WO2019047585A1 - 汽车空调的控制方法 - Google Patents

汽车空调的控制方法 Download PDF

Info

Publication number
WO2019047585A1
WO2019047585A1 PCT/CN2018/091356 CN2018091356W WO2019047585A1 WO 2019047585 A1 WO2019047585 A1 WO 2019047585A1 CN 2018091356 W CN2018091356 W CN 2018091356W WO 2019047585 A1 WO2019047585 A1 WO 2019047585A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
vehicle
air conditioner
control
mode
Prior art date
Application number
PCT/CN2018/091356
Other languages
English (en)
French (fr)
Inventor
张有林
赵桓
沈军
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to US16/645,963 priority Critical patent/US11179997B2/en
Priority to EP18853413.5A priority patent/EP3683086B1/en
Publication of WO2019047585A1 publication Critical patent/WO2019047585A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0065Control members, e.g. levers or knobs
    • B60H1/00657Remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00985Control systems or circuits characterised by display or indicating devices, e.g. voice simulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/14Driver interactions by input of vehicle departure time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application belongs to the technical field of air conditioners, and in particular relates to a control method for an automobile air conditioner.
  • the air conditioning system and the engine system are independent of each other. They are all powered by batteries.
  • the air conditioning compressor does not need to be driven by the car engine. Therefore, in principle, the air conditioner can be turned on before the engine starts, so that the vehicle is The inner space is pre-cooled and preheated, but no application is seen.
  • the energy efficiency of the traditional in-vehicle air conditioner is low, and the power supply efficiency of the battery pack is also lowered under the condition of low ambient temperature, thereby affecting the cruising range; especially in the case of heating the air, the battery power consumption is too fast, because The battery efficiency is low under low ambient temperature, and the hot air heating adopts PTC for heating, and the heating efficiency is low; since the pure electric vehicle has no engine waste heat for heating, the traditional PTC heating air heating method has low energy utilization rate, thereby further adding The battery consumption in a low temperature environment is large; therefore, the electric vehicles in the cold and cold regions of the north have a short battery life in winter.
  • the technical problem to be solved by the present application is to overcome the defects that the automobile air conditioner in the prior art cannot pre-cool or preheat the interior of the vehicle, resulting in low comfort of the user, thereby providing a control method for the automobile air conditioner.
  • the application provides a control method for an automobile air conditioner, which includes:
  • the pre-remote control includes pre-remote timing control: the pre-remote timing control includes turning on the air conditioner for pre-refrigeration or heating at t0 minutes before the vehicle is started, wherein the t0 is constant.
  • the pre-remote timing control comprises:
  • Steps are executed to select whether to open the outer loop or directly open the inner loop according to the result of the relationship;
  • the inner loop refers to: the air in the vehicle is circulated, and the air inside and outside the vehicle is not exchanged;
  • the outer loop means: the air outside the vehicle enters the vehicle Inside, there is air exchange between the inside and outside of the car.
  • the determining step is configured to determine whether T in >T ou +X1 is established;
  • the value range of X1 is 1 ⁇ X1 ⁇ 6; the value of time t1 ranges from 1 ⁇ t1 ⁇ 15.
  • the determining step is configured to determine whether T in ⁇ T out -X2 is established;
  • Execution step if T in ⁇ T out -X2 is established, the outer loop is turned on t2min earlier than the predetermined time t0, and then the air conditioner inner loop is turned on; if T in ⁇ T out -X2 is not established, the outer loop is not turned on, and the air conditioner is directly turned on. Inner loop;
  • the value range of X2 is 2 ⁇ X2 ⁇ 6; the value of time t1 ranges from 1 ⁇ t2 ⁇ 12.
  • the pre-remote control further includes remote intelligent temperature control, and the remote intelligent temperature control comprises:
  • Setting step set the temperature in the car to reach Tset2 within t3 time;
  • Detection step detecting the ambient temperature of the interior of the vehicle
  • Calculation step calculating the minimum time t4 when the temperature inside the vehicle reaches Tset2;
  • Judgment step judging the size relationship between t3 and t4;
  • Defining the cooling time of the air conditioning system according to the highest energy efficiency operation mode is t5, where t5 ⁇ t4; wherein the maximum capacity operation mode refers to the maximum capacity that the air conditioning unit can output under the current working conditions, and the highest energy efficiency operation mode refers to the current working condition. Under the air conditioning unit operating mode has the highest energy efficiency ratio.
  • the calculating step further comprises calculating a temperature value reachable in the vehicle within t3;
  • the implantation algorithm includes: when t3>t4, and t3 ⁇ t5, according to the difference between the interior and exterior temperature of the vehicle:
  • the running time is allocated as follows: the time of first running the outer loop is (t3-t4)*k1, and the remaining time is in accordance with the maximum capacity operating mode to make the interior temperature reach a preset value for a predetermined time, wherein the k1 value is The correction factor is given according to the temperature inside and outside the car and the temperature difference between the inside and outside of the car.
  • the initial in-vehicle temperature is defined as T0, and the pre-arrived temperature in the vehicle is set to Tset2.
  • the system first runs tx1min according to the maximum capacity operation mode, and then operates in the highest energy efficiency operation mode (t3-tx1) min.
  • the tx1 is linearly calculated by the maximum capacity operation mode and the cooling/heating rate of the highest energy efficiency operation mode, and the cooling/heating speeds for defining the maximum capacity operation mode and the highest energy efficiency operation mode are v1 and v2, respectively. :
  • the implanting algorithm further comprises: when t3 ⁇ t5, according to the difference between the interior and exterior temperature of the vehicle:
  • the minimum capacity operation mode + The highest energy efficiency operation mode, wherein the minimum capacity operation mode refers to a mode that maintains the temperature inside the vehicle and the minimum capacity that the air conditioning unit needs to output.
  • the running time is allocated as follows: the outer cycle running time is (t3-t5)*k2, and the remaining time is in the highest energy efficiency operation mode to make the interior temperature reach a preset value at a predetermined time, wherein the k2 value is corrected
  • the coefficient is given according to the temperature inside and outside the car and the temperature difference between the inside and outside of the car.
  • the initial in-vehicle temperature is defined as T0, and the pre-arrived temperature in the vehicle is set to Tset2.
  • the system first runs tx2min according to the highest energy efficiency operation mode, and then operates in the minimum capacity operation mode (t3-tx2) min.
  • the tx2 is linearly calculated by the cooling/heating speed of the highest energy efficiency operation mode and the minimum capacity operation mode, and the cooling/heating speeds defining the highest energy efficiency operation mode and the minimum capacity operation mode are v2 and v3, respectively. :
  • the pre-remote control further includes battery temperature pre-control, and the battery temperature pre-control includes:
  • Detection step means for automatically detecting whether the temperature of the car battery pack is within the optimal supply temperature range
  • Execution step when the temperature of the battery pack is within the optimal supply temperature range, the battery pack is not pre-controlled; when the temperature of the battery pack is not within the optimal supply temperature range, the battery pack is pre-temperature controlled;
  • the optimal power supply temperature range means that the battery pack has the highest power supply efficiency under this temperature range.
  • the optimal supply temperature range for defining the car is [Topt1, Topt2], the actual battery pack temperature is Tbat, and there are:
  • the battery pack is preheated to make the battery pack of the car reach Topt1 or more at a predetermined time;
  • the battery pack is pre-cooled so that the battery pack of the car reaches Topt1 or less at a predetermined time.
  • the pre-remote control further includes integrated control of air conditioning temperature control and battery charging control when the vehicle is charging.
  • the integrated control comprises: if the battery is fully charged when the air conditioner is pre-controlled, the air conditioning system is turned on according to a pre-control program to adjust the temperature of the vehicle while continuing to charge the battery, and the battery pack is maintained while the vehicle is in use. Fully charged while ensuring that the interior temperature reaches the preset requirements.
  • the integrated control comprises: if the battery power is not full when the air conditioner is pre-controlled, it is necessary to simultaneously evaluate the time required for the full charge, the time tc2 when the temperature of the vehicle is adjusted to the set temperature, and the time required for the pre-control of the air conditioning system.
  • the battery is charged to Qa or higher first, wherein the energy-saving mode is restarted to perform the indoor temperature adjustment while continuously charging, and the battery power is maintained at the full power state and the temperature inside the vehicle when the vehicle is used.
  • the preset range is also reached; where Max ⁇ tc2, tc3 ⁇ is the maximum value of tc2 and tc3.
  • the charging is prioritized, and the remote feedback cannot balance the temperature control and the charging, and the value Tn and the charged electric quantity reachable within the predetermined time can be reached.
  • the ratio ⁇ of the electricity is preferred.
  • the air conditioning refrigeration control mode comprises:
  • Mode B a2 ⁇ ⁇ ⁇ a1, b2 ⁇ Tn ⁇ b1;
  • the air conditioning heating control mode comprises:
  • Mode B' a2' ⁇ ⁇ ⁇ a1', b1' ⁇ Tn ⁇ b2';
  • a1' ⁇ a2' ⁇ a3', b1' ⁇ b2' ⁇ b3', a 1 ', a 2 ', a 3 ', b 1 ', b 2 ', b 3 ' are determined by the system based on actual temperature calculations .
  • the control method of the automobile air conditioner of the present application can pre-cool or heat the air conditioner before the vehicle is started by setting a pre-remote control step, thereby performing temperature control on the air inside the vehicle in advance, and when the user enters the vehicle, Achieving a comfortable temperature environment provides a comfortable environment for the owner and passengers, and provides remote control and pre-control for the new energy vehicle air conditioner, so that the temperature inside the vehicle reaches a preset comfortable state when the person reaches the vehicle;
  • the control method of the automobile air conditioner of the present application can simultaneously pre-control the temperature of the battery pack, so that the battery owner can reach the optimal state before use, improve the energy utilization rate of the battery, and improve the cruising range; for example, in the severe winter region, the new After the energy car is placed for a certain period of time, the temperature of the battery pack will be cooled to a temperature equivalent to the environment (-15 ° C or even lower). At this time, the battery power supply efficiency is lower than the normal temperature. If the car is started immediately, the running mileage will be corresponding. cut back. If the battery temperature can be maintained in the temperature range of high efficiency before starting, the power supply efficiency can be improved to extend the cruising range;
  • the control method of the automobile air conditioner of the present application can pre-control the air temperature of the vehicle and the power of the battery pack under the state of charge, and can automatically calculate the full charge when the vehicle receives the air conditioner control command in the vehicle during charging.
  • the required time and the time required to reach the set temperature of the owner and the battery energy consumption select the optimal control scheme to ensure the battery is fully charged after the charging is completed, and the temperature inside the vehicle reaches the preset comfortable temperature range of the vehicle owner;
  • Control and charging are intelligently linked, taking into account charging and air conditioning pre-control to ensure that the interior temperature and battery power are optimal at the same time.
  • FIG. 1 is a schematic diagram of a pre-remote control flow in a refrigeration condition of an automotive air conditioner of the present application
  • FIG. 2 is a schematic diagram of a pre-remote control flow in a heating condition of an automobile air conditioner of the present application
  • FIG. 3 is a schematic diagram of a pre-control flow of a vehicle air conditioner including remote intelligent temperature control of the present application
  • FIG. 4 is a schematic diagram showing changes in temperature and time in an implantation algorithm of an automobile air conditioner of the present application.
  • the present application provides a method for controlling an air conditioner of an automobile, which includes:
  • the pre-remote control includes pre-remote timing control: the pre-remote timing control includes turning on the air conditioner for pre-refrigeration or heating at t0 minutes before the vehicle is started, wherein the t0 is constant.
  • the application proposes pre-remote control of the new energy automobile air conditioner, mainly including remote timing start control and remote intelligent temperature control, and at the same time taking into account the temperature control of the battery pack.
  • Pre-remote control means that when the passenger or the driver has not got on the bus, the driver can remotely turn on the car through the on-board air conditioner controller or mobile phone APP (ie, pre-remote timing control) or remotely set the temperature inside the car to be reached at a predetermined time.
  • the preset value ie remote intelligent temperature control).
  • the air conditioner can be pre-cooled or heated before the vehicle is started, so that the temperature of the interior air can be controlled in advance, when the user enters the vehicle. It can reach a comfortable temperature environment, providing a comfortable environment for the owner and passengers. It provides remote control and pre-control for the new energy vehicle air conditioner, which realizes that the temperature inside the vehicle reaches the preset comfortable state when the person reaches the vehicle. After the car is exposed in the summer, the temperature inside the car is too high. When the car owner uses the car, the door is first opened and the air conditioner is turned on. The air conditioner is turned on and the temperature inside the car is lowered to an acceptable range.
  • the interior space can be pre-cooled or pre-heated in advance, so that the interior temperature reaches the preset human comfort temperature range for a predetermined time, reducing the waiting time of the owner and passengers and improving the comfort.
  • the pre-remote timing control further comprises a combined control of internal and external air circulation, the combined control comprising:
  • Steps are executed to select whether to open the outer loop or directly open the inner loop according to the result of the relationship;
  • the inner loop refers to: the air in the vehicle is circulated, and the air inside and outside the vehicle is not exchanged;
  • the outer loop means: the air outside the vehicle enters the vehicle Inside, there is air exchange between the inside and outside of the car.
  • the external air can be effectively used for indoor air exchange and heat exchange under suitable conditions, so that when the outdoor air can cool down or heat up the room to meet the demand, the outer circulation is opened for heat exchange, and the energy consumption of the system is reduced. Therefore, the overall energy efficiency of the air conditioning system is effectively improved.
  • the determining step is configured to determine whether T in >T out +X1 is established;
  • X1 and t1 are constants. This is the preferred control mode under the combined cooling conditions of the internal and external air circulation of the present application.
  • T in >T out +X1 it indicates that the indoor ambient temperature is higher than the outdoor ambient temperature by a certain value.
  • the indoor air circulation exchange mode is opened to achieve the purpose of cooling and cooling the indoor environment.
  • the indoor temperature cannot be lowered again, the internal circulation is turned on, and then the refrigerant circulation is cooled, and the external air is effectively utilized for indoor high temperature.
  • the cooling and heat transfer of air improves the energy efficiency of the air conditioner; when T in >T out +X1 does not hold, that is, T in ⁇ T out +X1, the indoor ambient temperature is lower than the outdoor ambient temperature plus the compensation value, even then Even if the indoor and outdoor air are connected, the outdoor air cannot be used to cool the indoor air. Therefore, the air conditioning inner circulation is directly turned on at this time.
  • the driver can use the air-conditioning controller on the vehicle to set the air-conditioning start-up time, that is, the power-on time, or directly set the temperature of the vehicle to be reached at a certain time.
  • the above operations can also be completed by remote control of the mobile APP, and the mobile APP has both the on-board controller function.
  • the unit When the power is turned on, the unit is started at a predetermined time, and then the air conditioning mode and capacity output are intelligently adjusted according to the temperature inside and outside the vehicle.
  • the compressor frequency, fan control and throttle component control are controlled according to the most efficient operation mode under the working condition.
  • Tset1 the ambient temperature inside the car be Tin
  • the ambient temperature outside the car be Tout
  • the cooling operation timing control mode is shown in Figure 1:
  • the inner circulation means that the air inside the vehicle is circulated, and the air inside and outside the vehicle is not exchanged for heat;
  • the external circulation means that the air outside the vehicle enters the vehicle, and the air inside and outside the vehicle exchanges heat
  • the highest energy efficiency operation mode refers to the mode with the highest energy efficiency ratio of the air conditioning unit under the current working conditions; the mode is established by the previous system matching, through the compressor frequency, the throttle component, and the fan speed. The control of the solenoid valve switch is realized.
  • the value range of X1 is 1 ⁇ X1 ⁇ 6; the value of time t1 ranges from 1 ⁇ t1 ⁇ 15.
  • the temperature inside and outside the vehicle is detected and the external circulation is turned on under certain conditions.
  • the temperature difference in the environment is used to cool the interior of the vehicle, which can save energy consumption of the air conditioner.
  • the determining step is configured to determine whether T in ⁇ T out -X2 is established;
  • X2 and t2 are constants. This is the preferred control mode under the heating condition of the combined internal and external air circulation control of the present application.
  • T in ⁇ T out -X2 it indicates that the indoor ambient temperature is lower than the outdoor ambient temperature by a certain value at this time. It is preferable to firstly open the indoor and outdoor air circulation exchange manner to achieve the purpose of heating and heating the indoor environment, and when the indoor temperature can no longer rise, the internal circulation is further turned on, and then the refrigerant circulation is heated, and the external air is effectively utilized. The heat transfer effect of the indoor high temperature air is increased, and the energy efficiency of the air conditioner is improved.
  • T in ⁇ T out -X2 When T in ⁇ T out -X2 is not established, that is, T in >T out -X2, the indoor ambient temperature is higher than the outdoor ambient temperature minus the compensation value. At this time, even if the indoor and outdoor air are connected, the indoor air cannot be heated by the outdoor air. Therefore, the air conditioning inner circulation is directly turned on at this time.
  • the value range of X2 is 2 ⁇ X2 ⁇ 6; the value of time t1 ranges from 1 ⁇ t2 ⁇ 12.
  • This is the preferred range of values for the temperature compensation value X2 in the combined control mode of the internal and external cycles of the present application, and the preferred range of values for the time t2 when the external cycle is opened in advance under the heating condition, which is based on a large number of experimental and empirical values. acquired.
  • this embodiment is a further improvement made on the basis of Embodiment 1.
  • the pre-remote control further includes remote intelligent temperature control, and the remote intelligent temperature control includes:
  • Setting step set the temperature in the car to reach Tset2 within t3 time;
  • Detection step detecting the ambient temperature of the interior of the vehicle
  • Calculation step calculating the minimum time t4 when the temperature inside the vehicle reaches Tset2 (that is, the cooling time of the system operating according to the maximum capacity operation mode is t4);
  • Judgment step judging the size relationship between t3 and t4;
  • the cooling time of the air conditioning system is t5, where t5 ⁇ t4; wherein the maximum capacity operation mode refers to the maximum capacity (cooling capacity/heating capacity) that the air conditioning unit can output under the current working conditions. In the mode, the car will get the fastest cooling or heating heating rate, that is to say, this mode is also the shortest cooling/heating time mode; the highest energy efficiency mode means that the air conditioning unit has the highest energy efficiency ratio under the current working conditions. Mode;
  • the minimum capacity operation mode refers to the mode of maintaining the temperature inside the vehicle and the minimum capacity (cooling capacity/heating capacity) that the air conditioning unit needs to output, in which the temperature inside the vehicle can be maintained.
  • the maximum time required to reach Tset2 is t4.
  • the air conditioning operation is controlled by the maximum capacity output mode to make the indoor ambient temperature as close as possible to Tset2.
  • Tset2 can be achieved by running to the maximum capacity output mode to t4. Therefore, it is necessary to consider the energy efficiency of the air conditioning system at this time. Therefore, the optimal cooling/heating mode of energy efficiency is selected to control the system. Increase the energy efficiency of the system.
  • the air conditioner can also realize remote intelligent temperature control through the in-vehicle controller or mobile APP. That is, the preset air conditioning unit makes the interior temperature reach a preset value for a fixed time.
  • the air conditioning system automatically combines the temperature inside and outside the vehicle, and automatically adjusts the capability output according to the preset time and the preset temperature to be reached. Based on the closed space in the car, the algorithm can be used to calculate the air conditioning load and the time required for cooling or warming, and select the optimal cooling mode to achieve the highest energy-efficient operation mode. The temperature inside the vehicle reaches the expected set temperature during the time.
  • the calculating step further comprises calculating a temperature value reachable in the vehicle within t3;
  • the air conditioner system can not reach the preset temperature value by the maximum capacity output mode when t3 ⁇ t4, but can approach the preset temperature value as much as possible.
  • the system calculates that the maximum capacity output mode still cannot meet the preset requirements, it will be displayed through the controller panel.
  • the user is reminded that the unit cannot reach the preset temperature value, and the temperature value can be reached.
  • tell The user's current temperature in the current state should reach the estimated time of the set temperature, so that the next time the user performs the timing constant temperature control setting.
  • the unit has three operating mode options: maximum capacity operation mode, maximum energy efficiency operation mode, and minimum capacity operation mode.
  • the maximum capacity operation mode refers to the maximum capacity (cooling capacity/heating capacity) that the air conditioning unit can output under the current working conditions. In this mode, the fastest cooling or heating heating rate will be obtained in the vehicle, that is, It is said that this mode is also the shortest cooling/heating time mode;
  • the highest energy efficiency mode refers to the mode with the highest energy efficiency ratio of the air conditioning unit under the current working conditions;
  • the minimum capacity operation mode refers to the minimum capacity of the air conditioning unit to maintain the temperature inside the vehicle. (cooling capacity / heating capacity) mode, in which the temperature inside the vehicle can be maintained.
  • the implantation algorithm includes: when t3>t4, and t3 ⁇ t5, according to the difference between the interior and exterior temperature of the vehicle:
  • the highest energy efficiency operation mode refers to the mode with the highest energy efficiency ratio of the air conditioning unit under the current working conditions.
  • the system can calculate the cooling time according to the current inside and outside thermometers, as shown in the control chart: Assume that the user sets the cooling time to t3, the cooling time of the system running according to the maximum capacity operation mode is t4, and the cooling time according to the highest energy efficiency operation mode is t5. Where t5 ⁇ t4.
  • the outside temperature ⁇ in-vehicle temperature-compensation temperature indicates that the indoor ambient temperature is higher than the outdoor ambient temperature by a certain value.
  • the purpose of cooling and cooling is to turn on the internal circulation when the indoor temperature can no longer be lowered, and then carry out the cooling of the refrigerant circulation, effectively use the external air to cool and heat the indoor high-temperature air, improve the energy efficiency of the air conditioner;
  • Working condition and outside temperature> in-vehicle temperature + compensation temperature, indicating that the indoor ambient temperature is lower than the outdoor ambient temperature by a certain value.
  • the indoor and outdoor air circulation exchange it is preferable to open the indoor and outdoor air circulation exchange to achieve the indoor indoor.
  • the purpose of heating and heating the environment is to turn on the inner circulation when the indoor temperature cannot be raised again, and then to increase the temperature of the refrigerant circulation, effectively utilizing the external air to heat and heat the indoor high-temperature air, thereby improving the energy efficiency of the air conditioner.
  • the running time is allocated as follows: the time of first running the outer loop is (t3-t4)*k1, and the remaining time is in accordance with the maximum capacity operating mode to make the interior temperature reach a preset value for a predetermined time, wherein the k1 value is The correction factor is given according to the temperature inside and outside the car and the temperature difference between the inside and outside of the car.
  • the combined control of the outer loop and the inner loop can be performed, and the control means combining the maximum output and the outer loop can be realized.
  • the initial in-vehicle temperature is defined as T0, and the user sets the pre-arrived temperature in the vehicle to be Tset2.
  • the system first runs tx1min according to the maximum capacity operation mode, and then operates according to the highest energy efficiency operation mode. (t3-tx1) min.
  • This is the preferred control method in the case of the b-th implant algorithm in the remote intelligent temperature control method of the present application (that is, the outer loop cannot be performed, but only the inner loop can be performed), by using a part of the maximum capacity operation and a part of the highest energy efficiency operation. It can ensure that the indoor ambient temperature reaches the preset value while effectively improving the energy efficiency of the system.
  • the tx1 is linearly calculated by the maximum capacity operation mode and the cooling/heating rate of the highest energy efficiency operation mode, and the cooling/heating speeds for defining the maximum capacity operation mode and the highest energy efficiency operation mode are respectively V1 and v2, there are:
  • the implanting algorithm further comprises: when t3 ⁇ t5, according to the difference between the interior and exterior temperature of the vehicle:
  • the minimum capacity operation mode + The highest energy efficiency operation mode, wherein the minimum capacity operation mode refers to a mode of maintaining the temperature inside the vehicle and the minimum capacity (cooling capacity/heat generation) that the air conditioning unit needs to output, in which the temperature inside the vehicle can be maintained.
  • the system can calculate the cooling time according to the current inside and outside thermometers, as shown in the control chart: Assume that the user sets the cooling time to t3, the cooling time of the system running according to the maximum capacity operation mode is t4, and the cooling time according to the highest energy efficiency operation mode is t5. Where t5 ⁇ t4.
  • the outside temperature ⁇ in-vehicle temperature-compensation temperature indicates that the indoor ambient temperature is higher than the outdoor ambient temperature by a certain value.
  • the purpose of cooling and cooling is to turn on the internal circulation when the indoor temperature can no longer be lowered, and then carry out the cooling of the refrigerant circulation, effectively use the external air to cool and heat the indoor high-temperature air, improve the energy efficiency of the air conditioner;
  • Working condition and outside temperature> in-vehicle temperature + compensation temperature, indicating that the indoor ambient temperature is lower than the outdoor ambient temperature by a certain value.
  • the indoor and outdoor air circulation exchange it is preferable to open the indoor and outdoor air circulation exchange to achieve the indoor indoor.
  • the purpose of heating and heating the environment is to turn on the inner circulation when the indoor temperature cannot be raised again, and then to increase the temperature of the refrigerant circulation, effectively utilizing the external air to heat and heat the indoor high-temperature air, thereby improving the energy efficiency of the air conditioner.
  • the running time is allocated as follows: the outer cycle running time is (t3-t5)*k2, and the remaining time is in the highest energy efficiency operation mode to make the interior temperature reach a preset value at a predetermined time, wherein the k2 value is corrected
  • the coefficient is given according to the temperature inside and outside the car and the temperature difference between the inside and outside of the car.
  • the initial in-vehicle temperature is defined as T0, and the user sets the pre-arrived temperature in the vehicle to be Tset2.
  • the system first runs tx2min according to the highest energy efficiency operation mode, and then operates according to the minimum capacity operation mode (t3-tx2) min. .
  • This is the preferred control method in the case of the d-th implant algorithm in the remote intelligent temperature control method of the present application (that is, the outer loop cannot be performed, but only the inner loop can be performed), by using a part of the maximum capacity operation and a part of the highest energy efficiency operation. It can ensure that the indoor ambient temperature reaches the preset value while effectively improving the energy efficiency of the system.
  • the tx2 is linearly calculated by the cooling/heating speed of the highest energy efficiency operation mode and the minimum capacity operation mode, and the cooling/heating speeds defining the highest energy efficiency operation mode and the minimum capacity operation mode are v2 and v3, respectively. :
  • the remote intelligent temperature control can more accurately meet the customer's needs, and can provide quantifiable indicators for the comfort of the interior temperature. At the same time, it can combine the temperature rise/temperature drop mode of the vehicle to select the most efficient system control scheme, saving air conditioning electricity. Consumption.
  • Embodiments 1 and/or 2 when the new energy vehicle has a battery pack thermal management system, the pre-remote control further includes battery temperature pre-control, the battery temperature Pre-control includes:
  • Detection step means for automatically detecting whether the temperature of the car battery pack is within the optimal supply temperature range
  • Execution step when the temperature of the battery pack is within the optimal supply temperature range, the battery pack is not pre-controlled; when the temperature of the battery pack is not within the optimal supply temperature range, the battery pack is pre-temperature controlled;
  • the optimal power supply temperature range means that the battery pack has the highest power supply efficiency under this temperature range.
  • the control method can automatically detect whether the temperature of the battery pack is within the optimal power supply temperature range when the vehicle owner performs pre-remote control.
  • the temperature of the battery pack is within the optimal power supply temperature range, The battery pack is not pre-controlled; when the battery pack temperature is not within the optimal supply temperature range, the battery pack needs to be pre-controlled.
  • the application pre-controls the temperature of the air conditioner while pre-controlling the air conditioner, so that the battery system reaches the optimal state before use, improves the energy utilization rate of the battery, and improves the cruising range; for example, in the cold winter region, the new energy vehicle is in the After a certain period of time, the temperature of the battery pack will be cooled to a temperature equivalent to the environment (-15 ° C or even lower). At this time, the battery power supply efficiency is lower than the normal temperature. If the car is started immediately, the running mileage will be reduced accordingly. And if the battery temperature can be maintained in the high-efficiency operating temperature range before starting, the power supply efficiency can be improved to extend the cruising range.
  • the optimal supply temperature range for defining a new energy vehicle is [Topt1, Topt2]
  • the actual battery pack temperature is Tbat, and there are:
  • the battery pack is preheated to make the battery pack of the car reach Topt1 or more at a predetermined time;
  • the battery pack is pre-cooled so that the battery pack of the car reaches Topt1 or less at a predetermined time.
  • the method further includes: if the vehicle is in charge, if the owner performs pre-remote control on the in-vehicle air conditioner, the pre-remote control further includes an air conditioner. Integrated control of temperature control and battery charge control. The vehicle air temperature and the battery pack power can be pre-controlled at the same time under the charging state. When the car receives the air conditioner control command in the vehicle during charging, the time required for the full charge and the required temperature of the vehicle owner can be calculated automatically.
  • Time and battery energy consumption choose the optimal control scheme to ensure the battery is fully charged after the charging is completed, and the temperature inside the vehicle reaches the preset comfortable temperature range of the vehicle owner; the air conditioning control and charging are intelligently linked, and both charging and charging are considered. Pre-control of the air conditioner ensures that the temperature inside the car and the battery level are optimal at the same time.
  • the following two situations are controlled: preferably, 1. If the battery is fully charged when the owner performs remote control on the air conditioner in advance, the air conditioning system is turned on according to a preset remote control program, and the temperature in the vehicle is adjusted while continuing to The battery is charged so that the battery pack remains fully charged while the vehicle is in use, and the temperature inside the vehicle is guaranteed to meet the preset requirements of the owner.
  • the battery power is not full when the vehicle owner performs remote control on the air conditioner in advance, it is necessary to simultaneously evaluate the time required for the full charge t1, the time tc2 when the temperature of the vehicle is adjusted to the set temperature, and the amount of power Qc required for the pre-control of the air conditioning system. And the time tc3 required to supplement the power, and the time difference tc4 from the time when the owner sends the air conditioning control command to the owner's estimated vehicle. At this time, it is preferred to ensure that the car battery reaches a certain amount of power Qa or more, and then start the air conditioner to control the temperature inside the car.
  • the range of Qa is 75% to 100% of the total electricity.
  • the battery is charged to Qa or more according to the first, wherein the value range of Qa is 75% to 100% of the total battery power.
  • the energy-saving mode refers to the mode with the highest energy efficiency of the system operation.
  • charging is prioritized. Since the operation of the air conditioner consumes battery power, it is necessary to reduce the power consumption of the air conditioner in the vehicle. At the same time, the remote feedback to the owner informs that the temperature control and charging cannot be taken care of, and the owner is informed that the temperature Tn and the charge amount reachable within the predetermined time.
  • the air conditioning and cooling control modes include:
  • Mode B a2 ⁇ ⁇ ⁇ a1, b2 ⁇ Tn ⁇ b1;
  • the heating is taken as an example below, and the specific control method is as follows: when the air conditioning system is operating under heating conditions, the air conditioning heating control mode includes:
  • Mode B' a2' ⁇ ⁇ ⁇ a1', b1' ⁇ Tn ⁇ b2';
  • a1' ⁇ a2' ⁇ a3', b1' ⁇ b2' ⁇ b3', a 1 ', a 2 ', a 3 ', b 1 ', b 2 ', b 3 ' are determined by the system based on actual temperature calculations .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本申请提供一种汽车空调的控制方法,其包括:预先远程控制,所述预先远程控制包括预先远程定时控制:所述预先远程定时控制包括在汽车启动前的t0分钟开启空调进行预制冷或预制热,其中所述t0为常数。本申请相对于现有技术中的汽车空调而言通过设置预先远程控制步骤能够在汽车启动前对空调进行预制冷或预制热,从而提前对车内空气进行温度控制,在用户进入车内时就能达到舒适的温度环境,为车主及乘客提供了舒适的环境,对新能源汽车空调提出了远程控制和预先控制,实现了人员达到车上时车内温度达到预设的舒适状态。

Description

汽车空调的控制方法
相关申请
本申请要求2017年09月11日申请的,申请号为201710811727.1,名称为“一种汽车空调的控制方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请属于空调技术领域,具体涉及一种汽车空调的控制方法。
背景技术
传统燃油车的汽车空调开机控制存在两点不足,一是需要在车内手动控制,二是需整车上电后启动发动机才能开启空调。无法实现远程开启空调即对车内空气的预冷和预热,因此用户使用舒适性不高。
对于新能源车而言,其空调系统与发动机系统互为独立,它们均由电池供电,空调压缩机不需要通过汽车发动机带动开启,因此原理上是可以实现在发动机启动前开启空调,从而对车内空间进行预冷及预热控制,但未见应用。
并且传统车内空调的能效较低,电池组在环境温度较低的情况下供电效率也会降低,从而影响续航里程;尤其是在开暖风的情况下电池电量消耗过快,这是因为在低环境温度下电池效率本身较低,并且热风取暖是采用PTC进行供热,制热效率低;由于纯电动车无发动机废热进行供暖,采用传统的PTC加热空气供暖方式能源利用率低,从而进一步加大了低温环境下的电池电量消耗;因此北方寒冷及严寒地区的电动车在冬季行驶时存在续航时间短的问题。
并且由于车内空调运行需要消耗电能,因此很有可能导致汽车为了进行空调制冷或制热而使得汽车电量消耗而低于安全值范围,导致汽车电池存在没电或电量低的风险而使得汽车无法进行启动。
由于现有技术中的新能源汽车空调存在无法对车内进行预冷或预热,导致用户使用舒适性低,空调系统能效较低,电池能用利用率较低,低温环境下制热效率较低、汽车续航时间受到严重影响、汽车电池存在没电或电量低的风险而使得汽车无法进行启动等技术问题,因此本申请研究设计出一种新的汽车空调控制方法。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的汽车空调存在无法对车内进行预冷或预热,导致用户使用舒适性低的缺陷,从而提供一种汽车空调的控制方法。
本申请提供一种汽车空调的控制方法,其包括:
预先远程控制,所述预先远程控制包括预先远程定时控制:所述预先远程定时控制包括在汽车启动前的t0分钟开启空调进行预制冷或与制热,其中所述t0为常数。
优选地,所述预先远程定时控制包括:
检测步骤,用于检测车内温度T in和车外温度T out
判断步骤,用于判断T in与T out之间的关系;
执行步骤,根据所述关系的结果选择是否开启外循环、还是直接开启内循环;内循环是指:车内空气进行循环,车内外空气未进行气流交换;外循环是指:车外空气进入车内,车内外空气有进行气流交换。
优选地,当汽车空调处于制冷运行状态时:
所述判断步骤,用于判断T in>T ou+X1是否成立;
执行步骤,若T in>T out+X1成立,则比预定时间t0提前t1min开启外循环,而后再开启空调内循环;若T in>T out+X1不成立,则不开启外循环,直接开启空调内循环;
其中所述X1、t1为常数。
优选地,所述X1的取值范围是1≤X1≤6;时间t1的取值范围是1≤t1≤15。
优选地,当汽车空调处于制热运行状态时:
所述判断步骤,用于判断T in<T out-X2是否成立;
执行步骤,若T in<T out-X2成立,则比预定时间t0提前t2min开启外循环,而后再开启空调内循环;若T in<T out-X2不成立,则不开启外循环,直接开启空调内循环;
其中所述X2、t2为常数。
优选地,所述X2的取值范围是2≤X2≤6;时间t1的取值范围是1≤t2≤12。
优选地,所述预先远程控制还包括远程智能温度控制,所述远程智能温度控制包括:
设定步骤:设定在t3时间内,车内温度达到Tset2;
检测步骤:检测车内环境温度Tin;
计算步骤:计算车内温度达到Tset2的最短时间t4;
判断步骤:判断t3和t4之间的大小关系;
执行步骤:当t3≤t4时,以最大能力输出方式控制空调运行;当t3>t4时,根据植入算法,选择能效最优的降温/升温模式,进行系统的控制,
定义空调系统按照最高能效运行模式的降温时间为t5,其中t5≥t4;其中,最大能力运行模式是指空调机组在当前工况下所能输出的最大能力,最高能效运行模式是指当前工况下,空调机组运行能效比最高的模式。
优选地,当t3≤t4时,所述计算步骤还包括计算在t3时间内车内可达到的温度值;
并且还包括显示步骤,通过控制面板或手机屏幕将该可达到的温度值显示出来。
优选地,所述植入算法包括:当t3>t4,且t3<t5时,根据车内外温差分两种情况:
a.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外温度>(车内温度+补偿温度)时,则选择外循环模式+最大能力运行模式;
b.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度)时,则选择最大能力运行模式+最高能效运行模式。
优选地,情况a中,运行时间分配如下:首先运行外循环的时间为(t3-t4)*k1,剩余时间按照最大能力运行模式使车内温度在预定时间达到预设值,其中k1值为修正系数,根据车内外温度及车内外温差给定。
优选地,情况b中,定义初始车内温度为T0,设定车内预达到的温度为Tset2,系统首先按照最大能力运行模式运行tx1min,然后按照最高能效运行模式运行(t3-tx1)min。
优选地,所述tx1通过最大能力运行模式和最高能效运行模式的降温/升温速度进行线性运算得出,定义最大能力运行模式和最高能效运行模式的降温/升温速度分别为v1和v2,则有:
车内为制冷工况时:T0-Tset2=v1*tx1+v2*(t3-tx1),即tx1=(T0-Tset2-v2*t3)/(v1-v2);
车内为制热工况时:Tset2-T0=v1*tx1+v2*(t3-tx1),即tx1=(Tset2-T0-v2*t3)/(v1-v2)。
优选地,所述植入算法还包括:当t3≥t5时,根据车内外温差分两种情况:
c.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外温度>(车内温度+补偿温度),则选择外循环模式+最高能效运行模式;
d.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度),则选择最小能力运行模式+最高能效运行模式,其中,最小能力运行模式是指维持车内温度,空调机组需输出的最小能力的模式。
优选地,情况c中,其运行时间分配如下:外循环运行时间为(t3-t5)*k2,剩余时间按照最高能效运行模式使车内温度在预定时间达到预设值,其中k2值为修正系数,根据车内外温度及车内外温差给定。
优选地,情况d中,定义初始车内温度为T0,设定车内预达到的温度为Tset2,系统首先按照最高能效运行模式运行tx2min,然后按照最小能力运行模式运行(t3-tx2)min。
优选地,所述tx2通过最高能效运行模式和最小能力运行模式的降温/升温速度进行线性运算得出,定义最高能效运行模式和最小能力运行模式的降温/升温速度分别为v2和v3,则有:
车内为制冷工况时:T0-Tset2=v2*tx2+v3*(t3-tx2),即tx2=(T0-Tset2-v3*t3)/(v2-v3);
车内为制热工况时:Tset2-T0=v2*tx2+v3*(t3-tx2),即tx2=(Tset2-T0-v3*t3)/(v2-v3)。
优选地,所述预先远程控制还包括电池温度预控制,所述电池温度预控制包括:
检测步骤:自动检测汽车电池组的温度是否在最佳供电温度范围的手段;
执行步骤:当电池组的温度在最佳供电温度范围,则不对电池组进行预先控制;当电池组的温度不在最佳供电温度范围,则对电池组进行预先温度控制;
其中,最佳供电温度范围是指在此温度范围下,电池组的供电效率最高。
优选地,定义汽车的最佳供电温度范围是[Topt1,Topt2],实际电池组温度为Tbat,并有:
当Topt1≤Tbat≤Topt2时,则不对电池组进行预先温度控制;
当Tbat<Topt1时,则对电池组进行预热控制,使汽车的电池组在预定时间达到Topt1以上;
当Topt2<Tbat时则对电池组进行预冷控制,使汽车的电池组在预定时间达到Topt1以下。
优选地,当汽车在充电时,所述预先远程控制还包括对空调温度控制和电池充电控制相结合的综合控制。
优选地,所述综合控制包括:如果在对空调进行预先控制时电池已充满电,则按预先控制程序开启空调系统对车内温度进行调节,同时继续对电池充电,使用车时电池组仍维持满电状态,同时确保车内温度达到预设要求。
优选地,所述综合控制包括:如果在对空调进行预先控制时电池电量未充满,需同时评估充满电需要的时间tc1、车内温度调节至设定温度的时间tc2以及空调系统预控制需要的电量Qc以及补充这些电量需要的时间tc3,以及从发送空调控制命令至预计用车的时间差tc4。
优选地,当tc1+Max{tc2,tc3}≤tc4,则先充电至Qa以上,其中再启动节能模式进行车内温度调节同时不间断充电,使用车时电池电量维持满电状态且车内温度也达到预设范围;其中Max{tc2,tc3}为tc2和tc3中的最大值。
优选地,当tc1+Max{tc2,tc3}≥tc4,则以充电优先,同时远程反馈无法兼顾控温和充电,告知在预定时间内,车内温度可达到的值Tn和充电电量可达到满电量的比率η。
优选地,当空调系统运行于制冷工况下时,空调制冷控制模式包括:
模式A:η≥a1,Tn≥b1;
模式B:a2≤η<a1,b2≤Tn<b1;
模式C:a3≤η<a2,b3≤Tn<b2;
模式D:η<a3,Tn<b3;
其中a1<a2<a3,b1>b2>b3,a 1、a 2、a 3、b 1、b 2、b 3都由系统根据实际气温计算确定。
优选地,当空调系统运行于制热工况下时,空调制热控制模式包括:
模式A’:η≥a1’,Tn<b1’;
模式B’:a2’≤η<a1’,b1’≤Tn<b2’;
模式C’:a3’≤η<a2’,b2’≤Tn<b3’;
模式D’:η<a3’,Tn≥b3’;
其中a1’<a2’<a3’,b1’<b2’<b3’,a 1’、a 2’、a 3’、b 1’、b 2’、b 3’都由系统根据实际气温计算确定。
本申请提供的一种汽车空调的控制方法具有如下有益效果:
1.本申请的汽车空调的控制方法,通过设置预先远程控制步骤能够在汽车启动前对空调进行预制冷或与制热,从而提前对车内空气进行温度控制,在用户进入车内时就能达到舒适的温度环境,为车主及乘客提供了舒适的环境,对新能源汽车空调提出了远程控制和预先控制,实现了人员达到车上时车内温度达到预设的舒适状态;
2.本申请的汽车空调的控制方法,由于预先远程控制包括内外空气循环相结合的控制方式,有效地在合适的情况下利用外部空气进行室内气流交换和热量交换,从而有效地提高了空调系统的整体能效;
3.本申请的汽车空调的控制方法,可同时对电池组进行温度预控制,使车主在使用前电池系统达到最佳状态,提高电池能源利用率;提高续航里程;比如在冬季严寒地区,新能源汽车在放置一定时间后,电池组的温度会被冷却到与环境相当的温度(-15℃甚至更低),此时电池供电效率比正常温度下低,如果立即启动汽车,运行里程会相应减少。而如果可以使电池温度在启动前保持在高效运行的温度范围,则可以提高供电效率延长续航里程;
4.本申请的汽车空调的控制方法,可在充电状态下进行车内空气温度和电池组电量的同时预控制,当汽车在充电时接收到车内的空调控制命令后,可以自主计算充满电需要的时间和达到车主设定温度需要的时间及电池能耗,选择最优控制方案,最大限度地保证充电完成后电池维持满电状态,同时车内温度达到车主预设的舒适温度范围;空调控制与充 电进行智能联动,同时兼顾充电和空调预控制,确保车内温度和电池电量同时达到最佳。
附图说明
图1是本申请的汽车空调的制冷工况下的预先远程控制流程示意图;
图2是本申请的汽车空调的制热工况下的预先远程控制流程示意图;
图3是本申请的汽车空调包括远程智能温度控制的预先控制流程示意图;
图4是本申请的汽车空调的植入算法中的温度与时间对应变化的示意图。
具体实施方式
实施例1
如图1-2所示,本申请提供一种汽车空调的控制方法,其包括:
预先远程控制,所述预先远程控制包括预先远程定时控制:所述预先远程定时控制包括在汽车启动前的t0分钟开启空调进行预制冷或与制热,其中所述t0为常数。
本申请对新能源汽车空调提出预先远程控制,主要包括远程定时开机控制和远程智能温度控制,并同时兼顾电池组的温度控制。预先远程控制是指在乘客或司机还未上车的情况下,由司机通过车上空调控制器或手机APP远程定时开机(即预先远程定时控制)或远程设置车内温度在预定时间需达到的预设值(即远程智能温度控制)。
通过设置预先远程控制、并将预先远程控制包括预先远程定时控制步骤,能够在汽车启动前对空调进行预制冷或与制热,从而提前对车内空气进行温度控制,在用户进入车内时就能达到舒适的温度环境,为车主及乘客提供了舒适的环境,对新能源汽车空调提出了远程控制和预先控制,实现了人员达到车上时车内温度达到预设的舒适状态。夏天汽车暴晒后车内温度过高,车主在用车时先先开门通风同时开启空调等待车内温度降到可接受范围,而在赶时间的时候只好强忍车内高温;冬季寒冷也有如此类似情形。采用预先远程的空调控制,可提前对车内空间进行预冷或预热,使车内温度在预定时间达到预设人体舒适温度范围,减少车主及乘客等待时间并且提高了舒适性。
优选地,所述预先远程定时控制还包括内外空气循环的结合控制,所述结合控制包括:
检测步骤,用于检测车内温度T in和车外温度T out
判断步骤,用于判断T in与T out之间的关系;
执行步骤,根据所述关系的结果选择是否开启外循环、还是直接开启内循环;内循环是指:车内空气进行循环,车内外空气未进行气流交换;外循环是指:车外空气进入车内,车内外空气有进行气流交换。
这样能够有效地在合适的情况下利用外部空气进行室内气流交换和热量交换,使得在室外空气能对室内进行满足需求的降温或升温时,开启外循环以进行换热,减少了系统的能量消耗,从而有效地提高了空调系统的整体能效。
优选地,当汽车空调处于制冷运行状态时:
所述判断步骤,用于判断T in>T out+X1是否成立;
执行步骤,若T in>T out+X1成立,则比预定时间t0提前t1min开启外循环,而后再开启空调内循环;若T in>T out+X1不成立,则不开启外循环,直接开启空调内循环;
其中所述X1、t1为常数。这是本申请的内外空气循环相结合控制的制冷工况下的优选控制方式,当T in>T out+X1时,说明此时室内环境温度高于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制冷降温的目的,当室内温度无法再降低时再开启内循环,再进行冷媒循环降温,有效地利用了外部空气进行室内高温空气的降温传热作用,提高了空调的能效;而当T in>T out+X1不成立,即T in<T out+X1时说明室内环境温度低于室外环境温度加上补偿值,此时即使使得室内外空气连通也无法利用室外空气对室内空气进行降温,因此此时直接开启空调内循环。
在乘客未达到,司机先上车的情况下可使用车上空调控制器设定空调开机时间,即定时开机,也可直接设定在某个时间需达到的车内温度。以上操作也可以通过手机APP远程控制完成,手机APP兼具车上控制器功能。
定时开机即在预定的时间启动机组,然后根据车内外环境温度智能调节空调模式及能力输出,压缩机频率、风机控制及节流部件控制均按该工况下最高效的运行模式进行控制。
令设定温度为Tset1,车内环境温度为Tin,车外环境温度为Tout。
制冷运行定时控制方式如图1所示:内循环是指:车内空气进行循环,车内外空气未进行热交换;
外循环是指:车外空气进入车内,车内外空气有进行热交换;
在预先远程定时控制模式中,最高能效运行模式是指当前工况下,空调机组运行能效比最高的模式;该模式是通过前期系统匹配建立的,通过对压缩机频率、节流部件、风机转速、电磁阀开关的控制实现。
优选地,所述X1的取值范围是1≤X1≤6;时间t1的取值范围是1≤t1≤15。
这是本申请的内外循环相结合控制方式中温度补偿值X1的优选取值范围,和制冷工况下提前开启外循环的时间t1的优选取值范围,这是根据大量实验和经验值所获得的。
此处检测车内外温度并在一定条件下开启外循环,是利用环境的温度差进行车内降温,可以节省空调的能耗。
优选地,当汽车空调处于制热运行状态时:
所述判断步骤,用于判断T in<T out-X2是否成立;
执行步骤,若T in<T out+X2成立,则比预定时间t0提前t2min开启外循环,而后再开启空调内循环;若T in<T out-X2不成立,则不开启外循环,直接开启空调内循环;
其中所述X2、t2为常数。这是本申请的内外空气循环相结合控制的制热工况下的优选控制方式,当T in<T out-X2时,说明此时室内环境温度低于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制热升温的目的,当室内温度无法再升高时再开启内循环,再进行冷媒循环升温,有效地利用了外部空气进行室内高温空气的升温传热作用,提高了空调的能效;而当T in<T out-X2不成立,即T in>T out-X2时说明室内环境温度高于室外环境温度减去补偿值,此时即使使得室内外空气连通也无法利用室外空气对室内空气进行升温,因此此时直接开启空调内循环。
优选地,所述X2的取值范围是2≤X2≤6;时间t1的取值范围是1≤t2≤12。这是本申请的内外循环相结合控制方式中温度补偿值X2的优选取值范围,和制热工况下提前开启外循环的时间t2的优选取值范围,这是根据大量实验和经验值所获得的。
实施例2
如图3所示,本实施例是在实施例1的基础上做出的进一步的改进,优选地,所述预先远程控制还包括远程智能温度控制,所述远程智能温度控制包括:
设定步骤:设定在t3时间内,车内温度达到Tset2;
检测步骤:检测车内环境温度Tin;
计算步骤:计算车内温度达到Tset2的最短时间t4(即系统按照最大能力运行模式运行的降温时间为t4);
判断步骤:判断t3和t4之间的大小关系;
执行步骤:当t3≤t4时,以最大能力输出方式控制空调运行;当t3>t4时,根据植入算法,选择能效最优的降温/升温模式,进行系统的控制。
定义空调系统按照最高能效运行模式的降温时间为t5,其中t5≥t4;其中,最大能力运行模式是指空调机组在当前工况下所能输出的最大能力(制冷量/制热量),在该模式下,车内将获得最快的制冷降温或制热升温速度,也就是说,该模式也是最短降温/升温时间模式;最高能效运行模式是指当前工况下,空调机组运行能效比最高的模式;最小能力运行模式是指维持车内温度,空调机组需输出的最小能力(制冷量/制热量)的模式,在该模式下可维持车内温度不变。
这是本申请的预先远程控制的远程智能温度控制的具体控制步骤,能够使得空调系统 获得最大的输出能力或最高效的能效输出能力,即t3≤t4时,由于空调设定的运行时间为t3、最大能力达到Tset2需要的时间为t4,此时通过全程开启最大输出能力还不足以使得室内温度达到Tset2,因此以最大能力输出方式控制空调运行,以尽可能地使得室内环境温度趋近于Tset2;而t3>t4时,由于通过最大能力输出方式运行到t4时就可以达到Tset2了,因此此时需要兼顾空调系统的能效,因此选择能效最优的降温/升温模式,进行系统的控制,能够提高系统的能效值。
因为除了可以定时开机(即预先远程定时控制)外,本空调还可以通过车内控制器或手机APP实现远程智能温度控制。即预设空调机组使车内温度在固定的时间达到预设的值。
在远程智能温度控制模式下,空调系统会结合车内外温度,根据预设的时间和即将达到的预设温度自动调节能力输出。基于车内这一封闭空间并不大,因此可以通过系统前期匹配植入的算法,计算出空调负荷及降温或升温需要的时间,选择最优的降温方式,以能效最高的运行模式在预定的时间内使车内温度达到预期设定温度值。
优选地,当t3≤t4时,所述计算步骤还包括计算在t3时间内车内可达到的温度值;
并且还包括显示步骤,通过控制面板或手机屏幕将该可达到的温度值显示出来。这样能够将t3≤t4时空调系统通过最大能力输出方式虽不能达到预设温度值,但能够尽可能地趋近于该预设温度值。当系统计算按照最大能力输出方式仍不能达到预设的要求时,会通过控制器面板显示出来,一方面提醒用户机组无法达到预设温度值,并给出可达到温度值;另一方面,告诉用户在当前状态下车内温度要达到设定温度的预计时间,以便下一次用户提前进行定时定温控制设置。
在远程智能温度控制模式中,机组有三种运行模式选择:最大能力运行模式、最高能效运行模式、最小能力运行模式。其中最大能力运行模式是指空调机组在当前工况下所能输出的最大能力(制冷量/制热量),在该模式下,车内将获得最快的制冷降温或制热升温速度,也就是说,该模式也是最短降温/升温时间模式;最高能效运行模式是指当前工况下,空调机组运行能效比最高的模式;最小能力运行模式是指维持车内温度,空调机组需输出的最小能力(制冷量/制热量)的模式,在该模式下可维持车内温度不变。
优选地,所述植入算法包括:当t3>t4,且t3<t5时,根据车内外温差分两种情况:
a.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外温度>(车内温度+补偿温度)时,则选择外循环模式+最大能力运行模式;
b.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度)时,则选择最大能力运行模式+最高能效运行模式;其中最 高能效运行模式是指当前工况下,空调机组运行能效比最高的模式。
这是本申请的远程智能温度控制中植入算法的第一种情况的优选控制方式,能够获得最高的能效运行,即最优的降温方式选择:最优降温方式根据设置降温时间、当前车内外温度来进行综合选择。系统可以根据当前车内外温度计算出降温时间,如控制图所示:假设用户设定降温时间是t3,系统按照最大能力运行模式运行的降温时间为t4,按照最高能效运行模式的降温时间为t5,其中t5≥t4。车外温度<(车内温度-补偿温度),说明此时室内环境温度高于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制冷降温的目的,当室内温度无法再降低时再开启内循环,再进行冷媒循环降温,有效地利用了外部空气进行室内高温空气的降温传热作用,提高了空调的能效;车内为制热工况且车外温度>(车内温度+补偿温度),说明此时室内环境温度低于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制热升温的目的,当室内温度无法再升高时再开启内循环,再进行冷媒循环升温,有效地利用了外部空气进行室内高温空气的升温传热作用,提高了空调的能效。
优选地,情况a中,运行时间分配如下:首先运行外循环的时间为(t3-t4)*k1,剩余时间按照最大能力运行模式使车内温度在预定时间达到预设值,其中k1值为修正系数,根据车内外温度及车内外温差给定。通过这样能够在植入算法的情况a下,进行外循环和内循环的相结合的控制,实现能力最大输出和外循环相结合的控制手段。
优选地,情况b中,定义初始车内温度为T0,用户设定车内预达到的温度为Tset2,如下图4所示,系统首先按照最大能力运行模式运行tx1min,然后按照最高能效运行模式运行(t3-tx1)min。这是本申请的远程智能温度控制方法中植入算法的第b中情况下(即无法进行外循环、而只能进行内循环)的优选控制方式,通过采用一部分最大能力运行、一部分最高能效运行,能够保证室内环境温度达到预设值的同时还能有效地提高系统的能效值。
如图4所示,优选地,所述tx1通过最大能力运行模式和最高能效运行模式的降温/升温速度进行线性运算得出,定义最大能力运行模式和最高能效运行模式的降温/升温速度分别为v1和v2,则有:
车内为制冷工况时:T0-Tset2=v1*tx1+v2*(t3-tx1),即tx1=(T0-Tset2-v2*t3)/(v1-v2);
车内为制热工况时:Tset2-T0=v1*tx1+v2*(t3-tx1),即tx1=(Tset2-T0-v2*t3)/(v1-v2)。
这是本申请的tx1的优选计算方式,参见图4。
优选地,所述植入算法还包括:当t3≥t5时,根据车内外温差分两种情况:
c.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外温度>(车内温度+补偿温度),则选择外循环模式+最高能效运行模式;
d.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度),则选择最小能力运行模式+最高能效运行模式,其中,最小能力运行模式是指维持车内温度,空调机组需输出的最小能力(制冷量/制热量)的模式,在该模式下可维持车内温度不变。
这是本申请的远程智能温度控制中植入算法的第二种情况的优选控制方式,能够获得最高的能效运行,即最优的降温方式选择:最优降温方式根据设置降温时间、当前车内外温度来进行综合选择。系统可以根据当前车内外温度计算出降温时间,如控制图所示:假设用户设定降温时间是t3,系统按照最大能力运行模式运行的降温时间为t4,按照最高能效运行模式的降温时间为t5,其中t5≥t4。车外温度<(车内温度-补偿温度),说明此时室内环境温度高于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制冷降温的目的,当室内温度无法再降低时再开启内循环,再进行冷媒循环降温,有效地利用了外部空气进行室内高温空气的降温传热作用,提高了空调的能效;车内为制热工况且车外温度>(车内温度+补偿温度),说明此时室内环境温度低于室外环境温度一定值以上,则此时可以优选先通过开启室内外空气流通交换的方式,以达到对室内环境进行制热升温的目的,当室内温度无法再升高时再开启内循环,再进行冷媒循环升温,有效地利用了外部空气进行室内高温空气的升温传热作用,提高了空调的能效。
优选地,情况c中,其运行时间分配如下:外循环运行时间为(t3-t5)*k2,剩余时间按照最高能效运行模式使车内温度在预定时间达到预设值,其中k2值为修正系数,根据车内外温度及车内外温差给定。通过这样能够在植入算法的情况c下,进行外循环和内循环的相结合的控制,实现能力最大输出和外循环相结合的控制手段。
优选地,情况d中,定义初始车内温度为T0,用户设定车内预达到的温度为Tset2,系统首先按照最高能效运行模式运行tx2min,然后按照最小能力运行模式运行(t3-tx2)min。这是本申请的远程智能温度控制方法中植入算法的第d中情况下(即无法进行外循环、而只能进行内循环)的优选控制方式,通过采用一部分最大能力运行、一部分最高能效运行,能够保证室内环境温度达到预设值的同时还能有效地提高系统的能效值。
优选地,所述tx2通过最高能效运行模式和最小能力运行模式的降温/升温速度进行线性运算得出,定义最高能效运行模式和最小能力运行模式的降温/升温速度分别为v2和v3,则有:
车内为制冷工况时:T0-Tset2=v2*tx2+v3*(t3-tx2),即tx2=(T0-Tset2-v3*t3)/(v2-v3);
车内为制热工况时:Tset2-T0=v2*tx2+v3*(t3-tx2),即tx2=(Tset2-T0-v3*t3)/(v2-v3)。
这是本申请的tx2的优选计算方式。远程智能温度控制可以更准确的满足客户的需求,对车内温度的舒适性给出可量化的指标,同时可以结合车内温升/温降模式选择效率最高的系统控制方案,节省了空调电耗。
实施例3
本实施例是在实施例1和/或2的基础上做出的进一步的改进,当新能源汽车带有电池组热管理系统,所述预先远程控制还包括电池温度预控制,所述电池温度预控制包括:
检测步骤:自动检测汽车电池组的温度是否在最佳供电温度范围的手段;
执行步骤:当电池组的温度在最佳供电温度范围,则不对电池组进行预先控制;当电池组的温度不在最佳供电温度范围,则对电池组进行预先温度控制;
其中,最佳供电温度范围是指在此温度范围下,电池组的供电效率最高。
当新能源汽车带有电池组热管理系统,在车主进行预先远程控制时,该控制方法可自动检测电池组的温度是否在最佳供电温度范围,当电池组的温度在最佳供电温度范围,则不对电池组进行预先控制;当电池组的温度不在最佳供电温度范围,则需对电池组进行预先控制。本申请在对空调预控温的同时对电池组进行温度预控制,使车主在使用前电池系统达到最佳状态,提高电池能源利用率;提高续航里程;比如在冬季严寒地区,新能源汽车在放置一定时间后,电池组的温度会被冷却到与环境相当的温度(-15℃甚至更低),此时电池供电效率比正常温度下低,如果立即启动汽车,运行里程会相应减少。而如果可以使电池温度在启动前保持在高效运行的温度范围,则可以提高供电效率延长续航里程。
优选地,定义新能源汽车的最佳供电温度范围是[Topt1,Topt2],实际电池组温度为Tbat,并有:
当Topt1≤Tbat≤Topt2时,则不对电池组进行预先温度控制;
当Tbat<Topt1时,则对电池组进行预热控制,使汽车的电池组在预定时间达到Topt1以上;
当Topt2<Tbat时则对电池组进行预冷控制,使汽车的电池组在预定时间达到Topt1以下。
这是本申请的汽车预先远程控制还包括电池温度预控制的具体判断和控制方法。
实施例4
本实施例是在实施例1-3的基础上做出的进一步改进,优选地,还包括当汽车在充电时,如果车主对车内空调进行预先远程控制,所述预先远程控制还包括对空调温度控制和 电池充电控制相结合的综合控制。可在充电状态下进行车内空气温度和电池组电量的同时预控制,当汽车在充电时接收到车内的空调控制命令后,可以自主计算充满电需要的时间和达到车主设定温度需要的时间及电池能耗,选择最优控制方案,最大限度地保证充电完成后电池维持满电状态,同时车内温度达到车主预设的舒适温度范围;空调控制与充电进行智能联动,同时兼顾充电和空调预控制,确保车内温度和电池电量同时达到最佳。
具体地则分以下两种情况进行控制:优选地,1、如果在车主对空调进行预先远程控制时电池已充满电,则按预先远程控制程序开启空调系统对车内温度进行调节,同时继续对电池充电,使车主在用车时电池组仍维持满电状态,同时确保车内温度达到车主预设要求。
优选地,2、如果在车主对空调进行预先远程控制时电池电量未充满,需同时评估充满电需要的时间tc1、车内温度调节至设定温度的时间tc2以及空调系统预控制需要的电量Qc以及补充这些电量需要的时间tc3,以及从车主发送空调控制命令至车主预计用车的时间差tc4。此时优先确保汽车电池电量达到一定电量Qa以上,然后启动空调进行车内温度控制。其中Qa取值范围是总电量的75%~100%。
优选地,当空调控温时间和充电时间都充足时,即tc1+Max{tc2,tc3}≤tc4,则按照先充电至Qa以上,其中Qa取值范围是电池总电量的75%~100%,再启动节能模式进行车内温度调节同时不间断充电(节能模式是指系统运行能效最高的模式,该模式下压缩机、风机等电机达到效率最高,同时系统中的换热器的换热效率达到最高。),使车主用车时电池电量维持满电状态且车内温度也达到预设范围;其中Max{tc2,tc3}为tc2和tc3中的最大值,当tc2≥tc3,则Max{tc2。tc3}=tc2,当tc2<tc3,则Max{tc2。tc3}=tc3,
优选地,当tc1+Max{tc2,tc3}≥tc4,即空调控温时间和充电时间不都充足时,则以充电优先。由于空调运行需消耗电池电量,故需降低车内空调耗费电量,同时远程反馈给车主告知无法兼顾控温和充电,告知车主在预定时间内,车内温度可达到的值Tn和充电电量可达到满电量的比率η(η≤1)。
优选地,提供四种模式让用户选择。下面以制冷为例,具体控制方法如下:当空调系统运行于制冷工况下时,空调制冷控制模式包括:
模式A:η≥a1,Tn≥b1;
模式B:a2≤η<a1,b2≤Tn<b1;
模式C:a3≤η<a2,b3≤Tn<b2;
模式D:η<a3,Tn<b3;
其中a1<a2<a3,b1>b2>b3,a 1、a 2、a 3、b 1、b 2、b 3都由系统根据实际气温计算确定。 这是本申请控温时间和充电时间不都充足时的制冷工况下的4个优选模式,其中η与Tn之间呈单调的关系,这是因为电量剩余越大,η越大,电量消耗越少,制冷作用越小,则温度越高;电量剩余越小,η越小,电量消耗越大,制冷作用越大,则温度越高。
优选地,下面以制热为例,具体控制方法如下:当空调系统运行于制热工况下时,空调制热控制模式包括:
模式A’:η≥a1’,Tn<b1’;
模式B’:a2’≤η<a1’,b1’≤Tn<b2’;
模式C’:a3’≤η<a2’,b2’≤Tn<b3’;
模式D’:η<a3’,Tn≥b3’;
其中a1’<a2’<a3’,b1’<b2’<b3’,a 1’、a 2’、a 3’、b 1’、b 2’、b 3’都由系统根据实际气温计算确定。这是本申请控温时间和充电时间不都充足时的制热工况下的4个优选模式,其中η与Tn之间呈单调的关系,这是因为电量剩余越大,η越大,电量消耗越少,制热作用越小,则温度越低;电量剩余越小,η越小,电量消耗越大,制热作用越大,则温度越低。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (25)

  1. 一种汽车空调的控制方法,其特征在于:包括:
    预先远程控制,所述预先远程控制包括预先远程定时控制:所述预先远程定时控制包括在汽车启动前的t0分钟开启空调进行预制冷或与制热,其中所述t0为常数。
  2. 根据权利要求1所述的汽车空调的控制方法,其特征在于:所述预先远程定时控制包括:
    检测步骤,用于检测车内温度T in和车外温度T out
    判断步骤,用于判断T in与T out之间的关系;
    执行步骤,根据所述关系的结果选择是否开启外循环、还是直接开启内循环;内循环是指:车内空气进行循环,车内外空气未进行气流交换;外循环是指:车外空气进入车内,车内外空气有进行气流交换。
  3. 根据权利要求2所述的汽车空调的控制方法,其特征在于:当汽车空调处于制冷运行状态时:
    所述判断步骤,用于判断T in>T ou+X1是否成立;
    执行步骤,若T in>T out+X1成立,则比预定时间t0提前t1min开启外循环,而后再开启空调内循环;若T in>T out+X1不成立,则不开启外循环,直接开启空调内循环;
    其中所述X1、t1为常数。
  4. 根据权利要求3所述的汽车空调的控制方法,其特征在于:所述X1的取值范围是1≤X1≤6;时间t1的取值范围是1≤t1≤15。
  5. 根据权利要求2所述的汽车空调的控制方法,其特征在于:当汽车空调处于制热运行状态时:
    所述判断步骤,用于判断T in<T out-X2是否成立;
    执行步骤,若T in<T out-X2成立,则比预定时间t0提前t2min开启外循环,而后再开启空调内循环;若T in<T out-X2不成立,则不开启外循环,直接开启空调内循环;
    其中所述X2、t2为常数。
  6. 根据权利要求5所述的汽车空调的控制方法,其特征在于:所述X2的取值范围是2≤X2≤6;时间t1的取值范围是1≤t2≤12。
  7. 根据权利要求1-6中任一项所述的汽车空调的控制方法,其特征在于:所述预先远程控制还包括远程智能温度控制,所述远程智能温度控制包括:
    设定步骤:设定在t3时间内,车内温度达到Tset2;
    检测步骤:检测车内环境温度Tin;
    计算步骤:计算车内温度达到Tset2的最短时间t4;
    判断步骤:判断t3和t4之间的大小关系;
    执行步骤:当t3≤t4时,以最大能力输出方式控制空调运行;当t3>t4时,根据植入算法,选择能效最优的降温/升温模式,进行系统的控制,
    定义空调系统按照最高能效运行模式的降温时间为t5,其中t5≥t4;其中,最大能力运行模式是指空调机组在当前工况下所能输出的最大能力,最高能效运行模式是指当前工况下,空调机组运行能效比最高的模式。
  8. 根据权利要求7所述的汽车空调的控制方法,其特征在于:当t3≤t4时,所述计算步骤还包括计算在t3时间内车内可达到的温度值;
    并且还包括显示步骤,通过控制面板或手机屏幕将该可达到的温度值显示出来。
  9. 根据权利要求8所述的汽车空调的控制方法,其特征在于:所述植入算法包括:当t3>t4,且t3<t5时,根据车内外温差分两种情况:
    a.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外温度>(车内温度+补偿温度)时,则选择外循环模式+最大能力运行模式;
    b.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度)时,则选择最大能力运行模式+最高能效运行模式。
  10. 根据权利要求9所述的汽车空调的控制方法,其特征在于:情况a中,运行时间分配如下:首先运行外循环的时间为(t3-t4)*k1,剩余时间按照最大能力运行模式使车内温度在预定时间达到预设值,其中k1值为修正系数,根据车内外温度及车内外温差给定。
  11. 根据权利要求9所述的汽车空调的控制方法,其特征在于:情况b中,定义初始车内温度为T0,设定车内预达到的温度为Tset2,系统首先按照最大能力运行模式运行tx1min,然后按照最高能效运行模式运行(t3-tx1)min。
  12. 根据权利要求11所述的汽车空调的控制方法,其特征在于:所述tx1通过最大能力运行模式和最高能效运行模式的降温/升温速度进行线性运算得出,定义最大能力运行模式和最高能效运行模式的降温/升温速度分别为v1和v2,则有:
    车内为制冷工况时:T0-Tset2=v1*tx1+v2*(t3-tx1),即tx1=(T0-Tset2-v2*t3)/(v1-v2);
    车内为制热工况时:Tset2-T0=v1*tx1+v2*(t3-tx1),即tx1=(Tset2-T0-v2*t3)/(v1-v2)。
  13. 根据权利要求7所述的汽车空调的控制方法,其特征在于:所述植入算法还包括:当t3≥t5时,根据车内外温差分两种情况:
    c.若车内为制冷工况且车外温度<(车内温度-补偿温度)、或车内为制热工况且车外 温度>(车内温度+补偿温度),则选择外循环模式+最高能效运行模式;
    d.若车内为制冷工况且车外温度>(车内温度-补偿温度)、或车内为制热工况且车外温度<(车内温度+补偿温度),则选择最小能力运行模式+最高能效运行模式,其中,最小能力运行模式是指维持车内温度,空调机组需输出的最小能力的模式。
  14. 根据权利要求13所述的汽车空调的控制方法,其特征在于:情况c中,其运行时间分配如下:外循环运行时间为(t3-t5)*k2,剩余时间按照最高能效运行模式使车内温度在预定时间达到预设值,其中k2值为修正系数,根据车内外温度及车内外温差给定。
  15. 根据权利要求13所述的汽车空调的控制方法,其特征在于:情况d中,定义初始车内温度为T0,设定车内预达到的温度为Tset2,系统首先按照最高能效运行模式运行tx2min,然后按照最小能力运行模式运行(t3-tx2)min。
  16. 根据权利要求15所述的汽车空调的控制方法,其特征在于:所述tx2通过最高能效运行模式和最小能力运行模式的降温/升温速度进行线性运算得出,定义最高能效运行模式和最小能力运行模式的降温/升温速度分别为v2和v3,则有:
    车内为制冷工况时:T0-Tset2=v2*tx2+v3*(t3-tx2),即tx2=(T0-Tset2-v3*t3)/(v2-v3);
    车内为制热工况时:Tset2-T0=v2*tx2+v3*(t3-tx2),即tx2=(Tset2-T0-v3*t3)/(v2-v3)。
  17. 根据权利要求1-16中任一项所述的汽车空调的控制方法,其特征在于:所述预先远程控制还包括电池温度预控制,所述电池温度预控制包括:
    检测步骤:自动检测汽车电池组的温度是否在最佳供电温度范围的手段;
    执行步骤:当电池组的温度在最佳供电温度范围,则不对电池组进行预先控制;当电池组的温度不在最佳供电温度范围,则对电池组进行预先温度控制;
    其中,最佳供电温度范围是指在此温度范围下,电池组的供电效率最高。
  18. 根据权利要求17所述的汽车空调的控制方法,其特征在于:定义汽车的最佳供电温度范围是[Topt1,Topt2],实际电池组温度为Tbat,并有:
    当Topt1≤Tbat≤Topt2时,则不对电池组进行预先温度控制;
    当Tbat<Topt1时,则对电池组进行预热控制,使汽车的电池组在预定时间达到Topt1以上;
    当Topt2<Tbat时则对电池组进行预冷控制,使汽车的电池组在预定时间达到Topt1以下。
  19. 根据权利要求1-18中任一项所述的汽车空调的控制方法,其特征在于:当汽车在充电时,所述预先远程控制还包括对空调温度控制和电池充电控制相结合的综合控制。
  20. 根据权利要求19所述的汽车空调的控制方法,其特征在于:所述综合控制包括: 如果在对空调进行预先控制时电池已充满电,则按预先控制程序开启空调系统对车内温度进行调节,同时继续对电池充电,使用车时电池组仍维持满电状态,同时确保车内温度达到预设要求。
  21. 根据权利要求19所述的汽车空调的控制方法,其特征在于:所述综合控制包括:如果在对空调进行预先控制时电池电量未充满,需同时评估充满电需要的时间tc1、车内温度调节至设定温度的时间tc2以及空调系统预控制需要的电量Qc以及补充这些电量需要的时间tc3,以及从发送空调控制命令至预计用车的时间差tc4。
  22. 根据权利要求21所述的汽车空调的控制方法,其特征在于:当tc1+Max{tc2,tc3}≤tc4,则先充电至Qa以上,其中再启动节能模式进行车内温度调节同时不间断充电,使用车时电池电量维持满电状态且车内温度也达到预设范围;其中Max{tc2,tc3}为tc2和tc3中的最大值。
  23. 根据权利要求21所述的汽车空调的控制方法,其特征在于:当tc1+Max{tc2,tc3}≥tc4,则以充电优先,同时远程反馈无法兼顾控温和充电,告知在预定时间内,车内温度可达到的值Tn和充电电量可达到满电量的比率η。
  24. 根据权利要求23所述的汽车空调的控制方法,其特征在于:当空调系统运行于制冷工况下时,空调制冷控制模式包括:
    模式A:η≥a1,Tn≥b1;
    模式B:a2≤η<a1,b2≤Tn<b1;
    模式C:a3≤η<a2,b3≤Tn<b2;
    模式D:η<a3,Tn<b3;
    其中a1<a2<a3,b1>b2>b3,a 1、a 2、a 3、b 1、b 2、b 3都由系统根据实际气温计算确定。
  25. 根据权利要求23所述的汽车空调的控制方法,其特征在于:当空调系统运行于制热工况下时,空调制热控制模式包括:
    模式A’:η≥a1’,Tn<b1’;
    模式B’:a2’≤η<a1’,b1’≤Tn<b2’;
    模式C’:a3’≤η<a2’,b2’≤Tn<b3’;
    模式D’:η<a3’,Tn≥b3’;
    其中a1’<a2’<a3’,b1’<b2’<b3’,a 1’、a 2’、a 3’、b 1’、b 2’、b 3’都由系统根据实际气温计算确定。
PCT/CN2018/091356 2017-09-11 2018-06-14 汽车空调的控制方法 WO2019047585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/645,963 US11179997B2 (en) 2017-09-11 2018-06-14 Control method for vehicle air conditioner
EP18853413.5A EP3683086B1 (en) 2017-09-11 2018-06-14 Vehicle air conditioner control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710811727.1A CN107745618B (zh) 2017-09-11 2017-09-11 一种汽车空调的控制方法
CN201710811727.1 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019047585A1 true WO2019047585A1 (zh) 2019-03-14

Family

ID=61255688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091356 WO2019047585A1 (zh) 2017-09-11 2018-06-14 汽车空调的控制方法

Country Status (4)

Country Link
US (1) US11179997B2 (zh)
EP (1) EP3683086B1 (zh)
CN (1) CN107745618B (zh)
WO (1) WO2019047585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112659845A (zh) * 2020-12-17 2021-04-16 武汉格罗夫氢能汽车有限公司 基于车联网远程启动氢燃料电池开启空调的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107745618B (zh) 2017-09-11 2019-10-01 珠海格力电器股份有限公司 一种汽车空调的控制方法
CN109130778B (zh) * 2018-08-15 2022-03-04 北京新能源汽车股份有限公司 一种车载空调的控制方法、装置和设备
CN111204188B (zh) * 2018-11-22 2024-01-05 武汉比亚迪汽车有限公司 一种车辆温度调整方法、系统及车辆
CN109968943B (zh) * 2019-04-10 2021-01-05 睿驰达新能源汽车科技(北京)有限公司 一种车载空调的控制方法和装置
JP7372794B2 (ja) * 2019-09-18 2023-11-01 サンデン株式会社 車両用空気調和装置
CN111137100A (zh) * 2020-01-03 2020-05-12 长城汽车股份有限公司 用于调节车辆内部温度的方法和装置以及车辆
JP2021160645A (ja) * 2020-04-01 2021-10-11 トヨタ自動車株式会社 車両の制御装置、車両の制御方法、及び車両の制御システム
CN111716989B (zh) * 2020-05-29 2021-11-30 东风汽车集团有限公司 一种汽车车内温度补偿控制方法及系统
CN112223981B (zh) * 2020-10-23 2022-09-02 上海三一重机股份有限公司 挖掘机空调启动方法及装置
IT202000028580A1 (it) 2020-11-27 2022-05-27 Improve Public Mobility S R L Dispositivo di monitoraggio e gestione delle condizioni ambientali di un veicolo
CN112721568B (zh) * 2020-12-15 2024-04-19 东风本田汽车有限公司 一种实现远程空调预测续航里程的方法
US11766919B2 (en) * 2021-01-28 2023-09-26 Caterpillar Inc. System and method of climate control in unmanned machine
CN114590095A (zh) * 2021-03-24 2022-06-07 长城汽车股份有限公司 空调控制方法、装置及车辆
US11654748B2 (en) * 2021-05-05 2023-05-23 Honda Motor Co., Ltd. Heating, ventilation, and air conditioning indicator for temperature and fan adjustments and methods thereof
FR3123255A1 (fr) * 2021-05-25 2022-12-02 Psa Automobiles Sa Vehicule comprenant un dispositif de chauffage de l’habitacle
CN113246805B (zh) * 2021-07-02 2022-07-19 吉林大学 考虑汽车驾驶舱温度的燃料电池功率管理控制方法
CN113581159A (zh) * 2021-07-27 2021-11-02 东风汽车集团股份有限公司 一种汽车舒适性进入控制方法与控制系统
CN113844270B (zh) * 2021-09-30 2023-08-01 华人运通(江苏)技术有限公司 电动汽车的显示里程更新方法、装置及车辆
CN114211978B (zh) * 2021-12-14 2023-07-14 华人运通(江苏)技术有限公司 电动汽车的充电功率分配方法、系统、设备及存储介质
CN114714855B (zh) * 2022-04-06 2024-04-19 赛力斯汽车有限公司 一种空调内循环启动方法、控制装置、设备及存储介质
CN115303018A (zh) * 2022-08-25 2022-11-08 惠州市乐亿通科技有限公司 车载空调控制方法及装置、车载控制器
CN115407810B (zh) * 2022-09-07 2024-08-27 长城汽车股份有限公司 一种车辆温度调节方法、装置、车辆以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745582B1 (en) * 2003-01-10 2004-06-08 Delphi Technologies, Inc. HVAC control method for a remote start motor vehicle
US20060137871A1 (en) * 2002-12-02 2006-06-29 Daimlerchrysler Ag Air conditioning method
JP3896978B2 (ja) * 2003-03-26 2007-03-22 株式会社デンソー 車両用空調装置
CN104105610A (zh) * 2012-02-22 2014-10-15 丰田自动车株式会社 车辆用远程控制系统、服务器以及远程操作终端
CN204674335U (zh) * 2015-06-16 2015-09-30 常州信息职业技术学院 智能车载空调系统
CN105857011A (zh) * 2016-04-14 2016-08-17 北京长安汽车工程技术研究有限责任公司 一种汽车空调控制方法、控制器及汽车空调控制系统
CN107745618A (zh) * 2017-09-11 2018-03-02 珠海格力电器股份有限公司 一种汽车空调的控制方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690387B1 (fr) * 1992-04-28 1995-06-23 Valeo Thermique Habitacle Procede et dispositif pour abaisser la temperature de l'air dans l'habitacle d'un vehicule hors circulation.
DE10007195B4 (de) * 2000-02-17 2006-06-29 J. Eberspächer GmbH & Co. KG Verfahren zum Betreiben eines Heizgeräts, insbesondere Fahrzeug-Heizgerät
DE10326596A1 (de) * 2003-06-13 2004-11-11 Daimlerchrysler Ag Verfahren zum Heizen, Lüften und/oder Klimatisieren eines Fahrzeuginnenraumes bei abgestelltem Antriebsmotor des Fahrzeugs
KR101776309B1 (ko) * 2011-05-23 2017-09-19 현대자동차주식회사 전기자동차의 충전시 온도 관리 방법
JP5652331B2 (ja) * 2011-05-30 2015-01-14 スズキ株式会社 電池温調システムおよび電池充電システム
DE102011079415B4 (de) * 2011-07-19 2018-10-25 Bayerische Motoren Werke Aktiengesellschaft Laden eines eine elektrische Klimaanlage umfassenden Elektrofahrzeugs
US20130079978A1 (en) * 2011-09-22 2013-03-28 Honda Motor Co., Ltd. Preconditioning a vehicle
CN202283863U (zh) * 2011-10-13 2012-06-27 浙江吉利汽车研究院有限公司 一种基于太阳能的汽车智能降温系统
KR101305830B1 (ko) * 2011-11-16 2013-09-06 현대자동차주식회사 차량의 실내 환기방법
CN102447148A (zh) * 2011-12-09 2012-05-09 中联重科股份有限公司 电池预热系统、方法及电动车
BR112016004492A2 (pt) * 2012-08-30 2023-09-26 Volvo Truck Corp metodo e veiculo para operar um sistema de ar condicionado em veiculo
JP2014069600A (ja) * 2012-09-27 2014-04-21 Mitsubishi Motors Corp 車載機器制御装置
JP6015618B2 (ja) * 2013-10-04 2016-10-26 トヨタ自動車株式会社 車両
JP2015074243A (ja) * 2013-10-04 2015-04-20 トヨタ自動車株式会社 車両
JP6015620B2 (ja) * 2013-10-16 2016-10-26 トヨタ自動車株式会社 車両
JP6319047B2 (ja) * 2013-11-19 2018-05-09 株式会社デンソー 車両用空調システム及びその起動方法
US10131204B2 (en) * 2015-01-05 2018-11-20 Ford Global Technologies, Llc Smart connected climate control
CN104842743B (zh) * 2015-03-25 2017-02-22 北汽福田汽车股份有限公司 一种车载空调远程控制方法及系统
DE102015213097A1 (de) * 2015-07-13 2017-01-19 Bayerische Motoren Werke Aktiengesellschaft Stand-Klimatisieren eines Fahrzeuginnenraums
CN106240292A (zh) * 2016-08-09 2016-12-21 安徽聚润互联信息技术有限公司 一种车载空调智能调节系统
US10675948B2 (en) * 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
CN106891773A (zh) * 2017-04-28 2017-06-27 北京新能源汽车股份有限公司 一种汽车充电控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060137871A1 (en) * 2002-12-02 2006-06-29 Daimlerchrysler Ag Air conditioning method
US6745582B1 (en) * 2003-01-10 2004-06-08 Delphi Technologies, Inc. HVAC control method for a remote start motor vehicle
JP3896978B2 (ja) * 2003-03-26 2007-03-22 株式会社デンソー 車両用空調装置
CN104105610A (zh) * 2012-02-22 2014-10-15 丰田自动车株式会社 车辆用远程控制系统、服务器以及远程操作终端
CN204674335U (zh) * 2015-06-16 2015-09-30 常州信息职业技术学院 智能车载空调系统
CN105857011A (zh) * 2016-04-14 2016-08-17 北京长安汽车工程技术研究有限责任公司 一种汽车空调控制方法、控制器及汽车空调控制系统
CN107745618A (zh) * 2017-09-11 2018-03-02 珠海格力电器股份有限公司 一种汽车空调的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683086A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112659845A (zh) * 2020-12-17 2021-04-16 武汉格罗夫氢能汽车有限公司 基于车联网远程启动氢燃料电池开启空调的方法
CN112659845B (zh) * 2020-12-17 2023-08-04 武汉格罗夫氢能汽车有限公司 基于车联网远程启动氢燃料电池开启空调的方法

Also Published As

Publication number Publication date
US11179997B2 (en) 2021-11-23
EP3683086A1 (en) 2020-07-22
EP3683086A4 (en) 2021-03-24
CN107745618B (zh) 2019-10-01
CN107745618A (zh) 2018-03-02
EP3683086B1 (en) 2022-10-26
US20200276878A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2019047585A1 (zh) 汽车空调的控制方法
CN105437913B (zh) 汽车空调远程启动控制系统及其控制方法
CN104075405B (zh) 辅助加热方法和辅助加热装置
CN109028676A (zh) 一种新能源汽车的电动压缩机的控制方法、装置及系统
WO2016082238A1 (zh) 太阳能车载空调系统
CN113682106B (zh) 车辆热管理控制方法以及装置
CN109693506A (zh) 一种电动汽车及其车内温度调节方法、系统
CN107499088A (zh) 一种汽车空调热泵、汽车和控制方法
CN106347065B (zh) 一种车厢温度控制方法
CN204547667U (zh) 太阳能供电式车内温度调节装置
CN112238733A (zh) 一种电动汽车热调控系统
US10661629B2 (en) Method and system for controlling the temperature in a cabin of a vehicle while the vehicle engine is turned off
CN114274823A (zh) 一种电动汽车的充电能量管理系统、方法和电动汽车
CN104553670B (zh) 车辆
CN103836738B (zh) 太阳能空调器及其控制方法
CN202013000U (zh) 一种汽车空调控制器
CN202013001U (zh) 汽车空调控制器
CN207360024U (zh) 一种汽车空调热泵和汽车
CN201715640U (zh) 一种温度调节装置
CN202432743U (zh) 一种汽车用的变频空调
CN208035894U (zh) 汽车空调及汽车
CN208149009U (zh) 一种新能源汽车热管理系统
CN203063626U (zh) 一种汽车室内制冷装置
CN117059966B (zh) 一种基于三源热泵架构对于电池热管理控制方法及其系统
CN113650475B (zh) 车辆热管理控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853413

Country of ref document: EP

Effective date: 20200414