WO2019049740A1 - 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子 - Google Patents

垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子 Download PDF

Info

Publication number
WO2019049740A1
WO2019049740A1 PCT/JP2018/031877 JP2018031877W WO2019049740A1 WO 2019049740 A1 WO2019049740 A1 WO 2019049740A1 JP 2018031877 W JP2018031877 W JP 2018031877W WO 2019049740 A1 WO2019049740 A1 WO 2019049740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
perpendicular magnetization
alloy
iron
Prior art date
Application number
PCT/JP2018/031877
Other languages
English (en)
French (fr)
Inventor
裕章 介川
トーマス シェーク
誠司 三谷
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to EP18852964.8A priority Critical patent/EP3683851B1/en
Priority to JP2019540909A priority patent/JP6873506B2/ja
Priority to US16/640,429 priority patent/US11374168B2/en
Publication of WO2019049740A1 publication Critical patent/WO2019049740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers

Definitions

  • the present invention relates to a precursor structure of a perpendicular magnetization film composed of a laminated film of a ferromagnetic thin film and an oxide thin film, a perpendicular magnetization film structure, and a method of manufacturing the same.
  • the present invention also relates to a perpendicular magnetization type tunnel magnetoresistive junction film using the perpendicular magnetization film structure and a method of manufacturing the same.
  • the present invention relates to a perpendicular magnetization type tunnel magnetoresistive junction device using them.
  • Non-Patent Document 1 L1 0 type iron a very high Ku - platinum (FePt) alloy is shown.
  • a soft magnetic material such as cobalt-iron-boron (CoFeB) (non-patent document 2) or iron (Fe), which does not become perpendicular magnetization in bulk
  • CoFeB cobalt-iron-boron
  • Fe iron
  • ultra-thin film of about nanometer thickness
  • MgO magnesium oxide
  • the latter also serves as an MTJ element structure that can easily obtain a high tunnel magnetoresistance ratio (TMR ratio), and thus is excellent as a method of obtaining a perpendicular magnetization film for MRAM applications.
  • TMR ratio tunnel magnetoresistance ratio
  • Non-patent document 3 a combination of a Co 2 FeAl alloy layer which is one of Co-based Heusler alloys and MgO
  • non-patent document 4 a combination of Fe and MgAl 2 O 4
  • Methods for obtaining interface induced magnetic anisotropy are also known.
  • MTJ elements disclosed in Patent Documents 1 to 4 are known.
  • the present invention utilizes perpendicular magnetization exhibiting high interface-induced magnetic anisotropy by using a combination of Fe and MgAl 2 O 4 as a basic configuration without using a Co-based Heusler alloy. It is an object of the present invention to provide a film precursor structure, a perpendicular magnetization film structure, and a method of manufacturing the same.
  • the present invention also relates to a perpendicular magnetization film structure formed by using a combination of a ferromagnetic alloy mainly composed of Fe and MgAl 2 O 4 , a perpendicular magnetization type tunnel magnetoresistance junction film (vertical MTJ film), and a method of manufacturing the same. Intended to be provided.
  • Another object of the present invention is to provide a perpendicular magnetization type tunnel magnetoresistive junction element (vertical MTJ element) configured based on the vertical MTJ film manufactured by this method.
  • the precursor structure 1 of the perpendicular magnetization film of the present invention is a cubic single crystal having a (001) plane or a cubic or tetragonal oriented film grown with a (001) plane.
  • the base layer (3) composed of a good conductor, located on the substrate 2 and the base layer 3
  • the predetermined metal element is a metal element constituting an oxide of spinel structure, and when the alloy element is oxidized, the predetermined alloy element does not have a spinel structure or a cation site of spinel structure. It becomes an oxide having a regularized structure.
  • the iron-based alloy layer 4 is preferably represented by a Fe 100-x M x layer.
  • M is one or more elements selected from the group of Al, Si, Ga and Ge, and is in the range of 0 ⁇ x ⁇ 40.
  • the iron-based alloy layer 4 is formed into a first perpendicular magnetization layer by oxidizing the precursor structure of the perpendicular magnetization film described above.
  • 7) has a perpendicular magnetization structure in which the laminated structure (5) of the first metal film 51 and the second alloy film 52 is used as the nonmagnetic layer (6), and is provided on the nonmagnetic layer 6 It is characterized in that it has a protective film layer (8) composed of a nonmagnetic layer different from the magnetic layer 6.
  • the nonmagnetic layer 6 is a crystalline Mg 1 -y Al y -O x layer (0 ⁇ y ⁇ 1), (0.8 ⁇ x ⁇ 1. 7).
  • the perpendicular magnetization type tunnel magnetoresistance junction film 11 (vertical MTJ film 11) of the present invention is, for example, a cubic single crystal grown with a (001) plane or a cubic system grown with a (001) plane, as shown in FIG.
  • a first metal film (151) made of a predetermined metal element provided on the perpendicular magnetization layer 18, wherein the first metal film 151 does not contain aluminum;
  • a place provided on the first metal film 151 A second alloy film (152) made of an alloy element of the second invention, wherein the second alloy film 152 is obtained by oxidizing the laminated structure (15) with the second alloy film 152 containing aluminum.
  • a second ferromagnetic layer (16) comprising the ferromagnetic material selected from the group consisting of an alloy of one or more elements selected and an alloy of one or more elements selected from the group of platinum and palladium; And a second perpendicular magnetization layer (20) turned by the second ferromagnetic layer 16.
  • the nonmagnetic layer (19) acts as a tunnel barrier layer (19).
  • the perpendicular magnetization type tunnel magnetoresistive junction element 21 (vertical MTJ element 21) of the present invention is characterized in that the vertical MTJ film 11 is provided with an upper electrode and an interlayer insulating film layer. 22) Base layer (23), first perpendicular magnetization layer (24), nonmagnetic layer (25), second perpendicular magnetization layer (26), protective film layer (27), upper electrode (28), interlayer It consists of an insulating film layer (30).
  • the nonmagnetic layer (25) acts as a tunnel barrier layer (25).
  • the method of manufacturing a perpendicular magnetization film structure comprises the steps of providing a substrate having a cubic or tetragonal orientation film grown with a (001) plane cubic single crystal or a (001) plane, and the substrate Forming an underlayer made of a good conductor, forming an iron-based alloy layer containing aluminum as a composition material on the underlayer, and forming the underlayer on the iron-based alloy layer.
  • the alloy element contains aluminum
  • the first metal film and the second alloy film are oxidized to form an oxide layer, thereby forming a perpendicular magnetization layer.
  • Forming the vertical magnetization layer (001 Characterized by a step of forming a non-magnetic layer having a surface.
  • the oxide layer is an oxide layer of a Mg 1-x Al x (0 ⁇ x ⁇ 1) alloy.
  • the method of manufacturing a vertical MTJ film according to the present invention comprises the steps of: forming a substrate, an underlayer, a perpendicular magnetization layer, and a nonmagnetic layer using the above method of manufacturing a perpendicular magnetization film structure; Selected from the group of platinum and palladium with one or more elements selected from the group of cobalt-iron base alloy, cobalt-iron-boron alloy, manganese-gallium alloy, manganese-germanium alloy, and iron and cobalt as composition materials Forming a second perpendicular magnetization layer of a ferromagnetic material selected from the group consisting of alloys with one or more elements.
  • a method of manufacturing a vertical MTJ element according to the present invention is characterized in that the method of manufacturing a vertical MTJ film includes the step of forming an upper electrode and an interlayer insulating film layer.
  • the magnetic layer / Mg—Al—O (for example, MgAl 2 O 4 ) laminated film made of an alloy containing Fe as a main component has a conventional structure (for example, Fe / A structure having a perpendicular magnetic anisotropy (PMA) larger than that of MgAl 2 O 4 or a Co-based alloy Co 2 FeAl / MgAl 2 O 4 ) can be realized.
  • PMA perpendicular magnetic anisotropy
  • high PMA can be realized and heat resistance can be improved by using, for example, Fe-Al (up to about 40 atomic% of Al) for the magnetic layer and setting the Al composition to an optimum value.
  • the saturation magnetization Ms of the magnetic layer is smaller (approximately 900 to 1300 emu / cm 3 ) than pure Fe (1700 emu / cm 3 ), and the thin film shape effect (in-plane magnetic anisotropy term proportional to Ms 2 ) is effectively made. Since it has the effect of reducing, it is possible to improve PMA energy per unit volume. According to the perpendicular magnetization film of the present invention, the influence of the lattice mismatch at the interface can be minimized because of the good lattice match between the Fe-based alloy and Mg—Al—O (eg, MgAl 2 O 4 ), This results in a large PMA. Furthermore, a large change in magnetic anisotropy due to voltage application can also be expected.
  • the vertical MTJ film and the vertical MTJ element of the present invention because of the combination of the Fe-based alloy and the Mg-Al oxide, for example, the high TMR ratio by the remarkable coherent tunnel effect is also simultaneously as well as the Fe / MgAl 2 O 4 structure. As expected, excellent characteristics can be obtained as a spintronics device using a perpendicular magnetization film. According to the perpendicular MTJ element using the perpendicular magnetization film of the present invention, it is possible to adjust the Ms and PMA characteristics of the magnetic layer by continuous modulation of the composition of Fe-Al, and it is possible to secure the design margin of the element Heat resistance can also be ensured.
  • the perpendicular magnetization film having the above effect can be easily obtained by performing appropriate oxidation treatment and heat treatment.
  • the manufacturing process is simplified because of the combination of the Fe-based alloy and the Mg-Al oxide.
  • FIG. 1 is a cross-sectional view showing a precursor structure of a perpendicular magnetization film according to an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view showing a perpendicular magnetization film structure according to an embodiment of the present invention.
  • FIG. 3 illustrates a cross-sectional view of a perpendicular magnetization tunnel magnetoresistive (MTJ) film in accordance with an embodiment of the present invention.
  • FIG. 4 illustrates a cross-sectional view of a perpendicular magnetization tunnel magnetoresistive (MTJ) device in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram of the crystal structure of Fe 3 Al.
  • FIG. 7 is a diagram showing the T ex dependency of the saturation magnetization Ms in the perpendicular magnetization film structure of FIG.
  • FIG. 10 is a graph showing the Al composition of the size Ku of the perpendicular magnetic anisotropy and the heat treatment temperature T ex in the perpendicular magnetization film structure of FIG.
  • FIG. 11 is a graph showing the Al composition and T ex dependency of the saturation magnetization Ms in the perpendicular magnetization film structure of FIG.
  • FIG. 13 is a graph showing the Al composition x dependency in the perpendicular magnetization film structure of FIG. 2, in which (A) shows the magnitude Ku of magnetic anisotropy and (B) shows the case of saturation magnetization Ms.
  • FIG. 15 is a graph showing the relationship between the TMR ratio and t MgAl and T ex in the vertical MTJ element of FIG. 4.
  • the precursor structure 1 of the perpendicular magnetization film is a substrate 2, an underlayer 3, an iron-based alloy layer 4, a first metal film 51 and a second alloy film. It consists of the nonmagnetic laminated structure 5 which consists of 52.
  • the substrate 2 is MgO, Si single crystal having a (001) plane, or an alignment film having a structure in which these are preferentially oriented to (001).
  • magnesium-aluminum spinel (MgAl 2 O 4 ), strontium titanate (SrTiO 3 ), magnesium-titanium oxide (MgTiO x ), or Ge may be used as the material of the substrate 2.
  • the underlayer 3 is made of a conductive metal or alloy, preferably chromium (Cr), silver (Ag), gold (Au), ruthenium (Ru), rhenium (Re), an alloy thereof, or NiAl (nickel). -Aluminum) alloy, titanium nitride, etc.
  • the film thickness of the underlayer 3 is, for example, a thin film of about 5 to 200 nm.
  • the iron-based alloy layer 4 is a layer formed of a product layer of an iron-based alloy containing Al as a composition material, and is, for example, Fe 3 Al.
  • FIG. 5 is a block diagram of the crystal structure of Fe 3 Al.
  • ⁇ B is a Bohr magneton.
  • the film thickness of the iron-based alloy layer 4 is an ultra-thin film of about 0.5 to 2 nm and is grown (001).
  • the iron-based alloy layer 4 is a layer which is converted into the perpendicular magnetization layer 7 shown in FIG. 2 by a predetermined treatment.
  • the crystal structure of the restabilization of Fe 3 Al is of the D 0 3 type.
  • the crystal structure of Fe is a body-centered cubic (bcc) structure, and the crystal structure of FeAl having a composition containing more Al than Fe 3 Al is B2.
  • the lattice constant of D0 3 -type Fe 3 Al is twice that of Fe due to the ordering of Fe-Al sites.
  • a bcc structure in which Fe and Al sites are disordered may be obtained by the manufacturing method in some cases, it functions effectively as the iron-based alloy layer 4 in this embodiment.
  • B2 type FeAl is a nonmagnetic material, it can not be used as the iron-based alloy layer 4.
  • the preferable composition range is Fe 100 ⁇ x Al x (0 ⁇ x ⁇ 40).
  • part or most of the Al atoms contained in the iron-based alloy layer 4 may move to the nonmagnetic layer 6 in accordance with the predetermined oxidation treatment and heat treatment. That is, even if substantially all Al atoms contained in the iron-based alloy layer 4 have moved to the nonmagnetic layer 6, the iron-based alloy layer 4 may function as the perpendicular magnetization film 7.
  • the iron-based alloy layer 4 has a D0 3 structure, the same effect can be achieved even in the Fe-Al a ferromagnetic iron-based with similar properties, for example, Fe 3 Si, Fe 3 Ga, Fe 3 Ge Ru. Therefore, as a general expression of the iron-based alloy layer 4, Fe 100 -x M x (M is one or more elements selected from the group of Al, Si, Ga, Ge, and the range of 0 ⁇ x ⁇ 40 Can be used.
  • the laminated structure 5 is composed of the first metal film 51 and the second alloy film 52, and is a layer which is converted into the nonmagnetic layer 6 by predetermined oxidation treatment and heat treatment. Although the heat treatment is not necessarily required, the perpendicular magnetic anisotropy (PMA) can be improved by performing the appropriate heat treatment.
  • the first metal film 51 is made of a predetermined metal element provided on the iron-based alloy layer 4, and the first metal film 51 does not contain aluminum.
  • the predetermined metal element is a metal element constituting an oxide of spinel structure, and is, for example, Mg.
  • the first metal layer 51 is not necessarily required.
  • the thickness of the first metal layer 51 is, for example, about 0 to 1 nm.
  • the second alloy film 52 is made of a predetermined alloy element provided on the first metal film 51, and the second alloy film 52 contains aluminum.
  • the predetermined alloying element is an oxide having a spinel structure or a structure in which cation sites of the spinel structure are disordered, for example, an Mg-Al composition It is Mg 1-x Al x (0 ⁇ x ⁇ 1) which is a substance.
  • the thickness of the second metal layer 52 is, for example, about 0.2 to 3 nm.
  • FIG. 2 is a cross-sectional view showing the perpendicular magnetization film structure 101 according to an embodiment of the present invention, which can be obtained by subjecting the precursor structure 1 of the perpendicular magnetization film shown in FIG. 1 to a predetermined oxidation treatment.
  • the predetermined oxidation treatment can be, for example, natural oxidation in which oxidation is performed using oxygen gas or the like, radical oxidation in which oxidation is performed using oxygen radicals, or plasma oxidation in which oxidation is performed using oxygen plasma.
  • the structure 5 is converted to the oxide nonmagnetic layer 6, and the iron-based alloy layer 4 is converted to the perpendicular magnetization layer 7.
  • the predetermined heat treatment is performed, for example, in a vacuum, and the annealing temperature is in the range of 200 ° C. to 500 ° C., and the PMA of the perpendicular magnetization layer 7 is improved.
  • the nonmagnetic layer 6 is an oxide formed on the iron-based alloy layer 4 (or the perpendicular magnetization layer 7) and having a spinel structure or a structure in which the cation sites of the spinel structure are disordered, (001) plane It is composed of layers grown with This layer imparts perpendicular magnetic anisotropy to the iron-based alloy layer 4 and has a role of converting it to the perpendicular magnetization layer 7.
  • the constituent material of the nonmagnetic layer 6 is preferably Mg-Al oxide, and the Mg-Al composition may be Mg 1-x Al x (0 ⁇ x ⁇ 1). Furthermore, this layer may have a spinel structure (AB 2 O 4 ) belonging to the cubic system, or in the case of a cubic system, a structure in which the cation sites of the spinel structure are disordered.
  • a and B of AB 2 O 4 are metals, such as Mg, Al, Li, Zn, In, Ga, Cd, Cr, V, Ti and the like.
  • the thickness of the nonmagnetic layer 6 changes depending on the thickness of the first metal layer 51 and the second alloy layer 52, and is typically about 0.5 to 4 nm.
  • the protective film layer 8 is provided on the nonmagnetic layer 6 and is a nonmagnetic layer different from the nonmagnetic layer 6 and, for example, tantalum (Ta), ruthenium (Ru), gold (Au), etc. It is a metal layer.
  • the thickness of the protective film layer 8 is, for example, 2 to 20 nm.
  • the protective film layer 8 shown in FIG. 2 is provided in the embodiment in order to prevent overoxidation and contamination of the surface of the perpendicular magnetization film structure when measuring the magnetic characteristics. For this reason, the protective film layer 8 has no influence on its function whether or not it is a perpendicular magnetization film.
  • a magnetoresistive effect of a type different from the tunnel magnetoresistive effect (for example, tunnel anisotropic magnetoresistive effect, so-called TAMR effect) is exhibited. It can be used as a device with a sensor function.
  • the protective film layer 8 is also referred to as a top electrode layer or a cap layer.
  • the vertical MTJ film 11 has a substrate 12, an underlayer 13, an iron-based alloy layer 14, a first metal film 151, and a second metal film during film formation.
  • a nonmagnetic laminated structure 15 made of an alloy film 152, a second ferromagnetic layer 16 and a protective film layer 17 are provided.
  • the iron-based alloy layer 14 becomes the first perpendicular magnetization layer 18 and the laminated structure 15 becomes the nonmagnetic layer 19 (tunnel barrier layer 19) by the oxidation treatment after film formation, and the second strong The magnetic layer 16 becomes the second perpendicular magnetization layer 20. That is, the iron-based alloy layer 14 is a layer converted to the first perpendicular magnetization layer 18 by a predetermined process.
  • the nonmagnetic laminated structure 15 is composed of the first metal film 151 and the second alloy film 152, and is converted into the tunnel barrier layer 19 by oxidation treatment.
  • the first metal film 151 is made of a predetermined metal element provided on the iron-based alloy layer 14, and the first metal film 151 does not contain aluminum.
  • the predetermined metal element is a metal element constituting an oxide of spinel structure, and is, for example, Mg.
  • the second alloy film 152 is made of a predetermined alloy element provided on the first metal film 151, and the second alloy film 152 contains aluminum.
  • the second ferromagnetic layer 16 is in direct contact with the nonmagnetic layer 15, and a known perpendicular magnetization film can be used. Therefore, as a composition material, one or more elements selected from the group of cobalt-iron alloy, cobalt-iron-boron alloy, manganese-gallium alloy, manganese-germanium alloy, and iron and cobalt, and from the group of platinum and palladium Ferromagnetic layers selected from the group consisting of alloys with one or more selected elements can be utilized. Further, the same structure and material as the iron-based alloy layer 14 can be used.
  • the second ferromagnetic layer 16 may include a perpendicular magnetization film having an amorphous structure, for example, a terbium-cobalt-iron (Tb-Co-Fe) alloy film.
  • the second ferromagnetic layer 16 has a thickness of about 1 nm to 10 nm, and may have a three-layer structure of, for example, perpendicular magnetization film / Ru (0.5 to 1.2 nm) / perpendicular magnetization film.
  • the second ferromagnetic layer 16 is a layer that turns to the second perpendicular magnetization film 20 by selection of an appropriate film formation method and heat treatment.
  • the tunnel barrier layer 19 not only has the purpose of providing the perpendicular magnetic anisotropy but also has a role of a tunnel barrier in the case of an MTJ element.
  • the tunnel barrier layer 19 is preferably grown with a (001) plane and a plane equivalent thereto.
  • a vertical MTJ element is formed in which the first perpendicular magnetization layer 18 and a part of the second perpendicular magnetization film 20 are (001) grown, and a high TMR ratio is realized.
  • the protective film layer 17 is provided on the second perpendicular magnetization film 20, and is a nonmagnetic layer different from the nonmagnetic layer 19, for example, tantalum (Ta), ruthenium (Ru), gold (Au), etc. Formed from the metal layer of The thickness of the protective film layer 17 is, for example, 2 to 20 nm.
  • the vertical MTJ element 21 includes a substrate 22, an underlayer 23, a first perpendicular magnetization layer 24, a nonmagnetic layer 25 (tunnel barrier layer 25), and a second A perpendicular magnetization layer 26, a protective layer film 27, an upper electrode 28, and an interlayer insulating film layer 30 are provided.
  • Each layer from the substrate 22 to the protective film layer 27 can have the same structure as each layer from the substrate 12 to the protective film 17 in the vertical MTJ film 11 described above.
  • a metal film such as Ta, Ru, Au, Pt, Al, copper (Cu) or the like is used.
  • a typical thickness of the upper electrode 28 is 10 to 300 nm.
  • an interlayer insulating film layer 30 made of an insulator such as SiO 2 or Al 2 O 3 is provided in place of the removed portion. This makes it possible to flow current in the direction perpendicular to the film surface between the underlayer 23 and the upper electrode 28, and can function as a vertical MTJ element.
  • the film formation is performed at room temperature by direct current (DC) magnetron sputtering.
  • DC direct current
  • argon (Ar) can be used as a process gas for sputtering.
  • the Cr film thickness is, for example, 40 nm, but may be thinner if it is flat.
  • heat treatment is performed in vacuum at 500 to 900 ° C. to make the surface more flat. In the case of Cr, it grows on MgO with a (001) plane.
  • the iron-based alloy layer 4 is formed on the underlayer 3. This layer is the basis of the perpendicular magnetization layer 7.
  • the iron-based alloy layer 4 can be produced using a method of obtaining a known alloy film. For example, direct current magnetron sputtering, radio frequency (RF) magnetron sputtering, electron beam evaporation, resistance heating evaporation, or the like can be used.
  • RF radio frequency
  • As a raw material in addition to the method of forming a film with the Fe—Al alloy whose composition has been adjusted as a target, simultaneous film formation using a plurality of targets can be used. For example, simultaneous film formation using targets of pure Fe and pure Al, simultaneous film formation using two targets having different Fe—Al compositions, or the like can be used.
  • this layer may be formed by utilizing an atom alternate stacking technique in which Fe layers and Al layers having an atomic plane thickness (0.1 to 0.2 nm) are alternately stacked.
  • the Fe-Al composition can be finely adjusted by combining the above methods.
  • the thickness of the iron-based alloy layer 4 is about 0.5 to 1.5 nm which is an ultrathin film suitable for obtaining perpendicular magnetization.
  • the growth temperature may be room temperature, and formation at a higher temperature is also possible if it can be obtained as a flat film.
  • the crystal quality of the iron-based alloy layer 4 can be improved by post heat treatment in vacuum at about 100 to 200 ° C. thereafter.
  • the iron-based alloy layer 4 may have a concentration gradient of Fe and Al in the direction perpendicular to the film surface.
  • a first metal film 51 is first formed on the produced iron-based alloy layer 4, and then a second alloy film 52 is formed.
  • a Mg metal film 51 is formed as a first metal film to a thickness in the range of about 0 to 0.6 nm, for example, by using DC magnetron sputtering.
  • This Mg insertion layer contributes to the improvement of the crystal structure near the interface of the nonmagnetic layer.
  • the Mg insertion layer is not necessarily required.
  • an Mg—Al alloy film is formed to a thickness of 0.2 to 3 nm as the second alloy film by using, for example, RF magnetron sputtering.
  • the composition of Mg-Al for example, a Mg 20 Al 80 and Mg 40 Al 60, as long as the composition in the range of Mg 1-x Al x (0 ⁇ x ⁇ 1), after the spinel structure or a spinel structure oxide All of them can be used because they can be obtained as cubic oxide (typically, MgAl 2 O 4 ) having a structure in which the cation sites are disordered.
  • the second alloy film may have a composition gradient in the direction perpendicular to the film surface.
  • the nonmagnetic layer 6 made of crystalline MgAl 2 O 4 is formed based on the laminated structure 5 by the natural oxidation method.
  • the change due to the natural oxidation method corresponds to the layer change between FIG. 1 and FIG.
  • Plasma oxidation methods include direct plasma oxidation methods in which a sample is exposed directly to oxygen plasma, and indirect plasma oxidation methods in which a sample is not directly exposed to oxygen plasma by installing a shutter between the oxygen plasma and the sample. .
  • the former can obtain stronger oxidizing power.
  • the oxidation time is about a few seconds to about 1 hour in the natural oxidation method and about 1 second to a few minutes in the plasma oxidation method, and is selected according to the desired oxidation strength.
  • the Mg-Al-O layer has a cubic spinel structure or a cubic crystal structure in which the cation sites in the spinel structure are disordered, and Mg-Al-O (iron-based alloy layer (001) 001) can be grown directly. Since the lattice mismatch between the iron-based alloy and Mg—Al—O is at most 1 to 2%, the crystal lattice matching of these laminated films becomes extremely good.
  • the Mg-Al-O layer 6 has an oxidizing power depending on the thickness of the underlying Mg layer, the thickness of the Mg-Al layer, and the Mg-Al composition, regardless of whether the natural oxidation method or the plasma oxidation method is used. By appropriately adjusting, it is possible to form a high quality film. At this time, movement of part of Al contained in the iron-based alloy layer may occur during oxidation of the Mg—Al layer.
  • the mixture of the electron orbitals of iron atoms occupying most of the iron-based alloy layer 4 and the oxygen atoms of the Mg-Al-O layer 6 is effective As a result, strong perpendicular magnetization is induced.
  • the iron-based alloy layer 4 maintains high lattice matching with the Mg—Al—O layer 6 even when the Al composition changes due to diffusion or the like.
  • the Mg—Al—O layer corresponding to the nonmagnetic layer 6 can be formed using a method by radio frequency (RF) sputter deposition from an oxide target such as MgAl 2 O 4 .
  • RF radio frequency
  • the Mg—Al oxidation method a radical oxidation method using an oxygen radical or a method such as promotion of oxidation by utilization of substrate heating can of course be used.
  • the crystal quality can be improved, and by improving the (001) orientation, a stronger PMA can be easily obtained, and In the element, a high TMR ratio can be obtained.
  • the vertical MTJ film 11 the same manufacturing method as that of the precursor structure 1 of the perpendicular magnetization film and the perpendicular magnetization film 101 described above can be used to form each layer from the substrate 12 to the nonmagnetic layer 19.
  • a laminated film of pure Fe and a cobalt-iron-boron (Co-Fe-B) alloy will be described as an example of the second ferromagnetic layer 16.
  • Fe is produced by DC magnetron sputtering on the laminated structure 15 at room temperature.
  • a strong PMA can be obtained between the multilayer structure 15 (Mg—Al—O layer).
  • a Co—Fe—B alloy layer is formed in a film thickness of 0.5 to 1.3 nm on the Fe layer at room temperature by, for example, DC magnetron sputtering.
  • (Co 1 -x Fe x ) 80 B 20 (0.2 ⁇ x ⁇ 1) can be used as the composition of Co—Fe—B.
  • the second ferromagnetic layer 16 made of Fe and Co--Fe--B alloy film can be heat treated at a temperature in the range of 200.degree. C. to 350.degree. C., for example, to form the second perpendicular magnetization film 20.
  • the protective film layer 17 is provided on the second perpendicular magnetization film 20 and can be obtained, for example, by sputtering Ta and Ru in this order.
  • the vertical MTJ element 21 For manufacturing each layer from the substrate 22 to the protective film layer 27, the same method as the above-described vertical MTJ film 11 can be used.
  • the same method as the above-described vertical MTJ film 11 can be used.
  • SiO 2 is used for the interlayer insulating film layer 30 and Au for the upper electrode 28 will be described.
  • fine processing technology is used.
  • the microfabrication method after a photoresist is provided on the protective film layer 27, a portion where an element is to be formed is masked with the photoresist using a method such as photolithography or electron beam lithography.
  • an etching process is performed from the protective film layer 27 to a part of the lower layer 23 using an Ar ion etching apparatus, a reactive ion etching apparatus, or the like.
  • a SiO 2 layer 30 is formed on the etched portion by RF magnetron sputtering or the like, and the photoresist mask is lifted off.
  • an upper electrode 28 of Au 120 nm is formed on the top of the device.
  • the perpendicular magnetization film of the present embodiment will be described as a following example.
  • the example which formed the multilayer film which has a structure of Ru (2 nm) by sputter film deposition and plasma oxidation is shown.
  • t FeAl indicates the iron-based alloy layer (Fe—Al) film thickness
  • t MgAl indicates the Mg—Al film thickness.
  • the MgO single crystal substrate was washed with an organic solvent and ultrapure water, introduced into a vacuum chamber, and heated at 600 ° C. to obtain a clean crystal surface. Thereafter, the substrate was cooled to room temperature, and then each layer was formed using a 2-inch diameter magnetron sputtering apparatus. Simultaneous sputtering was performed to form the Fe-Al layer using two targets of pure Fe and pure Al. The composition was adjusted by changing each input power using a DC power supply for a pure Fe target and an RF power supply for a pure Al target.
  • Fe-Al composition using Mg 40 Al 60 as Fe 72 Al 28, Mg-Al composition. These compositions are values identified by high frequency inductively coupled plasma emission spectroscopy.
  • T ex 200 to 350 ° C.
  • RF power applied to a 2-inch diameter target was 7 W.
  • the oxidation time was fixed at 50 s.
  • Ms ⁇ t FeAl shows saturation magnetization per unit area.
  • the result of 300 ° C. is shown as a representative of T ex .
  • the straight line is the result of linear fitting. From this figure, Ms ⁇ t FeAl is approximately proportional to t FeAl and the intercept is approximately zero.
  • FIG. 7 shows the T ex dependency of Ms calculated.
  • the Ms value of the Fe 72 Al 28 film having a thickness of 40 nm is shown as a dotted line.
  • the Ms of the Fe 72 Al 28 ultrathin film slightly increases as T ex increases, but falls within a narrow range of approximately 880 to 910 emu / cm 3 . This gradual increase in Ms indicates an improvement in crystal quality at T ex . On the other hand, it is clearly larger than the value of Ms ⁇ 750 emu / cm 3 of the film having a thickness of 40 nm. As shown in Example 2, it is suggested that the Al composition of the Fe—Al layer decreases from the original Fe 72 Al 28 and changes to a composition of about Fe 77 Al 23 .
  • This maximum value is a maximum value 4 Merg / cm 3 (0.4 MJ / m 3 ) when Co 2 FeAl is used instead of the iron-based alloy layer as described in Patent Document 4 and the film thickness is 1.0 nm. It is about 1.7 times against.
  • FIG. 9 is a view showing an example of a magnetization curve in the perpendicular magnetization film structure of FIG.
  • Ms value of the saturation magnetization.
  • this multilayer film structure indicates that it is a perpendicular magnetization film having the direction of easy magnetization axis in the direction perpendicular to the film surface.
  • a Fe 100-x Al x layer with a thickness of 1 nm as the iron-based alloy layer 4 of the perpendicular magnetization film structure of FIG. 2 in the perpendicular magnetization film of the present embodiment will be shown.
  • x 11.0, 19.6, 27.9 (composition of Example 1: Fe 72 Al 28 ) atomic ratio is used.
  • the second alloy film 52 had a thickness of 0.7 nm and Mg 40 Al 60 was used as the Mg—Al composition.
  • the first metal layer Mg and the second alloy film 52 are oxidized to form a Mg—Al—O layer, preferably MgAl 2 O 4 as the degree of oxidation.
  • FIG. 10 is a graph showing the annealing heat treatment temperature T ex dependency of the size Ku of the perpendicular magnetic anisotropy.
  • T ex 450 ° C.
  • the composition of x 11.0%, since the saturation magnetization Ms is higher, in-plane magnetization remains at any T ex . That is, the characteristics of the perpendicular magnetization film can be designed by adjusting the Al composition.
  • FIG. 11 is a graph showing the T ex dependency of the saturation magnetization Ms.
  • FIG. 13 is a graph showing the dependency of the Al composition ratio x, in which (A) shows the magnitude of magnetic anisotropy Ku and (B) shows the case of saturation magnetization Ms.
  • the Ms reduction behavior with respect to the increase in the Al composition ratio x is the same for both the ultrathin film and the thick film (bulk), but the ultrathin film has a higher Ms. That is, it is considered that about several percent of Al in the Fe-Al layer diffuses to the Mg-Al-O layer side, and as a result, the Fe-rich composition is more than the original Fe-Al ratio.
  • the perpendicular magnetization film can be designed in a wide range by adjusting the Fe—Al composition, the Fe—Al film thickness, and the heat treatment temperature.
  • FIG. MgO (001) single crystal substrate / Cr (40 nm) / iron-based alloy layer Fe-Al (1 nm) / Mg (0.2 nm) / Mg-Al (t MgAl 2 ) -indirect plasma oxidation / Fe (perpendicular MTJ film)
  • t MgAl indicates a Mg—Al film thickness.
  • the indirect plasma oxidation converts the Mg / Mg-Al layer to a Mg-Al-O layer.
  • the same method as the perpendicular magnetization film structure of Example 1 was used as a method of manufacturing from the MgO substrate to the Mg—Al—O layer.
  • the Mg—Al—O layer was post-annealed for 15 minutes at 250 ° C. in a vacuum chamber in order to improve crystallinity and ensure flatness. Thereafter, an Fe layer and a Co—Fe—B layer were formed in this order at room temperature using direct current magnetron sputtering.
  • the target composition of the Co—Fe—B alloy used is Co 40 Fe 40 B 20 .
  • a two-layer structure of Ta / Ru was used as the protective film layer. This protective film layer also has a function as an upper electrode when it is made into an element. Both the Ta layer and the Ru layer were formed by sputtering film formation.
  • the vertical MTJ film from the sputtering chamber After taking out the vertical MTJ film from the sputtering chamber, it was processed into a vertical MTJ element using a fine processing technique using a photolithography apparatus, an argon ion etching apparatus, and a lift-off method.
  • the element size was an elliptical shape of 10 ⁇ 5 ⁇ m 2 , and SiO 2 (30 nm) was formed by sputtering as an interlayer insulating film around the element. Further, a two-layer film of Ta (3 nm) / Au (120 nm) was formed by sputtering as an upper electrode and a lower electrode.
  • the thick arrows in FIG. 14 indicate the magnetization directions of the first perpendicular magnetization film 24 (lower side) and the second perpendicular magnetization film 26 (upper side).
  • the optimum T ex is, for example, 350 ° C., at which time a TMR ratio of 40% is obtained.
  • the TMR ratio (%) is defined as 100 ⁇ (R AP ⁇ R P ) / R P using the element resistance R P in parallel magnetization alignment and the element resistance R AP in antiparallel magnetization alignment.
  • FIG. 15 is a graph showing the relationship between the TMR ratio in the vertical MTJ element and t MgAl and T ex .
  • T ex measurements are made at intervals of 50 ° C. from 200 ° C. to 350 ° C.
  • the result of the sample (As-depo) which does not heat-process is also described.
  • the second perpendicular magnetization film 26 Fe / Co-Fe-B
  • the TMR ratio is small.
  • the TMR increase is seen as the optimum T ex is approached.
  • t MgAl is small (for example, t MgAl ⁇ 0.5 nm)
  • t MgAl ⁇ 0.5 nm a TMR ratio larger than that in the region where t MgAl is large is obtained.
  • PMA decreases as t MgAl increases. Since the relative oxidation strength is low in the region where t MgAl is large, it is considered that the unoxidized Mg and Mg-Al remain as the cause of this PMA decrease. Therefore, the size of PMA can be kept optimum by adjusting the oxidation strength at the time of preparation of the Mg—Al—O layer.
  • the present invention is not limited to the above embodiment, and it goes without saying that various modified embodiments are included within the scope obvious to those skilled in the art.
  • the above-mentioned film thickness is only an example, and an appropriate film thickness can be adopted so as to conform to the specifications of a spintronics device such as a vertical MTJ element.
  • the temperature, vacuum pressure, and heat treatment time in the manufacturing process may be set to appropriate values so as to be compatible with the manufacturing yield of spintronics devices such as vertical MTJ elements.
  • the perpendicular magnetization film according to the present invention can be used for spintronics devices, for example, a ferromagnetic layer for the vertical MTJ element of a high density spin transfer torque write type MRAM or a voltage torque write type MRAM. In addition, it can be used as a highly accurate and ultra-compact magnetic sensor.
  • the perpendicular magnetization film according to the present invention since the perpendicular magnetization film is a combination structure of an Fe-based alloy and Mg-Al oxide, the manufacturing process is simplified and the manufacturing conditions have a relatively wide tolerance. It can be used in the manufacturing process of spintronics devices such as MTJ elements.
  • perpendicular magnetization film 101 perpendicular magnetization film structure 11 perpendicular magnetization type tunnel magnetoresistive junction film (vertical MTJ film) 21 Perpendicular Magnetization Tunneling Magnetoresistive Junction Device (Vertical MTJ Device) 2, 12, 22 Substrate 3, 13, 23 Underlayer 4, 14, 24 Iron-based alloy layer 5, 15 Layered structure 51, 151 First metal film (Mg) 52, 152 Second alloy film (Mg-Al) 6 Nonmagnetic layer (Mg-Al-O layer) 7 Perpendicular magnetization layers 8, 17, 27 Protective film layer (Ta / Ru laminated film) 16 second ferromagnetic layer 18, 24 first perpendicular magnetization layer 19, 25 nonmagnetic layer (tunneling barrier layer) 20, 26 Second perpendicular magnetization layer 28 Upper electrode 30 Interlayer insulating film layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本発明は、Feを主成分とする合金とMgAlの組み合わせを基本的な構成として利用することで、高い界面誘起磁気異方性を示す垂直磁化膜構造を提供する。本発明の一実施形態に係る垂直磁化膜構造(101)は、(001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系の配向膜を有する基板(2)と、当該基板の上に位置し、良導電体からなる下地層(3)と、当該下地層の上に位置し、組成材料としてアルミニウムを含む鉄基合金の生成物層からなる垂直磁化層(7)と、当該垂直磁化層の上に設けられた、スピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ酸化物であり、(001)面を持って成長した非磁性層(6)と、を備えることを特徴とする。

Description

垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
 本発明は、強磁性薄膜と酸化物薄膜の積層膜からなる垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法に関する。また、本発明は当該垂直磁化膜構造を用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法に関する。さらに、本発明は、これらを用いた垂直磁化型トンネル磁気抵抗接合素子に関する。
 強磁性薄膜構造を用いた磁気ディスク装置(ハードディスク)や不揮発性ランダムアクセス磁気メモリ(MRAM)に代表される磁気ストレージやメモリの高密度記録化、大容量化の進展に伴い、強磁性膜面の垂直方向に磁化する垂直磁化膜が利用されている。垂直磁化膜を用いたMRAMの記録ビットを構成するトンネル磁気抵抗接合素子(MTJ素子)の微細化による記録密度の向上のためには、垂直磁化膜の品質向上による高い磁気異方性エネルギー密度Kuの達成が求められている。
 垂直磁化膜を達成する方法として高い磁気異方性を有する合金を利用する方法と、強磁性薄膜と非磁性薄膜間の界面効果を用いる方法(界面誘起磁気異方性)がある。前者の例として、非特許文献1では、例えば極めて高いKuを示すL1型鉄-白金(FePt)合金が示されている。後者の例として、バルク状では垂直磁化にならないコバルト-鉄-ホウ素(CoFeB)(非特許文献2)や鉄(Fe)などの軟磁性材料をナノメートル程度の厚さの超薄膜形状としたとき、例えば酸化マグネシウム(MgO)に接触させることで垂直磁化膜が得られることが知られている。特に、後者は高いトンネル磁気抵抗比(TMR比)を得やすいMTJ素子構造をも兼ねることから、MRAM用途のための垂直磁化膜を得る方法として優れている。これらの組み合わせの他に、Co基ホイスラー合金の一つであるCoFeAl合金層とMgOの組み合わせ(非特許文献3)や、FeとMgAlの組み合わせ(非特許文献4)を用いて界面誘起磁気異方性を得る方法も知られている。さらに、本出願人の提案として、特許文献1~4に開示されたMTJ素子が知られている。
 しかし、MgOとこれらの軟磁性材料との間には数%程度の格子不整合があり、また、いずれの層もナノメートル程度の超薄膜状として得ることが必要であるため、界面に生じる結晶歪みの影響による磁気異方性の低下が無視できない。MgOの代わりにMgAlを用いることで、格子不整合による問題を解決できることが知られている(非特許文献4、特許文献4)。しかし、界面における電子状態によって磁気異方性が大きく影響を受けるため、高い結晶性と制御された界面構造を実現する必要があり、MgAlを用いる垂直磁化膜構造の製造プロセスが複雑になるという課題があった。例えば、CoFeAl合金層とMgAlの組み合わせ(特許文献4)では、垂直磁化膜構造の製造プロセスが複雑になるという課題があった。
WO2010/119928 WO2010/134435 特開2013-175615 特開2017-041606
A.Perumal,Y.K.Takahashi,and K.Hono,"L10 FePt-C Nanogranular Perpendicular Anisotropy Films with Narrow Size Distribution",Applied Physics Express,vol.1,p.101301(2008). S.Ikeda et al.,"A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction",Nature Materials,vol.9,pp.721-724(2010). Z.C.Wen,H.Sukegawa,S.Mitani,and K.Inomata,"Perpendicular magnetization of Co2FeAl full-Heusler alloy films induced by MgO interface",Applied Physics Letters,vol.98,p.242507(2011). J.Koo,H.Sukegawa,and S.Mitani,"Interface perpendicular magnetic anisotropy in Fe/MgAl2O4 layered structures",physica status solidi-Rapid Research Letters,vol.8,pp.841-844(2014).
 本発明は、このような実情に鑑み、Co基ホイスラー合金を用いることなく、FeとMgAlの組み合わせを基本的な構成として利用することで、高い界面誘起磁気異方性を示す垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法を提供することを目的とする。
 また、本発明はFeを主成分とする強磁性合金とMgAlの組み合わせを用いて形成した垂直磁化膜構造、垂直磁化型トンネル磁気抵抗接合膜(垂直MTJ膜)、およびその製造方法を提供することを目的とする。さらにこの方法で作製した垂直MTJ膜をもとに構成した垂直磁化型トンネル磁気抵抗接合素子(垂直MTJ素子)を提供することも目的とする。
 本発明の垂直磁化膜の前駆体構造1は、例えば図1に示すように、(001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系配向膜を有する基板(2)と、基板2の上に位置し、良導電体からなる下地層(3)と、下地層3の上に位置し、組成材料としてアルミニウムを含む鉄基合金の生成物層からなる鉄基合金層(4)と、鉄基合金層4の上に設けられた所定の金属元素からなる第1の金属膜(51)であって、当該第1の金属膜51にアルミニウムを含まない、第1の金属膜51と、当該第1の金属膜51の上に設けられた所定の合金元素からなる第2の合金膜(52)であって、当該第2の合金膜52はアルミニウムを含む、第2の合金膜52と、を備えることを特徴とする。ここで、当該所定の金属元素はスピネル構造の酸化物を構成する金属元素であり、当該所定の合金元素は、当該合金元素が酸化した場合には、スピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ酸化物となるものである。
 本発明の垂直磁化膜の前駆体構造1において、好ましくは、鉄基合金層4はFe100-x層で表されるとよい。ここで、MはAl、Si、Ga、Geの群から選択される1つ以上の元素であって、0<x<40の範囲である。
 本発明の垂直磁化膜構造101は、例えば図2に示すように、上記の垂直磁化膜の前駆体構造に対して酸化処理を行うことで、鉄基合金層4を第1の垂直磁化層(7)とし、前記第1の金属膜51と第2の合金膜52の積層構造(5)を非磁性層(6)とする垂直磁化構造を有し、非磁性層6の上に設けられ非磁性層6とは別の非磁性層からなる保護膜層(8)を有することを特徴とする。
 本発明の垂直磁化膜構造101において、好ましくは、前記非磁性層6は、結晶体のMg1-yAl―O層(0<y≦1)、(0.8≦x≦1.7)であるとよい。
 本発明の垂直磁化型トンネル磁気抵抗接合膜11(垂直MTJ膜11)は、例えば図3に示すように、(001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系配向膜を有する基板(12)と、基板の上に位置し、良導電体からなる下地層(13)と、下地層13の上に位置し、組成材料としてアルミニウムを含む鉄基合金の生成物層からなる鉄基合金層(14、下部強磁性層14)もしくは当該鉄基合金層14が転じた第1の垂直磁化層(18)と、鉄基合金層14もしくは第1の垂直磁化層18の上に設けられた所定の金属元素からなる第1の金属膜(151)であって、当該第1の金属膜151にアルミニウムを含まない、第1の金属膜151と、当該第1の金属膜151の上に設けられた所定の合金元素からなる第2の合金膜(152)であって、当該第2の合金膜152はアルミニウムを含む、第2の合金膜152との積層構造(15)を酸化処理して得られる非磁性層(19)と、当該非磁性層19の上に設けられた組成材料としてコバルト-鉄合金、コバルト-鉄-ホウ素合金、マンガン-ガリウム合金、マンガン-ゲルマニウム合金、および鉄とコバルトの群から選択される1つ以上の元素と白金とパラジウムの群から選択される1つ以上の元素との合金からなる群より選ばれた強磁性材料よりなる第2の強磁性層(16)もしくは当該第2の強磁性層16が転じた第2の垂直磁化層(20)と、を備えることを特徴とする。非磁性層(19)は、トンネルバリア層(19)として作用する。
 本発明の垂直磁化型トンネル磁気抵抗接合素子21(垂直MTJ素子21)は、例えば図4に示すように、垂直MTJ膜11に上部電極と層間絶縁膜層を備えたことを特徴とし、基板(22)、下地層(23)、第1の垂直磁化層(24)、非磁性層(25)、第2の垂直磁化層(26)、保護膜層(27)、上部電極(28)、層間絶縁膜層(30)からなる。非磁性層(25)は、トンネルバリア層(25)として作用する。
 本発明の垂直磁化膜構造の製造方法は、(001)面の立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系配向膜を有する基板を提供する工程と、当該基板の上に、良導電体からなる下地層を形成する工程と、当該下地層の上に、組成材料としてアルミニウムを含む鉄基合金層の成膜を行う工程と、当該鉄基合金層の上に、所定の金属元素からなる第1の金属膜の成膜を行う工程であって、当該金属元素にアルミニウムを含まず、当該第1の金属膜の上に、所定の合金元素からなる第2の合金膜の成膜を行う工程であって、当該合金元素にアルミニウムを含み、前記第1の金属膜及び第2の合金膜へ酸化処理を行うことによって酸化物層を形成して、垂直磁化層を形成する工程と、当該垂直磁化層の上に、(001)面を有する非磁性層を形成する工程とを有することを特徴とする。
 本発明の垂直磁化膜構造の製造方法において、好ましくは、前記酸化物層がMg1-xAl(0<x≦1)合金の酸化物層であるとよい。
 本発明の垂直MTJ膜の製造方法は、上記の垂直磁化膜構造の製造方法を用いて、基板、下地層、垂直磁化層、並びに非磁性層を形成する工程と、前記非磁性層の上に、組成材料としてコバルト-鉄基合金、コバルト-鉄-ホウ素合金、マンガン-ガリウム合金、マンガン-ゲルマニウム合金、および鉄とコバルトの群から選択される1つ以上の元素と白金とパラジウムの群から選択される1つ以上の元素との合金からなる群より選ばれた強磁性材料よりなる第2の垂直磁化層を形成する工程とを有することを特徴とする。
 本発明の垂直MTJ素子の製造方法は、上記の垂直MTJ膜の製造方法において、上部電極と、層間絶縁膜層を形成する工程を含むことを特徴とする。
 本発明の垂直磁化膜によれば、Feを主成分とする合金からなる磁性層/Mg-Al-O(例えば、MgAl)積層膜とすることにより、従来の構造(例えば、Fe/MgAlやCo基合金CoFeAl/MgAl)よりも大きな垂直磁気異方性(PMA)を持つ構造が実現できる。
 本発明の垂直磁化膜によれば、例えば磁性層にFe-Al(Al40原子%程度まで)を用い、Al組成を最適な値とすることで、高いPMAの実現、耐熱性の向上が実現できる。特に、磁性層の飽和磁化Msは純Fe(1700emu/cm)よりも小さく(900~1300emu/cm程度)、薄膜形状効果(Msに比例する面内磁気異方性項)を有効に減じる効果があるため、単位体積あたりのPMAエネルギーを向上することができる。
 本発明の垂直磁化膜によれば、Fe基合金とMg-Al-O(例えば、MgAl)との良好な格子整合性のため、界面の格子不整合の影響を最小限にでき、これによって大きなPMAが得られる。さらに、これによって電圧印加による大きな磁気異方性の変化も期待できる。
 本発明の垂直MTJ膜及び垂直MTJ素子によれば、Fe基合金とMg-Al酸化物の組み合わせのため、例えばFe/MgAl構造と同様に顕著なコヒーレントトンネル効果による高いTMR比も同時に期待でき、垂直磁化膜を用いたスピントロニクスデバイスとして優れた特性が得られる。
 本発明の垂直磁化膜を用いた垂直MTJ素子によれば、Fe-Alの組成の連続的な変調による磁性層のMsおよびPMA特性の調整が可能であることで素子の設計マージンを確保できるとともに耐熱性をも確保できる。
 本発明の垂直磁化膜の前駆体構造によれば、上記の効果を有する垂直磁化膜が、適切な酸化処理と熱処理を行うことで、容易に得られる。
 本発明の垂直磁化膜の製造方法によれば、Fe基合金とMg-Al酸化物の組み合わせのため、製造プロセスが簡易になる。
図1は、本発明の一実施形態に係る垂直磁化膜の前駆体構造を示す断面図を示している。 図2は、本発明の一実施形態に係る垂直磁化膜構造を示す断面図を示している。 図3は、本発明の一実施形態に係る垂直磁化型トンネル磁気抵抗接合(MTJ)膜を示す断面図を示している。 図4は、本発明の一実施形態に係る垂直磁化型トンネル磁気抵抗接合(MTJ)素子を示す断面図を示している。 図5は、FeAlの結晶構造の構成図である。 図6は、図2の垂直磁化膜構造における面積あたりの飽和磁化(Ms・tFeAl)のFeAl膜厚(tFeAl)との関係を示すグラフで、tFeAl=0.8~2.0nm、熱処理温度(Tex)300℃における結果を示してある。 図7は、図2の垂直磁化膜構造における飽和磁化MsのTex依存性を示す図である。 図8は、図2の垂直磁化膜構造において、第2の合金層膜厚tMgAl=0.7nmとした場合について、垂直磁気異方性の大きさKuのFe72Al28膜厚(tFeAl)とTex依存性を示すグラフである。 図9は図2の垂直磁化膜構造において、Al組成x=27.9%、Tex=200℃の場合について、磁化曲線の一例を示す図である。 図10は、図2の垂直磁化膜構造における垂直磁気異方性の大きさKuのAl組成及び熱処理温度Tex依存性を示すグラフである。 図11は、図2の垂直磁化膜構造における飽和磁化MsのAl組成及びTex依存性を示すグラフである。 図12は、図2の垂直磁化膜構造において、Al組成x=19.6%、Tex=450℃の場合について、磁化曲線の一例を示す図である。 図13は、図2の垂直磁化膜構造において、Al組成x依存性を示すグラフで、(A)は磁気異方性の大きさKu、(B)は飽和磁化Msの場合を示している。 図14は、tMgAl=0.28nmを用いて作製された図4の垂直MTJ素子のTex=350℃におけるTMR比-磁場(H)曲線を示すグラフである。 図15は、図4の垂直MTJ素子におけるTMR比のtMgAlおよびTexとの関係を示すグラフである。
 (A)基本構造
 以下、図1、図2、図5を参照しながら、本発明の各実施形態に係る垂直磁化膜の前駆体構造及び垂直磁化膜構造について詳細に説明する。
 図1に示すように、本発明の一実施形態である垂直磁化膜の前駆体構造1は、基板2、下地層3、鉄基合金層4、第1の金属膜51と第2の合金膜52からなる非磁性の積層構造5からなる。
 基板2は(001)面をもつMgO、Si単結晶もしくはこれらが(001)に優先配向した構造を有する配向膜である。さらに、基板2の材料としてマグネシウム-アルミニウムスピネル(MgAl)、チタン酸ストロンチウム(SrTiO)、マグネシウム-チタン酸化物(MgTiO)、Geを用いてもよい。
 下地層3は導電性のある金属もしくは合金等からなり、好ましくはクロム(Cr)、銀(Ag)、金(Au)、ルテニウム(Ru)、レニウム(Re)、これらの合金、もしくはNiAl(ニッケル-アルミニウム)合金、窒化チタンなどである。下地層3の膜厚は例えば5~200nm程度の薄膜状である。
 鉄基合金層4は、組成材料としてAlを含む鉄基合金の生成物層からなる層で、例えばFeAlである。
 図5は、FeAlの結晶構造の構成図である。FeAlは、結晶構造がD0型(BiF型、空間群No.225:Fm-3m)の結晶構造を持ち、キュリー温度Tc=713K、格子定数aFe3Al=0.5789nmである。Feは対称位置が異なる2つのサイト(Fe、FeII)にあり、磁気モーメントはそれぞれFe(実験値)=2.2μ/原子、FeII(実験値)=1.5μ/原子であり、総計では2.2×2+1.5=5.9μ/化学式となっている。ここで、μはボーア磁子である。鉄基合金層4の膜厚は0.5~2nm程度の超薄膜状であり(001)成長している。鉄基合金層4は、所定の処理によって、図2に示す垂直磁化層7に転換される層である。
 FeAlの再安定の結晶構造はD0型である。これに対して、Feの結晶構造は体心立方格子構造(body-centered cubic, bcc構造)であり、FeAlよりもAlが多い組成を持つFeAlの結晶構造はB2型である。D0型FeAlはFe-Alサイトの規則化によって、その格子定数はFeの2倍となる。なお、FeとAlサイトが不規則化したbcc構造も作製方法によって得られることがあるが、本形態における鉄基合金層4として有効に機能する。一方、B2型FeAlは非磁性体であるため、鉄基合金層4として利用できない。以上から、強磁性を持つ範囲でFe-Al組成を連続的に変化させることが可能であり、すなわち好ましい組成範囲はFe100-xAl(0<x<40)である。
 なお、この鉄基合金層4に含まれるAl原子の一部もしくは大部分は、所定の酸化処理と熱処理に伴って、非磁性層6に移動していてもよい。すなわち鉄基合金層4に含まれるAl原子は、例え実質上すべて非磁性層6へ移動していても、鉄基合金層4が垂直磁化膜7として機能すればよい。
 鉄基合金層4として、D0構造を持ち、Fe-Alと類似した特性を持つ鉄基の強磁性体である例えばFeSi、FeGa、FeGeにおいても同等の効果が実現される。したがって、鉄基合金層4の一般表記として、Fe100-x(MはAl、Si、Ga、Geの群から選択される1つ以上の元素であって、0<x<40の範囲)を用いることができる。
 積層構造5は、第1の金属膜51と第2の合金膜52で構成されるもので、所定の酸化処理と熱処理によって非磁性層6に転換される層である。なお、熱処理は必ずしも必要がないものの、適切な熱処理を行うことによって垂直磁気異方性(PMA)を向上させることができる。第1の金属膜51は、鉄基合金層4の上に設けられた所定の金属元素からなるものであって、当該第1の金属膜51にアルミニウムを含まない。当該所定の金属元素はスピネル構造の酸化物を構成する金属元素であり、例えばMgである。なお、第1の金属層51は必ずしも必要としない。第1の金属層51の厚さは例えば0~1nm程度である。
 第2の合金膜52は、当該第1の金属膜51の上に設けられた所定の合金元素からなるものであって、当該第2の合金膜52はアルミニウムを含むことを特徴とする。ここで、当該所定の合金元素は、当該合金元素が酸化した場合には、スピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ酸化物となるものであり、例えばMg-Al組成物であるMg1-xAl(0<x≦1)である。第2の金属層52の厚さは例えば0.2~3nm程度である。
 図2は、本発明の一実施形態に係る垂直磁化膜構造101を示す断面図を示すもので、図1に示す垂直磁化膜の前駆体構造1に対して所定の酸化処理をして得られる。
 所定の酸化処理は、例えば酸素ガス等を用いて酸化を行う自然酸化、酸素ラジカルを用いて酸化するラジカル酸化、酸素プラズマを用いて酸化するプラズマ酸化を用いることができ、この酸化処理によって、積層構造5は酸化物からなる非磁性層6に転換し、鉄基合金層4は垂直磁化層7へ転換する。なお、所定の熱処理は、例えば真空中で行われ、アニール温度が200℃から500℃の範囲のものであり、垂直磁化層7のPMAを向上させる。非磁性層6は、鉄基合金層4(もしくは垂直磁化層7)の上に形成され、スピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ酸化物であり、(001)面をもって成長した層から構成される。この層は鉄基合金層4に垂直磁気異方性を付与し、垂直磁化層7に転換させる役割を持つ。非磁性層6の構成材料として、好ましくはMg-Al酸化物であり、Mg-Al組成としてMg1-xAl(0<x≦1)であればよい。さらにこの層は立方晶系に属するスピネル構造(AB)、もしくは立方晶であればスピネル構造の陽イオンサイトが不規則化した構造を有しても良い。ABのAおよびBは金属であり、例えばMg、Al、Li、Zn、In,Ga、Cd、Cr、V、Tiなどが該当する。非磁性層6の膜厚は第1の金属層51、第2の合金層52の厚さによって変化し、典型的には0.5~4nm程度である。
 保護膜層8は、非磁性層6の上に設けられるもので、非磁性層6とは別の非磁性層であり、例えば、タンタル(Ta)、ルテニウム(Ru)、金(Au)などの金属層である。保護膜層8の厚さは例えば2~20nmである。
 図2にある保護膜層8は、実施例にて、磁気特性を測定する際に垂直磁化膜構造の表面の過酸化や汚染を防ぐために設けられる。このため、保護膜層8は、垂直磁化膜としてはあってもなくてもその機能に影響がない。一方、垂直磁化膜構造の上に金属層を設けた構造ではトンネル磁気抵抗効果とは異なるタイプの磁気抵抗効果(例えばトンネル異方性磁気抵抗効果、通称TAMR効果)を示すため、この構造は磁気センサー機能を備えたデバイスとして利用できる。この場合、保護膜層8は、上部電極層またはキャップ層とも呼ばれる。
 次に、図3乃至図4を参照しながら、本発明の各実施形態に係る垂直MTJ膜および垂直MTJ素子について詳細に説明する。
 図3に示すように、本発明の一実施形態である垂直MTJ膜11は、成膜時においては、基板12、下地層13、鉄基合金層14、第1の金属膜151と第2の合金膜152からなる非磁性の積層構造15、第2の強磁性層16および保護膜層17を有する。なお、垂直MTJ膜では、成膜後の酸化処理により、鉄基合金層14が第1の垂直磁化層18となり、積層構造15が非磁性層19(トンネルバリア層19)となり、第2の強磁性層16が第2の垂直磁化層20となる。
 すなわち鉄基合金層14は、所定の処理によって、第1の垂直磁化層18に転換される層である。
 非磁性の積層構造15は、第1の金属膜151と第2の合金膜152からなるもので、酸化処理によりトンネルバリア層19に転換される。ここで、第1の金属膜151は、鉄基合金層14の上に設けられた所定の金属元素からなるものであって、当該第1の金属膜151にアルミニウムを含まない。当該所定の金属元素はスピネル構造の酸化物を構成する金属元素であり、例えばMgである。第2の合金膜152は、当該第1の金属膜151の上に設けられた所定の合金元素からなるものであって、当該第2の合金膜152はアルミニウムを含むことを特徴とする。
 第2の強磁性層16は、非磁性層15と直接接しており、公知の垂直磁化膜を用いることができる。このため、組成材料としてコバルト-鉄合金、コバルト-鉄-ホウ素合金、マンガン-ガリウム合金、マンガン-ゲルマニウム合金、および鉄とコバルトの群から選択される1つ以上の元素と白金とパラジウムの群から選択される1つ以上の元素との合金からなる群より選ばれた強磁性層が利用できる。また、鉄基合金層14と同じ構造、材料を用いることができる。さらに、第2の強磁性層16は、アモルファス構造を有する垂直磁化膜、たとえばテルビウム-コバルト-鉄(Tb-Co-Fe)合金膜を含んでも良い。第2の強磁性層16は、膜厚として1nm~10nm程度であり、また、例えば垂直磁化膜/Ru(0.5~1.2nm)/垂直磁化膜の3層構造であってもよい。第2の強磁性層16は適切な成膜手法の選択と熱処理によって第2の垂直磁化膜20と転じる層である。
 トンネルバリア層19は、垂直磁気異方性を付与する目的だけではなく、MTJ素子とした場合にはトンネルバリアの役割も有する。トンネルバリア層19は、(001)面およびそれに等価な面をもって成長していることが好ましい。これによって、第1の垂直磁化層18と第2の垂直磁化膜20の一部が(001)成長した垂直MTJ素子となるため高いTMR比が実現される。
 保護膜層17は、第2の垂直磁化膜20の上に設けられるもので、非磁性層19とは別の非磁性層、例えば、タンタル(Ta)、ルテニウム(Ru)、金(Au)などの金属層から形成される。保護膜層17の厚さは例えば2~20nmである。
 図4に示すように、本発明の一実施形態である垂直MTJ素子21は、基板22、下地層23、第1の垂直磁化層24、非磁性層25(トンネルバリア層25)、第2の垂直磁化層26、保護層膜27、上部電極28、層間絶縁膜層30を有する。
 基板22から保護膜層27までの各層には、前述した垂直MTJ膜11における基板12から保護層膜17までの各層と同一の構造を用いることができる。上部電極28にはTa、Ru、Au、Pt、Al、銅(Cu)などの金属膜が用いられる。上部電極28の典型的な厚さとしては、10~300nmである。また、垂直MTJ素子21では、下地層23の一部、第1の垂直磁化層24、非磁性層25(トンネルバリア層25)、第2の垂直磁化層26、保護膜層27は、MTJ素子となる部分以外が取り除かれており、取り除かれた部分には代わりに例えばSiOやAlなどの絶縁体からなる層間絶縁膜層30が設置された構造をもつ。これによって下地層23と上部電極28との間に電流を膜面直方向に流すことが可能になり、垂直MTJ素子として機能させることができる。
 (B)製造方法
 以下、図1、図2を用いて本発明の実施形態である垂直磁化膜の前駆体構造の製造方法について記述する。以下、鉄基合金層4に用いる鉄基合金としてFe100-xAlを、非磁性層6に用いる酸化物としてMg-Al-Oを例として説明する。
 まず、下地層3の作製方法としては、基板2を(001)面をもつMgO単結晶とし、超高真空マグネトロンスパッタ装置(到達真空度6×10-7Pa程度)を用い、例えば、Cr薄膜を直流(DC)マグネトロンスパッタにより成膜を室温にて行う。スパッタ用プロセスガスとして例えばアルゴン(Ar)を用いることができる。Cr膜厚は例えば40nmであるが平坦膜状になればより薄くてもよい。その後500~900℃で真空中ポスト加熱処理を行うことでより平坦にする。Crの場合はMgO上に(001)面を持って成長する。
 次に、鉄基合金層4は下地層3の上に形成される。この層は垂直磁化層7のもとになる。鉄基合金層4は既知の合金膜を得る手法を用いて作製することができる。例えば、直流マグネトロンスパッタ、高周波(RF)マグネトロンスパッタ、電子線蒸着法、抵抗加熱蒸着法などを用いることができる。原料として、組成調整を行ったFe-Al合金をターゲットとして成膜する方法に加え、複数のターゲットを用いた同時成膜を利用できる。例えば、純Feと純Alのターゲットを用いた同時成膜や、異なるFe-Al組成を持った2つのターゲットを用いた同時成膜などを用いることができる。また、原子面厚さ程度(0.1~0.2nm)のFe層とAl層を交互積層する原子交互積層技術を利用することでこの層を形成しても良い。上記の手法を組み合わせて、Fe-Al組成を微調整することができる。鉄基合金層4の膜厚は、垂直磁化を得るのに適した超薄膜状である0.5~1.5nm程度である。成長時の温度は室温でよく、平坦膜状として得ることができればより高い温度での形成も可能である。鉄基合金層4はその後100~200℃程度での真空中ポスト加熱処理により結晶品位を向上できる。また、鉄基合金層4は膜面直方向にFeとAlの濃度勾配があっても良い。
 次に、作製した鉄基合金層4に、まず第1の金属膜51を形成させ、続いて第2の合金膜52を形成させる。そのために、第1の金属膜としてMg金属膜51を0~0.6nm程度の範囲の膜厚で例えば直流マグネトロンスパッタを用いて形成させる。このMg挿入層は非磁性層界面近傍の結晶構造の改善に寄与する。なお、Mg挿入層は必ずしも必要としない。
 続いて、第2の合金膜としてMg-Al合金膜を0.2~3nmの厚さで例えばRFマグネトロンスパッタなどを用いて形成させる。Mg-Alの組成として、例えばMg20Al80やMg40Al60であるが、Mg1-xAl(0<x≦1)の範囲の組成であれば、酸化後にスピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ立方晶の酸化物(代表的にはMgAl)として得ることができるため、すべて用いることができる。また、第2の合金膜は膜面直方向に組成の勾配があっても良い。Mg-Al層形成後に真空チャンバー内に酸素ガスを0.1~10Pa導入し、Mg-Al層を酸素雰囲気中に曝すことを自然酸化法と呼ぶ。自然酸化法によって、結晶質のMgAlからなる非磁性層6が、積層構造5をもとに形成される。この自然酸化法による変化は、図1と図2の間の層変化に対応している。
 なお、自然酸化法に代えて、Mg-Al層の酸化には酸素ガス雰囲気中でスパッタカソードと基板間に酸素プラズマを制御させて形成させることによって酸化物を得る方法を用いることもできる。この手法をプラズマ酸化法と呼ぶ。プラズマ酸化法には、直接酸素プラズマに試料を晒して行う直接プラズマ酸化法と、酸素プラズマと試料間にシャッターを設置するなどして直接酸素プラズマに試料を晒さないで行う間接プラズマ酸化法がある。前者の方がより強力な酸化力が得られる。酸化時間として自然酸化法では数秒~1時間程度、プラズマ酸化法では1秒~数分程度であり、所望の酸化強度に応じて選択される。
 非磁性層6(MgAl)は、もとになるMg-Al層の組成とMg層との膜厚比率、さらに鉄基合金層4から拡散するAl量などに依存してMg-Al組成が変動する。また、この層は必ずしもMg:Al:O=1:2:4原子比を必要としないことから、この非磁性層6は以後Mg-Al-O層と一般的に記述する。Mg-Al-O層は立方晶のスピネル構造か、スピネル構造の陽イオンサイトが不規則化した構造を持つ立方晶の構造をとり、鉄基合金層(001)上にMg-Al-O(001)を直接成長させることができる。鉄基合金とMg-Al-Oとの格子不整合は高々1~2%であるため、これらの積層膜の結晶格子整合性は極めて良好なものとなる。
 Mg-Al-O層6は、自然酸化法、プラズマ酸化法のいずれを用いた場合でも、もととなるMg層膜厚、Mg-Al層膜厚、およびMg-Al組成に応じて酸化力を適切に調整することで、高品質な膜状として形成できる。このとき、Mg-Al層の酸化中に鉄基合金層に含まれるAlの一部の移動が起きていても良い。鉄基合金層4とMg-Al-O層6との界面において、鉄基合金層4の大部分を占める鉄原子とMg-Al-O層6の酸素原子のそれぞれの電子軌道の混成が効果的に起こることにより、強い垂直磁化が誘起される。鉄基合金層4は例えAl組成が拡散することなどによって変化した場合でもMg-Al-O層6との高い格子整合性が保持される。
 非磁性層6に相当するMg-Al-O層は、MgAlなどの酸化物ターゲットからの高周波(RF)スパッタ成膜による方法を用いて形成できる。また、Mg-Al酸化法としては、酸素ラジカルを用いるラジカル酸化法や、基板加熱の利用による酸化の促進などの手法ももちろん利用可能である。Mg-Al-O層6の形成後に100-600℃程度のポスト加熱処理を行うことで結晶品質が向上でき、(001)配向性が向上することでより強いPMAが得られやすくなる上、MTJ素子では高いTMR比が得られるようになる。
 次に図3を参照しながら、本発明の各実施形態に係る垂直MTJ膜11の製造方法について記述する。垂直MTJ膜11では、基板12から非磁性層19までの各層の作製には、前述した垂直磁化膜の前駆体構造1および垂直磁化膜101と同一の作製法を用いることができる。以下、第2の強磁性層16として純Feとコバルト-鉄-ホウ素(Co-Fe-B)合金との積層膜を例として説明する。積層構造15の上に、例えば室温においてFeを直流マグネトロンスパッタで作製する。膜厚は0.02nm~0.5nmの範囲とすることで、積層構造15(Mg-Al-O層)との間に強いPMAを得ることができる。次に、Fe層の上にCo-Fe-B合金層を0.5~1.3nmの膜厚の範囲で、例えば直流マグネトロンスパッタ等で室温において成膜を行う。Co-Fe-Bの組成として(Co1-xFe8020(0.2≦x≦1)が例えば利用できる。このFeとCo-Fe-B合金膜からなる第2の強磁性層16は例えば200℃~350℃の範囲で熱処理を行うことで第2の垂直磁化膜20とすることができる。保護膜層17は、第2の垂直磁化膜20の上に設けられ、例えばTaとRuをこの順でスパッタすることによって形成することで得ることができる。
 次に図4を参照しながら、本発明の各実施形態に係る垂直MTJ素子21の製造方法について記述する。基板22から保護膜層27までの各層の作製には、前述した垂直MTJ膜11と同一の手法を用いることができる。以下、層間絶縁膜層30にSiO、上部電極28にAuを用いた例を示す。垂直MTJ素子21を得るためには微細加工技術を用いる。微細加工方法の例として、保護膜層27上にフォトレジストを設置した後、フォトリソグラフィーもしくは電子線リソグラフィーなどの手法を用いて、素子が形成される部分をフォトレジストによってマスクする。引き続き、Arイオンエッチング装置や反応性イオンエッチング装置などを用いて、保護膜層27から下部層23の一部までエッチング処理を行う。その後、エッチング部分にSiO層30をRFマグネトロンスパッタ等によって形成させ、フォトレジストマスクをリフトオフする。次に、Au120nmからなる上部電極28を素子上部に形成させる。適宜、Auなどの金属からなる下部電極を下部層23と接するように形成することで垂直MTJ素子として機能させることができる。
 (C)特性
 次に図6、図7を参照して、本実施形態の垂直磁化膜について以下の実施例として説明する。
 垂直磁化膜構造として、MgO(001)単結晶基板/Cr(40nm)/鉄基合金層Fe-Al(tFeAl)/Mg(0.2nm)/Mg-Al(tMgAl)-間接プラズマ酸化/Ru(2nm)の構造を持つ多層膜をスパッタ成膜とプラズマ酸化により形成した例を示す。ここでtFeAlは鉄基合金層(Fe-Al)膜厚、tMgAlはMg-Al膜厚を示す。MgO単結晶基板は、有機溶媒と超純水を用いて洗浄された後に、真空チャンバーに導入され、600℃で加熱を行うことで清浄な結晶面を得た。その後、室温に基板を冷却後、2インチ径マグネトロンスパッタ装置を用いて各層の形成を行った。Fe-Al層の成膜には純Feと純Alの2つのターゲットを用いて同時スパッタを行った。純Feターゲットでは直流電源、純AlターゲットはRF電源を用いて各投入電力を変化させることによって組成調整を行った。Fe-Al組成はFe72Al28、Mg-Al組成としてMg40Al60を用いた。なお、これらの組成は高周波誘導結合プラズマ発光分光法によって同定された値である。多層膜は特性改善のため、Tex=200~350℃の温度範囲で真空中アニール処理をおこなった。間接プラズマ酸化の条件として、酸素5PaとAr1Paを混合したガスを用い、2インチ径ターゲットに印加するRF電力は7Wとした。酸化時間は50sに固定した。
 図6はtMgAl=0.7nmと固定して作製した垂直磁化膜構造における飽和磁化MsとtFeAlの積(Ms・tFeAl)をtFeAlに対してプロットしたものである。Ms・tFeAlは単位面積あたりの飽和磁化を示す。図6では、Texとして300℃の結果を代表として示している。また、直線は線形フィッティングの結果である。この図から、Ms・tFeAlはtFeAlにほぼ比例しており、切片はほぼゼロである。したがって、下地のCr層とMg-Al-O層との界面にはFe-Alの磁化が低下している部分、すなわち磁気的デッドレイヤーがほとんど存在しないことを意味している。これはCr、Fe-Al、Mg-Al-O各層間の格子不整合が小さく、平滑で高品位な結晶品位を持つ界面が得られていることを示唆している。この線形フィッティングの傾きから各Texにおける平均のMsが算出できる。図7には算出されたMsのTex依存性を示している。比較例として、40nm厚さをもつFe72Al28膜のMs値を点線として示した。この図から、Tex増加につれFe72Al28超薄膜のMsはわずかに増加するが、おおむね880~910emu/cmの狭い範囲に収まっていることがわかる。この緩やかなMsの増加はTexにおける結晶品位の向上を示している。一方、40nmの厚さを持つ膜のMs~750emu/cmの値よりも明確に大きい。実施例2で示すように、Fe-Al層のAl組成がもとのFe72Al28から減少し、おおよそFe77Al23程度の組成に変化していることを示唆している。
 図8は、tMgAl=0.7nmの垂直磁化膜構造における垂直磁気異方性の大きさKuのFe72Al28膜厚(tFeAl)とTex依存性を示すグラフである。垂直磁気異方性の大きさKuは測定した磁化曲線から得られた膜面内方向の異方性磁場Hk、飽和磁化Msを用いて、Ku=Hk×Ms/2の関係から算出した。正のKuは垂直磁化膜であることを示し、負のKuは面内磁化膜であることを示している。図8では、算出されたKuについて、tFeAl=0.8~2.0nm、Tex=200℃~350℃における結果を示した。また、比較例として熱処理前(As-depo、Tex=20℃)の結果も示している。As-depoでは、tFeAl≦1.6nmにおいて垂直磁化膜となっていることがわかる。したがって、Fe-Al/Mg-Al-O構造では、熱処理を行わなくても垂直磁化を得ることが可能であることを示している。またTex増加によって、tFeAl≦1.2nmでは著しいKuの増大が観察される。特に、Kuは、例えばtFeAl=1.0nm、Tex=250℃の条件において、最大値として7Merg/cm(0.7MJ/m)が得られた。この最大値は、特許文献4に示したような、鉄基合金層に代えてCoFeAlを用い、膜厚1.0nmとした場合の最大値4Merg/cm(0.4MJ/m)に対して約1.7倍程度になっている。さらに、Tex=350℃においてもtFeAl≦1.2nmにおいて垂直磁化を保持することが可能であり、CoFeAlを用いた場合よりも耐熱性が良い。
 図9は、図2の垂直磁化膜構造における磁化曲線の一例を示す図である。図9では、tFeAl=1.0nm、tMgAl=0.7nm、Tex=200℃で、外部磁場を膜面内方向(In-plane)および膜面直方向(Out-of-plane)に印加して測定している。また、磁化の大きさ(M)を飽和磁化の値(Ms)で規格化してある。膜面直方向に外部磁場を印加したときに、容易に磁化が反転し小さい磁場で磁化が飽和する様子が見られる。一方で、膜面内方向に外部磁場を印加した場合は磁化させることが困難であり、この方向が磁化困難方向となっている。図9に矢印で示したとおり、この垂直磁化膜構造の異方性磁場Hkは約10kOeである。したがって、この多層膜構造は、膜面直方向に磁化容易軸方向を持つ垂直磁化膜であることを示している。
 次に、本実施形態の垂直磁化膜について図2の垂直磁化膜構造の鉄基合金層4として、膜厚1nmのFe100-xAl層を用いた実施例を示す。ここで用いたのは、x=11.0、19.6、27.9(実施例1の組成:Fe72Al28)原子比である。第2の合金膜52として、膜厚が0.7nmで、Mg-Al組成としてMg40Al60を用いた。間接プラズマ酸化法によって、第1の金属層Mgと第2の合金膜52は酸化されて、Mg-Al-O層となり、好ましくは酸化の程度としてMgAlとする。
 図10は、垂直磁気異方性の大きさKuのアニール熱処理温度Tex依存性を示すグラフである。高いTex(=450℃)において、x=19.6%組成では大きいKuが実現されており、耐熱性が非常に良い。これに対して、x=11.0%組成では、飽和磁化Msがより高いため、いずれのTexにおいても面内磁化のままである。即ち、Al組成調整によって垂直磁化膜の特性を設計できる。また、x=27.9%組成では、Tex(=250℃)においてKuの最高値を得ており、Texが250℃より高くなると、却ってKuが低下する。
 図11は、飽和磁化MsのTex依存性を示すグラフである。実線は線形フィッティングの結果を示しており、x=11.0%組成、19.6%組成、27.9%組成の3類型を示している。MsはAl組成比率x増加に対して単調に減少する点は、バルクFe-Alと同様である。また、熱処理によってわずかにMsが増大するものの、膜厚が1nmと非常に薄いのにもかかわらず、安定している。
 図12は、x=19.6%組成、Tex=450℃の場合について、磁化曲線の一例を示す図である。非常に強いPMAが得られており、磁化曲線形状も良い(面内磁化曲線が閉じている)。即ち、膜内の不均一性が少ない。また、図12に矢印で示したとおり、この垂直磁化膜構造の異方性磁場Hkは約13kOeである。したがって、Fe-Al組成の設計によってさらにPMAの向上、耐熱性の向上ができる。
 図13は、Al組成比率xの依存性を示すグラフで、(A)は磁気異方性の大きさKu、(B)は飽和磁化Msの場合を示している。Al組成比率x増加に対するMs減少挙動は超薄膜、厚膜(bulk)ともに同様であるが、超薄膜のほうがより高いMsを持つ。即ち、Fe-Al層中の数%程度のAlがMg-Al-O層側へ拡散し、結果としてもとのFe-Al比率よりもFeリッチ組成になっていると考えられる。
 低いアニール熱処理温度Tex領域ではAlリッチ組成(x=27.9%)において他の組成よりも高いKuが得られる。一方、より高いTex(例えば、350℃以上)でx=19.6%組成においてより高いKuが得られるようになる。以上のことから、Fe-Al組成、Fe-Al膜厚、熱処理温度の調整によって垂直磁化膜として幅広い設計ができることがわかる。
 次に図14、図15を用いて本発明の一実施形態である垂直MTJ膜および垂直MTJ素子の例について説明する。垂直MTJ膜として、MgO(001)単結晶基板/Cr(40nm)/鉄基合金層Fe-Al(1nm)/Mg(0.2nm)/Mg-Al(tMgAl)-間接プラズマ酸化/Fe(0.1nm)/Co-Fe-B(1.4nm)/Ta(2nm)/Ru(8nm)の構造を持つ多層膜をスパッタ成膜とプラズマ酸化により形成した。ここでtMgAlはMg-Al膜厚を示す。Fe-Al組成はFe72Al28、Mg-Al組成としてMg40Al60を用いた。また、間接プラズマ酸化によってMg/Mg-Al層はMg-Al-O層へ転換する。この垂直MTJ膜では、MgO基板からMg-Al-O層までの作製方法として実施例1の垂直磁化膜構造と同一の方法を用いた。
 Mg-Al-O層は結晶性の向上と平坦性の確保のため、250℃において真空チャンバー内で15分ポストアニールを行った。その後、直流マグネトロンスパッタを用いて、室温においてFe層とCo-Fe-B層をこの順番で成膜した。用いたCo-Fe-B合金のターゲット組成はCo40Fe4020である。
 この実施例では、保護膜層として、Ta/Ruの2層構造を用いた。この保護膜層は、素子としたときに上部電極としての機能も有する。Ta層とRu層はいずれもスパッタ成膜により形成した。
 次に、垂直MTJ膜は、スパッタチャンバーから取り出した後、フォトリソグラフィー装置、アルゴンイオンエッチング装置、リフトオフ法を用いた微細加工技術を用いて垂直MTJ素子へ加工した。素子サイズは10×5μmの楕円形状とし、素子周辺に層間絶縁膜としてSiO(30nm)をスパッタによって形成した。また、上部電極と下部電極としてTa(3nm)/Au(120nm)の2層膜をスパッタによって形成した。
 作製した垂直MTJ素子は、真空熱処理炉を用いてTex=200℃から350℃の範囲で30分熱処理を行った。引き続き、室温において膜垂直方向に磁場を印加して、素子抵抗変化(TMR比)-磁場曲線(TMR-H曲線)を測定した。
 図14は、tMgAl=0.28nmを用いて作製された垂直MTJ素子の最適TexにおけるTMR-H曲線を示すグラフである。図14の太い矢印は第1の垂直磁化膜24(下側)および第2の垂直磁化膜26(上側)の着磁方向を示している。この図から曲線の角形性が非常に良く、磁場掃引によって平行磁化配列と反平行磁化配列が明確に区別できる。最適なTexは、例えば350℃であり、この時TMR比として40%が得られている。ここで、TMR比(%)は、平行磁化配列時の素子抵抗R、反平行磁化配列時の素子抵抗RAPを用いて、100×(RAP-R)/Rと定義した。
 図15は、垂直MTJ素子におけるTMR比のtMgAlおよびTexとの関係を示すグラフである。Texとしては、200℃から350℃まで50℃間隔で測定している。また、比較例として、熱処理を行わない試料(As-depo)の結果も表記してある。As-depoでは第2の垂直磁化膜26(Fe/Co-Fe-B)が完全な垂直磁化膜となっていないため、TMR比が小さい。一方、最適なTexに近づくにつれTMR増大が見られる。また、tMgAlが小さい領域(例えば、tMgAl≦0.5nm)においてtMgAlが大きい領域よりも大きなTMR比が得られている。これは、tMgAlが大きくなるにつれ、PMAが低下しているためである。tMgAlが大きい領域では、相対的な酸化強度が小さいため、未酸化のMgおよびMg-Alが残存することがこのPMA低下の原因として考えられる。したがって、Mg-Al-O層作製時の酸化強度の調整によってPMAの大きさを最適に保つことができる。
 なお、本発明は上記の実施形態に限定されるものではなく、当業者にとって自明範囲で種々の変形実施例が含まれることは、言うまでもない。例えば、上記の膜厚は一例にすぎず、垂直MTJ素子等のスピントロニクスデバイスの仕様に適合するように、適宜の膜厚を採用できる。製造プロセスにおける温度や真空圧、熱処理時間も、垂直MTJ素子等のスピントロニクスデバイスの製造歩留まりに適合するように、適宜の値を採用できる。
 本発明による垂直磁化膜はスピントロニクスデバイス、例えば、高密度なスピン移行トルク書き込み型MRAMや電圧トルク書き込み型MRAMの垂直MTJ素子用強磁性層に利用できる。また、高精度で超小型な磁気センサーとしての利用が可能である。
 本発明の垂直磁化膜の製造方法は、垂直磁化膜がFe基合金とMg-Al酸化物の組み合わせ構造なので、製造プロセスが簡易になると共に、製造条件が比較的広い許容範囲を有する為、垂直MTJ素子等のスピントロニクスデバイスの製造工程に利用できる。
1 垂直磁化膜の前駆体構造
101 垂直磁化膜構造
11 垂直磁化型トンネル磁気抵抗接合膜(垂直MTJ膜)
21 垂直磁化型トンネル磁気抵抗接合素子(垂直MTJ素子)
2、12、22 基板
3、13、23 下地層
4、14、24 鉄基合金層
5、15 積層構造
51、151 第1の金属膜(Mg)
52、152 第2の合金膜(Mg-Al)
6 非磁性層(Mg-Al-O層)
7 垂直磁化層
8、17、27 保護膜層(Ta/Ru積層膜)
16 第2の強磁性層
18、24 第1の垂直磁化層
19、25 非磁性層(トンネルバリア層)
20、26 第2の垂直磁化層
28 上部電極
30 層間絶縁膜層
 

Claims (9)

  1.  (001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系の配向膜を有する基板と、
     当該基板の上に位置し、良導電体からなる下地層と、
     当該下地層の上に位置し、組成材料としてアルミニウムを含む鉄基合金の生成物層からなる鉄基合金層と、
     当該鉄基合金層の上に設けられた所定の金属元素からなる第1の金属膜であって、当該第1の金属膜はアルミニウムを含まない、第1の金属膜と、
     当該第1の金属膜の上に設けられた所定の合金元素からなる第2の合金膜であって、当該第2の合金膜はアルミニウムを含む、第2の合金膜と、
     を備え、
     当該所定の金属元素はスピネル構造の酸化物を構成する金属元素であり、
     当該所定の合金元素は、当該合金元素が酸化した場合には、スピネル構造もしくはスピネル構造の陽イオンサイトが不規則化した構造を持つ酸化物となることを特徴とする垂直磁化膜の前駆体構造。
  2.  前記鉄基合金層はFe100-x層で表されることを特徴する請求項1に記載の垂直磁化膜の前駆体構造。
     ここで、MはAl、Si、Ga、Geの群から選択される1つ以上の元素であって、0<x<40の範囲である。
  3.  請求項1又は2に記載の垂直磁化膜の前駆体構造を用いて作製された、前記鉄基合金層が転じた第1の垂直磁化層と、前記第1の金属膜と第2の合金膜が転じた非磁性層を有する垂直磁化膜構造。
  4.  前記非磁性層は、結晶体のMg1-yAl―O層(0<y≦1)、(0.8≦x≦1.7)であることを特徴とする請求項3に記載の垂直磁化膜構造。
  5.  (001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系の配向膜を有する基板と、
     当該基板の上に位置し、良導電体からなる下地層と、
     当該下地層の上に位置し、組成材料としてアルミニウムを含む鉄基合金の生成物層からなる鉄基合金層、もしくは当該鉄基合金層が転じた第1の垂直磁化層と、
     当該鉄基合金層もしくは第1の垂直磁化層の上に設けられた所定の金属元素からなる第1の金属膜であって、当該第1の金属膜はアルミニウムを含まない、第1の金属膜と、当該第1の金属膜の上に設けられた所定の合金元素からなる第2の合金膜であって、当該第2の合金膜はアルミニウムを含む、第2の合金膜との積層構造を用いて作製されたトンネルバリア層と、
     当該トンネルバリア層の上に設けられた第2の強磁性層、もしくは当該第2の強磁性層が転じた第2の垂直磁化層であって、前記第2の強磁性層は、組成材料としてコバルト-鉄合金、コバルト-鉄-ホウ素合金、マンガン-ガリウム合金、マンガン-ゲルマニウム合金、および鉄とコバルトの群から選択される1つ以上の元素と白金とパラジウムの群から選択される1つ以上の元素との合金からなる群より選ばれた強磁性材料よりなる、第2の強磁性層、もしくは第2の垂直磁化層と、
     を備えることを特徴とする垂直磁化型トンネル磁気抵抗接合素子。
  6.  (001)面を持つ立方晶系単結晶または(001)面をもって成長した立方晶系または正方晶系の配向膜を有する基板を提供する工程と、
     当該基板の上に、良導電体からなる下地層を形成する工程と、
     当該下地層の上に、組成材料としてアルミニウムを含む鉄基合金層の成膜を行う工程と、
     当該鉄基合金層の上に、所定の金属元素からなる第1の金属膜の成膜を行う工程であって、当該金属元素にアルミニウムを含まず、
     当該第1の金属膜の上に、所定の合金元素からなる第2の合金膜の成膜を行う工程であって、当該合金元素にアルミニウムを含み、
     前記第1の金属膜及び第2の合金膜へ酸化処理を行うことによって酸化物層を形成して、垂直磁化層を形成する工程と、
     当該垂直磁化層の上に、(001)面を有する非磁性層を形成する工程とを有することを特徴とする垂直磁化膜構造の製造方法。
  7.  前記酸化物層がMg1-xAl(0<x≦1)合金の酸化物層であることを特徴とする請求項6に記載の垂直磁化膜構造の製造方法。
  8.  請求項6又は7に記載の垂直磁化膜構造の製造方法を用いて、基板、下地層、垂直磁化層、並びに非磁性層を形成する工程と、
     前記非磁性層の上に、組成材料としてコバルト-鉄基合金、コバルト-鉄-ホウ素合金、マンガン-ガリウム合金、マンガン-ゲルマニウム合金、および鉄とコバルトの群から選択される1つ以上の元素と白金とパラジウムの群から選択される1つ以上の元素との合金からなる群より選ばれた強磁性材料よりなる第2の垂直磁化層を形成する工程と、
     を有することを特徴とする垂直磁化型トンネル磁気抵抗接合素子の製造方法。
  9.  請求項8に記載の垂直磁化型トンネル磁気抵抗接合素子の製造方法を含むことを特徴とするスピントロニクスデバイスの製造方法。
     
PCT/JP2018/031877 2017-09-11 2018-08-29 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子 WO2019049740A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18852964.8A EP3683851B1 (en) 2017-09-11 2018-08-29 Precursor structure of perpendicular magnetization film, perpendicular magnetization film structure and method for manufacturing same, perpendicular magnetization-type tunnel magnetoresistance junction film using those and method for manufacturing same, and perpendicular magnetization-type tunnel magnetoresistance junction element using those
JP2019540909A JP6873506B2 (ja) 2017-09-11 2018-08-29 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
US16/640,429 US11374168B2 (en) 2017-09-11 2018-08-29 Precursor structure of perpendicularly magnetized film, perpendicularly magnetized film structure and method for manufacturing the same, perpendicular magnetization-type magnetic tunnel junction film in which said structure is used and method for manufacturing the same, and perpendicular magnetization-type magnetic tunnel junction element in which said structure or magnetic tunnel junction film is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174000 2017-09-11
JP2017-174000 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049740A1 true WO2019049740A1 (ja) 2019-03-14

Family

ID=65635073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031877 WO2019049740A1 (ja) 2017-09-11 2018-08-29 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子

Country Status (4)

Country Link
US (1) US11374168B2 (ja)
EP (1) EP3683851B1 (ja)
JP (1) JP6873506B2 (ja)
WO (1) WO2019049740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199233A1 (ja) * 2020-03-31 2021-10-07 Tdk株式会社 磁気抵抗効果素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690838B2 (ja) * 2016-02-02 2020-04-28 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
US11348715B2 (en) * 2019-06-10 2022-05-31 Samsung Electronics Co., Ltd. Semiconductor device and method of making the same
JP7434962B2 (ja) * 2020-02-05 2024-02-21 Tdk株式会社 磁気抵抗効果素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320933A (ja) * 1994-05-27 1995-12-08 Japan Energy Corp Fe−Si−Al合金軟磁性膜及びその製造方法
WO2010119928A1 (ja) 2009-04-16 2010-10-21 独立行政法人物質・材料研究機構 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
WO2010134435A1 (ja) 2009-05-22 2010-11-25 独立行政法人物質・材料研究機構 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
JP2013175615A (ja) 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
US20140110804A1 (en) * 2012-10-18 2014-04-24 Agency For Science, Technology And Research Magnetoresistive device and method for forming the same
JP2017041606A (ja) 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6647590B2 (ja) 2015-04-23 2020-02-14 国立研究開発法人物質・材料研究機構 垂直磁化膜と垂直磁化膜構造並びに磁気抵抗素子および垂直磁気記録媒体
JP6690838B2 (ja) * 2016-02-02 2020-04-28 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
US11217289B1 (en) * 2020-07-31 2022-01-04 Western Digital Technologies, Inc. Spinel containing magnetic tunnel junction and method of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320933A (ja) * 1994-05-27 1995-12-08 Japan Energy Corp Fe−Si−Al合金軟磁性膜及びその製造方法
WO2010119928A1 (ja) 2009-04-16 2010-10-21 独立行政法人物質・材料研究機構 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
WO2010134435A1 (ja) 2009-05-22 2010-11-25 独立行政法人物質・材料研究機構 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
JP2013175615A (ja) 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
US20140110804A1 (en) * 2012-10-18 2014-04-24 Agency For Science, Technology And Research Magnetoresistive device and method for forming the same
JP2017041606A (ja) 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. PERUMAL, Y. K. TAKAHASHIK. HONO: "L1 FePt-C Nanogranular Perpendicular Anisotropy Films with Narrow Size Distribution", APPLIED PHYSICS EXPRESS, vol. 1, 2008, pages 101301
BELMOUBARIK, MOHAMED ET AL.: "MgA1204(001) based magnetic tunnel junctions made by direct sputtering of a sintered spinel target", APPLIED PHYSICS LETTERS, 30 March 2016 (2016-03-30), pages 132404-1, XP012206382 *
J. KOOH. SUKEGAWAS. MITANI: "Interface perpendicular magnetic anisotropy in Fe/MgA1 0 layered structures", PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, vol. 8, 2014, pages 841 - 844
S. IKEDA ET AL.: "A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction", NATURE MATERIALS, vol. 9, 2010, pages 721 - 724
See also references of EP3683851A4
Z. C. WENH. SUKEGAWAS. MITANIK. INOMATA: "Perpendicular magnetization of Co FeAI full-Heusler alloy films induced by MgO interface", APPLIED PHYSICS LETTERS, vol. 98, 2011, pages 242507, XP012141063, DOI: 10.1063/1.3600645

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199233A1 (ja) * 2020-03-31 2021-10-07 Tdk株式会社 磁気抵抗効果素子

Also Published As

Publication number Publication date
JP6873506B2 (ja) 2021-05-19
EP3683851A1 (en) 2020-07-22
EP3683851B1 (en) 2022-06-22
US11374168B2 (en) 2022-06-28
US20200357985A1 (en) 2020-11-12
JPWO2019049740A1 (ja) 2020-10-01
EP3683851A4 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
US10230044B2 (en) Fully compensated synthetic ferromagnet for spintronics applications
JP5586028B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP6873506B2 (ja) 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
JP6647590B2 (ja) 垂直磁化膜と垂直磁化膜構造並びに磁気抵抗素子および垂直磁気記録媒体
JP6690838B2 (ja) 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
JP6857421B2 (ja) 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法
WO2002093661A1 (fr) Element magnetoresistif
KR101897916B1 (ko) 이지-콘 상태의 자성층을 구비한 자기터널 접합 소자
JP2011138954A (ja) 強磁性層の垂直磁化を用いた磁気トンネル接合デバイスの製造方法
US10395809B2 (en) Perpendicular magnetic layer and magnetic device including the same
JP6583814B2 (ja) 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
JP2004179668A (ja) 磁気抵抗素子
CN114497363A (zh) 磁性隧道结器件、使用其的磁存储器装置以及其制造方法
Parvin et al. Epitaxial L1 0-MnAl Thin Films with High Perpendicular Magnetic Anisotropy and Small Surface Roughness
Abugri et al. Structural and Magnetic Properties of CoPd Alloys for Non-Volatile Memory Applications
JP6985708B2 (ja) Mn系強磁性薄膜およびその製造方法、ならびにMn系強磁性薄膜を有する磁気トンネル接合素子
Feng et al. Electrical control of fast ordering process in as-deposited non-perpendicular and perpendicular FePt films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852964

Country of ref document: EP

Effective date: 20200414