 9, and the pressing body 13D has a plurality of convex portions 34 formed on the outer surface
  • the expansion core portion 33 and the pressure dispersion portion 32 are provided, and further, inside the expansion core portion 33, the hollow box portion 35 which can be deformed inwardly with the thermal expansion of the expansion core portion 33 is positioned. doing. Therefore, the pressing body 13D includes the expansion core portion 33, the pressure distribution portion 32, and the hollow box portion 35.
  • the hollow box portion 35 is crushed so as to be deformed inward by the thermal expansion of the expansion core portion 33 as schematically shown by a broken line in FIG. 10, but when the thermal curing is completed and the thermal expansion converges, the original It may be configured to return to the shape. Therefore, the specific configuration of the hollow box portion 35 is not particularly limited as long as the box body can be crushed by receiving the pressure force generated by the thermal expansion of the expansion core portion 33 (or the pressure body 13D).
  • the material of the hollow box portion 35 is not particularly limited as long as the material has heat resistance that can withstand the temperature at the time of heat curing. Typically, metals such as aluminum or alloys thereof can be mentioned, but they may be made of a heat resistant resin or a composite material.
  • the shape retentivity (pressure resistance) of the hollow box portion 35 against pressure is not particularly limited, either, so that the plate thickness is adjusted or the internal pressure is compressed when the pressure generated at the time of heat curing exceeds a predetermined range. Design the structure.
  • the pressing body 13D included in the forming die 10D is provided with a plurality of convex portions 34 on the outer surface of the expansion core portion 33, and then a hollow box portion inside the expansion core portion 33.
  • 35 is provided, the present disclosure is not limited to such a configuration.
  • the hollow box portion 35 is applied to the mold 10A shown in FIG. 2 and the pressing body 13A provided with the mold, that is, the expansion core portion 31 having no uneven structure such as a plurality of convex portions 34 on the outer surface.
  • the hollow box 35 may be provided inside.
  • the hollow box portion 35 is applied to the mold 10B shown in FIG. 8 and the pressure body 13B included in the mold 10B, that is, the hollow box portion 35 is provided inside the pressure body 13B formed of a single thermal expansion member. It may be provided.
  • the mold body female mold portion 11, side lid mold portion 12, and end face lid mold portion 14 which is a matched die is heated and disposed in the cavity 11b.
  • the pressure members 13A to 13D are heated.
  • the pressurizing members 13A to 13D expand and pressurize the pressing surface of the laminate 40 in the molding space 15.
  • not only the outer surface but also the inner surface (pressure surface) of the composite material molded article having a hollow, a bent portion or a curved portion can be formed into a desired shape.
  • the pressure members 13A to 13D thermally expand inside the mold body and pressurize the laminate 40, it is not necessary to heat with pressure as in an autoclave, and it is possible only with a general heating device such as an oven.
  • the composite material molding can be molded into a predetermined shape.
  • the cavity 11b can be sealed in a state in which the laminate 40 is accommodated, it is not necessary to bag the molds 10A to 10D before heating and to debug the molds 10A to 10D after heating. As a result, the manufacturing process of the composite material molding can be simplified.
  • the laminate 40 is accommodated in the molding space 15 closed in the cavity 11b, and is thermally cured while being entirely pressurized by the thermal expansion of the pressure members 13A to 13D. Therefore, in the resulting composite material molding, the cured product of the thermosetting resin composition hardly leaks out of the cavity 11b at the end. At this time, the thermosetting resin (composition) is softened by heating and spreads throughout the molding space 15. As a result, in addition to the pressure by thermal expansion of the pressure members 13A to 13D, hydrostatic pressure by the softened thermosetting resin also occurs. Therefore, since a better pressing force is generated in the entire molding space 15, it is possible to effectively suppress the occurrence of defects such as porosity caused by insufficient pressing in the obtained composite material molded product.
  • thermosetting resin composition
  • good molding to the end can be performed. Therefore, it is not necessary to form the surplus portion 123 in the composite material molding. Therefore, the need for trimming operation is eliminated in the resulting composite material molding, and the need for trimming operation is eliminated, so that it is possible to avoid the exposure of fibers (substrate 41) generated at the trim end. Therefore, it is not necessary to apply an edge seal, for example, to prevent moisture absorption at the end of the composite molding. As a result, the manufacturing process can be further simplified.
  • the laminate 40 is thermally cured using an external heating device such as an oven.
  • the mold body has a configuration provided with a heating unit for heating the mold body. Such a mold will be specifically described with reference to FIG.
  • the mold 10E according to the second embodiment has the same configuration as the mold 10C among the molds 10A to 10D according to the first embodiment. That is, the molding die 10E includes the female die portion 11, the side lid die portion 12, and the end face lid die portion 14 which are the molding die main body, and also includes the pressing body 13C.
  • the expansion core portion 33 having a plurality of convex portions 34 and the pressure distribution portion 32 are configured.
  • the female mold part 11 is equipped with the several heating part 17 in the inside.
  • the heating portion 17 is provided on three sides of the four side surfaces of the female portion 11 except the surface to which the side lid mold portion 12 is fixed (the surface where the cavity 11 b is opened). ing.
  • the heating part 17 is not exposed to the end surface, it has shown in figure with the broken line.
  • the specific configuration of the heating unit 17 is not limited, and a known mold heating heater can be used in the field of molding of a composite material molding or in the field of molding of other resin materials.
  • the mold heater may be of a type incorporated in a mold 10E as shown in FIG. 11 or of a type attached to the outside of the mold 10E.
  • the female mold 11, the side lid mold 12 and the end cap mold 14 are assembled by the fastening member 16.
  • the laminate 40 is disposed in the cavity 11 b of the female mold portion 11, the pressing body 13 C is disposed, and thereafter, fastening to the female mold portion 11 is performed to seal the cavity 11 b.
  • the side lid mold portion 12 is fixed by the member 16 (basic assembled state).
  • the end face lid mold portion 14 is fixed by the fastening member 16 so as to seal both ends of the mold 10E in the basic assembly state (final assembly state).
  • the heating unit 17 is operated to heat the mold 10E itself, instead of heating the mold 10E in the oven as in the first embodiment.
  • composite material moldings such as C-shaped material 20A, can be manufactured, without introducing an oven as manufacturing equipment.
  • the mold 10E including the mold body which is a matched die and the pressing body 13C is used, and the heating unit 17 is provided in the mold body. Then, after the laminate 40 is disposed in the cavity 11b, the pressurizing body 13C is disposed, and the molding die main body is assembled so as to seal the cavity 11b, and molding is performed by the heating unit 17 without using an external heating device. Heat the mold 10E. As described above, by heating the mold 10E itself without externally applying pressure, the pressurized body 13C can be thermally expanded and the laminate 40 can be favorably pressed. Therefore, a manufacturing facility such as an autoclave or an oven is introduced. Composite moldings can be produced without this.
  • the molds 10A to 10E described in the first embodiment or 2 are all configured to manufacture the C-shaped member 20A as a composite material molding, but in the third embodiment, other composite material moldings are used.
  • a J-shaped member 20B (see FIG. 7B) will be mentioned, and a molding die configured to manufacture this J-shaped member 20B will be specifically described with reference to FIGS. 12 and 13.
  • the mold 50 includes a female part 51, a side cover mold 52, an end cover mold (not shown), a curl plate 54, and a pressing body 53.
  • the female part 51, the side face lid mold 52, the end face lid mold, and the curl plate 54 are the mold body.
  • the pressing body 53 includes an expansion core portion 36 having a plurality of convex portions 38 formed on the surface, and a pressure dispersion portion 37. It consists of Moreover, the laminated body 43 accommodated in the shaping
  • the side face lid mold 52 and the end face lid mold are similar to the side face lid mold 12 and the end face lid mold 14 in the first or second embodiment, but are lid molds for sealing the cavity of the female part 51.
  • the curl plate 54 also functions as a lid mold for sealing the cavity of the female mold 51.
  • the specific configuration of the curling plate 54 is not particularly limited, and a curling plate known in the field of production of composite material moldings (for example, one used in an autoclave) can be suitably used.
  • a plurality of fastening holes 51a are provided on the end face of the female mold portion 51.
  • a plurality of fastening holes 52a are provided on the end face of the side surface lid mold 52 similarly to the side surface lid mold 12 in the first or second embodiment.
  • a plurality of fastening holes are also provided in the end face lid mold.
  • the female mold portion 51, the side surface lid mold portion 52, the end surface lid mold portion, and the curl plate 54, which are mold bodies, are fixed to each other by a fastening member 56 (for example, a bolt) as in the first or second embodiment. Can be assembled by a fastening member 56 (for example, a bolt) as in the first or second embodiment.
  • a cavity 51b is provided as in the female die part 11 in the first or second embodiment. Similar to the cavity 11b of the female mold portion 11, the cavity 51b can accommodate the laminate 43 and the pressing body 53 therein, and the inner surface corresponds to the shape other than the pressing surface of the J-shaped member 20B (see FIG. 7B). Contains the shape. As shown in FIG. 12, in a state where the forming die 50 is assembled, the laminate 43 is accommodated in a forming space 55 formed between the inner surface of the cavity 51 b and the outer surface of the pressing body 53.
  • the cavity 51b can be divided into the pressing body region 51c, the first molding space region 51d, and the second molding space region 51e.
  • the pressing body region 51c is a region of the cavity 51b in which the pressing body 53 is disposed, and occupies most of the cavity 51b.
  • the first molding space area 51 d and the second molding space area 51 e are areas corresponding to the molding space 55, and are areas in which the laminate 43 is disposed.
  • the first forming space area 51 d is an area adjacent to surround the pressing body area 51 c.
  • the pressing body 53 disposed in the pressing body region 51c abuts on the pressing surface of the laminate 43 disposed in the first molding space region 51d. Therefore, in the third embodiment, the pressing body 53 has a pressure forming surface corresponding to the pressing surface of the J-shaped member 20B (laminated body 43).
  • the J-shaped member 20B obtained by heat curing the laminate 43 has a main body portion 21 and three flange portions 22 (see FIG. 7B). Of these, two flanges 22 are located in the same direction, and the other one is located in the opposite direction of the two flanges 22. For convenience of explanation, when the pair of flanges 22 located in the same direction is referred to as “first and second flanges 22” and the flanges 22 located in the opposite direction are referred to as “third flange 22”, the laminate 43
  • the pressing surface of the J-shaped member 20B corresponds between the main body 21 and the first and second flanges 22 in the J-shaped member 20B.
  • the second molding space area 51e is adjacent only to the first molding space area 51d. In the second molding space area 51e, a portion of the laminate 43 corresponding to the third flange portion 22 of the J-shaped member 20B is accommodated.
  • the side on which the pressing body 53 is disposed is taken as a first side (the left side in the drawing of FIG. 13), and the side opposite to the first side is taken as a second side (FIG. 13).
  • the pair of side surfaces existing between the first side surface and the second side surface is the third side surface (upper side surface in the drawing) and the fourth side surface (lower side surface in the drawing)
  • the side faces located are the first side face and the third side face.
  • the side lid mold 52 is fixed to the first side to seal the cavity 51b
  • the curl plate 54 is fixed to the third side to seal the cavity 51b.
  • the pressing body region 51c (and a part of the first molding space region 51d corresponding to the tip of the flange portion 22) of the cavity 51b is located on the first side surface, but the third side surface is The first molding space region 51d and the second molding space region 51e are located in the cavity 51b.
  • the pressing body area 51c and the first forming space area 51d are adjacent and can be regarded as substantially a single area
  • the second forming space area 51e branches from the single area.
  • an elongated region (a region corresponding to the third flange portion 22).
  • the second molding space area 51 e is an area located between the female mold 51 and the curl plate 54, and the pressing body 53 is not disposed.
  • the pressing body 53 is expanded by heating the forming die 50, and the pressing surface of the laminate 43 is pressed. At this time, a portion corresponding to the main body portion 21 and the first and second flange portions 22 of the J-shaped member 20B is directly pressed from the pressing surface, but a portion corresponding to the third flange portion 22 (second molding In the space area 51e), the pressing body 53 is not in contact with the space area 51e, and is merely held between the female mold portion 51 and the curl plate 54.
  • the pressing body is possible because the thermosetting resin (composition) is softened and spreads over the entire molding space 15.
  • the laminated body 43 is sufficiently pressurized also in the second molding space area 51 e where the 53 is not positioned.
  • the cavity 51b has a region for accommodating the pressing body 53 and the laminate 43 inside as the pressing body region 51c and the first molding space region 51d, and the second molding As in the space region 51e, a region may be included in which only the stacked body 43 is accommodated without accommodating the pressurizing body 53 inside. If the cavity 51b is one area not divided, the pressure applied to the pressing surface of the laminate 43 can be applied to the entire laminate 43 and can be thermally cured while satisfactorily pressing the laminate 43. .
  • the specific configuration of the forming die main body female die 51, side lid die 52, end lid die (not shown), curl plate 54), pressing body 53 is substantially the same as that of the above embodiment. As it is similar to that of the embodiment 1 or 2, the detailed description thereof is omitted.
  • the method of assembling the mold body including the arrangement of the laminate 43 and the pressing body 53 in the cavity 51b), the method of manufacturing a composite material molding using the mold 50, etc. As it is similar to 1, its detailed description is omitted.
  • the heating unit 17 may be provided on the female die unit 51 or the like.
  • Embodiment 4 In each of the molds 10A to 10F or the mold 50 described in the first to third embodiments, the surface to be the hollow side or the inside of the bent portion or the curved portion in the cross section of the composite material molded product is a pressing surface.
  • the present disclosure is not limited to this, and the outer surface of the bending portion or the bending portion may be the pressing surface.
  • such a mold will be specifically described with reference to FIGS. 14 to 16.
  • a mold 60A according to the fourth embodiment includes a first mold 61, a second mold 62, a pressing body 63A, a base plate 64, etc.
  • a molding space 65 is formed between the second mold parts 62.
  • the laminate 40 is held in the molding space 65, and the laminate 40 is hardened to form the C-shaped member 20A described in the first or second embodiment.
  • the region corresponding to the forming space 65 is shown surrounded by a dotted line in the same manner as in FIG. 2, FIG. 3, and FIG. 8 to FIG.
  • the first mold portion 61 is fitted to the second mold portion 62. And in this fitting state, as shown in FIG. 15, the cavity 62b is formed between the 1st type
  • the pressing body 63A, the laminate 40, and the first mold portion 61 are disposed in the recess space 62c, and are closed by the base plate 64.
  • the base plate 64 substantially seals the cavity 62b. Is fixed to the second mold portion 62.
  • the side cover mold part 12 or the side cover mold part 52 itself functions as the "male mold part”
  • the base plate 64 functions as a "side lid portion” that seals the side surface of the mold 60A, not the "male portion”.
  • the base plate 64 can also be regarded as a "third mold portion” with respect to the first mold portion 61 and the second mold portion 62.
  • the first mold portion 61, the second mold portion 62, the base plate 64, etc. are the C-shaped members 20A as in the first to third embodiments. And has an elongated shape extending along the longitudinal direction (axial member direction) of the laminate 40 (see FIG. 3).
  • the first mold portion 61, the second mold portion 62, and the base plate 64 are, as shown in FIG. 14 or 15, similarly to the molds 10A to 10F or the mold 50 described in the first to third embodiments, It is assembled to be fixed to each other by the fastening members 66. At this time, end face lid molds (not shown) are fixed to both ends of the second mold 62 and the base plate 64. Therefore, the second mold portion 62 and the base plate 64 are provided with a plurality of fastening holes 62a, 64a into which the fastening members 66 are inserted. Since bolts can be used as the fastening members 66 in the same manner as in the first to third embodiments, the fastening holes 62a and 64a may be formed as screw grooves as in the first to third embodiments. Good.
  • the pressing body 63A is also a member configured separately from the molding die main body, as in the first to third embodiments.
  • the pressurizing body 63A is expanded similarly to the pressurizing body 13A (see FIGS. 2 to 4), the pressurizing body 13C (see FIG. 9), or the pressurizing body 13D (see FIG. 10) in the first embodiment. It is comprised by two members, the core part 71 and the pressure dispersion part 72. As shown in FIG.
  • the expansion core portion 71 functions as a core (center or main body) of pressurization by thermal expansion in the pressurizing body 63A because the thermal expansion coefficient is relatively large.
  • the pressure dispersion portion 72 has a thermal expansion coefficient smaller than that of the expansion core portion 71 and is located on the pressing surface side as viewed from the expansion core portion 71. Therefore, different pressure forces are dispersed for each portion by the expansion core portion 71 Equalize. Thus, when viewed as the entire pressing body 63A, the pressing force by the pressing surface can be made uniform as a whole.
  • the outer surface (outer surface) of the laminate 40 is the pressing surface
  • the entire outer surface of the laminate 40 is covered by the pressure dispersion portion 72
  • the outside of the pressure dispersion portion 72 is the expansion core portion. Covered by 71
  • the expansion nucleus 71 is positioned on the outermost side and in contact with the inner surface of the second mold 62, and is in contact with the inside of the expansion nucleus 71
  • the pressure dispersion portion 72 is positioned, the laminate 40 is positioned to be in contact with the inside of the pressure dispersion portion 72, and the first mold portion 61 is positioned to be in contact with the inside of the laminate 40.
  • the specific configurations of the expansive core portion 71 and the pressure dispersing portion 72 constituting the pressurizing body 63A are not particularly limited, and the expansive core portion 31, the pressure dispersing portion 32, or the expansible core described in the first embodiment is used.
  • a configuration similar to that of the portion 33 can be adopted (for example, a plurality of convex portions or concave portions may be formed on the entire outer surface as in the case of the expansion core portion 33).
  • the pressure body 63A may be configured by only a single member corresponding to the expansion nucleus portion 71, or the expansion nucleus portion 71 and the pressure dispersion portion. You may provide members other than 72.
  • the convex side surface (convex surface) of the first mold portion 61 forms a part of the inner surface of the cavity 62b. Therefore, the first mold portion 61 has an “inner surface shape” corresponding to the shape other than the pressing surface of the laminate 40 (C-shaped member 20A) in the molding die main body. In addition, if it sees by 1st type
  • the pressing body 63A is not disposed in the cavity 62b shown in FIG. 15, as shown in FIG. 14, in a state where the pressing body 63A is disposed in the cavity 62b, the first constituting the inner surface of the cavity 62b A molding space 65 (shown by a dotted line) is formed between the convex surface of the mold portion 61 and the inner surface of the pressing body 63A, ie, the pressure molding surface. Therefore, the stacked body 40 is disposed between the first mold portion 61 and the pressing body 63A.
  • the pressing body 13A is disposed inside the bent portion (or the curved portion or the hollow portion) of the laminate 40. . Therefore, in the laminate 40 (C-shaped member 20A), the surface to be the inside of the bent portion (or the curved portion or the hollow portion) is a pressing surface (see the block arrow M in FIGS. 4 and 7A). On the other hand, in the mold 60A according to the fourth embodiment, as shown in FIG. 14, the pressing body 63A is disposed outside the bent portion of the laminate 40.
  • the surface to be the outer side of the bent portion (or the curved portion or the hollow portion) is the pressing surface (in the fourth embodiment, therefore, FIGS. 7A to 7F).
  • the surface opposite to the surface indicated by the block arrow M is the pressing surface).
  • the pressure-formed surface of the pressure body 13A is outside the pressure body 13A because it abuts on the inner surface of the laminate 40. It was a surface.
  • the pressing body 63A is in contact with the outside of the bent portion of the laminate 40. Therefore, the pressing surface of the pressing body 63A is the inner surface of the pressing body 63A.
  • the cavity 62b is formed of the first mold portion 61 and the second mold portion 62 when the first mold portion 61 is fitted in the recess space 62c. It can be said that it is a space formed between. Further, it can be said that the forming space 65 is a space formed between the pressing body 63A and the convex surface of the first mold portion 61 when the pressing body 63A is disposed in the cavity 62b. Therefore, the pressing body 63A is disposed in the recess space 62c of the second mold portion 62 so that the pressure forming surface of the pressing body 63A faces the first mold portion 61.
  • the laminate 40 is accommodated in a forming space 65 formed between the inner surface of the cavity 62b (the convex surface of the first mold portion 61) and the inner surface of the pressing body 63A, ie, the pressing surface. It will be.
  • the pressing body 63A and The stack 40 is placed.
  • the pressing body 63A is disposed at the deepest side of the cavity 62b ("bottom surface" of the recess space 62c of the second mold portion 62) so as to expose the pressing surface.
  • the laminate 40 is placed on the pressure-formed surface of the pressure body 63A.
  • mold part 61 is arrange
  • the molding space 65 (shown by the dotted line in FIG. 14) is formed between the inner surface of the cavity 62b and the inner surface of the pressing body 63A. Area).
  • the laminate 40 is housed so as to be filled in the molding space 65. Further, since the cavity 62b constituted by the first mold portion 61 and the second mold portion 62 is sealed by the base plate 64 and the end face lid mold portion (not shown), the molding space 65 is also substantially hermetically sealed. Become. When the mold 60A is heated in this state, the pressing body 63A thermally expands. Since the molding space 65 is substantially hermetically sealed, the pressure due to the thermal expansion does not substantially leak to the outside, and presses the pressure surface (outer surface) of the laminate 40. As a result, since the laminate 40 is thermally cured in a pressurized state, the laminate 40 can be formed into a C-shaped member 20A (composite material molding) of a predetermined shape.
  • thermosetting resin composition
  • the thermosetting resin composition
  • the thermosetting resin composition
  • hydrostatic pressing by the softened thermosetting resin also occurs. Therefore, in the obtained C-shaped member 20A, since a favorable pressing force is generated in the entire forming space 65, it is possible to suppress the occurrence of defects such as porosity caused by insufficient pressing.
  • the convex surface of the first mold portion 61 forms an inner surface shape corresponding to the shape other than the pressing surface in the cavity 62b. Therefore, it is possible to arrange the mold body rather than the pressing body 63A inside the bent portion or the curved portion of the composite material molding.
  • the mold body is generally made of metal and is a harder material than the pressing body 63A. Therefore, the laminate can be formed by laminating the prepreg on the convex surface of the hard first mold portion 61. It is relatively easy to stack the prepreg on the surface of a harder material than a soft material such as the pressing body 63A.
  • the lamination process of laminating the prepreg on the convex surface of the first mold portion 61 to form the laminated body 40 is substantially the same as the conventional lamination process. Therefore, even if the mold 60A includes the pressing body 63A, it is possible to suppress or avoid the complication of the manufacturing process of the composite material molding.
  • the first mold portion 61 made of a hard material comes in contact with the inner surface of the bending portion or bending portion of the composite material molding. Therefore, when removing the first mold portion 61 from the composite material molding, even if an insertion member such as a wedge or a spatula is inserted between the inside of the composite material molding and the first mold portion 61, There is almost no possibility that the convex surface of the portion 61 will be damaged. In other words, the first mold portion 61 can be removed from the inside of the composite material molding using an insertion member such as a wedge or a spatula. Therefore, the complication of the demolding operation can be suppressed or avoided.
  • the specific configuration of the pressing body 63A provided in the forming die 60A is not particularly limited.
  • the pressing body 63A may be made of, for example, a single thermal expansion member, similarly to the pressing body 13B provided in the mold 10B described in the modification of the first embodiment.
  • the pressing body 63A may be configured by the expansion core portion 31 and the pressure dispersing portion 32 as in the molding die 10A described in the first embodiment.
  • the pressing surface may be dimpled, or the hollow box 35 may be formed as in the mold 10D described in the modification. May be provided.
  • the pressing body in the fourth embodiment may be a hollow body instead of a generally homogeneous solid member (solid) such as the expansion core portion 71 of the pressing body 63A.
  • a mold 60B according to the modification of the fourth embodiment has a first mold 61, a second mold 62, a pressing body 63B, and a base plate, similarly to the above-described mold 60A.
  • the basic structure is the same as that of the mold 60A. Therefore, although the pressing body 63B is also composed of the expansion core portion 73 and the pressure dispersion portion 74, this expansion core portion 73 is not a solid body as a whole homogeneous like the expansion core portion 71 described above but a hollow body. It is.
  • the internal space of the expansion core portion 73 is illustrated by a dotted line.
  • the internal space of the expansion core 73 can be communicated with the outside of the mold body via the pressure hole 67.
  • the pressurizing hole 67 is formed to penetrate, for example, the pressurizing valve 67a provided on the side surface of the second mold 62 and the second mold 62, and the inside of the pressurizing valve 67a and the pressurizing member 63B is formed. It is comprised from the through-hole 67b which connects with space. Then, the outer surface of the laminate 40 can be pressed by the press-formed surface of the pressing body 63B by blowing compressed air from the pressing hole 67 to expand the pressing body 63B.
  • the thickness of the pressure dispersion portion 74 can be relatively small (thin) as compared with the pressure dispersion portion 72 of the pressing body 63A described above.
  • the specific thickness of the pressure dispersion part 72 is not specifically limited, According to various conditions, it can set suitably.
  • the molds 60A and 60B according to the fourth embodiment and a method of manufacturing a composite material molding using the molds 60A and 60B are described in the first to third embodiments. It is the same as in the mold 10A to 10F or the mold 50 and the manufacturing method using them. Therefore, the detailed description of the molds 60A and 60B other than the above description is omitted. In other words, the various configurations or methods described for the molds 10A to 10F or the mold 50 in the first to third embodiments can be applied to the molds 60A and 60B according to the fourth embodiment. .
  • the mold for producing a composite material molding is made of a composite material constituted at least by the thermosetting resin composition and the fiber material, and the hollow section, the bending section and the bending section in the cross section Used to thermally cure a laminate of a prepreg obtained by impregnating the fiber material with the thermosetting resin composition and semi-curing it when producing a composite material molding having a cross-sectional shape including at least one of The molding surface of the composite material molding, wherein the hollow side or the inner surface or outer surface of the bent portion or the curved portion is a pressure surface; A press-formed surface having a shape corresponding to the shape, and a thermally expanding presser, and a cavity for receiving the laminate and the presser therein are provided, and the cavity includes the presser surface.
  • a mold body including an inner surface shape corresponding to an outer shape, wherein the mold body arranges the pressure body in the cavity, and the inner surface of the cavity and the pressure body The cavity is sealed in a state in which the laminate is accommodated in a molding space formed between the pressure molding surface and the molding surface.
  • the pressing body by heating the pressing body disposed in the cavity by heating the mold body which is a matched die, the pressing body expands and presses the pressing surface of the laminate in the molding space. It will be. Therefore, in a composite material molding having a hollow portion, a bent portion or a curved portion, the outer surface or the inner surface (in the case of hollow, the inner surface) is set as a pressing surface, and the pressing body is brought into contact with the pressing surface. By heating and heating, not only the surface other than the pressing surface but also the pressing surface can be formed into a desired shape. In this way, it is possible to form a composite material molding having a hollow portion, a bent portion or a curved portion in the cross section into a desired shape.
  • the pressure body thermally expands inside the mold body and pressurizes the laminated body, it is not necessary to heat with pressure as in an autoclave, and the composite material molding can be obtained only by a general heating device such as an oven. Can be formed into a predetermined shape.
  • the cavity can be sealed in a state in which the laminate is accommodated, it is not necessary to bag the mold before heating or to debug the mold after heating. As a result, the manufacturing process of the composite material molding can be greatly simplified.
  • the laminate is accommodated in a closed molding space in the cavity and heat-cured while being entirely pressurized by the thermal expansion of the pressure body. Therefore, in the resulting composite material molding, the cured product of the thermosetting resin composition hardly leaks out of the cavity at the end. At this time, the thermosetting resin (composition) is softened by heating and spreads over the entire molding space. As a result, in addition to the pressing force due to the thermal expansion of the pressing body, hydrostatic pressing by the softened thermosetting resin also occurs. Therefore, since a better pressing force is generated in the entire molding space, it is possible to effectively suppress the occurrence of defects such as porosity caused by insufficient pressing in the resulting composite material formed article.
  • thermosetting resin composition
  • the thermosetting resin composition hardly leaks from the molding space, an excess portion hardly occurs in the obtained composite material molded article.
  • no trimming operation is required in the resulting composite material molding, and no need to perform trimming operation, it is possible to avoid the exposure of fibers generated at the trim end. Therefore, it is not necessary to apply an edge seal to the end of the composite molding in order to prevent moisture absorption. As a result, the manufacturing process can be further simplified.
  • the pressing surface of the composite material molded article is a surface that is the hollow side or the inside of the bent portion or the curved portion, and
  • the pressing and forming surface is an outer surface of the pressing body, and in a state in which the pressing body is disposed in the cavity, an inner surface of the cavity and an outer surface of the pressing body.
  • the laminate may be accommodated in a molding space formed between the two.
  • the pressing surface of the composite material molded article is a surface that is the outside of the bent portion or the curved portion, and the pressing of the pressing body is performed.
  • the compression molding surface is an inner surface of the pressing body, and the molding die main body is, in a state where the pressing body is disposed in the cavity, an inner surface of the cavity and an inner surface of the pressing body.
  • the laminated body may be configured to be accommodated in a forming space formed between the two.
  • the mold body includes a female mold portion in which the cavity is provided, the laminate and the pressing body in the cavity of the female mold portion.
  • the cover mold part which seals the said cavity in the arrange
  • the mold body includes a first mold portion having the inner surface shape, and a second space having a recess space in which the first mold portion is fitted.
  • a mold part, and the cavity is formed between the first mold part and the second mold part by fitting them, and the recess space of the second mold part is formed with the cavity.
  • the pressing body may be disposed such that the pressure forming surface of the pressing body faces the first mold portion.
  • the cross section of the composite material molded article is a plate-like main body, and two flanges bent in the same direction from both edges of the main body.
  • the pressing body may have an outer surface shape corresponding to the shape of the pressing surface between the two flange portions and the main body portion.
  • the pressing body is provided on the side of the composite material molded article with respect to the expansion core portion thermally expanding by heating and the expansion core portion, and the expansion
  • the pressure distribution unit may be configured to distribute pressure applied by the core portion to the entire pressure surface.
  • the thermal expansion coefficient of the expansion core portion may be larger than the thermal expansion coefficient of the pressure dispersion portion.
  • the expansion core portion may have a concavo-convex structure for adjusting a pressing force due to thermal expansion.
  • the pressure body is located inside the pressure body, and is a hollow box portion that can be deformed inward with the thermal expansion of the pressure body. May be provided.
  • the mold body may be configured to include a heating unit that heats the mold body.
  • the composite material molded article may be a component for aircraft.
  • the method for producing a composite material molding according to the present disclosure is made of a composite material comprising at least a thermosetting resin composition and a fiber material, and the cross section thereof is at least one of a hollow, a bending portion and a bending portion
  • a method of producing a composite material molding having a cross-sectional shape comprising: in the cross section of the composite material molding, the hollow side or the inner or outer side of the bent portion or the curved portion as a pressing surface
  • a mold body comprising: a mold body, the fiber material is impregnated with the thermosetting resin composition and semi-cured, and the pressure-formed surface of the pressure body is applied to the laminate of the prepreg Contact The stack and the pressure body in the cavity to fix the mold body so as to seal the cavity, and heat the mold without external pressure Thus, the laminate is cured.
  • the pressing surface of the composite material molding is a surface that is the hollow side or the inside of the bent portion or the curved portion, and
  • the pressure molding surface is the outer surface of the pressure body, and when the pressure body and the laminate are disposed in the cavity, the inner surface of the cavity and the outer surface of the pressure body
  • the configuration may be such that the laminate is accommodated in a forming space formed between the two.
  • the pressing surface of the composite material molding is a surface which is the outside of the bent portion or the bending portion, and the pressure of the pressing body is applied.
  • the molding surface is an inner surface of the pressing body, and when the pressing body and the laminate are disposed in the cavity, the molding surface is between the inner surface of the cavity and the inner surface of the pressing body.
  • the laminated body may be configured to be accommodated in the formed molding space.
  • the present invention can be widely and suitably used in the field of producing composite material moldings, particularly in the field of producing aircraft parts for composite materials or parts for transport machinery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

複合材料成形物は、その横断面に中空部、折曲部または湾曲部を有する。当該複合材料成形物が例えば折曲部を有していれば、当該折曲部の内側となる表面を加圧面とする。成形型(10A)は、加圧面の形状に対応する外表面形状を有し、熱膨張する加圧体(13A)と、積層体(40)および加圧体(13A)を内部に収容するキャビティが設けられ、当該キャビティ(11b)には、加圧面以外の形状に対応した内表面形状が含まれる成形型本体(雌型部(11)、側面蓋型部(12)等)とを備える。成形型本体は、キャビティ内に加圧体(13A)を配置して、キャビティの内表面と加圧体(13A)の外表面との間で構成される成形空間(15)内に積層体(40)を収容した状態で、キャビティを封止するよう構成されている。なお、複合材料成形物においては、折曲部または湾曲部の外側となる表面を加圧面としてもよい。

Description

複合材料成形物製造用成形型および複合材料成形物の製造方法
 本発明は、複合材料成形物を製造するために用いられる成形型、および複合材料成形物を製造する方法に関し、特に、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であって、その横断面が中空であるか、もしくは、折曲部または湾曲部を含む断面形状を有する複合材料成形物を製造するために用いられる成形型と、この複合材料成形物の製造方法とに関する。
 近年、これまで金属材料が用いられてきた分野において、繊維強化樹脂複合材料(以下、適宜「複合材料」と略す。)が広く用いられるようになっている。例えば、強化繊維として炭素繊維を用い、これにエポキシ樹脂等のマトリクス樹脂を含浸させて成形した炭素繊維強化型の材料(炭素繊維強化プラスチック;CFRP)は、金属材料よりも軽量であることに加え、より高強度である。それゆえ、航空宇宙分野、スポーツ用品分野、産業機械分野、自動車分野、自転車分野等の幅広い分野において、CFRP等の複合材料製の成形物(複合材料成形物)が採用されるようになっている。
 複合材料成形物の製造方法(あるいは成形方法)としては、代表的には、プリプレグ(繊維材料にマトリクス材料である熱硬化性樹脂組成物を含浸させて半硬化状態としたもの)を所望の形状に合わせて積層して積層体を形成し、この積層体を成形型内のキャビティに配置してバギングし、オートクレーブ(圧力釜)により加熱および加圧して積層体を硬化し、成形型をデバッグしてから、硬化物すなわち複合材料成形物を脱型する。
 ここで、複合材料成形物として、その横断面が中空のものである場合には、一般には、ブラダ(bladder)またはインフレータブルマンドレル(inflatable mandrel)と呼ばれる内型(中子部材)が用いられる。
 ブラダは、伸縮可能な袋状の部材であり、オートクレーブ時には、加圧によって膨張する。そこで、成形型内のキャビティに積層体とブラダとを収容してオートクレーブすれば、ブラダが膨張して所定形状の内型となり、積層体を外型である成形型に向けて加圧することになる。また、オートクレーブ後にはブラダは収縮するので、得られる硬化物(複合材料成形物)の中空部から引き抜くことができる。
 ブラダを用いて中空を有する複合材料成形物を製造する技術としては、例えば特許文献1に開示される装置または方法が挙げられる。この装置または方法では、代表的には、航空機分野に用いられる複合材料成形物を製造する際に、硬化前の積層体(特許文献1では「複合チャージ」)の中空部(特許文献1では「内部キャビティ」)内に、可撓性のブラダを配置するとともに、ブラダを加圧するためのリザーバを別途設けている。このリザーバとブラダとは、互いに結合されて可撓性のバッグ内に封止されている。そのため、オートクレーブによる圧力がリザーバに伝達し、リザーバ内の流体がブラダ内に押し込まれる。これにより、ブラダが適正に加圧されるため、複合材料成形物内に中空部等が形成される。
特開2014-012399号公報
 しかしながら、ブラダのように膨張型の内型(中子部材)を用いる技術は、複合材料成形物の内面形状の厳密性が求められない場合に限られる。
 具体的には、前記の通り、ブラダはオートクレーブ時には、加圧によって膨張するため、「外型」に対する「内型」として有効に機能するが、オートクレーブしない状態では、収縮した袋状物であって「内型」としては機能し得ない。外型は、一般的には金属製の「金型」であるため、オートクレーブ時には、膨張したブラダからの加圧により積層体の外表面に対して外型により所望形状が付与される。これに対して、膨張および収縮可能なブラダは、オートクレーブ時に内側から外側に向かって積層体を押圧(加圧)するのみで、複合材料成形物の内表面に所望形状を付与することができない。
 それゆえ、複合材料成形物が、その横断面に中空部、折曲部または湾曲部を有するものであって、外表面だけでなく内表面も所望形状に成形した場合には、ブラダを用いることはできなかった。
 本発明はこのような課題を解決するためになされたものであって、横断面に中空部、折曲部または湾曲部を有する複合材料成形物において、その外表面および内表面のいずれも所望形状に成形することができる、成形型または製造方法を提供することを目的とする。
 本発明に係る複合材料成形物製造用成形型は、前記の課題を解決するために、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する際に、前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体を熱硬化するために用いられる成形型であって、前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側となる表面を加圧面としたときに、前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、前記積層体および前記加圧体を内部に収容するキャビティが設けられ、当該キャビティには、前記加圧面以外の形状に対応した内表面形状が含まれる成形型本体と、を備え、前記成形型本体は、前記キャビティ内に前記加圧体を配置して、当該キャビティの内表面と当該加圧体の前記加圧成形表面との間で構成される成形空間内に前記積層体を収容した状態で、当該キャビティを封止するよう構成されている。
 また、本発明に係る複合材料成形物の製造方法は、前記の課題を解決するために、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する方法であって、前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側を加圧面としたときに、前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、前記加圧面以外の形状に対応した内表面形状を含むキャビティが設けられている成形型本体と、を備える成形型を用い、前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体に対して、前記加圧体の前記加圧成形表面を当接させるように、当該積層体および当該加圧体を前記キャビティ内に配置して、当該キャビティを封止するように前記成形型本体を固定し、当該成形型を外部から加圧せずに加熱することにより、前記積層体を硬化させる構成である。
 前記構成によれば、マッチドダイである成形型本体を加熱してキャビティ内に配置される加圧体を加熱することで、加圧体が膨張して成形空間内の積層体の加圧面を加圧することになる。それゆえ、中空、折曲部または湾曲部を有する複合材料成形物において、その外表面または内表面(中空の場合は内表面)を加圧面として設定し、当該加圧面に加圧体を当接させて加熱することで、加圧面でない表面だけでなく加圧面も所望形状に成形することができる。これにより、横断面に中空部、折曲部または湾曲部を有する複合材料成形物を所望形状に成形することができる。
 また、成形型本体内部で加圧体が熱膨張して積層体を加圧するので、オートクレーブのように加圧を伴った加熱が必要なくなり、オーブン等の一般的な加熱装置のみで複合材料成形物を所定形状に成形することができる。しかも、積層体を収容した状態でキャビティを封止できるので、加熱前の成形型をバギングしたり加熱後の成形型をデバッグしたりする必要がなくなる。その結果、複合材料成形物の製造工程を大幅に簡素化することができる。
 さらに、積層体は、キャビティ内で閉鎖された成形空間内に収容されて、加圧体の熱膨張により全体的に加圧されながら加熱硬化される。それゆえ、得られる複合材料成形物は、その端部において熱硬化性樹脂組成物の硬化物がキャビティの外部にほとんど漏出することがない。このとき、加熱によって熱硬化性樹脂(組成物)が軟化して成形空間全体に行き渡ることになる。これにより、加圧体の熱膨張による加圧力とともに、軟化した熱硬化性樹脂による静水圧加圧も生じる。そのため、成形空間全体においてより良好な加圧力が生じるため、得られる位複合材料成形物においては、加圧不足に伴うポロシティ等の欠陥の発生を有効に抑制することができる。
 また、熱硬化性樹脂(組成物)が成形空間からほとんど漏出しないので、得られる複合材料成形物においては余剰部分がほとんど発生することがない。そのため、得られる複合材料成形物においてトリム作業が不要になるとともに、トリム作業しなくてよいことから、トリム端に発生する繊維の露出を回避することができる。それゆえ、複合材料成形物の端部に吸湿防止のためにエッジシールを施す必要がなくなる。その結果、製造工程をより簡素化することができる。
 加えて、加圧体を用いて積層体を加圧するため、マッチドダイでありながら成形型をプレスする必要がない。しかも、成形型および加圧体のサイズまたは形状を調整することで、さまざまなサイズまたは形状の複合材料成形物を製造することができるとともに、加圧体から積層体の加圧面に対して全方向的に良好な圧力を加えることができるので、複雑な形状の成形も可能となる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明では、以上の構成により、横断面に中空部、折曲部または湾曲部を有する複合材料成形物において、その外表面および内表面のいずれも所望形状に成形することが可能な成形型または製造方法を提供することができる、という効果を奏する。
図1Aは、本開示に係る複合材料成形物の一例を示す模式的斜視図であり、図1Bおよび図1Cは、図1Aに示す複合材料成形物の断面形状の一例を示す模式的断面図である。 図2は、本開示の実施の形態1に係る複合材料成形物製造用成形型の一例であって、端部の蓋型部を取り付けていない状態の構成を示す模式的端面図である。 図3は、図2に示す複合材料成形物製造用成形型において、端部に蓋型部を取り付ける状態の一例を示す模式的部分斜視図である。 図4は、図2に示す複合材料成形物製造用成形型において、成形型、加圧体、および積層体の配置関係の一例を示す分解端面図である。 図5Aは、本開示に係る複合材料成形物の製造方法の一例を示す概略工程図であり、図5Bは、従来の複合材料成形物の製造方法の一例を示す概略工程図である。 図6Aは、本開示に係る複合材料成形物の製造方法により得られる複合材料成形物の概略モデルの一例を示す模式的断面図であり、図6Bは、従来の複合材料成形物の製造方法により得られる複合材料成形物の縁部処理を概略モデルで示す模式的工程図である。 図7A~図7Fは、本開示に係る複合材料成形物の他の例を示す模式的断面図である。 図8は、図2に示す複合材料成形物製造用成形型の変形例を示す模式的端面図である。 図9は、図2に示す複合材料成形物製造用成形型の他の変形例を示す模式的端面図である。 図10は、図2に示す複合材料成形物製造用成形型のさらに他の変形例を示す模式的端面図である。 図11は、本開示の実施の形態2に係る複合材料成形物製造用成形型の一例を示す模式的端面図である。 図12は、本開示の実施の形態3に係る複合材料成形物製造用成形型の一例を示す模式的端面図である。 図13は、図12に示す複合材料成形物製造用成形型におけるキャビティを説明する模式的端面図である。 図14は、本開示の実施の形態4に係る複合材料成形物製造用成形型の一例を示す模式的端面図である。 図15は、図14に示す複合材料成形物製造用成形型におけるキャビティを説明する模式的端面図である。 図16は、図14に示す複合材料成形物製造用成形型の他の例を示す模式的端面図である。
 以下、本開示の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (実施の形態1)
 [複合材料成形物の構成例]
 まず、本開示に係る複合材料成形物の一例について、図1A~図1Cを参照して具体的に説明する。本開示に係る複合材料成形物は、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であって、繊維材料に熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体を熱硬化することにより製造されるものであればよい。ただし、本開示に係る複合材料成形物は、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有している。
 具体的には、例えば、図1A~図1Cに示すように、本実施の形態1では、複合材料成形物として、断面がC型形状であるC型材20Aを挙げる。C型材20Aは、その端面(図1A)または断面(図1Bまたは図1C)端面から見たときに、板状の本体部21(またはウェブ)と、当該本体部21の両縁部から同一方向に折れ曲がった2つのフランジ部22と、を有する形状である。
 なお、C型材20Aのより具体的な断面形状は特に限定されない。例えば、図1Bに示すように、C型材20Aにおいては、フランジ部22は、本体部21につながる位置からその縁部まで同じ厚さであってもよいし、図1Cに示すように、2つのフランジ部22のうち少なくとも一方(図1Cでは紙面上側のフランジ部22)の先端は、その厚さが先細りとなるリバースカット部23として構成されてもよい。
 また、図1A~図1Cにおいてブロック矢印Mで示す方向は、C型材20Aにおいて後述する「加圧面」となる表面を指している。加圧面は、複合材料成形物の横断面において、中空側もしくは折曲部または湾曲部の内側となる表面であればよい。図1A~図1Cに示すC型材20Aでは、一対のフランジ部22および本体部21により折曲部が構成されるので、一対のフランジ部22の対向面および本体部21のうちフランジ部22側の表面が加圧面となる。言い換えれば、加圧面は、一対のフランジ部22の内表面とこれら内表面に連続する本体部21の内表面で構成される。
 本開示において、C型材20A等の複合材料成形物の材質である複合材料は、前記の通り、繊維材料および熱硬化性樹脂組成物で構成されていればよい。繊維材料は、複合材料成形物において良好な物性(強度等)を実現できるものであれば、その具体的な修理は特に限定されない。繊維材料としては、例えば、炭素繊維、ポリエステル繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、ボロン繊維、アラミド繊維、ガラス繊維、シリカ繊維(石英繊維)、炭化ケイ素(SiC)繊維、ナイロン繊維、等を挙げることができる。これら繊維材料は、1種類のみが用いられてもよいし2種類以上が適宜組み合わせて用いられてもよい。繊維材料の使用形態は特に限定されないが、代表的には、組物、織物、編物、不織布等で構成された基材として用いることができる。
 繊維材料に含浸される熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂(マトリクス材)で構成されていればよいが、熱硬化性樹脂以外の材料を含有してもよい。熱硬化性樹脂の具体的な種類は特に限定されないが、代表的には、例えば、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネートエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、等が挙げられる。これら熱硬化性樹脂は単独種で用いられてもよいし、複数種が組み合わせられて用いられもよい。また、これら熱硬化性樹脂のより具体的な化学構造も特に限定されず、公知の種々のモノマーが重合されたポリマーであってもよいし、複数のモノマーが重合されたコポリマーであってもよい。また、平均分子量、主鎖および側鎖の構造等についても特に限定されない。
 熱硬化性樹脂組成物は、前記の熱硬化性樹脂に加えて、公知の硬化剤、硬化促進剤、繊維基材以外の補強材または充填材、その他公知の添加剤を含んでいてもよい。これら硬化剤、硬化促進剤等の添加剤の具体的な種類、組成等についても特に限定されず、公知の種類または組成のものを好適に用いることができる。
 本開示においては、複合材料成形物は、前記の通り、プリプレグを積層して硬化することにより製造される。プリプレグは、繊維材料で構成される基材に熱硬化性樹脂組成物を含浸させて半硬化状態としたシート体である。プリプレグの具体的な構成は特に限定されない。また、プリプレグを積層して形成される積層体の具体的な構成も特に限定されない。例えば、プリプレグの形状、プリプレグの積層枚数、プリプレグの積層方向等については、得られる複合材料成形物の形状、用途、種類等に応じて適宜設定することができる。
 [成形型の構成例]
 次に、このようなC型材20Aを製造するために用いられる、本実施の形態1に係る成形型の代表的な一例について、図2~図4を参照して具体的に説明する。図2および図3に示すように、本実施の形態1に係る成形型10Aは、雌型部11、側面蓋型部12、加圧体13A,および端面蓋型部14等を備えており、図2に示すように、雌型部11および加圧体13Aとの間に成形空間15が形成される。成形空間15内には、硬化によってC型材20Aとなる積層体40が保持されている。
 積層体40は、前記の通り、プリプレグを複数枚積層して構成されるものである。成形空間15は、製造対象である複合材料成形物、本実施の形態1では、C型材20Aの形状に対応する空間として成形型10A内に形成される。なお、図2および図3では、成形空間15には積層体40が「充填」されていることになるため、成形空間15に対応する領域を点線で囲んで図示している。また、図2~図4に示す積層体40では、紙面上側の縁部の厚さが先細りとなっているので、本実施の形態1で製造対象となるC型材20Aは、一方のフランジ部22の縁部にリバースカット部23を有する(図1C参照)ものとなっている。
 雌型部11は、図4に示すように、キャビティ11bを有しており、このキャビティ11b内に積層体40および加圧体13Aが配置される。したがって、雌型部11には、加圧体13Aを雄型とするような凹部であるキャビティ11bが設けられている。側面蓋型部12は、雌型部11のキャビティ11b内に積層体40および加圧体13Aが配置された状態で当該キャビティ11bを封止するように、雌型部11に固定される。一般的な雄雌一対の成形型であれば、側面蓋型部12は、雌型部11に対応する「雄型部」であり、その内面に加圧体13Aと同様の凸部が形成されることになる。しかしながら、本開示においては、加圧体13Aは、側面蓋型部12とは別体として構成されているため、側面蓋型部12は、キャビティ11bを実質的に密閉封止する「蓋部」のように機能する。
 雌型部11および側面蓋型部12は、図3に示すように、C型材20Aとなる積層体40の長手方向(軸材方向)に沿って延伸する細長い形状を有している。したがって、雌型部11のみを見れば、細長いキャビティ11bを有する溝状の型として構成されており、側面蓋型部12は、この溝(キャビティ11b)を閉じるような細長い平板状の「蓋部材」として構成されている。それゆえ、雌型部11の細長いキャビティ11b内に、細長い積層体40および細長い加圧体13Aが配置され、これらが配置された後のキャビティ11bの上側面(細長い開口部)が側面蓋型部12で封止される。なお、この状態を説明の便宜上「基本組立状態」と称する。
 また、図3に示すように、基本組立状態にある成形型10Aでは、その両端部が開放されている(図3では一方の端部のみ図示)。そこで、これら両端部は、端面蓋型部14により封止される。なお、端面蓋型部14により両端部が封止された状態を、説明の便宜上「最終組立状態」と称する。したがって、端面蓋型部14も、側面蓋型部12と同様に、雌型部11のキャビティ11b内に積層体40および加圧体13Aが配置された状態で当該キャビティ11bを封止する。
 雌型部11、側面蓋型部12、および端面蓋型部14は、図2~図4に示すように、締結部材16によって互いに固定されるように組み立てられる。したがって、雌型部11、側面蓋型部12、および端面蓋型部14には、締結部材16が挿入される複数の締結孔11a,12a,14aが設けられている。例えば、図2および図4に示すように、雌型部11の端面には締結孔11aが複数設けられ、側面蓋型部12の端面にも締結孔12aが複数設けられている。また、図3に示すように、端面蓋型部14にも締結孔14aが複数設けられている。
 本実施の形態1では、締結部材16としてボルトを用いている。図2または図4に図示される締結孔11a,12aは、基本組立状態にある成形型10A(雌型部11および側面蓋型部12)の端部に端面蓋型部14を固定するためにボルト先端を挿入する孔となる。それゆえ、これら締結孔11a,12aは、ボルト先端の雄型ねじ溝が螺合する雌型ねじ溝が内部に形成される「ねじ溝孔」であればよい。また、図3において端面蓋型部14に設けられる締結孔14aは、ボルト頭部が端面蓋型部14の外表面に露出しないように、ボルト頭部を収容できる孔であればよいので、例えば、「座ぐり孔」として形成されればよい。
 なお、図2~図4では、側面蓋型部12の端面に合計3つの締結孔12aが設けられ、雌型部11の端面に合計7つの締結孔11aが設けられている。そのため、基本組立状態にある成形型10Aの端面として見れば、ねじ溝孔が端面の周囲に合計10個設けられていることになる。それゆえ、これらねじ溝孔に対応する座ぐり孔も、端面蓋型部14に合計10個設けられている。図3では、10個のねじ溝孔-座ぐり孔のうち2つについて一点鎖線で対応関係を示している。
 また、図2~図4には図示しないが、側面蓋型部12の外表面にも複数の座ぐり孔が設けられ、これに対応するねじ溝孔が雌型部11の側面にも同数設けられている。それゆえ、図2では、雌型部11に側面蓋型部12を固定する締結部材16を点線で図示している。さらに、図示しないが、基本組立状態の成形型10Aの端面(雌型部11および側面蓋型部12の端面)、並びに、雌型部11の側面のうち側面蓋型部12が固定される面(キャビティ11bを封止する面)には、位置決めピンを挿入する位置決め孔が形成されてもよい。
 締結部材16によって互いに固定される雌型部11、側面蓋型部12、および端面蓋型部14を「成形型本体」とすれば、加圧体13Aは、成形型本体とは別体として構成される部材である。加圧体13Aは、C型材20A(複合材料成形物)の加圧面に対応する外表面形状を有しており、加熱により熱膨張する。これにより、C型材20Aの加圧面を加圧する。それゆえ、成形型本体の内表面は、C型材20Aの加圧面以外の形状に対応した形状を有している。
 なお、説明の便宜上、加圧体13AにおいてC型材20Aの加圧面を押圧する表面を「加圧成形表面」と称する。この加圧成形表面は、C型材20Aの加圧面の形状に対応した形状を有しており、本実施の形態1では、C型材20Aの加圧面が折曲部の内表面であるので、加圧体13Aの加圧成形表面は、前記の通り、折曲部の内表面に対応する外表面形状を有している。後述する他の実施の形態においても、加圧体の加圧成形表面は複合材料成形物(C型材20A等)の加圧面に対応した形状を有している。また、他の実施の形態においても、前記の通り、成形型本体の内表面は、複合材料成形物の表面のうち加圧体13Aで加圧される加圧面以外の形状に対応した形状を有している。
 本実施の形態1では、雌型部11のキャビティ11bが、加圧面以外の大部分の形状に対応した内表面形状を有している。さらに、図2に示すように、側面蓋型部12も、C型材20Aにおける一方のフランジ部22の縁面(リバースカット部23を有さない平坦な縁面。図2の紙面下側。)に対応する内表面形状を一部含んでいる。加えて、明確に図示しないが、図3から明らかなように、端面蓋型部14も、C型材20Aの平坦な両端部に対応する内表面形状を一部含んでいる。それゆえ、成形型本体は、加圧面以外の形状に対応した内表面形状を含むように構成されていればよい。
 加圧体13Aは、本実施の形態1では、図2~図4に示すように、膨張核部31および圧力分散部32の2つの部材により構成されている。膨張核部31は、熱膨張率が相対的に大きいため、加圧体13Aにおいて熱膨張による加圧の中核(中心又は主体)として機能する。圧力分散部32は、膨張核部31よりも熱膨張率が小さく、膨張核部31から見て加圧面側に位置している。膨張核部31は、その形状等に由来して熱膨張時にはその部位ごとに膨張力が異なり、それゆえ加圧力も異なってくる。圧力分散部32は、熱膨張率が小さく剛性を有しているので、膨張核部31による部位ごとに異なる加圧力を分散して均等化することができる。そのため、圧力分散部32は、膨張核部31の熱膨張による加圧力を加圧面全体に対して良好に分散することができ、加圧体13A全体として見たときには、加圧面による加圧力を全体的に均等なものとすることができる。
 加圧体13Aを構成する膨張核部31および圧力分散部32の具体的な構成は特に限定されない。また、膨張核部31および圧力分散部32のそれぞれの具体的な熱膨張率、並びに、これら熱膨張率の差等についても特に限定されない。本実施の形態1では、膨張核部31として、例えば、シリコンゴム、フッ素ゴム(例えば、フッ化ビニリデン系ゴム(FKM),テトラフルオロエチレン-プロピレン系ゴム(FEPM),テトラフルオロエチレン-パーフルオロビニルエーテル系(FFKM)等)製のものを用いており、圧力分散部32としては、ポリテトラフルオロエチレン(PTFE)製のものが用いているが、もちろんこれらに限定されない。
 また、本実施の形態1では、特に図4に示すように、圧力分散部32は、加圧体13Aにおいて、積層体40において加圧面となる表面(図中ブロック矢印Mで示す)に当接する部位のみに位置しているが、もちろんこれに限定されない。例えば、膨張核部31の加圧力を調整する観点から、膨張核部31の外表面全体を覆うように圧力分散部32が設けられてもよい。言い換えれば、圧力分散部32の内部に膨張核部31が収容されて加圧体13Aが構成されてもよい。また、複合材料成形物の具体的な構造等によっては、圧力分散部32の厚さ(膨張核部31から加圧面に向かう断面の厚さ)が異なってもよいし、圧力分散部32が部分的に存在してもよい。
 成形型本体である雌型部11、側面蓋型部12、および端面蓋型部14を締結部材16により組み立てる際には、前記の通り、キャビティ11b内に積層体40および加圧体13Aを配置する。積層体40は、キャビティ11bの内表面上に載置され、加圧体13Aは、積層体40の上に載置される。このように、成形型本体のキャビティ11b内に加圧体13Aを配置することで、キャビティ11bの内表面と加圧体13Aの外表面との間で成形空間15(図2および図3において点線で囲んだ領域)が構成される。
 積層体40は、この成形空間15内に充填されるように収容されている。また、雌型部11のキャビティ11bは、側面蓋型部12および端面蓋型部14により封止されるので、成形空間15も実質的に密閉封止させることになる。この状態で成形型10Aを加熱すると、加圧体13Aが熱膨張する。成形空間15が実質的に密閉封止されているので、熱膨張による加圧力は、実質的に外部に漏出することがなく、積層体40の加圧面を加圧する。これにより、積層体40は、加圧状態で熱硬化するため、積層体40を所定形状のC型材20A(複合材料成形物)に成形することができる。
 しかも、成形型10Aの内部では、加熱により熱硬化性樹脂(組成物)が軟化して成形空間15全体に行き渡ることになる。これにより、加圧体13Aの熱膨張による加圧力とともに、軟化した熱硬化性樹脂による静水圧加圧も生じる。そのため、得られるC型材20Aにおいては、成形空間15全体において良好な加圧力が生じるために、加圧不足に伴うポロシティなどの欠陥の発生を抑制することができる。
 なお、本開示においては、成形型10Aは、当該成形型10Aの内部すなわち成形空間15内の気体等を外部に逃がすための構成(例えばベント部等)を備えていてもよい。それゆえ、成形型10Aにおいては、成形空間15を完全に密閉封止する構成に限定されず、前記の通り実質的に密閉封止されている構成であればよい。また、本開示においては、成形型10Aの成形型本体を構成するそれぞれの型部(雌型部11、側面蓋型部12、および端面蓋型部14等)の合わせ面には、軟化した熱硬化性樹脂が外部に漏れだすことを防止または抑制するためのシール材等を設けてもよい。
 [複合材料成形物の製造方法]
 次に、本開示に係る複合材料成形物の製造方法について、前記構成の成形型10Aを用いた場合を例に挙げて、図5A,図5Bおよび図6A,図6Bを参照して具体的に説明する。
 図5Aに示す工程図は、図2~図4に例示する成形型10Aを用いて複合材料成形物(C型材20A)を製造する際の代表的な工程を示している。これに対して、図5Bに示す工程図は、従来の一般的な成形型(従来成形型)を用いて一般的な製造方法で複合材料成形物を製造する際の代表的な工程を示している。複合材料成形物の種類、形状、用途等の諸条件によって実施される工程は異なるが、本実施の形態1では、複合材料成形物が航空機用部品である場合の製造方法を例示する。
 複合材料製の航空機用部品を従来の一般的な製造方法で製造する場合、まず、プリプレグを積層して積層体40を準備し(工程P11)、この積層体40を従来成形型に配置する(工程P12)。その後、耐熱フィルムおよびシール材等を用いて従来成形型をバギング処理し(工程P13)、オートクレーブする(工程P14)。オートクレーブにより従来成形型(および積層体40)が加圧および加熱されるため、積層体40は所定形状に硬化し、硬化物すなわち複合材料成形物となる。
 オートクレーブが終了すれば、バギングされた従来成形型を取り出して、この従来成形型をデバッグ処理し(工程P15)、その後に従来成形型から硬化物(複合材料成形物)を脱型する(工程P16)。ここで、オートクレーブでの熱硬化では、マトリクス材(熱硬化性樹脂)が流れ出して硬化した余剰部分が周囲に発生する。そのため、この余剰部分を除去するために硬化物をトリム処理する(工程P17)。
 トリム処理の後に、硬化物を仕上げ処理し(工程P18)、硬化物を非破壊検査(Non Destructive Inspection:NDI)する(工程P19)。NDIでは、硬化物の品質に影響を与える(またはその可能性のある)欠陥、例えば、層間剥離、空隙(ボイド)、ポロシティ等の有無について検査する。さらにNDIの後に、トリム処理によってトリム端に露出した繊維からの吸湿を防止するために、硬化物をエッジシール処理する(工程P20)。
 これに対して、本実施の形態1に係る製造方法では、従来と同様に、プリプレグを積層して積層体40を準備し(工程P01)、この積層体40を前述した成形型10Aに配置する(工程P02)。すなわち、雌型部11のキャビティ11bの内表面に積層体40を配置し、この積層体40に対して加圧体13Aを重ねるように配置する。これにより、キャビティ11bの内部に積層体40および加圧体13Aが嵌合するように配置されるので、キャビティ11bを封止するように側面蓋型部12および端面蓋型部14を雌型部11に締結部材16で固定する。
 このようにして組み立てられた成形型10Aでは、キャビティ11b内に積層体40と加圧体13Aとが配置される。それゆえ、キャビティ11bの内表面と加圧体13Aの外表面との間で構成される成形空間15内に積層体40が充填するように収容される。この状態で、成形型10Aを例えばオーブンで加熱する(工程P03)。前記の通り、キャビティ11bは実質的に密閉封止されているので、加圧体13Aの熱膨張による加圧力は積層体40の加圧面に良好に加えられることになる。
 そのため、本開示に係る製造方法では、従来の製造方法のように、加熱とともに加圧を行うオートクレーブが必要なくなる。オートクレーブは、オーブン等に比べて相対的に高価であるので、本開示に係る製造方法であれば、製造設備の費用の増加を抑制することができる。また、オートクレーブが不要となれば、バギング処理およびデバッグ処理も必要なくなる。バギング処理およびデバッグ処理は、工数も作業時間も相対的に大きくなるので、これら処理を削減することで、製造方法をより効率化することができる。
 積層体40が硬化して所定形状の硬化物すなわち複合材料成形物が得られれば、成形型10Aを分解して硬化物を脱型する(工程P04)。ここで、前記の通り、成形空間15は実質的に密閉封止されているので、得られる硬化物においては、多少のバリが生じるものの、トリム処理が必要となるような余剰部分は実質的に発生しない。そのため、本開示に係る製造方法では、トリム処理も必要なくなる。脱型した硬化物に対しては、従来と同様に、硬化物を仕上げ処理し(工程P05)、硬化物をNDIすればよい(工程P06)。本開示に係る製造方法では、トリム処理が不要であるので、従来の製造方法のようにエッジシール処理も不要となる。
 ここで、本開示に係る製造方法により得られる複合材料成形物と、従来の一般的な製造方法により得られる複合材料成形物との相違について、特にトリム処理に注目して具体的に説明する。
 前記の通り、本開示に係る製造方法では、キャビティ11b内に加圧体13Aを配置した上で当該キャビティ11b(すなわち成形空間15)を実質的に密閉封止する。そのため、成形型10Aを外部から加圧せずに加熱しても、加圧体13Aにより積層体40を良好に加圧することができるだけでなく、前記の通り、複合材料成形物に余剰部分が生じない。
 例えば、C型材20Aを、基材(繊維材料)およびマトリクス材(熱硬化性樹脂)に注目して図6Aに示すようにモデル化する。図6Aは、C型材20Aの横断面をモデル化したモデル断面図である。このモデル断面図から明らかなように、繊維材料で構成される基材41は、本体部21および一対のフランジ部22全体(C型材20Aの横断面全体)に及んでおり、マトリクス材42(熱硬化性樹脂)は、基材41を完全に被覆している。そのため、先端面24では、基材41である繊維材料は露出していない。
 これに対して、従来の製造方法により得られる複合材料成形物についても、基材41およびマトリクス材42に注目して同様にモデル化する。図6Bに示すように、従来C型材120のモデル断面図では、図6Aに示すC型材20Aのモデル断面図と同様に、本体部121および一対のフランジ部122全体(従来C型材120の横断面全体)に及んでおり、マトリクス材42(熱硬化性樹脂)は、基材41を完全に被覆している。ただし、フランジ部122の先端には余剰部分123が生じている。
 この余剰部分123の根本はフランジ部122につながっているので、基材41が存在するが、その大部分には基材41は存在していない。これは、従来C型材120をオートクレーブしたときにマトリクス材42が流出することで余剰部分123が形成されるためである。そこで、図6Bにおいて一点鎖線で示すように、トリム処理によって余剰部分123を切断すると、フランジ部122の先端面124(トリム端)では基材41が露出する。それゆえ、露出した基材41からの吸湿を防止するために、図6Bに示すように、先端面124にエッジシール125を施す。
 したがって、本開示に係る複合材料成形物は、従来の複合材料成形物に比べて、余剰部分123が発生しないため、トリム処理する必要がないだけでなく、その端部等において基材41(繊維材料)が露出しておらず、マトリクス材42で基材41が覆われた状態にあるということができる。
 本実施の形態1では、前記の通り、複合材料成形物としてC型材20Aを例示しているが、本開示において製造対象となる複合材料成形物は、もちろんC型材20Aに限定されない。本開示に係る複合材料成形物は、その横断面が中空であるか、もしくは、折曲部または湾曲部を含む断面形状を有するものであればよい。中空、折曲部、または湾曲部が横断面に存在すると、積層体40を熱硬化する際には、中空側、折曲部の内側、または湾曲部の内側は加圧面とすることができる。そのため、本開示においては、成形型10Aにおいて、この加圧面に面するようにキャビティ11b内で加圧体13Aを配置すればよい。
 本開示に係る複合材料成形物としては、さまざまな形状のものが挙げられ、特に限定されないが、航空機用部品としては、例えば、図7Aに示すC型材20A(図1A~図1C参照)のように、材軸方向に延伸し所定の断面形状を有する型材を挙げることができる。このような型材は、例えば、航空機のストリンガーまたはフレーム等のスティフナとして用いられる。型材の具体的な形状は特に限定されず、C型材20A以外に、例えば、図7Bに示すJ型材20B、図7Cに示すH型材20C、図7Dに示すL型材20D、図示しないT型材、あるいは、図示しないハット型(またはΩ型)材等が挙げられる。
 これら型材は、図7A~図7Dに示すように、いずれも板状の本体部21(ウェブ)と、この本体部21の縁部の少なくとも一方に設けられるフランジ部22と、を有する構成であり、その断面は、本体部21から少なくとも1つのフランジ部22が折れ曲がった形状となっている。図7Aに示すC型材20A(図1A~図1Cも参照)では、前記の通り、一対のフランジ部22と本体部21とで折曲部が構成されるので、これらフランジ部22の内表面と本体部21の内表面とが加圧面となる。
 図7Bに示すJ型材20Bは、3つのフランジ部22を有しているが、このうち同一方向に位置する一対のフランジ部22と本体部21とで折曲部が構成される。この折曲部は実質的にC型材20Aの折曲部と同様であるので、便宜上「C型折曲部」と称する。図7Cに示すH型材20Cは、一対のフランジ部22を2つ有しており、フランジ部22の合計は4つになる。したがって、H型材20Cは、C型折曲部を2つ有していることになる。これらJ型材20BおよびH型材20Cでは、いずれも一対のフランジ部22の内表面と本体部21の内表面とが加圧面となる。
 また、図7Dに示すように、フランジ部22を1つのみ有するL型材20Dにおいても、本体部21および1つのフランジ部22により折曲部が構成されていると見なすことができる。それゆえ、本体部21においてフランジ部22側の表面を内表面とし、フランジ部22において本体部21側の表面を内表面とすれば、L型材20Dにおいても、本体部21およびフランジ部22の内表面が加圧面となる。なお、L型材20Dの折曲部を便宜上「L型折曲部」と称する。
 ここで、図7Bに示すJ型材20Bは、C型折曲部とL型折曲部とを有していることになるが、本実施の形態1では、C型折曲部のみに着目して加圧面を設定している。これは、加圧体の熱膨張による加圧だけでなく、前述したように、熱硬化性樹脂(組成物)が軟化して成形空間15全体に行き渡ることによる静水圧加圧が生じるためである。したがって、後述する実施の形態3で説明するように、C型折曲部を加圧面として加圧体を配置するだけでも、L型折曲部を構成する単独のフランジ部22を加圧することができる。もちろんJ型材20Bにおいて、L型折曲部の内表面を加圧面として加圧体を配置してもよい。
 さらに図示しないが、図7Dに示すL型材20Dのように本体部21からフランジ部22が明確に折れ曲っていなくても、本体部21の横断面が湾曲しているような複合材料成形物も考えられる。このような複合材料成形物では、湾曲部の内表面を加圧面とすればよい。
 このように、図7A~図7Dにおいてブロック矢印Mで示す加圧面は、複合材料成形物の断面形状によらず、折曲部を構成する本体部21およびフランジ部22の内表面である。加圧体13Aは、これら加圧面に対応する外表面を有するように形成され、成形型10Aのキャビティ11b内で、加圧面に当接するように配置されればよい。
 加えて、複合材料成形物は、図7Eに示す中空材20Eまたは図7Fに示す中空材20Fであってもよい。中空材20Eは、断面形状が略矩形状で内部が中空部25であり、中空材20Fは、断面形状が略楕円状で内部が中空部25である。ブロック矢印Mで示す加圧面は、中空部25の内表面であり、加圧体13Aは、この中空部25に対応する形状に形成されればよい。
 また、中空材20E,20Fは、型材のように材軸方向に延伸し所定の断面形状を有するものであってもよいが、部分的に中空部25を有する構成であってもよい。例えば、ヘリコプターのブレードには、その基端部にローターハブを挿入して固定するタイプのものが存在する。このタイプのブレードでは、その基端部が中空部25を有することになる。それゆえ、本開示に係る成形型10Aまたは本開示に係る製造方法は、このようなヘリコプターのブレードを複合材料成形物として製造する場合にも好適に適用することができる。
 [変形例]
 本実施の形態1では、加圧体13Aは、複合材料成形物の加圧面の形状に対応する外表面形状(加圧成形表面)を有し、熱膨張するものであれば特に限定されない。前述した図2~図4に示す構成では、加圧体13Aは、熱膨張率の異なる複数の部材で構成されており、熱膨張の主体となる膨張核部31に対して圧力分散部32は熱膨張率が小さくなっているが、本開示はこれに限定されない。例えば、図8に示す成形型10Bは、基本的には図2~図4に示す成形型10Aと同じ構成であるが、加圧体13Bは、単一の熱膨張部材として構成されている。
 複合材料成形物の構造、熱硬化性樹脂組成物の組成、熱硬化性樹脂(組成物)の硬化条件等の諸条件によっては、加圧面に対する加圧力を調整する必要性が生じる場合がある。例えば、加圧力をより良好に分散させたい場合には、図2~図4に示すように、膨張核部31および圧力分散部32により構成される加圧体13Aを用いればよいが、十分な加圧力を加圧面に加えることができるのであれば、図8に示す加圧体13Bのように単一の部材を用いることができる。
 また、加圧面をさらに良好に分散させたい場合には、加圧体の外表面、もしくは、加圧体を構成する複数の部材のいずれかの表面には、熱膨張による加圧力を調整する凹凸構造が設けられてもよい。具体的には、例えば、図9に示す成形型10Cは、基本的には図2~図4に示す成形型10Aと同様に、膨張核部33および圧力分散部32により構成されており、膨張核部33の外表面全体には複数の凸部34が形成されている。言い換えれば、膨張核部33の加圧面にはディンプル加工がなされている。
 膨張核部33に複数の凸部34が形成されることで、膨張核部33の圧力分散部32に対する加圧力を良好に調整することができる。それゆえ、膨張核部33の加圧力が圧力分散部32に対して良好に伝達され、圧力分散部32を介して積層体40の加圧面を良好に加圧することができる。なお、加圧力を調整する凹凸構造は、複数の凸部34に限定されない。例えば、複数の凸部34ではなく複数の凹部が形成されるようなディンプル加工であってもよい。
 また、複数の凸部34の加工面から見た形状は円形状であればよいが、凸部34の形状はこれに限定されず、楕円形、三角形、矩形、多角形等であってもよい。さらに凹凸構造は、凸部34または凹部以外のその他の幾何学的な形状の凹凸であってもよい。これら凹凸構造は、複数の円形状の凸部34のように1種類のみであってもよいが、複数種類の凹凸構造が混在してもよい。
 また、図9に示す成形型10Cでは、凹凸構造である複数の凸部34は、膨張核部33の外表面全体に形成されているが、凹凸構造の形成位置はこれに限定されない。例えば、凹凸構造は、膨張核部33の外表面および圧力分散部32の外表面の双方に形成されてもよいし、圧力分散部32の外表面のみに形成されてもよいし、圧力分散部32の内表面(膨張核部33の外表面に当接する面)に形成されてもよい、あるいは、外表面または内表面の全面ではなく一部に凹凸構造が形成されてもよい。
 加圧力を調整する構成は、加圧体または加圧体を構成する部材の外表面に凹凸構造を設ける構成に限定されず、加圧体または加圧体を構成する部材の内部に、中空箱部を設ける構成であってもよい。具体的には、例えば、図10に示す成形型10Dは、基本的には図9に示す成形型10Cと同様の構成であり、加圧体13Dは、複数の凸部34が外表面に形成された膨張核部33と、圧力分散部32とを備えているが、さらに膨張核部33の内部には、膨張核部33の熱膨張に伴って内側に変形可能な中空箱部35が位置している。したがって、加圧体13Dは、膨張核部33、圧力分散部32、および中空箱部35を備えている。
 中空箱部35は、図10において破線で模式的に示すように、膨張核部33の熱膨張により内側に変形するように押しつぶされるが、熱硬化が終了し、熱膨張が収束すれば元の形状に戻るように構成されていればよい。したがって、中空箱部35の具体的な構成は特に限定されず、膨張核部33(もしくは加圧体13D)の熱膨張により生じる加圧力を受けて押しつぶされる箱体であればよい。
 中空箱部35の材質は特に限定されず、熱硬化時の温度に耐え得る耐熱性を有する材質であればよい。代表的にはアルミニウムまたはその合金等の金属を挙げることができるが、耐熱性樹脂製であってもよいし複合材料製であってもよい。中空箱部35の加圧力に対する形状保持性(耐圧性)についても特に限定されず、熱硬化時に発生する加圧力が所定の範囲を超えたときに押しつぶれるように、板厚を調整したり内部構造を設計したりすればよい。
 なお、図10に示す構成では、成形型10Dが備える加圧体13Dは、膨張核部33の外表面に複数の凸部34が設けられた上で、膨張核部33の内部に中空箱部35が設けられているが、本開示はこのような構成に限定されない。例えば、図2に示す成形型10Aおよびこれが備える加圧体13Aに中空箱部35を適用する構成、すなわち、外表面に複数の凸部34等の凹凸構造が設けられていない膨張核部31の内部に中空箱部35が設けられる構成であってもよい。あるいは、図8に示す成形型10Bおよびこれが備える加圧体13Bに中空箱部35を適用する構成、すなわち、単一の熱膨張部材で構成される加圧体13Bの内部に中空箱部35が設けられる構成であってもよい。
 このように、本開示に係る成形型10A~10Dにおいては、マッチドダイである成形型本体(雌型部11、側面蓋型部12、および端面蓋型部14)を加熱してキャビティ11b内に配置される加圧体13A~13Dを加熱する。これにより、加圧体13A~13Dが膨張して成形空間15内の積層体40の加圧面を加圧する。これにより、中空、折曲部または湾曲部を有する複合材料成形物において、その外表面だけでなく内表面(加圧面)も所望形状に成形することができる。
 また、成形型本体内部で加圧体13A~13Dが熱膨張して積層体40を加圧するので、オートクレーブのように加圧を伴った加熱が必要なくなり、オーブン等の一般的な加熱装置のみで複合材料成形物を所定形状に成形することができる。しかも、積層体40を収容した状態でキャビティ11bを封止できるので、加熱前の成形型10A~10Dをバギングしたり加熱後の成形型10A~10Dをデバッグしたりする必要がなくなる。その結果、複合材料成形物の製造工程を簡素化することができる。
 さらに、積層体40は、キャビティ11b内で閉鎖された成形空間15内に収容されて、加圧体13A~13Dの熱膨張により全体的に加圧されながら熱硬化される。それゆえ、得られる複合材料成形物は、その端部において熱硬化性樹脂組成物の硬化物がキャビティ11bの外部にほとんど漏出することがない。このとき、加熱によって熱硬化性樹脂(組成物)が軟化して成形空間15全体に行き渡ることになる。これにより、加圧体13A~13Dの熱膨張による加圧力とともに、軟化した熱硬化性樹脂による静水圧加圧も生じる。そのため、成形空間15全体においてより良好な加圧力が生じるため、得られる複合材料成形物において加圧不足に伴うポロシティ等の欠陥の発生を有効に抑制することができる。
 また、熱硬化性樹脂(組成物)が成形空間15からほとんど漏出しないので、得られる複合材料成形物においては、その端部まで良好な成形が可能となる。それゆえ、当該複合材料成形物に余剰部分123を形成する必要がない。そのため、得られる複合材料成形物においてトリム作業が不要になるとともに、トリム作業しなくてよいことから、トリム端に発生する繊維(基材41)の露出を回避することができる。それゆえ、例えば、複合材料成形物の端部に吸湿防止のためにエッジシールを施す必要がなくなる。その結果、製造工程をより簡素化することができる。
 加えて、加圧体13A~13Dを用いて積層体40を加圧するため、マッチドダイでありながら成形型10A~10Dをプレスする必要がない。しかも、成形型10A~10Dおよび加圧体13A~13Dのサイズまたは形状を調整することで、さまざまなサイズまたは形状の複合材料成形物を製造することができるとともに、加圧体13A~13Dから積層体40の加圧面に対して全方向的に良好な圧力を加えることができるので、複雑な形状の成形も可能となる。
 (実施の形態2)
 前記実施の形態1に係る成形型10A~10Dは、成形型本体を組み立てた後に、例えばオーブン等の外部加熱装置を利用して積層体40を熱硬化していた。これに対して、本実施の形態2では、成形型本体が、当該成形型本体を加熱する加熱部を備えている構成を有している。このような成形型について図11を参照して具体的に説明する。
 図11に示すように、本実施の形態2に係る成形型10Eは、前記実施の形態1に係る成形型10A~10Dのうち成形型10Cと同様の構成を有している。すなわち、成形型10Eは、成形型本体である雌型部11、側面蓋型部12、および端面蓋型部14を備えているとともに、加圧体13Cを備えており、加圧体13Cは、複数の凸部34を有する膨張核部33と圧力分散部32とで構成されている。さらに、雌型部11は、その内部に複数の加熱部17を備えている。
 図11に示す構成において、加熱部17は、雌型部11の4側面のうち側面蓋型部12が固定されている面(キャビティ11bが開口している面)を除く3面にそれぞれ設けられている。なお、図11では、加熱部17は端面に露出していないので破線で図示している。加熱部17の具体的な構成は限定されず、複合材料成形物の成形分野または他の樹脂材料の成形分野において、公知の成形型加熱用ヒータを用いることができる。この成形型加熱用ヒータは、図11に示すように成形型10Eに内蔵されるタイプであってもよいし、成形型10Eの外部に取り付けるタイプであってもよい。
 雌型部11、側面蓋型部12、および端面蓋型部14は締結部材16により組み立てられる。この組立てに際しては、まず、雌型部11のキャビティ11b内に積層体40を配置し、加圧体13Cを配置し、その後にキャビティ11bを封止するように、雌型部11に対して締結部材16により側面蓋型部12を固定する(基本組立状態)。その後、基本組立状態の成形型10Eの両端部を封止するように、締結部材16により端面蓋型部14を固定する(最終組立状態)。
 その後、本実施の形態2では、前記実施の形態1のようにオーブンに成形型10Eを入れて加熱するのではなく、加熱部17を動作させて成形型10Eそのものを加熱する。これにより、製造設備としてオーブンを導入しなくても、C型材20A等の複合材料成形物を製造することができる。
 このように、本実施の形態2では、マッチドダイである成形型本体と加圧体13Cとを備える成形型10Eを用いており、成形型本体には加熱部17が設けられている。そして、積層体40を、キャビティ11b内に配置してから加圧体13Cを配置して、キャビティ11bを封止するように成形型本体を組み立て、外部加熱装置を用いることなく加熱部17により成形型10Eを加熱する。このように外部から加圧することなく成形型10Eそのものを加熱することにより、加圧体13Cが熱膨張して積層体40を良好に加圧することができるので、オートクレーブまたはオーブン等の製造設備を導入しなくても複合材料成形物を製造することができる。
 (実施の形態3)
 前記実施の形態1または2で説明した成形型10A~10Eは、いずれも複合材料成形物としてC型材20Aを製造する構成であったが、本実施の形態3では、他の複合材料成形物として例えばJ型材20B(図7B参照)を挙げ、このJ型材20Bを製造する構成の成形型について、図12および図13を参照して具体的に説明する。
 図12に示すように、本実施の形態3に係る成形型50は、雌型部51、側面蓋型部52、図示しない端面蓋型部、カールプレート54、加圧体53を備えている。これらのうち、雌型部51、側面蓋型部52、端面蓋型部、およびカールプレート54が成形型本体である。加圧体53は、前記実施の形態1の変形例または前記実施の形態2で例示したものと同様に、複数の凸部38が表面に形成された膨張核部36と、圧力分散部37とで構成されている。また、成形型50の成形空間55(図12における点線で囲んだ領域)に収容される積層体43は、加熱硬化によりJ型材20B(図7B参照)となる。
 側面蓋型部52および端面蓋型部は、実施の形態1または2における側面蓋型部12および端面蓋型部14と同様に、雌型部51のキャビティを封止する蓋型部であるが、カールプレート54も雌型部51のキャビティを封止する蓋型部として機能する。カールプレート54の具体的な構成は特に限定されず、複合材料成形物の製造分野で公知のカールプレート(例えばオートクレーブ時に使用されるもの)を好適に用いることができる。
 雌型部51の端面には、実施の形態1または2における雌型部11と同様に、複数の締結孔51aが設けられている。同様に、側面蓋型部52の端面にも、実施の形態1または2における側面蓋型部12と同様に、複数の締結孔52aが設けられている。また図示しないが、端面蓋型部にも複数の締結孔が設けられている。成形型本体である、雌型部51、側面蓋型部52、端面蓋型部、カールプレート54は、実施の形態1または2と同様に、締結部材56(例えばボルト)等によって互いに固定されることにより組み立てられる。
 図13に示すように、雌型部51は、実施の形態1または2における雌型部11と同様に、キャビティ51bが設けられている。キャビティ51bは、雌型部11のキャビティ11bと同様に、積層体43および加圧体53を内部に収容可能としており、J型材20Bの加圧面(図7B参照)以外の形状に対応した内表面形状を含んでいる。図12に示すように、成形型50が組み立てられた状態では、キャビティ51bの内表面と加圧体53の外表面との間で構成される成形空間55内に積層体43が収容される。
 ここで、本実施の形態3では、図13に示すように、キャビティ51bは、加圧体領域51c、第一成形空間領域51d、および第二成形空間領域51eに区画することができる。加圧体領域51cは、キャビティ51bのうち加圧体53が配置される領域であって、キャビティ51bの大部分を占める。第一成形空間領域51dおよび第二成形空間領域51eは、成形空間55に対応する領域であり、積層体43が配置される領域である。
 このうち第一成形空間領域51dは、加圧体領域51cを囲むように隣接した領域である。言い換えれば、加圧体領域51cに配置される加圧体53は、第一成形空間領域51dに配置される積層体43のうち加圧面に当接することになる。したがって、本実施の形態3では、加圧体53は、J型材20B(積層体43)の加圧面に対応する加圧成形表面を有していることになる。
 積層体43を熱硬化して得られるJ型材20Bは、本体部21と3つのフランジ部22を有している(図7B参照)。このうち2つのフランジ部22は同一方向に位置し、残りの1つは、2つのフランジ部22の反対方向に位置する。説明の便宜上、同一方向に位置する一対のフランジ部22を「第一および第二フランジ部22」とし、反対方向に位置するフランジ部22を「第三フランジ部22」とすれば、積層体43の加圧面は、J型材20Bにおける本体部21並びに第一および第二フランジ部22の間に対応する。第二成形空間領域51eは、第一成形空間領域51dのみに隣接している。この第二成形空間領域51eには、積層体43のうち、J型材20Bにおける第三フランジ部22に対応する部位が収容される。
 図13に示すように、雌型部51において、加圧体53が配置される側面を第一側面(図13において紙面左側面)とし、第一側面に対向する側面を第二側面(図13において紙面右側面)とし、第一側面および第二側面の間に存在する一対の側面を、それぞれ第三側面(紙面上側面)および第四側面(紙面下側面)としたときに、キャビティ51bが位置する側面は、第一側面および第三側面となる。第一側面には、キャビティ51bを封止するように側面蓋型部52が固定され、第三側面には、キャビティ51bを封止するようにカールプレート54が固定される。
 ここで、第一側面には、キャビティ51bのうち加圧体領域51c(およびフランジ部22の先端に対応する第一成形空間領域51dの一部)が位置しているが、第三側面は、キャビティ51bのうち第一成形空間領域51dおよび第二成形空間領域51eが位置している。前記の通り、加圧体領域51cと第一成形空間領域51dとは隣接しており実質的に単一の領域とみなすことができるが、第二成形空間領域51eは、単一の領域から分岐した細長い領域(第三フランジ部22に対応する領域)となる。第二成形空間領域51eは、雌型部51およびカールプレート54の間に位置する領域であり、加圧体53は配置されない。
 本実施の形態3では、成形型50を加熱することにより加圧体53が膨張し、積層体43の加圧面を加圧する。このとき、J型材20Bのうち本体部21並びに第一および第二フランジ部22に対応する部位には、加圧面から直接加圧されるが、第三フランジ部22に対応する部位(第二成形空間領域51e)には、加圧体53は当接しておらず、雌型部51とカールプレート54とで挟持されているだけである。しかしながら、加圧体53からの加圧力に加えて、前述したように、熱硬化性樹脂(組成物)が軟化して成形空間15全体に行き渡ることによる静水圧加圧が可能によって、加圧体53が位置しない第二成形空間領域51eにおいても十分に積層体43が加圧される。
 このように、本開示においては、キャビティ51bは、加圧体領域51cおよび第一成形空間領域51dのように、加圧体53および積層体43を内部に収容する領域を有するとともに、第二成形空間領域51eのように、加圧体53を内部に収容せず積層体43のみを収容する領域も含んでいてもよい。キャビティ51bが、分断されない1つの領域となっていれば、積層体43の加圧面に加えられた加圧力は積層体43全体に及び、積層体43を良好に加圧しながら熱硬化することができる。
 なお、成形型50において、成形型本体(雌型部51、側面蓋型部52、図示しない端面蓋型部、カールプレート54)、加圧体53の具体的構成は、実質的に前記実施の形態1または2と同様であるため、その詳細な説明は省略する。同様に、成形型本体の組立て方法(キャビティ51b内への積層体43および加圧体53の配置を含む)、成形型50を用いた複合材料成形物の製造方法等についても、前記実施の形態1と同様であるため、その詳細な説明は省略する。さらに、成形型50においては、前記実施の形態2と同様に、雌型部51等に加熱部17が設けられてもよい。
 (実施の形態4)
 前記実施の形態1~3で説明した成形型10A~10Fまたは成形型50は、いずれも複合材料成形物の横断面において、中空側もしくは折曲部または湾曲部の内側となる表面を加圧面としたが、本開示はこれに限定されず、折曲部または湾曲部の外側となる表面を加圧面とすることができる。本実施の形態4では、このような成形型について図14~図16を参照して具体的に説明する。
 図14に示すように、本実施の形態4に係る成形型60Aは、第一型部61、第二型部62、加圧体63A、ベースプレート64等を備えており、第一型部61および第二型部62の間に成形空間65が形成される。成形空間65内には積層体40が保持されており、この積層体40は、硬化することによって前記実施の形態1または2で説明したC型材20Aとなる。なお、図14では、成形空間65に対応する領域を、図2、図3、図8~図11と同様に点線で囲んで図示している。
 図14および図15に示すように、第二型部62には第一型部61が嵌合する。そして、この嵌合状態では、図15に示すように、第一型部61と第二型部62との間にキャビティ62bが形成される。それゆえ、第一型部61は「雄型部」として機能し、第二型部62は「雌型部」として機能する。また、図15に示すように、第二型部62は、第一型部61が嵌合可能な凹部空間62cを有している。この凹部空間62c内には、加圧体63A、積層体40および第一型部61が配置されるとともに、ベースプレート64により閉止される。
 ベースプレート64は、前記実施の形態1~3で説明した成形型10A~10Fまたは成形型50における側面蓋型部12または側面蓋型部52と同様に、キャビティ62bを実質的に密閉封止するように第二型部62に固定される。ただし、側面蓋型部12または側面蓋型部52は、それ自体が「雄型部」として機能していたが、本実施の形態4では、ベースプレート64とは別部材として「雄型部」としての第一型部61が存在するので、ベースプレート64は、「雄型部」ではなく成形型60Aの側面を封止する「側面蓋部」として機能する。なお、ベースプレート64は、第一型部61および第二型部62に対して「第三型部」と見なすこともできる。
 また、本実施の形態4に係る成形型60Aにおいても、図示しないが、第一型部61、第二型部62、ベースプレート64等は、前記実施の形態1~3と同様に、C型材20Aとなる積層体40の長手方向(軸材方向)に沿って延伸する細長い形状を有している(図3参照)。
 第一型部61、第二型部62、およびベースプレート64は、前記実施の形態1~3で説明した成形型10A~10Fまたは成形型50と同様に、図14または図15に示すように、締結部材66によって互いに固定されるように組み立てられる。このとき、第二型部62およびベースプレート64の両端部には、図示しない端面蓋型部が固定される。それゆえ、第二型部62、およびベースプレート64には、締結部材66が挿入される複数の締結孔62a,64aが設けられている。締結部材66としては、前記実施の形態1~3と同様にボルトを用いることができるため、締結孔62a,64aも、前記実施の形態1~3と同様にねじ溝孔等として構成されればよい。
 それゆえ、締結部材66によって互いに固定される第二型部62、ベースプレート64、および図示しない端面蓋型部、並びに、第二型部62に嵌合する第一型部61は「成形型本体」となる。そして、加圧体63Aも、前記実施の形態1~3と同様に、成形型本体とは別体として構成される部材である。
 加圧体63Aは、前記実施の形態1における加圧体13A(図2~図4参照)、加圧体13C(図9参照)、または加圧体13D(図10参照)と同様に、膨張核部71および圧力分散部72の2つの部材により構成されている。膨張核部71は、熱膨張率が相対的に大きいため、加圧体63Aにおいて熱膨張による加圧の中核(中心又は主体)として機能する。圧力分散部72は、膨張核部71よりも熱膨張率が小さく、膨張核部71から見て加圧面側に位置しているので、膨張核部71による部位ごとに異なる加圧力を分散して均等化する。これにより加圧体63A全体として見たときには、加圧面による加圧力を全体的に均等なものとすることができる。
 図14に示す例では、積層体40の外側(外表面)が加圧面になり、この積層体40の外表面全体が圧力分散部72により覆われ、さらに圧力分散部72の外側が膨張核部71により覆われている。言い換えれば、第二型部62の内部(凹部空間62c内)では、最も外側で第二型部62の内表面に接するように膨張核部71が位置し、当該膨張核部71の内側に接するように圧力分散部72が位置し、圧力分散部72の内側に接するように積層体40が位置し、積層体40の内側に接するように第一型部61が位置している。
 なお、加圧体63Aを構成する膨張核部71および圧力分散部72の具体的な構成は特に限定されず、前記実施の形態1で説明した膨張核部31、圧力分散部32、あるいは膨張核部33と同様の構成を採用することができる(例えば、膨張核部33と同様に外表面全体に複数の凸部または凹部が形成されてもよい)。また、加圧体63Aは、前記実施の形態1における加圧体13Bのように、膨張核部71に相当する単一の部材のみで構成されてもよいし、膨張核部71および圧力分散部72以外の部材を備えてもよい。
 ここで、図15に示すように、第一型部61の凸側の表面(凸表面)は、キャビティ62bの内表面の一部を形成する。それゆえ、第一型部61は、成形型本体において、積層体40(C型材20A)の加圧面以外の形状に対応した「内表面形状」を有していることになる。なお、第一型部61単独で見れば、凸表面は「外表面」ということもできる。しかしながら、図15に示すように、ベースプレート64により第二型部62の凹部空間62cが封止された状態では、第一型部61は凹部空間62cの内部に配置される。それゆえ、第一型部61の凸表面は、成形型60A全体として見たときに、複合材料成形物の加圧面以外の形状に対応した内表面形状を構成する。
 図15に示すキャビティ62bには、加圧体63Aは配置していないが、図14に示すように、キャビティ62bに加圧体63Aを配置した状態では、キャビティ62bの内表面を構成する第一型部61の凸表面と、加圧体63Aの内表面すなわち加圧成形表面との間に成形空間65(点線で図示)が形成される。それゆえ、積層体40は、第一型部61と加圧体63Aとの間に配置されることになる。
 ここで、例えば、前記実施の形態1に係る成形型10Aでは、図2に示すように、積層体40の折曲部(または湾曲部もしくは中空)の内側に加圧体13Aが配置されていた。それゆえ、積層体40(C型材20A)においては、折曲部(または湾曲部もしくは中空)の内側となる表面が加圧面となっていた(図4および図7Aにおけるブロック矢印M参照)。これに対して、本実施の形態4に係る成形型60Aでは、図14に示すように、積層体40の折曲部の外側に加圧体63Aが配置されている。それゆえ、積層体40(C型材20A)においては、折曲部(または湾曲部もしくは中空)の外側となる表面が加圧面となる(したがって、本実施の形態4では、図7A~図7Fに例示する複合材料成形物において、ブロック矢印Mで指している側の表面とは反対側の表面が加圧面となる)。
 また、前記実施の形態1に係る成形型10Aでは、図2に示すように、積層体40の内表面に当接するため、加圧体13Aの加圧成形表面は、当該加圧体13Aの外表面であった。これに対して、本実施の形態4に係る成形型60Aでは、図14に示すように、積層体40の折曲部の外側に加圧体63Aが当接している。それゆえ、加圧体63Aの加圧成形表面は、当該加圧体63Aの内表面である。
 また、第二型部62の凹部空間62cを基準とすれば、キャビティ62bは、凹部空間62cに第一型部61を嵌合したときに、第一型部61および第二型部62との間に形成される空間であるということができる。また、成形空間65は、キャビティ62b内に加圧体63Aを配置したときに、加圧体63Aと第一型部61の凸表面との間に形成される空間であるということができる。したがって、第二型部62の凹部空間62cには、加圧体63Aの加圧成形表面が第一型部61に対向するように、当該加圧体63Aが配置される。また、積層体40は、キャビティ62bの内表面(第一型部61の凸表面)と加圧体63Aの内表面すなわち加圧成形表面との間で構成される成形空間65内に収容されることになる。
 成形型本体である第一型部61、第二型部62、ベースプレート64、および図示しない端面蓋型部を締結部材66により組み立てる際には、前記の通り、キャビティ62b内に加圧体63Aおよび積層体40を配置する。加圧体63Aは、キャビティ62bの最も奥側(第二型部62の凹部空間62cの「底面」)に、加圧成形表面を露出するように配置される。積層体40は、加圧体63Aの加圧成形表面の上に載置される。そして、積層体40に重ねられるように第一型部61が配置される。この状態では、第一型部61は第二型部62に嵌合している。このように、成形型本体のキャビティ62b内に加圧体63Aを配置することで、キャビティ62bの内表面と加圧体63Aの内表面との間で成形空間65(図14において点線で囲んだ領域)が構成される。
 積層体40は、この成形空間65内に充填されるように収容されている。また、第一型部61および第二型部62により構成されるキャビティ62bは、ベースプレート64および図示しない端面蓋型部により封止されるので、成形空間65も実質的に密閉封止させることになる。この状態で成形型60Aを加熱すると、加圧体63Aが熱膨張する。成形空間65が実質的に密閉封止されているので、熱膨張による加圧力は、実質的に外部に漏出することがなく、積層体40の加圧面(外表面)を加圧する。これにより、積層体40は、加圧状態で熱硬化するため、積層体40を所定形状のC型材20A(複合材料成形物)に成形することができる。
 しかも、成形型60Aの内部では、加熱により熱硬化性樹脂(組成物)が軟化して成形空間65全体に行き渡ることになる。これにより、加圧体63Aの熱膨張による加圧力とともに、軟化した熱硬化性樹脂による静水圧加圧も生じる。そのため、得られるC型材20Aにおいては、成形空間65全体において良好な加圧力が生じるために、加圧不足に伴うポロシティなどの欠陥の発生を抑制することができる。
 また、成形型60Aでは、第一型部61の凸表面が、キャビティ62bにおいて加圧面以外の形状に対応した内表面形状を形成する。それゆえ、複合材料成形物の折曲部または湾曲部の内側に、加圧体63Aではなく成形型本体を配置することができる。成形型本体は一般的には金属製であり、加圧体63Aよりも硬質の材料である。それゆえ、硬質の第一型部61の凸表面にプリプレグを積層して積層体40を形成することができる。加圧体63Aのような軟質の材料よりも硬質の材料の表面にプリプレグを積層する方が、積層作業が相対的に容易である。
 また、従来の一般的な複合材料成形物の製造方法では、折曲部または湾曲部を形成する際には、金属製の基材上に積層する。それゆえ、第一型部61の凸表面にプリプレグを積層して積層体40を形成する積層工程は、実質的に従来の積層工程と同様となる。それゆえ、成形型60Aが加圧体63Aを備える構成であっても、複合材料成形物の製造工程の煩雑化を抑制または回避することができる。
 さらに、硬質の材料で構成される第一型部61は、複合材料成形物の折曲部または湾曲部の内表面に当接することになる。それゆえ、複合材料成形物から第一型部61を取り外すときに、クサビまたはヘラ等の挿入部材を複合材料成形物の内側と第一型部61との間に挿入しても、第一型部61の凸表面が損傷する可能性がほとんどない。言い換えれば、クサビまたはヘラ等の挿入部材を用いて、複合材料成形物の内側から第一型部61を取り外すことができる。それゆえ、脱型作業の煩雑化を抑制または回避することができる。
 ここで、成形型60Aが備える加圧体63Aの具体的な構成は特に限定されない。加圧体63Aは、例えば、前記実施の形態1の変形例で説明した成形型10Bが備える加圧体13Bと同様に、単一の熱膨張部材で構成されるものであればよい。また、図示しないが、加圧体63Aは、前記実施の形態1で説明した成形型10Aのように、膨張核部31および圧力分散部32により構成されてもよい。あるいは、前記実施の形態1の変形例で説明した成形型10Cのように、加圧面にディンプル加工が施されてもよいし、同じく変形例で説明した成形型10Dのように、中空箱部35を備える構成であってもよい。
 あるいは、本実施の形態4における加圧体は、加圧体63Aの膨張核部71のような全体的に均質な固形部材(固体)でなく、中空体であってもよい。例えば、図16に示すように、本実施の形態4における変形例の成形型60Bは、前述した成形型60Aと同様に第一型部61、第二型部62、加圧体63B、およびベースプレート64等を備えており、その基本的な構成も成形型60Aと同様である。それゆえ、加圧体63Bも膨張核部73および圧力分散部74から構成されているが、この膨張核部73は、前述した膨張核部71のように全体的に均質な固体ではなく中空体である。図16では、膨張核部73の内部空間を点線で図示している。
 この膨張核部73の内部空間は、加圧孔部67を介して成形型本体の外部に連通可能となっている。加圧孔部67は、例えば、第二型部62の側面に設けられる加圧弁部67aと、第二型部62を貫通するように形成され、この加圧弁部67aと加圧体63Bの内部空間とを連通する貫通孔67bとから構成される。そして、加圧孔部67から圧縮空気を吹き込んで加圧体63Bを膨張させることにより、当該加圧体63Bの加圧成形表面で積層体40の外表面を加圧することができる。
 このように、膨張核部73が圧縮空気を吹き込む構成であれば、前述した固体状の膨張核部71に比べて膨張による加圧力を調節しやすくなる。そのため、前述した加圧体63Aの圧力分散部72に比べて、圧力分散部74の厚さを相対的に小さく(薄く)することができる。なお、圧力分散部72の具体的な厚さは特に限定されず、諸条件に応じて適宜設定することができる。
 ここで、本実施の形態4に係る成形型60A,60Bのより具体的な構成、並びに、成形型60A,60Bを用いた複合材料成形物の製造方法は、前記実施の形態1~3で説明した成形型10A~10Fまたは成形型50およびこれらを用いた製造方法と同様である。それゆえ、成形型60A,60Bについて、前述した説明以外のより詳細な説明については省略する。言い換えれば、前記実施の形態1~3において、成形型10A~10Fまたは成形型50について説明した種々の構成または方法等については、本実施の形態4に係る成形型60A,60Bに適用可能である。
 このように、本開示に係る複合材料成形物製造用成形型は、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する際に、前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体を熱硬化するために用いられる成形型であって、前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側となる表面を加圧面としたときに、前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、前記積層体および前記加圧体を内部に収容するキャビティが設けられ、当該キャビティには、前記加圧面以外の形状に対応した内表面形状が含まれる成形型本体と、を備え、前記成形型本体は、前記キャビティ内に前記加圧体を配置して、当該キャビティの内表面と当該加圧体の前記加圧成形表面との間で構成される成形空間内に前記積層体を収容した状態で、当該キャビティを封止するよう構成されている。
 前記構成によれば、マッチドダイである成形型本体を加熱してキャビティ内に配置される加圧体を加熱することで、加圧体が膨張して成形空間内の積層体の加圧面を加圧することになる。それゆえ、中空、折曲部または湾曲部を有する複合材料成形物において、その外表面または内表面(中空の場合は内表面)を加圧面として設定し、当該加圧面に加圧体を当接させて加熱することで、加圧面でない表面だけでなく加圧面も所望形状に成形することができる。これにより、横断面に中空部、折曲部または湾曲部を有する複合材料成形物を所望形状に成形することができる。
 また、成形型本体内部で加圧体が熱膨張して積層体を加圧するので、オートクレーブのように加圧を伴った加熱が必要なくなり、オーブン等の一般的な加熱装置のみで複合材料成形物を所定形状に成形することができる。しかも、積層体を収容した状態でキャビティを封止できるので、加熱前の成形型をバギングしたり加熱後の成形型をデバッグしたりする必要がなくなる。その結果、複合材料成形物の製造工程を大幅に簡素化することができる。
 さらに、積層体は、キャビティ内で閉鎖された成形空間内に収容されて、加圧体の熱膨張により全体的に加圧されながら加熱硬化される。それゆえ、得られる複合材料成形物は、その端部において熱硬化性樹脂組成物の硬化物がキャビティの外部にほとんど漏出することがない。このとき、加熱によって熱硬化性樹脂(組成物)が軟化して成形空間全体に行き渡ることになる。これにより、加圧体の熱膨張による加圧力とともに、軟化した熱硬化性樹脂による静水圧加圧も生じる。そのため、成形空間全体においてより良好な加圧力が生じるため、得られる位複合材料成形物においては、加圧不足に伴うポロシティ等の欠陥の発生を有効に抑制することができる。
 また、熱硬化性樹脂(組成物)が成形空間からほとんど漏出しないので、得られる複合材料成形物においては余剰部分がほとんど発生することがない。そのため、得られる複合材料成形物においてトリム作業が不要になるとともに、トリム作業しなくてよいことから、トリム端に発生する繊維の露出を回避することができる。それゆえ、複合材料成形物の端部に吸湿防止のためにエッジシールを施す必要がなくなる。その結果、製造工程をより簡素化することができる。
 加えて、加圧体を用いて積層体を加圧するため、マッチドダイでありながら成形型をプレスする必要がない。しかも、成形型および加圧体のサイズまたは形状を調整することで、さまざまなサイズまたは形状の複合材料成形物を製造することができるとともに、加圧体から積層体の加圧面に対して全方向的に良好な圧力を加えることができるので、複雑な形状の成形も可能となる。
 前記構成の複合材料成形物製造用成形型においては、前記複合材料成形物の前記加圧面は、前記中空側もしくは前記折曲部または前記湾曲部の内側となる表面であり、前記加圧体の前記加圧成形表面は、当該加圧体の外表面であり、前記成形型本体は、前記キャビティ内に前記加圧体を配置した状態では、当該キャビティの内表面と当該加圧体の外表面との間で構成される成形空間内に前記積層体が収容される構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記複合材料成形物の前記加圧面は、前記折曲部または前記湾曲部の外側となる表面であり、前記加圧体の前記加圧成形表面は、当該加圧体の内表面であり、前記成形型本体は、前記キャビティ内に前記加圧体を配置した状態では、当該キャビティの内表面と当該加圧体の内表面との間で構成される成形空間内に前記積層体が収容されている構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記成形型本体は、前記キャビティが設けられる雌型部と、前記雌型部の前記キャビティ内に前記積層体および前記加圧体が配置された状態で当該キャビティを封止する蓋型部と、を備えている構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記成形型本体は、前記内表面形状を有する第一型部と、当該第一型部が嵌合される凹部空間を有する第二型部と、を備えており、前記第一型部および前記第二型部が嵌合することにより、これらの間に前記キャビティが形成され、前記第二型部の前記凹部空間には、前記加圧体の前記加圧成形表面が前記第一型部に対向するように、当該加圧体が配置される構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記複合材料成形物の断面は、板状の本体部と、当該本体部の両縁部から同一方向に折れ曲がった2つのフランジ部と、を有する形状であり、前記加圧体は、2つの前記フランジ部と前記本体部との間となる前記加圧面の形状に対応する外表面形状を有している構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記加圧体は、加熱により熱膨張する膨張核部と、当該膨張核部対して前記複合材料成形物側に設けられ、当該膨張核部による加圧力を前記加圧面全体に対して分散させる圧力分散部とを備えている構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記膨張核部の熱膨張率は、前記圧力分散部の熱膨張率よりも大きい構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記膨張核部は、熱膨張による加圧力を調整する凹凸構造を有する構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記加圧体は、当該加圧体の内部に位置し、当該加圧体の熱膨張に伴って内側に変形可能な中空箱部を備えている構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記成形型本体は、当該成形型本体を加熱する加熱部を備えている構成であってもよい。
 また、前記構成の複合材料成形物製造用成形型においては、前記複合材料成形物が、航空機用部品である構成であってもよい。
 本開示に係る複合材料成形物の製造方法は、熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する方法であって、前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側を加圧面としたときに、前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、前記加圧面以外の形状に対応した内表面形状を含むキャビティが設けられている成形型本体と、を備える成形型を用い、前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体に対して、前記加圧体の前記加圧成形表面を当接させるように、当該積層体および当該加圧体を前記キャビティ内に配置して、当該キャビティを封止するように前記成形型本体を固定し、当該成形型を外部から加圧せずに加熱することにより、前記積層体を硬化させる構成である。
 前記構成の複合材料成形物の製造方法においては、前記複合材料成形物の前記加圧面は、前記中空側もしくは前記折曲部または前記湾曲部の内側となる表面であり、前記加圧体の前記加圧成形表面は、当該加圧体の外表面であり、前記キャビティ内に前記加圧体および前記積層体を配置する際には、当該キャビティの内表面と当該加圧体の外表面との間で構成される成形空間内に当該積層体を収容する構成であってもよい。
 また、前記構成の複合材料成形物の製造方法においては、前記複合材料成形物の前記加圧面は、前記折曲部または前記湾曲部の外側となる表面であり、前記加圧体の前記加圧成形表面は、当該加圧体の内表面であり、前記キャビティ内に前記加圧体および前記積層体を配置する際には、当該キャビティの内表面と当該加圧体の内表面との間で構成される成形空間内に当該積層体を収容する構成であってもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 また、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、複合材料成形物を製造する分野、特に、複合材料製の航空機用部品あるいはその他の輸送機械用部品を製造する分野に広く好適に用いることができる。
10A~10F,50,60A,60B:成形型
11,51:雌型部(成形型本体)
11a,12a,14a,51a,52a,62a,64a:締結孔
11b,51b,62b:キャビティ
12:側面蓋型部(蓋型部、成形型本体)
13A~13D,53,63A,63B:加圧体
14,54:側面蓋型部(蓋型部、成形型本体)
15,55,65:成形空間
16,56,66:締結部材
17:加熱部
20A:C型材(複合材料成形物)
20B:J型材(複合材料成形物)
20C:L型材(複合材料成形物)
20D:H型材(複合材料成形物)
20E,20F:中空材
21:本体部(ウェブ)
22:フランジ部
23:リバースカット部
24:先端面
25:中空部
31,33,71,73:膨張核部
32,72,74:圧力分散部
34:複数の凸部(凹凸構造)
35:中空箱部
40:積層体
41:基材
42:マトリクス材
54:カールプレート
51c:加圧体領域(キャビティの一部)
51d:第一成形空間領域(キャビティの一部)
51e:第二成形空間領域(キャビティの一部)
61:第一型部(成形型本体)
62:第二型部(成形型本体)
64:ベースプレート(側面蓋部)
67:加圧孔部

Claims (15)

  1.  熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する際に、前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体を熱硬化するために用いられる成形型であって、
     前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側となる表面を加圧面としたときに、
     前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、
     前記積層体および前記加圧体を内部に収容するキャビティが設けられ、当該キャビティには、前記加圧面以外の形状に対応した内表面形状が含まれる成形型本体と、
    を備え、
     前記成形型本体は、前記キャビティ内に前記加圧体を配置して、当該キャビティの内表面と当該加圧体の前記加圧成形表面との間で構成される成形空間内に前記積層体を収容した状態で、当該キャビティを封止するよう構成されていることを特徴とする、
    複合材料成形物製造用成形型。
  2.  前記複合材料成形物の前記加圧面は、前記中空側もしくは前記折曲部または前記湾曲部の内側となる表面であり、
     前記加圧体の前記加圧成形表面は、当該加圧体の外表面であり、
     前記成形型本体は、前記キャビティ内に前記加圧体を配置した状態では、当該キャビティの内表面と当該加圧体の外表面との間で構成される成形空間内に前記積層体が収容されることを特徴とする、
    請求項1に記載の複合材料成形物製造用成形型。
  3.  前記複合材料成形物の前記加圧面は、前記折曲部または前記湾曲部の外側となる表面であり、
     前記加圧体の前記加圧成形表面は、当該加圧体の内表面であり、
     前記成形型本体は、前記キャビティ内に前記加圧体を配置した状態では、当該キャビティの内表面と当該加圧体の内表面との間で構成される成形空間内に前記積層体が収容されていることを特徴とする、
    請求項1に記載の複合材料成形物製造用成形型。
  4.  前記成形型本体は、
     前記キャビティが設けられる雌型部と、
     前記雌型部の前記キャビティ内に前記積層体および前記加圧体が配置された状態で当該キャビティを封止する蓋型部と、
    を備えていることを特徴とする、
    請求項1または2に記載の複合材料成形物製造用成形型。
  5.  前記成形型本体は、
     前記内表面形状を有する第一型部と、
     当該第一型部が嵌合される凹部空間を有する第二型部と、を備えており、
     前記第一型部および前記第二型部が嵌合することにより、これらの間に前記キャビティが形成され、
     前記第二型部の前記凹部空間には、前記加圧体の前記加圧成形表面が前記第一型部に対向するように、当該加圧体が配置されることを特徴とする、
    請求項1または3に記載の複合材料成形物製造用成形型。
  6.  前記複合材料成形物の断面は、板状の本体部と、当該本体部の両縁部から同一方向に折れ曲がった2つのフランジ部と、を有する形状であり、
     前記加圧体は、2つの前記フランジ部と前記本体部との間となる前記加圧面の形状に対応する外表面形状を有していることを特徴とする、
    請求項1から5のいずれか1項に記載の複合材料成形物製造用成形型。
  7.  前記加圧体は、加熱により熱膨張する膨張核部と、当該膨張核部対して前記複合材料成形物側に設けられ、当該膨張核部による加圧力を前記加圧面全体に対して分散させる圧力分散部とを備えていることを特徴とする、
    請求項1から6のいずれか1項に記載の複合材料成形物製造用成形型。
  8.  前記膨張核部の熱膨張率は、前記圧力分散部の熱膨張率よりも大きいことを特徴とする、
    請求項7に記載の複合材料成形物製造用成形型。
  9.  前記膨張核部は、熱膨張による加圧力を調整する凹凸構造を有することを特徴とする、
    請求項7または8に記載の複合材料成形物製造用成形型。
  10.  前記加圧体は、当該加圧体の内部に位置し、当該加圧体の熱膨張に伴って内側に変形可能な中空箱部を備えていることを特徴とする、
    請求項1から9のいずれか1項に記載の複合材料成形物製造用成形型。
  11.  前記成形型本体は、当該成形型本体を加熱する加熱部を備えていることを特徴とする、
    請求項1から10のいずれか1項に記載の複合材料成形物製造用成形型。
  12.  前記複合材料成形物が、航空機用部品であることを特徴とする、
    請求項1から11のいずれか1項に記載の複合材料成形物製造用成形型。
  13.  熱硬化性樹脂組成物および繊維材料により少なくとも構成される複合材料製であり、その横断面に中空、折曲部および湾曲部の少なくともいずれかを含む断面形状を有する複合材料成形物を製造する方法であって、
     前記複合材料成形物の横断面において、前記中空側、もしくは、前記折曲部または前記湾曲部における内側または外側を加圧面としたときに、
     前記加圧面の形状に対応する形状の加圧成形表面を有し、熱膨張する加圧体と、前記加圧面以外の形状に対応した内表面形状を含むキャビティが設けられている成形型本体と、を備える成形型を用い、
     前記繊維材料に前記熱硬化性樹脂組成物を含浸させて半硬化させたプリプレグの積層体に対して、前記加圧体の前記加圧成形表面を当接させるように、当該積層体および当該加圧体を前記キャビティ内に配置して、当該キャビティを封止するように前記成形型本体を固定し、
     当該成形型を外部から加圧せずに加熱することにより、前記積層体を硬化させることを特徴とする、
    複合材料成形物の製造方法。
  14.  前記複合材料成形物の前記加圧面は、前記中空側もしくは前記折曲部または前記湾曲部の内側となる表面であり、
     前記加圧体の前記加圧成形表面は、当該加圧体の外表面であり、
     前記キャビティ内に前記加圧体および前記積層体を配置する際には、当該キャビティの内表面と当該加圧体の外表面との間で構成される成形空間内に当該積層体を収容することを特徴とする、
    請求項13に記載の複合材料成形物の製造方法。
  15.  前記複合材料成形物の前記加圧面は、前記折曲部または前記湾曲部の外側となる表面であり、
     前記加圧体の前記加圧成形表面は、当該加圧体の内表面であり、
     前記キャビティ内に前記加圧体および前記積層体を配置する際には、当該キャビティの内表面と当該加圧体の内表面との間で構成される成形空間内に当該積層体を収容することを特徴とする、
    請求項13に記載の複合材料成形物の製造方法。
PCT/JP2018/033055 2017-09-07 2018-09-06 複合材料成形物製造用成形型および複合材料成形物の製造方法 WO2019049935A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019538460A JP6667055B2 (ja) 2017-09-07 2018-09-06 複合材料成形物製造用成形型および複合材料成形物の製造方法
EP18854655.0A EP3587063B1 (en) 2017-09-07 2018-09-06 Mold for manufacturing composite material molded products, and method for manufacturing composite material molded products
KR1020207006133A KR102218633B1 (ko) 2017-09-07 2018-09-06 복합 재료 성형물 제조용 성형형 및 복합 재료 성형물의 제조 방법
US16/809,551 US20200198263A1 (en) 2017-09-07 2020-03-05 Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product
US16/988,725 US20210094247A1 (en) 2017-09-07 2020-08-10 Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product
US17/575,637 US20220134687A1 (en) 2017-09-07 2022-01-14 Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172195 2017-09-07
JP2017-172195 2017-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/809,551 Continuation US20200198263A1 (en) 2017-09-07 2020-03-05 Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product

Publications (1)

Publication Number Publication Date
WO2019049935A1 true WO2019049935A1 (ja) 2019-03-14

Family

ID=65634038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033055 WO2019049935A1 (ja) 2017-09-07 2018-09-06 複合材料成形物製造用成形型および複合材料成形物の製造方法

Country Status (5)

Country Link
US (3) US20200198263A1 (ja)
EP (1) EP3587063B1 (ja)
JP (1) JP6667055B2 (ja)
KR (1) KR102218633B1 (ja)
WO (1) WO2019049935A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988237B2 (en) * 2020-07-31 2024-05-21 Spirit Aerosystems, Inc. System including breakaway fasteners for fabrication of composite parts
IT202000025525A1 (it) * 2020-10-28 2022-04-28 Leonardo Spa Procedimento di fabbricazione di pannello rinforzato con correntini a sezione aperta per applicazione aeronautica
CN112643934A (zh) * 2020-12-26 2021-04-13 上海晋飞碳纤科技股份有限公司 一种深腔超壁厚u型结构复合材料产品的模具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197676A (ja) * 1975-02-25 1976-08-27
JPS57125020A (en) * 1981-01-28 1982-08-04 Mitsubishi Electric Corp Molding of reinforced plastics
JP2005288756A (ja) * 2004-03-31 2005-10-20 Toho Tenax Co Ltd 繊維強化樹脂成形体の製造方法
JP2008018623A (ja) * 2006-07-13 2008-01-31 Toray Ind Inc ラバー成形方法
JP2014012399A (ja) 2012-06-08 2014-01-23 Boeing Co 複合材部品を硬化するための非通気式ブラダシステム
WO2014192601A1 (ja) * 2013-05-31 2014-12-04 東レ株式会社 繊維強化プラスチックの製造方法および製造装置
JP2017121661A (ja) * 2015-08-05 2017-07-13 ザ・ボーイング・カンパニーThe Boeing Company 工具と、工具から関連材料を成形する方法及び装置
WO2018079824A1 (ja) * 2016-10-31 2018-05-03 三菱ケミカル株式会社 繊維強化プラスチック成形体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL87589A0 (en) * 1987-10-15 1989-01-31 Lockheed Corp Integrally stiffened composite structure
US5190773A (en) * 1991-11-18 1993-03-02 United Technologies Corporation Mold for fabricating composite articles having integrally bonded stiffening members
WO1996009159A1 (en) * 1994-09-20 1996-03-28 Viatech, Inc. Method of making internally reinforced composite tubes
JP4243802B2 (ja) 2003-10-07 2009-03-25 東邦テナックス株式会社 ロボットアームの一体成形方法
US7824171B2 (en) * 2005-10-31 2010-11-02 The Boeing Company Corner-consolidating inflatable apparatus and method for manufacturing composite structures
DE102009036584A1 (de) * 2009-08-07 2011-02-17 Gummiwerk Kraiburg Gmbh & Co. Kg Verbundbauteil aus Silikon und Verfahren zu dessen Herstellung
KR101219397B1 (ko) * 2010-08-31 2013-01-11 연세대학교 산학협력단 튜브없이 공기팽창식으로 몰딩하는 복합재 중공구조물 제조방법
CN103180116B (zh) * 2010-11-11 2016-03-09 神灵航空体系股份有限公司 用于用刚性/可延展形状记忆聚合物设备来使复合部件共粘结或共固化的方法和系统
FR2971195B1 (fr) * 2011-02-04 2013-04-26 Latecoere Outillage de moulage pour la realisation d'une piece en materiau composite au moyen d'une preforme souple composee d'une peau et de preformes profilees solidarisees sur la dite peau.
JP6185356B2 (ja) * 2013-10-02 2017-08-23 東邦テナックス株式会社 Frp成形品の製造方法および成形型
CA3033270C (en) * 2016-08-09 2020-12-08 Mitsubishi Heavy Industries, Ltd. Method for producing fiber-reinforced resin molded articles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197676A (ja) * 1975-02-25 1976-08-27
JPS57125020A (en) * 1981-01-28 1982-08-04 Mitsubishi Electric Corp Molding of reinforced plastics
JP2005288756A (ja) * 2004-03-31 2005-10-20 Toho Tenax Co Ltd 繊維強化樹脂成形体の製造方法
JP2008018623A (ja) * 2006-07-13 2008-01-31 Toray Ind Inc ラバー成形方法
JP2014012399A (ja) 2012-06-08 2014-01-23 Boeing Co 複合材部品を硬化するための非通気式ブラダシステム
WO2014192601A1 (ja) * 2013-05-31 2014-12-04 東レ株式会社 繊維強化プラスチックの製造方法および製造装置
JP2017121661A (ja) * 2015-08-05 2017-07-13 ザ・ボーイング・カンパニーThe Boeing Company 工具と、工具から関連材料を成形する方法及び装置
WO2018079824A1 (ja) * 2016-10-31 2018-05-03 三菱ケミカル株式会社 繊維強化プラスチック成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587063A4

Also Published As

Publication number Publication date
KR20200029048A (ko) 2020-03-17
US20210094247A1 (en) 2021-04-01
EP3587063A1 (en) 2020-01-01
US20220134687A1 (en) 2022-05-05
JP6667055B2 (ja) 2020-03-18
KR102218633B1 (ko) 2021-02-22
JPWO2019049935A1 (ja) 2019-11-07
US20200198263A1 (en) 2020-06-25
EP3587063B1 (en) 2022-03-09
EP3587063A4 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
US20220134687A1 (en) Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product
DK176335B1 (da) Fremgangsmåde til fremstilling af vindmöllevinger
US10999052B1 (en) Cauls and methods of using cauls to produce composite articles
JP4342620B2 (ja) ハニカムサンドイッチ構造複合材パネルの成形方法
US8668800B2 (en) Method of manufacturing hollow composite parts with in situ formed internal structures
KR101926945B1 (ko) 섬유 강화 복합 재료 성형품 및 그 제조 방법
KR101198625B1 (ko) 차량용 금속?복합재료 하이브리드 휠의 제조방법
US9623620B2 (en) Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same
US20120175824A1 (en) Method of and Apparatus for Making a Composite Material
JP2009542483A (ja) 複合部品の製造方法
EP2982500B1 (en) Composite structure and method of forming thereof
JP2014504218A5 (ja)
EP2569142B1 (en) Method of making a composite sandwich structure
US20100080980A1 (en) Molding process for core-containing composites and composites formed thereby
WO2013011884A1 (ja) 繊維強化樹脂と軽量化コアとの複合材ならびにそれを製造する方法および装置
KR20150079589A (ko) 두꺼운 열가소성 수지 복합재 구조물을 형성하기 위한 방법 및 장치
US8734703B2 (en) Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
JP2007118598A (ja) プリフォームの製造方法および製造装置
JP2014502223A5 (ja)
US10744724B2 (en) Composite aircraft manufacturing tooling and methods using articulating mandrels
JP6724667B2 (ja) 複合材料の成形方法および複合材料の成形装置
US10906267B2 (en) Composite structure
WO2024048094A1 (ja) 複合材の成形方法及び成形装置
Legrand et al. A study of the feasibility of a monoblock racing motorcycle rim
Juan et al. Design of a Prototype for the In Situ Forming of a Liquid-Infused Preform Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538460

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018854655

Country of ref document: EP

Effective date: 20190925

ENP Entry into the national phase

Ref document number: 20207006133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE