WO2019041684A1 - 径向磁悬浮轴承及其定子骨架和定子组件 - Google Patents
径向磁悬浮轴承及其定子骨架和定子组件 Download PDFInfo
- Publication number
- WO2019041684A1 WO2019041684A1 PCT/CN2017/118248 CN2017118248W WO2019041684A1 WO 2019041684 A1 WO2019041684 A1 WO 2019041684A1 CN 2017118248 W CN2017118248 W CN 2017118248W WO 2019041684 A1 WO2019041684 A1 WO 2019041684A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radial magnetic
- magnetic suspension
- skeleton
- suspension bearing
- block
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
Definitions
- the present invention relates to the field of radial magnetic levitation technology, and more particularly to a radial magnetic suspension bearing and its stator frame and stator assembly.
- Fig. 1 is a monolithic skeleton.
- one integral skeleton 1' is inserted into one end of the stator core of the radial magnetic suspension bearing, and another integral skeleton 1' is inserted into the other end of the stator core of the radial magnetic suspension bearing, so that the two integral skeletons 1' and the diameter
- the magnetic core of the magnetic suspension bearing is integrally formed, and then the copper wire is wound on the skeleton corresponding to the groove of the radial bearing stator core.
- the volume of the above-mentioned integral radial bearing stator frame 1' is generally large, resulting in complicated mold opening and high mold opening cost; and at the same time, since the wall of the integral radial bearing stator frame 1' is thin, the injection molding process is easily deformed.
- the product qualification rate is difficult to control; secondly, when the radial bearing stator frame 1' is transported and used, if a small part of the damage occurs, the entire skeleton can not be used, resulting in a large loss; in addition, winding on the stator frame 1' When there is no obvious mark on the copper wire, it is easy to have multiple or less winding errors.
- the present invention provides a radial magnetic suspension bearing and a stator frame and a stator assembly thereof, the main purpose of which is to solve the technical problem that the existing integral stator frame is prone to error when winding.
- the present invention mainly provides the following technical solutions:
- an embodiment of the present invention provides a radial magnetic suspension bearing stator frame having at least two segmented skeletons connected end to end in a circumferential direction;
- each block skeleton has a one-to-one correspondence with the radial control direction of the radial magnetic suspension bearing.
- each of the block skeletons has the same structure.
- the block skeleton has a concave portion at one end in the circumferential direction and a convex portion at the other end;
- the protrusion of one block skeleton is used to insert the recess of the adjacent block skeleton to make the adjacent two block skeletons snap.
- the block skeleton has a first step at one end in the circumferential direction and a second step at the other end, and the first step and the second step are both
- the projections are reversely arranged in the axial direction of the stator frame to form the projections at one of the circumferential ends in the circumferential direction, and the other end forms the recesses.
- the recessed portion and the protruding portion are located at a middle portion of a corresponding end of the block skeleton.
- the block skeleton includes a base body and an insulating portion protruding from a side of the base body;
- the insulating portion is configured to cooperate with an end surface of the one side of the base body to provide insulation protection for at least one pole of the stator core.
- an embodiment of the present invention also provides a radial magnetic suspension bearing stator assembly comprising the radial magnetic suspension bearing stator frame of any of the above.
- an embodiment of the present invention also provides a radial magnetic suspension bearing comprising the radial magnetic suspension bearing stator frame of any of the above.
- the radial magnetic suspension bearing of the present invention and the stator frame and the stator assembly thereof have at least the following beneficial effects:
- the stator frame is divided into at least two block skeletons which are sequentially connected end to end in the circumferential direction, and each of the block skeletons has a one-to-one correspondence with the radial control direction of the radial magnetic suspension bearing,
- Each block skeleton is individually wound to prevent the operator from winding the copper wire onto different block skeletons, thereby reducing the possibility of errors in the winding of the operator and improving the yield of the stator frame product.
- FIG. 1 is a schematic structural view of a stator skeleton of a radial magnetic suspension bearing in the prior art
- FIG. 2 is a schematic exploded view showing a stator skeleton of a radial magnetic suspension bearing according to an embodiment of the present invention
- FIG. 3 is a schematic structural view of a stator core of a radial magnetic suspension bearing according to an embodiment of the present invention
- FIG. 4 is a schematic structural view of a block skeleton of a stator frame of a radial magnetic suspension bearing according to an embodiment of the present invention
- FIG. 5 is a schematic diagram of connection of two adjacent block skeletons according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram showing the connection of another two adjacent block skeletons according to an embodiment of the present invention.
- Reference numerals 1, block skeleton; 11, protruding portion; 12, concave portion; 100, stator frame; 101, first step; 102, second step; 111, base; 112, insulating portion; End face of one side; 2, stator core; 21, pole; 22, trunking.
- an embodiment of the present invention provides a radial magnetic suspension bearing stator frame 100 having at least two segmented skeletons 1 connected end to end in a circumferential direction.
- each of the block skeletons 1 has a one-to-one correspondence with the radial control direction of the radial magnetic suspension bearings.
- a radial magnetic suspension bearing controlled by four directions is taken as an example to explain the phrase "one-to-one correspondence between the radial direction of each of the block skeletons 1 and the radial magnetic suspension bearings".
- the four-direction control here means that the radial magnetic suspension bearing generates magnetic forces in four directions to control the rotor.
- the four radial control directions of the radial magnetic suspension bearing are X+, X-, Y+, and Y-, respectively.
- 3 is a schematic view showing the structure of a radial bearing stator core 2 controlled by four directions.
- the stator core 2 is divided into four parts according to the four radial control directions of the radial magnetic suspension bearing, which are respectively X+ in the figure.
- the stator frame 100 is divided into at least two block skeletons 1 connected end to end in the circumferential direction, and each block skeleton 1 has a one-to-one correspondence with the control direction of the radial magnetic suspension bearing,
- Each of the block skeletons 1 is individually wound to prevent the operator from winding the copper wires onto the different block skeletons 1, thereby reducing the possibility of occurrence of stringing between the different block skeletons 1, thereby improving the stator frame 100.
- the yield of the product since the stator frame 100 is divided into at least two block skeletons 1 connected end to end in the circumferential direction, and each block skeleton 1 has a one-to-one correspondence with the control direction of the radial magnetic suspension bearing,
- Each of the block skeletons 1 is individually wound to prevent the operator from winding the copper wires onto the different block skeletons 1, thereby reducing the possibility of occurrence of stringing between the different block skeletons 1, thereby improving the stator frame 100.
- the technical solution of the present invention divides the existing monolithic stator frame 100 into radial direction of the radial magnetic suspension bearing to form a plurality of small block skeletons 1, and then uses a plurality of small blocks.
- the assembly of the block skeleton 1 is equivalent to transforming the bulky thin-walled skeleton into a normal skeleton having a small volume, so that the mold opening is simple and the mold opening cost is reduced; in addition, since the volume of the block skeleton 1 is small, The injection molding process of the block skeleton 1 is less likely to cause large deformation.
- the block skeleton 1 may be damaged during production, transportation and use, and the single block skeleton 1 may be replaced in time, and the block skeleton 1 may be damaged after replacing the entire stator frame 100. The cost of replacement is lower.
- each of the foregoing block skeletons 1 may have the same structure, so that the same mold can be used for mold opening, thereby reducing the cost of mold opening and being more versatile.
- the two adjacent block skeletons 1 are connected by a snap connection, so that the technical effect of the convenient connection is obtained.
- the block skeleton 1 has a concave portion 12 at one end in the circumferential direction and a convex portion 11 at the other end.
- the projection 11 of one of the block skeletons 1 is for inserting the recess 12 of the adjacent block skeleton 1 so that the adjacent two block skeletons 1 are engaged.
- the engagement is achieved by the engagement of the recess 12 with the projection 11, which is relatively simple in construction and requires no additional components for mating.
- the aforementioned block skeleton 1 has a first step 101 at one end in the circumferential direction and a second step 102 at the other end.
- both the first step 101 and the second step 102 are reversely arranged in the axial direction of the stator frame to form the aforementioned protrusion 11 at one of the circumferential ends of the block skeleton 1 and the other end forms the aforementioned
- the recessed portion 12 is such that when the projection 11 of one of the block skeletons 1 is inserted into the recessed portion 12 of the adjacent block skeleton 1, the snap connection of the two block skeletons 1 can be realized.
- the aforementioned recessed portion 12 and the protruding portion 11 may both be located in the middle of the respective ends of the segmented skeleton 1, such that when the projection 11 of one of the segmented skeletons 1 is inserted into the adjacent portion
- the recess 12 of the block skeleton 1 can achieve a complete positioning of the two block skeletons 1 in the axial direction, so that the connection stability is better.
- the above-described block skeleton 1 may include a base 111 and an insulating portion 112 protruding from the side of the base 111.
- the insulating portion 112 is for mating with the end surface 1111 of one side of the base 111 to provide insulation protection for at least one of the poles 21 of the stator core 2.
- the insulating portion 112 may be used to cover the side surface of the pole 21 of the stator core 2, and the end surface 1111 at one side of the base 111 is used to cover the pole of the stator core 2.
- the end face of 21 such that the insulating portion 112 cooperates with the end face 1111 of one side of the base body 111 can completely provide insulation protection to one end of the pole post 21 of the stator core 2.
- the single block skeleton 1 in FIG. 4 can provide insulation protection for the two poles 21 of the stator core 2.
- the above-mentioned base body 111 is also made of an insulating material.
- Embodiments of the present invention also provide a radial magnetic suspension bearing stator assembly that includes the radial magnetic suspension bearing stator frame 100 of any of the above examples.
- Embodiments of the present invention also provide a radial magnetic suspension bearing comprising the radial magnetic suspension bearing stator frame 100 of any of the above examples.
- the radial magnetic suspension bearing and the radial magnetic suspension bearing stator assembly provided by the present invention are also provided with the above-mentioned radial magnetic suspension bearing stator frame 100, thereby avoiding the operator winding the copper wire to different block skeletons. 1 advantage.
- the technical solution provided by the invention solves the following technical problems: 1. Solving the problem that the radial bearing stator frame 100 is large and complicated to open the mold; 2. The radial bearing stator frame 100 can be reduced in the process of production, transportation and use. The possibility of damage reduces the loss caused by the damage of the single radial bearing stator frame 100; 3. It can reduce the possibility of multiple winding or less winding when winding, and reduce the defective product rate.
- the invention of the present invention mainly includes: (1)
- the technical solution provided by the present invention separates the radial magnetic suspension bearing stator frame 100 from a whole in a radial control direction to form several identical blocks, that is, a block skeleton 1 .
- the block type radial magnetic suspension bearing stator frame 100 has a simple structure when the mold is opened, reduces the mold opening volume, and reduces the mold opening cost.
- (2) The volume of the stator skeleton 100 of the block type radial magnetic suspension bearing is reduced by three quarters or more, and large deformation is not easily generated during the injection molding process, thereby reducing the defective product rate.
- there is less likelihood of damage such as damage and cracking, and the economic loss is small when the individual is damaged.
- the stator frame 100 of the stator frame 100 corresponds to the radial control direction of a radial magnetic suspension bearing, which is clearer when winding the copper wire, and reduces the possibility of errors such as multi-winding or less winding. , reducing the rate of defective products.
- the optimization scheme of the block type radial magnetic suspension bearing stator frame 100 is as shown in the best technique FIGS. 2 to 6. It divides the stator of the radial magnetic suspension bearing stator frame 100 in the radial control direction of the radial bearing stator core 2, and each direction controlled by the radial magnetic suspension bearing stator core 2 corresponds to a block skeleton 1.
- the plurality of block skeletons 1 can be spliced into the shape of the entire stator frame 100, and then the copper wire is wound directly on each of the block skeletons 1, and each of the block skeletons 1 is wound around the copper wires to complete the winding of the entire copper wire. .
- This solution divides the entire stator frame 100 in the finest direction according to the control direction of the radial bearing stator core 2, and the skeleton volume becomes smaller, and the mold opening becomes simple, which embodies the block type radial magnetic suspension bearing stator frame 100.
- the benefits when the segmented radial magnetic suspension bearing stator frame 100 is wound, each of the separate skeletons is separately wound. A segmented skeleton 1 is wound from one side to the other, thereby completing a radial direction of the radial magnetic suspension bearing, so that no copper wire is connected between every two adjacent block skeletons 1. That is, the copper wires in the respective radial control directions are distinguished, which ensures the correctness of the winding of the segmented radial bearing stator frame 100.
- the solution of the block type radial magnetic suspension bearing stator frame 100 is not limited to the structure shown in the best technical diagram, and the block only needs to consider the radial control direction of the radial magnetic suspension bearing. Since the radial magnetic suspension bearing is most commonly controlled in four directions, the outer shape of the block skeleton 1 corresponding to the four directions is generally 90°. When the poles 21 and the wire grooves 22 corresponding to the radial control direction of the radial magnetic suspension bearing are reduced, it is only necessary to change the number of the poles 21 and the wire grooves 22 corresponding to the internal structure of the block skeleton 1 , and the block skeleton 1 The outer shape can still be a 90° shape.
- the outer shape of the block skeleton 1 needs to be correspondingly changed to 60° or 45° to correspond to 6 or 8 Control direction.
- the radial magnetic suspension bearing of the present invention and its stator frame 100 and stator assembly have at least the following advantages:
- the stator frame of the radial magnetic suspension bearing is a monolithic stator frame, and the two integral stator frame pairs are inserted as a complete stator frame to cooperate with the stator core 2 of the radial magnetic suspension bearing.
- the bearing stator is bulky (such as the stator core 3 or larger)
- the overall stator frame volume is correspondingly increased, but the wall thickness of the stator frame cannot be increased too much, and the thickness of the stator frame wall is relative to the overall skeleton volume.
- the words are much thinner.
- the stator skeleton is bulky and the wall is thin, which causes problems such as increased mold opening cost, easy deformation of the injection molding, and easy damage of the skeleton.
- the integral stator frame is divided into radial blocking directions of the radial magnetic suspension bearing to form a plurality of identical segments, and then assembled, and the bulky thin-walled stator skeleton is equivalently changed. It becomes a small-sized normal stator skeleton.
- Such a mold opening is simple and the mold opening cost is reduced, and the stator skeleton is small in volume and the injection molding process is not easy to generate large deformation. At the same time, it is less likely to be damaged during production, transportation and use, and the economic loss caused by the damage of the single radial bearing stator skeleton is also smaller.
- each winding corresponds to the radial control direction of a radial magnetic suspension bearing, which reduces the possibility of errors such as multiple winding or less winding when winding, and reduces the defective product rate.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种径向磁悬浮轴承定子骨架,其在周向上具有依次首尾连接的多个分块骨架(1);其中,各分块骨架(1)与径向磁悬浮轴承的径向控制方向一一对应。通过上述设置可以对每个分块骨架均单独进行绕线,避免作业人员将铜线绕到不同的分块骨架上,进而降低了作业人员在绕线时出错的可能性,提高了定子骨架产品的良品率。此外还披露了一种径向磁悬浮轴承定子组件和径向磁悬浮轴承。
Description
本发明涉及径向磁悬浮技术领域,特别是涉及一种径向磁悬浮轴承及其定子骨架和定子组件。
通常,现有的径向磁悬浮轴承定子骨架如图1所示,其为一个整体式的骨架。一般采用一个整体式骨架1’插入径向磁悬浮轴承定子铁芯的一端,并采用另一个整体式骨架1’插入径向磁悬浮轴承定子铁芯的另一端,从而两个整体式骨架1’与径向磁悬浮轴承定子铁芯形成一个整体,之后在径向轴承定子铁芯的线槽对应的骨架上进行铜线绕线。
其中,上述整体式径向轴承定子骨架1’的体积一般较大,导致开模复杂,开模成本较高;同时由于整体式径向轴承定子骨架1’的壁较薄,注塑过程易变形,产品合格率较难控制;其次,当径向轴承定子骨架1’在运输和使用时,如果产生小部位的损伤,整个骨架就无法使用,造成较大损失;另外,在定子骨架1’上绕铜线时由于无明显标识,易出现多绕或少绕等错误。
发明内容
有鉴于此,本发明提供一种径向磁悬浮轴承及其定子骨架和定子组件,主要目的在于解决现有整体式定子骨架在绕线时容易出错的技术问题。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明的实施例提供一种径向磁悬浮轴承定子骨架,其在周向上具有依次首尾连接的至少两个分块骨架;
其中,各分块骨架与径向磁悬浮轴承的径向控制方向一一对应。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
在前述的径向磁悬浮轴承定子骨架中,可选的,各分块骨架均具有相同的结构。
在前述的径向磁悬浮轴承定子骨架中,可选的,相邻的两个分块骨架通过卡接的方式连接。
在前述的径向磁悬浮轴承定子骨架中,可选的,所述分块骨架沿周向上的一端具有凹入部,另一端具有凸出部;
其中,一个分块骨架的凸出部用于插入相邻另一分块骨架的凹入部,以使相邻的两个分块骨架卡接。
在前述的径向磁悬浮轴承定子骨架中,可选的,所述分块骨架沿周向上的一端具有第一台阶,另一端具有第二台阶,所述第一台阶与所述第二台阶两者沿所述定子骨架的轴向方向反向设置,以在所述分块骨架沿周向上两端中的一端形成所述的凸出部,另一端形成所述的凹入部。
在前述的径向磁悬浮轴承定子骨架中,可选的,所述凹入部和所述凸出部均位于所述分块骨架的相应端的中部。
在前述的径向磁悬浮轴承定子骨架中,可选的,所述分块骨架包括基体、和凸设于所述基体一侧的绝缘部;
所述绝缘部用于与所述基体的所述一侧的端面配合,对定子铁芯的至少一个极柱提供绝缘保护。
另一方面,本发明的实施例还提供一种径向磁悬浮轴承定子组件,其包括上述任一种所述的径向磁悬浮轴承定子骨架。
另一方面,本发明的实施例还提供一种径向磁悬浮轴承,其包括上述任一种所述的径向磁悬浮轴承定子骨架。
借由上述技术方案,本发明径向磁悬浮轴承及其定子骨架和定子组件至少具有以下有益效果:
在本发明提供的技术方案中,因为将定子骨架在周向上分成至少 两个依次首尾连接的分块骨架,并且各分块骨架与径向磁悬浮轴承的径向控制方向一一对应,从而可以对每个分块骨架均单独进行绕线,避免作业人员将铜线绕到不同的分块骨架上,进而降低了作业人员在绕线时出错的可能性,提高了定子骨架产品的良品率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
图1是现有技术中的一种径向磁悬浮轴承定子骨架的结构示意图;
图2是本发明的一实施例提供的一种径向磁悬浮轴承定子骨架的分解结构示意图;
图3是本发明的一实施例提供的一种径向磁悬浮轴承的定子铁芯的结构示意图;
图4是本发明的一实施例提供的一种径向磁悬浮轴承定子骨架的分块骨架的结构示意图;
图5是本发明的一实施例提供的一种相邻两个分块骨架的连接示意图;
图6是本发明的一实施例提供的另一种相邻两个分块骨架的连接示意图。
附图标记:1、分块骨架;11、凸出部;12、凹入部;100、定子骨架;101、第一台阶;102、第二台阶;111、基体;112、绝缘部;1111、基体的一侧的端面;2、定子铁芯;21、极柱;22、线槽。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明申请的具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的 “一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
如图2所示,本发明的一个实施例提出的一种径向磁悬浮轴承定子骨架100,其在周向上具有依次首尾连接的至少两个分块骨架1。其中,各分块骨架1与径向磁悬浮轴承的径向控制方向一一对应。
下面以一个四方向控制的径向磁悬浮轴承为例具体对“各分块骨架1与径向磁悬浮轴承的径向控制方向一一对应”这句话解释说明。此处的四方向控制是指径向磁悬浮轴承在四个方向上分别产生磁力,以对转子进行控制。如图3所示,该径向磁悬浮轴承的四个径向控制方向分别为X+、X-、Y+和Y-。图3提供了一种四方向控制的径向轴承定子铁芯2的结构示意图,图中根据径向磁悬浮轴承的四个径向控制方向将定子铁芯2划分为四部分,分别为图中X+、X-、Y+和Y-各自相对应的部分。上述“各分块骨架1与径向磁悬浮轴承的径向控制方向一一对应”具体是指各分块骨架1与定子铁芯2上X+、X-、Y+和Y-四个区域一一对应。这里需要说明的是:此处的四方向控制的径向磁悬浮轴承仅为示例,不用于对本发明的技术方案产生限制。径向磁悬浮轴承也可以为6方向控制、8方向控制等。
在本发明提供的技术方案中,因为将定子骨架100在周向上分成至少两个依次首尾连接的分块骨架1,并且各分块骨架1与径向磁悬浮轴承的控制方向一一对应,从而可以对每个分块骨架1均单独进行绕线,避免作业人员将铜线绕到不同的分块骨架1上,降低了不同分块骨架1之间出现串线的可能性,进而提高了定子骨架100产品的良品率。
另外,本发明的技术方案通过将现有的整体式定子骨架100按径向磁悬浮轴承的径向控制方向进行分块,以形成多个小的分块骨架1,使用时再将多个小的分块骨架1进行组装,就等效的将体积大的薄壁骨架变成了体积小的正常骨架,如此开模简单且降低了开模费用;此外,由于分块骨架1的体积较小,使得分块骨架1的注塑过程不易产生大的变形。同时分块骨架1在生产、运输和使用过程中受损伤的可 能更小,并且单个分块骨架1发生损伤时也可以及时进行更换,相对于更换整个定子骨架100,分块骨架1发生损伤后更换的成本较低。
进一步的,如图2所示,前述各分块骨架1均可以具有相同的结构,如此可以公用同一个模具进行开模,从而降低了开模成本,并且通用性更强。
进一步的,前述相邻的两个分块骨架1通过卡接的方式连接,如此具有方便连接的技术效果。
进一步的,如图5和图6所示,前述分块骨架1沿周向上的一端具有凹入部12,另一端具有凸出部11。其中,一个分块骨架1的凸出部11用于插入相邻另一分块骨架1的凹入部12,以使相邻的两个分块骨架1卡接。在本示例中,通过凹入部12与凸出部11相配合的方式实现卡接,其结构相对较简单,无需额外部件进行配合。
在一个示例中,如图5所示,前述的分块骨架1沿周向上的一端具有第一台阶101,另一端具有第二台阶102。其中,第一台阶101与第二台阶102两者沿定子骨架的轴向方向反向设置,以在分块骨架1沿周向上两端中的一端形成前述的凸出部11,另一端形成前述的凹入部12,如此当一个分块骨架1的凸出部11插入相邻分块骨架1的凹入部12时可以实现该两个分块骨架1的卡接连接。
在另一个示例中,如图6所示,前述的凹入部12和凸出部11可以均位于分块骨架1的相应端的中部,如此当一个分块骨架1的凸出部11插入相邻分块骨架1的凹入部12时可以实现该两个分块骨架1在轴向上的完全定位,从而其连接稳定性更佳。
进一步的,如图4所示,前述的分块骨架1可以包括基体111、和凸设于基体111一侧的绝缘部112。绝缘部112用于与基体111的一侧的端面1111配合,对定子铁芯2的至少一个极柱21提供绝缘保护。如图3和图4所示,绝缘部112可以用于包覆定子铁芯2的极柱21的侧面,而位于基体111的一侧的端面1111则用于包覆定子铁芯2的极柱21的端面,如此绝缘部112与基体111的一侧的端面1111配合可以对定子铁芯2的极柱21的一端完全提供绝缘保护。其中, 图4中的单个分块骨架1可以对定子铁芯2的两个极柱21提供绝缘保护。
这里需要说明的是:上述的基体111也是由绝缘材料制成。
本发明的实施例还提供一种径向磁悬浮轴承定子组件,其包括上述任一示例中的径向磁悬浮轴承定子骨架100。
本发明的实施例还提供一种径向磁悬浮轴承,其包括上述任一示例中的径向磁悬浮轴承定子骨架100。
在上述实施例中,本发明提供的径向磁悬浮轴承以及径向磁悬浮轴承定子组件由于设置上述径向磁悬浮轴承定子骨架100的缘故,因此也具有避免作业人员将铜线绕到不同的分块骨架1上的优点。
下面介绍一下本发明的工作原理和优选实施例。
本发明提供的技术方案解决了如下技术问题:1、解决了径向轴承定子骨架100开模体积大且复杂的问题;2、可以减小径向轴承定子骨架100在生产、运输、使用过程中损坏的可能,降低单个径向轴承定子骨架100损坏带来的损失;3、可以减小绕线时多绕或少绕等出错的可能,降低了不良品率。
本发明的发明点主要包括:(1)本发明提供的技术方案将径向磁悬浮轴承定子骨架100由一个整体按径向控制方向分离开来,形成几个相同的分块,即分块骨架1。分块式径向磁悬浮轴承定子骨架100在开模时结构简单,减小了开模体积,降低了开模费用。(2)分块式径向磁悬浮轴承定子骨架100的体积减小四分之三或更多,注塑加工过程中不易产生大的变形,降低了不良品率。在包装、运输和使用过程中,出现受损开裂等伤害可能性小,且单个受损时经济损失小。(3)分块式径向磁悬浮轴承定子骨架100的一个分块骨架1对应一个径向磁悬浮轴承的径向控制方向,在绕铜线时更清晰,减小多绕或少绕等出错的可能,降低了不良品率。
分块式径向磁悬浮轴承定子骨架100的最优化方案如最优技术图2至图6所示。它将径向磁悬浮轴承定子骨架100的定子按照径向轴承定子铁芯2图中径向控制方向进行分块,径向磁悬浮轴承定子铁 芯2控制的每一个方向对应一个分块骨架1。多个分块骨架1可以拼接成整个定子骨架100的形状,之后直接在每个分块骨架1上进行铜线绕线,各个分块骨架1均绕铜线后即完成整体铜线的绕制。这种方案将整个定子骨架100按照径向轴承定子铁芯2的控制方向进行了最细致的划分,其骨架体积变小,开模时变简单,体现了分块式径向磁悬浮轴承定子骨架100的有益效果。同时,分块式径向磁悬浮轴承定子骨架100在绕线时,各个分开骨架均单独分开绕线。一个分块骨架1从一边开始绕线,到另一边结束,从而完成一个径向磁悬浮轴承径向控制方向的绕线,使每两个相邻分块骨架1之间不会出现连接的铜线,即各个径向控制方向的铜线是区分开来的,保证了分块式径向轴承定子骨架100绕线的正确性。
分块式径向磁悬浮轴承定子骨架100的方案不局限于最优技术图所示结构,其分块仅需要考虑的是径向磁悬浮轴承的径向控制方向。由于径向磁悬浮轴承最常见的为4方向控制,所以对应4方向的分块骨架1的外部形状一般为90°的形状。当径向磁悬浮轴承的径向控制方向对应的极柱21和线槽22减少时,只需对应改变分块骨架1内部结构对应的极柱21和线槽22的数量即可,分块骨架1的外部形状仍可以为90°形状。比如当径向磁悬浮轴承的径向控制方向的数量增多时,如出现6方向控制或8方向控制,其分块骨架1的外部形状则需要对应改变为60°或45°来对应6个或8个控制方向。
根据以上的实施例,本发明的径向磁悬浮轴承及其定子骨架100和定子组件至少具有下列优点:
一般的,径向磁悬浮轴承定子骨架为一个整体式的定子骨架,两个整体式定子骨架对插作为完整定子骨架与径向磁悬浮轴承定子铁芯2配合。但是当轴承定子体积大(如定子铁芯3图或更大)时,整体式定子骨架体积也相应增大,但定子骨架的壁厚不能增加太多,定子骨架壁的厚度相对整体骨架体积而言就薄很多。定子骨架体积大而壁薄,从而造成开模费用增加、注塑易变形、骨架易受损等问题。而本发明中将整体式定子骨架按径向磁悬浮轴承的径向控制方向进行 分块,形成多个相同的分块,使用时再进行组装,就等效的将体积大的薄壁定子骨架变成了体积小的正常定子骨架。如此开模简单且降低了开模费用,定子骨架体积小注塑过程不易产生大的变形。同时在生产、运输、使用过程中受损伤的可能更小,单个径向轴承定子骨架损坏造成的经济损失也更小。且每次绕线对应一个径向磁悬浮轴承的径向控制方向,减小了绕线时多绕或少绕等出错的可能,降低了不良品率。
这里需要说明的是:在不冲突的情况下,本领域的技术人员可以根据实际情况将上述各示例中相关的技术特征相互组合,以达到相应的技术效果,具体对于各种组合情况在此不一一赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (9)
- 一种径向磁悬浮轴承定子骨架,其特征在于,其在周向上具有依次首尾连接的至少两个分块骨架(1);其中,各分块骨架(1)与径向磁悬浮轴承的径向控制方向一一对应。
- 如权利要求1所述的径向磁悬浮轴承定子骨架,其特征在于,各分块骨架(1)均具有相同的结构。
- 如权利要求1或2所述的径向磁悬浮轴承定子骨架,其特征在于,相邻的两个分块骨架(1)通过卡接的方式连接。
- 如权利要求3所述的径向磁悬浮轴承定子骨架,其特征在于,所述分块骨架(1)沿周向上的一端具有凹入部(12),另一端具有凸出部(11);其中,一个分块骨架(1)的凸出部(11)用于插入相邻另一分块骨架(1)的凹入部(12),以使相邻的两个分块骨架(1)卡接。
- 如权利要求4所述的径向磁悬浮轴承定子骨架,其特征在于,所述分块骨架(1)沿周向上的一端具有第一台阶(101),另一端具有第二台阶(102),所述第一台阶(101)与所述第二台阶(102)两者沿所述定子骨架的轴向方向反向设置,以在所述分块骨架(1)沿周向上两端中的一端形成所述的凸出部(11),另一端形成所述的凹入部(12)。
- 如权利要求4所述的径向磁悬浮轴承定子骨架,其特征在于,所述凹入部(12)和所述凸出部(11)均位于所述分块骨架(1)的相应端的中部。
- 如权利要求1至6中任一项所述的径向磁悬浮轴承定子骨架,其特征在于,所述分块骨架(1)包括基体(111)、和凸设于所述基体(111)一侧的绝缘部(112);所述绝缘部(112)用于与所述基体(111)的所述一侧的端面 (1111)配合,对定子铁芯(2)的至少一个极柱(21)提供绝缘保护。
- 一种径向磁悬浮轴承定子组件,其特征在于,包括权利要求1至7中任一项所述的径向磁悬浮轴承定子骨架。
- 一种径向磁悬浮轴承,其特征在于,包括权利要求1至7中任一项所述的径向磁悬浮轴承定子骨架。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710785961.1 | 2017-09-04 | ||
CN201710785961.1A CN107559302A (zh) | 2017-09-04 | 2017-09-04 | 径向磁悬浮轴承及其定子骨架和定子组件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019041684A1 true WO2019041684A1 (zh) | 2019-03-07 |
Family
ID=60978939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/118248 WO2019041684A1 (zh) | 2017-09-04 | 2017-12-25 | 径向磁悬浮轴承及其定子骨架和定子组件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107559302A (zh) |
WO (1) | WO2019041684A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109654121B (zh) | 2018-12-18 | 2024-07-05 | 珠海格力电器股份有限公司 | 磁悬浮骨架及轴承组件及轴承定子及压缩机及空调 |
CN111446789A (zh) * | 2020-05-15 | 2020-07-24 | 中科九微科技有限公司 | 一种安装骨架、整体式定子以及整体式定子的灌封方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008082426A (ja) * | 2006-09-27 | 2008-04-10 | Ntn Corp | 磁気軸受装置 |
CN103928992A (zh) * | 2013-01-15 | 2014-07-16 | 朱良俊 | 一种电机定子组件 |
CN204794632U (zh) * | 2015-07-24 | 2015-11-18 | 浙江三星机电股份有限公司 | 一种无刷直流电机的定子 |
CN105351358A (zh) * | 2015-12-11 | 2016-02-24 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁悬浮轴承骨架及磁悬浮轴承 |
CN205207432U (zh) * | 2015-12-14 | 2016-05-04 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁悬浮轴承定子组件 |
CN207111715U (zh) * | 2017-09-04 | 2018-03-16 | 珠海格力节能环保制冷技术研究中心有限公司 | 径向磁悬浮轴承及其定子骨架和定子组件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5150957B2 (ja) * | 2008-03-28 | 2013-02-27 | 本田技研工業株式会社 | 回転電機 |
JP5434081B2 (ja) * | 2009-01-08 | 2014-03-05 | 日産自動車株式会社 | 分割ステータコアと分割ステータコアの製造方法 |
JP5601799B2 (ja) * | 2009-07-10 | 2014-10-08 | パナソニック株式会社 | ステータおよびステータの製造方法 |
JP2012075213A (ja) * | 2010-09-28 | 2012-04-12 | Nidec Sankyo Corp | ステータ |
CN105317839A (zh) * | 2015-12-14 | 2016-02-10 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁悬浮轴承定子组件及制作方法 |
-
2017
- 2017-09-04 CN CN201710785961.1A patent/CN107559302A/zh active Pending
- 2017-12-25 WO PCT/CN2017/118248 patent/WO2019041684A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008082426A (ja) * | 2006-09-27 | 2008-04-10 | Ntn Corp | 磁気軸受装置 |
CN103928992A (zh) * | 2013-01-15 | 2014-07-16 | 朱良俊 | 一种电机定子组件 |
CN204794632U (zh) * | 2015-07-24 | 2015-11-18 | 浙江三星机电股份有限公司 | 一种无刷直流电机的定子 |
CN105351358A (zh) * | 2015-12-11 | 2016-02-24 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁悬浮轴承骨架及磁悬浮轴承 |
CN205207432U (zh) * | 2015-12-14 | 2016-05-04 | 珠海格力节能环保制冷技术研究中心有限公司 | 磁悬浮轴承定子组件 |
CN207111715U (zh) * | 2017-09-04 | 2018-03-16 | 珠海格力节能环保制冷技术研究中心有限公司 | 径向磁悬浮轴承及其定子骨架和定子组件 |
Also Published As
Publication number | Publication date |
---|---|
CN107559302A (zh) | 2018-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8598764B2 (en) | Insulation bobbin of a stator | |
WO2019041684A1 (zh) | 径向磁悬浮轴承及其定子骨架和定子组件 | |
US6452303B1 (en) | Stator for synchronous motors having more than two poles | |
US10224773B2 (en) | Rotor segment and rotor of an electric machine | |
US20130069479A1 (en) | Stator core | |
WO2017129073A1 (zh) | 折叠式立体双开口铁芯干式变压器 | |
US20190057805A1 (en) | Dry-type transformer coil and a winding method therefor | |
US8754565B2 (en) | Stator of an electric motor and process for producing it | |
CA2867248A1 (en) | Radial magnetic bearing and method of manufacture | |
US20090066458A1 (en) | Winding structure of a transformer | |
US20090066459A1 (en) | Transformer Structure | |
US9786429B2 (en) | Bobbin and magnetic module comprising the same | |
JP2009264892A (ja) | レゾルバの渡り線傷付及び浮き防止構造 | |
US11336141B2 (en) | Insulator | |
US11171532B2 (en) | Motor stator | |
JP2009027841A (ja) | レゾルバステータ構造 | |
US20180068783A1 (en) | Reactor including first end plate and second end plate | |
WO2014119022A1 (ja) | モータの磁石配置構造、ロータおよびipmモータ | |
JP3216835U (ja) | モールド変圧器用コイルスペーサ構造体 | |
WO2016194182A1 (ja) | 固定子 | |
CN203800713U (zh) | 一种内转子电机磁极组件和电机定子组件 | |
JP7281862B2 (ja) | 回転電機の固定子及び回転電機 | |
US20220385122A1 (en) | Motor | |
CN204597646U (zh) | 两件式镶嵌定子 | |
CN208796806U (zh) | 新型铜板式平板变压器结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17923521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17923521 Country of ref document: EP Kind code of ref document: A1 |