WO2019044158A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019044158A1
WO2019044158A1 PCT/JP2018/025089 JP2018025089W WO2019044158A1 WO 2019044158 A1 WO2019044158 A1 WO 2019044158A1 JP 2018025089 W JP2018025089 W JP 2018025089W WO 2019044158 A1 WO2019044158 A1 WO 2019044158A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
information
unit
air conditioner
room temperature
Prior art date
Application number
PCT/JP2018/025089
Other languages
French (fr)
Japanese (ja)
Inventor
宏祐 坪井
純也 米田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2019539015A priority Critical patent/JP6891964B2/en
Priority to AU2018324642A priority patent/AU2018324642B2/en
Priority to CN201880050955.4A priority patent/CN111051785B/en
Publication of WO2019044158A1 publication Critical patent/WO2019044158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing

Definitions

  • the present invention relates to an air conditioner.
  • the movement of a person in the room is detected based on the detection signal of the first Doppler sensor, while the movement of the noise source in the indoor unit is detected based on the detection signal of the second Doppler sensor. Ru.
  • the above-mentioned conventional air conditioner has a problem that there is room to improve the compatibility between the person present in the room and the air conditioning operation of the indoor unit.
  • the subject of this invention is providing the air conditioner which can improve the compatibility with the person who exists in room
  • An air conditioner is Indoor unit, A first sensor unit for detecting first information on a person in the room; A second sensor unit for detecting second information different from the first information, the second information being information about the person; A control device that controls the air conditioning operation of the indoor unit based on the first and second information; Equipped with a drive, A second range in which the second information can be detected by the second sensor unit is narrower than a first range in which the first information can be detected by the first sensor unit, The second sensor unit can be driven by the drive device.
  • the air conditioning operation of the indoor unit is controlled based on the information. Therefore, the compatibility between the person present in the room and the air conditioning operation of the indoor unit can be enhanced.
  • the second sensor unit can be driven by the drive device, so the second sensor unit is driven. , Can put people in the room in the second range. Therefore, the detection capability of the second information can also be enhanced.
  • the air conditioner of one embodiment is It has a room temperature sensor to detect room temperature,
  • the control unit An indoor temperature determination unit that determines whether the indoor temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature;
  • a drive control unit configured to control driving of the second sensor unit based on the first information when it is determined that the indoor temperature detected by the room temperature sensor is not equal to or higher than a predetermined temperature.
  • the drive control unit controls the drive of the second sensor unit based on the first information. Do. Therefore, even if the temperature tolerance of the first sensor unit is low, the reliability of the control of the drive control unit can be enhanced.
  • the air conditioner of one embodiment is It has a room temperature sensor to detect room temperature
  • the control device is an indoor temperature determination unit that determines whether the indoor temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature; When it is determined that the room temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature, driving of the second sensor unit is performed based on a predetermined driving condition, not based on the first information.
  • a drive control unit for controlling.
  • the drive control unit when it is determined that the room temperature detected by the room temperature sensor is equal to or higher than the predetermined temperature, the drive control unit does not set the first drive condition to the predetermined drive condition. Based on the control, the drive of the second sensor unit is controlled. Therefore, even if the temperature tolerance of the first sensor unit is low, the reliability of the control of the drive control unit can be enhanced.
  • the first sensor unit has a pyroelectric infrared sensor.
  • the first sensor unit since the first sensor unit includes the pyroelectric infrared sensor, it is possible to detect, for example, body movement of a person in the room using the first sensor unit.
  • the second sensor unit includes at least one of a Doppler sensor, a thermopile infrared sensor, and an image sensor.
  • a pulse of a person in the room can be detected by using the Doppler sensor.
  • the thermopile type infrared sensor for example, the skin temperature of a person in the room can be detected.
  • the said image sensor is used, the number of persons etc. of the person in the room can be detected. Therefore, the second sensor unit includes at least one of a Doppler sensor, a thermopile infrared sensor, and an image sensor to detect at least one of, for example, the pulse, skin temperature, and the number of people in the room. can do.
  • the air conditioner according to the present invention can use the first information and the second information to improve the compatibility between the person in the room and the air conditioning operation of the indoor unit.
  • FIG. 1 is a schematic view showing an installation state of a casing 2 of an indoor unit 1 of an air conditioner according to an embodiment of the present invention.
  • the air conditioner includes a casing 2 of the indoor unit 1 and an outdoor unit (not shown) connected to the casing 2 of the indoor unit 1 via a refrigerant pipe or the like.
  • the casing 2 of the indoor unit 1 is installed above the wall surface 101 of the room.
  • An outlet 102 is provided on the wall surface 101 near the casing 2 of the indoor unit 1.
  • a casing 2 of the indoor unit 1 is connected to an outlet 102 via a power cable 10.
  • a pyroelectric infrared sensor 3 and a room temperature sensor 4 are fixed to the casing 2 of the indoor unit 1. At least a part of the pyroelectric infrared sensor 3 is exposed from the casing 2 of the indoor unit 1 so as to be able to receive infrared light from the human body.
  • the room temperature sensor 4 is installed in the vicinity of the suction port 2 a in the casing 2 of the indoor unit 1 in order to detect the temperature of the indoor air.
  • the pyroelectric infrared sensor 3 is an example of a first sensor unit.
  • a movable sensor unit 5 as an example of a second sensor unit is rotatably attached to the lower right side of the casing 2 of the indoor unit 1.
  • the movable sensor unit 5 has a cylindrical casing 50, a Doppler sensor 51 as an example of a radar, a thermopile infrared sensor 52, and a distance image sensor 53 as an example of an image sensor.
  • the Doppler sensor 51 is covered with the casing 50 and a part thereof is not exposed, the light receiving portion of each of the thermopile infrared sensor 52 and the distance image sensor 53 is exposed from the casing 50.
  • FIG. 2 is a schematic view for explaining the detection range E0 of the pyroelectric infrared sensor 3.
  • FIG. 3 is a schematic view for explaining a detection range E1 of the Doppler sensor 51.
  • FIG. 4 is a schematic view for explaining a detection range E2 of the thermopile type infrared sensor 52.
  • FIG. 5 is a schematic diagram for demonstrating the detection range E3 of the distance image sensor 53. As shown in FIG.
  • the detection range E0 in the horizontal direction of the pyroelectric infrared sensor 3 is wider than the detection range E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53.
  • the horizontal detection range E3 of the distance image sensor 53 is wider than the horizontal detection range E2 of the thermopile infrared sensor 52.
  • the detection range E2 in the horizontal direction of the thermopile infrared sensor 52 is wider than the detection range E1 in the horizontal direction of the Doppler sensor 51.
  • the detection range E1 in the horizontal direction of the Doppler sensor 51 is the narrowest, and the detection range E3 in the horizontal direction of the distance image sensor 53 is the widest.
  • the detection ranges E0 to E1 indicate areas in which information on the human body can be detected by each sensor.
  • the detection range E0 in the horizontal direction of the pyroelectric infrared sensor 3 is an example of a first range.
  • a detection range E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 is an example of a second range.
  • the detection distances of the pyroelectric infrared sensor 3 and the Doppler sensor 51 are longer than the detection distances of the thermopile infrared sensor 52 and the distance image sensor 53.
  • the detection distance of the pyroelectric infrared sensor 3 is substantially the same as the detection distance of the Doppler sensor 51.
  • the detection distance of the thermopile infrared sensor 52 is substantially the same as the detection distance of the distance image sensor 53. That is, the detection distances of the pyroelectric infrared sensor 3 and the Doppler sensor 51 are relatively long, and the detection distances of the thermopile infrared sensor 52 and the distance image sensor 53 are relatively short.
  • FIG. 6 is a block diagram of the main part of the air conditioner.
  • the casing 2 of the indoor unit 1 includes a control device 6 including a microcomputer and an input / output circuit, and a drive device 7 for driving the movable sensor unit 5.
  • the control device 6 is connected to the pyroelectric infrared sensor 3, the room temperature sensor 4, the Doppler sensor 51, the thermopile infrared sensor 52, the distance image sensor 53, the driving device 7 and the like, and receives signals from the respective sensors. . Further, the control device 6 performs the air conditioning operation of the casing 2 of the indoor unit 1 based on the information detected by at least one of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52 and the distance image sensor 53. Control.
  • the pyroelectric infrared sensor 3 has a ferroelectric substance and receives infrared rays from the human body. At this time, a change according to the amount of light received by the infrared light occurs in the spontaneous polarization of the ferroelectric, and the charge on the surface of the ferroelectric increases or decreases.
  • the signal indicating the amount of charge on the surface of the ferroelectric is processed by the control device 6 to detect information on the body movement of the person in the room.
  • the information regarding the body motion of the person who is indoors is an example of 1st information.
  • the room temperature sensor 4 is composed of a thermistor, and its resistance value changes according to the temperature of room air.
  • the control device 6 detects the temperature of the room air based on the signal indicating the resistance value of the room temperature sensor 4.
  • the Doppler sensor 51 is, for example, an FM-CW (Frequency Modulated Continuous Wave) Doppler radar, and emits a frequency-modulated microwave to a human body. At this time, when the distance between the human body and the Doppler sensor 51 changes, the reflected wave reflected by the human body changes due to the Doppler effect.
  • the signal indicating the reflected wave from the human body is processed by the control device 6, whereby information on the pulse and respiration of the person in the room and information on the number of the persons are detected.
  • the information on the pulse and respiration of the person in the room and the information on the number of persons are examples of the second information.
  • thermopile infrared sensor 52 When the thermopile infrared sensor 52 receives infrared light from the human body, an electromotive force corresponding to the amount of received infrared light is generated.
  • the signal indicating the electromotive force is processed by the control device 6 to detect information on the skin temperature of the person in the room.
  • the information regarding the skin temperature of the person who is indoors is an example of 2nd information.
  • the distance image sensor 53 is, for example, a TOF (Time Of Flight) distance image sensor. More specifically, the distance image sensor 53 emits laser light toward the human body and receives laser light reflected by the human body. The signal indicating the laser beam reflected by the human body is processed by the control device 6 to detect information on the distance to the person in the room and information on the action and posture of the person. The information on the distance to the person in the room and the information on the action and posture of the person are examples of the second information.
  • TOF Time Of Flight
  • control device 6 includes an indoor temperature determination unit 61 and a drive control unit 62.
  • the indoor temperature determination unit 61 and the drive control unit 62 are each configured by software.
  • the indoor temperature determination unit 61 determines whether the indoor temperature detected by the room temperature sensor 4 is equal to or higher than a predetermined temperature.
  • the predetermined temperature is set according to the heat resistance of the pyroelectric infrared sensor 3. Thus, if the temperature is lower than the predetermined temperature, detection of information by the pyroelectric infrared sensor 3 is not impossible or inaccurate, while if it is higher than the predetermined temperature, the pyroelectric infrared sensor 3 Detection of information becomes impossible or inaccurate.
  • the drive control unit 62 detects information detected by the pyroelectric infrared sensor 3 (information related to the body movement of a person in the room The drive of the movable sensor unit 5 is controlled based on.
  • the drive control unit 62 controls the driving of the movable sensor unit 5 based on the predetermined drive condition. . More specifically, the drive of the movable sensor unit 5 is controlled such that the movable sensor unit 5 is rotated by a predetermined rotation angle.
  • the rotation of the movable sensor unit 5 is repeated until information is detected by at least one of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53.
  • the repetition of the detection of the above information is ended so that the information is not detected by at least one of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 even after a predetermined time has elapsed. It is also good.
  • the driving device 7 is, for example, a stepping motor, and applies a driving force to the casing 50 of the movable sensor unit 5 directly or through a gear.
  • Table 1 below is a table for explaining the characteristics of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53.
  • the pyroelectric infrared sensor 3, the room temperature sensor 4, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 can also detect information other than the above-described information.
  • the signal from the Doppler sensor 51 is processed by the control device 6, it is possible to detect information on body movement of a person in the room, information on the distance to the person, and information on the posture of the person .
  • the distance image sensor 53 can not detect information.
  • the pyroelectric infrared sensor 3 and the thermopile infrared sensor 52 when the room is in a high temperature environment, information can not be detected by the pyroelectric infrared sensor 3 and the thermopile infrared sensor 52.
  • the information can not be detected by the Doppler sensor 51.
  • identification information of a person present in the room can also be obtained. That is, it is also possible to perform personal authentication by processing the signal from the distance image sensor 53 by the control device 6.
  • means that the accuracy of detection of information is lower than ⁇ . Also, x means that information can not be detected.
  • the air conditioner of the above configuration when a person is in the horizontal detection range E0 to E3 of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53, a pyroelectric type
  • the air conditioning operation of the indoor unit 1 is controlled based on the information detected by the infrared sensor 3, the Doppler sensor 51, the thermopile type infrared sensor 52 and the distance image sensor 53. Therefore, the compatibility between the person present in the room and the air conditioning operation of the indoor unit 1 can be enhanced.
  • the movable sensor unit 5 can be turned about the central axis of the casing 50 to put a person in the detection range E1. Therefore, the detection capability of information by the Doppler sensor 51 can be enhanced.
  • the person in the room is within the detection range E0 of the pyroelectric infrared sensor 3 in the horizontal direction, it is within the detection ranges E2, E3 of the thermopile infrared sensor 52 and the distance image sensor 53 in the horizontal direction. Even when it does not enter, the movable sensor unit 5 can be rotated about the central axis of the casing 50 to put a person in the detection range E2, E3.
  • the distance image sensor 53 is The movable sensor unit 5 may be driven so that a person falls within the horizontal detection range E3. In this way, it is possible to shorten the time required for the distance image sensor 53 to detect information.
  • the Doppler sensor 51 or the thermopile is based on the information.
  • the movable sensor unit 5 may be driven so that a person falls within the horizontal detection range E2 of the infrared sensor 52. In this way, it is possible to shorten the time which the Doppler sensor 51 or the thermopile infrared sensor 52 has to detect information.
  • the pyroelectric infrared sensor 3 may use the information It can not be detected.
  • the drive control unit 62 controls the movable sensor unit 5 based on the information detected by the pyroelectric infrared sensor 3. Control the driving of On the other hand, when it is determined that the room temperature detected by the room temperature sensor 4 is equal to or higher than the predetermined temperature, the drive control unit 62 controls the driving of the movable sensor unit 5 based on the predetermined driving conditions. . As a result, it is possible to put a person in the horizontal detection range E1 to E3 of the Doppler sensor 51, the thermopile type infrared sensor 52 and the distance image sensor 53 regardless of the indoor temperature. Therefore, the control reliability of the drive control unit 62 can be enhanced.
  • the information detected by the Doppler sensor 51 and the information detected by the distance image sensor 53 By comparison, the distance between the person in the room and the indoor unit can be accurately detected. Such detection is effective when there are a plurality of people in a room.
  • the movable sensor unit 5 includes the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53.
  • the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 You may make it have only one or two.
  • the detection ranges E1 to E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 can be moved in the horizontal direction, but may be moved in the vertical direction. .
  • the movable sensor unit 5 is rotatably attached to the casing 2 of the indoor unit 1.
  • the movable sensor unit 5 may be installed on the wall surface 101 or the top surface at a predetermined distance from the casing 2 of the indoor unit 1. That is, although the movable sensor unit 5 is integrated with the indoor unit 1, the movable sensor unit 5 may be separated from the indoor unit 1.
  • the base member may be fixed to the wall surface 101 or the top surface, and the movable sensor unit 5 may be rotatably attached to the base member.
  • the shape of the casing 50 of the movable sensor unit 5 is a cylindrical shape, but may be, for example, a square pole shape or the like.
  • the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 are integrally rotated, but may be independently rotated.
  • the indoor temperature determination unit 61 and the drive control unit 62 are each configured by software, but at least one of the indoor temperature determination unit 61 and the drive control unit 62 is configured by hardware. May be
  • the driving of the movable sensor unit 5 is performed based on the information detected by the pyroelectric infrared sensor 3.
  • the drive of the movable sensor unit 5 may be controlled based on, for example, a predetermined drive condition.
  • the pyroelectric infrared sensor 3 is not rotated as in the movable sensor unit 5, but may be rotated as in the movable sensor unit 5.
  • the pyroelectric infrared sensor 3 was attached to the casing 2 of the indoor unit 1, you may attach the distance image sensor 53, for example. Also in this case, the distance image sensor 53 may not be driven with respect to the casing 2 of the indoor unit 1 or may be driven.
  • the FM-CW Doppler sensor 51 is used as an example of the radar, but the radar is not limited to this, and pulse radar, CW (Continuous Wave; connection wave) radar, FM-CW radar, FM-CW system Other Doppler radars may be used.
  • pulse radar Continuous Wave; connection wave
  • FM-CW radar FM-CW system
  • Other Doppler radars may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

This air conditioner comprises: an indoor unit; a first sensor unit (3) for detecting first information pertaining to a person present indoors; a second sensor unit (51, 52, 53) for detecting second information different from the first information, the second information pertaining to the person; a control device (6) that controls an air conditioning operation of the indoor unit (1) on the basis of the first and second information; and a drive device (7). A second range, in which the second information can be detected by the second sensor unit (51, 52, 53), is narrower than a first range, in which the first information can be detected by the first sensor unit (3). The second sensor unit (51, 52, 53) can be driven by the drive device (7).

Description

空気調和機Air conditioner
 この発明は、空気調和機に関する。 The present invention relates to an air conditioner.
 従来、空気調和機としては、例えば特許文献1(国際公開第2016/181546号)に開示されているように、第1ドップラーセンサの検出信号と、第2ドップラーセンサの検出信号とに基づいて、室内ユニットの空調運転を制御するものがある。 Conventionally, as an air conditioner, for example, as disclosed in Patent Document 1 (International Publication No. 2016/181546), based on the detection signal of the first Doppler sensor and the detection signal of the second Doppler sensor, Some control the air conditioning operation of the indoor unit.
 より詳しく説明すると、第1ドップラーセンサの検出信号に基づいて、室内に居る人の動きが検出される一方、上記第2ドップラーセンサの検出信号に基づいて、室内ユニットにおけるノイズ源の動きが検出される。 More specifically, the movement of a person in the room is detected based on the detection signal of the first Doppler sensor, while the movement of the noise source in the indoor unit is detected based on the detection signal of the second Doppler sensor. Ru.
国際公開第2016/181546号International Publication No. 2016/181546
 しかしながら、上記従来の空気調和機では、上記ノイズ源の動きを参照することにより、室内に居る人の動きの検出精度を高めることができても、人の動きの情報だけでは、その人に十分に適した空調運転を行うのは困難である。 However, in the conventional air conditioner described above, even if it is possible to improve the detection accuracy of the movement of the person in the room by referring to the movement of the noise source, the information on the movement of the person is sufficient for the person. It is difficult to perform an air conditioning operation suitable for the
 すなわち、上記従来の空気調和機には、室内に居る人と室内ユニットの空調運転との適合性を高める余地が残されているという問題がある。 That is, the above-mentioned conventional air conditioner has a problem that there is room to improve the compatibility between the person present in the room and the air conditioning operation of the indoor unit.
 そこで、この発明の課題は、室内に居る人と室内ユニットの空調運転との適合性を高めることができる空気調和機を提供することにある。 Then, the subject of this invention is providing the air conditioner which can improve the compatibility with the person who exists in room | chamber interior, and the air-conditioning driving | operation of an indoor unit.
 この発明の一態様に係る空気調和機は、
 室内ユニットと、
 室内に居る人に関する第1情報を検出するための第1センサ部と、
 上記人に関しての情報であって上記第1情報とは異なる第2情報を検出するための第2センサ部と、
 上記第1,第2情報に基づいて、上記室内ユニットの空調運転を制御する制御装置と、
 駆動装置と
を備え、
 上記第1センサ部により上記第1情報を検出可能な第1範囲に比べて、上記第2センサ部により上記第2情報を検出可能な第2範囲は狭く、
 上記第2センサ部は上記駆動装置で駆動可能である。
An air conditioner according to one aspect of the present invention is
Indoor unit,
A first sensor unit for detecting first information on a person in the room;
A second sensor unit for detecting second information different from the first information, the second information being information about the person;
A control device that controls the air conditioning operation of the indoor unit based on the first and second information;
Equipped with a drive,
A second range in which the second information can be detected by the second sensor unit is narrower than a first range in which the first information can be detected by the first sensor unit,
The second sensor unit can be driven by the drive device.
 上記構成によれば、上記室内の人が第1,第2範囲内に入っている場合、室内に居る人に関する第1情報と、その人に関しての情報であって第1情報とは異なる第2情報とに基づいて、室内ユニットの空調運転が制御される。したがって、上記室内に居る人と室内ユニットの空調運転との適合性を高めることができる。 According to the above configuration, when the person in the room is within the first and second ranges, the first information on the person in the room and the information on the person, the second information being different from the first information The air conditioning operation of the indoor unit is controlled based on the information. Therefore, the compatibility between the person present in the room and the air conditioning operation of the indoor unit can be enhanced.
 また、上記室内の人が、第1範囲内に入っているが、第2範囲内に入っていない場合、第2センサ部は駆動装置で駆動可能であるので、第2センサ部を駆動させて、第2範囲内に室内の人を入れることができる。したがって、上記第2情報の検出能力を高めることもできる。 In addition, when the person in the room is in the first range but not in the second range, the second sensor unit can be driven by the drive device, so the second sensor unit is driven. , Can put people in the room in the second range. Therefore, the detection capability of the second information can also be enhanced.
 ところで、上記第1情報が検出されている場合、第1情報に基づいて、第2センサ部の駆動を制御すれば、第2範囲内に室内の人を確実に入れることができる。 By the way, when the said 1st information is detected, if the drive of a 2nd sensor part is controlled based on 1st information, the person in a room can be reliably entered in the 2nd range.
 しかしながら、上記第1センサ部の温度耐性が低い場合、室内が高温環境になったとき、第1情報の検出が不可能または不正確となって、第2範囲内に室内の人を確実に入れることができなくなってしまう。 However, when the temperature resistance of the first sensor unit is low, when the room becomes a high temperature environment, detection of the first information becomes impossible or inaccurate, and a person in the room is surely put in the second range. I can not do that.
 そこで、一実施形態の空気調和機は、
 室内温度を検出するための室温センサを備え、
 上記制御装置は、
 上記室温センサにより検出された室内温度が、予め定めた温度以上であるか否かを判定する室内温度判定部と、
 上記室温センサにより検出された室内温度が、予め定めた温度以上でないと判定されたとき、上記第1情報に基づいて、上記第2センサ部の駆動を制御する駆動制御部と
を有する。
Then, the air conditioner of one embodiment is
It has a room temperature sensor to detect room temperature,
The control unit
An indoor temperature determination unit that determines whether the indoor temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature;
And a drive control unit configured to control driving of the second sensor unit based on the first information when it is determined that the indoor temperature detected by the room temperature sensor is not equal to or higher than a predetermined temperature.
 上記実施形態によれば、上記室温センサにより検出された室内温度が、予め定めた温度以上でないと判定されたとき、駆動制御部は、第1情報に基づいて、第2センサ部の駆動を制御する。したがって、上記第1センサ部の温度耐性が低くても、駆動制御部の制御の信頼性を高めることができる。 According to the above embodiment, when it is determined that the room temperature detected by the room temperature sensor is not higher than a predetermined temperature, the drive control unit controls the drive of the second sensor unit based on the first information. Do. Therefore, even if the temperature tolerance of the first sensor unit is low, the reliability of the control of the drive control unit can be enhanced.
 一実施形態の空気調和機は、
 室内温度を検出するための室温センサを備え、
 上記制御装置は、上記室温センサにより検出された室内温度が、予め定めた温度以上であるか否かを判定する室内温度判定部と、
 上記室温センサにより検出された室内温度が、予め定めた温度以上であると判定されたとき、上記第1情報に基づかずに、予め定めた駆動条件に基づいて、上記第2センサ部の駆動を制御する駆動制御部と
を有する。
The air conditioner of one embodiment is
It has a room temperature sensor to detect room temperature,
The control device is an indoor temperature determination unit that determines whether the indoor temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature;
When it is determined that the room temperature detected by the room temperature sensor is equal to or higher than a predetermined temperature, driving of the second sensor unit is performed based on a predetermined driving condition, not based on the first information. And a drive control unit for controlling.
 上記実施形態によれば、上記室温センサにより検出された室内温度が、予め定めた温度以上であると判定されたとき、駆動制御部は、第1情報に基づかずに、予め定めた駆動条件に基づいて、第2センサ部の駆動を制御する。したがって、上記第1センサ部の温度耐性が低くても、駆動制御部の制御の信頼性を高めることができる。 According to the above embodiment, when it is determined that the room temperature detected by the room temperature sensor is equal to or higher than the predetermined temperature, the drive control unit does not set the first drive condition to the predetermined drive condition. Based on the control, the drive of the second sensor unit is controlled. Therefore, even if the temperature tolerance of the first sensor unit is low, the reliability of the control of the drive control unit can be enhanced.
 一実施形態の空気調和機では、
 上記第1センサ部は焦電型赤外線センサを有する。
In the air conditioner of one embodiment,
The first sensor unit has a pyroelectric infrared sensor.
 上記実施形態によれば、上記第1センサ部は焦電型赤外線センサを有するので、この第1センサ部を用いて、室内にいる人の例えば体動などを検出できる。 According to the embodiment, since the first sensor unit includes the pyroelectric infrared sensor, it is possible to detect, for example, body movement of a person in the room using the first sensor unit.
 一実施形態の空気調和機では、
 上記第2センサ部は、ドップラーセンサ、サーモパイル型赤外線センサおよび画像センサのうちの少なくとも一つを有する。
In the air conditioner of one embodiment,
The second sensor unit includes at least one of a Doppler sensor, a thermopile infrared sensor, and an image sensor.
 上記実施形態によれば、上記ドップラーセンサを用いれば、室内の人の例えば脈拍などを検出することができる。また、上記サーモパイル型赤外線センサをもちいれば、室内の人の例えば皮膚温などを検出することができる。また、上記画像センサを用いれば、室内の人の例えば人数などを検出することができる。したがって、上記第2センサ部が、ドップラーセンサ、サーモパイル型赤外線センサおよび画像センサのうちの少なくとも一つを有することにより、室内の人の例えば脈拍、皮膚温および人数などのうちの少なくとも一つを検出することができる。 According to the above embodiment, for example, a pulse of a person in the room can be detected by using the Doppler sensor. Moreover, if the thermopile type infrared sensor is used, for example, the skin temperature of a person in the room can be detected. Moreover, if the said image sensor is used, the number of persons etc. of the person in the room can be detected. Therefore, the second sensor unit includes at least one of a Doppler sensor, a thermopile infrared sensor, and an image sensor to detect at least one of, for example, the pulse, skin temperature, and the number of people in the room. can do.
 この発明の空気調和機は、第1情報および第2情報を用いて、室内に居る人と室内ユニットの空調運転との適合性を高めることができる。 The air conditioner according to the present invention can use the first information and the second information to improve the compatibility between the person in the room and the air conditioning operation of the indoor unit.
この発明の一実施形態の空気調和機の室内ニットの概略図である。It is the schematic of the indoor unit of the air conditioner of one Embodiment of this invention. 上記空気調和機の焦電型赤外線センサの検出範囲を説明するための模式図である。It is a schematic diagram for demonstrating the detection range of the pyroelectric infrared sensor of the said air conditioner. 上記空気調和機のドップラーセンサの検出範囲を説明するための模式図である。It is a schematic diagram for demonstrating the detection range of the Doppler sensor of the said air conditioner. 上記空気調和機のサーモパイル型赤外線センサの検出範囲を説明するための模式図である。It is a schematic diagram for demonstrating the detection range of the thermopile type infrared sensor of the said air conditioner. 上記空気調和機の距離画像センサの検出範囲を説明するための模式図である。It is a schematic diagram for demonstrating the detection range of the distance image sensor of the said air conditioner. 上記空気調和機の要部のブロック図である。It is a block diagram of the principal part of the above-mentioned air conditioner.
 以下、この発明の空気調和機を図示の実施の形態により詳細に説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。 Hereinafter, the air conditioner of the present invention will be described in detail by the illustrated embodiment. In the drawings, the same reference numerals represent the same or corresponding parts.
 図1は、この発明の一実施形態の空気調和機の室内ユニット1のケーシング2の設置状態を示す概略図である。 FIG. 1 is a schematic view showing an installation state of a casing 2 of an indoor unit 1 of an air conditioner according to an embodiment of the present invention.
 上記空気調和機は、室内ユニット1のケーシング2と、この室内ユニット1のケーシング2と冷媒配管などを介して接続された室外ユニット(図示せず)とを備えている。 The air conditioner includes a casing 2 of the indoor unit 1 and an outdoor unit (not shown) connected to the casing 2 of the indoor unit 1 via a refrigerant pipe or the like.
 室内ユニット1のケーシング2は、室内の壁面101の上側に設置されている。壁面101には、室内ユニット1のケーシング2の近傍にコンセント102が設けられている。室内ユニット1のケーシング2が電源ケーブル10を介してコンセント102に接続されている。また、室内ユニット1のケーシング2には焦電型赤外線センサ3および室温センサ4が固定されている。この焦電型赤外線センサ3は、人体からの赤外線を受光できるように、少なくとも一部が室内ユニット1のケーシング2から露出している。一方、室温センサ4は、室内空気の温度を検出するため、室内ユニット1のケーシング2内の吸込口2aの近傍に設置されている。なお、焦電型赤外線センサ3は第1センサ部の一例である。 The casing 2 of the indoor unit 1 is installed above the wall surface 101 of the room. An outlet 102 is provided on the wall surface 101 near the casing 2 of the indoor unit 1. A casing 2 of the indoor unit 1 is connected to an outlet 102 via a power cable 10. Further, a pyroelectric infrared sensor 3 and a room temperature sensor 4 are fixed to the casing 2 of the indoor unit 1. At least a part of the pyroelectric infrared sensor 3 is exposed from the casing 2 of the indoor unit 1 so as to be able to receive infrared light from the human body. On the other hand, the room temperature sensor 4 is installed in the vicinity of the suction port 2 a in the casing 2 of the indoor unit 1 in order to detect the temperature of the indoor air. The pyroelectric infrared sensor 3 is an example of a first sensor unit.
 また、室内ユニット1のケーシング2の下側右側部には、第2センサ部の一例としての可動センサ部5が回動可能に取り付けられている。この可動センサ部5は、円柱形状のケーシング50と、レーダーの一例としてのドップラーセンサ51と、サーモパイル型赤外線センサ52と、画像センサの一例としての距離画像センサ53とを有している。ここで、ドップラーセンサ51はケーシング50で覆われて一部も露出していないが、サーモパイル型赤外線センサ52および距離画像センサ53は、それぞれ、受光部がケーシング50から露出している。 A movable sensor unit 5 as an example of a second sensor unit is rotatably attached to the lower right side of the casing 2 of the indoor unit 1. The movable sensor unit 5 has a cylindrical casing 50, a Doppler sensor 51 as an example of a radar, a thermopile infrared sensor 52, and a distance image sensor 53 as an example of an image sensor. Here, although the Doppler sensor 51 is covered with the casing 50 and a part thereof is not exposed, the light receiving portion of each of the thermopile infrared sensor 52 and the distance image sensor 53 is exposed from the casing 50.
 図2は、焦電型赤外線センサ3の検出範囲E0を説明するための模式図である。また、図3は、ドップラーセンサ51の検出範囲E1を説明するための模式図である。また、図4は、サーモパイル型赤外線センサ52の検出範囲E2を説明するための模式図である。また、図5は、距離画像センサ53の検出範囲E3を説明するための模式図である。 FIG. 2 is a schematic view for explaining the detection range E0 of the pyroelectric infrared sensor 3. As shown in FIG. FIG. 3 is a schematic view for explaining a detection range E1 of the Doppler sensor 51. FIG. 4 is a schematic view for explaining a detection range E2 of the thermopile type infrared sensor 52. Moreover, FIG. 5 is a schematic diagram for demonstrating the detection range E3 of the distance image sensor 53. As shown in FIG.
 図2~図5に示すように、焦電型赤外線センサ3の水平方向の検出範囲E0は、ドップラーセンサ51,サーモパイル型赤外線センサ52,距離画像センサ53の水平方向の検出範囲E3よりも広くなっている。より詳しく説明すると、距離画像センサ53の水平方向の検出範囲E3は、サーモパイル型赤外線センサ52の水平方向の検出範囲E2よりも広くなっている。また、サーモパイル型赤外線センサ52の水平方向の検出範囲E2は、ドップラーセンサ51の水平方向の検出範囲E1よりも広くなっている。すなわち、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53においては、ドップラーセンサ51の水平方向の検出範囲E1が最も狭く、距離画像センサ53の水平方向の検出範囲E3が最も広くなっている。ここで、検出範囲E0~E1とは、各センサで人体に関する情報を検出可能な領域を指す。なお、焦電型赤外線センサ3の水平方向の検出範囲E0は、第1範囲の一例である。また、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の水平方向の検出範囲E3は、第2範囲の一例である。 As shown in FIGS. 2 to 5, the detection range E0 in the horizontal direction of the pyroelectric infrared sensor 3 is wider than the detection range E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53. ing. More specifically, the horizontal detection range E3 of the distance image sensor 53 is wider than the horizontal detection range E2 of the thermopile infrared sensor 52. Further, the detection range E2 in the horizontal direction of the thermopile infrared sensor 52 is wider than the detection range E1 in the horizontal direction of the Doppler sensor 51. That is, in the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53, the detection range E1 in the horizontal direction of the Doppler sensor 51 is the narrowest, and the detection range E3 in the horizontal direction of the distance image sensor 53 is the widest. . Here, the detection ranges E0 to E1 indicate areas in which information on the human body can be detected by each sensor. The detection range E0 in the horizontal direction of the pyroelectric infrared sensor 3 is an example of a first range. A detection range E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 is an example of a second range.
 また、焦電型赤外線センサ3およびドップラーセンサ51の検出距離は、サーモパイル型赤外線センサ52および距離画像センサ53の検出距離よりも長くなっている。そして、焦電型赤外線センサ3の検出距離は、ドップラーセンサ51の検出距離と略同じである。また、サーモパイル型赤外線センサ52の検出距離は、距離画像センサ53の検出距離と略同じである。すなわち、焦電型赤外線センサ3およびドップラーセンサ51の検出距離は比較的長く、サーモパイル型赤外線センサ52および距離画像センサ53の検出距離は比較的短くなっている。 Further, the detection distances of the pyroelectric infrared sensor 3 and the Doppler sensor 51 are longer than the detection distances of the thermopile infrared sensor 52 and the distance image sensor 53. The detection distance of the pyroelectric infrared sensor 3 is substantially the same as the detection distance of the Doppler sensor 51. Further, the detection distance of the thermopile infrared sensor 52 is substantially the same as the detection distance of the distance image sensor 53. That is, the detection distances of the pyroelectric infrared sensor 3 and the Doppler sensor 51 are relatively long, and the detection distances of the thermopile infrared sensor 52 and the distance image sensor 53 are relatively short.
 図6は、上記空気調和機の要部のブロック図である。 FIG. 6 is a block diagram of the main part of the air conditioner.
 室内ユニット1のケーシング2は、マイクロコンピュータと入出力回路などからなる制御装置6と、可動センサ部5を駆動する駆動装置7とを備えている。この制御装置6は、焦電型赤外線センサ3,室温センサ4,ドップラーセンサ51,サーモパイル型赤外線センサ52,距離画像センサ53,駆動装置7などに接続されており、各センサからの信号を受信する。また、制御装置6は、焦電型赤外線センサ3,ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の少なくとも一つによって検出される情報に基づいて、室内ユニット1のケーシング2の空調運転を制御する。 The casing 2 of the indoor unit 1 includes a control device 6 including a microcomputer and an input / output circuit, and a drive device 7 for driving the movable sensor unit 5. The control device 6 is connected to the pyroelectric infrared sensor 3, the room temperature sensor 4, the Doppler sensor 51, the thermopile infrared sensor 52, the distance image sensor 53, the driving device 7 and the like, and receives signals from the respective sensors. . Further, the control device 6 performs the air conditioning operation of the casing 2 of the indoor unit 1 based on the information detected by at least one of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52 and the distance image sensor 53. Control.
 焦電型赤外線センサ3は、強誘電体を有し、人体からの赤外線を受光する。このとき、上記赤外線の受光量に応じた変化が強誘電体の自発分極に生じ、強誘電体の表面の電荷が増減する。この強誘電体の表面の電荷量を示す信号が制御装置6で処理されることにより、室内に居る人の体動に関する情報が検出される。なお、室内に居る人の体動に関する情報は、第1情報の一例である。 The pyroelectric infrared sensor 3 has a ferroelectric substance and receives infrared rays from the human body. At this time, a change according to the amount of light received by the infrared light occurs in the spontaneous polarization of the ferroelectric, and the charge on the surface of the ferroelectric increases or decreases. The signal indicating the amount of charge on the surface of the ferroelectric is processed by the control device 6 to detect information on the body movement of the person in the room. In addition, the information regarding the body motion of the person who is indoors is an example of 1st information.
 室温センサ4は、サーミスタからなり、室内空気の温度に応じて抵抗値が変化する。制御装置6は、この室温センサ4の抵抗値を示す信号に基づいて、室内空気の温度を検出する。 The room temperature sensor 4 is composed of a thermistor, and its resistance value changes according to the temperature of room air. The control device 6 detects the temperature of the room air based on the signal indicating the resistance value of the room temperature sensor 4.
 ドップラーセンサ51は、例えばFM-CW(Frequency Modulated Continuous Wave)方式のドップラーレーダーであり、周波数変調されたマイクロ波を人体に出射する。このとき、人体とドップラーセンサ51との距離が変化すると、ドップラー効果によって人体で反射した反射波が変化する。この人体からの反射波を示す信号が制御装置6で処理されることにより、室内に居る人の脈拍および呼吸に関する情報と、上記人の数に関する情報とが、検出される。なお、室内に居る人の脈拍および呼吸に関する情報と、上記人の数に関する情報とは、第2情報の一例である。 The Doppler sensor 51 is, for example, an FM-CW (Frequency Modulated Continuous Wave) Doppler radar, and emits a frequency-modulated microwave to a human body. At this time, when the distance between the human body and the Doppler sensor 51 changes, the reflected wave reflected by the human body changes due to the Doppler effect. The signal indicating the reflected wave from the human body is processed by the control device 6, whereby information on the pulse and respiration of the person in the room and information on the number of the persons are detected. The information on the pulse and respiration of the person in the room and the information on the number of persons are examples of the second information.
 サーモパイル型赤外線センサ52は、人体からの赤外線を受光すると、赤外線の受光量に応じた起電力が発生する。この起電力を示す信号が制御装置6で処理されることにより、室内に居る人の皮膚温に関する情報が検出される。なお、室内に居る人の皮膚温に関する情報は、第2情報の一例である。 When the thermopile infrared sensor 52 receives infrared light from the human body, an electromotive force corresponding to the amount of received infrared light is generated. The signal indicating the electromotive force is processed by the control device 6 to detect information on the skin temperature of the person in the room. In addition, the information regarding the skin temperature of the person who is indoors is an example of 2nd information.
 距離画像センサ53は、例えばTOF(Time Of Flight)方式距離画像センサである。より詳しく説明すると、距離画像センサ53は、人体に向けてレーザ光を出射し、人体で反射されたレーザ光を受光する。この人体で反射されたレーザ光を示す信号が制御装置6で処理されることにより、室内に居る人との距離に関する情報と、その人の行動および姿勢に関する情報とが、検出される。なお、室内に居る人との距離に関する情報と、その人の行動および姿勢に関する情報とは、第2情報の一例である。 The distance image sensor 53 is, for example, a TOF (Time Of Flight) distance image sensor. More specifically, the distance image sensor 53 emits laser light toward the human body and receives laser light reflected by the human body. The signal indicating the laser beam reflected by the human body is processed by the control device 6 to detect information on the distance to the person in the room and information on the action and posture of the person. The information on the distance to the person in the room and the information on the action and posture of the person are examples of the second information.
 また、制御装置6は、室内温度判定部61と、駆動制御部62とを有している。この室内温度判定部61および駆動制御部62は、それぞれ、ソフトウェアで構成されている。 Further, the control device 6 includes an indoor temperature determination unit 61 and a drive control unit 62. The indoor temperature determination unit 61 and the drive control unit 62 are each configured by software.
 室内温度判定部61は、室温センサ4により検出された室内温度が、予め定めた温度以上であるか否かを判定する。ここで、上記予め定めた温度は、焦電型赤外線センサ3の耐熱性に応じて設定される。これにより、上記予め定めた温度未満であれば、焦電型赤外線センサ3による情報の検出が不可能または不正確とならない一方、上記予め定めた温度以上であれば、焦電型赤外線センサ3による情報の検出が不可能または不正確となる。 The indoor temperature determination unit 61 determines whether the indoor temperature detected by the room temperature sensor 4 is equal to or higher than a predetermined temperature. Here, the predetermined temperature is set according to the heat resistance of the pyroelectric infrared sensor 3. Thus, if the temperature is lower than the predetermined temperature, detection of information by the pyroelectric infrared sensor 3 is not impossible or inaccurate, while if it is higher than the predetermined temperature, the pyroelectric infrared sensor 3 Detection of information becomes impossible or inaccurate.
 駆動制御部62は、室温センサ4により検出された室内温度が、予め定めた温度以上でないと判定されたとき、焦電型赤外線センサ3によって検出された情報(室内に居る人の体動に関する情報)に基づいて、可動センサ部5の駆動を制御する。一方、駆動制御部62は、室温センサ4により検出された室内温度が、予め定めた温度以上であると判定されたとき、予め定めた駆動条件に基づいて、可動センサ部5の駆動を制御する。より詳しく説明すると、予め定めた回動角だけ可動センサ部5が回動するように、可動センサ部5の駆動が制御される。この可動センサ部5の回動は、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53のうちの少なくとも一つにより情報が検出されるまで繰り返される。なお、上記情報の検出の繰り返しは、予め定めた時間が経過しても、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の少なくとも一つにより情報が検出されないとき、終了するようにしてもよい。 When it is determined that the room temperature detected by the room temperature sensor 4 is not higher than a predetermined temperature, the drive control unit 62 detects information detected by the pyroelectric infrared sensor 3 (information related to the body movement of a person in the room The drive of the movable sensor unit 5 is controlled based on. On the other hand, when it is determined that the indoor temperature detected by the room temperature sensor 4 is equal to or higher than a predetermined temperature, the drive control unit 62 controls the driving of the movable sensor unit 5 based on the predetermined drive condition. . More specifically, the drive of the movable sensor unit 5 is controlled such that the movable sensor unit 5 is rotated by a predetermined rotation angle. The rotation of the movable sensor unit 5 is repeated until information is detected by at least one of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53. In addition, the repetition of the detection of the above information is ended so that the information is not detected by at least one of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 even after a predetermined time has elapsed. It is also good.
 また、駆動装置7は、例えばステッピングモータからなり、可動センサ部5のケーシング50に直接またはギヤを介して駆動力を与える。 The driving device 7 is, for example, a stepping motor, and applies a driving force to the casing 50 of the movable sensor unit 5 directly or through a gear.
 下表1は、焦電型赤外線センサ3,ドップラーセンサ51,サーモパイル型赤外線センサ52,距離画像センサ53の特性を説明するための表である。 Table 1 below is a table for explaining the characteristics of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示しているように、焦電型赤外線センサ3,室温センサ4,ドップラーセンサ51,サーモパイル型赤外線センサ52,距離画像センサ53によって、上述した情報以外の情報も検出可能である。例えば、ドップラーセンサ51からの信号を制御装置6で処理することにより、室内に居る人の体動に関する情報、上記人との距離に関する情報、および、上記人の姿勢に関する情報も、検出可能である。 As shown in Table 1, the pyroelectric infrared sensor 3, the room temperature sensor 4, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 can also detect information other than the above-described information. For example, when the signal from the Doppler sensor 51 is processed by the control device 6, it is possible to detect information on body movement of a person in the room, information on the distance to the person, and information on the posture of the person .
 また、各センサにより情報を検出できない環境がある。より具体的に言うと、室内が暗闇になっている環境だと、距離画像センサ53により情報を検出できない。また、室内が高温環境だと、焦電型赤外線センサ3およびサーモパイル型赤外線センサ52により情報を検出できない。また、振動が生じている環境では、ドップラーセンサ51により情報を検出できない。 Moreover, there is an environment where information can not be detected by each sensor. More specifically, in an environment where the room is dark, the distance image sensor 53 can not detect information. In addition, when the room is in a high temperature environment, information can not be detected by the pyroelectric infrared sensor 3 and the thermopile infrared sensor 52. In addition, in an environment where vibration occurs, the information can not be detected by the Doppler sensor 51.
 また、上記表1で示していないが、距離画像センサ53を用いることにより、室内に居る人の識別情報も得られる。すなわち、距離画像センサ53からの信号を制御装置6で処理することにより、個人認証を行うことも可能である。 Further, although not shown in the above-mentioned Table 1, by using the distance image sensor 53, identification information of a person present in the room can also be obtained. That is, it is also possible to perform personal authentication by processing the signal from the distance image sensor 53 by the control device 6.
 なお、上記表1において、△は、○に比べて、情報の検出の精度が低いことを意味している。また、×は、情報の検出ができないことを意味している。 In Table 1, Δ means that the accuracy of detection of information is lower than ○. Also, x means that information can not be detected.
 上記構成の空気調和機では、焦電型赤外線センサ3,ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の水平方向の検出範囲E0~E3内に人が入っている場合、焦電型赤外線センサ3,ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53による検出された情報に基づいて、室内ユニット1の空調運転が制御される。したがって、上記室内に居る人と室内ユニット1の空調運転との適合性を高めることができる。 In the air conditioner of the above configuration, when a person is in the horizontal detection range E0 to E3 of the pyroelectric infrared sensor 3, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53, a pyroelectric type The air conditioning operation of the indoor unit 1 is controlled based on the information detected by the infrared sensor 3, the Doppler sensor 51, the thermopile type infrared sensor 52 and the distance image sensor 53. Therefore, the compatibility between the person present in the room and the air conditioning operation of the indoor unit 1 can be enhanced.
 また、室内に居る人が、焦電型赤外線センサ3の水平方向の検出範囲E0内に入っているが、例えばドップラーセンサ51の水平方向の検出範囲E1内に入っていない場合、可動センサ部5をケーシング50の中心軸を中心に回動させて、その検出範囲E1内に人を入れることができる。したがって、ドップラーセンサ51による情報の検出能力を高めることができる。 Further, when the person in the room is within the detection range E0 of the pyroelectric infrared sensor 3 in the horizontal direction, for example, when it is not within the detection range E1 of the Doppler sensor 51 in the horizontal direction, the movable sensor unit 5 Can be turned about the central axis of the casing 50 to put a person in the detection range E1. Therefore, the detection capability of information by the Doppler sensor 51 can be enhanced.
 また、上記室内に居る人が、焦電型赤外線センサ3の水平方向の検出範囲E0内に入っているが、サーモパイル型赤外線センサ52,距離画像センサ53の水平方向の検出範囲E2,E3内に入っていない場合も、可動センサ部5をケーシング50の中心軸を中心に回動させて、その検出範囲E2,E3内に人を入れることができる。 Further, although the person in the room is within the detection range E0 of the pyroelectric infrared sensor 3 in the horizontal direction, it is within the detection ranges E2, E3 of the thermopile infrared sensor 52 and the distance image sensor 53 in the horizontal direction. Even when it does not enter, the movable sensor unit 5 can be rotated about the central axis of the casing 50 to put a person in the detection range E2, E3.
 また、室内ユニット1のケーシング2がリビングルームに設置されている場合、室内に居る人の体動に関する情報を焦電型赤外線センサ3で検出した後、その情報に基づいて、距離画像センサ53の水平方向の検出範囲E3内に人が入るように、可動センサ部5を駆動させてもよい。このようにすると、距離画像センサ53で情報を検出するのに要するのにかかる時間を短くすることができる。 In addition, when the casing 2 of the indoor unit 1 is installed in the living room, after the information related to the body movement of the person in the room is detected by the pyroelectric infrared sensor 3, the distance image sensor 53 is The movable sensor unit 5 may be driven so that a person falls within the horizontal detection range E3. In this way, it is possible to shorten the time required for the distance image sensor 53 to detect information.
 また、室内ユニット1のケーシング2がベッドルームに設置されている場合、室内に居る人の体動に関する情報を焦電型赤外線センサ3で検出した後、その情報に基づいて、ドップラーセンサ51またはサーモパイル型赤外線センサ52の水平方向の検出範囲E2内に人が入るように、可動センサ部5を駆動させてもよい。このようにすると、ドップラーセンサ51またはサーモパイル型赤外線センサ52で情報を検出するのに有する時間を短くすることができる。 In addition, when the casing 2 of the indoor unit 1 is installed in the bedroom, after the information related to the body movement of the person in the room is detected by the pyroelectric infrared sensor 3, the Doppler sensor 51 or the thermopile is based on the information. The movable sensor unit 5 may be driven so that a person falls within the horizontal detection range E2 of the infrared sensor 52. In this way, it is possible to shorten the time which the Doppler sensor 51 or the thermopile infrared sensor 52 has to detect information.
 このように、焦電型赤外線センサ3により検出された情報を用いて、可動センサ部5の駆動を制御することは、有益だが、室内が高温環境だと、焦電型赤外線センサ3により情報を検出できなくなってしまう。 As described above, it is useful to control the drive of the movable sensor unit 5 using the information detected by the pyroelectric infrared sensor 3, but if the room is in a high temperature environment, the pyroelectric infrared sensor 3 may use the information It can not be detected.
 そこで、室温センサ4により検出された室内温度が、予め定めた温度以上でないと判定されたとき、駆動制御部62は、焦電型赤外線センサ3により検出された情報に基づいて、可動センサ部5の駆動を制御する。一方、室温センサ4により検出された室内温度が、予め定めた温度以上であると判定されたとき、駆動制御部62は、予め定めた駆動条件に基づいて、可動センサ部5の駆動を制御する。その結果、室内の温度に関係なく、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の水平方向の検出範囲E1~E3内に人を入れることができる。したがって、駆動制御部62の制御の信頼性を高めることができる。 Therefore, when it is determined that the room temperature detected by the room temperature sensor 4 is not equal to or higher than a predetermined temperature, the drive control unit 62 controls the movable sensor unit 5 based on the information detected by the pyroelectric infrared sensor 3. Control the driving of On the other hand, when it is determined that the room temperature detected by the room temperature sensor 4 is equal to or higher than the predetermined temperature, the drive control unit 62 controls the driving of the movable sensor unit 5 based on the predetermined driving conditions. . As a result, it is possible to put a person in the horizontal detection range E1 to E3 of the Doppler sensor 51, the thermopile type infrared sensor 52 and the distance image sensor 53 regardless of the indoor temperature. Therefore, the control reliability of the drive control unit 62 can be enhanced.
 また、室内に居る人と室内ユニット1との距離に関する情報をドップラーセンサ51および距離画像センサ53で検出した場合、ドップラーセンサ51により検出された情報と、距離画像センサ53により検出された情報とを比較することにより、室内に居る人と室内ユニットとの距離を正確に検出することができる。このような検出は、人が複数の人が室内に居るときに、有効である。 Further, when the information regarding the distance between the person in the room and the indoor unit 1 is detected by the Doppler sensor 51 and the distance image sensor 53, the information detected by the Doppler sensor 51 and the information detected by the distance image sensor 53 By comparison, the distance between the person in the room and the indoor unit can be accurately detected. Such detection is effective when there are a plurality of people in a room.
 上記実施形態では、可動センサ部5は、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53を有していたが、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53のうちの一つまたは二つだけを有するようにしてもよい。 In the above embodiment, the movable sensor unit 5 includes the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53. However, one of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 You may make it have only one or two.
 上記実施形態では、ドップラーセンサ51,サーモパイル型赤外線センサ52および距離画像センサ53の水平方向の検出範囲E1~E3は、水平方向に動かせるようになっていたが、鉛直方向に動かせるようにしてもよい。 In the above embodiment, the detection ranges E1 to E3 in the horizontal direction of the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 can be moved in the horizontal direction, but may be moved in the vertical direction. .
 上記実施形態では、可動センサ部5は、室内ユニット1のケーシング2に回動可能に取り付けていたが、室内ユニット1のケーシング2から所定距離あけて壁面101または天上面に設置してもよい。すなわち、可動センサ部5は、室内ユニット1と一体にしているが、室内ユニット1と別体にしてもよい。このようにする場合、例えば、ベース部材を壁面101または天上面に固定し、このベース部材に可動センサ部5を回動可能に取り付けてもよい。 In the above embodiment, the movable sensor unit 5 is rotatably attached to the casing 2 of the indoor unit 1. However, the movable sensor unit 5 may be installed on the wall surface 101 or the top surface at a predetermined distance from the casing 2 of the indoor unit 1. That is, although the movable sensor unit 5 is integrated with the indoor unit 1, the movable sensor unit 5 may be separated from the indoor unit 1. In this case, for example, the base member may be fixed to the wall surface 101 or the top surface, and the movable sensor unit 5 may be rotatably attached to the base member.
 上記実施形態では、可動センサ部5のケーシング50の形状は、円柱形状であったが、例えば四角柱形状などにしてもよい。 In the above embodiment, the shape of the casing 50 of the movable sensor unit 5 is a cylindrical shape, but may be, for example, a square pole shape or the like.
 上記実施形態では、ドップラーセンサ51、サーモパイル型赤外線センサ52および距離画像センサ53は、一体に回動するようになっていたが、それぞれが独立して回動するようにしてもよい。 In the above embodiment, the Doppler sensor 51, the thermopile infrared sensor 52, and the distance image sensor 53 are integrally rotated, but may be independently rotated.
 上記実施形態では、室内温度判定部61および駆動制御部62は、それぞれ、ソフトウェアで構成されていたが、室内温度判定部61および駆動制御部62の少なくとも一方が、ハードウェアで構成されるようにしてもよい。 In the above embodiment, the indoor temperature determination unit 61 and the drive control unit 62 are each configured by software, but at least one of the indoor temperature determination unit 61 and the drive control unit 62 is configured by hardware. May be
 上記実施形態では、室温センサ4により検出された室内温度が、予め定めた温度以上でないと判定されたとき、焦電型赤外線センサ3によって検出された情報に基づいて、可動センサ部5の駆動が制御されていたが、例えば予め定めた駆動条件に基づいて、可動センサ部5の駆動が制御されるようにしてもよい。 In the above embodiment, when it is determined that the room temperature detected by the room temperature sensor 4 is not higher than a predetermined temperature, the driving of the movable sensor unit 5 is performed based on the information detected by the pyroelectric infrared sensor 3. Although controlled, the drive of the movable sensor unit 5 may be controlled based on, for example, a predetermined drive condition.
 上記実施形態では、焦電型赤外線センサ3は、可動センサ部5のように回動しなかったが、可動センサ部5のように回動するようにしてもよい。 In the above embodiment, the pyroelectric infrared sensor 3 is not rotated as in the movable sensor unit 5, but may be rotated as in the movable sensor unit 5.
 上記実施形態では、室内ユニット1のケーシング2に、焦電型赤外線センサ3を取り付けていたが、例えば距離画像センサ53を取り付けてもよい。このようにする場合も、室内ユニット1のケーシング2に対して、距離画像センサ53が駆動不可能としてもよいし、駆動可能としてもよい。 In the said embodiment, although the pyroelectric infrared sensor 3 was attached to the casing 2 of the indoor unit 1, you may attach the distance image sensor 53, for example. Also in this case, the distance image sensor 53 may not be driven with respect to the casing 2 of the indoor unit 1 or may be driven.
 上記実施形態では、レーダーの一例としてFM-CW方式ドップラーセンサ51を用いたが、レーダーはこれに限らず、パルスレーダー、CW(Continuous Wave;接続波)レーダー、FM-CWレーダー、FM-CW方式を除く他のドップラーレーダーなどを用いてもよい。 In the above embodiment, the FM-CW Doppler sensor 51 is used as an example of the radar, but the radar is not limited to this, and pulse radar, CW (Continuous Wave; connection wave) radar, FM-CW radar, FM-CW system Other Doppler radars may be used.
 この発明の具体的な実施の形態について説明したが、この発明は上記実施形態およびその変形例に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。例えば、上記実施形態で記載した内容の一部を削除または置換したものを、この発明の一実施形態としてもよい。 Although specific embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments and the modifications thereof, and can be implemented with various modifications within the scope of the present invention. For example, one in which part of the contents described in the above embodiment is deleted or replaced may be set as one embodiment of the present invention.
 1 室内ユニット
 2,50 ケーシング
 3 焦電型赤外線センサ
 4 室温センサ
 5 可動センサ部
 6 制御装置
 7 駆動装置
 51 ドップラーセンサ
 52 サーモパイル型赤外線センサ
 53 距離画像センサ
 61 室内温度判定部
 62 駆動制御部
 E0~E3 検出範囲
DESCRIPTION OF SYMBOLS 1 indoor unit 2, 50 casing 3 pyroelectric infrared sensor 4 room temperature sensor 5 movable sensor part 6 control device 7 drive device 51 Doppler sensor 52 thermopile type infrared sensor 53 distance image sensor 61 indoor temperature judgment part 62 drive control part E0 to E3 range of detection

Claims (5)

  1.  室内ユニット(1)と、
     室内に居る人に関する第1情報を検出するための第1センサ部(3)と、
     上記人に関しての情報であって上記第1情報とは異なる第2情報を検出するための第2センサ部(51,52,53)と、
     上記第1,第2情報に基づいて、上記室内ユニット(1)の空調運転を制御する制御装置(6)と、
     駆動装置(7)と
    を備え、
     上記第1センサ部(3)により上記第1情報を検出可能な第1範囲(E0)に比べて、上記第2センサ部(51,52,53)により上記第2情報を検出可能な第2範囲(E1,E2,E3)は狭く、
     上記第2センサ部(51,52,53)は上記駆動装置(7)で駆動可能であることを特徴とする空気調和機。
    Indoor unit (1),
    A first sensor unit (3) for detecting first information about a person in the room;
    A second sensor unit (51, 52, 53) for detecting second information which is information regarding the person and is different from the first information;
    A control device (6) for controlling the air conditioning operation of the indoor unit (1) based on the first and second information;
    With a drive (7),
    The second sensor unit (51, 52, 53) can detect the second information in comparison with the first range (E0) in which the first information can be detected by the first sensor unit (3). The range (E1, E2, E3) is narrow,
    An air conditioner characterized in that the second sensor unit (51, 52, 53) can be driven by the drive device (7).
  2.  請求項1に記載の空気調和機において、
     室内温度を検出するための室温センサ(4)を備え、
     上記制御装置(6)は、
     上記室温センサ(4)により検出された室内温度が、予め定めた温度以上であるか否かを判定する室内温度判定部(61)と、
     上記室温センサ(4)により検出された室内温度が、予め定めた温度以上でないと判定されたとき、上記第1情報に基づいて、上記第2センサ部(51,52,53)の駆動を制御する駆動制御部(62)と
    を有することを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    It has a room temperature sensor (4) for detecting the room temperature,
    The control device (6) is
    An indoor temperature determination unit (61) that determines whether the indoor temperature detected by the room temperature sensor (4) is equal to or higher than a predetermined temperature;
    When it is determined that the room temperature detected by the room temperature sensor (4) is not higher than a predetermined temperature, the drive of the second sensor unit (51, 52, 53) is controlled based on the first information. An air conditioner comprising: a drive control unit (62).
  3.  請求項1に記載の空気調和機において、
     室内温度を検出するための室温センサ(4)を備え、
     上記制御装置(6)は、上記室温センサ(4)により検出された室内温度が、予め定めた温度以上であるか否かを判定する室内温度判定部(61)と、
     上記室温センサ(4)により検出された室内温度が、予め定めた温度以上であると判定されたとき、上記第1情報に基づかずに、予め定めた駆動条件に基づいて、上記第2センサ部(51,52,53)の駆動を制御する駆動制御部(62)と
    を有することを特徴とする空気調和機。
    In the air conditioner according to claim 1,
    It has a room temperature sensor (4) for detecting the room temperature,
    The control unit (6) is an indoor temperature determination unit (61) that determines whether the indoor temperature detected by the room temperature sensor (4) is equal to or higher than a predetermined temperature;
    When it is determined that the room temperature detected by the room temperature sensor (4) is equal to or higher than a predetermined temperature, the second sensor unit is not based on the first information but on the basis of a predetermined drive condition. And a drive control unit (62) for controlling the drive of (51, 52, 53).
  4.  請求項1から3までのいずれか一項に記載の空気調和機において、
     上記第1センサ部(3)は焦電型赤外線センサ(3)を有することを特徴とする空気調和機。
    The air conditioner according to any one of claims 1 to 3,
    An air conditioner characterized in that the first sensor unit (3) has a pyroelectric infrared sensor (3).
  5.  請求項1から4までのいずれか一項に記載の空気調和機において、
     上記第2センサ部(51,52,53)は、レーダー(51)、サーモパイル型赤外線センサ(52)および画像センサ(53)のうちの少なくとも一つを有することを特徴とする空気調和機。
    In the air conditioner according to any one of claims 1 to 4,
    An air conditioner characterized in that the second sensor unit (51, 52, 53) includes at least one of a radar (51), a thermopile infrared sensor (52) and an image sensor (53).
PCT/JP2018/025089 2017-08-29 2018-07-02 Air conditioner WO2019044158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019539015A JP6891964B2 (en) 2017-08-29 2018-07-02 Air conditioner
AU2018324642A AU2018324642B2 (en) 2017-08-29 2018-07-02 Air conditioner
CN201880050955.4A CN111051785B (en) 2017-08-29 2018-07-02 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164657 2017-08-29
JP2017164657 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044158A1 true WO2019044158A1 (en) 2019-03-07

Family

ID=65525149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025089 WO2019044158A1 (en) 2017-08-29 2018-07-02 Air conditioner

Country Status (4)

Country Link
JP (1) JP6891964B2 (en)
CN (1) CN111051785B (en)
AU (1) AU2018324642B2 (en)
WO (1) WO2019044158A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024150313A1 (en) * 2023-01-11 2024-07-18 三菱電機株式会社 Air conditioning device, control method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055392A (en) * 2013-09-11 2015-03-23 日立アプライアンス株式会社 Air conditioner
JP2017075732A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517877B2 (en) * 2010-10-15 2014-06-11 日立アプライアンス株式会社 Air conditioner
JP5865784B2 (en) * 2012-06-05 2016-02-17 日立アプライアンス株式会社 Air conditioner
CN103900207B (en) * 2014-03-25 2018-08-07 四川长虹电器股份有限公司 A kind of instruction executing method and air-conditioning
CN105202720B (en) * 2014-06-23 2017-10-20 广东美的集团芜湖制冷设备有限公司 Indoor apparatus of air conditioner and its intelligent inductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055392A (en) * 2013-09-11 2015-03-23 日立アプライアンス株式会社 Air conditioner
JP2017075732A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024150313A1 (en) * 2023-01-11 2024-07-18 三菱電機株式会社 Air conditioning device, control method, and program

Also Published As

Publication number Publication date
JP6891964B2 (en) 2021-06-18
AU2018324642B2 (en) 2021-06-03
CN111051785A (en) 2020-04-21
AU2018324642A1 (en) 2020-03-19
CN111051785B (en) 2021-07-13
JPWO2019044158A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US7498576B2 (en) Temperature detecting system and method
JP4986691B2 (en) Air conditioner
AU2015231549B2 (en) Fan with remote temperature sensor and mounting arrangement
JP2019027773A (en) Air Conditioning System
JP6501973B2 (en) Air conditioning system
EP3274676B1 (en) Spherical-motion average radiant temperature sensor
JP5879221B2 (en) Air conditioner
JP2004085363A (en) Intruder sensing device and its setting device, setting method, and setting checking method
JP6891964B2 (en) Air conditioner
CN105864962B (en) A kind of air-conditioner temperature method for visualizing, system and air conditioner
KR20080111623A (en) Measurement domain indicator of sensor and method thereof
WO2021065821A1 (en) Air conditioner control system
CN113272597B (en) Air conditioner and control method
JP2010270958A (en) Indoor unit of air conditioner
JP6843309B1 (en) Humidity sensor and air conditioner
KR20140018495A (en) Electric fan and the hot-air blower having sensors to detect which people are or not and the distance for automatically controlling the air volume and the method thereof
JP7433023B2 (en) air conditioning system
JP7241891B2 (en) air conditioner
JPH065135B2 (en) Air conditioner
JP6544467B2 (en) Air conditioner
JP2024115975A (en) Presence detection system, air conditioning system, and presence detection program
JPS6277536A (en) Air conditioner
JP2011080661A (en) Air conditioner
JP2024120381A (en) Biometric information acquisition device, air conditioning system, and biological information acquisition program
JP2024088341A (en) ACTIVITY STATE ACQUISITION DEVICE, AIR CONDITIONING SYSTEM, AND ACTIVITY STATE ACQUISITION PROGRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018324642

Country of ref document: AU

Date of ref document: 20180702

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18850644

Country of ref document: EP

Kind code of ref document: A1