WO2019042360A1 - Led lamp - Google Patents

Led lamp Download PDF

Info

Publication number
WO2019042360A1
WO2019042360A1 PCT/CN2018/103264 CN2018103264W WO2019042360A1 WO 2019042360 A1 WO2019042360 A1 WO 2019042360A1 CN 2018103264 W CN2018103264 W CN 2018103264W WO 2019042360 A1 WO2019042360 A1 WO 2019042360A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
insulated heat
dissipating tube
wall
led
Prior art date
Application number
PCT/CN2018/103264
Other languages
French (fr)
Inventor
Guozhong Zhang
Yehua Wan
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2019042360A1 publication Critical patent/WO2019042360A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/275Details of bases or housings, i.e. the parts between the light-generating element and the end caps; Arrangement of components within bases or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/104Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening using feather joints, e.g. tongues and grooves, with or without friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/16Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting
    • F21V17/164Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting the parts being subjected to bending, e.g. snap joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/713Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements in direct thermal and mechanical contact of each other to form a single system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/30Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • Embodiments of the present disclosure relate to lighting technologies, and in particular, to an LED lamp.
  • LED Light emitting diode
  • LED lamps are widely used in various fields such as indication, display, backlight, and general illumination, etc., due to their advantages of energy saving, long lifetime, low power consumption and easy maintenance.
  • a conventional LED lamp generally includes an LED light-emitting element, a driving circuit, a heat-dissipating element and a lamp electrode.
  • the lamp electrode is connected to the driving circuit, so that an external power supply can supply power to the driving circuit through the lamp electrode.
  • the driving circuit is connected the LED light-emitting element, so as to drive the LED light-emitting element to emit light. While emitting light, the LED light-emitting element generates heat.
  • the heat-dissipating element is configured to dissipate the heat generated by the LED light-emitting element to the surrounding air, thereby preventing the LED light-emitting element from being overheated.
  • the heat-dissipating element includes multiple layers of heat dissipating materials, and each layer of the heat dissipating materials is made of different materials.
  • a combination of different heat dissipating materials may have a high thermal resistance during a heat transfer process, resulting in poor heat dissipation and easy burning out of the LED light-emitting element.
  • the poor heat dissipation of a conventional LED lamp can cause low operational reliability, short life time and inconvenient installation of the conventional LED lamp.
  • the present disclosure provides an LED lamp.
  • the LED lamp includes an insulated heat-dissipating tube, one or more LED light-emitting element, a lamp electrode holder, a lamp electrode, and a lamp cover.
  • the lamp electrode holder is disposed at one end of the insulated heat-dissipating tube.
  • the lamp electrode is housed by the lamp electrode holder.
  • An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall.
  • the first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element.
  • the at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover.
  • the second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.
  • the first outer wall of the insulated heat-dissipating tube includes at least one groove, and each of the at least one LED light-emitting element is disposed in one of the at least one groove.
  • the at least one LED light-emitting element is disposed along a longitudinal direction of the insulated heat-dissipating tube. At least one groove extends toward the two ends of the insulated heat-dissipating tube.
  • each of the least one groove extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube.
  • the lamp cover includes a plurality of protrusions protruding from an inner wall of the lamp cover.
  • the insulated heat-dissipating tube includes a plurality of slots recessing into the first outer wall of the insulated heat-dissipating tube, the plurality of slots having a matching structure with respect to the plurality of protrusions of the lamp cover.
  • the lamp cover is latched to the insulated heat-dissipating tube by respectively latching each protrusion in the corresponding slot.
  • the lamp cover is latched to the insulated heat-dissipating tube by latching two protrusions to two slots respectively located at two junctions between the first outer wall and the second outer wall of the insulated heat-dissipating tube.
  • the slot is a pass-through groove that extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube.
  • the protrusion of the lamp cover is slidable in the slot of the insulated heat-dissipating tube.
  • the second outer wall of the insulated heat-dissipating tube does not house any LED light-emitting element.
  • An outer surface of the lamp cover is located on a same curved surface as the second outer wall of the insulated heat-dissipating tube.
  • the LED lamp includes one or more LED light-emitting element.
  • the one or more LED light-emitting element are disposed and spaced apart on the first outer wall of the insulated heat-dissipating tube.
  • spacings between adjacent two LED light-emitting elements are equal.
  • the lamp electrode is disposed at a position of the lamp electrode holder distal from the at least one LED light-emitting element.
  • the LED lamp consistent with the present disclosure includes: an insulated heat-dissipating tube, at least one LED light-emitting element, one or more lamp electrode holder respectively disposed at one or more end of the insulated heat-dissipating tube, one or more lamp electrode each being housed by one of the one or more lamp electrode holders, and a lamp cover.
  • An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall.
  • the first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element.
  • the at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover.
  • the second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.
  • the second outer wall of the insulated heat-dissipating tube without the LED light-emitting element is open to surrounding environment.
  • the second outer wall of the insulated heat-dissipating tube without the LED light-emitting element can be in direct contact with the surrounding air. Therefore, the insulated heat-dissipating tube can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp, and the operation reliability and the lifetime of the LED lamp.
  • each lamp electrode is disposed on the corresponding electrode holder and distal from the LED light-emitting element, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
  • FIG. 1 is a structural diagram of an LED lamp according to some embodiments of the present disclosure
  • FIG. 2 is a front view of a lamp electrode and a lamp electrode holder according to some embodiments of the present disclosure
  • FIG. 3 is a structural diagram of an LED lamp according to some other embodiments of the present disclosure.
  • FIG. 4 is a structural diagram of an LED lamp according to some other embodiments of the present disclosure.
  • FIG. 6 is cross-sectional diagram of an LED lamp according to some embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of a perspective view of an LED lamp according to some embodiments of the present disclosure.
  • an LED light-emitting element is disposed on a part of an outer wall of an insulated heat-dissipating tube of the LED lamp.
  • a lamp cover is disposed to cover a region of the LED light-emitting element.
  • Another part of the insulated heat-dissipating tube without the LED light-emitting element can directly contact surrounding air.
  • heat generated by the LED light-emitting element may be transferred to the insulated heat-dissipating tube, and the insulated heat-dissipating tube can directly dissipate heat to surrounding environment.
  • a heat dissipating effect of the LED lamp can be improved, thereby ensuring a reliable operation of the LED lamp.
  • FIG. 1 is a structural diagram of an LED lamp according to some embodiments of the present disclosure
  • FIG. 2 is a front view of a lamp electrode and a lamp electrode holder according to some embodiments of the present disclosure.
  • the LED lamp includes: an insulated heat-dissipating tube 10, one or more LED light-emitting element 20, a lamp electrode 50, a lamp electrode holder 60, and a lamp cover 30.
  • the LED light-emitting elements 20 are disposed on a portion of the outer wall of the insulated heat-dissipating tube 10.
  • the portion of the outer wall of the insulated heat-dissipating tube 10 that houses the one or more LED light-emitting element 20 can also be referred as the first outer wall of the insulated heat-dissipating tube 10.
  • the lamp cover 30 is disposed over the LED light-emitting elements 20.
  • the lamp cover 30 is configured to cover the first outer wall of the insulated heat-dissipating tube 10 and the LED light-emitting element 20.
  • Another portion of the insulated heat-dissipating tube 10 without the LED light-emitting elements 20 is open/exposed to surrounding environment.
  • the lamp electrode holder 60 is disposed at one end of the insulated heat-dissipating tube 10.
  • the lamp electrode 50 is disposed on the corresponding lamp electrode holder 60.
  • the lamp electrode 50 is disposed on a position of the corresponding lamp electrode holder 60 distal to the at least one LED light-emitting element 20.
  • the lamp electrode holder 60 may include an inner side facing toward the LED light-emitting elements 20 and the insulated heat-dissipating tube 10, and an outer side facing an external environment.
  • the lamp electrode 50 is disposed on the outer side of the lamp electrode holder 60 and is configured to be connected to an external power supply.
  • a projection of the lamp electrode 50 on a plane of the electrode holder 60 is distal from projections of the at least one LED light-emitting element 20 on the plane of the electrode holder 60.
  • the lamp electrode 50 and the at least one LED light-emitting element 20 may not occupy/contact same portion/area of the electrode holder 60.
  • the LED lamp may include two lamp electrode holders 60 disposed at two ends of the insulated heat-dissipating tube 10.
  • the lamp electrodes 50 may be respectively disposed on the two lamp electrode holders 60.
  • the lamp electrodes 50 may be disposed on one of the two lamp electrode holders 60.
  • the LED lamp may include one lamp electrode holder 60 disposed at one end of the insulated heat-dissipating tube 10.
  • the lamp electrodes 50 may be disposed on the lamp electrode holder 60.
  • the LED lamp may include a driving circuit 40.
  • the driving circuit 40 is disposed in the insulated heat-dissipating tube 10. One end of the driving circuit 40 is connected to the lamp electrode holder 60, and the other end of the driving circuit 40 is connected to the LED light-emitting elements 20, so as to drive the LED light-emitting element 20 to emit light.
  • Methods to connect the driving circuit 40 with the LED light-emitting element 20 are not limited by the present disclosure.
  • the LED lamp may include an insulated heat-dissipating tube 10, an LED light-emitting element 20, a lamp cover 30, a driving circuit 40, a lamp electrode 50, and a lamp electrode holder 60.
  • the insulated heat-dissipating tube 10 may have a central through hole. A shape of the central through hole is not limited by the present disclosure and can be determined according to and compatible with a shape of the driving circuit 40.
  • the LED light-emitting element 20 is disposed on a portion of the outer wall of the insulated heat-dissipating tube 10.
  • the lamp cover 30 is disposed over the LED light- emitting element 20.
  • the driving circuit 40 may be disposed in the central through hole of the insulated heat-dissipating tube 10, and an electrode of the LED light-emitting element 20 is connected to the driving circuit 40 through the outer wall of the insulated heat-dissipating tube 10.
  • the LED lamp may include two lamp electrode holders 60, and a positive lamp electrode 50 and a negative lamp electrode 50.
  • Each of lamp electrode holder includes one of the lamp electrodes 50.
  • One of the two lamp electrode holders 60 is connected to one end of the insulated heat-dissipating tube 10, and the other lamp electrode holder 60 is connected to the other end of the insulated heat-dissipating tube 10.
  • One end of each lamp electrode 50 is connected to the driving circuit 40 through the lamp electrode holder 60, and the other end of each electrode 50 is exposed for being connected to an external power supply.
  • each lamp electrode holder 60 match a size and shape of each end of the insulated heat-dissipating tube 10.
  • the lamp electrode holder 60 can cover openings of the corresponding end of the insulated heat-dissipating tube 10.
  • the insulated heat-dissipating tube 10 may be cylindrical, and the lamp electrode holders 60 may be in a shape of a round disk.
  • a diameter of the lamp electrode holder 60 may be the same as or slightly larger than the outer diameter of the insulated heat-dissipating tube 10.
  • each lamp electrode holder 60 may further include a metal conductor, which is disposed at one side of the lamp electrode holder 60 that is facing toward the insulated heat-dissipating tube 10. The metal conductor may be configured to connect the driving circuit 40 to the lamp electrode 50.
  • the metal conductor on the lamp electrode holder 60 may be disposed in the central through hole of the insulated heat-dissipating tube 10.
  • a conductive terminal of the lamp electrode 50 disposed on each lamp electrode holder 60 may be covered with an insulating material to prevent metal conductors of the LED lamp from leaking electricity. Such that, a user can be protected from leakage of electricity, thereby improving safety of using the LED lamp.
  • the lamp electrodes 50 may be connected to the external power supply, the lamp electrodes 50 may transmit energy from the external power supply to the drive circuit 40 through the lamp electrode holder 60, and the driving circuit 40 drives the LED light-emitting element 20 to emit light. While emitting light, the LED light-emitting element 20 generates heat. Because the LED light-emitting element 20 is in direct contact with the insulated heat-dissipating tube 10, the heat generated by the LED light-emitting element 20 can be directly transferred to the insulated heat-dissipating tube 10. The portion of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 can be in direct contact with the surrounding air.
  • the insulated heat-dissipating tube 10 can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp.
  • the heat generated can be timely dissipated, preventing the LED light-emitting element 20 or the driving circuit 40 from burning out, and thereby improving operation reliability and lifetime of the LED lamp.
  • a lamp cover 30 may be disposed over the LED light-emitting element 20.
  • the lamp cover 30 is not disposed on the portion of the outer wall of the insulated heat-dissipating tube 10 where the LED light-emitting element 20 is not disposed, thereby reducing a volume of the LED lamp, and facilitating installation and heat dissipation.
  • the insulated heat-dissipating tube 10 may be a cylindrical tube, a rectangular tube, a conical tube or any tube of other shapes that has the central through hole.
  • the shape of the insulated heat-dissipating tube 10 is not limited by the present disclosure.
  • the insulated heat-dissipating tube 10 may be made of an insulated heat dissipating material such as ceramic or plastic.
  • the insulated heat-dissipating tube 10 may have an elongated shape, and the LED light-emitting element 20 may also have an elongated shape, and a length of the LED light-emitting element 20 is approximately the same as that of the insulated heat-dissipating tube 10.
  • the length of the LED light-emitting element 20 may be slightly shorter than the length of the insulated heat-dissipating tube 10. The LED light-emitting element 20 is disposed on the outer wall of the insulated heat-dissipating tube 10 along the longitudinal direction of the insulated heat-dissipating tube 10.
  • the insulated heat-dissipating tube 10 may have an elongated shape.
  • the LED light-emitting elements 20 may be distributed along the circumferential direction of the insulated heat-dissipating tube 10 and are disposed on a portion of the circumferential surface of the insulated heat-dissipating tube 10.
  • the LED light-emitting element 20 can be disposed on a portion of the outer wall of the insulated heat-dissipating tube 10 in other forms, which is not limited in the present disclosure.
  • multiple lamp covers 30 may be respectively disposed over the plurality of LED light-emitting elements 20.
  • one lamp 30 over may be disposed over all the LED light-emitting elements 20.
  • each lamp electrode 50 may be disposed at a position on each corresponding lamp electrode holder 60 and distal from the LED light-emitting element 20.
  • the lamp electrode 50 may be disposed on the lamp electrode holder 50 and distal from the LED light-emitting element 20.
  • the lamp electrode 50 may be disposed on the lamp electrode holder 60 and located outside of a projection connection line of the LED light-emitting element 20 on the lamp electrode holder 60.
  • the projection of the lamp electrode 50 on the plane of the electrode holder 60 is distal from the projections of the at least one LED light-emitting element 20 on the plane of the electrode holder 60.
  • the lamp electrode 50 When the projection connection line of the LED light-emitting element 20 on the plane of the lamp electrode holder 60 is located on the negative Y-axis, the lamp electrode 50 may be mainly disposed on the positive Y-axis. Thus, in an actual installation process, a distance between the lamp electrode 50 and a mounting seat of the LED lamp can be reduced, thereby facilitating installation and reducing a space need to install the LED lamp.
  • the outer wall of the insulated heat-dissipating tube 10 may be divided into two parts: a first outer wall 110 and a second outer wall 120.
  • the LED light-emitting element 20 may be disposed on the first outer wall 110, and the lamp cover 30 may cover the LED light-emitting element 20 on the first outer wall 110.
  • the second outer wall 120 does not include the LED light-emitting element 20, and can have direct contact with the surrounding air, thereby improving the heat dissipating effect of the LED lamp.
  • the lamp electrodes 50 may be disposed on the lamp electrode holders 60 and close to the second outer wall. Such that, each lamp electrode 50 may be close to the mounting seat, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
  • a surface area of the first outer wall 110 and the second outer wall 120 may be the same or different, which can be determined according to the number and distribution of the LED light-emitting elements 20 and is not limited by the present disclosure.
  • the LED light-emitting element 20 may be distributed on the first outer wall 110 along the longitudinal direction of the insulated heat-dissipating tube 10 or along the circumference direction of the insulated heat-dissipating tube 10.
  • the LED light-emitting element 20 may be distributed on the first outer wall 110 in other forms, which is not limited by the present disclosure.
  • the LED lamp may include: an insulated heat-dissipating tube, at least one LED light-emitting element, lamp electrodes each being housed by one of the lamp electrode holders, one or more lamp electrode holders disposed at one or more end of the insulated heat-dissipating tube, and a lamp cover.
  • An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall. The first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element. The at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover.
  • the second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.
  • the second outer wall of the insulated heat-dissipating tube without the LED light-emitting element is open to surrounding environment.
  • the second outer wall of the insulated heat-dissipating tube without the LED light-emitting element can be in direct contact with the surrounding air. Therefore, the insulated heat-dissipating tube can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp, and the operation reliability and the lifetime of the LED lamp.
  • each lamp electrode is disposed on the corresponding electrode holder and distal from the LED light-emitting element, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
  • FIG. 3 is a schematic structural view of an LED lamp according to another embodiment of the present disclosure. As shown in FIG. 3, to improve the mounting reliability of the LED light-emitting element 20 on the insulated heat-dissipating tube 10, at least one groove 111 is disposed on an outer wall of the insulated heat-dissipating tube 10, and the LED light-emitting element 20 is disposed in the at least one groove 111.
  • a quantity of the grooves 111 may be the same as a quantity of the LED light-emitting elements 20, that is, one LED light-emitting element 20 is disposed in one of the grooves 111.
  • the quantity of the grooves 111 may be greater than the quantity of the LED light-emitting elements 20. That is, when the LED light-emitting elements 20 are disposed in the groves 111, there may be excess grooves 111 for supplementary LED light-emitting element 20.
  • the grooves 111 of the embodiment may be distributed along the circumferential direction of the insulated heat-dissipating tube 10.
  • the groove 111 may be disposed on a portion of the circumferential surface of the insulated heat-dissipating tube 10.
  • the groove 111 may be disposed on 1/3 of the circumferential surface of the insulated heat-dissipating tube 10.
  • the LED light-emitting element 20 may be also distributed along the circumferential direction of the insulated heat-dissipating tube 10.
  • the grooves 111 may be distributed along the longitudinal direction of the insulated heat-dissipating tube 10.
  • the LED light-emitting element 20 is disposed in the groove 111, the LED light-emitting element 20 is also distributed in the longitudinal direction of the insulated heat-dissipating tube 10.
  • a plurality of grooves 111 are disposed on the insulated heat-dissipating tube 10, and the LED light-emitting elements 20 are disposed in the groove 111, so as to facilitate positioning and mounting of the LED light-emitting elements 20. Therefore, the structural stability of the LED lamp can be improved, thereby improving the reliability and lifetime of LED lamp.
  • the LED light-emitting elements 20 may be disposed along a longitudinal direction of the insulated heat-dissipating tube 10, and the grooves 111 may extend toward both ends of the insulated heat-dissipating tube 10.
  • the LED light-emitting element 20 may be disposed along the longitudinal direction of the insulated heat-dissipating tube 10, and the groove 111 may be also disposed along the longitudinal direction of the insulated heat-dissipating tube 10. In some embodiments, two ends of each groove 111 may extend toward both ends of the insulated heat-dissipating tube 10.
  • each groove 111 can directly extend and connect to both ends of the insulated heat-dissipating tube 10. That is, each groove 111 may be a pass-through groove connecting the two ends of the insulated heat-dissipating tube 10 and simple to be manufactured.
  • a notch may further be disposed at both ends of each groove 111.
  • An electrode of the LED light-emitting element 20 may be connected to the driving circuit 40 through the notch.
  • the groove 111 may penetrate the outer wall of the insulated heat-dissipating tube 10, so that when the LED light-emitting element 20 is disposed in the groove 111, the electrode of the LED light-emitting element 20 is directly exposed in the central through hole of the insulated heat-dissipating tube 10. It is convenient to connect the electrode of the LED light-emitting element 20 to the driving circuit 40 in the central through hole of the insulated heat-dissipating tube 10.
  • a plurality of grooves 111 are disposed on the insulated heat-dissipating tube, and the LED light-emitting elements are disposed in the groove, so as to facilitate positioning and mounting of the LED light-emitting elements. Therefore, the structural stability of the LED lamp can be improved, thereby improving the reliability and lifetime of LED lamp.
  • the groove may be disposed along the longitudinal direction of the insulated heat-dissipating tube, and each groove may extend toward both ends of the insulated heat-dissipating tube.
  • an arrangement form of the LED light-emitting element can be enriched, thereby increasing the style of the LED lamp and improving a market competitiveness of LED lamp.
  • FIG. 4 is a schematic structural view of an LED lamp according to further another embodiment of the present disclosure. As shown in FIG. 4, in some embodiments, to improve a connection reliability of the lamp cover 30 and the insulated heat-dissipating tube 10, the lamp cover 30 may be mounted to the insulated heat-dissipating tube 10.
  • a buckle may be disposed on the insulated heat-dissipating tube 10.
  • the buckle may be disposed on the portion of the outer wall of the insulated heat-dissipating tube 10 with the LED light-emitting element 20. That is, the buckle may be disposed on the first outer wall 110 of the insulated heat-dissipating tube 10.
  • a slot may be disposed on the lamp cover 30 to match the buckle. During an installation process, the slot of the lamp cover 30 may be engaged with the buckle of the insulated heat-dissipating tube 10, such that the lamp cover 30 can be fixed on the insulated heat-dissipating tube 10.
  • a plurality of slots may be disposed on the insulated heat-dissipating tube 10, and correspondingly a buckle may be disposed on the lamp cover 30 to match the slot.
  • the buckle of the lamp cover 30 may be engaged with the slot of the insulated heat-dissipating tube 10, such that the lamp cover 30 can be fixedly connected with the insulated heat-dissipating tube 10.
  • the insulated heat-dissipating tube 10 may include one or more slot 112, and the lamp cover 30 may include one or more protrusion 121 having a matching shape with the one or more slot 112 of the heat-dissipating tube 10.
  • the insulated heat-dissipating tube 10 may include one or more protrusion, and the lamp cover 30 may include one or more slot having a matching shape with the one or more protrusion of the heat-dissipating tube 10.
  • FIG. 5 is a 3D structural diagram of an LED lamp showing a cross-section of the LED lamp according to some embodiments of the present disclosure.
  • FIG. 6 is cross-sectional diagram of an LED lamp according to some embodiments of the present disclosure.
  • a slot 112 may be disposed at a position where the outer wall of the insulated heat-dissipating tube 10 is connected to the two sides (i.e., longitudinal edges) of the lamp cover 30. Both sides of the lamp cover include protrusions 121 to match the slot 112, and the protrusion 121 can be engaged with the slot 112.
  • the slot 112 may be a plurality of partial slots, and the plurality of partial slots is distributed along the longitudinal direction of the insulated heat-dissipating tube 10 (e.g., along the side of the first outer wall 110) .
  • the two sides of the lamp cover 30 may include a plurality of protrusions 121. When the lamp cover 30 covers over the LED light-emitting element 20, the protrusions 121 are correspondingly engaged in the slots 112, such that the lamp cover 30 can be reliably connected to the insulated heat-dissipating tube 10.
  • the slot 112 can be a through slot extending through the two ends of the insulated heat-dissipating tube 10.
  • the protrusions 121 disposed on the two sides of the lamp cover 30 can slide in the slot 112, such that the lamp cover 30 can be connected to the insulated heat-dissipating tube 10.
  • the protrusions 121 disposed on the two sides of the lamp cover 30 can extend through two ends of the lamp cover 30 and have a same length as the two sides of the lamp cover 30. Such that, it is more reliable to sild the protrusions 121 of the lamp cover 30 in the slot 112.
  • a distance from the portion of the outer wall of the insulated heat-dissipating tube 10 with the LED light-emitting element 20 (i.e., the first outer wall 110) to the center line of the insulated heat-dissipating tube 10 is smaller than a distance from the other portion of the outer wall of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 (i.e., the first outer wall 120) to the center line of the insulated heat-dissipating tube 10.That is, compared to the second outer wall 120, the first outer wall 110 is closer to the center line of the insulated heat-dissipating tube 10.
  • the insulated heat-dissipating tube 10 is a circular tube
  • a portion of the outer wall of the insulated heat-dissipating tube 10 is cut away to form a groove, which forms the first outer wall 110.
  • the lamp cover 30 can be closer to the center line of the insulated heat-dissipating tube 10.
  • the present disclosure does not limit the shape of the outer surface of the LED lamp.
  • the outer surface of the LED lamp may be a smoothly curved surface, e.g. a peripheral surface of a cylinder.
  • the outer surface of the lamp cover 30 is located on the same curved surface as the portion of the outer wall of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 (i.e., the second outer wall 120 of the insulated heat-dissipating tube 10) .
  • the lamp cover 30 may occupy 70%of the outer surface of the LED lamp, and the second outer wall 120 of the insulated heat-dissipating tube 10 may occupy 30%of the outer surface of the LED lamp.
  • the occupancy ratio between the lamp cover 30 and the second outer wall 120 on the surface of the LED lamp may be any suitable value determined based on practical application. It is possible to further avoid bump problem caused by protruding of the lamp cover 30 or the second outer wall 120. Thus, the LED lamp structural stability can be improved, and the appearance of the LED lamp can me more beautiful.
  • FIG. 7 a structural diagram of an outer surface of an LED lamp according to some embodiments of the present disclosure.
  • the second outer wall 120 of the insulated heat-dissipating tube 10 and the lamp cover 30 together form the outer surface of the LED lamp. Edges of the second outer wall 120 along the longitudinal direction matches edges of the lamp cover 30 along the longitudinal direction, such that the outer surface of the LED lamp can be a smooth surface.
  • the area of the second outer wall 120 of the insulated heat-dissipating tube can be the same as or different from the area of the lamp cover 30, which is not limited by the present disclosure.
  • the outer surface of the LED lamp may be a peripheral surface of a polygonal column, e.g., a triangular column, a square column, a hexagonal column, an octagonal column.
  • the outer surface of the lamp cover 30 can be one or more sides of the peripheral surface of the polygonal column, and the second outer wall 120 may be the remaining side (s) of the peripheral surface of the polygonal column.
  • a plurality of LED light-emitting elements 20 may be disposed on the insulated heat-dissipating tube 10, and the plurality of LED light-emitting elements 20 is distributed and spaced on the outer wall of the insulated heat-dissipating tube 10.
  • the spacing between adjacent LED light-emitting elements on the insulated heat-dissipating tube 10 is equal.
  • the lamp cover can be latched to the insulated heat-dissipating tube, so as to facilitate the lamp cover to be installed to and uninstalled from the insulated heat-dissipating tube and facilitate the maintenance of the LED lamp.
  • the outer surface of the lamp cover and the portion of the outer wall of the insulated heat-dissipating tube without the LED light-emitting element are disposed on the same curved surface, thereby improving the aesthetics of the LED lamp.

Abstract

An LED lamp includes an insulated heat-dissipating tube, one or more LED light-emitting element, a lamp electrode holder, a lamp electrode, and a lamp cover. The lamp electrode holder is disposed at an end of the insulated heat-dissipating tube. The lamp electrode is housed by the lamp electrode holder. An outer wall of the insulated heat-dissipating tube includes a first outer wall configured to house the at least one LED lighting-emitting element, and a second outer wall in direct contact with the surrounding air. The at least one LED lighting-emitting element and the first outer wall are covered by the lamp cover. The second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.

Description

LED LAMP
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Chinese Patent Application No. 201710771652.9, filed on August 31, 2017, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
Embodiments of the present disclosure relate to lighting technologies, and in particular, to an LED lamp.
BACKGROUND
Light emitting diode (LED) is a semiconductor electronic element that converts electrical energy into photo energy. With the continuous development of LED technologies, LED lamps are widely used in various fields such as indication, display, backlight, and general illumination, etc., due to their advantages of energy saving, long lifetime, low power consumption and easy maintenance.
A conventional LED lamp generally includes an LED light-emitting element, a driving circuit, a heat-dissipating element and a lamp electrode. The lamp electrode is connected to the driving circuit, so that an external power supply can supply power to the driving circuit through the lamp electrode. In addition, the driving circuit is connected the LED light-emitting element, so as to drive the LED light-emitting element to emit light. While emitting light, the LED light-emitting element generates heat. The heat-dissipating element is configured to dissipate the heat generated by the LED light-emitting element to the surrounding air, thereby preventing the LED light-emitting element from being overheated.
However, in the conventional LED lamp, the heat-dissipating element includes multiple layers of heat dissipating materials, and each layer of the heat dissipating materials is made of different materials. A combination of different heat dissipating materials may have a high thermal resistance during a heat transfer process, resulting in poor heat dissipation and easy  burning out of the LED light-emitting element. In addition, it is not convenient to install the multiple layers of heat dissipating materials.
SUMMARY
The poor heat dissipation of a conventional LED lamp can cause low operational reliability, short life time and inconvenient installation of the conventional LED lamp. To solve the above problem, the present disclosure provides an LED lamp.
The LED lamp includes an insulated heat-dissipating tube, one or more LED light-emitting element, a lamp electrode holder, a lamp electrode, and a lamp cover. The lamp electrode holder is disposed at one end of the insulated heat-dissipating tube. The lamp electrode is housed by the lamp electrode holder. An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall. The first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element. The at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover. The second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.
In some embodiments, the first outer wall of the insulated heat-dissipating tube includes at least one groove, and each of the at least one LED light-emitting element is disposed in one of the at least one groove.
In some embodiments, the at least one LED light-emitting element is disposed along a longitudinal direction of the insulated heat-dissipating tube. At least one groove extends toward the two ends of the insulated heat-dissipating tube.
In some embodiments, each of the least one groove extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube.
In some embodiments, the lamp cover includes a plurality of protrusions protruding from an inner wall of the lamp cover. The insulated heat-dissipating tube includes a plurality of slots recessing into the first outer wall of the insulated heat-dissipating tube, the plurality of slots having a matching structure with respect to the plurality of protrusions of the lamp cover. The  lamp cover is latched to the insulated heat-dissipating tube by respectively latching each protrusion in the corresponding slot.
In some embodiments, the lamp cover is latched to the insulated heat-dissipating tube by latching two protrusions to two slots respectively located at two junctions between the first outer wall and the second outer wall of the insulated heat-dissipating tube.
In some embodiments, the slot is a pass-through groove that extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube. The protrusion of the lamp cover is slidable in the slot of the insulated heat-dissipating tube.
In some embodiments, the second outer wall of the insulated heat-dissipating tube does not house any LED light-emitting element. An outer surface of the lamp cover is located on a same curved surface as the second outer wall of the insulated heat-dissipating tube.
In some embodiments, the LED lamp includes one or more LED light-emitting element. The one or more LED light-emitting element are disposed and spaced apart on the first outer wall of the insulated heat-dissipating tube.
In some embodiments, spacings between adjacent two LED light-emitting elements are equal.
In some embodiments, the lamp electrode is disposed at a position of the lamp electrode holder distal from the at least one LED light-emitting element.
The LED lamp consistent with the present disclosure includes: an insulated heat-dissipating tube, at least one LED light-emitting element, one or more lamp electrode holder respectively disposed at one or more end of the insulated heat-dissipating tube, one or more lamp electrode each being housed by one of the one or more lamp electrode holders, and a lamp cover. An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall. The first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element. The at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover. The second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp. The second outer wall of the insulated heat-dissipating tube without the LED light-emitting element is open to surrounding environment. The second outer wall of the insulated heat-dissipating tube without the LED light-emitting element can be in  direct contact with the surrounding air. Therefore, the insulated heat-dissipating tube can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp, and the operation reliability and the lifetime of the LED lamp. In addition, each lamp electrode is disposed on the corresponding electrode holder and distal from the LED light-emitting element, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
DESCRIPTION OF THE DRAWINGS
To more clearly explain the embodiments of the present disclosure or the technical solutions in a conventional technology, the drawings used in the description of the embodiments or the conventional technology are briefly described below. Obviously, the drawings described below illustrate only some embodiments of the present disclosure. For those skilled in the art, other drawings may also be obtained based on these drawings without creative efforts.
FIG. 1 is a structural diagram of an LED lamp according to some embodiments of the present disclosure;
FIG. 2 is a front view of a lamp electrode and a lamp electrode holder according to some embodiments of the present disclosure;
FIG. 3 is a structural diagram of an LED lamp according to some other embodiments of the present disclosure;
FIG. 4 is a structural diagram of an LED lamp according to some other embodiments of the present disclosure;
FIG. 5 is a three-dimensional (3D) structural diagram of an LED lamp showing a cross-section of the LED lamp according to some embodiments of the present disclosure;
FIG. 6 is cross-sectional diagram of an LED lamp according to some embodiments of the present disclosure; and
FIG. 7 is a structural diagram of a perspective view of an LED lamp according to some embodiments of the present disclosure.
Reference numerals in the drawings: 10-insulated heat-dissipating tube; 110-first outer wall; 111-groove; 112-slot; 120-second outer wall; 121-protrusion; 20-LED light-emitting element; 30-lamp cover; 40-driving circuit; 50-lamp electrode; and 60-lamp electrode holder.
DETAILED DESCRIPTION
The following clearly describes the technical solutions according to embodiments of the present disclosure with reference to the accompanying drawings. Apparently, described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the scope of the present disclosure.
The present disclosure provides an LED lamp. According to embodiments of the present disclosure, an LED light-emitting element is disposed on a part of an outer wall of an insulated heat-dissipating tube of the LED lamp. A lamp cover is disposed to cover a region of the LED light-emitting element. Another part of the insulated heat-dissipating tube without the LED light-emitting element can directly contact surrounding air. In this way, heat generated by the LED light-emitting element may be transferred to the insulated heat-dissipating tube, and the insulated heat-dissipating tube can directly dissipate heat to surrounding environment. Thus, a heat dissipating effect of the LED lamp can be improved, thereby ensuring a reliable operation of the LED lamp.
The technical solutions of the present disclosure are described in detail with specific embodiments below. The following embodiments can be combined with each other, and some same or similar concepts or processes may not be repeated in some embodiments.
FIG. 1 is a structural diagram of an LED lamp according to some embodiments of the present disclosure, and FIG. 2 is a front view of a lamp electrode and a lamp electrode holder according to some embodiments of the present disclosure. As shown in FIG. 1 and FIG. 2, in an exemplary embodiment, the LED lamp includes: an insulated heat-dissipating tube 10, one or more LED light-emitting element 20, a lamp electrode 50, a lamp electrode holder 60, and a lamp cover 30. The LED light-emitting elements 20 are disposed on a portion of the outer wall of the insulated heat-dissipating tube 10. Hereinafter, the portion of the outer wall of the insulated heat-dissipating tube 10 that houses the one or more LED light-emitting element 20 can also be referred as the first outer wall of the insulated heat-dissipating tube 10. The lamp cover 30 is disposed over the LED light-emitting elements 20. In other words, the lamp cover 30 is configured to cover the first outer wall of the insulated heat-dissipating tube 10 and the LED light-emitting element 20. Another portion of the insulated heat-dissipating tube 10 without the LED light-emitting elements 20 is open/exposed to surrounding environment.
In some embodiments, the lamp electrode holder 60 is disposed at one end of the insulated heat-dissipating tube 10. The lamp electrode 50 is disposed on the corresponding lamp electrode holder 60. In some embodiments, the lamp electrode 50 is disposed on a position of the corresponding lamp electrode holder 60 distal to the at least one LED light-emitting element 20. The lamp electrode holder 60 may include an inner side facing toward the LED light-emitting elements 20 and the insulated heat-dissipating tube 10, and an outer side facing an external environment. The lamp electrode 50 is disposed on the outer side of the lamp electrode holder 60 and is configured to be connected to an external power supply. Further, a projection of the lamp electrode 50 on a plane of the electrode holder 60 is distal from projections of the at least one LED light-emitting element 20 on the plane of the electrode holder 60. In other words, the lamp electrode 50 and the at least one LED light-emitting element 20 may not occupy/contact same portion/area of the electrode holder 60.
In some embodiments, the LED lamp may include two lamp electrode holders 60 disposed at two ends of the insulated heat-dissipating tube 10. The lamp electrodes 50 may be respectively disposed on the two lamp electrode holders 60. Optionally, the lamp electrodes 50 may be disposed on one of the two lamp electrode holders 60. In some other embodiments, the LED lamp may include one lamp electrode holder 60 disposed at one end of the insulated heat-dissipating tube 10. The lamp electrodes 50 may be disposed on the lamp electrode holder 60.
Further, according to embodiments of the present disclosure, the LED lamp may include a driving circuit 40. The driving circuit 40 is disposed in the insulated heat-dissipating tube 10. One end of the driving circuit 40 is connected to the lamp electrode holder 60, and the other end of the driving circuit 40 is connected to the LED light-emitting elements 20, so as to drive the LED light-emitting element 20 to emit light. Methods to connect the driving circuit 40 with the LED light-emitting element 20 are not limited by the present disclosure.
As shown in FIG. 1, the LED lamp according to some embodiments may include an insulated heat-dissipating tube 10, an LED light-emitting element 20, a lamp cover 30, a driving circuit 40, a lamp electrode 50, and a lamp electrode holder 60. The insulated heat-dissipating tube 10 may have a central through hole. A shape of the central through hole is not limited by the present disclosure and can be determined according to and compatible with a shape of the driving circuit 40. The LED light-emitting element 20 is disposed on a portion of the outer wall of the insulated heat-dissipating tube 10. The lamp cover 30 is disposed over the LED light- emitting element 20. Another portion of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 is directly exposed to surrounding air. The driving circuit 40 may be disposed in the central through hole of the insulated heat-dissipating tube 10, and an electrode of the LED light-emitting element 20 is connected to the driving circuit 40 through the outer wall of the insulated heat-dissipating tube 10.
As shown in FIG. 1, the LED lamp may include two lamp electrode holders 60, and a positive lamp electrode 50 and a negative lamp electrode 50. Each of lamp electrode holder includes one of the lamp electrodes 50. One of the two lamp electrode holders 60 is connected to one end of the insulated heat-dissipating tube 10, and the other lamp electrode holder 60 is connected to the other end of the insulated heat-dissipating tube 10. One end of each lamp electrode 50 is connected to the driving circuit 40 through the lamp electrode holder 60, and the other end of each electrode 50 is exposed for being connected to an external power supply.
According to embodiments of the present disclosure, as shown in FIG. 1, a size and shape of each lamp electrode holder 60 match a size and shape of each end of the insulated heat-dissipating tube 10. The lamp electrode holder 60 can cover openings of the corresponding end of the insulated heat-dissipating tube 10. For example, the insulated heat-dissipating tube 10 may be cylindrical, and the lamp electrode holders 60 may be in a shape of a round disk. A diameter of the lamp electrode holder 60 may be the same as or slightly larger than the outer diameter of the insulated heat-dissipating tube 10. In this way, when one lamp electrode holder 60 is disposed at one end of the insulated heat-dissipating tube 10, the lamp electrode holders 60 can cover the openings of the two ends of the insulated heat-dissipating tube 10. Such that, the driving circuit 40 disposed in the central through hole of the insulated heat-dissipating tube 10 can be protected. In some embodiments, each lamp electrode holder 60 may further include a metal conductor, which is disposed at one side of the lamp electrode holder 60 that is facing toward the insulated heat-dissipating tube 10. The metal conductor may be configured to connect the driving circuit 40 to the lamp electrode 50. When the one or more lamp electrode holder 60 is disposed at one or more end of the insulated heat-dissipating tube 10, the metal conductor on the lamp electrode holder 60 may be disposed in the central through hole of the insulated heat-dissipating tube 10. A conductive terminal of the lamp electrode 50 disposed on each lamp electrode holder 60 may be covered with an insulating material to prevent metal conductors of  the LED lamp from leaking electricity. Such that, a user can be protected from leakage of electricity, thereby improving safety of using the LED lamp.
In actual application, the lamp electrodes 50 may be connected to the external power supply, the lamp electrodes 50 may transmit energy from the external power supply to the drive circuit 40 through the lamp electrode holder 60, and the driving circuit 40 drives the LED light-emitting element 20 to emit light. While emitting light, the LED light-emitting element 20 generates heat. Because the LED light-emitting element 20 is in direct contact with the insulated heat-dissipating tube 10, the heat generated by the LED light-emitting element 20 can be directly transferred to the insulated heat-dissipating tube 10. The portion of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 can be in direct contact with the surrounding air. Therefore, the insulated heat-dissipating tube 10 can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp. The heat generated can be timely dissipated, preventing the LED light-emitting element 20 or the driving circuit 40 from burning out, and thereby improving operation reliability and lifetime of the LED lamp.
In some embodiments, a lamp cover 30 may be disposed over the LED light-emitting element 20. The lamp cover 30 is not disposed on the portion of the outer wall of the insulated heat-dissipating tube 10 where the LED light-emitting element 20 is not disposed, thereby reducing a volume of the LED lamp, and facilitating installation and heat dissipation.
In some embodiments, the insulated heat-dissipating tube 10 may be a cylindrical tube, a rectangular tube, a conical tube or any tube of other shapes that has the central through hole. The shape of the insulated heat-dissipating tube 10 is not limited by the present disclosure.
The insulated heat-dissipating tube 10 may be made of an insulated heat dissipating material such as ceramic or plastic.
Optionally, in some embodiments, the insulated heat-dissipating tube 10 may have an elongated shape, and the LED light-emitting element 20 may also have an elongated shape, and a length of the LED light-emitting element 20 is approximately the same as that of the insulated heat-dissipating tube 10. Optionally, the length of the LED light-emitting element 20 may be slightly shorter than the length of the insulated heat-dissipating tube 10. The LED light-emitting element 20 is disposed on the outer wall of the insulated heat-dissipating tube 10 along the longitudinal direction of the insulated heat-dissipating tube 10.
Optionally, in some embodiments, the insulated heat-dissipating tube 10 may have an elongated shape. The LED light-emitting elements 20 may be distributed along the circumferential direction of the insulated heat-dissipating tube 10 and are disposed on a portion of the circumferential surface of the insulated heat-dissipating tube 10. Optionally, the LED light-emitting element 20 can be disposed on a portion of the outer wall of the insulated heat-dissipating tube 10 in other forms, which is not limited in the present disclosure.
Optionally, when a plurality of LED light-emitting elements 20 is distributed on the outer wall of the insulated heat-dissipating tube 10, multiple lamp covers 30 may be respectively disposed over the plurality of LED light-emitting elements 20. Optionally, one lamp 30 over may be disposed over all the LED light-emitting elements 20.
Further, as shown in FIG. 1 and FIG. 2, according to embodiments of the present disclosure, each lamp electrode 50 may be disposed at a position on each corresponding lamp electrode holder 60 and distal from the LED light-emitting element 20.
To facilitate the connection of the lamp electrode 50 to the external power supply, in some embodiments, the lamp electrode 50 may be disposed on the lamp electrode holder 50 and distal from the LED light-emitting element 20. The lamp electrode 50 may be disposed on the lamp electrode holder 60 and located outside of a projection connection line of the LED light-emitting element 20 on the lamp electrode holder 60. For example, as shown in FIG. 2, the projection of the lamp electrode 50 on the plane of the electrode holder 60 is distal from the projections of the at least one LED light-emitting element 20 on the plane of the electrode holder 60. When the projection connection line of the LED light-emitting element 20 on the plane of the lamp electrode holder 60 is located on the negative Y-axis, the lamp electrode 50 may be mainly disposed on the positive Y-axis. Thus, in an actual installation process, a distance between the lamp electrode 50 and a mounting seat of the LED lamp can be reduced, thereby facilitating installation and reducing a space need to install the LED lamp.
In some embodiments, as shown in FIG. 1, along the longitudinal direction of the insulated heat-dissipating tube 10, the outer wall of the insulated heat-dissipating tube 10 may be divided into two parts: a first outer wall 110 and a second outer wall 120. The LED light-emitting element 20 may be disposed on the first outer wall 110, and the lamp cover 30 may cover the LED light-emitting element 20 on the first outer wall 110. The second outer wall 120 does not include the LED light-emitting element 20, and can have direct contact with the  surrounding air, thereby improving the heat dissipating effect of the LED lamp. The lamp electrodes 50 may be disposed on the lamp electrode holders 60 and close to the second outer wall. Such that, each lamp electrode 50 may be close to the mounting seat, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
A surface area of the first outer wall 110 and the second outer wall 120 may be the same or different, which can be determined according to the number and distribution of the LED light-emitting elements 20 and is not limited by the present disclosure.
Optionally, the LED light-emitting element 20 may be distributed on the first outer wall 110 along the longitudinal direction of the insulated heat-dissipating tube 10 or along the circumference direction of the insulated heat-dissipating tube 10. Optionally, the LED light-emitting element 20 may be distributed on the first outer wall 110 in other forms, which is not limited by the present disclosure.
According to embodiments of the present disclosure, the LED lamp may include: an insulated heat-dissipating tube, at least one LED light-emitting element, lamp electrodes each being housed by one of the lamp electrode holders, one or more lamp electrode holders disposed at one or more end of the insulated heat-dissipating tube, and a lamp cover. An outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall. The first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element. The at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover. The second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp. The second outer wall of the insulated heat-dissipating tube without the LED light-emitting element is open to surrounding environment. The second outer wall of the insulated heat-dissipating tube without the LED light-emitting element can be in direct contact with the surrounding air. Therefore, the insulated heat-dissipating tube can quickly transfer the heat to the air, thereby improving the heat-dissipating speed of the LED lamp, and the operation reliability and the lifetime of the LED lamp. In addition, each lamp electrode is disposed on the corresponding electrode holder and distal from the LED light-emitting element, which can facilitate the installation of the LED lamp and reduce the space needed for the installation of the LED lamp.
FIG. 3 is a schematic structural view of an LED lamp according to another embodiment of the present disclosure. As shown in FIG. 3, to improve the mounting reliability of the LED light-emitting element 20 on the insulated heat-dissipating tube 10, at least one groove 111 is disposed on an outer wall of the insulated heat-dissipating tube 10, and the LED light-emitting element 20 is disposed in the at least one groove 111.
A quantity of the grooves 111 may be the same as a quantity of the LED light-emitting elements 20, that is, one LED light-emitting element 20 is disposed in one of the grooves 111. Optionally, the quantity of the grooves 111 may be greater than the quantity of the LED light-emitting elements 20. That is, when the LED light-emitting elements 20 are disposed in the groves 111, there may be excess grooves 111 for supplementary LED light-emitting element 20.
Optionally, the grooves 111 of the embodiment may be distributed along the circumferential direction of the insulated heat-dissipating tube 10. The groove 111 may be disposed on a portion of the circumferential surface of the insulated heat-dissipating tube 10. For example, the groove 111 may be disposed on 1/3 of the circumferential surface of the insulated heat-dissipating tube 10. When the LED light-emitting element 20 are disposed in the groove 111, the LED light-emitting element 20 may be also distributed along the circumferential direction of the insulated heat-dissipating tube 10.
Optionally, the grooves 111 may be distributed along the longitudinal direction of the insulated heat-dissipating tube 10. When the LED light-emitting element 20 is disposed in the groove 111, the LED light-emitting element 20 is also distributed in the longitudinal direction of the insulated heat-dissipating tube 10.
In some embodiments, a plurality of grooves 111 are disposed on the insulated heat-dissipating tube 10, and the LED light-emitting elements 20 are disposed in the groove 111, so as to facilitate positioning and mounting of the LED light-emitting elements 20. Therefore, the structural stability of the LED lamp can be improved, thereby improving the reliability and lifetime of LED lamp.
In some embodiments, the LED light-emitting elements 20 may be disposed along a longitudinal direction of the insulated heat-dissipating tube 10, and the grooves 111 may extend toward both ends of the insulated heat-dissipating tube 10.
Specifically, as shown in FIG. 3, the LED light-emitting element 20 may be disposed along the longitudinal direction of the insulated heat-dissipating tube 10, and the groove 111 may  be also disposed along the longitudinal direction of the insulated heat-dissipating tube 10. In some embodiments, two ends of each groove 111 may extend toward both ends of the insulated heat-dissipating tube 10.
Optionally, the groove 111 can directly extend and connect to both ends of the insulated heat-dissipating tube 10. That is, each groove 111 may be a pass-through groove connecting the two ends of the insulated heat-dissipating tube 10 and simple to be manufactured.
Optionally, in some embodiments, a notch (not shown) may further be disposed at both ends of each groove 111. An electrode of the LED light-emitting element 20 may be connected to the driving circuit 40 through the notch. Optionally, the groove 111 may penetrate the outer wall of the insulated heat-dissipating tube 10, so that when the LED light-emitting element 20 is disposed in the groove 111, the electrode of the LED light-emitting element 20 is directly exposed in the central through hole of the insulated heat-dissipating tube 10. It is convenient to connect the electrode of the LED light-emitting element 20 to the driving circuit 40 in the central through hole of the insulated heat-dissipating tube 10.
In the LED lamp according to embodiments of the disclosure, a plurality of grooves 111 are disposed on the insulated heat-dissipating tube, and the LED light-emitting elements are disposed in the groove, so as to facilitate positioning and mounting of the LED light-emitting elements. Therefore, the structural stability of the LED lamp can be improved, thereby improving the reliability and lifetime of LED lamp. Optionally, the groove may be disposed along the longitudinal direction of the insulated heat-dissipating tube, and each groove may extend toward both ends of the insulated heat-dissipating tube. Thus, an arrangement form of the LED light-emitting element can be enriched, thereby increasing the style of the LED lamp and improving a market competitiveness of LED lamp.
FIG. 4 is a schematic structural view of an LED lamp according to further another embodiment of the present disclosure. As shown in FIG. 4, in some embodiments, to improve a connection reliability of the lamp cover 30 and the insulated heat-dissipating tube 10, the lamp cover 30 may be mounted to the insulated heat-dissipating tube 10.
For example, a buckle may be disposed on the insulated heat-dissipating tube 10. In some embodiments, the buckle may be disposed on the portion of the outer wall of the insulated heat-dissipating tube 10 with the LED light-emitting element 20. That is, the buckle may be disposed on the first outer wall 110 of the insulated heat-dissipating tube 10. Correspondingly, a slot may  be disposed on the lamp cover 30 to match the buckle. During an installation process, the slot of the lamp cover 30 may be engaged with the buckle of the insulated heat-dissipating tube 10, such that the lamp cover 30 can be fixed on the insulated heat-dissipating tube 10. Optionally, a plurality of slots may be disposed on the insulated heat-dissipating tube 10, and correspondingly a buckle may be disposed on the lamp cover 30 to match the slot. During an installation process, the buckle of the lamp cover 30 may be engaged with the slot of the insulated heat-dissipating tube 10, such that the lamp cover 30 can be fixedly connected with the insulated heat-dissipating tube 10.
In some embodiments, the insulated heat-dissipating tube 10 may include one or more slot 112, and the lamp cover 30 may include one or more protrusion 121 having a matching shape with the one or more slot 112 of the heat-dissipating tube 10. Optionally, the insulated heat-dissipating tube 10 may include one or more protrusion, and the lamp cover 30 may include one or more slot having a matching shape with the one or more protrusion of the heat-dissipating tube 10.
FIG. 5 is a 3D structural diagram of an LED lamp showing a cross-section of the LED lamp according to some embodiments of the present disclosure. FIG. 6 is cross-sectional diagram of an LED lamp according to some embodiments of the present disclosure. In some embodiments, as shown in FIG. 5 and FIG. 6, a slot 112 may be disposed at a position where the outer wall of the insulated heat-dissipating tube 10 is connected to the two sides (i.e., longitudinal edges) of the lamp cover 30. Both sides of the lamp cover include protrusions 121 to match the slot 112, and the protrusion 121 can be engaged with the slot 112.
In some embodiments, the slot 112 may be a plurality of partial slots, and the plurality of partial slots is distributed along the longitudinal direction of the insulated heat-dissipating tube 10 (e.g., along the side of the first outer wall 110) . Correspondingly, the two sides of the lamp cover 30 may include a plurality of protrusions 121. When the lamp cover 30 covers over the LED light-emitting element 20, the protrusions 121 are correspondingly engaged in the slots 112, such that the lamp cover 30 can be reliably connected to the insulated heat-dissipating tube 10.
Optionally, the slot 112 can be a through slot extending through the two ends of the insulated heat-dissipating tube 10. The protrusions 121 disposed on the two sides of the lamp cover 30 can slide in the slot 112, such that the lamp cover 30 can be connected to the insulated heat-dissipating tube 10. Optionally, the protrusions 121 disposed on the two sides of the lamp  cover 30 can extend through two ends of the lamp cover 30 and have a same length as the two sides of the lamp cover 30. Such that, it is more reliable to sild the protrusions 121 of the lamp cover 30 in the slot 112.
Optionally, to further reduce the volume of the LED lamp and improve the structural stability of the LED lamp, a distance from the portion of the outer wall of the insulated heat-dissipating tube 10 with the LED light-emitting element 20 (i.e., the first outer wall 110) to the center line of the insulated heat-dissipating tube 10 is smaller than a distance from the other portion of the outer wall of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 (i.e., the first outer wall 120) to the center line of the insulated heat-dissipating tube 10.That is, compared to the second outer wall 120, the first outer wall 110 is closer to the center line of the insulated heat-dissipating tube 10. For example, as shown in FIG. 5 and FIG. 6, if the insulated heat-dissipating tube 10 is a circular tube, a portion of the outer wall of the insulated heat-dissipating tube 10 is cut away to form a groove, which forms the first outer wall 110. In this way, when the LED light-emitting element 20 is disposed on the first outer wall, and the lamp cover 30 is disposed over the LED light-emitting element 20, the lamp cover 30 can be closer to the center line of the insulated heat-dissipating tube 10. Thus, the structure of LED lamp can be more compact, reducing the volume of the LED lamp.
The present disclosure does not limit the shape of the outer surface of the LED lamp. In some embodiments, the outer surface of the LED lamp may be a smoothly curved surface, e.g. a peripheral surface of a cylinder. The outer surface of the lamp cover 30 is located on the same curved surface as the portion of the outer wall of the insulated heat-dissipating tube 10 without the LED light-emitting element 20 (i.e., the second outer wall 120 of the insulated heat-dissipating tube 10) . For example, the lamp cover 30 may occupy 70%of the outer surface of the LED lamp, and the second outer wall 120 of the insulated heat-dissipating tube 10 may occupy 30%of the outer surface of the LED lamp. The occupancy ratio between the lamp cover 30 and the second outer wall 120 on the surface of the LED lamp may be any suitable value determined based on practical application. It is possible to further avoid bump problem caused by protruding of the lamp cover 30 or the second outer wall 120. Thus, the LED lamp structural stability can be improved, and the appearance of the LED lamp can me more beautiful.
FIG. 7 a structural diagram of an outer surface of an LED lamp according to some embodiments of the present disclosure. As shown in FIG. 7, after the LED is assembled, the  second outer wall 120 of the insulated heat-dissipating tube 10 and the lamp cover 30 together form the outer surface of the LED lamp. Edges of the second outer wall 120 along the longitudinal direction matches edges of the lamp cover 30 along the longitudinal direction, such that the outer surface of the LED lamp can be a smooth surface. In some embodiments, the area of the second outer wall 120 of the insulated heat-dissipating tube can be the same as or different from the area of the lamp cover 30, which is not limited by the present disclosure.
In some other embodiments, the outer surface of the LED lamp may be a peripheral surface of a polygonal column, e.g., a triangular column, a square column, a hexagonal column, an octagonal column. In these cases, the outer surface of the lamp cover 30 can be one or more sides of the peripheral surface of the polygonal column, and the second outer wall 120 may be the remaining side (s) of the peripheral surface of the polygonal column.
Referring to FIG. 5 and FIG . 6, in some embodiments, a plurality of LED light-emitting elements 20 may be disposed on the insulated heat-dissipating tube 10, and the plurality of LED light-emitting elements 20 is distributed and spaced on the outer wall of the insulated heat-dissipating tube 10.
To make the LED lamps emit light evenly, the spacing between adjacent LED light-emitting elements on the insulated heat-dissipating tube 10 is equal.
In the LED lamp according to embodiments of the present disclosure, the lamp cover can be latched to the insulated heat-dissipating tube, so as to facilitate the lamp cover to be installed to and uninstalled from the insulated heat-dissipating tube and facilitate the maintenance of the LED lamp. In addition, the outer surface of the lamp cover and the portion of the outer wall of the insulated heat-dissipating tube without the LED light-emitting element are disposed on the same curved surface, thereby improving the aesthetics of the LED lamp.
Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than limiting the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: it is possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all the technical features; however, these modifications or replacements do not deviate the scope of the present disclosure.

Claims (11)

  1. A light-emitting diode (LED) lamp, comprising:
    an insulated heat-dissipating tube;
    at least one LED light-emitting element;
    a lamp electrode holder disposed at one end of the insulated heat-dissipating tube;
    a lamp electrode being housed by the lamp electrode holder; and
    a lamp cover;
    wherein:
    an outer wall of the insulated heat-dissipating tube includes a first outer wall and a second outer wall;
    the first outer wall of the insulated heat-dissipating tube is configured to house the at least one LED lighting-emitting element;
    the at least one LED lighting-emitting element and the first outer wall of the insulated heat-dissipating tube are covered by the lamp cover; and
    the second outer wall of the insulated heat-dissipating tube and an outer surface of the lamp cover together form an outer surface of the LED lamp.
  2. The LED lamp of claim 1, wherein:
    the first outer wall of the insulated heat-dissipating tube includes at least one groove, and each of the at least one LED light-emitting element is disposed in one of the at least one groove.
  3. The LED lamp of claim 2, wherein:
    the at least one LED light-emitting element is disposed along a longitudinal direction of the insulated heat-dissipating tube, and the at least one groove extends toward the two ends of the insulated heat-dissipating tube.
  4. The LED lamp of claim 3, wherein:
    each of the least one groove extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube.
  5. The LED lamp of claim 1, wherein:
    the lamp cover includes a plurality of protrusions protruding from an inner wall of the lamp cover;
    the insulated heat-dissipating tube includes a plurality of slots recessing into the first outer wall of the insulated heat-dissipating tube, the plurality of slots having a matching structure with respect to the plurality of protrusions of the lamp cover; and
    the lamp cover is latched to the insulated heat-dissipating tube by respectively latching each protrusion in the corresponding slot.
  6. The LED lamp of claim 5, wherein:
    the lamp cover is latched to the insulated heat-dissipating tube by latching two protrusions to two slots respectively located at two junctions between the first outer wall and the second outer wall of the insulated heat-dissipating tube.
  7. The LED lamp of claim 5, wherein:
    the slot is a pass-through groove that extends from one of the two ends of the insulated heat-dissipating tube to another of the two ends of the insulated heat-dissipating tube along the longitudinal direction of the insulated heat-dissipating tube; and
    the protrusion of the lamp cover is slidable in the slot of the insulated heat-dissipating tube.
  8. The LED lamp of claim 1, wherein:
    the second outer wall of the insulated heat-dissipating tube does not house any LED light-emitting element; and
    an outer surface of the lamp cover is located on a same curved surface as the second outer wall of the insulated heat-dissipating tube.
  9. The LED lamp of claim 3, wherein:
    the LED lamp comprises multiple LED light-emitting elements; and
    the multiple LED light-emitting elements are disposed and spaced apart on the first outer wall of the insulated heat-dissipating tube.
  10. The LED lamp of claim 9, wherein:
    spacings between adjacent two LED light-emitting elements are equal.
  11. The LED lamp of claim 1, wherein:
    the lamp electrode is disposed at a position of the lamp electrode holder distal from the at least one LED light-emitting element.
PCT/CN2018/103264 2017-08-31 2018-08-30 Led lamp WO2019042360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710771652.9 2017-08-31
CN201710771652.9A CN107524939A (en) 2017-08-31 2017-08-31 Led

Publications (1)

Publication Number Publication Date
WO2019042360A1 true WO2019042360A1 (en) 2019-03-07

Family

ID=60683152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103264 WO2019042360A1 (en) 2017-08-31 2018-08-30 Led lamp

Country Status (2)

Country Link
CN (1) CN107524939A (en)
WO (1) WO2019042360A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107524939A (en) * 2017-08-31 2017-12-29 浙江生辉照明有限公司 Led
CN114234072A (en) * 2021-12-22 2022-03-25 浙江生辉照明有限公司 LED lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201651888U (en) * 2010-03-19 2010-11-24 莱特尔科技(深圳)有限公司 Led lamp tube
KR20100126063A (en) * 2009-05-22 2010-12-01 주식회사 루미텍 Illuminating apparatus using led
CN202382034U (en) * 2011-11-10 2012-08-15 深圳市明连兴光电科技有限公司 Led lamp tube
CN204042504U (en) * 2014-07-23 2014-12-24 珠海绿金能控科技有限公司 A kind of Novel LED fluorescent lamp
CN107524939A (en) * 2017-08-31 2017-12-29 浙江生辉照明有限公司 Led
CN207455223U (en) * 2017-08-31 2018-06-05 浙江生辉照明有限公司 A kind of LED lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205842280U (en) * 2016-06-30 2016-12-28 浙江生辉照明有限公司 Radiator attachment structure for LED

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126063A (en) * 2009-05-22 2010-12-01 주식회사 루미텍 Illuminating apparatus using led
CN201651888U (en) * 2010-03-19 2010-11-24 莱特尔科技(深圳)有限公司 Led lamp tube
CN202382034U (en) * 2011-11-10 2012-08-15 深圳市明连兴光电科技有限公司 Led lamp tube
CN204042504U (en) * 2014-07-23 2014-12-24 珠海绿金能控科技有限公司 A kind of Novel LED fluorescent lamp
CN107524939A (en) * 2017-08-31 2017-12-29 浙江生辉照明有限公司 Led
CN207455223U (en) * 2017-08-31 2018-06-05 浙江生辉照明有限公司 A kind of LED lamp

Also Published As

Publication number Publication date
CN107524939A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
US8641237B2 (en) LED light bulb providing high heat dissipation efficiency
US8760042B2 (en) Lighting device having a through-hole and a groove portion formed in the thermally conductive main body
US7969076B2 (en) LED lamp and adjustable lamp cap thereof
US7990062B2 (en) LED lamp
EP2400214B1 (en) Lighting device
JP5163896B2 (en) Lighting device and lighting fixture
JP2014203823A (en) Illuminating device
US20120230036A1 (en) Light emitting device
US8534872B2 (en) LED illumination device
CN103968279A (en) Lamp Device, Light-Emitting Device and Luminaire
JP3163443U (en) LED lighting device
WO2019042360A1 (en) Led lamp
JP2014146509A (en) LED lamp
JP2013069441A (en) Bulb type lighting device
US20130215615A1 (en) Laterally installable rotating lamp
US11781729B2 (en) Lamp body and bulb lamp
KR101264213B1 (en) An assembling led light bulb
JP6525535B2 (en) Light source unit, illumination lamp and illumination device
KR101580256B1 (en) light bulb type LED illumination device
JP2014235792A (en) Electric bulb type lighting device
KR20170063393A (en) Boltless-type illuminating device
US20150077993A1 (en) Lighting apparatus
KR20120119366A (en) Led lighting apparatus
JP6146712B2 (en) lamp
JP2016195123A (en) Optical element and luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851378

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18851378

Country of ref document: EP

Kind code of ref document: A1