WO2019045528A1 - Novel compound and organic light emitting device using same - Google Patents

Novel compound and organic light emitting device using same Download PDF

Info

Publication number
WO2019045528A1
WO2019045528A1 PCT/KR2018/010166 KR2018010166W WO2019045528A1 WO 2019045528 A1 WO2019045528 A1 WO 2019045528A1 KR 2018010166 W KR2018010166 W KR 2018010166W WO 2019045528 A1 WO2019045528 A1 WO 2019045528A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
layer
light emitting
organic
Prior art date
Application number
PCT/KR2018/010166
Other languages
French (fr)
Korean (ko)
Inventor
정민우
강민영
박태윤
조성미
문정욱
이정하
채미영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180102994A external-priority patent/KR102121433B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880039547.9A priority Critical patent/CN110770228B/en
Priority to US16/624,202 priority patent/US11380851B2/en
Publication of WO2019045528A1 publication Critical patent/WO2019045528A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of brightness, driving voltage, and response speed, and much research is proceeding.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer may have a multi-layered structure composed of different materials.
  • the organic material layer may include a hole injection layer, a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula 1 or 2:
  • Xi to 3 ⁇ 4 is N or CH, at least one of 3 ⁇ 4 to 3 ⁇ 4 is N, Y is 0 or S,
  • L < 2 &gt are each independently a single bond; Or substituted or unsubstituted C 6 -
  • Ar is substituted or unsubstituted d-so alkyl; Substituted or unsubstituted d- 60 haloalkyl; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 6 -C 60 aryl; Or substituted or unsubstituted C 2 - 60 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S;
  • the present invention also provides a method of manufacturing a semiconductor device, A second electrode facing the first electrode; And one or more organic layers disposed between the first electrode and the ground electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 or 2, to provide.
  • the compound represented by the above formula (1) or (2) can be used as a material for the organic material layer of the organic light emitting device, and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • FIG. 2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 Respectively.
  • ⁇ ⁇ means a bond connected to another substituent, and a single bond means a case where no additional atom exists in a portion represented by L 2 .
  • substituted or unsubstituted 1 refers to a hydrogen atom, a halogen atom, a cyano group, a nitrile group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, An alkoxy group, an aryloxy group, an alkyloxy group, an aryloxy group, an aryloxy group, an aryloxy group, an aryloxy group, an aryloxy group, a silyl group, a boron group, an alkyl group, an aryl group, an aralkyl group, A heteroaryl group, an arylamine group, an arylphosphine group, or heteroaryl containing at least
  • the substituent 11 in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent in which two phenyl groups are connected.
  • the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group. Specifically, it may be a compound of the following structural formula.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms.
  • the compound may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group Triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like, but are not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, N-butyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-pentyl, Methylheptyl, 2-ethylpentyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, , 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms.
  • the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited,
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • polycyclic aryl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group may be substituted, and two substituents may form a spiro structure with each other. Wherein the fluorenyl group is substituted
  • the heteroaryl is a heteroaryl containing at least one of 0, N, Si and S as a hetero atom.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heteroaryl examples include, but are not limited to, thiophene, furane, pyrrolyl, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, A pyrazinyl group, an isoquinoline group, an indole group, a carbazole group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, Benzoimidazole group, benzothiazole group, benzothiazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadiazole group, A benzyl group, a benzyl group, a benz
  • the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above.
  • the heteroaryl among the heteroarylamines can be applied to the heteroaryl described above.
  • the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group.
  • the description of the aryl group described above can be applied except that arylene is a divalent group.
  • the description of the above-mentioned heteroaryl can be applied except that the heteroarylene is a divalent.
  • the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other.
  • the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and two substituents are bonded to each other.
  • the present invention provides a compound represented by the above formula (1) or (2). Also, the 3 ⁇ 4 to 3 ⁇ 4 may be N.
  • L 2 are each independently selected from the group consisting of a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenylene, a substituted or unsubstituted terphenylene, a substituted or unsubstituted naphthylene, Substituted or unsubstituted phenanthrenylene, substituted or unsubstituted anthracenylene, substituted or unsubstituted fluoranthenylene, substituted or unsubstituted triphenylenylene, substituted or unsubstituted pyrenylene, substituted or unsubstituted carbazole Substituted or unsubstituted fluorenylenes, or substituted or unsubstituted spiro-fluorenylenes.
  • l and L 2 can each independently be a single bond, phenylene, biphenylene, or terphenyleryrene. Specifically, for example, and L 2 may each independently be a single bond, or phenylene.
  • Ar is a substituted or unsubstituted C 6 - 20 aryl; Or C 2 - 20 heteroaryl containing 1 to 3 substituted or unsubstituted 0 or S heteroatoms.
  • Ar may be phenyl, or biphenyl.
  • Xi to Y and Ar are as defined in the above formulas (1) and (2).
  • the compound may be any one selected from the group consisting of the following compounds:
  • the compounds represented by the above general formulas (1) and (2) have a structure in which a nitrogen-containing 6-membered heteroaryl group is bonded to a biscarbazolyl group bonded at a specific position and has a structure linked to the 1-position of dibenzofuranyl / dibenzothiophenyl And an organic light emitting element employing the same can have a high efficiency, a low driving voltage, a high brightness, and a long life, as compared with an organic light emitting element employing a compound having a structure in which amino groups are connected to other positions of fluorene.
  • the compound represented by the above formula (1) or (2) can be prepared, for example, by the same method as the following formula (a) or (b) The above production method can be more specific in the production example to be described later.
  • Equations (a) and (b) above 3 ⁇ 4, 3 ⁇ 4 ⁇ , and L 2 are as defined above.
  • the reactants used in the above antimicrobial formulas a and b may be prepared by appropriately substituting the starting material according to the structure of the compound to be produced in the present invention. Meanwhile, the present invention provides an organic light emitting device comprising a compound represented by the above formula (1) or (2).
  • the present invention provides a display device comprising: a first electrode; A second electrode facing the first electrode; And at least one organic compound layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer contains a compound represented by the general formula (1) or (2) Lt; / RTI >
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multi-layer structure in which two or more layers and an organic material layer are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • a hole injection layer and a hole transporting layer between the first electrode and the light emitting layer, and an electron transporting layer and an electron injecting layer between the light emitting layer and the second electrode are further included .
  • ≪ / RTI &gt the structure of the organic light emitting device is not limited thereto, and may include fewer or more organic layers.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, at least one organic layer, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which an anode, one or more organic compound layers and an anode are sequentially stacked on a substrate.
  • FIGS. Fig. 1 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.
  • the compound represented by Formula 1 or 2 may be included in the light emitting layer.
  • 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is.
  • the compound represented by Formula 1 or 2 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron transporting layer.
  • the organic light emitting device according to the present invention May be prepared by materials and methods known in the art, except for including the compound represented by Formula (1) or (2).
  • the organic light emitting diode when the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials.
  • the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate.
  • a metal oxide or a metal oxide having conductivity or an alloy thereof may be formed on the substrate by a PVD (physi cal vapor deposition) method such as a sputtering method or an e-beam evaporation method Depositing a cathode, forming an anode, forming an organic layer including a hole injecting layer, a hole transporting layer, a light emitting layer, and an electron transporting layer on the anode, and depositing a material usable as a cathode thereon.
  • a PVD physi cal vapor deposition
  • the compound represented by Formula 1 or 2 may be formed into an organic layer by a solution coating method as well as a vacuum evaporation method in manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, ink jet printing, screen printing, spraying, coating, and the like, but is not limited thereto.
  • an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (TO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is a cathode.
  • the anode material a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer.
  • the positive electrode material examples include vanadium, Metals such as chromium, copper, zinc and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ⁇ 0: ⁇ 1 SN0 or 2: a combination of a metal and an oxide such as Sb; And conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPEDOT), polypyrrole and polyaniline.
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium lithium, gadolinium aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto.
  • the hole injecting layer is a layer for injecting holes from an electrode.
  • the hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material.
  • a compound which prevents the migration of excitons to the electron injecting layer or the electron injecting material and is also excellent in the thin film forming ability is preferable.
  • the highest occupied molecular orbital (H0M0) of the hole injecting material be between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injecting material include organic materials such as porphyrin, oligothiophene, arylamine-based organic materials, quinacridone-based tetraphenylene-based organic materials, quinacridone-based organic materials, perylene ) Organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, But is not limited thereto.
  • the light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence.
  • the light emitting layer may include a host material and a dopant material as described above.
  • the host material may further include a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivative examples include an anthracene derivative pyrene derivative, a naphthalene derivative, a pentacene derivative, a phenanthrene compound, a fluoranthene compound and the like.
  • heterocycle-containing compound examples include carbazole derivatives, dibenzofuran derivatives, Compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, such as pyrene, anthracenecyclycene and peripherrhene having an arylamino group.
  • arylamino groups such as pyrene, anthracenecyclycene and peripherrhene having an arylamino group.
  • the styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • the electron transporting layer is a layer that receives electrons from the electron injecting layer and transports electrons to the light emitting layer.
  • the electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. Suitable. Specific examples include the A1 complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transporting layer can be used with any desired cathode material as used according to the prior art.
  • a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer for injecting electrons from the electrode.
  • the electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. A compound which prevents migration to a layer and is excellent in a thin film forming ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto.
  • the organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
  • the compound represented by Formula 1 or 2 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • the preparation of the compound represented by the above formula (1) or (2) and the organic light emitting device comprising the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
  • N-cyanobenzimidamide (16.8 g, 114 mmol) and Compound A-2 (23 g, 114 mmol) and phosphrous oxychloride (12 mL, 128 mmol) were added to 500 mL of acetonitrile and stirred for 1 hour. After cooling to room temperature, the resulting solid was filtered, washed with water and ethanol, and dried to give Compound A. (29.2 g, 80% yield)
  • the glass substrate coated with thin ITO (indium tin oxide) film with a thickness of 1, 300 A was washed with ultrasonic waves in distilled water containing detergent.
  • a detergent a product of Fi Scher Co. was used, and distilled water, which was filtered with a filter (Fi lter) manufactured by Mi 11 ipore Co., was used as distilled water.
  • the ITO was washed for 30 minutes, then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum-deposited on the? -Transparent electrode prepared above to a thickness of 50 A to form a hole injection layer.
  • the HT-1 compound was thermally vacuum-deposited on the HTL to form a hole transport layer, and an HT-2 compound was vacuum deposited on the HT-1 deposited layer to a thickness of 50 A to form an electron blocking layer.
  • the phosphorescent dopant GD-1 was vacuum deposited on the HT-2 deposited film at a weight ratio of 10% to the phosphor host using Compound 1 synthesized in Preparation Example 2 at a weight ratio of 90) to the phosphorescent host.
  • An ET-1 material was vacuum deposited on the light emitting layer to a thickness of 250 A
  • the ET-2 material was co-deposited with Li at a weight ratio of 2% to a thickness of 100 A to form an electron transport layer and an electron injection layer.
  • Aluminum was deposited on the electron injection layer to a thickness of 1000 A to form a cathode.
  • Example 2 A device of Example 2 was fabricated in the same manner as in Example 1, except that Compound 2 was used instead of Compound 1 in Example 1.
  • Example 3 A device of Example 2 was fabricated in the same manner as in Example 1, except that Compound 2 was used instead of Compound 1 in Example 1.
  • Example 3 A device of Example 3 was fabricated in the same manner as in Example 1, except that Compound 3 was used instead of Compound 1 in Example 1.
  • a comparative element was prepared using the same method as in Example 1, except that the compounds A to C were used instead of the compound 1 in Example 1 above.
  • the host material compounds A to C used in the comparative example are as follows.
  • T95 means the time required for the luminance to be reduced to 95% when the initial luminance at a light density of 20 mA / cm 2 is taken as 100%.
  • Example 2 Compound 2 3.12 63.5 (0.322 '0.630) 40.3
  • Example 3 Compound 3 3.20 65.1 (0.321, 0.631) 50.0 Comparative Example 1 Compound A 3.21. 60.3 (0.321, 0.630) 25.0 Comparative Example 2 Compound B 3.33 59.8 (0.320, 0.629) 23.1 Comparative Example 3 Compound C 3.59 49.1 (0.339, 0.631) 5.1

Abstract

The present invention provides a novel compound and an organic light emitting device using the same.

Description

【발명의 명칭】  Title of the Invention
신규한 화합물 및 이를 이용한유기발광 소자  Novel compounds and organic light emitting devices using the same
【기술분야】 TECHNICAL FIELD
관련 출원 (들)과의 상호 인용  Cross-reference with related application (s)
본 출원은 2017년 9월 1일자 한국 특허 출원 제 10-2017-0112077호 및 2018년 8월 30일자 한국 특허 출원 제 10-2018-0102994호에 기초한 우^권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of Korean Patent Application No. 10-2017-0112077, filed on Sep. 1, 2017, and Korean Patent Application No. 10-2018-0102994, filed on August 30, 2018, The entire contents of which are incorporated herein by reference.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel compound and an organic light emitting device comprising the same.
【발명의 배경이 되는 기술】 TECHNICAL BACKGROUND OF THE INVENTION
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송충, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤 (exc i ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다. [선행기술문헌】 In general, organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of brightness, driving voltage, and response speed, and much research is proceeding. The organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic material layer may have a multi-layered structure composed of different materials. For example, the organic material layer may include a hole injection layer, a hole injection layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the two electrodes in the structure of the organic light emitting diode, holes are injected in the anode, electrons are injected into the organic layer in the cathode, and excitons are formed when injected holes and electrons meet. When the exciton falls back to the ground state, it will emit light. There is a continuing need for the development of new materials for the organic materials used in such organic light emitting devices. [Prior art document]
【특허문헌】  [Patent Literature]
(특허문헌 0001) 한국특허 공개번호 게 10-2000-0051826호  (Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
【발명의 내용】 DISCLOSURE OF THE INVENTION
【해결하고자 하는 과제】  [Problem to be solved]
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.  The present invention relates to a novel compound and an organic light emitting device comprising the same.
【과제꾀 해결 수단】 [MEANS FOR SOLVING PROBLEMS]
본 발명은 하기 화학식 1 또는 2로 표시되는 화합물을 제공한다:  The present invention provides a compound represented by the following formula 1 or 2:
1]  One]
Figure imgf000003_0001
Figure imgf000003_0001
[화학식 2] (2)
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1 및 2에서,  In the above Formulas 1 and 2,
Xi 내지 ¾는 N또는 CH이되, ¾ 내지 ¾중 적어도 하나는 N이고, Y는 0또는 S이고,  Xi to ¾ is N or CH, at least one of ¾ to ¾ is N, Y is 0 or S,
및 L2는 각각 독립적으로, 단일 결합; 또는 치환 또는 비치환된 C6-And L < 2 > are each independently a single bond; Or substituted or unsubstituted C 6 -
60 아릴렌이고, 60 arylene,
Ar은 치환 또는 비치환된 d-so 알킬; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N , 0 및 S로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이다. 또한, 본 발명은 계 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 거 12 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는, 유기 발광소자를 제공한다. Ar is substituted or unsubstituted d-so alkyl; Substituted or unsubstituted d- 60 haloalkyl; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 6 -C 60 aryl; Or substituted or unsubstituted C 2 - 60 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and S; The present invention also provides a method of manufacturing a semiconductor device, A second electrode facing the first electrode; And one or more organic layers disposed between the first electrode and the ground electrode, wherein at least one of the organic layers includes a compound represented by Formula 1 or 2, to provide.
【발명의 효과】 【Effects of the Invention】
상술한 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및 /또는 수명 특성을 향상시킬 수 있다. 【도면의 간단한 설명] The compound represented by the above formula (1) or (2) can be used as a material for the organic material layer of the organic light emitting device, and can improve the efficiency, the driving voltage and / or the lifetime of the organic light emitting device. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
도 1은 기판 ( 1), 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.  Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4. Fig.
도 2는 기판 ( 1)ᅳ 양극 (2)ᅳ 정공주입층 (5)., 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.  2 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 Respectively.
【발명을 실시하기 위한 구체적인 내용】 이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention.
본 명세서에서, ᅥᅳ는 다른 치환기에 연결되는 결합을 의미하고, 단일 결합은 및 L2로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다. 본 명세서에서 "치환 또는 비치환된1' 이라는 용어는 증수소; 할로겐기; 시아노기 ; 니트릴기; 니트로기 ; 히드록시기; 카보닐기; 에스테르기 ; 이미드기 ; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, 0 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 11는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다. In the present specification, ᅥ 을 means a bond connected to another substituent, and a single bond means a case where no additional atom exists in a portion represented by L 2 . As used herein, the term "substituted or unsubstituted 1 " refers to a hydrogen atom, a halogen atom, a cyano group, a nitrile group, a nitro group, a hydroxyl group, a carbonyl group, an ester group, an imide group, an amino group, a phosphine oxide group, An alkoxy group, an aryloxy group, an alkyloxy group, an aryloxy group, an aryloxy group, an aryloxy group, an aryloxy group, a silyl group, a boron group, an alkyl group, an aryl group, an aralkyl group, A heteroaryl group, an arylamine group, an arylphosphine group, or heteroaryl containing at least one of N, O and S atoms, or a substituted or unsubstituted heteroaryl group optionally substituted with at least one substituent selected from the group consisting of Or a substituted or unsubstituted two or more of the above-exemplified substituents are connected. For example, the substituent 11 in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or may be interpreted as a substituent in which two phenyl groups are connected. In the present specification, the carbon number of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한 .
Figure imgf000006_0001
In the present specification, the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group. Specifically, it may be a compound of the following structural formula.
Figure imgf000006_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나 이에 한정되는 것은 아니다.
Figure imgf000006_0002
In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, the compound may be a compound having the following structure, but is not limited thereto.
Figure imgf000006_0003
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기 트리에틸실릴기, t—부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t_부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소 , 염소, 브롬 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1_메틸—부틸 1-에틸-부틸, 펜틸, n_펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실 , n-핵실 1-메틸펜틸, 2-메틸펜틸, 4-메틸 -2—펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸, 사이클로핵틸메틸, 옥틸, n—옥틸 tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2- 프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1—디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1 , 3-부타디에닐, 알릴, 1-페닐비닐 -1- 일, 2-페닐비닐 -1-일, 2 , 2-디페닐비닐 -1—일, 2-페닐 -2- (나프틸 -1-일)비닐 -1-일 2 , 2-비스 (디페닐 -1-일)비닐 -1-일, 스틸베닐기 , 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3-디메틸사이클로펜틸, 사이클로핵실, 3-메틸사이클로핵실, 4-메틸사이클로핵실, 2 , 3- 디메틸사이클로핵실, 3,4,5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지
Figure imgf000006_0003
In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group Triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like, but are not limited thereto. In the present specification, the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group. In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine. In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, N-butyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-pentyl, Methylheptyl, 2-ethylpentyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, , 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like. In the present specification, the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1- Yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- (naphthyl- -1-yl) vinyl-1-yl, stilbenyl, styrenyl, and the like. In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3- 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. In the present specification, the aryl group is not particularly limited,
60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 60, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto. Examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group. In the present specification, a fluorenyl group may be substituted, and two substituents may form a spiro structure with each other. Wherein the fluorenyl group is substituted
경우,
Figure imgf000008_0001
^이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로아릴은 이종 원소로 0, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴의 예로는 티오펜기, 퓨란기, 피롤기 , 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명어 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 한편, 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 제공한다. 또한, ¾ 내지 ¾는 N일 수 있다. 또한, 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 바이페닐릴렌, 치환 또는 비치환된 터페닐릴렌, 치환 또는 비치환된 나프틸렌, 치환 또는 비치환된 페난트레닐렌, 치환 또는 비치환된 안트라세닐렌, 치환 또는 비치환된 플루오란테닐렌, 치환 또는 비치환된 트리페닐레닐렌, 치환 또는 비치환된 파이레닐렌, 치환 또는 비치환된 카바졸일렌, 치환 또는 비치환된 플루오레닐렌 또는 치환 또는 비치환된 스파이로-플루오레닐렌일 수 있다. 예를 들어, l 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 바이페닐릴렌, 또는 터페닐릴렌일 수 있다. 구체적으로, 예를 들어, 및 L2는 각각 독립적으로, 단일 결합, 또는 페닐렌일 수 있다. 또한, Ar은 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 0또는 S의 헤테로원자를 1개 내지 3개 포함하는 C2-20 헤테로아릴일 수 있다. 예를 들어, Ar은 페닐, 또는 바이페닐일 수 있다.
Occation,
Figure imgf000008_0001
^ Can be. However, the present invention is not limited thereto. In the present specification, the heteroaryl is a heteroaryl containing at least one of 0, N, Si and S as a hetero atom. The number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of heteroaryl include, but are not limited to, thiophene, furane, pyrrolyl, imidazole, thiazole, oxazole, oxadiazole, triazole, pyridyl, A pyrazinyl group, an isoquinoline group, an indole group, a carbazole group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, Benzoimidazole group, benzothiazole group, benzothiazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadiazole group, A benzyl group, a benzyl group, a benzyl group, a benzyl group, a benzyl group, a benzyl group, a benzyl group, a benzyl group, a benzyl group, In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group. In the present specification, the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above. In the present specification, the heteroaryl among the heteroarylamines can be applied to the heteroaryl described above. In the present specification, the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group. In the present specification, the description of the aryl group described above can be applied except that arylene is a divalent group. In this specification, the description of the above-mentioned heteroaryl can be applied except that the heteroarylene is a divalent. In the present specification, the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other. In the present specification, the description of heteroaryl described above can be applied, except that the heterocycle is not monovalent and two substituents are bonded to each other. Meanwhile, the present invention provides a compound represented by the above formula (1) or (2). Also, the ¾ to ¾ may be N. And L 2 are each independently selected from the group consisting of a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted biphenylene, a substituted or unsubstituted terphenylene, a substituted or unsubstituted naphthylene, Substituted or unsubstituted phenanthrenylene, substituted or unsubstituted anthracenylene, substituted or unsubstituted fluoranthenylene, substituted or unsubstituted triphenylenylene, substituted or unsubstituted pyrenylene, substituted or unsubstituted carbazole Substituted or unsubstituted fluorenylenes, or substituted or unsubstituted spiro-fluorenylenes. For example, l and L 2 can each independently be a single bond, phenylene, biphenylene, or terphenyleryrene. Specifically, for example, and L 2 may each independently be a single bond, or phenylene. Also, Ar is a substituted or unsubstituted C 6 - 20 aryl; Or C 2 - 20 heteroaryl containing 1 to 3 substituted or unsubstituted 0 or S heteroatoms. For example, Ar may be phenyl, or biphenyl.
' 한편, 상기 화합물은 하기 화학식 1-1, 1—2, 2-1 및 2-2 중 하나로 표시될 수 있다: . "On the other hand, the compounds can be represented by one of formulas 1-1, 1-2, 2-1 and 2-2:
[화학식 1-1] [화학식 1-2]  [Formula 1-1] [Formula 1-2]
Figure imgf000010_0001
-1] [화학식 2-2]
Figure imgf000010_0001
-1] [Formula 2-2]
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식 1-1, 1-2, 2-1 및 2-2에서,  In Formulas 1-1, 1-2, 2-1 and 2-2,
Xi 내지 , Y, 및 Ar에 대한 설명은 상기 화학식 1 및 2에서 정의한 바와 같다. 예를 들어, 상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나일 수 있다: The definitions of Xi to Y and Ar are as defined in the above formulas (1) and (2). For example, the compound may be any one selected from the group consisting of the following compounds:
II II
Figure imgf000012_0001
Figure imgf000012_0001
99ΐΟΪΟ/8ΐΟΖΗΜ/Χ3<Ι 99ΐΟΪΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0003
Figure imgf000013_0003
상기 화학식 1 및 2로 표시되는 화합물은, 질소함유 6원 헤테로아릴기가 특정 위치로 결합된 비스카바졸일기와 결합되고, 디벤조퓨라닐 /디벤조티오페닐의 1번 위치와 연결된 구조를 가짐으로써, 이를 채용한 유기 발광 소자는 플루오렌의 다른 위치에 아미노기가 연결된 구조를 갖는 화합물을 채용한 유기 발광 소자에 비하여, 고효율, 저 구동 전압, 고휘도 및 장수명 등을 가질 수 있다. 한편, 상기 화학식 1 또는 2로 표시되는 화합물은 일례로 하기 반웅식 a 또는 반웅식 b와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다구체화될 수 있다. The compounds represented by the above general formulas (1) and (2) have a structure in which a nitrogen-containing 6-membered heteroaryl group is bonded to a biscarbazolyl group bonded at a specific position and has a structure linked to the 1-position of dibenzofuranyl / dibenzothiophenyl And an organic light emitting element employing the same can have a high efficiency, a low driving voltage, a high brightness, and a long life, as compared with an organic light emitting element employing a compound having a structure in which amino groups are connected to other positions of fluorene. Meanwhile, the compound represented by the above formula (1) or (2) can be prepared, for example, by the same method as the following formula (a) or (b) The above production method can be more specific in the production example to be described later.
Figure imgf000014_0001
Figure imgf000014_0001
상기 반웅식 a 및 반웅식 b에서, , ¾, ¾ᅳ Y, 및 L2는 앞서 정의한 바와 같다. 상기 반웅식 a , b에서 사용된 반응물들은, 본원발명에서 제조하고자 하는 화합물의 구조에 맞추어 출발 물질을 적절히 대체하여 제조할 수 있다. 한편, 본 발명은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 게 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 게 1 전극과 상기 게 2 전극 사이에 구비된 1충 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물충 중 1층 이상은 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명의 유기 발광 소자의 유기물층 은 단층 구조로 이루어질 수도 있으나, 2층 이상와유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층 으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다. 본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 발광층 이외에, 상기 제 1전극과 상기 발광층 사이의 정공주입층 및 정공수송층, 및 상기 발광층과 상기 게 2전극 사이의 전자수송층 및 전자주입층을 더 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조 (normal type)의 유기 발광소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조 ( inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다. 도 1은 기판 ( 1) , 양극 (2), 발광층 (3), 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것아다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 도 2는 기판 ( 1), 양극 (2) , 정공주입층 (5), 정공수송층 (6), 발광층 (7), 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 2로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. 본 발명에 따른 유기 발광 소자는, 상기 유기물층 중 1층 이상이 상기 화학식 1 또는 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제 1 전극, 유기물층 및 제 2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자빔 증발법 (e-beam evaporat ion)과 같은 PVD(physi cal Vapor Deposi t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고ᅳ 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광소자를 만들 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자와 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 를 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (TO 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 일례로, 상기 게 1 전극은 양극이고, 상기 제 2 전극은 음극이거나, 또는 상기 계 1 전극은 음극이고, 상기 계 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( ITO) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; Ζη0:Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜) , 폴리 [3,4- (에틸렌 -1 , 2-디옥시 )티오펜 KPED0T) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨ᅳ 리튬, 가돌리늄 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 H0M0(highest occupi ed molecular orbital )가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAlq; 10-히드록시벤조 퀴놀린- 금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P- 페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spi ro) 화합물; 플리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 상술한 바와 같이 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등을 더 포함할 수 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체 , 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센ᅤ 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, _ 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-쥐놀리나토) ( 0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 본 발명에 따른 유기 발광 소자는사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 상기 화학식 1 또는 2로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다. 상기 화학식 1 또는 2로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. In Equations (a) and (b) above, ¾, ¾ ᅳ, and L 2 are as defined above. The reactants used in the above antimicrobial formulas a and b may be prepared by appropriately substituting the starting material according to the structure of the compound to be produced in the present invention. Meanwhile, the present invention provides an organic light emitting device comprising a compound represented by the above formula (1) or (2). For example, the present invention provides a display device comprising: a first electrode; A second electrode facing the first electrode; And at least one organic compound layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer contains a compound represented by the general formula (1) or (2) Lt; / RTI &gt; The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multi-layer structure in which two or more layers and an organic material layer are stacked. for example, The organic light emitting device of the present invention may have a structure including a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers. The organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, in the organic light emitting device of the present invention, in addition to the light emitting layer as the organic material layer, a hole injection layer and a hole transporting layer between the first electrode and the light emitting layer, and an electron transporting layer and an electron injecting layer between the light emitting layer and the second electrode are further included . &Lt; / RTI &gt; However, the structure of the organic light emitting device is not limited thereto, and may include fewer or more organic layers. The organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, at least one organic layer, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which an anode, one or more organic compound layers and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. Fig. 1 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4. Fig. In such a structure, the compound represented by Formula 1 or 2 may be included in the light emitting layer. 2 shows an example of an organic light emitting element comprising a substrate 1, an anode 2, a hole injecting layer 5, a hole transporting layer 6, a light emitting layer 7, an electron transporting layer 8 and a cathode 4 It is. In such a structure, the compound represented by Formula 1 or 2 may be contained in at least one of the hole injecting layer, the hole transporting layer, the light emitting layer, and the electron transporting layer. In the organic light emitting device according to the present invention, May be prepared by materials and methods known in the art, except for including the compound represented by Formula (1) or (2). In addition, when the organic light emitting diode includes a plurality of organic layers, the organic layers may be formed of the same material or different materials. For example, the organic light emitting device according to the present invention can be manufactured by sequentially laminating a first electrode, an organic material layer, and a second electrode on a substrate. At this time, a metal oxide or a metal oxide having conductivity or an alloy thereof may be formed on the substrate by a PVD (physi cal vapor deposition) method such as a sputtering method or an e-beam evaporation method Depositing a cathode, forming an anode, forming an organic layer including a hole injecting layer, a hole transporting layer, a light emitting layer, and an electron transporting layer on the anode, and depositing a material usable as a cathode thereon. In addition to such a method, an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate. In addition, the compound represented by Formula 1 or 2 may be formed into an organic layer by a solution coating method as well as a vacuum evaporation method in manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, ink jet printing, screen printing, spraying, coating, and the like, but is not limited thereto. In addition to such a method, an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (TO 2003/012890). However, the manufacturing method is not limited thereto. For example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode and the second electrode is a cathode. As the anode material, a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer. Specific examples of the positive electrode material include vanadium, Metals such as chromium, copper, zinc and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Ζη0: Α1 SN0 or 2: a combination of a metal and an oxide such as Sb; And conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene KPEDOT), polypyrrole and polyaniline. The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium lithium, gadolinium aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / Al, but the present invention is not limited thereto. The hole injecting layer is a layer for injecting holes from an electrode. The hole injecting material has a hole injecting effect, and has a hole injecting effect on the light emitting layer or a light emitting material. A compound which prevents the migration of excitons to the electron injecting layer or the electron injecting material and is also excellent in the thin film forming ability is preferable. It is preferred that the highest occupied molecular orbital (H0M0) of the hole injecting material be between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injecting material include organic materials such as porphyrin, oligothiophene, arylamine-based organic materials, quinacridone-based tetraphenylene-based organic materials, quinacridone-based organic materials, perylene ) Organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto. The hole transport layer is a layer that transports holes from the hole injection layer to the light emitting layer. The hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer. The material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, But is not limited thereto. The light emitting material is preferably a material capable of emitting light in the visible light region by transporting and receiving holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and having good quantum efficiency for fluorescence or phosphorescence. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; Compounds of the benzoxazole, benzothiazole and benzimidazole series; Poly (P-phenylenevinylene) (PPV) series polymer; Spiro compounds; Fluorene, fluorene, fluorene, and the like, but are not limited thereto. The light emitting layer may include a host material and a dopant material as described above. The host material may further include a condensed aromatic ring derivative or a heterocyclic compound. Specific examples of the condensed aromatic ring derivative include an anthracene derivative pyrene derivative, a naphthalene derivative, a pentacene derivative, a phenanthrene compound, a fluoranthene compound and the like. Examples of the heterocycle-containing compound include carbazole derivatives, dibenzofuran derivatives, Compounds, pyrimidine derivatives, and the like, but are not limited thereto. Examples of the dopant material include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specific examples of the aromatic amine derivatives include condensed aromatic ring derivatives having substituted or unsubstituted arylamino groups, such as pyrene, anthracenecyclycene and peripherrhene having an arylamino group. Examples of the styrylamine compound include substituted or unsubstituted Wherein at least one aryl vinyl group is substituted with at least one aryl vinyl group, and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted. Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like. Examples of the metal complex include iridium complex, platinum complex, and the like, but are not limited thereto. The electron transporting layer is a layer that receives electrons from the electron injecting layer and transports electrons to the light emitting layer. The electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. Suitable. Specific examples include the A1 complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transporting layer can be used with any desired cathode material as used according to the prior art. In particular, an example of a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer. The electron injection layer is a layer for injecting electrons from the electrode. The electron injection layer has an ability to transport electrons, has an electron injection effect from the cathode, and has an excellent electron injection effect with respect to the light emitting layer or the light emitting material. A compound which prevents migration to a layer and is excellent in a thin film forming ability is preferable. Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto. Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto. The organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used. The compound represented by Formula 1 or 2 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device. The preparation of the compound represented by the above formula (1) or (2) and the organic light emitting device comprising the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
<제조예 1>중간체 A의 제조 PREPARATION EXAMPLE 1 Preparation of intermediate A
Figure imgf000020_0001
화합물 A— 1의 제조
Figure imgf000020_0001
Preparation of Compound A-1
2-chloro-3-fluorobenzoic acid (22 g, 126 mmol)을 thionyl chloride (200mL)에 투입 후, 2시간동안 환류 교반하였다. 상온으로 넁각 후, 증류하여 생성된 고체를 diethyl ether로 세척 후 건조하여 화합물 A—1을 제조하였다. (22.1 g, 수율 91%) 화합물 A-2의 제조 2-chloro-3-fluorobenzoic acid (22 g, 126 mmol) was added to thionyl chloride (200 mL) and refluxed for 2 hours. After stirring at room temperature, the resulting solid was washed with diethyl ether and dried to prepare Compound A-1. (22.1 g, yield 91%) Preparation of compound A-2
Dimethylamine 2.0M solution(74.8 mL, 150 mmol) 및 triethylamine (37.9 mL, 272 mmol)을 diethyl ether 500 mL에 투입한후, 화합물 A- 1(27 g, 140 mmol)을 천천히 적가한후 30분간 교반하였다. 생성된 고체를 여과한후, 여액을 증류하여 화합물 A-2를 제조하였다. (23.4 g, 수율 83%) 화합물 A의 제조 After adding dimethylamine 2.0M solution (74.8 mL, 150 mmol) and triethylamine (37.9 mL, 272 mmol) into 500 mL of diethyl ether, Compound A-1 (27 g, 140 mmol) was slowly added dropwise and stirred for 30 minutes . The resulting solid was filtered, The filtrate was distilled to prepare Compound A-2. (23.4 g, yield: 83%) Preparation of compound A
N' - cyanobenzimidamide ( 16.8 g, 114 mmol) 및 화합물 A-2 (23 g, 114mmol) 및 phosphrous oxychloride (12 mL, 128 mmol)을 acetonitrile 500 mL 에 투입 후 1시간동안 교반 환류하였다. 상온으로 식힌 후 생성된 고체를 여과하고, 물과 에탄올로 세척 후 건조하여 화합물 A를 제조하였다. (29.2 g, 수율 80%) N-cyanobenzimidamide (16.8 g, 114 mmol) and Compound A-2 (23 g, 114 mmol) and phosphrous oxychloride (12 mL, 128 mmol) were added to 500 mL of acetonitrile and stirred for 1 hour. After cooling to room temperature, the resulting solid was filtered, washed with water and ethanol, and dried to give Compound A. (29.2 g, 80% yield)
<제조예 2〉 화합물 1의 제조 [반웅식 1] PREPARATION EXAMPLE 2 Preparation of Compound 1 [
Figure imgf000021_0001
화합물 1-1의 제조 화합물 A(20 g, 62 mmol)와 9Η-2,9'-바이카바졸 (21 g, 62 mmol)을 를루엔 lOOmL에 분산시키고, 나트륨 터셔리—부톡사이드 (12 g, 125 mmol)를 투입하여 가온하였다. 환류 하에 비스 (트리 터셔리-부틸포스핀)팔라듐 (0.32g, ^!!!^귀을 투입하여 6시간 반응시켰다. 반응종결 후 상온으로 온도를 낮추고, 생성된 고체를 여과하였다. 여과된 고체를 클로로포름에 다시 녹이고 무수황산마그네슘을 넣고 교반한 후 여과하여 감압 증류하였다. 클로로포름과 에틸아세테이트를 이용하여 재결정하여 화합물 1-1을 제조하였다. (26.9g, '수율 70%) 화합물 1—2의 제조 화합물 1- 1(20 g, 32.5 mmol)와 화합물 (2_hydroxyphenyl)boronic acid (4.5 g, 32.5 mmol)를 1,4-다이옥산 90 mL에 분산시키고, 포타슴포스페이트 ( 13.8 g, 65 隱 ol )와 물 (30 mL)을 추가로 투입한다. 환류 교반 상태에서 디벤질리덴아세톤팔라듐 (0.56 g, 3 mol%)과 트리시클로핵실포스핀 (0.55 g, 6molD을 첨가하고 12시간 환류 교반시켰다. 반응이 종결되면 흔합물을 실온으로 냉각하여 물층을 분리하고, 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한다. 분리한 유기충에 무수황산 마그네슘 (Magnesium sul fate)으로 건조하여 여과하였다. 감압 농축하여 얻은 화합물에 에탄올과 에틸아세테이트를 투입하여 슬러리하고 고체를 여과하여 화합물 1-2를 제조하였다. (16.0 g, 수율 73 ) 화합물 1의 제조 화합물 1-2(20 g, 30 醒 ol )을 다이메틸로픔아마이드 100 ml에 넣고 교반하였다. 이후 포타슘카보네이트 (8.2 g, 60 睡 ol )를 투입한 후 환류하였다. 2시간후 상온으로 온도를 낮추고 여과하였다. 여과액을 과량의 물에 투입하여 고체를 석출시키고, 이를 여과한다. 여과된 고체를 다시 클로로포름에 녹인 후 물로 2회 세척하고 분리한다. 모아진 유기층을 황산마그네슘을 이용해 건조하였다. 환류하에 클로로포름을 제거하면서 에틸아세테이트를 투입하여 재결정하는 방법으로 화합물 1을 제조하였다. (13.2 g, 수율 68 %; MS : [M+H]+=654) <제조예 3>화합물 2의 제조 [반웅식 2]
Figure imgf000021_0001
Preparation of Compound 1-1 Compound A (20 g, 62 mmol) and 9H-2,9'-bicarbazole (21 g, 62 mmol) were dispersed in 100 mL of rubrene and sodium tertiary-butoxide , 125 mmol). After the completion of the reaction, the temperature was lowered to room temperature, and the solution was cooled to room temperature, The resulting solid was filtered. The filtered solid was re-dissolved in chloroform, and anhydrous magnesium sulfate was added thereto, followed by stirring, followed by filtration and distillation under reduced pressure. Recrystallization was performed using chloroform and ethyl acetate to prepare Compound 1-1. (26.9g, 'yield 70%) of compound 1-2 Preparation 1- 1 (20 g, 32.5 mmol ) and the compound (2_hydroxyphenyl) boronic acid (4.5 g , 32.5 mmol) in 90 mL of 1,4-dioxane dispersion And further added with potato phosphate (13.8 g, 65  ol) and water (30 mL). (0.56 g, 3 mol%) and tricyclohexylphosphine (0.55 g, 6 mol D) were added and stirred for 12 hours under reflux. When the reaction was completed, the reaction mixture was cooled to room temperature to obtain a water layer After separating and concentrating under reduced pressure, chloroform was added to the residue, and the residue was dissolved in water, followed by washing with water to separate an organic layer. The separated organic layer was dried over anhydrous magnesium sulfate (anhydrous magnesium sulfate) and filtered. (16.0 g, yield: 73%). Preparation of Compound (1) Compound (1-2) (20 g, 30 mmol) was dissolved in dimethylformamide (100 ml) and ethyl acetate After the addition of potassium carbonate (8.2 g, 60 睡 ol), the mixture was refluxed for 2 hours, and the mixture was cooled to room temperature and filtered. The filtrate was poured into excess water to obtain a solid The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to remove the chloroform, and ethyl acetate was added thereto to effect recrystallization, thereby obtaining a compound 1 (13.2 g, yield 68%; MS: [M + H] < + > = 654) PREPARATION EXAMPLE 3 Preparation of Compound 2 [
Figure imgf000023_0001
화합물 2-1의 제조
Figure imgf000023_0001
Preparation of Compound 2-1
9H-카바졸 (25 g, 150 mmol )과 화합물 1-브로모 -2-클로로벤젠 (28.6 g, 150 mmol )을 를루엔 250mL에 분산시키고, 나트륨 터셔리 -부록사이드 (28.7 g , 300 mmol )를 투입하여 가온하였다. 환류 하에 비스 (트리 터셔리- 부틸포스핀)팔라듐 (760mg, lmol%)을 투입하여 6시간 반웅시켰다. 반응종결 후 상온으로 온도를 낮추고, 물을 투입하여 2회 세척한 후 유기층을 분리하여 무수황산마그네슘을 넣고 교반한 후 여과하여 감압 농축하였다. 농축한 화합물을 에탄올과 에틸아세테이트로 슬러리하여 화합물 2-1을 제조하였다. (31.6g, 수율 76%) 화합물 2-2의 제조 화합물 1(25 g, 90 mmol )과 화합물 (2-니트로페닐)보론산 (15.0 g, 90 腿 ol )을 1,4—다이옥산 180 mL에 분산시키고, 포타슘포스페이트 (38.2 g, 180 mmol )와 물 (50 . mL)을 추가로 투입한다. 환류 교반 상태에서 디벤질리덴아세톤팔라듐 ( 1.5 g, 3 mol¾>)과 트리시클로핵실포스핀 (1.5 g, 6mol%)을 첨가하고 12시간 환류 교반시켰다. 반응이 종결되면 흔합물을 실온으로 냉각하여 물층을 분리하고, 감압 하에 농축한 후 잔류물에 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한다. 분리한 유기층에 무수황산 마그네슘 (Magnesium sul fate)으로 건조하여 여과하였다. 감압 농축하여 얻은 화합물에 에틸아세테이트를 투입하여 슬러리하고 고체를 여과하여 화합물 2-2를 제조하였다. (26.5 g, 수율 81 ) 화합물 2-3의 제조 화합물 2-2(20 g, 55 隱 ol )에 트리에틸포스파이트 (P(OEt )3) ( 10.9 g, 65.9 隱 ol )을 투입하고 가온하여 교반시킨다. 반응이 완결되면 남아있는 트리에틸포스파이트를 진공으로 증류하여 제거하고, 흔합물을 실온으로 식혀서 교반시킨다. 핵산과 에틸아세테이트를 첨가하여 생성된 고체를 여과하고, 걸러진 고체를 핵산으로 씻어준다. 고체를 다시 클로로포름에 녹이고, 물로 2회 세척하여 분리하고, 유기층에 무수황산마그네슘을 넣어 슬러리 후 여과하여 감압 농축한다. 화합물을 핵산과 에틸아세테이트¾ 실리카 컬럼 정제하여 화합물 2-3을 제조하였다 . (13.6 g, 수율 75%) 화합물 2의 제조 화합물 2-3(20 g, 60 mmol )과 화합물 2-클로로 -4- (디벤조 [b, d]퓨란-(28.6 g, 150 mmol) was dispersed in 250 mL of toluene, and a solution of sodium tertiary-adduct (28.7 g, 300 mmol) and 1-bromo-2-chlorobenzene Was added and warmed. Bis (tritiated-butylphosphine) palladium (760 mg, 1 mol%) was added under reflux for 6 hours. After the completion of the reaction, the temperature was lowered to room temperature, water was added thereto, and the mixture was washed twice. The organic layer was separated, and anhydrous magnesium sulfate was added thereto, followed by stirring, followed by filtration and concentration under reduced pressure. The concentrated compound was slurried with ethanol and ethyl acetate to give compound 2-1. (31.6 g, yield 76%) Preparation of compound 2-2 Compound 1 (25 g, 90 mmol) and compound (2-nitrophenyl) boronic acid (15.0 g, 90 Thiol ol is dispersed in 180 mL of 1,4-dioxane, and additional potassium phosphate (38.2 g, 180 mmol) and water (50 mL) are added. Dibenzylidene acetone palladium (1.5 g, 3 mol ¾>) and tricyclohexylphosphine (1.5 g, 6 mol%) were added under reflux and stirring, and the mixture was refluxed and stirred for 12 hours. When the reaction is completed, the reaction mixture is cooled to room temperature, the water layer is separated, and the filtrate is concentrated under reduced pressure. The residue is dissolved in chloroform, and then washed with water to separate the organic layer. The separated organic layer was dried over anhydrous magnesium sulfate (fuller's sulphate) and filtered. Ethyl acetate was added to the compound obtained by concentration under reduced pressure, and the mixture was slurried and the solid was filtered to give Compound 2-2. (26.5 g, yield 81) Preparation of compound 2-3 Triethyl phosphite (P (OEt) 3 ) (10.9 g, 65.9 mMol) was added to compound 2-2 (20 g, 55 隱 ol) Lt; / RTI &gt; When the reaction is complete, the remaining triethyl phosphite is removed by distillation under vacuum, and the reaction mixture is cooled to room temperature and stirred. The resulting solid is filtered by adding nucleic acid and ethyl acetate, and the filtered solid is washed with nucleic acid. The solid was dissolved again in chloroform and washed twice with water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The compound was purified by nucleic acid and ethyl acetate ¾ silica column to prepare Compound 2-3. (13.6 g, yield 75%) Preparation of compound 2 A mixture of compound 2-3 (20 g, 60 mmol) and compound 2-chloro-4- (dibenzo [b,
1일) -6-페닐 -1 ,3 , 5-트리아진 (21.5 g, 60 隱 ol )을 사용하여 화합물 2-1의 제조예와 동일하게 실험하여 화합물 2를 제조하였다. (29.9 g, 수율 76%: MS: [M+H]+=654) <제조예 4>화합물 3의 제조 [반웅식 3] 1) -6-phenyl-1,3,5-triazine (21.5 g, 60  ol) was used to prepare Compound 2. (29.9 g, yield 76%: MS: [M + H] < + > = 654) PREPARATION EXAMPLE 4 Preparation of Compound 3 [
Figure imgf000025_0001
Figure imgf000025_0001
3 화합물 3-1의 제조 화합물 2-클로로 -4- (디벤조 [b,d]퓨란— 1일) -6-페닐 -1,3,5-트리아진 (50.0 , g, 140 隱 ol)와 화합물 (3— ChlorophenyDboronic acid (24 g, 154 mmol)를 1,4-다이옥산 90 mL에 분산시키고, 포타슘카보이네트 (58.1 g, 420 mmol)와 물 (120 mL)을 추가로 투입한다. 환류 교반 상태에서 테트라트리페닐포스핀팔라듐 (0)(4.9 g, 3 mol%) 을 첨가하고 4시간 환류 교반시켰다. 반웅이 종결되면 흔합물을 실온으로 냉각하여 고체를 여과한후 클로로포름을 넣고 녹인 후 물로 세척하여 유기층을 분리한다. 분리한 유기층에 무수황산 마그네슘 (Magnesium sulfate)으로 건조하여 여과하였다. 감압 농축하여 얻은 화합물에 에탄올과 에틸아세테이트를 투입하여 슬러리하고 화합물 3-1를 제조하였다. (35 g, 수율 57 %) 화합물 3의 제조 화합물 2-3 (20 g, 60.22 隱 ol)과 화합물 3-1(28.7 g, 32 隱 ol)을 자일렌 200 mL에 녹이고, 나트륨 터셔리 -부특사이드 (12 g, 120 mmol)를 첨가한 후 가온하였다. 비스 (트리 tert-부틸포스핀)팔라듐 (0.9 g, 3 mol%)을 투입하여 12 시간 교반 환류하였다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 여과된 고체를 클로로포름 에 녹이고, 물로 2 회 세척 후에 유기물 층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축물을 클로로포름과 핵산을 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물인 화합물 3 (18 g, 41%, MS: [M+H]+ = 730)을 제조하였다. 3. Preparation of Compound 3-1 2-chloro-4- (dibenzo [b, d] furan-1-yl) -6-phenyl-1,3,5-triazine (50.0, g, 140隱ol ) and The compound (3-Chlorophenyodonic acid (24 g, 154 mmol) was dispersed in 90 mL of 1,4-dioxane, and further potassium carbonate (58.1 g, 420 mmol) and water (120 mL) (4.9 g, 3 mol%) was added to the reaction mixture and refluxed for 4 hours. When the reaction was completed, the reaction mixture was cooled to room temperature and the solid was filtered, washed with chloroform, The organic layer was separated, dried over anhydrous magnesium sulfate and filtered, and the filtrate was concentrated under reduced pressure, and ethanol and ethyl acetate were added to the obtained compound to prepare Compound 3-1 (35 g, 57% yield) Preparation of Compound 3 The compound 2-3 (20 g, 60.22  ol) and compound 3-1 (28.7 g, 32  ol) Dissolved in 200 mL of xylene, sodium tertiary-buteuk the side (12 g, 120 mmol) And then warmed. Bis (tri-tert-butylphosphine) palladium (0.9 g, 3 mol%) was added and the mixture was refluxed for 12 hours. When the reaction was completed, the temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was dissolved in chloroform and washed twice with water. The organic layer was separated, and anhydrous magnesium sulfate was added thereto, followed by stirring, followed by filtration, and the filtrate was distilled under reduced pressure. The concentrate was purified through a silica column using chloroform and a nucleic acid to prepare a white solid compound 3 (18 g, 41%, MS: [M + H] + = 730).
<실시예 > <Examples>
실시예 1  Example 1
IT0( indium t in oxide)가 1 ,300 A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fi scher Co. ) 제품을 사용하였으며, 증류수로는 밀리포어사 (Mi 11 ipore Co. ) 제품의 필터 (Fi lter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 ΠΌ 투명 전극 위에 하기와 같은 HI-1 화합물을 50A의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.  The glass substrate coated with thin ITO (indium tin oxide) film with a thickness of 1, 300 A was washed with ultrasonic waves in distilled water containing detergent. As a detergent, a product of Fi Scher Co. was used, and distilled water, which was filtered with a filter (Fi lter) manufactured by Mi 11 ipore Co., was used as distilled water. The ITO was washed for 30 minutes, then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. Further, the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator. The following HI-1 compound was thermally vacuum-deposited on the? -Transparent electrode prepared above to a thickness of 50 A to form a hole injection layer.
상기 정공 주입층 위에 HT-1 화합물을 250A의 두께로 열 진공 증착하여 정공 수송층을 형성하고, HT-1 증착막 위에 HT-2 화합물을 50A 두께로 진공 증착하여 전자 저지층을 형성하였다.  The HT-1 compound was thermally vacuum-deposited on the HTL to form a hole transport layer, and an HT-2 compound was vacuum deposited on the HT-1 deposited layer to a thickness of 50 A to form an electron blocking layer.
이어서, 상기 HT-2 증착막 위에 90¾)의 중량비로 상기 제조예 2에서 합성한 화합물 1을 인광호스트로, 10%의 중량비로 인광 도편트 GD-1을 진공증착하여 발광층을 300A 두께로 증착하였다.  Subsequently, the phosphorescent dopant GD-1 was vacuum deposited on the HT-2 deposited film at a weight ratio of 10% to the phosphor host using Compound 1 synthesized in Preparation Example 2 at a weight ratio of 90) to the phosphorescent host.
상기 발광층 위에 ET-1 물질을 250 A의 두께로 진공 증착하고, 추가로 ET-2 물질을 100A 두께로 2% 중량비의 Li과 공증착하여 전자 수송층 및 전자 주입층을 형성하였다. 상기 전자 주입층 위에 1000A 두께로 알루미늄을 증착하여 음극을 형성하였다. An ET-1 material was vacuum deposited on the light emitting layer to a thickness of 250 A, The ET-2 material was co-deposited with Li at a weight ratio of 2% to a thickness of 100 A to form an electron transport layer and an electron injection layer. Aluminum was deposited on the electron injection layer to a thickness of 1000 A to form a cathode.
상기의 과정에서 유기물의 증착속도는 0.4 - 0.7 A/sec를 유지하였고, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10_7 ~ 5 X 1요 8 torr를 유지하였다. 실시예 2 The deposition rate of the organic material in the above process, 0.4 was maintained at 0.7 A / sec, aluminum deposition was maintained to speed, During the deposition, a vacuum of 2 A / sec was maintained at 1 X 10_ 7 ~ 5 X 1 I 8 torr . Example 2
상기 실시예 1에서 화합물 1 대신 화합물 2를 사용한 것을 제외하고 실시예 1과 동일한 방법을 이용하여 실시예 2 소자를 제작하였다. 실시예 3  A device of Example 2 was fabricated in the same manner as in Example 1, except that Compound 2 was used instead of Compound 1 in Example 1. Example 3
상기 실시예 1에서 화합물 1 대신 화합물 3를 사용한 것을 제외하고 실시예 1과 동일한 방법을 이용하여 실시예 3 소자를 제작하였다.  A device of Example 3 was fabricated in the same manner as in Example 1, except that Compound 3 was used instead of Compound 1 in Example 1.
<비교예 > <Comparative Example>
비교예 1 내지 비교예 3  Comparative Examples 1 to 3
상기 실시예 1에서 화합물 1 대신 화합물 A 내지 C 를 사용한 것을 제외하고 실시예 1과 동일한 방법을 이용하여 비교예 소자를 제작하였다. 이때 비교예에 사용된 호스트 물질 화합물 A내지 C는 하기와 같다. A comparative element was prepared using the same method as in Example 1, except that the compounds A to C were used instead of the compound 1 in Example 1 above. Here, the host material compounds A to C used in the comparative example are as follows.
Figure imgf000028_0001
Figure imgf000028_0001
compound C  compound C
<실험예 > <Experimental Example>
상기 실시예 l 내지 3 및 비교예 1 내지 3에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1 에 나타내었다. 이때, T95은 광밀도 20mA/cm2 에서의 초기 휘도를 100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 .시간을 의미한다. The currents were applied to the organic light emitting devices fabricated in Examples 1 to 3 and Comparative Examples 1 to 3 to measure voltage, efficiency, color coordinates, and lifetime. The results are shown in Table 1 below. At this time, T95 means the time required for the luminance to be reduced to 95% when the initial luminance at a light density of 20 mA / cm 2 is taken as 100%.
【표 1】[Table 1]
Figure imgf000028_0002
실시예 2 화합물 2 3.12 63.5 (0.322 '0.630) 40.3 실시예 3 화합물 3 3.20 65.1 (0.321,0.631) 50.0 비교예 1 화합물 A 3.21. 60.3 (0.321,0.630) 25.0 비교예 2 화합물 B 3.33 59.8 (0.320,0.629) 23.1 비교예 3 화합물 C 3.59 49.1 (0.339,0.631) 5.1
Figure imgf000028_0002
Example 2 Compound 2 3.12 63.5 (0.322 '0.630) 40.3 Example 3 Compound 3 3.20 65.1 (0.321, 0.631) 50.0 Comparative Example 1 Compound A 3.21. 60.3 (0.321, 0.630) 25.0 Comparative Example 2 Compound B 3.33 59.8 (0.320, 0.629) 23.1 Comparative Example 3 Compound C 3.59 49.1 (0.339, 0.631) 5.1
상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 사용할 경우 전압, 효율, 수명 면에서 모두 우수한 효과가 나타났다. 특히, 본 발명의 화합물들이 비교예 화합물들에 비하여 치환체의 개수 및 결합 위치의 차이에 의해 효율 및 수명면에서 뛰어난 특성을 나타냄을 확인할 수 있었다. As shown in Table 1, when the compound of the present invention was used, excellent effects were obtained in terms of voltage, efficiency, and lifetime. In particular, it was confirmed that the compounds of the present invention exhibit excellent properties in terms of efficiency and life span due to differences in the number of substituents and bonding sites, as compared with the comparative compounds.
비교예로서 사용된 화합물의 경우, 본원발명의 화합물들에 비하여 수명 특성이 현저히 저하됨을 확인할 수 있었다.  It was confirmed that the life characteristics of the compounds used as comparative examples were significantly lower than those of the compounds of the present invention.
【부호의 설명】 DESCRIPTION OF REFERENCE NUMERALS
1: 기판 2: ᄋ 그  1: substrate 2:
o -1  o -1
3: 발광층 4: o그  3: luminescent layer 4: o
ᄆ ᅳ 1  ᄆ ᅳ 1
5: 8고 ^ τ!이츠  5: 8 high ^ τ!
ᄋ ᄇ ᄋ 6: 고  6:
7: 리 o 8: 전자수송층 7: Re e 8: Electron transport layer

Claims

【청구범위】 Claims:
【청구항 1】 [Claim 1]
하기 화학식 1 또는 2로 표시되는 화합물:  A compound represented by the following formula (1) or (2):
1]  One]
Figure imgf000030_0001
Figure imgf000030_0001
상기 화학식 1 및 2에서,  In the above Formulas 1 and 2,
¾ 내지 ¾는 N또는 CH이되, ¾ 내지 ¾중 적어도 하나는 N이고,  And N or CH, wherein at least one of ¾ to ¾ is N,
Y는 0또는 S이고,  Y is O or S,
Li 및 L2는 각각 독립적으로, 단일 결합; 또는 치환 또는 비치환된 C6- 60 아릴렌이고, Li and L 2 are each independently a single bond; Or substituted or unsubstituted C 6 - 60 arylene,
Ar은 치환 또는 비치환된 d-eo 알킬; 치환 또는 비치환된 d-60 할로알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, 0 및 3로 구성되는 군으로부터 선택되는 헤테로원자를 1개 내지 3개 포함하는 C2-60 헤테로아릴이다. Ar is substituted or unsubstituted d-eo alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 6 -C 60 aryl; Or substituted or unsubstituted C 2 -C 60 heteroaryl containing 1 to 3 heteroatoms selected from the group consisting of N, O and 3.
【청구항 2] [Claim 2]
거 U항에 있어서,  In the above,
내지 ¾는 N인, 화합물 .  Lt; RTI ID = 0.0 &gt; N &lt; / RTI &gt;
【청구항 3】 [Claim 3]
게 1항에 있어서,  In Item 1,
Li 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 바이페닐릴렌, 또는 터페닐릴렌인, 화합물. Li and L &lt; 2 &gt; each independently is a single bond, phenylene, biphenyl, or terphenyl.
【청구항 4】 Claim 4
거 U항에 있어서,  In the above,
Ar은 페닐, 또는 바이페닐인, 화합물.  Ar is phenyl, or biphenyl.
[청구항 5】 [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 화합물은 하기 화학식 1-1, 1-2, 2-1 및 2-2 중 하나로 표시되는, 화합물: The compound is represented by one of the following formulas (1-1), (1-2), (2-1) and
-1] [화학식 1-2]  -1] [Formula 1-2]
Figure imgf000031_0001
-1] [화학식 2-2]
Figure imgf000031_0001
-1] [Formula 2-2]
Figure imgf000032_0001
Figure imgf000032_0001
상기 화학식 1-1, 1-2, 2-1 및 2-2에서,  In Formulas 1-1, 1-2, 2-1 and 2-2,
내지 ¾, Y, L2및 Ar에 대한 설명은 제 1항에서 정의한 바와 같다. And Y, L &lt; 2 &gt; and Ar are the same as defined in claim 1.
【청구항 6】 [Claim 6]
계 1항에 있어서,  In the first aspect,
상기 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인, 화합물: Wherein said compound is any one selected from the group consisting of the following compounds:
Figure imgf000033_0001
Figure imgf000033_0001
99ΐΟΪΟ/8ΐΟΖΗΜ/Χ3<Ι 99ΐΟΪΟ / 8ΐΟΖΗΜ / Χ3 <Ι
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0003
Figure imgf000034_0003
【청구항 7】 7.
게 1 전극; 상기 제 1 전극과 대향하여 구비된 제 2 전극; 및 상기 제 1 전극과 상기 제 2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 게 1항 내지 제 6항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자. [청구항 8】 A gate electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes a compound according to any one of claims 1 to 6 The organic light-emitting device. [Claim 8]
제 7항에 있어서,  8. The method of claim 7,
상기 화합물을 포함하는 유기물층은 발광층인 것을 특징으로 하 유기 발광 소자.  Wherein the organic compound layer containing the compound is a light emitting layer.
PCT/KR2018/010166 2017-09-01 2018-08-31 Novel compound and organic light emitting device using same WO2019045528A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039547.9A CN110770228B (en) 2017-09-01 2018-08-31 Novel compound and organic light emitting device including the same
US16/624,202 US11380851B2 (en) 2017-09-01 2018-08-31 Compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0112077 2017-09-01
KR20170112077 2017-09-01
KR1020180102994A KR102121433B1 (en) 2017-09-01 2018-08-30 Novel compound and organic light emitting device comprising the same
KR10-2018-0102994 2018-08-30

Publications (1)

Publication Number Publication Date
WO2019045528A1 true WO2019045528A1 (en) 2019-03-07

Family

ID=65527662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010166 WO2019045528A1 (en) 2017-09-01 2018-08-31 Novel compound and organic light emitting device using same

Country Status (1)

Country Link
WO (1) WO2019045528A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130100330A (en) * 2010-10-08 2013-09-10 유니버셜 디스플레이 코포레이션 Novel 3, 9-linked oligocarbazole-based hosts, containing dbt and dbf fragments, separated by aromatic spacers
KR20130142967A (en) * 2012-06-20 2013-12-30 에스에프씨 주식회사 Heterocyclic compounds and organic light-emitting diode including the same
KR20140096182A (en) * 2012-05-02 2014-08-04 롬엔드하스전자재료코리아유한회사 Novel Organic Electroluminescence Compounds and Organic Electroluminescence Device Containing the Same
KR20140106631A (en) * 2011-12-02 2014-09-03 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic light emitting device and delayed fluorescent material and compound used therein
KR20170041886A (en) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR20180010808A (en) * 2016-07-22 2018-01-31 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130100330A (en) * 2010-10-08 2013-09-10 유니버셜 디스플레이 코포레이션 Novel 3, 9-linked oligocarbazole-based hosts, containing dbt and dbf fragments, separated by aromatic spacers
KR20140106631A (en) * 2011-12-02 2014-09-03 고쿠리쓰다이가쿠호진 규슈다이가쿠 Organic light emitting device and delayed fluorescent material and compound used therein
KR20140096182A (en) * 2012-05-02 2014-08-04 롬엔드하스전자재료코리아유한회사 Novel Organic Electroluminescence Compounds and Organic Electroluminescence Device Containing the Same
KR20130142967A (en) * 2012-06-20 2013-12-30 에스에프씨 주식회사 Heterocyclic compounds and organic light-emitting diode including the same
KR20170041886A (en) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR20180010808A (en) * 2016-07-22 2018-01-31 삼성에스디아이 주식회사 Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Similar Documents

Publication Publication Date Title
JP6638160B2 (en) Novel heterocyclic compound and organic light emitting device using the same
KR101885900B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2019031679A1 (en) Organic light emitting device
KR101978454B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101978453B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180061076A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102206482B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2019013487A1 (en) Novel compound and organic light-emitting device using same
JP2020502088A (en) Novel heterocyclic compound and organic light emitting device using the same
WO2019017702A1 (en) Novel heterocyclic compound and organic light-emitting diode using same
KR20210034528A (en) Novel compound and organic light emitting device comprising the same
WO2019017734A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR20200085232A (en) Novel compound and organic light emitting device comprising the same
KR20200052236A (en) Novel compound and organic light emitting device comprising the same
KR101994448B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102003366B1 (en) Heterocyclic compound and organic light emitting device comprising the same
KR101868516B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
WO2019017731A1 (en) Novel heterocyclic compound and organic light-emitting device using same
KR20180032518A (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR102121433B1 (en) Novel compound and organic light emitting device comprising the same
EP3330265A1 (en) Compound and organic light-emitting element comprising same
KR20200086233A (en) Novel compound and organic light emitting device comprising the same
KR20200105388A (en) Novel compound and organic light emitting device comprising the same
KR101917858B1 (en) Novel hetero-cyclic compound and organic light emitting device comprising the same
KR101876678B1 (en) Carbazole based compound and organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851570

Country of ref document: EP

Kind code of ref document: A1