WO2019047857A1 - 空调及其控制方法 - Google Patents

空调及其控制方法 Download PDF

Info

Publication number
WO2019047857A1
WO2019047857A1 PCT/CN2018/104199 CN2018104199W WO2019047857A1 WO 2019047857 A1 WO2019047857 A1 WO 2019047857A1 CN 2018104199 W CN2018104199 W CN 2018104199W WO 2019047857 A1 WO2019047857 A1 WO 2019047857A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
cross
preset
flow fan
air conditioner
Prior art date
Application number
PCT/CN2018/104199
Other languages
English (en)
French (fr)
Inventor
韩涛
任德亮
臧金玲
魏菡
张振超
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019047857A1 publication Critical patent/WO2019047857A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the technical field of air conditioning, and in particular to an air conditioner and a control method thereof.
  • the hot air at the air outlet of the air conditioner converges with the air blown by the air conditioner, which will form condensation on the air outlet of the air conditioner, causing complaints from users.
  • the condensation condition is aggravated as the fan speed decreases, because the smaller the wind speed, the less the condensation formed by the air outlet is blown dry. Therefore, especially when the wind speed of the fan is small, condensation is easily generated at the air outlet of the indoor unit. When the condensation increases to a certain extent, it will drip from the surface of the air conditioner, affecting the user experience.
  • the present invention has been made in order to provide an air conditioner and a control method thereof that overcome the above problems or at least partially solve the above problems.
  • Another object of the present invention is to improve the user experience.
  • the present invention provides a method for controlling an air conditioner.
  • the indoor unit of the air conditioner includes two cross-flow fans, and each cross-flow fan corresponds to one air outlet.
  • the speed of each cross-flow fan can be independently set.
  • the method includes: Obtain the speed of each cross-flow fan set by the user; set the operation mode of the cross-flow fan or the operating frequency of the air-conditioner compressor according to the set speed of the two cross-flow fans.
  • the step of setting the operating mode of the cross-flow fan or the operating frequency of the air-conditioning compressor according to the set rotational speed of the two cross-flow fans includes: determining whether there is only one cross-flow fan, the set speed is less than the first preset The speed; if so, the cross-flow fan that controls the set speed to be less than the first preset speed to operate periodically according to a predetermined operating rule.
  • the step of controlling the cross-flow fan whose set speed is less than the first preset speed to operate periodically according to a predetermined running rule comprises: controlling the cross-flow fan to continuously run for the first preset time according to the speed set by the user; Rotating the speed of the flow fan to the second preset speed and continuously running for a second preset time; re-lowering the speed of the cross-flow fan to the set speed, and repeating the above-mentioned running steps; wherein the first preset time is greater than the second preset Time, the first preset speed is less than the second preset speed.
  • the second preset rotation speed is determined according to a ratio of the first preset time to the second preset time.
  • the step of setting the operating mode of the cross-flow fan or the operating frequency of the air-conditioning compressor according to the set speed of the two cross-flow fans further comprises: determining whether the set speeds of the two cross-flow fans are smaller than the first pre-predetermined Set the speed; if so, keep the compressor running at low frequencies.
  • the present invention also provides an air conditioner, comprising: an indoor unit, the indoor unit includes: a casing, the bottom of the front side of the casing is provided with two air outlets; and two cross flow fans are disposed on the left and right sides of the casing On both sides, each cross-flow fan corresponds to one air outlet, and the speed of each cross-flow fan can be independently set; the compressor is configured to compress refrigerant cooling; the speed acquisition module is configured to acquire each cross-flow fan set by the user. And the main control module is configured to set the operating mode of the two cross-flow fans or the operating frequency of the compressor according to the set speed of the two cross-flow fans.
  • the main control module is further configured to: when the set speed of only one cross-flow fan is less than the first preset speed, control the cross-flow fan whose set speed is less than the first preset speed according to a predetermined operation The rules run periodically.
  • the main control module is further configured to: after the cross-flow fan is continuously operated for the first preset time according to the currently set speed, the speed of the cross-flow fan is increased to the second preset speed and the second preset time is continuously operated. Re-reducing the speed of the cross-flow fan to the set speed, and repeating the above-mentioned running steps; wherein the first preset time is greater than the second preset time, and the first preset speed is less than the second preset speed.
  • the main control module is further configured to: determine a second preset rotational speed according to a ratio of the first preset time to the second preset time.
  • the main control module is further configured to keep the compressor running at a low frequency when the set speeds of the two cross flow fans are both less than the first preset speed.
  • the operating mode of the cross-flow fan or the operating frequency of the air-conditioning compressor is set according to the set rotational speed of the two cross-flow fans.
  • the cross-flow fan of the air conditioner of the present invention is in any operating state.
  • the method of setting the operating mode of the cross-flow fan or the operating frequency of the air-conditioning compressor can reduce the generation of condensation at the outlet of the cross-flow fan, thereby effectively preventing dripping at the air outlet and improving the user experience.
  • FIG. 1 is a schematic view of an indoor unit of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is an exploded view of an indoor unit of an air conditioner according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a cross flow fan and a swinging blade assembly of an air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 4 is a schematic block diagram of an air conditioner in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method of controlling an air conditioner according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of controlling an air conditioner according to another embodiment of the present invention.
  • Figure 8 is a schematic illustration of wind speed versus time for a first fan of an air conditioner in accordance with another embodiment of the present invention.
  • the embodiment of the invention first provides an air conditioner, including: an indoor unit and an outdoor unit.
  • An evaporator is disposed inside the indoor unit, and a compressor 50 and a condenser are disposed inside the outdoor unit, and the compressor 50, the evaporator, and the condenser constitute a refrigerant circulation system.
  • the compressor 50 is configured to compress refrigerant refrigeration.
  • the specific refrigerant circulation refrigeration principle is well known to those skilled in the art and will not be described again here.
  • the air conditioner further includes a rotation speed acquiring module 40 and a main control module 60.
  • the rotational speed acquisition module 40 is configured to acquire the rotational speed of each of the cross flow fans 20.
  • the main control module 60 can be electrically connected to the rotational speed acquisition module 40 to obtain data received by the rotational speed acquisition module 40.
  • the user can set the rotational speeds of the two cross flow fans 20 using the remote controller, and the rotational speed acquisition module 40 receives an instruction from the user.
  • the main control module 60 is configured to set the operating mode of the two cross flow fans 20 or the operating frequency of the compressor 50 according to the magnitude of the rotational speed of the two cross flow fans 20.
  • the main control module 60 is configured to control the first fan to periodically operate according to a predetermined operational rule when only one of the cross-flow fans 20 has a rotational speed that is less than the first predetermined rotational speed.
  • the first fan operates at a user-set speed for most of the time, and the first fan rotates at a high speed for the remainder of the time.
  • the main control module 60 controls the cross-flow fan 20 to continue to operate for the first preset time according to the currently set rotation speed, and then increases the rotation speed of the cross-flow fan 20 to the second preset rotation speed and continuously runs the second pre-run.
  • the first fan is operated at a relatively low speed set by the user for a relatively long period of time, and then the speed is increased to operate at a high speed for a relatively short period of time.
  • a small portion of the condensation produced by the first fan during low wind operation is blown dry by a timed high wind speed, reducing the risk of condensation condensation.
  • the main control module 60 does not need to change the operating frequency of the compressor 50, so the outlet air temperature of the second fan does not change.
  • the second wind speed can be set according to the actual situation of the air conditioner indoor unit.
  • the first fan may also be controlled to operate at a second predetermined speed during a certain period of time in each of the operating cycles, and other similar variants are not enumerated one by one.
  • the main control module 60 is further configured to keep the compressor 50 operating at a low frequency when the set rotational speeds of the two cross flow fans 20 are both less than the first predetermined rotational speed.
  • the main control module 60 will keep the compressor 50 running at a low frequency, thereby ensuring that the difference between the outlet air temperature and the ambient temperature is not increased to reduce condensation generation. Since the cross-flow fan 20 is operated at a low speed, the amount of air blown and the amount of heat exchange are small, so even if the frequency of the compressor 50 is reduced, the outlet air temperature is not excessively affected, resulting in an excessively high outlet air temperature.
  • Each cross-flow fan 20 is provided with a separate swinging blade assembly 30.
  • the air conditioning indoor unit includes two sets of swinging blade assemblies 30.
  • the two sets of swinging blade assemblies 30 are disposed inside the air outlets, and each set of swinging blade assemblies 30 corresponds to the position of a cross flow fan 20 in the lateral direction of the air conditioning indoor unit, and provides a wind guiding function for the corresponding cross flow fan 20.
  • Each cross flow fan 20 is also provided with a fan motor 21.
  • the fan motor 21 is disposed at an end of the cross-flow fan 20 away from the other cross-flow fan 20 for driving the cross-flow fan 20 to rotate.
  • the above two fan motors 21 can be operated simultaneously to drive the two fans to rotate at the same time, or one of the fan motors 21 can be separately turned on so that one of the two fans is in an operating state and the other stops the air supply.
  • the two sets of swinging blade assemblies 30 are disposed inside the air outlets, and each set of swinging blade assemblies 30 corresponds to the position of a cross flow fan 20 in the lateral direction of the air conditioning indoor unit, and provides a wind guiding function for the corresponding cross flow fan 20.
  • the air conditioning indoor unit of the present embodiment has two sets of cross flow fans 20 and two sets of independently controllable swing vane assemblies 30.
  • the cross-flow fan 20 of the air-conditioning indoor unit can be separately controlled, and the two sets of swinging blades 32 can be swinged to both sides at the same time to increase the air supply area of the indoor unit; the two sets of swinging blades 32 can also swing to the inside at the same time, in the air conditioner
  • the middle part of the indoor unit forms a mixed flow wind to increase the user's comfort. It is also possible to separately open the cross flow fan 20 and the swinging blade assembly 30 on one side, thereby reducing the output power of the indoor unit, and being more energy-saving and environmentally friendly.
  • the air conditioner indoor unit of the embodiment has a plurality of adjustable air supply modes, which improves the user experience.
  • step S504 the operation mode of the cross flow fan 20 or the operating frequency of the air conditioner compressor 500 is set according to the set rotation speed of the two cross flow fans 20, thereby realizing the function of anti-condensation.
  • FIG. 6 is a flow chart of a method of controlling an air conditioner in accordance with one embodiment of the present invention.
  • the control method performs the following steps in sequence:
  • step S602 the rotational speed of each cross-flow fan 20 set by the user is acquired.
  • step S604 it is determined whether there is a set speed of the cross flow fan 20 that is less than the first preset speed. It will be easily understood by those skilled in the art that when the air conditioner is cooled, condensation is likely to occur at the air outlet, especially in the case where the wind speed is low (the condensation is blown when the wind speed is high). Therefore, when the set speed of one or two cross-flow fans 20 is lower than the first preset speed, the operation mode of the cross-flow fan 20 needs to be set, or the operating frequency of the compressor 500 is limited to avoid condensation. Dew hidden.
  • the first preset rotation speed is a threshold value of whether the air outlet of the air conditioner indoor unit generates a large amount of condensation, and the first preset rotation speed can be set according to the specific model size of the air conditioner.
  • Step S606 if the result of the determination in step S604 is YES, it is further determined whether there is only one set of the cross-flow fan 20 that is lower than the first preset speed, that is, one of the two cross-flow fans 20 is higher than the first one.
  • the preset speed is running; the other is running below the first preset speed.
  • Step S610 if the result of the determination in step S606 is YES, control the cross-flow fan 20 (first fan) whose set rotation speed is smaller than the first preset rotation speed to periodically operate according to a predetermined operation rule to reduce the generation of condensation.
  • Another cross flow fan 20 (second fan) operates at a user set speed. During each operating cycle of the first fan, most of the time is operated at a speed set by the user, and the cross-flow fan 20 is rotated at a high speed for the remaining time. During the high-speed rotation of the fan, the high-speed wind can blow the condensation generated when the cross-flow fan 20 operates at a low speed to prevent the condensation from collecting and dripping at the air outlet.
  • control method 7 is a flow chart of a method of controlling an air conditioner in accordance with one embodiment of the present invention.
  • the control method is used for periodically controlling the first fan operation of the indoor unit, and the method sequentially performs the following steps:
  • step S702 the cross flow fan 20 is controlled to continue to operate for the first preset time according to the speed set by the user.
  • Step S704 the rotation speed of the cross flow fan 20 is increased to a second preset rotation speed and the second preset time is continuously operated.
  • the second preset rotation speed is greater than the first preset rotation speed, and the condensation accumulated by the air outlet in the first preset time is blown by the high wind speed in the second preset time.
  • step S706 the rotation speed of the cross flow fan 20 is re-reduced to the set rotation speed, and the above operation steps are repeated cyclically so that the condensation generation is prevented in each operation cycle of the cross flow fan 20.
  • the specific operation rule of the first fan is as shown in FIG. 8.
  • Each operation cycle T of the first fan includes two time periods t1 and t2, and runs at a low speed of the user-set rotation speed n1 during the t1 time period, and is in the t2 time period. Internally, the motor is operated at a high speed at a second preset speed n2, where t1>t2.

Abstract

一种空调的控制方法,其空调的室内机包括两个贯流风扇(20),每个贯流风扇(20)对应一个出风口(12),每个贯流风扇(20)的转速可独立设定,控制方法包括:获取用户设定的每个贯流风扇(20)的转速;根据两个贯流风扇(20)的设定转速大小设置贯流风扇(20)的运行模式或空调压缩机(50)的运行频率。还提供了一种空调。该空调的控制方法及空调能减少贯流风扇对应出风口处凝露的生成,有效避免出风口处滴水,提高了用户使用体验。

Description

空调及其控制方法 技术领域
本发明涉及空气调节技术领域,特别涉及一种空调及其控制方法。
背景技术
空调制冷运行时,空调出风口位置热空气与空调吹出冷空气汇合,会在空调出风口形成凝露,造成用户抱怨。凝露情况会随风扇转速降低而加重,这是因为风速越小,出风口形成的凝露越不容易被吹干。因此,特别是当风扇风速较小的时候,室内机出风口处极易产生凝露,当凝露增大到一定程度会从空调表面滴下,影响用户体验。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的空调及其控制方法。
本发明的一个目的是为了减少空调室内机凝露的形成。
本发明的另一个目的是为了提高用户使用体验。
一方面,本发明提供了一种空调的控制方法,空调的室内机包括两个贯流风扇,每个贯流风扇对应一个出风口,每个贯流风扇的转速可独立设定,方法包括:获取用户设定的每个贯流风扇的转速;根据两个贯流风扇的设定转速大小设置贯流风扇的运行模式或空调压缩机的运行频率。
可选地,根据两个贯流风扇的设定转速大小设置贯流风扇的运行模式或空调压缩机的运行频率的步骤包括:判断是否仅存在一个贯流风扇的设定转速小于第一预设转速;若是,控制设定转速小于第一预设转速的贯流风扇按照预定的运行规则周期性运行。
可选地,控制设定转速小于第一预设转速的贯流风扇按照预定的运行规则周期性运行的步骤包括:控制贯流风扇按照用户设定的转速持续运行第一预设时间;提高贯流风扇的转速至第二预设转速并持续运行第二预设时间;重新降低贯流风扇的转速至设定的转速,并循环重复上述运行步骤;其中第一预设时间大于第二预设时间,第一预设转速小于第二预设转速。
可选地,第二预设转速根据第一预设时间和第二预设时间的比值确定。
可选地,根据两个贯流风扇的设定转速大小设置贯流风扇的运行模式或空调压缩机的运行频率的步骤还包括:判断是否两个贯流风扇的设定转速均小于第一预设转速;若是,保持压缩机以低频运行。
另一方面,本发明还提供了一种空调,包括:室内机,室内机包括:壳体,壳体的前侧底部开设两个出风口;两个贯流风扇,设置于壳体内部的左右两侧,每个贯流风扇对应一个出风口,每个贯流风扇的转速可独立设定;压缩机,配置成压缩冷媒制冷;转速获取模块,配置成获取用户设定的每个贯流风扇的转速;和主控模块,配置成根据两个贯流风扇的设定转速大小设置两个贯流风扇的运行模式或压缩机的运行频率。
可选地,主控模块还配置成:当仅存在一个贯流风扇的设定转速小于第一预设转速的情况下,控制设定转速小于第一预设转速的贯流风扇按照预定的运行规则周期性运行。
可选地,主控模块还配置成:控制贯流风扇按照当前设定的转速持续运行第一预设时间后,提高贯流风扇的转速至第二预设转速并持续运行第二预设时间;重新降低贯流风扇的转速至设定的转速,并循环重复上述运行步骤;其中第一预设时间大于第二预设时间,第一预设转速小于第二预设转速。
可选地,主控模块还配置成:根据第一预设时间和第二预设时间的比值确定第二预设转速。
可选地,主控模块还配置成:当两个贯流风扇的设定转速均小于第一预设转速的情况下,保持压缩机以低频运行。
本发明的方法,根据两个贯流风扇的设定转速大小设置贯流风扇的运行模式或空调压缩机的运行频率。本发明空调的贯流风扇无论处于何种运行状态。都可以通过设置贯流风扇的运行模式或空调压缩机的运行频率的方法减少贯流风扇对应出风口处凝露的生成,能够有效避免出风口处滴水,提高了用户使用体验。
进一步地,当仅存在一个贯流风扇的设定转速小于第一预设转速的情况下,控制设定转速小于第一预设转速的贯流风扇(第一风扇)按照预定的运行规则周期性运行,以减少凝露的产生。另一个贯流风扇(第二风扇)按照用户设定的转速运行。在第一风扇的每个运行周期内,其中大部分时间按照用户设定的转速运转,在剩余时间内贯流风扇高速转动。在风扇高速转动的时间内,高速风可以吹干贯流风扇低速运行时产生的凝露,防止凝露在出风 口聚集滴落。本发明的方法,通过设置贯流风扇的运行模式减少凝露生成,而无需改变压缩机的运行频率,因此空调室内机的出风温度不会受到影响,保证了用户使用体验。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调室内机的示意图;
图2是根据本发明一个实施例的空调室内机的分解图;
图3是根据本发明一个实施例的空调室内机的贯流风扇和摆叶组件的示意图;
图4是根据本发明一个实施例的空调的示意框图;
图5是根据本发明一个实施例的空调控制方法的示意图;
图6是根据本发明一个实施例的空调控制方法的流程图;
图7是根据本发明另一个实施例的空调控制方法的流程图;
图8是根据本发明另一个实施例的空调的第一风机的风速关于时间变化的示意图。
具体实施方式
本发明实施例首先提供了一种空调,包括:室内机和室外机。室内机内部设置有蒸发器,室外机内部设置有压缩机50和冷凝器,压缩机50、蒸发器和冷凝器组成冷媒循环系统。压缩机50配置成压缩冷媒制冷。具体的冷媒循环制冷原理是本领域技术人员习知的,这里不再进行赘述。
室内机包括:壳体10和两个贯流风扇20。壳体10的前侧底部开设两个并排的出风口12,两个贯流风扇20沿室内机横向且同轴地设置于室内机内部的左右两侧。左侧的贯流风扇20对应左出风口,右侧的贯流风扇20对应右出风口。每个出风口12处还设置有导风板11,导风板11沿室内机横向延伸的轴线转动,以调节贯流风扇20的竖向出风方向。本实施例的空调室内机具有两个送风区域,即左贯流风扇20的送风区域和有贯流风扇20的送风 区域。用户可以通过使用遥控器控制两个贯流风扇20以不同的转速运行。具体可以根据室内不同用户的不同需求分别设定两个贯流风扇20的转速。例如:在制冷时,位于左送风区域的用户感觉到冷,而位于右送风区域的用户感觉到热,那么可以控制左贯流风扇20以低速运行,降低送风量;同时控制右贯流风扇20以高速运行,提高送风量。
上述空调还包括:转速获取模块40和主控模块60。转速获取模块40配置成获取每个贯流风扇20的转速。主控模块60可以和转速获取模块40电相连,以获取转速获取模块40接收的数据。用户可以使用遥控器设定两个贯流风扇20的转速,转速获取模块40接收用户发出的指令。主控模块60配置成根据两个贯流风扇20的转速大小设定两个贯流风扇20的运行模式或压缩机50的运行频率。
本领域技术人员容易理解,在空调制冷时,出风口处容易产生凝露,特别是在风速较低的情况下(风速高的时候,凝露会被吹干,而在风速较低的时候不容易吹干)。因此,当一个或两个贯流风扇20的设定转速低于第一预设转速时,需要对贯流风扇20的运行模式或压缩机50的运行频率进行设置,以避免出现凝露隐患。
当两个贯流风扇20中的一个风扇(以下简称第一风扇)的转速小于第一预设转速,而另一个贯流风扇20(以下简称第二风扇)的转速大于第一预设转速时,第一风扇对应的出风口处容易产生凝露。主控模块60配置成当仅存在一个贯流风扇20的转速小于第一预设转速的情况下,控制第一风扇按照预定的运行规则周期性运行。
在上述每个运行周期内,第一风扇在大部分时间按照用户设定的转速运转,在剩余时间内第一风扇高速转动。例如在本实施例中,主控模块60控制贯流风扇20按照当前设定的转速持续运行第一预设时间后,提高贯流风扇20的转速至第二预设转速并持续运行第二预设时间;重新降低贯流风扇20的转速至设定的转速,并循环重复上述运行步骤;其中第一预设时间大于第二预设时间,第一预设转速小于第二预设转速。也就是在每个运行周期内,第一风扇先以用户设定的相对较低的转速运行相对较长的一段时间,然后再提高转速以高转速运行相对较短的一段时间。第一风扇低风运行时产生的小部分凝露通过定时的高风速吹干,降低凝露聚集滴下的风险。而且,主控模块60无需改变压缩机50的运行频率,因此第二风扇的出风温度不会发生变 化。上述第二风速可以根据空调室内机的实际情况进行设定。在本发明另外一些实施例中,也可以控制第一风扇在每个运行周期的中间某个时间段内以第二预设转速运行,另外还有其它类似的变形方案不在此逐一类举。
在本实施例中,主控模块60还配置成:根据第一预设时间和第二预设时间的比值确定第二预设转速。上述第二预设转速和第一预设时间和第二预设时间相关。在第一预设时间内,贯流风扇20低速运行,出风口处产生少部分凝露,在第二预设时间内,利用贯流风扇20的高风速吹干第一预设时间内产生的凝露。因此,第一预设时间越长、第二预设时间越短,室内机出风口处产生的凝露越多,相应的,第二预设转速应该越大,以彻底吹干出风口的凝露。
主控模块60还配置成:当两个贯流风扇20的设定的转速均小于第一预设转速的情况下,保持压缩机50以低频运行。当两个贯流风扇20均以低速运行时,主控模块60会保持压缩机50以低频运行,从而保证出风温度与环境温度之差不增加以减少凝露生成。由于贯流风扇20以低速运行时,出风量和换热量均较少,因此即使压缩机50频率减低,也不会过度影响出风温度,导致出风温度过高。
每个贯流风扇20均配置各自独立的摆叶组件30。在本实施例中,空调室内机包括两组摆叶组件30。两组摆叶组件30设置于出风口内侧,每组摆叶组件30在空调室内机的横向上与一个贯流风扇20的位置相对应,并为对应的贯流风扇20提供导风功能。每个贯流风扇20还配置有:风扇电机21。风扇电机21设置于贯流风扇20远离另外一个贯流风扇20的一端,用于驱动贯流风扇20转动。上述两个风扇电机21可以同时运行,以驱动两个风扇同时转动,也可以单独开启其中一个风扇电机21,以使得两个风扇中的其中一个处于运行状态,另一个停止送风。
两组摆叶组件30设置于出风口内侧,每组摆叶组件30在空调室内机的横向上与一个贯流风扇20的位置相对应,并为对应的贯流风扇20提供导风功能。
如图4所示,每组摆叶组件30包括:连杆31、多片摆叶32和步进电机。连杆31沿空调室内机的横向延伸设置,连杆31可沿自身长度方向运动。多片摆叶32间隔且可枢转地设置于连杆31上,在连杆31沿自身长度方向运动时,带动多个摆叶32沿空调室内机的横向左右摆动。具体地,每片摆叶 32的根部具有一个短杆,短杆上设置有两个枢转轴,其中第一个枢转轴位于短杆的末端,连接连杆31,第二个枢转轴、即摆叶转轴连接位于摆叶32上方的蜗舌条。在连杆31横向运动的过程中,每片摆叶32绕摆叶转轴左右摆动。当摆叶32向左摆动时,贯流风扇20向空调室内机左侧出风;当摆叶32向右摆动时,贯流风扇20向空调室内机右侧出风。上述两个摆叶组件30左右对称设置,两个连杆31在同一条直线上。
本实施例的空调室内机具有两组贯流风扇20,以及两组独立可控的摆叶组件30。该空调室内机每个贯流风扇20可单独控制,两组摆叶32可以同时向两侧摆,以增大室内机的送风面积;两组摆叶32也可以同时向内侧摆动,在空调室内机的中间区域形成混流风,增加用户的舒适度;也可以单独开启一侧的贯流风扇20和摆叶组件30,减少室内机的输出功率,更加节能环保。本实施例的空调室内机具有多种可调节的送风模式,提高了用户的使用体验。
图5是根据本发明一个实施例的壁挂式空调控制方法的示意图。本实施例的控制方法一般性地可以包括以下步骤:
步骤S502,获取用户设定的每个贯流风扇20的转速。用户可以使用遥控器或者使用空调上的按键设定两个贯流风扇20的转速,转速获取模块40接收用户发出的指令。当然,用户还可以设置空调风速大小,转速获取模块40根据用户设的风速大小,计算得到贯流风扇20应该运行的转速。
步骤S504,根据两个贯流风扇20的设定转速大小设置贯流风扇20的运行模式或空调压缩机500的运行频率,从而实现防凝露的功能。
图6是根据本发明一个实施例的空调控制方法的流程图。该控制方法依次执行以下步骤:
步骤S602,获取用户设定的每个贯流风扇20的转速。
步骤S604,判断是否存在一个贯流风扇20的设定转速小于第一预设转速。本领域技术人员容易理解,在空调制冷时,出风口处容易产生凝露,特别是在风速较低的情况下(风速高的时候,凝露会被吹干)。因此,当一个或两个贯流风扇20的设定转速低于第一预设转速时,需要对该贯流风扇20的运行模式进行设置,或限制压缩机500的运行频率,以避免出现凝露隐患。上述第一预设转速即为空调室内机出风口是否大量产生凝露的转速阈值,上述第一预设转速可以根据空调的具体型号大小进行设定。
步骤S606,若步骤S604的判断结果为是,则进一步判断是否仅存在一个贯流风扇20的设定转速小于第一预设转速,即两个贯流风扇20中的其中一个以高于第一预设转速运行;另一个以低于第一预设转速运行。
步骤S608,若步骤S604的判断结果为否,两个贯流风扇20以用户设定的转速运行。若两个贯流风扇20的设定转速均大于第一预设转速,那么两个贯流风扇20的出风口均不存在凝露风险,主控模块60控制两个贯流风扇20按照用户设定的转速正常运行即可。
步骤S610,若步骤S606的判断结果为是,则控制设定转速小于第一预设转速的贯流风扇20(第一风扇)按照预定的运行规则周期性运行,以减少凝露的产生。另一个贯流风扇20(第二风扇)按照用户设定的转速运行。在第一风扇的每个运行周期内,其中大部分时间按照用户设定的转速运转,在剩余时间内贯流风扇20高速转动。在风扇高速转动的时间内,高速风可以吹干贯流风扇20低速运行时产生的凝露,防止凝露在出风口聚集滴落。
步骤S612,若步骤S606的判断结果为否,则保持压缩机500以低频运行。当两个贯流风扇20的设定的转速均小于第一预设转速的情况下,保持压缩机500以低频运行。当两个贯流风扇20均以低速运行时,主控模块60会保持压缩机500以低频运行,从而保证出风温度与环境温度差趋于稳定以减少凝露生成。由于贯流风扇20以低速运行时,出风量和换热量均较少,因此即使压缩机500频率减低,也不会过度影响出风温度,导致出风温度过高。
图7是根据本发明一个实施例的空调控制方法的流程图。该控制方法用于周期性控制室内机第一风扇运转,该方法依次执行以下步骤:
步骤S702,控制贯流风扇20按照用户设定的转速持续运行第一预设时间。
步骤S704,提高贯流风扇20的转速至第二预设转速并持续运行第二预设时间。上述第二预设转速大于第一预设转速,在第二预设时间内,利用高风速吹干出风口在第一预设时间内聚集的凝露。
步骤S706,重新降低贯流风扇20的转速至设定的转速,并循环重复上述运行步骤,使得贯流风扇20的每个运行周期均防止凝露生成。第一风扇的具体运行规则如图8所示,第一风扇的每个运行周期T包括t1和t2两个时间段,在t1时间段内以用户设定的转速n1低速运行,在t2时间段内,以 第二预设转速n2高速运转,其中t1>t2。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调的控制方法,所述空调的室内机包括两个贯流风扇,每个所述贯流风扇对应一个出风口,每个所述贯流风扇的转速可独立设定,所述方法包括:
    获取用户设定的每个所述贯流风扇的转速;
    根据两个所述贯流风扇的设定转速大小设置所述贯流风扇的运行模式或空调压缩机的运行频率。
  2. 根据权利要求1所述的控制方法,其中根据两个所述贯流风扇的设定转速大小设置所述贯流风扇的运行模式或空调压缩机的运行频率的步骤包括:
    判断是否仅存在一个所述贯流风扇的设定转速小于第一预设转速;
    若是,控制设定转速小于第一预设转速的所述贯流风扇按照预定的运行规则周期性运行。
  3. 根据权利要求2所述的控制方法,其中控制设定转速小于第一预设转速的所述贯流风扇按照预定的运行规则周期性运行的步骤包括:
    控制所述贯流风扇按照用户设定的转速持续运行第一预设时间;
    提高所述贯流风扇的转速至第二预设转速并持续运行第二预设时间;
    重新降低所述贯流风扇的转速至设定的转速,并循环重复上述运行步骤;其中所述第一预设时间大于所述第二预设时间,所述第一预设转速小于所述第二预设转速。
  4. 根据权利要求3所述的方法,其中
    所述第二预设转速根据所述第一预设时间和所述第二预设时间的比值确定。
  5. 根据权利要求1所述的控制方法,其中根据两个所述贯流风扇的设定转速大小设置所述贯流风扇的运行模式或空调压缩机的运行频率的步骤还包括:
    判断是否两个所述贯流风扇的设定转速均小于第一预设转速;
    若是,保持所述压缩机以低频运行。
  6. 一种空调,包括:
    室内机,所述室内机包括:
    壳体,所述壳体的前侧底部开设两个出风口;
    两个贯流风扇,设置于所述壳体内部的左右两侧,每个所述贯流风扇对应一个所述出风口,每个所述贯流风扇的转速可独立设定;
    压缩机,配置成压缩冷媒制冷;
    转速获取模块,配置成获取用户设定的每个所述贯流风扇的转速;和
    主控模块,配置成根据两个所述贯流风扇的设定转速大小设置两个所述贯流风扇的运行模式或所述压缩机的运行频率。
  7. 根据权利要求6所述的空调,其中所述主控模块还配置成:
    当仅存在一个所述贯流风扇的设定转速小于第一预设转速的情况下,控制设定转速小于第一预设转速的所述贯流风扇按照预定的运行规则周期性运行。
  8. 根据权利要求7所述的空调,其中所述主控模块还配置成:
    控制所述贯流风扇按照当前设定的转速持续运行第一预设时间后,提高所述贯流风扇的转速至第二预设转速并持续运行第二预设时间;重新降低所述贯流风扇的转速至设定的转速,并循环重复上述运行步骤;其中所述第一预设时间大于所述第二预设时间,所述第一预设转速小于所述第二预设转速。
  9. 根据权利要求8所述的空调,其中所述主控模块还配置成:
    根据所述第一预设时间和所述第二预设时间的比值确定所述第二预设转速。
  10. 根据权利要求6所述的空调,其中所述主控模块还配置成:
    当两个所述贯流风扇的设定转速均小于第一预设转速的情况下,保持所述压缩机以低频运行。
PCT/CN2018/104199 2017-09-07 2018-09-05 空调及其控制方法 WO2019047857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710801555.XA CN107560081A (zh) 2017-09-07 2017-09-07 空调及其控制方法
CN201710801555.X 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019047857A1 true WO2019047857A1 (zh) 2019-03-14

Family

ID=60979604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104199 WO2019047857A1 (zh) 2017-09-07 2018-09-05 空调及其控制方法

Country Status (2)

Country Link
CN (1) CN107560081A (zh)
WO (1) WO2019047857A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560081A (zh) * 2017-09-07 2018-01-09 青岛海尔空调器有限总公司 空调及其控制方法
CN109186043B (zh) * 2018-07-19 2020-11-27 青岛海尔空调器有限总公司 壁挂式空调及其控制方法
CN111121244A (zh) * 2019-12-30 2020-05-08 Tcl空调器(中山)有限公司 一种空调器的控制方法、装置及空调器
CN112797600B (zh) * 2020-12-30 2022-07-26 宁波奥克斯电气股份有限公司 压缩机频率控制方法、装置及空调器
CN112944592B (zh) * 2021-02-09 2022-08-05 格力电器(武汉)有限公司 一种空调系统的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040969A (ja) * 2012-08-23 2014-03-06 Daikin Ind Ltd 空気調和機
CN104101044A (zh) * 2013-04-01 2014-10-15 广东美的制冷设备有限公司 一种变频空调器的运行控制方法及装置
CN106440190A (zh) * 2016-09-09 2017-02-22 珠海格力电器股份有限公司 空调控制方法、装置及空调
CN107101328A (zh) * 2017-04-21 2017-08-29 青岛海尔空调器有限总公司 空调及其控制方法
CN107560081A (zh) * 2017-09-07 2018-01-09 青岛海尔空调器有限总公司 空调及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178535A (ja) * 1988-12-28 1990-07-11 Matsushita Electric Ind Co Ltd 空気調和機の送風装置
CN201438009U (zh) * 2009-06-19 2010-04-14 广东美的集团芜湖制冷设备有限公司 座吊两用式空调器的室内机
CN203240666U (zh) * 2013-05-23 2013-10-16 广东科龙空调器有限公司 一种多贯流风扇空调室内机
CN105890106A (zh) * 2015-01-26 2016-08-24 青岛海尔空调器有限总公司 空调器防凝露控制方法、控制装置及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040969A (ja) * 2012-08-23 2014-03-06 Daikin Ind Ltd 空気調和機
CN104101044A (zh) * 2013-04-01 2014-10-15 广东美的制冷设备有限公司 一种变频空调器的运行控制方法及装置
CN106440190A (zh) * 2016-09-09 2017-02-22 珠海格力电器股份有限公司 空调控制方法、装置及空调
CN107101328A (zh) * 2017-04-21 2017-08-29 青岛海尔空调器有限总公司 空调及其控制方法
CN107560081A (zh) * 2017-09-07 2018-01-09 青岛海尔空调器有限总公司 空调及其控制方法

Also Published As

Publication number Publication date
CN107560081A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2019047857A1 (zh) 空调及其控制方法
CN107255307B (zh) 空调
WO2019137376A1 (zh) 壁挂式空调及其自清洁控制方法
WO2019137377A1 (zh) 壁挂式空调及其自清洁控制方法
CN107255337B (zh) 空调的送风方法
WO2013084426A1 (ja) 空気調和機
WO2017140205A1 (zh) 空调设备出风结构及空调设备
CN103375882A (zh) 用于空调器的控制电路以及包含用于控制空调器的程序指令的计算机可读存储介质
CN112413733A (zh) 一种新风空调运行控制方法及新风空调器
JP5408317B1 (ja) 空調室内機
CN107120730A (zh) 壁挂式空调室内机及其控制方法
WO2019024822A1 (zh) 壁挂式空调室内机
KR20080046522A (ko) 공기조화기의 취침운전 시 기류제어장치 및 그 방법
WO2022237193A1 (zh) 空调器的送风控制方法、装置及空调器
WO2024045901A1 (zh) 挂壁式空调器室内机的控制方法及挂壁式空调器室内机
WO2021143559A1 (zh) 空调器的控制方法及空调器
WO2024045899A1 (zh) 空调及其制冷控制方法
CN111780245B (zh) 一种双出风口的空调器
CN110779089B (zh) 空调器的送风控制方法与空调器
KR100672508B1 (ko) 공기조화기용 실내기의 토출기류 제어방법
JP4090315B2 (ja) 空気調和機
KR100334931B1 (ko) 공조기용실내기의취출각제어방법
CN111780231A (zh) 一种柜式空调器
CN110220248A (zh) 一种双送风装置空调器及其使用方法
KR100717343B1 (ko) 공기조화기의 제습운전방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854510

Country of ref document: EP

Kind code of ref document: A1