WO2019042359A1 - Method of preparing lithium-ion cathode particles and cathode active material formed therefrom - Google Patents

Method of preparing lithium-ion cathode particles and cathode active material formed therefrom Download PDF

Info

Publication number
WO2019042359A1
WO2019042359A1 PCT/CN2018/103259 CN2018103259W WO2019042359A1 WO 2019042359 A1 WO2019042359 A1 WO 2019042359A1 CN 2018103259 W CN2018103259 W CN 2018103259W WO 2019042359 A1 WO2019042359 A1 WO 2019042359A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
reactor
transition metal
feed stream
metal solution
Prior art date
Application number
PCT/CN2018/103259
Other languages
French (fr)
Inventor
Bryan T. Yonemoto
Huijie Guo
Xiao Zhang
Zhifeng Zhang
Xuelei Sun
Tianshu Deng
Original Assignee
Microvast Power Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microvast Power Systems Co., Ltd. filed Critical Microvast Power Systems Co., Ltd.
Priority to US16/643,561 priority Critical patent/US11978887B2/en
Priority to MYPI2020000998A priority patent/MY194984A/en
Priority to EP18850406.2A priority patent/EP3669411A4/en
Priority to CN201880056068.8A priority patent/CN111052458A/en
Publication of WO2019042359A1 publication Critical patent/WO2019042359A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to a method to prepare a non-aqueous lithium-ion battery cathode particles, and a cathode active material formed from the cathode particles.
  • the lithium-ion battery originally commercialized in the early 1990s, has come to dominate the energy storage market for hand-held, electronic consumer devices. This is because the battery is rechargeable, and has high mass and volume energy density. Now, lithium-ion batteries are also being extensively investigated for electric vehicle applications. In electric vehicles, an ideal battery cathode will have high capacity, high power, improved safety, long cycle life, low toxicity and lower production costs. Generally, cathode materials are unable to meet all these requirements.
  • cathode materials commonly of the form LiMO2 are unable to meet all the demands for electric vehicles is because changing the composition of the common layer elements –Ni, Mn &Co –results in trade-offs in performance.
  • One way to address the trade-offs from altered composition is through gradient cathode materials.
  • the capacity of the material must increase.
  • One known way to increase the capacity of the material is to increase the average Ni content of the NMC composition. While higher Ni raises the initial capacity, it significantly worsens the cathode materials capacity retention during secondary cell cycling, and results in a high energy interface that easily reacts with the electrolyte or decomposes to a new crystallographic structure.
  • concentration gradient cathodes such as US7965649B2, US8865348B2, US8591774B2 and US8926860B2 have been disclosed.
  • the cycle life can be greatly improved. Still, even higher energy densities are desired, which means materials with a higher Ni content, without sacrificing the interfacial stability provided by the concentration gradient is desired.
  • the concentration gradient described is prepared by making a core-shell particle.
  • the problem with these types of concentration gradients is the large step change in NMC compositions necessary to go in order to form a high energy material to a more stable surface composition, which may result in delamination of the shell, negating the intended benefits of the gradient.
  • the Ni-Mn-Co ranges described for the core does not exceed 65%Ni, and it is impossible to increase the average Ni concentration in the material without changing the surface composition or altering percentage of the particle that is composed of the shell composition.
  • the first transition metal solution and the second transition metal solution have identical volumes and the volumetric flowrates between the two solutions is 1: 2, with the latter flow being added to the reactor for coprecipitation. This results in linear gradients where the nominal NMC ratio is the average of the two solutions.
  • CN102368548 two distinct compositions are fed in separate feeds lines into a reaction vessel and the flows are varied to produce a core, gradient, shell structure. Without mixing the two compositions before feeding to the reactor, the primary particles will show atomic level NMC segregation that is skewed towards one of the two compositions. This means a high Ni primary particle could still be present at the material surface despite the average composition at the surface changing. In addition, the feed tubes will potentially clog when no flow is present.
  • the object of the proposed method is to prepare concentration gradient cathode particles which can then be used as a cathode active material in a lithium-ion battery.
  • the method is distinguished from prior arts by:
  • concentration gradient feed composition to the co-precipitation reactor is independent of the total solution volume present at the start, or during the concentration gradient reaction.
  • a method of preparing cathode particles using a co-precipitation reaction in a reactor includes:
  • the feed stream (a) and the feed stream (b) are contacted in the reactor to form precipitated precursor particles, and at least one transition metal component in the particle has a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
  • a cathode active material includes cathode particles, at least one transition metal component in the particle having a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
  • a lithium-ion battery having a cathode electrode made from the above cathode active material is also provided.
  • Fig. 7 is the example of precursor particle concentration gradient profile with Ni-Mn-Co changing, wherein t 0 ⁇ t 1 ⁇ t 2 ⁇ t f .
  • Fig. 8 is a block diagram for preparing cathode particles according to one embodiment.
  • Fig. 9 is a block diagram for preparing cathode particles according to another embodiment.
  • Fig. 10 is the first cycle charge and discharge curves in lithium-ion battery half-cell for various prepared active materials.
  • Fig. 11 is the SEM of precursor particles prepared using inventive method in Example 9.
  • Fig. 12 is the cross section of precursor particle in Example 1, as described in Example 10.
  • Fig. 13 is the EDS line scan intensity for Ni, Mn and Co for Example 1 precursor particle.
  • Fig. 14 is the SEM of cross sectioned active material described in Example 11.
  • Fig. 15 is the EDS line scan intensity of cross sectioned final active material described in Example 11.
  • Fig. 16 is the SEM of cross sectioned precursor particle in Example 12.
  • Fig. 17 is the EDS line scan intensity for Ni, Mn and Co for precursor particle in Example 12.
  • concentration gradient particles will be prepared using a co-precipitation reaction in a precipitation reactor.
  • a precipitation reactor is blanketed or bubbled by He, N2 or Ar gas and includes a feed stream (a) for feeding metal cations into the reactor for precipitation, a feed stream (b) for feeding anions into the reactor for precipitation, an outflow stream (c) of the slurry of precipitated precursor particles, and an optional feed stream (d) for feeding chelating agents.
  • Additional feed streams e, f, ..., z may be present to add additional species to the precipitation reactor or to remove solvent through an in-situ thickening device.
  • the volume of a precipitation reactor is defined as the volume of a single processing vessel or the sum of a number of processing vessels, pumps, or solid-liquid thickening devices connected in parallel.
  • the precipitation reactor can generally be described by the following mass balance equation:
  • a ratio of the metal cations in the feed stream (a) is continuously changed from A 1 at time t 1 to A 2 at time t 2 . That is, the feed stream (a) has a first metal cation ratio, A 1 , that is continuously changed from time t 1 to time t 2 until a second metal cation ratio, A 2 is reached.
  • a 1 first metal cation ratio
  • a 2 second metal cation ratio
  • C a, i is the concentration of metal ion i in the feed stream (a) between the start and the end of the reaction.
  • t 0 t 1 ⁇ t 2 ⁇ t f .
  • t 0 ⁇ t 1 ⁇ t 2 t f .
  • the first derivative in concentration is continuous from t 0 to t f .
  • the expression means the change of concentration of at least one of the metal cations in the feed stream (a) is not linear with respect to the reaction time over the period from t 1 to t 2 .
  • a ratio of the metal cations in the feed stream (a) is fixed at A 1 over the period from t 0 to t 1
  • a ratio of the metal cations in the feed stream (a) is fixed at A 2 over the period from t 2 to t f , wherein t 0 ⁇ t 1 , and t 2 ⁇ t f . That is, during the period from t 0 to t 1 , the metal cation ratio in the feed stream (a) is maintained constant at A 1
  • the metal cation ratio in the feed stream (a) is maintained constant at A 2 .
  • the precipitation reactor is well mixed and has a Re (Reynold number) > 6, 400, with a blend time of 0-1, 200 seconds, preferably 0-120 seconds, more preferably 0-45 seconds.
  • the temperature of the precipitation reactor is maintained between 30-80°C, but more preferably from 45-60°C.
  • the pH of the precipitation reactor is maintained from 7-13, but preferably from 10.5-12 when precipitating hydroxides and 8.5-10 when precipitating carbonates.
  • the feed stream (a) contains the metal cations for precipitation with a concentration from 0.001-6 (mol cation /L) .
  • the metal cations are selected from transition metals of Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, or any combination thereof.
  • the metal cation resource is selected from sulfate, carbonate, chloride, nitrate, fluoride, oxide, hydroxide, oxyhydroxide, oxalate, carboxylate, acetate, phosphate, borate, or any combination thereof.
  • the ratios A 1 and A 2 of the metal cations in the feed stream (a) is described as Ni x Mn y Co z Me 1-x-y-z , where x+y+z ⁇ 0.9, z ⁇ 0.4, and Me may be one or more additional elements. Under these feed conditions, a precipitated precursor particle of the form (Ni x Mn y Co z Me 1-x-y-z ) (CO 3 ) a (OH) 2-2a will be collected after time t f .
  • the ratio A 1 is selected from 0.85 ⁇ x ⁇ 1; 0 ⁇ z ⁇ 0.1.
  • the ratio A 2 is selected from 0.4 ⁇ x ⁇ 0.7; 0.25 ⁇ y ⁇ 0.5.
  • the nominal fraction of x in the final material will be greater than the linear average of x A1 and x A2 , wherein x A1 represents the nominal fraction of x when the ratio is A 1 and x A2 represents the nominal fraction of x when the ratio is A 2 .
  • the nominal fraction of x in the prepared particle and final active material will be from 0.6 ⁇ x ⁇ 0.95. It is more preferred that the nominal value of x is from 0.75 ⁇ x ⁇ 0.9.
  • the feed stream (b) contains the anions for precipitation with a concentration from 0.001-14 (mol anion /L) .
  • the stream (b) is selected from NaOH, Na 2 CO 3 , NaHCO 3 , Na 2 C 2 O 4 , LiOH, Li 2 CO 3 , LiHCO 3 , Li 2 C 2 O 4 , KOH, K 2 CO 3 , KHCO 3 , K 2 C 2 O 4 , or any combination of the species listed.
  • the feed stream (d) contains the chelating agents added to the reactor at a concentration from 0.001-14 (mol chelating agent /L) .
  • the feed stream (d) is selected from ammonia hydroxide, ammonium chloride, ammonium sulfate, ammonium dihydrogen phosphate, ethylene glycol, carboxylic acids, ammonium nitrate, glycerol, 1, 3 propane-diol, urea, N, N’-dimethylurea, quaternary ammonia salts, or any combination thereof.
  • the feed stream (e, f, ..., z) may contain additional solvents, surface acting agents, de-foaming agents, or dopants.
  • dopants since they become part of the final product, the total concentration of dopant species should be less than 5%of the mol %of the final material.
  • the metal cations in the feed stream (a) may include at least two of Ni, Mn and Co.
  • the metal cations may include Ni-Mn, or Co-Mn, or Co-Ni, or Ni-Mn-Co.
  • the metal cations include Ni-Mn-Co.
  • At least one of the metal cations may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2 .
  • each of the metal cations may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2 .
  • the metal cations in the feed stream (a) include Ni, Mn and Co, and at least two of Ni, Mn and Co may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2 .
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn changing, Co constant.
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Co changing, Mn constant.
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Mn-Co changing, Ni constant.
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn changing, Co constant.
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
  • the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2 , wherein t 0 ⁇ t 1 ⁇ t 2 ⁇ t f .
  • the precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
  • the slurry of precipitated precursor particles is drained out from the precipitation reactor by the outflow stream (c) and is collected in a hold up tank or directly fed to a solid-liquid filtration device.
  • the filtration device may be a plate and frame filter, candlestick filter, centrifuge, vacuum drum filter, pressure drum filter, hydrocyclone, Nutsche filter, clarifier, or any combination thereof.
  • the filtered precipitated particles must be washed to remove byproduct salts from the precipitation reactions.
  • the filtered precipitated particles (i.e., filter cake) is then dried under vacuum, N2, Ar or Air for 3-24 hours between 80-200°C.
  • the lithium source is selected from LiOH*H 2 O, Li 2 CO 3 , LiNO 3 , lithium acetate, lithium metal or Li2O.
  • Lithium hydroxide and lithium carbonate are the preferred choice.
  • the Li to metal cation ratio is between 0.5-1.5, and preferred from 0.9-1.15, and more preferably from 1.01-1.10.
  • the well mixed lithium source and precipitated precursor particles are then calcined from 300-950°C, and multiple hold temperatures and ramp rates may be used.
  • at least one hold temperature from 300-500°C for 2-20 hours will occur before another heating from 700°C to 850°C for 2-20 hours.
  • the ramp rate during heating may be from 0.5 to 10 degrees per minute, and 2-5 degrees per minute is preferred.
  • the calcination time is from 2 hours to 48 hours.
  • the calcination atmosphere is selected from N2, air, dried air, oxygen or any combination thereof.
  • the reaction temperature is a critical item for concentration gradient materials, since too high, too long, or a combo of the two may cause so much cation diffusion that a gradient is no longer present in the final cathode particle.
  • SEM scanning electron microscope
  • EDS energy dispersive spectrdmeter
  • the precipitated cathode material particles can be characterized using the particle size distribution D10, D50, D90 or the Sauter mean diameter, d 32 , where:
  • n k is the relative fraction and d k is the bin diameter from the particle size distribution.
  • the particle size distribution can be collected via a light scattering instrument.
  • the prepared particles will have a Sauter mean diameter between 0.5-30 um, preferably from 1-15 um.
  • the residual Li is determined using pH measurements and acid titrations of cathode material filtrate.
  • the resulting material is a concentration gradient cathode active material.
  • the active material possibly mixed with a binder and conductive particle, is cast on a metallic foil to form a cathode electrode.
  • the cathode electrode can be used in a lithium-ion battery.
  • the precipitation reactor is connected with a first tank (tank 1) containing a first transition metal solution.
  • Tank 1 is connected with a second tank (tank 2) contaning a second transition metal solution.
  • the first transition metal solution has a metal cation ratio of A 1
  • the second transition metal solution has a metal cation ratio of A 2 .
  • the second transition metal solution in tank 2 begins to feed into tank 1 from time t 1 and is mixed with the first transition metal solution.
  • the mixed transition metal solutions are fed into the reactor from tank 1 over the period from t 1 to t 2 .
  • the first transition metal solution in tank 1 is fed into the reactor over the period from t 0 to t 2
  • the second transition metal solution in tank 2 is fed into tank 1 over the period from t 1 to t f . That is, no second transition metal solution is fed into tank 1 from tank 2 over the period from t 0 to t 1 , a mixture of the first transition metal solution and the second transition metal solution is fed into the reactor from tank 1 over the period from t 1 to t 2 , and no first transition metal solution is fed into the reactor from tank 1 over the period from t 2 to t f .
  • a flowrate leaving tank 1 and fed into the reactor is F 1
  • a flowrate leaving tank 2 and fed into tank 1 is F 2
  • F 1 is greater than F 2
  • the second transition metal solution in tank 2 is directly fed into the reactor via tank 1 over the period from t 2 to t f .
  • the metal cation ratio in the feed stream (a) is maintained constant at A 1 ; during the period from t 1 to t 2 , the metal cation ratio in the feed stream (a) is continuously changed from A 1 to A 2 ; and during the period from t 2 to t f , the metal cation ratio in the feed stream (a) is maintained constant at A 2 .
  • agitation may be necessary to ensure the second transition metal solution mixes adequately with the first transition metal solution in tank 1 during the period from t 1 to t 2 .
  • the first transition metal solution has a volume V 1 at time t 1
  • the second transition metal solution has a volume V 2 at time t 1 , wherein V 1 ⁇ V 2 .
  • the feed stream (a) is prepared by contacting a first transition metal solution from tank 1 of concentration C 1 , volume V 1 , metal cation ratio A 1 at time t 1 with a second transition metal solution from tank 2 of concentration C 2 , volume V 2 , metal cation ratio A 2 between time t 1 and t 2 .
  • agitation may be necessary to ensure the second transition metal solution mixes adequately with the first transition metal solution in tank 1 during the period from t 1 to t 2 .
  • C 1 >1.5mol/L and C 2 is above 0.1mol/L. More preferred is C 1 >2mol/L and C 2 >1mol/L.
  • the feed concentrations C 1 ⁇ C 2 , volumes V 1 ⁇ V 2 are present in some embodiments.
  • the precipitation reactor is connected with a first tank (tank 1) containing a first transition metal solution, and the precipitation reactor is further connected with a second tank (tank 2) contaning a second transition metal solution.
  • the first transition metal solution has a metal cation ratio of A 1
  • the second transition metal solution has a metal cation ratio of A 2 .
  • the second transition metal solution in tank 2 begins to feed into the reactor from time t 1 .
  • the first transition metal solution in tank 1 is fed into the reactor over the period from t 0 to t 2
  • the second transition metal solution in tank 2 is fed into the reactor over the period from t 1 to t f . That is, no second transition metal solution is fed into the reactor from tank 2 over the period from t 0 to t 1 , and no first transition metal solution is fed into the reactor from tank 1 over the period from t 2 to t f .
  • the first transition metal solution in tank 1 and the second transition metal solution in tank 2 are concurrently fed into the reactor.
  • the metal cation ratio in the feed stream (a) is maintained constant at A 1 ; during the period from t 1 to t 2 , the metal cation ratio in the feed stream (a) is continuously changed from A 1 to A 2 ; and during the period from t 2 to t f , the metal cation ratio in the feed stream (a) is maintained constant at A 2 .
  • tank 1 has a feed stream (a1) into the reactor
  • tank 2 has a feed stream (a2) into the reactor, wherein the feed stream (a) is the sum of the feed stream (a1) and the feed stream (a2) .
  • the feed stream (a1) and the feed stream (a2) are contacted and mixed in a mixing apparatus before they are fed into the reactor.
  • the contacting between the feed stream (a1) and the feed stream (a2) is done through non-mechanical agitation by ensuring the fluids Reynold number is in the turbulent regime.
  • the fluid contact mixing may occur in a mixing pipe, pipe tee, impinging jet, inlet vortex mixer or any other appropriate mixing apparatus that does not require mechanical agitation.
  • the flowrate of the feed stream (a1) which leaves tank 1 is F 1
  • the flowrate of the feed stream (a2) which leaves tank 2 is F 2 .
  • the flowrates of F 1 and F 2 between t 1 and t 2 are defined as:
  • the resulting concentration profile for at least one species of the metal cations in the stream (a) will be non-linear. As stated prior, this means the formed particle will have a non-linear concentration gradient profile.
  • the apostrophes after F 1 and F 2 above denote the order of the derivative.
  • the solution volumes V 1 and V 2 in the tanks can be any value, given enough solution is available to provide the needed volume to the precipitation reactor.
  • the metal cation ratios A 1 and A 2 do not change in the the tanks, but instead remain constant during the entire course of the reaction.
  • concentration gradient particles can be prepared that have a non-linear concentration gradient over at least a portion along a thickness direction of the particle.
  • concentration gradient particles particularly full concentration gradient particles, it can increase the metal content of a specified species without changing the gradient endpoints. This is especially important so the particle surface can be maintained, since the surface composition directly impacts the cycle stability and thermal stability of the material.
  • the capacity retention of the inventive material will be improved compared to a concentration gradient material prepared under similar conditions and of identical nominal composition, identical starting composition, but with ratio A 2 adjusted to form a linear gradient.
  • Cathode active materials prepared from precipitated particles that have a non-linear concentration gradient will have a higher nominal content of at least one of Ni, Mn, or Co than a cathode active material prepared from a linear concentrations gradient particle with similar gradient endpoints and duration. It is preferred that Ni is the metal ion selected for an increase in the nominal concentration because higher Ni at NMC materials have higher capacities.
  • the solution volumes of V 1 and V 2 also no longer must be tightly controlled during the reaction, allowing new transition metal solutions to be added to the tanks during reaction, single feed tanks to supply solution to multiple reactors, and facilitates more complicated concentration gradient profiles, for example with peaks and valleys in the profiles, since the feed composition can be any value that is a linear combination of A 1 and A 2 .
  • a 20L glass reactor is initially filled with 5L of 13.6g/L aqua ammonia solution.
  • the solution is heated to 50 Celsius via the glass reactor heating jacket, while being sparged with 5mL/min N2 gas and under mild agitation.
  • the reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.9 through careful addition of 6mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
  • impeller for agitation is increased to 300 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor.
  • the NH3*H2O stream is fed at 45mL/hr, and has a concentration of 136g/L of NH3.
  • the MSO4 tank 1 feeding directly to the reactor starts at 3L in volume, feeds at a rate of 250mL/hr, and is consisted of a 2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction.
  • a MSO4 tank 2 starts flow into tank 1, having a volume of 2L with a flowrate of 100mL/hr and consisting of a 2mol/L MSO4 composition that has Ni:Mn: Co ratio of 65: 25: 10.
  • the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
  • the particle suspension is drained from the reactor and filtered using copious amounts of DI water, before drying the particles overnight at 100 Celcius under N 2 .
  • the dried particles are then mixed with LiOH*H2O in a 1.05: 1 Li: (Ni+Mn+Co) ratio, and is calcined in a tube furnace under oxygen atmosphere at 500 Celcius for 3 hrs, followed by 800 Celsius for 10hrs and natural cooling.
  • the metal sulfate tank 1 has initially 3.4L of solution, and the tank 2 is 1.6L in volume with an outflow rate of 80mL/hr.
  • the metal sulfate tank 1 has initially 4L of solution, and the tank 2 is 1L in volume with an outflow rate of 50mL/hr.
  • the material is calcined at 500 Celcius for 3hrs, followed by 750 Celsius for 15hrs using 5 degree per minute ramp rate and then natural cooling.
  • the metal sulfate tank 1 has 2.5L of solution, and the tank 2 is 2.5L in volume with an outflow rate of 125mL/hr.
  • a 500L stainless steel reactor is initially filled with 125L of 13.6g/L aqua ammonia solution.
  • the solution is heated to 50 Celsius via a heating jacket, while being sparged with 10L/min N2 gas and under mild agitation.
  • the reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.9 through careful addition of 10.8mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
  • the 500L impeller is increased to 500 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor.
  • the NH3*H2O stream is fed at 600 mL/hr, and has a concentration of 227g/L of NH3.
  • the MSO4 tank 1 feeding directly to the reactor starts at 120L in volume, feeds at a rate of 10L/hr, and is consisted of a 2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction.
  • a MSO4 tank 2 starts flow into tank 1, having a volume of 120L with a flowrate of 5L/hr and consisting of a 2mol/L MSO4 composition that has Ni: Mn: Co ratio of 65: 25: 10.
  • the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
  • tank 1 has 180L volume
  • tank 2 has 60L volume and an outflow rate of 2.5L/hr.
  • tank 1 has Ni: Mn: Co sulfate ratio of 90: 5: 5
  • tank 2 has Ni: Mn: Co sulfate ratio 60: 20: 20.
  • tank 1 has Ni: Mn: Co sulfate ratio of 95: 3: 2.
  • tank 1 has 160L starting volume with starting Ni: Mn: Co sulfate ratio of 90: 8: 2.
  • Tank 2 has starting volume of 80L and an outflow rate of 3.33L/hr.
  • tank 1 has Ni: Mn: Co sulfate ratio of 90: 10: 0, and tank 2 has Ni: Mn: Co sulfate ratio 50: 40: 10 at start of reaction.
  • the precursor particle of Example 1 is cross sectioned via focused ion beam milling, and then analyzed using an EDS line scan in the SEM.
  • the cross sectioned particle is shown in Fig. 12, and the K-alpha intensity for Ni, Mn and Co clearly showing the transition metal profile is shown in Fig. 13.
  • Example 3 The material described in Example 3 is made using the inventive procedure, but this time cross sectioned using the procedure described in Example 10.
  • the SEM of the cross sectioned active material described in Example 11 is shown in Fig. 14.
  • the EDS line scan intensity of cross sectioned final active material described in Example 11 is shown in Fig. 15.
  • a 20L glass reactor is initially filled with 5L of 13.6g/L aqua ammonia solution.
  • the solution is heated to 50 Celsius via the glass reactor heating jacket, while being sparged with 5mL/min N2 gas and under mild agitation.
  • the reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.6 through careful addition of 10.8mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
  • impeller for agitation is increased to 300 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor.
  • the NH3*H2O stream is fed at 10mL/hr, and has a concentration of 193.3g/L of NH3.
  • the MSO4 tank 1 feeding directly to the reactor starts at 2.5L in volume, feeds at a rate of 250mL/hr, and is consisted of a 2.2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction.
  • a MSO4 tank 2 starts flow into tank 1, having a volume of 2.5L with a flowrate of 125mL/hr and consisting of a 1.97mol/L MSO4 composition that has Ni: Mn: Co ratio of 63.5: 26.5: 10.
  • the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
  • the SEM of cross sectioned precursor particle in Example 12 is shown in Fig. 16.
  • the EDS line scan intensity for Ni, Mn and Co for precursor particle in Example 12 is shown in Fig. 17.
  • Example 12 The same procedure as Example 12 is used, except the tank 2 is a 2mol/L metal sulfate solution that has Ni: Mn: Co ratio of 57: 33: 10.
  • tank 1 has 3L volume at the start of reaction
  • tank 2 has 2L volume and an outflow rate of 100mL/hr into tank 1.
  • the morphology of materials and electrodes is studied via scanning electron microscopy (Hitachi SU8010, Hitachi High-Technologies Corporation) .
  • Cross sections of materials are prepared by cross section polisher (Hitachi IM4000, Hitachi High-Technologies Corporation) .
  • the specific surface area is calculated via adsorption analysis using nitrogen (BET, JW-BK400, Bei Jing JWGB Sci &Tech Co., Ltd. ) .
  • Particle sizes are analyzed using a Mastesizer 2000 (Malvern) .
  • the Li and transition metal content is confirmed using inductively coupled plasma-mass spectroscopy (Optima 8000, Perkin Elmer) analysis.
  • the prepared active materials are tested in lithium half-cells using 2035 coin cells.
  • the active material (90%) , SuperP (5%) and PVDF (5%) are mixed in NMP and then cast onto aluminum foil using the doctor blade method.
  • the electrodes are dried at 120 Celsius then roll pressed slightly to improve the electrode conductivity.
  • the electrode is then punched into disks, and added to a coin cell with a PE separator, Li disk for anode, and is flooded with 1mol/L LiPF6 carbonate electrolyte.
  • the cells are tested from 2.7-4.4V, and during the first cycle 0.05C charge for 1.5hrs, then 0.1C CCCV (until 0.01C cutoff) , while discharge is 0.1C.
  • C is defined as 200 mAh/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A method of preparing cathode particles using a co-precipitation reaction in a reactor is disclosed. A feed stream (a) containing metal cations is fed into the reactor, and a feed stream (b) containing anions is fed into the reactor, wherein a ratio of the metal cations in the feed stream (a) is continuously changed from A1 at time t1 to A2 at time t2. The feed stream (a) and the feed stream (b) are contacted in the reactor to form precipitated precursor particles, and at least one transition metal component in the particle has a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.

Description

METHOD OF PREPARING LITHIUM-ION CATHODE PARTICLES AND CATHODE ACTIVE MATERIAL FORMED THEREFROM
Cross-reference to Related Application
This invention is based on and claims the priority of US provisional application No. 62/552,381, filed on August 30, 2017. The entire disclosure of the above-identified application is incorporated herein by reference.
Technical Field
This invention relates to a method to prepare a non-aqueous lithium-ion battery cathode particles, and a cathode active material formed from the cathode particles.
Background Art
The lithium-ion battery, originally commercialized in the early 1990s, has come to dominate the energy storage market for hand-held, electronic consumer devices. This is because the battery is rechargeable, and has high mass and volume energy density. Now, lithium-ion batteries are also being extensively investigated for electric vehicle applications. In electric vehicles, an ideal battery cathode will have high capacity, high power, improved safety, long cycle life, low toxicity and lower production costs. Generally, cathode materials are unable to meet all these requirements.
One reason that cathode materials, commonly of the form LiMO2, are unable to meet all the demands for electric vehicles is because changing the composition of the common layer elements –Ni, Mn &Co –results in trade-offs in performance. One way to address the trade-offs from altered composition is through gradient cathode materials.
To achieve high energy densities using Ni, Mn and Co based lithium cathode active materials, the capacity of the material must increase. One known way to increase the capacity of the material is to increase the average Ni content of the NMC composition. While higher Ni raises the initial capacity, it significantly worsens the cathode materials capacity retention during secondary cell cycling, and results in a high energy interface that easily reacts with the electrolyte or decomposes to a new crystallographic structure. To address the  surface instability, concentration gradient cathodes such as US7965649B2, US8865348B2, US8591774B2 and US8926860B2 have been disclosed. By protecting a higher energy core NMC (or NCA) composition with a more stable NMC (or NCA) composition, the cycle life can be greatly improved. Still, even higher energy densities are desired, which means materials with a higher Ni content, without sacrificing the interfacial stability provided by the concentration gradient is desired.
In US7965649B2, the concentration gradient described is prepared by making a core-shell particle. The problem with these types of concentration gradients is the large step change in NMC compositions necessary to go in order to form a high energy material to a more stable surface composition, which may result in delamination of the shell, negating the intended benefits of the gradient. In addition, the Ni-Mn-Co ranges described for the core does not exceed 65%Ni, and it is impossible to increase the average Ni concentration in the material without changing the surface composition or altering percentage of the particle that is composed of the shell composition.
In US8591774B2, a process to make particles with the whole particle, or a portion of the particle, with a transition metal gradient between two NMC compositions is described via stirring a first transition metal solution into a second transition metal solution tank. The described procedure has a collected product whose surface changes with time while the gradient is active, which is undesirable.
In US8865348B2, Sun et al. demonstrate a core NMC particle coated with a continuous concentration gradient from the core and surface NMC composition. In US8926860B2, materials with a concentration gradient over the entire particle are described. In both disclosures, the continuous concentration gradients described have a linear slope between the start and end compositions of the co-precipitated precursor particle. This means the Ni content over that region of the particle is the mean of the average of the core and surface composition.
In CN104201369B, the first transition metal solution and the second transition metal solution have identical volumes and the volumetric flowrates between the two solutions is 1: 2, with the latter flow being added to the reactor for coprecipitation. This results in linear  gradients where the nominal NMC ratio is the average of the two solutions.
In CN102368548, two distinct compositions are fed in separate feeds lines into a reaction vessel and the flows are varied to produce a core, gradient, shell structure. Without mixing the two compositions before feeding to the reactor, the primary particles will show atomic level NMC segregation that is skewed towards one of the two compositions. This means a high Ni primary particle could still be present at the material surface despite the average composition at the surface changing. In addition, the feed tubes will potentially clog when no flow is present.
Technical Solution
The object of the proposed method is to prepare concentration gradient cathode particles which can then be used as a cathode active material in a lithium-ion battery. The method is distinguished from prior arts by:
a method to produce cathode particles where at least one transition metal component has a non-linear continuous concentration gradient profile over at least a portion of the particle,
a method to raise the nominal mole percent of Ni, Mn or Co of a concentration gradient active material without changing the concentration gradients relative thickness or initial and final transition metal composition compared to a similarly prepared material, but with linear concentration gradients,
a process to contact the starting and ending transition metal composition of a continuous concentration gradient particle that does not require mechanical agitation,
a process to contact the material that does not require the outer composition to be fed into the internal composition feed tank,
a process where the concentration gradient feed composition to the co-precipitation reactor is independent of the total solution volume present at the start, or during the concentration gradient reaction.
According to an embodiment of the invention, a method of preparing cathode particles using a co-precipitation reaction in a reactor is provided. The method includes:
feeding a feed stream (a) containing metal cations into the reactor;
feeding a feed stream (b) containing anions into the reactor;
wherein a ratio of the metal cations in the feed stream (a) is continuously changed from A 1 at time t 1 to A 2 at time t 2;
wherein the feed stream (a) and the feed stream (b) are contacted in the reactor to form precipitated precursor particles, and at least one transition metal component in the particle has a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
According to an embodiment of the invention, a cathode active material is provided. The cathode active material includes cathode particles, at least one transition metal component in the particle having a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
Further, a lithium-ion battery having a cathode electrode made from the above cathode active material is also provided.
Description of Drawings
Fig. 1 is the example of precursor particle concentration gradient profile with Ni-Mn changing, Co constant, wherein t 0 = t 1 < t 2 = t f.
Fig. 2 is the example of precursor particle concentration gradient profile with Ni-Co changing, Mn constant, wherein t 0 = t 1 < t 2 = t f.
Fig. 3 is the example of precursor particle concentration gradient profile with Ni-Mn-Co changing, wherein t 0 = t 1 < t 2 = t f.
Fig. 4 is the example of precursor particle concentration gradient profile with Mn-Co changing, Ni constant, wherein t 0 = t 1 < t 2 = t f.
Fig. 5 is the example of precursor particle concentration gradient profile with Ni-Mn changing, Co constant, wherein t 0 < t 1 < t 2 = t f.
Fig. 6 is the example of precursor particle concentration gradient profile with Ni-Mn-Co changing, wherein t 0 = t 1 < t 2 < t f.
Fig. 7 is the example of precursor particle concentration gradient profile with Ni-Mn-Co  changing, wherein t 0 < t 1 < t 2 < t f.
Fig. 8 is a block diagram for preparing cathode particles according to one embodiment.
Fig. 9 is a block diagram for preparing cathode particles according to another embodiment.
Fig. 10 is the first cycle charge and discharge curves in lithium-ion battery half-cell for various prepared active materials.
Fig. 11 is the SEM of precursor particles prepared using inventive method in Example 9.
Fig. 12 is the cross section of precursor particle in Example 1, as described in Example 10.
Fig. 13 is the EDS line scan intensity for Ni, Mn and Co for Example 1 precursor particle.
Fig. 14 is the SEM of cross sectioned active material described in Example 11.
Fig. 15 is the EDS line scan intensity of cross sectioned final active material described in Example 11.
Fig. 16 is the SEM of cross sectioned precursor particle in Example 12.
Fig. 17 is the EDS line scan intensity for Ni, Mn and Co for precursor particle in Example 12.
Mode for Invention
For all embodiments in the present invention, concentration gradient particles will be prepared using a co-precipitation reaction in a precipitation reactor.
A precipitation reactor is blanketed or bubbled by He, N2 or Ar gas and includes a feed stream (a) for feeding metal cations into the reactor for precipitation, a feed stream (b) for feeding anions into the reactor for precipitation, an outflow stream (c) of the slurry of precipitated precursor particles, and an optional feed stream (d) for feeding chelating agents. Additional feed streams (e, f, ..., z) may be present to add additional species to the precipitation reactor or to remove solvent through an in-situ thickening device.
The volume of a precipitation reactor is defined as the volume of a single processing  vessel or the sum of a number of processing vessels, pumps, or solid-liquid thickening devices connected in parallel.
The precipitation reactor can generally be described by the following mass balance equation:
Figure PCTCN2018103259-appb-000001
where the inlet/outlet streams α = a to z, ρ α is the fluid density, V is the volume of the precipitation reactor, F α is the volumetric flowrate. ρ c is density of accumulating fluid in the reactor (and changes with time) .
It is well established in co-precipitation concentration gradient materials that the particle size is proportional to the reaction time, and that the composition deposited onto a particle at a particular time is directly related to the inlet ion compositions.
In the inventive process, a ratio of the metal cations in the feed stream (a) is continuously changed from A 1 at time t 1 to A 2 at time t 2. That is, the feed stream (a) has a first metal cation ratio, A 1, that is continuously changed from time t 1 to time t 2 until a second metal cation ratio, A 2 is reached. This feed behavior of the feed stream (a) during the precipitation reaction can be described by the derivative:
Figure PCTCN2018103259-appb-000002
where C a,  i is the concentration of metal ion i in the feed stream (a) between the start and the end of the reaction. If t 0 and t f are defined respectively as the start time and the end time of the co-precipitation reaction, the concentration gradient duration during the precipitation reaction can occur when t 0=t 1<t 2=t f, t 0<t 1<t 2<t f, t 0<t 1<t 2=t f, or t 0=t 1<t 2<t f.
In a preferred embodiment, t 0=t 1< t 2=t f.
In a preferred embodiment, t 0=t 1< t 2<t f.
In a preferred embodiment, t 0<t 1< t 2=t f.
In a preferred embodiment, the first derivative in concentration is continuous from t 0 to t f.
Additionally, during this transition of the metal cation ratio from A 1 to A 2, the change in the slope for the continuous concentration gradient is described in the inventive process by:
Figure PCTCN2018103259-appb-000003
The expression means the change of concentration of at least one of the metal cations in the feed stream (a) is not linear with respect to the reaction time over the period from t 1 to t 2.
Particularly, a ratio of the metal cations in the feed stream (a) is fixed at A 1 over the period from t 0 to t 1, and a ratio of the metal cations in the feed stream (a) is fixed at A 2 over the period from t 2 to t f, wherein t 0 ≤ t 1, and t 2 ≤ t f. That is, during the period from t 0 to t 1, the metal cation ratio in the feed stream (a) is maintained constant at A 1, and during the period from t 2 to t f, the metal cation ratio in the feed stream (a) is maintained constant at A 2.
The precipitation reactor is well mixed and has a Re (Reynold number) > 6, 400, with a blend time of 0-1, 200 seconds, preferably 0-120 seconds, more preferably 0-45 seconds.
The temperature of the precipitation reactor is maintained between 30-80℃, but more preferably from 45-60℃.
The pH of the precipitation reactor is maintained from 7-13, but preferably from 10.5-12 when precipitating hydroxides and 8.5-10 when precipitating carbonates.
The feed stream (a) contains the metal cations for precipitation with a concentration from 0.001-6 (mol cation /L) . The metal cations are selected from transition metals of Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, or any combination thereof. The metal cation resource is selected from sulfate, carbonate, chloride, nitrate, fluoride, oxide, hydroxide, oxyhydroxide, oxalate, carboxylate, acetate, phosphate, borate, or any combination thereof.
The ratios A 1 and A 2 of the metal cations in the feed stream (a) is described as Ni xMn yCo zMe 1-x-y-z, where x+y+z≥0.9, z≤0.4, and Me may be one or more additional elements. Under these feed conditions, a precipitated precursor particle of the form (Ni xMn yCo zMe 1-x-y-z) (CO 3a (OH)  2-2a will be collected after time t f.
In a preferred embodiment, the ratio A 1 is selected from 0.85 ≤ x ≤ 1; 0 ≤ z ≤ 0.1.
In a preferred embodiment, the ratio A 2 is selected from 0.4 ≤ x ≤ 0.7; 0.25 ≤ y ≤ 0.5.
In a preferred embodiment, the nominal fraction of x in the final material will be greater than the linear average of x A1 and x A2, wherein x A1 represents the nominal fraction of x when the ratio is A 1 and x A2 represents the nominal fraction of x when the ratio is A 2. In addition,  the nominal fraction of x in the prepared particle and final active material will be from 0.6 ≤x ≤ 0.95. It is more preferred that the nominal value of x is from 0.75 ≤ x ≤ 0.9.
The feed stream (b) contains the anions for precipitation with a concentration from 0.001-14 (mol anion /L) . The stream (b) is selected from NaOH, Na 2CO 3, NaHCO 3, Na 2C 2O 4, LiOH, Li 2CO 3, LiHCO 3, Li 2C 2O 4, KOH, K 2CO 3, KHCO 3, K 2C 2O 4, or any combination of the species listed.
The feed stream (d) contains the chelating agents added to the reactor at a concentration from 0.001-14 (mol chelating agent /L) . The feed stream (d) is selected from ammonia hydroxide, ammonium chloride, ammonium sulfate, ammonium dihydrogen phosphate, ethylene glycol, carboxylic acids, ammonium nitrate, glycerol, 1, 3 propane-diol, urea, N, N’-dimethylurea, quaternary ammonia salts, or any combination thereof.
The feed stream (e, f, ..., z) may contain additional solvents, surface acting agents, de-foaming agents, or dopants. For dopants, since they become part of the final product, the total concentration of dopant species should be less than 5%of the mol %of the final material.
In some instances, the metal cations in the feed stream (a) may include at least two of Ni, Mn and Co. For example, the metal cations may include Ni-Mn, or Co-Mn, or Co-Ni, or Ni-Mn-Co. In a specifc embodiment, the metal cations include Ni-Mn-Co.
In some instances, at least one of the metal cations may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2.
In some instances, each of the metal cations may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2.
In specific embodiments, the metal cations in the feed stream (a) include Ni, Mn and Co, and at least two of Ni, Mn and Co may have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2.
In the reactor, the feed stream (a) and the feed stream (b) are contacted to form precipitated precursor particles. At least one transition metal component in the finally formed particle has a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle, as shown in Figs. 1-7, wherein different examples  are given when t 0=t 1<t 2=t f, t 0<t 1<t 2<t f, t 0<t 1<t 2=t f, or t 0=t 1<t 2<t f.
In the example as shown in Fig. 1, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0=t 1<t 2=t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn changing, Co constant.
In the example as shown in Fig. 2, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0=t 1<t 2=t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Co changing, Mn constant.
In the example as shown in Fig. 3, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0=t 1<t 2=t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
In the example as shown in Fig. 4, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0=t 1<t 2=t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Mn-Co changing, Ni constant.
In the example as shown in Fig. 5, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0<t 1<t 2=t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn changing, Co constant.
In the example as shown in Fig. 6, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0=t 1<t 2<t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
In the example as shown in Fig. 7, the metal cation ratio in the feed stream (a) is continuously changed over the period from t 1 to t 2, wherein t 0<t 1<t 2<t f. The precipitated precursor particle has a non-linear continuous concentration gradient profile with Ni-Mn-Co changing.
After the co-precipitation reaction, the slurry of precipitated precursor particles is drained out from the precipitation reactor by the outflow stream (c) and is collected in a hold up tank or directly fed to a solid-liquid filtration device. The filtration device may be a plate and frame filter, candlestick filter, centrifuge, vacuum drum filter, pressure drum filter, hydrocyclone, Nutsche filter, clarifier, or any combination thereof. The filtered precipitated particles must be washed to remove byproduct salts from the precipitation reactions.
The filtered precipitated particles (i.e., filter cake) is then dried under vacuum, N2, Ar or Air for 3-24 hours between 80-200℃.
Once dried, the particles are contacted with a lithium precursor and well mixed. The lithium source is selected from LiOH*H 2O, Li 2CO 3, LiNO 3, lithium acetate, lithium metal or Li2O. Lithium hydroxide and lithium carbonate are the preferred choice. The Li to metal cation ratio is between 0.5-1.5, and preferred from 0.9-1.15, and more preferably from 1.01-1.10.
The well mixed lithium source and precipitated precursor particles are then calcined from 300-950℃, and multiple hold temperatures and ramp rates may be used. Preferably at least one hold temperature from 300-500℃ for 2-20 hours will occur before another heating from 700℃ to 850℃ for 2-20 hours. The ramp rate during heating may be from 0.5 to 10 degrees per minute, and 2-5 degrees per minute is preferred. The calcination time is from 2 hours to 48 hours.
The calcination atmosphere is selected from N2, air, dried air, oxygen or any combination thereof. The reaction temperature is a critical item for concentration gradient materials, since too high, too long, or a combo of the two may cause so much cation diffusion that a gradient is no longer present in the final cathode particle.
To characterize the precipitated cathode active material concentration gradient powders elemental analysis, SEM (scanning electron microscope) , residual lithium analysis and particle size distributions can be utilized. The presence of a concentration gradient can be confirmed by depth profiling a particle or via cross-sectioning a particle and using an EDS (energy dispersive spectrdmeter) line scan or electron microprobe analyzer.
The precipitated cathode material particles can be characterized using the particle size  distribution D10, D50, D90 or the Sauter mean diameter, d 32, where:
Figure PCTCN2018103259-appb-000004
where n k is the relative fraction and d k is the bin diameter from the particle size distribution. The particle size distribution can be collected via a light scattering instrument.
The prepared particles will have a Sauter mean diameter between 0.5-30 um, preferably from 1-15 um.
The residual Li is determined using pH measurements and acid titrations of cathode material filtrate.
The resulting material is a concentration gradient cathode active material. The active material, possibly mixed with a binder and conductive particle, is cast on a metallic foil to form a cathode electrode. The cathode electrode can be used in a lithium-ion battery.
To test the cathode material performance, galvanotactic charge-discharge tests can be performed. The material capacity, cycle retention, rate performance and cycle efficiency can all then be determined.
Referring to Fig. 8, in one embodiment, the precipitation reactor is connected with a first tank (tank 1) containing a first transition metal solution. Tank 1 is connected with a second tank (tank 2) contaning a second transition metal solution. The first transition metal solution has a metal cation ratio of A 1, and the second transition metal solution has a metal cation ratio of A 2. The second transition metal solution in tank 2 begins to feed into tank 1 from time t 1 and is mixed with the first transition metal solution. The mixed transition metal solutions are fed into the reactor from tank 1 over the period from t 1 to t 2.
In more detail, the first transition metal solution in tank 1 is fed into the reactor over the period from t 0 to t 2, and the second transition metal solution in tank 2 is fed into tank 1 over the period from t 1 to t f. That is, no second transition metal solution is fed into tank 1 from tank 2 over the period from t 0 to t 1, a mixture of the first transition metal solution and the second transition metal solution is fed into the reactor from tank 1 over the period from t 1 to t 2, and no first transition metal solution is fed into the reactor from tank 1 over the period from t 2 to t f. In particular, a flowrate leaving tank 1 and fed into the reactor is F 1, and a  flowrate leaving tank 2 and fed into tank 1 is F 2, wherein F 1 is greater than F 2, such that all of the first transition metal solution in tank 1 has been fed into the reactor at time t 2, and the second transition metal solution in tank 2 is directly fed into the reactor via tank 1 over the period from t 2 to t f. As a result, during the period from t 0 to t 1, the metal cation ratio in the feed stream (a) is maintained constant at A 1; during the period from t 1 to t 2, the metal cation ratio in the feed stream (a) is continuously changed from A 1 to A 2; and during the period from t 2 to t f, the metal cation ratio in the feed stream (a) is maintained constant at A 2.
For the present embodiment, agitation may be necessary to ensure the second transition metal solution mixes adequately with the first transition metal solution in tank 1 during the period from t 1 to t 2.
In the present embodiment, the first transition metal solution has a volume V 1 at time t 1, the second transition metal solution has a volume V 2 at time t 1, wherein V 1≥V 2.
In some cases, the feed stream (a) is prepared by contacting a first transition metal solution from tank 1 of concentration C 1, volume V 1, metal cation ratio A 1 at time t 1 with a second transition metal solution from tank 2 of concentration C 2, volume V 2, metal cation ratio A 2 between time t 1 and t 2. For the proposed embodiment, the concentration C 1 ≠C 2, the volume V 1=V 2 and the flowrate F 1 = F 2, it is still possible to achieve a non-linear concentration gradient. For the present embodiment, agitation may be necessary to ensure the second transition metal solution mixes adequately with the first transition metal solution in tank 1 during the period from t 1 to t 2.
In a preferred embodiment, C 1>1.5mol/L and C 2 is above 0.1mol/L. More preferred is C 1>2mol/L and C 2>1mol/L.
In some embodiments, the feed concentrations C 1≠C 2, volumes V 1≠V 2.
Referring to Fig. 9, in another embodiment, the precipitation reactor is connected with a first tank (tank 1) containing a first transition metal solution, and the precipitation reactor is further connected with a second tank (tank 2) contaning a second transition metal solution. The first transition metal solution has a metal cation ratio of A 1, and the second transition metal solution has a metal cation ratio of A 2. The second transition metal solution in tank 2 begins to feed into the reactor from time t 1.
In more detail, the first transition metal solution in tank 1 is fed into the reactor over the period from t 0 to t 2, and the second transition metal solution in tank 2 is fed into the reactor over the period from t 1 to t f. That is, no second transition metal solution is fed into the reactor from tank 2 over the period from t 0 to t 1, and no first transition metal solution is fed into the reactor from tank 1 over the period from t 2 to t f. During the period from t 1 to t 2, the first transition metal solution in tank 1 and the second transition metal solution in tank 2 are concurrently fed into the reactor. As a result, during the period from t 0 to t 1, the metal cation ratio in the feed stream (a) is maintained constant at A 1; during the period from t 1 to t 2, the metal cation ratio in the feed stream (a) is continuously changed from A 1 to A 2; and during the period from t 2 to t f, the metal cation ratio in the feed stream (a) is maintained constant at A 2.
In this embodiment, tank 1 has a feed stream (a1) into the reactor, tank 2 has a feed stream (a2) into the reactor, wherein the feed stream (a) is the sum of the feed stream (a1) and the feed stream (a2) . The feed stream (a1) and the feed stream (a2) are contacted and mixed in a mixing apparatus before they are fed into the reactor. The contacting between the feed stream (a1) and the feed stream (a2) is done through non-mechanical agitation by ensuring the fluids Reynold number is in the turbulent regime. The fluid contact mixing may occur in a mixing pipe, pipe tee, impinging jet, inlet vortex mixer or any other appropriate mixing apparatus that does not require mechanical agitation. The flowrate of the feed stream (a1) which leaves tank 1 is F 1, and the flowrate of the feed stream (a2) which leaves tank 2 is F 2. The flowrates of F 1 and F 2 between t 1 and t 2 are defined as:
F 1 = f (t) ; F 1≥ 0; F 2 = f (t) ; F 2≥ 0; F 1 ≠ F 2; and F 1’≠ 0; F 2’≠ 0 during the time t 1 to t 2.
In a preferred embodiment, F 1”≠ 0; and F 2”≠ 0.
Under these conditions, the resulting concentration profile for at least one species of the metal cations in the stream (a) will be non-linear. As stated prior, this means the formed particle will have a non-linear concentration gradient profile. The apostrophes after F 1 and F 2 above denote the order of the derivative.
In this embodiment, the solution volumes V 1 and V 2 in the tanks can be any value, given enough solution is available to provide the needed volume to the precipitation reactor.  In addition, the metal cation ratios A 1 and A 2 do not change in the the tanks, but instead remain constant during the entire course of the reaction.
Using the inventive method, concentration gradient particles can be prepared that have a non-linear concentration gradient over at least a portion along a thickness direction of the particle. By adopting the non-linear profile of the concentration gradient particles, particularly full concentration gradient particles, it can increase the metal content of a specified species without changing the gradient endpoints. This is especially important so the particle surface can be maintained, since the surface composition directly impacts the cycle stability and thermal stability of the material.
The capacity retention of the inventive material will be improved compared to NMC with identical nominal composition prepared under similar conditions.
The capacity retention of the inventive material will be improved compared to a concentration gradient material prepared under similar conditions and of identical nominal composition, identical starting composition, but with ratio A 2 adjusted to form a linear gradient.
Cathode active materials prepared from precipitated particles that have a non-linear concentration gradient will have a higher nominal content of at least one of Ni, Mn, or Co than a cathode active material prepared from a linear concentrations gradient particle with similar gradient endpoints and duration. It is preferred that Ni is the metal ion selected for an increase in the nominal concentration because higher Ni at NMC materials have higher capacities.
In the embodiment of Fig. 9, contacting the concentration gradient feed compositions without mechanical agitation solves the difficulty of mixing and utilizing the concentration gradient feed solution towards the end of reaction, and helps stop slight batch to batch differences in nominal metal composition and surface composition if the concentration gradient ends at t 2=t f, while in the embodiment of Fig. 8, low volumes of the tanks are difficult to pump completely. In the embodiment of Fig. 9, the solution volumes of V 1 and V 2 also no longer must be tightly controlled during the reaction, allowing new transition metal solutions to be added to the tanks during reaction, single feed tanks to supply solution to  multiple reactors, and facilitates more complicated concentration gradient profiles, for example with peaks and valleys in the profiles, since the feed composition can be any value that is a linear combination of A 1 and A 2.
Examples for Non-Linear Process
Example 1
A 20L glass reactor is initially filled with 5L of 13.6g/L aqua ammonia solution. The solution is heated to 50 Celsius via the glass reactor heating jacket, while being sparged with 5mL/min N2 gas and under mild agitation. The reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.9 through careful addition of 6mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
At the start of the reaction time, impeller for agitation is increased to 300 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor. The NH3*H2O stream is fed at 45mL/hr, and has a concentration of 136g/L of NH3. The MSO4 tank 1 feeding directly to the reactor starts at 3L in volume, feeds at a rate of 250mL/hr, and is consisted of a 2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction. At the same time, a MSO4 tank 2 starts flow into tank 1, having a volume of 2L with a flowrate of 100mL/hr and consisting of a 2mol/L MSO4 composition that has Ni:Mn: Co ratio of 65: 25: 10. To prepare the metal sulfate solutions, the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
After the reaction, the particle suspension is drained from the reactor and filtered using copious amounts of DI water, before drying the particles overnight at 100 Celcius under N 2. The dried particles are then mixed with LiOH*H2O in a 1.05: 1 Li: (Ni+Mn+Co) ratio, and is calcined in a tube furnace under oxygen atmosphere at 500 Celcius for 3 hrs, followed by 800 Celsius for 10hrs and natural cooling.
In Table 1, the ICP composition compared to the expected average if the particle transition metal gradient is linear from the core to surface of the material is shown.
The first cycle charge and discharge curves in lithium-ion battery half-cell for various prepared active materials are shown in Fig. 10.
Example 2
Same conditions as example 1 except the metal sulfate tank 1 has initially 3.4L of solution, and the tank 2 is 1.6L in volume with an outflow rate of 80mL/hr.
Example 3
Same conditions as example 1 except the metal sulfate tank 1 has initially 4L of solution, and the tank 2 is 1L in volume with an outflow rate of 50mL/hr.
The material is calcined at 500 Celcius for 3hrs, followed by 750 Celsius for 15hrs using 5 degree per minute ramp rate and then natural cooling.
Comparative Example 1
Same conditions as example 1 except the metal sulfate tank 1 has 2.5L of solution, and the tank 2 is 2.5L in volume with an outflow rate of 125mL/hr.
Comparative Example 2
A 500L stainless steel reactor is initially filled with 125L of 13.6g/L aqua ammonia solution. The solution is heated to 50 Celsius via a heating jacket, while being sparged with 10L/min N2 gas and under mild agitation. The reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.9 through careful addition of 10.8mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
At the start of the reaction time, the 500L impeller is increased to 500 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor. The NH3*H2O stream is fed at 600 mL/hr, and has a concentration of 227g/L of NH3. The MSO4 tank 1 feeding directly to the reactor starts at 120L in volume, feeds at a rate of 10L/hr, and is consisted of a 2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction. At the same time, a MSO4 tank 2 starts flow into tank 1, having a volume of 120L with a flowrate of 5L/hr and consisting of a 2mol/L MSO4 composition that has Ni: Mn: Co ratio of 65: 25: 10. To prepare the metal sulfate solutions, the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
Example 4
Same conditions as comparative example 2 except tank 1 has 180L volume, and tank 2  has 60L volume and an outflow rate of 2.5L/hr.
Example 5
Same conditions as example 4 except tank 1 has Ni: Mn: Co sulfate ratio of 90: 5: 5, and tank 2 has Ni: Mn: Co sulfate ratio 60: 20: 20.
Example 6
Same conditions as example 5 except tank 1 has Ni: Mn: Co sulfate ratio of 95: 3: 2.
Example 7
Same conditions as example 6 except tank 1 has 160L starting volume with starting Ni: Mn: Co sulfate ratio of 90: 8: 2. Tank 2 has starting volume of 80L and an outflow rate of 3.33L/hr.
Example 8
Same conditions as example 4 except tank 1 has Ni: Mn: Co sulfate ratio of 90: 10: 0, and tank 2 has Ni: Mn: Co sulfate ratio 50: 40: 10 at start of reaction.
Table 1
Figure PCTCN2018103259-appb-000005
Table 2
Figure PCTCN2018103259-appb-000006
Figure PCTCN2018103259-appb-000007
Example 9
500L of 13.6g/L aqua ammonia solution is fed into a 2,000L reactor. The reactor is sparged with N2, and heated via a jacket to 50 degrees Celsius. At the start of the reaction, 170g/L NH3*H2O solution and MSO4*xH2O solution are added to the reactor separately, while another feed of 10mol/L NaOH is feed via a pump connected to a pH controller set for 11.9. During the trial, two solutions of metal sulfate are mixed via non-mechanical agitated contact in a pipe tee, with the inlet flow of each solution into the tee varying with time. The metal sulfate solutions has Ni: Mn: Co ratios of 90: 0: 10 and 65: 25: 10, respectively.
The SEM of precursor particles prepared using inventive method in Example 9 is shown in Fig. 11.
Example 10
The precursor particle of Example 1 is cross sectioned via focused ion beam milling, and then analyzed using an EDS line scan in the SEM. The cross sectioned particle is shown in Fig. 12, and the K-alpha intensity for Ni, Mn and Co clearly showing the transition metal profile is shown in Fig. 13.
Example 11
The material described in Example 3 is made using the inventive procedure, but this time cross sectioned using the procedure described in Example 10. The SEM of the cross sectioned active material described in Example 11 is shown in Fig. 14. The EDS line scan intensity of cross sectioned final active material described in Example 11 is shown in Fig. 15.
Example 12
A 20L glass reactor is initially filled with 5L of 13.6g/L aqua ammonia solution. The solution is heated to 50 Celsius via the glass reactor heating jacket, while being sparged with 5mL/min N2 gas and under mild agitation. The reactor has an inlet pipe for NaOH, NH3*H2O and MSO4 solution addition. Once the reactor is at temperature, the pH is adjusted to 11.6 through careful addition of 10.8mol/L NaOH, and henceforth remained at that value during the trial duration via a pH control meter and pump.
At the start of the reaction time, impeller for agitation is increased to 300 rpm, and flows of NaOH, NH3*H2O and MSO4 are started to feed into the reactor. The NH3*H2O stream is fed at 10mL/hr, and has a concentration of 193.3g/L of NH3. The MSO4 tank 1 feeding directly to the reactor starts at 2.5L in volume, feeds at a rate of 250mL/hr, and is consisted of a 2.2mol/L metal sulfate composition that has Ni: Mn: Co ratio of 90: 0: 10 at the start of reaction. At the same time, a MSO4 tank 2 starts flow into tank 1, having a volume of 2.5L with a flowrate of 125mL/hr and consisting of a 1.97mol/L MSO4 composition that has Ni: Mn: Co ratio of 63.5: 26.5: 10. To prepare the metal sulfate solutions, the appropriate amounts of NiSO4*6H2O, MnSO4*H2O and CoSO4*7H2O are dissolved in DI water.
The SEM of cross sectioned precursor particle in Example 12 is shown in Fig. 16. The EDS line scan intensity for Ni, Mn and Co for precursor particle in Example 12 is shown in Fig. 17.
Example 13
The same procedure as Example 12 is used, except the tank 2 is a 2mol/L metal sulfate solution that has Ni: Mn: Co ratio of 57: 33: 10.
Example 14
Same procedure as Example 13 except tank 1 has 3L volume at the start of reaction, and tank 2 has 2L volume and an outflow rate of 100mL/hr into tank 1.
Table 3
Figure PCTCN2018103259-appb-000008
Physical Characterizations
The morphology of materials and electrodes is studied via scanning electron microscopy (Hitachi SU8010, Hitachi High-Technologies Corporation) . Cross sections of materials are prepared by cross section polisher (Hitachi IM4000, Hitachi High-Technologies Corporation) . The specific surface area is calculated via adsorption analysis using nitrogen (BET, JW-BK400, Bei Jing JWGB Sci &Tech Co., Ltd. ) . Particle sizes are analyzed using a  Mastesizer 2000 (Malvern) . The Li and transition metal content is confirmed using inductively coupled plasma-mass spectroscopy (Optima 8000, Perkin Elmer) analysis.
Electrochemical Characterization
The prepared active materials are tested in lithium half-cells using 2035 coin cells. The active material (90%) , SuperP (5%) and PVDF (5%) are mixed in NMP and then cast onto aluminum foil using the doctor blade method. The electrodes are dried at 120 Celsius then roll pressed slightly to improve the electrode conductivity. The electrode is then punched into disks, and added to a coin cell with a PE separator, Li disk for anode, and is flooded with 1mol/L LiPF6 carbonate electrolyte. The cells are tested from 2.7-4.4V, and during the first cycle 0.05C charge for 1.5hrs, then 0.1C CCCV (until 0.01C cutoff) , while discharge is 0.1C. C is defined as 200 mAh/g.

Claims (22)

  1. A method of preparing cathode particles using a co-precipitation reaction in a reactor, comprising:
    feeding a feed stream (a) containing metal cations into the reactor;
    feeding a feed stream (b) containing anions into the reactor;
    wherein a ratio of the metal cations in the feed stream (a) is continuously changed from A 1 at time t 1 to A 2 at time t 2;
    wherein the feed stream (a) and the feed stream (b) are contacted in the reactor to form precipitated precursor particles, and at least one transition metal component in the particle has a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
  2. The method of claim 1, wherein a ratio of the metal cations in the feed stream (a) is fixed at A 1 over the period from t 0 to t 1, and a ratio of the metal cations in the feed stream (a) is fixed at A 2 over the period from t 2 to t f, wherein t 0 and t f are defined respectively as the start time and the end time of the co-precipitation reaction, wherein t 0 ≤ t 1 < t 2 ≤ t f.
  3. The method of claim 2, wherein t 0=t 1<t 2=t f, t 0<t 1<t 2=t f, t 0=t 1<t 2<t f, or t 0<t 1<t 2<t f.
  4. The method of claim 1, wherein the metal cations in the feed stream (a) are selected from Mg, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, or any combination thereof.
  5. The method of claim 4, wherein the metal cations in the feed stream (a) comprise at least two of Ni, Mn and Co.
  6. The method of claim 5, wherein at least one of the metal cations have a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2.
  7. The method of claim 6, wherein each of the metal cations has a concentration which changes not linearly with respect to the reaction time over the period from t 1 to t 2.
  8. The method of claim 1, wherein the ratio of the metal cations in the feed stream (a) is described as Ni xMn yCo zMe 1-x-y-z, where x+y+z≥0.9, z≤0.4, and Me is one or more additional elements, wherein the ratio A 1 is selected from 0.85 ≤ x ≤ 1, 0 ≤ z ≤ 0.1, and the ratio A 2 is selected from 0.4 ≤ x ≤ 0.7; 0.25 ≤ y ≤ 0.5.
  9. The method of claim 1, wherein the reactor is connected with a first tank containing a  first transition metal solution, the first tank is connected with a second tank contaning a second transition metal solution, the first transition metal solution has a metal cation ratio of A 1, the second transition metal solution has a metal cation ratio of A 2, the second transition metal solution in the second tank begins to feed into the first tank from time t 1 and is mixed with the first transition metal solution, the mixed transition metal solutions are fed into the reactor from the first tank over the period from t 1 to t 2.
  10. The method of claim 9, wherein the first transition metal solution in the first tank is fed into the reactor over the period from t 0 to t 2, the second transition metal solution in the second tank is fed into the first tank over the period from t 1 to t f, no second transition metal solution is fed into the first tank from the second tank over the period from t 0 to t 1, a mixture of the first transition metal solution and the second transition metal solution is fed into the reactor from the first tank over the period from t 1 to t 2, and no first transition metal solution is fed into the reactor from first tank over the period from t 2 to t f.
  11. The method of claim 10, wherein a flowrate leaving the first tank and fed into the reactor is F 1, a flowrate leaving the second tank and fed into the first tank is F 2, F 1 is greater than F 2, such that all of the first transition metal solution in the first tank has been fed into the reactor at time t 2, and the second transition metal solution in the second tank is directly fed into the reactor via the first tank over the period from t 2 to t f.
  12. The method of claim 11, wherein the first transition metal solution in the first tank has a volume V 1 at time t 1, the second transition metal solution in the second tank has a volume V 2 at time t 1, wherein V 1≥V 2.
  13. The method of claim 9, wherein the second transition metal solution feeding into the first tank is mixed adequately with the first transition metal solution in the first tank through agitation during the period from t 1 to t 2.
  14. The method of claim 1, wherein the reactor is connected with a first tank containing a first transition metal solution, the reactor is further connected with a second tank contaning a second transition metal solution, the first transition metal solution has a metal cation ratio of A 1, the second transition metal solution has a metal cation ratio of A 2, the second transition metal solution in the second tank begins to feed into the reactor from time t 1.
  15. The method of claim 14, wherein the first transition metal solution in the first tank is fed into the reactor over the period from t 0 to t 2, the second transition metal solution in the second tank is fed into the reactor over the period from t 1 to t f, no second transition metal solution is fed into the reactor from the second tank over the period from t 0 to t 1, the first transition metal solution in the first tank and the second transition metal solution in the second tank are concurrently fed into the reactor over the period from t 1 to t 2, no first transition metal solution is fed into the reactor from the first tank over the period from t 2 to t f.
  16. The method of claim 14, wherein the first tank has a feed stream (a1) feeding into the reactor, the second tank has a feed stream (a2) feeding into the reactor, the feed stream (a) is the sum of the feed stream (a1) and the feed stream (a2) , the feed stream (a1) and the feed stream (a2) are contacted and mixed in a mixing apparatus without mechanical agitation before they are fed into the reactor.
  17. The method of claim 16, wherein the feed stream (a1) has a flowrate of F 1, the feed stream (a2) has a flowrate of F 2, the flowrates of F 1 and F 2 between t 1 and t 2 are defined as: F 1 = f(t) ; F 1≥ 0; F 2 = f (t) ; F 2≥ 0; and F 1 ≠ F 2.
  18. The method of claim 1, wherein after the co-precipitation reaction, the slurry of the precipitated precursor particles is drained out from the reactor by an outflow (c) , the precursor particles drained out are filtered and dried to get dried precursor particles, the dried precursor particles are mixed with a lithium resource and then calcined to form concentration gradient cathode particles.
  19. The method of claim 1, wherein the method further comprises feeding a feed stream (d) containing chelating agents into the reactor, the feed stream (d) is selected from ammonia hydroxide, ammonium chloride, ammonium sulfate, ammonium dihydrogen phosphate, ethylene glycol, carboxylic acids, ammonium nitrate, glycerol, 1, 3 propane-diol, urea, N, N’ -dimethylurea, quaternary ammonia salts, or any combination thereof.
  20. A cathode active material comprising cathode particles, at least one transition metal component in the particle having a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
  21. The cathode active material of claim 20, wherein the particle comprises transition  metals of Ni, Mn and Co, at least two of Ni, Mn and Co have a non-linear continuous concentration gradient profile over at least a portion along a thickness direction of the particle.
  22. A lithium-ion battery, comprising a cathode electrode made from the cathode active material of claim 20.
PCT/CN2018/103259 2017-08-30 2018-08-30 Method of preparing lithium-ion cathode particles and cathode active material formed therefrom WO2019042359A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/643,561 US11978887B2 (en) 2017-08-30 2018-08-30 Method of preparing lithium-ion cathode particles and cathode active material formed therefrom
MYPI2020000998A MY194984A (en) 2017-08-30 2018-08-30 Method of preparing lithium-ion cathode particles and cathode active material formed therefrom
EP18850406.2A EP3669411A4 (en) 2017-08-30 2018-08-30 Method of preparing lithium-ion cathode particles and cathode active material formed therefrom
CN201880056068.8A CN111052458A (en) 2017-08-30 2018-08-30 Method for preparing lithium ion cathode particles and cathode active material formed thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762552381P 2017-08-30 2017-08-30
US62/552,381 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019042359A1 true WO2019042359A1 (en) 2019-03-07

Family

ID=65526142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103259 WO2019042359A1 (en) 2017-08-30 2018-08-30 Method of preparing lithium-ion cathode particles and cathode active material formed therefrom

Country Status (5)

Country Link
US (1) US11978887B2 (en)
EP (1) EP3669411A4 (en)
CN (1) CN111052458A (en)
MY (1) MY194984A (en)
WO (1) WO2019042359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349070A (en) * 2021-12-14 2022-04-15 南通金通储能动力新材料有限公司 Large-particle high-nickel quaternary precursor and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365565B2 (en) * 2020-03-18 2023-10-20 トヨタ自動車株式会社 A positive electrode active material and a secondary battery including the positive electrode active material
CN113060773A (en) * 2021-03-17 2021-07-02 中国科学院过程工程研究所 Preparation method and application of full-concentration-gradient high-nickel ternary material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965649B2 (en) * 2005-11-04 2011-06-21 Samsung Electronics Co., Ltd. Apparatus and method for feedback of subcarrier quality estimation in an OFDM/OFDMA system
US8591774B2 (en) * 2010-09-30 2013-11-26 Uchicago Argonne, Llc Methods for preparing materials for lithium ion batteries
CN104201369A (en) * 2014-07-01 2014-12-10 宁波金和新材料股份有限公司 Lithium-ion-battery gradient cathode-material precursor and preparation method thereof
US9011669B2 (en) * 2012-09-17 2015-04-21 Blue Planet Strategies, L.L.C. Apparatus and method for electrochemical modification of liquids
US20160049645A1 (en) * 2014-08-13 2016-02-18 Microvast Power Systems Co., Ltd. Cathode material for lithium ion secondary battery, method of producing the same, and lithium ion secondary battery
US9847525B2 (en) * 2011-10-31 2017-12-19 Hubei Zte Advanced Materials Co., Ltd. Lithium nickel cobalt manganese oxide positive active material having concentration gradient of nickel, cobalt, and manganese and precursor thereof and preparation methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822012B1 (en) 2006-03-30 2008-04-14 한양대학교 산학협력단 Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same
US8962195B2 (en) * 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
KR101292757B1 (en) 2011-01-05 2013-08-02 한양대학교 산학협력단 Cathod active material of full gradient, method for preparing the same, lithium secondary battery comprising the same
KR102157479B1 (en) * 2013-04-29 2020-10-23 한양대학교 산학협력단 Cathod active material for lithium rechargeable battery
US10224541B2 (en) * 2012-06-08 2019-03-05 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same
CN103904318A (en) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 Lithium battery positive electrode material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965649B2 (en) * 2005-11-04 2011-06-21 Samsung Electronics Co., Ltd. Apparatus and method for feedback of subcarrier quality estimation in an OFDM/OFDMA system
US8591774B2 (en) * 2010-09-30 2013-11-26 Uchicago Argonne, Llc Methods for preparing materials for lithium ion batteries
US9847525B2 (en) * 2011-10-31 2017-12-19 Hubei Zte Advanced Materials Co., Ltd. Lithium nickel cobalt manganese oxide positive active material having concentration gradient of nickel, cobalt, and manganese and precursor thereof and preparation methods
US9011669B2 (en) * 2012-09-17 2015-04-21 Blue Planet Strategies, L.L.C. Apparatus and method for electrochemical modification of liquids
CN104201369A (en) * 2014-07-01 2014-12-10 宁波金和新材料股份有限公司 Lithium-ion-battery gradient cathode-material precursor and preparation method thereof
US20160049645A1 (en) * 2014-08-13 2016-02-18 Microvast Power Systems Co., Ltd. Cathode material for lithium ion secondary battery, method of producing the same, and lithium ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3669411A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349070A (en) * 2021-12-14 2022-04-15 南通金通储能动力新材料有限公司 Large-particle high-nickel quaternary precursor and preparation method thereof
CN114349070B (en) * 2021-12-14 2023-07-14 南通金通储能动力新材料有限公司 Large-particle high-nickel quaternary precursor and preparation method thereof

Also Published As

Publication number Publication date
MY194984A (en) 2022-12-29
EP3669411A4 (en) 2020-09-09
US11978887B2 (en) 2024-05-07
US20200203718A1 (en) 2020-06-25
CN111052458A (en) 2020-04-21
EP3669411A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
CN110050367B (en) Positive electrode active material, method of preparing the same, and lithium secondary battery including the same
CN107004852B (en) Positive electrode active material for lithium battery having porous structure and method for producing same
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US20200044248A1 (en) Production method of lithium-containing composite oxide and lithium-containing composite oxide
EP2816641B1 (en) Active material for non-aqueous electrolyte secondary cell, method for manufacturing active material, electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
CN103563137A (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same and positive electrode active material for nonaqueous electrolyte secondary batteries
US11978887B2 (en) Method of preparing lithium-ion cathode particles and cathode active material formed therefrom
US11322738B2 (en) Method for preparing cathode particles and cathode active materials having same
CN110863245B (en) Ternary cathode material, preparation method thereof, lithium ion battery and electric automobile
CN112811477A (en) Method for controlling synthesis of single crystal ternary cathode material through precursor
US11679992B2 (en) Methods for preparing particle precursor, and particle precursor prepared thereby
US11929502B2 (en) Stabilized lithium metal oxide electrode material and method of preparation
US20200131046A1 (en) Method and apparatus for producing cathode particles
EP3870543B1 (en) Precursor of a positive electrode material for a rechargeable lithium-ion battery
CN106277074A (en) A kind of preparation method of high pressure ternary material
RU2749604C1 (en) Method for production of precursor particles, precursor particle produced by this method, and method for production of active cathode particles
WO2022248689A1 (en) Lithium nickel-based composite oxide as a positive electrode active material for rechargeable lithium-ion batteries
CN117691037A (en) Preparation method and application of doped coated monocrystalline lithium-rich manganese-based positive electrode material
CN115377374A (en) Single crystal coated polycrystalline positive electrode material with core-shell structure and preparation method thereof
CN115663139A (en) Nickel-cobalt-manganese multi-element positive electrode material, preparation method and application thereof, and lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850406

Country of ref document: EP

Effective date: 20200320