WO2019038931A1 - Outboard motor lifting device - Google Patents

Outboard motor lifting device Download PDF

Info

Publication number
WO2019038931A1
WO2019038931A1 PCT/JP2017/031566 JP2017031566W WO2019038931A1 WO 2019038931 A1 WO2019038931 A1 WO 2019038931A1 JP 2017031566 W JP2017031566 W JP 2017031566W WO 2019038931 A1 WO2019038931 A1 WO 2019038931A1
Authority
WO
WIPO (PCT)
Prior art keywords
outboard motor
chamber
state
signal
cylinder
Prior art date
Application number
PCT/JP2017/031566
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 齋藤
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Publication of WO2019038931A1 publication Critical patent/WO2019038931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Definitions

  • the present invention relates to an outboard motor lifting apparatus for lifting and lowering an outboard motor of a hull.
  • Japanese Patent Publication No. 58-028159 Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2-99494"
  • the speed of raising and lowering the outboard motor can be automatically changed.
  • An object of the present invention is to realize an outboard motor lifting apparatus capable of automatically changing the speed of lifting and lowering of the outboard motor.
  • the present invention relates to an outboard motor elevator apparatus for raising and lowering an outboard motor, comprising: one or more tilt cylinders; and one or more trim cylinders; A piston for dividing a cylinder into a first chamber and a second chamber, and a rod connected to the piston and penetrating the first chamber of the trim cylinder, each tilt cylinder comprising the tilt cylinder as the first chamber
  • the outboard motor lifting device includes: a piston divided into a second chamber; and a rod connected to the piston and penetrating the first chamber of the tilt cylinder, the outboard motor lifting device comprising: a hydraulic source; the hydraulic source; Connected to the first oil passage connecting the second chambers of the plurality of tilt cylinders and the second chamber of the one or more trim cylinders, and the first chamber of at least one of the one or more trim cylinders A second oil passage, and a switching valve provided between the second chamber of the one or more tilt cylinders in the first oil passage and the second chamber of the one or more trim cylinders
  • the outboard motor lifting apparatus includes: one or more tilt cylinders; and one or more trim cylinders; A piston divided into a chamber and a second chamber, and a rod connected to the piston and penetrating the first chamber of the trim cylinder, wherein each tilt cylinder includes the tilt cylinder, the first chamber and the second chamber And the rod connected to the piston and penetrating through the first chamber of the tilt cylinder, the outboard motor lifting device includes a hydraulic pressure source, the hydraulic pressure source, and the one or more tilt cylinders A first oil passage connecting the second chamber and the switching valve provided on the first oil passage, and connecting the hydraulic pressure source and the second chamber of the tilt cylinder; Hydraulic source and above A second connection state for connecting the second cylinder of the rim cylinder and a second connection for connecting the hydraulic pressure source and the second chamber of the tilt cylinder while not connecting the hydraulic pressure source and the second chamber of the trim cylinder
  • An outboard motor elevator apparatus comprising:
  • the speed of raising and lowering of the outboard motor can be automatically changed.
  • FIG. 2 is a view showing a usage example of the outboard motor elevator according to Embodiment 1 and a schematic internal configuration of the outboard motor.
  • FIG. 1 is a front view showing an example of the configuration of an outboard motor elevator according to a first embodiment.
  • FIG. 1 is a side sectional view of an outboard motor elevator according to a first embodiment.
  • FIG. 2 is a diagram showing a hydraulic circuit of the outboard motor elevator according to Embodiment 1 together with a control unit.
  • FIG. 5 is a circuit diagram showing an exemplary configuration of a control unit according to the first embodiment.
  • FIG. 6 is a view showing an example of control of a switching valve by a control unit according to the first embodiment.
  • FIG. 1 is a front view showing an example of the configuration of an outboard motor elevator according to a first embodiment.
  • FIG. 1 is a side sectional view of an outboard motor elevator according to a first embodiment.
  • FIG. 2 is a diagram showing a hydraulic circuit of the outboard motor
  • FIG. 7 is a block diagram showing the configuration of a control unit according to a second embodiment.
  • FIG. 13 is a block diagram showing the configuration of a control unit according to a third embodiment.
  • FIG. 13 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fourth embodiment together with a control unit.
  • FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fifth embodiment together with a control unit.
  • FIG. 7 is a view showing a configuration of an outboard motor and its surroundings according to Embodiment 1 to 5.
  • Embodiment 1 an outboard motor elevator 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • the outboard motor lifting device 1 is a device for lifting and lowering the outboard motor 300.
  • FIG. 1A is a view showing an application example of the outboard motor lifting device 1, and shows the outboard motor lifting device 1 attached to the rear of the hull (main body) 200 and the outboard motor 300. .
  • the solid line in (a) of FIG. 1 indicates a state in which the outboard motor 300 is lowered, and the broken line in (a) of FIG. 1 indicates a state in which the outboard motor 300 is raised.
  • FIG. 1B is a schematic view schematically showing an internal configuration of the outboard motor 300. As shown in FIG. As shown in (b) of FIG.
  • the outboard motor 300 includes an engine 301, a propeller 303, and a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303.
  • the power transmission mechanism is constituted by, for example, a shaft or a gear.
  • FIG. 2 is a front view showing an example of the configuration of the outboard motor elevator 1
  • FIG. 3 is a side sectional view of the outboard motor elevator 1.
  • the outboard motor lifting apparatus 1 includes a cylinder unit 10, a pair of stern brackets 70 mounted on the rear of the hull 200, and a swivel bracket 80 mounted on the outboard motor 300. .
  • the cylinder unit 10 includes, as an example, two trim cylinders 12, one tilt cylinder 14, a motor 16, a tank 18, an upper joint 22, and a base 24, as shown in FIG.
  • the trim cylinder 12 and the tilt cylinder 14 are provided so as not to move relative to the base 24.
  • the number of trim cylinders 12 and tilt cylinders 14 provided in the cylinder unit 10 does not limit the present embodiment, and the cylinder unit 10 including one or more trim cylinders 12 and one or more tilt cylinders 14 is also implemented in this embodiment. Included in the form. Also, the following description is true for the cylinder unit 10 having such an arbitrary number of trim cylinders 12 and tilt cylinders 14.
  • the trim cylinder 12 includes a cylinder 12a, a piston 12c (see FIG. 4) slidably provided in the cylinder 12a, and a piston rod 12b fixed to the piston 12c.
  • the tilt cylinder 14 also includes a cylinder 14a, a piston 14c (see FIG. 4) slidably provided in the cylinder 14a, and a piston rod 14b fixed to the piston 14c.
  • through holes are respectively formed in the base 24 and the stern bracket 70, and the base 24 and the stern bracket 70 are relative to each other through the undershaft 26 penetrating the through holes. It is rotatably connected.
  • an upper joint 22 is provided at the tip of the piston rod 14 b, and a support member 28 is fixed to the swivel bracket 80.
  • a through hole is formed in each of the upper joint 22 and the support member 28, and the upper joint 22 and the swivel bracket 80 are connected so as to be relatively rotatable via the upper shaft 23 passing through the through holes of these. There is.
  • through holes are respectively formed at upper ends of the stern bracket 70 and the swivel bracket 80, and as shown in FIG. 3, the stern bracket 70 and the swivel bracket 80 are formed by the support shaft 32 penetrating the through holes. Are connected rotatably relative to each other.
  • the angular area of the outboard motor 300 adjusted by the raising and lowering of the piston rod 14b of the tilt cylinder 14 is composed of the trim area and the tilt area shown in (a) of FIG.
  • the tilt area is an angle area where the tip of the piston rod 12 b of the trim cylinder 12 can not abut the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 14 b of the tilt cylinder 14.
  • the trim area is an angle area where the tip of the piston rod 12b of the trim cylinder 12 can contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 12b of the trim cylinder 12 and the tilt It can be done by both of the piston rods 14 b of the cylinder 14.
  • the angle adjustment of the outboard motor 300 may be performed only by the piston rod 14b of the tilt cylinder 14 even in the tilt region.
  • FIG. 4 is a diagram showing a hydraulic circuit of the outboard motor lifting apparatus 1 together with the control unit 100. As shown in FIG. In FIG. 4, the same components as those described above are denoted by the same reference numerals.
  • the outboard motor lifting device 1 includes a motor 16, a pump 42, a first check valve 44a, a second check valve 44b, an up blow valve 46a, a down blow valve 46b, and a main valve ( Pump port 48, manual valve 52, thermal valve 54, tilt cylinder 14, trim cylinder 12, tank 18, filters F1 to F2, first flow path C1 to seventh flow path C7, and control unit 100 There is.
  • the pump 42 as a hydraulic pressure source driven by the motor 16 performs any one of “forward rotation”, “reverse”, and “stop” according to the elevation signal SIG_UD indicating the elevation instruction of the outboard motor by the driver.
  • the hydraulic oil is stored in the tank 18.
  • the main valve 48 includes a spool 48a, a first check valve 48b, and a second check valve 48c.
  • the main valve 48 is partitioned by the spool 48 a into a first shuttle chamber 48 d on the first check valve 48 b side and a second shuttle chamber 48 e on the second check valve 48 c side.
  • the first flow path C1 connects the pump 42 and the first shuttle chamber 48d, and also connects the pump 42 and the first check valve 44a. Further, the up blow valve 46a is connected to the first flow passage C1.
  • the second flow path C2 connects the pump 42 and the second shuttle chamber 48e, and also connects the pump 42 and the second check valve 44b. Further, the down blow valve 46 b is connected to the second flow path C2.
  • connection in the oil passage configuration described in the present specification is indirectly connected via the other oil passage element or directly connected by the flow passage without passing through another hydraulic element. Both cases are included.
  • other hydraulic elements include, for example, a valve, a cylinder, and a filter.
  • the tilt cylinder 14 is divided into an upper chamber 14f and a lower chamber 14g by a piston 14c, and the piston 14c of the tilt cylinder 14 is provided with a shock blow valve 14d and a return valve 14e as shown in FIG.
  • the trim cylinder 12 is divided into an upper chamber 12f and a lower chamber 12g by a piston 12c.
  • the “upper” and “lower” in the “upper chamber” and “lower chamber” of the tilt cylinder 14 and the trim cylinder 12 are simply names for distinguishing between the upper chamber and the lower chamber, respectively. Is not necessarily meant to be located vertically above the lower chamber. Therefore, the "upper chamber” may be expressed as a first chamber, which is a chamber through which the rod connected to the piston passes, of the first chamber and the second chamber partitioned by the piston in the cylinder. The “lower chamber” may be expressed as a second chamber which is a chamber into which the rod connected to the piston does not penetrate, of the first chamber and the second chamber partitioned by the piston in the cylinder.
  • the first check valve 48b is connected to the lower chamber 14g of the tilt cylinder 14 via the filter F1 and the third flow passage C3.
  • the second check valve 48c is connected to the upper chamber 14f of the tilt cylinder 14 via the filter F2 and the fourth flow passage C4.
  • an upper chamber oil supply valve 56 is connected to the fourth flow path C4.
  • a manual valve 52 and a thermal valve 54 are connected to a fifth flow path C5 connecting the third flow path C3 and the fourth flow path C4.
  • the first channel C1 and the third channel C3 connecting the pump 42 and the lower chamber 14g of the tilt cylinder 14 via the main valve 48 and the filter F1 are collectively referred to as a first oil channel.
  • the sixth flow path C6 (the flow path is also referred to as a first oil path, and may also be referred to as a third oil path) is a third flow path connected to the lower chamber 14g of the tilt cylinder 14. C3 and the lower chamber 12g of the trim cylinder 12 are connected. Moreover, the switching valve 60 is arrange
  • the seventh flow passage C7 (also referred to as a second oil passage) is connected to the upper chamber 12f of the trim cylinder 12. As shown in FIG. 4, the seventh channel C7 is provided with a first branch channel C7-1 and a second branch channel C7-2 connected in parallel with each other. There is. A holding valve 71 is provided on the first branch flow passage C7-1. A protective valve 72 is provided on the second branch flow channel C7-2.
  • the seventh flow path C7 is a second shuttle chamber connected to the upper chamber 14f of the tilt cylinder 14 out of the two shuttle chambers 48d and 48e of the main valve 48 via the holding valve 71 and the protection valve 72. Connected to 48e.
  • the holding valve 71 does not open. Since the hydraulic oil is not supplied to the upper chamber 12f of the trim cylinder 12 unless the holding valve 71 is opened, the piston rod 12b of the trim cylinder 12 is not lowered. Thus, the holding valve 71 has a role of holding the position of the piston rod 12 b of the trim cylinder 12.
  • the protective valve 72 opens when the hydraulic pressure of the upper chamber 12 f of the trim cylinder 12 becomes equal to or higher than a predetermined pressure. As a result, the hydraulic oil is recovered from the upper chamber 12 f of the trim cylinder 12 to the second shuttle chamber 48 e of the main valve 48. Thus, the protection valve 72 has a role of suppressing an excessive pressure increase in the upper chamber 12 f of the trim cylinder 12.
  • the outboard motor lifting device 1 is provided with the holding valve 71 and the protection valve 72 to maintain the position of the piston rod 12 b of the trim cylinder 12 while the excessive pressure in the upper chamber 12 f of the trim cylinder 12. You can control the rise of
  • the ninth flow path C9 connects the tank 18 with the first check valve 44a and the second check valve 44.
  • the first check valve 44a supplies the hydraulic fluid from the tank 18 to the pump 42 when the pump 42 tries to recover the hydraulic fluid even when the trim cylinder 12 and the tilt cylinder 14 contract and complete. Do.
  • the second check valve 44 b supplies hydraulic oil of the displacement volume of the piston rod 14 b from the tank 18 to the pump 42, and when the trim cylinder 12 extends, The hydraulic fluid of the displacement volume of the piston rod 12 b is supplied from the tank 18 to the pump 42.
  • the up blow valve 46 a returns excess hydraulic oil to the tank 18 when the pump 42 supplies hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are extended.
  • the down blow valve 46b returns the hydraulic fluid of the approach volume of the piston rod 14b to the tank 18 when the tilt cylinder 14 contracts, and when the trim cylinder 12 contracts, the down blow valve 46b takes the approach volume of the piston rod 12b.
  • the hydraulic oil of the above is returned to the tank 18.
  • the manual valve 52 can be manually opened and closed, and the hydraulic oil is returned from the lower chamber 14 g of the tilt cylinder 14 to the tank 18 by opening the manual valve 52 at the time of maintenance of the outboard motor lifting apparatus 1 or the like. Be Thereby, the tilt cylinder 14 can be contracted manually.
  • the thermal valve 54 returns the surplus hydraulic oil to the tank 18 when the volume of the hydraulic oil increases due to the temperature rise.
  • the switching valve 60 is provided between the lower chamber 14g of the tilt cylinder 14 and the lower chamber 12g of the trim cylinder 12 in the sixth flow passage C6. As shown in FIG. 4, the switching valve 60 provided on the sixth flow path C6 is driven by the solenoid 62 and the plunger 62 for driving the sixth flow path C6 in the blocking state or the opening state. Is equipped.
  • a control signal SIG_CONT is supplied to the solenoid 62 from the control unit 100 described later, and the ON / OFF of the solenoid 62 is switched based on the control signal SIG_CONT.
  • the switching valve 60 closes the sixth flow passage C6 by being closed when the solenoid 62 is OFF, and opens the sixth flow passage C6 by being opened when the solenoid 62 is ON. It may be configured as a normally closed valve, or the sixth flow path C6 is opened by being open when the solenoid is off, and the sixth flow by being closed when the solenoid is on. It may be configured as a normally open valve that shuts off the passage C6.
  • the switching valve 60 When the switching valve 60 is configured as a normally open valve, the sixth channel C6 is opened even if the switching valve 60 does not operate, that is, the lower chamber of the trim cylinder 12 Since 12 g is maintained in communication with the lower chamber 14 g of the tilt cylinder 14, angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
  • the switching valve 60 when the switching valve 60 is configured as a normally closed valve, even if the switching valve 60 does not operate, the sixth channel C6 is shut off, that is, the trim cylinder 12
  • the lower chamber 12g and the lower chamber 14g of the tilt cylinder 14 are kept out of communication with each other. Therefore, since the hydraulic oil does not flow out from the lower chamber 14g of the tilt cylinder 14, the angle adjustment of the outboard motor 300 can be performed only by the tilt cylinder 14, and the outboard motor 300 can be held continuously.
  • the plunger 64 is provided with a trim lower chamber protection valve 66 for preventing an excessive rise of the hydraulic pressure in the lower chamber 12g of the trim cylinder 12 in the closed state of the sixth flow passage C6. There is.
  • the solenoid 62 is the on / off solenoid, and the plunger 64 takes the sixth channel C6 in either the closed state or the open state as an example. It does not limit the form.
  • a proportional solenoid may be employed as the solenoid 62 so that the plunger 64 can be controlled to any position from the blocking position to the opening position. With such a configuration, the flow rate of the hydraulic oil passing through the sixth flow passage C6 can be finely controlled, so that the ascent and descent of the outboard motor 300 can be more finely controlled.
  • the outboard motor lifting device 1 includes a control unit 100.
  • the control unit 100 controls the switching valve 60 with reference to the ignition signal SIG_IG indicating turning on / off of the ignition of the hull 200, the hull state signal SIG_IN, and the elevation signal SIG_UD indicating the elevation instruction of the outboard motor 300 by the driver.
  • the generated control signal SIG_CONT is supplied to the switching valve 60.
  • the state signal which shows the state of the outboard motor 300 is mentioned as an example of ship state signal SIG_IN, the embodiment as described in this specification is not limited to this.
  • Various examples of hull condition signals are described below.
  • the outboard motor lifting device 1 can automatically change the speed of raising and lowering the outboard motor according to the state of the outboard motor 300.
  • FIG. 5 is a circuit diagram showing one configuration example of the control unit 100. As shown in FIG. In this example, the ignition signal SIG_IG, the hull state signal SIG_IN, and the elevation signal SIG_UD are all input to the control unit 100 as analog signals.
  • the control unit 100 is configured to include a first connector 101 to a fourth connector 104, a first switching element 121 to a fifth switching element 125, and the like.
  • the first switching element 121, the third switching element 123, and the fourth switching element 124 are, for example, transistors
  • the second switching elements are, for example, FETs (field effect transistors). It is done.
  • An ignition signal SIG_IG is input to the collector electrode of the first switching element 121, the collector electrode of the third switching element 123, and the drain electrode of the second switching element 122 via the first connector 101.
  • the hull state signal SIG_IN is input to the base electrode of the first switching element 121 via the second connector 102 and the diode 111, and the emitter of the first switching element 121 is input to the base electrode of the third switching element 123.
  • a current is input through the diode 112.
  • the elevation signal SIG_UD is input to the base electrode of the fourth switching element 124 via the third connector 103 and the diode 113, and the third connector 103 and the third electrode 103 are input to the base electrode of the fifth switching element 125.
  • An elevation signal SIG_UD is input via the diode 114.
  • a signal corresponding to the emitter current of the first switching element 121 is transmitted to the gate electrode of the second switching element 122 via the third switching element 123 and the fourth switching element, or the third switching element
  • the signal is input via the 123 and the fifth switching element. More specifically, the emitter current of the fourth switching element 124 and the emitter current of the fifth switching element 125 are input to the gate electrode of the second switching element 122 via the diode 115.
  • the control signal SIG_CONT is supplied from the source electrode of the second switching element 122 to the switching valve 60 via the fourth connector 104.
  • an engine signal indicating the state of the engine 301 provided in the outboard motor 300 can be given.
  • an engine signal is a signal which shows the number of rotations of engine 301, for example, and can be acquired from engine 301 as an example. Since the engine is off if the engine speed is 0 and the engine is on if the engine speed is not zero, the signal indicating the engine speed is also a signal indicating on / off of the engine.
  • the outboard motor elevator apparatus 1 automatically raises and lowers the speed of the outboard motor according to the state of the engine 301 provided in the outboard motor 300 as described below Can be changed to
  • the hull state signal SIG_IN there is a gear signal indicating whether the power transmission mechanism 302 provided in the outboard motor 300 is in a power transmittable state, that is, in an in-gear state.
  • the gear signal can be obtained from the power transmission mechanism 302 as an example.
  • the outboard motor lifting apparatus 1 moves the lifting speed of the outboard motor in accordance with the state of the power transmission mechanism 302 provided in the outboard motor 300 as will be seen below. It can be changed automatically.
  • the above-mentioned engine signal and in-gear signal are examples of the state signal indicating the state of the outboard motor 300.
  • FIG. 6 is a table exemplifying the state of the outboard motor 300 indicated by the hull state signal SIG_IN, the elevation instruction of the outboard motor by the driver indicated by the elevation signal SIG_UD, and the state of the switching valve 60 controlled by the control unit 100. It is.
  • the hull state signal SIG_IN is a signal related to the engine rotation unit of the engine 301 provided in the outboard motor 300, and the control unit 100 navigates when the engine rotation speed is equal to or more than the first threshold value for the rotation speed. It determines with it being a state and makes the switching valve 60 an open state.
  • the first threshold relating to the rotational speed has a positive value set appropriately.
  • the control unit 100 may be configured to determine that the vehicle is in the navigation state and to set the switching valve 60 in the open state when the engine speed exceeds the second threshold related to the speed.
  • the second threshold regarding the rotational speed has a value of 0 or more set appropriately.
  • control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the open state when the navigation state is determined.
  • control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the closed state when it is determined that the ship is in the stop state.
  • the outboard motor 300 is operated by the piston rod 14b of the tilt cylinder 14. Can be held firmly.
  • the control unit 100 sets the switching valve 60 in the open state. .
  • hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12.
  • the piston rod 12 b of the trim cylinder 12 is raised until it abuts on the swivel bracket 80.
  • the control of the switching valve 60 is not limited to the above-described example, and can be appropriately set in consideration of the user's convenience, the adaptability of the outboard motor lifting apparatus 1 to external force, and the like.
  • control unit 100 may set the switching valve 60 in the closed state.
  • control unit 100 may select either the open state or the closed state by referring to a user instruction signal indicating an instruction from the user, or by referring to another signal, the open state or One of the closed states may be selected.
  • FIG. 7 is a block diagram showing the configuration of the control unit 100a according to the present embodiment.
  • the outboard motor elevator according to the present embodiment includes a control unit 100a shown in FIG. 7 in place of the control unit 100 in the outboard motor elevator 1 according to the first embodiment.
  • the other configuration of the outboard motor elevator according to the present embodiment is the same as that of the outboard motor elevator 1 described in the first embodiment.
  • the control unit 100 a includes a hull state signal AD conversion circuit 131, an elevation signal AD conversion circuit 132, an arithmetic unit 133, and a control signal generation circuit 134. Also in the present embodiment, the hull state signal SIG_IN and the elevation signal SIG_UD are input to the control unit 100a as an analog signal. In FIG. 7, the ship state signal AD conversion circuit 131 is referred to as an input signal AD conversion circuit 131.
  • the hull state signal AD conversion circuit 131 is a conversion circuit that converts the hull state signal SIG_IN into a digital signal.
  • the hull state signal SIG_IN as the converted digital signal is supplied to the calculation unit 143.
  • the elevation signal AD conversion circuit 132 is a conversion circuit that converts the elevation signal SIG_UD into a digital signal.
  • the elevation signal SIG_UD as a converted digital signal is supplied to the calculation unit 143.
  • the operation unit 133 refers to the hull state signal SIG_IN and the elevation signal SIG_UD as digital signals, and determines which of the open state and the closed state the switching valve 60 should be in. A signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the control signal generation circuit 134 refers to the signal indicating the determination result, and generates the control signal SIG_CONT according to the determination result.
  • the generated control signal SIG_CONT is supplied to the switching valve 60.
  • the relationship between the hull state signal SIG_IN and the elevation signal SIG_UD determined by the calculation unit 133 and the state of the switching valve 60 is not limited to this embodiment, but as an example, it is the same as FIG. 6 of the first embodiment. It can be configured to be determined.
  • the outboard motor elevator since the outboard motor elevator according to the present embodiment includes the control unit 100a, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, if the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor can be automatically changed according to the state of the outboard motor.
  • FIG. 8 is a block diagram showing the configuration of the control unit 100b according to the present embodiment.
  • the outboard motor elevator includes a controller 100b shown in FIG. 8 in place of the controller 100 in the outboard motor elevator 1 according to the first embodiment.
  • the same members as those described above are denoted by the same reference numerals, and the description thereof is omitted.
  • control unit 100b includes a digital signal transmission / reception circuit 141, an elevation signal AD conversion circuit 132, an operation unit 143, and a control signal generation circuit 134.
  • the digital signal transmission / reception circuit 141 receives the digital signal D_SIG as a ship state signal, and supplies the received digital signal D_SIG to the calculation unit 143.
  • the digital signal D_SIG is a signal transmitted via a wired or wireless network configured on the hull 200, and includes input information INFO_IN.
  • the input information INFO_IN is information similar to the information indicated by the hull state signal SIG_IN described in the first and second embodiments.
  • the input information INFO_IN may include information equivalent to the state signal indicating the state of the outboard motor 300 described in the first and second embodiments.
  • Specific examples of the input information INFO_IN include, for example, a 1-bit flag indicating turning on and off of the engine 301, and a 1-bit flag indicating whether the power transmission mechanism 302 of the outboard motor 300 is in gear. .
  • the digital signal D_SIG may include various information on the hull 200 and various information obtained from outside the hull 200.
  • a specific standard for transmitting the digital signal D_SIG is not limited to this embodiment, but one example is NMEA 2000 (registered trademark) established by National Marine Electronics Association (NMEA).
  • the calculation unit 143 refers to the digital signal D_SIG supplied from the digital signal transmission / reception circuit 141 and the elevation signal SIG_UD as a digital signal supplied from the elevation signal AD conversion circuit 132, and opens the switching valve 60 in an open state. Decide which should be closed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
  • the relationship between the input information INFO_IN and the elevation signal SIG_UD determined by the calculation unit 143 and the state of the switching valve 60 is not limited to the present embodiment, but is determined similarly to FIG. 6 of the first embodiment as an example. Can be configured.
  • calculation unit 143 may be configured to determine whether the switching valve should be in the open state or in the closed state by further referring to other information included in the digital signal D_SIG.
  • the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, in the configuration in which the digital signal D_SIG includes information equivalent to the state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor may be automatically changed according to the state of the outboard motor. it can.
  • FIG. 9 is a diagram showing a hydraulic circuit of the outboard motor elevator 1a according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 9, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1a according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the seventh flow passage C7 is connected to the tank 18 via the holding valve 71 and the protection valve 72. That is, the seventh flow passage C7 connects the upper chamber 12f of the trim cylinder 12 to the tank 18.
  • the holding valve 71 does not open. Since the hydraulic oil is not supplied to the upper chamber 12f of the trim cylinder 12 unless the holding valve 71 is opened, the piston rod 12b of the trim cylinder 12 is not lowered. Thus, the holding valve 71 has a role of holding the position of the piston rod 12 b of the trim cylinder 12.
  • the protective valve 72 opens when the hydraulic pressure of the upper chamber 12 f of the trim cylinder 12 becomes equal to or higher than a predetermined pressure. As a result, the hydraulic oil is recovered from the upper chamber 12 f of the trim cylinder 12 to the second shuttle chamber 48 e of the main valve 48. Thus, the protection valve 72 has a role of suppressing an excessive pressure increase in the upper chamber 12 f of the trim cylinder 12.
  • FIG. 10 is a diagram showing a hydraulic circuit of the outboard motor elevator 1b according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 10, the same members as those described above are denoted by the same reference numerals.
  • the outboard motor lifting apparatus 1b according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
  • the outboard motor elevator 1b includes a switching valve 90 provided on the sixth flow passage C6.
  • the switching valve 90 includes a solenoid 92 and a plunger 94.
  • the seventh flow passage C7 connects one of the upper chambers 12f of the plurality of trim cylinders 12 and the tank 18 via the filter F3.
  • a first flow path formed to connect the third flow path C3 to the lower chamber 14g of the tilt cylinder 40 and to connect the third flow path and the sixth flow path C6
  • a second flow formed so as not to connect the third flow path and the sixth flow path C6 while connecting the group 94-1 and the third flow path C3 to the lower chamber 14g of the tilt cylinder 40
  • a road group 94-2 is provided.
  • the switching valve 90 having the plunger 94 configured as described above switches the following first connection state and second connection state according to the control signal SIG_CONT supplied from the control unit 100.
  • first connection state In the first connection state, the third flow passage C3 connected to the pump 42 is connected to the lower chamber 14g of the tilt cylinder 40 and the third flow passage connected to the pump 42 and the trim cylinder 12
  • the sixth flow path C6 connected to the lower chamber 12g is brought into a connected state.
  • the state in which the pump 42 and the lower chamber 14g of the tilt cylinder 40 are connected and the pump 42 and the lower chamber 12g of the trim cylinder 12 are connected in this way is referred to as a first connection state.
  • connection state In the second connection state, the third flow passage C3 connected to the pump 42 is connected to the lower chamber 14g of the tilt cylinder 40 while the third flow passage connected to the pump 42 and the trim cylinder 12
  • the sixth flow path C6 connected to the lower chamber 12g is not connected.
  • a state in which the pump 42 and the lower chamber 14g of the tilt cylinder 40 are connected while the pump 42 and the lower chamber 12g of the trim cylinder 12 are not connected in this way is called a second connection state.
  • a control signal SIG_CONT is supplied from the control unit 100 to the solenoid 82, and the ON / OFF of the solenoid 92 is switched based on the control signal SIG_CONT.
  • the switching valve 90 is set to a second connection state in which the sixth flow path C6 is not connected when the solenoid 92 is off, and a first connection that connects the sixth flow path C6 when the solenoid 92 is on You may comprise as a normally closed valve made into a state. Further, the switching valve 90 is in a first connection state for connecting the sixth flow path C6 when the solenoid 92 is OFF, and is not connected to the sixth flow path C6 when the solenoid is ON. You may comprise as a normally open valve made into a connection state.
  • the switching valve 90 When the switching valve 90 is configured as a normally open valve, the sixth flow passage C6 is connected even if the switching valve 90 does not operate, that is, the pump 42 and the tilt cylinder 40
  • the lower chamber 14g is connected, and the connection between the pump 42 and the lower chamber 12g of the trim cylinder 12 is maintained. Thereby, the angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
  • the switching valve 90 when configured as a normally closed valve, the sixth flow path C6 is not connected even if the switching valve 90 does not operate, that is, the pump 42 And the lower chamber 14g of the tilt cylinder 40, while maintaining the second connection state in which the pump 42 and the lower chamber 12g of the trim cylinder 12 are not connected. Therefore, it is possible to adjust the angle of the outboard motor 300 only by the tilt cylinder 14 or keep holding the outboard motor 300.
  • the specific control of the switching valve 90 may perform control similar to the control demonstrated, for example with reference to FIG. 6 in embodiment mentioned above, for example.
  • “the switching valve 60 is in the open state” in the above-mentioned embodiment refers to "the switching valve 90 is in the first connection state” in the present embodiment, and “the switching valve 60 is in the closed state”.
  • the switching valve 90 can realize the same function as the switching valve 60 provided in the outboard motor lifting apparatus 1 described in the first embodiment. Therefore, the outboard motor elevator 1b configured as described above exhibits the same effects as the outboard motor elevator 1 described above.
  • hull state signal SIG_IN described in the first and second embodiments
  • the hull state signal SIG_IN includes one or more of other specific examples described later, instead of the specific examples described in the first and second embodiments or in addition to the specific examples described in the first and second embodiments. can do.
  • the digital signal D_SIG according to the third embodiment includes information equivalent to the information included in the hull state signal SIG_IN. Therefore, the items described below regarding the hull state signal SIG_IN are applied not only to the first and second embodiments but also to the digital signal D_SIG according to the third embodiment.
  • the signals that may be included in the hull status signal SIG_IN are (A) Outboard motor performance signal obtainable from outboard motor 300 (B) It is classified into a hull (body) performance signal obtainable from the hull (body) 200.
  • An example of an outboard motor performance signal obtainable from the outboard motor 300 and an example of control by the control units 100, 100a and 100b (hereinafter also referred to simply as the control unit) with reference to the outboard motor performance signal are as follows. .
  • the ignition signal is a signal indicating on / off of the ignition of the outboard motor 300.
  • control unit when the ignition is on, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6, and when the ignition is off, the "engine is not on or in gear” in FIG.
  • the control similar to the control of the state of may be performed.
  • the tilt / trim control signal is a signal for controlling the tilt and / or trim of the outboard motor 300.
  • the control unit switches the switching valve 60 in accordance with the tilt / trim control signal.
  • the engine neutral signal is a signal indicating whether or not the engine of the outboard motor 300 is neutral.
  • control unit when the engine is not in neutral, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6, and when the engine is in neutral, it is not "engine off or in gear in FIG. Control similar to the control of the state of "" may be performed.
  • the trim angle signal is a signal indicating the trim angle of the outboard motor 300.
  • the control unit when the trim angle of the outboard motor 300 is smaller than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG.
  • the control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed when the angle of is greater than or equal to a predetermined value.
  • the engine water temperature signal is a signal indicating the water temperature of the engine of the outboard motor 300.
  • control unit when the water temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6 and the water temperature of the engine is smaller than the predetermined value.
  • control similar to the control of the state of “engine off or not in gear” in FIG. 6 may be performed.
  • the engine water temperature signal is a signal indicating the oil temperature of the engine of the outboard motor 300.
  • the control unit when the oil temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the engine oil pressure signal is a signal indicating the oil pressure of the engine of the outboard motor 300.
  • control unit when the hydraulic pressure of the engine is equal to or higher than a predetermined value, the control unit performs control similar to the control of the "engine on or in gear” state in FIG. 6, and the oil temperature of the engine is smaller than the predetermined value. In this case, control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the water level signal is a signal indicating the water level at the surface of the outboard motor 300.
  • the control unit switches the switching valve 60 according to the water level signal. For example, when the water level indicated by the water level signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the throttle opening signal is a signal indicating the throttle opening of the engine of the outboard motor 300.
  • control unit when the throttle opening is equal to or greater than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6, and the throttle opening is smaller than the predetermined value. In this case, control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • Ship speed signal (water flow signal)
  • the boat speed signal is a signal indicating the boat speed.
  • the ship speed signal may be referred to as a water flow signal since the ship speed is identified with reference to the speed of the water flow.
  • the control unit performs control similar to the control of the "engine on or in gear” state in FIG. 6 when the boat speed is equal to or higher than a predetermined value, and in FIG. 6 when the boat speed is smaller than the predetermined value. It may be configured to perform the same control as the control of the state of "engine off or not in gear”.
  • the battery voltage signal is a signal indicating the voltage of the battery.
  • the control unit switches the switching valve 60 according to the voltage of the battery. For example, when the voltage of the battery is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6, and the voltage of the battery is smaller than the predetermined value. Control similar to the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the atmospheric pressure signal is a signal indicating atmospheric pressure.
  • the control unit switches the switching valve 60 according to the atmospheric pressure.
  • the outboard motor 300 includes a generator connected to the engine 301 provided in the outboard motor 300.
  • FIG. 11 is a block diagram showing a configuration around the engine 301 of the outboard motor 300.
  • the outboard motor 300 includes an engine 301, a power transmission mechanism 302 for transmitting power from the engine 301 to the propeller 303, a generator (generator) 310 driven by the engine 301, and a main battery 311. ing.
  • the outboard motor 300 can also be equipped with a spare battery.
  • the lead 310b to the spare battery is drawn out.
  • the conducting wire 310b is connected to the control units 100, 100a and 100b, and the potential of the conducting wire 310b is referred to by the control unit as an output voltage of the generator.
  • the control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the navigation state is in the case where the output voltage of the generator is equal to or higher than the first threshold related to the voltage. Control similar to the control of the state of "engine on or in gear" is performed.
  • the first threshold value regarding voltage has, for example, a properly set positive value.
  • control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the vehicle is in the sailing state when the output voltage of the generator exceeds the second threshold related to the voltage. Control similar to the control of the in-gear state may be performed.
  • the second threshold regarding the voltage has, for example, an appropriately set value of 0 or more.
  • (A-1) to (A-11) and (A-13) can also be regarded as a state signal indicating the state of the outboard motor 300.
  • a control example by the control unit with reference to a hull (main body) performance signal obtainable from the hull 200 and the hull (main body) performance signal is as follows.
  • the impact signal is a signal indicating an impact that the hull 200 is subjected to.
  • the control unit switches the switching valve 60 in response to the shock signal. More specifically, the control unit switches the switching valve 60 in accordance with the presence or absence of an impact received by the hull 200 or an impact signal itself.
  • the control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 6 when the impact is equal to or greater than a predetermined value, and when the impact is smaller than the predetermined value, or If not, it may be configured to perform the same control as the control of the state of "engine off or not in gear” in FIG.
  • the orientation signal is a signal indicating the traveling direction of the hull 200.
  • the control unit switches the switching valve 60 in accordance with the direction signal.
  • the sonar signal is a signal supplied from a sonar provided to the hull 200.
  • the control unit switches the switching valve 60 according to the sonar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the sonar signal or the presence or absence of the sonar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the GPS signal is a signal supplied from a GPS (Global Positioning System) device provided in the hull 200.
  • the GPS device may be on or near the hull.
  • the control unit performs the same control as the control of the "engine on or in gear” state in FIG. 6 when the boat speed indicated by the GPS signal is equal to or higher than a predetermined value, and the boat speed indicated by the GPS signal has a predetermined value. If smaller, the same control as the control of the state of "engine off or not in gear” in FIG. 6 may be performed.
  • the transom vibration signal is a signal that indicates the vibration of a transom included in the hull 200.
  • the control unit switches the switching valve 60 according to the transom vibration signal. More specifically, the control unit switches the switching valve 60 in accordance with the vibration indicated by the transom vibration signal or the presence or absence of the transom vibration signal itself.
  • the control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 6 when the transom vibration is a predetermined value or more, and when the transom vibration is smaller than the predetermined value Alternatively, when there is no signal, it may be configured to perform the same control as the control of the "engine off or not in gear” state in FIG.
  • the water temperature signal is a signal indicating the water temperature around the hull 200.
  • the control unit switches the switching valve 60 according to the water temperature signal.
  • the vibration signal is a signal indicating the vibration of the hull 200.
  • the control unit switches the switching valve 60 according to the vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the vibration signal or the presence or absence of the vibration signal itself. For example, when the vibration indicated by the vibration signal is equal to or greater than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6 and the vibration indicated by the vibration signal has a predetermined value In the case of a smaller value or in the absence of a signal, control similar to the control of the "engine off or not in gear” state in FIG. 6 may be performed.
  • IP image signal is an image signal indicating the situation around the hull 200.
  • the control unit switches the switching valve 60 according to the IP image signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the IP image signal or the presence or absence of the IP image signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the radar signal is a signal supplied from a radar provided to the hull 200.
  • the control unit switches the switching valve 60 according to the radar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of the obstacle indicated by the radar signal or the presence or absence of the radar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
  • the voice signal is a signal indicating the voice of the operator (user).
  • the control unit switches the switching valve 60 in accordance with the audio signal.
  • the control unit may be configured to perform the same control as the control of FIG. 6 with reference to, for example, an audio instruction included in the audio signal.
  • (B-1) to (B-9) can also be regarded as a state signal indicating the state of the hull (main body) 200.
  • control units 100, 100a, 100b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (central processing unit) .
  • control units 100, 100a, and 100b are a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read) in which the program and various data are readable by a computer (or CPU). It includes an Only Memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for developing the program, and the like.
  • the object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program.
  • the recording medium a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.

Abstract

In order to achieve an outboard motor lifting device which can automatically change the speed of lifting depending on the state of the outboard motor, this outboard motor lifting device (1) is provided with a second oil path which is connected to an upper chamber (12f) of a trim cylinder 12, a switching valve (60) which is provided between a lower chamber (14g) of a tilt cylinder (14) and a lower chamber (12g) of the trim cylinder (12), a retaining valve 71 and a protective valve 72 which are provided on the second oil path, and a control unit (100) which controls the switching valve (60).

Description

船外機昇降装置Outboard motor lifting device
 本発明は、船体の船外機を昇降させる船外機昇降装置に関する。 The present invention relates to an outboard motor lifting apparatus for lifting and lowering an outboard motor of a hull.
 船体の分野において、主として船外機を水面上に上昇させたり水面下に下降させたりするためのチルトシリンダと、主として水面下における船外機の角度を変更するためのトリムシリンダとを有する船外機昇降装置が知られている(例えば特許文献1及び2)。 In the field of hulls, an outboard having a tilt cylinder, mainly for raising and lowering an outboard motor above the water surface, and a trim cylinder, mainly for changing the angle of the outboard motor below the water surface Machine lifters are known (for example, Patent Documents 1 and 2).
日本国公開特許公報「特公昭58-028159号公報」Japanese Patent Publication No. 58-028159 日本国公開特許公報「特開平2-99494号公報」Japanese Patent Publication "Japanese Patent Application Laid-Open No. 2-99494"
 ところで、船外機昇降装置では、船外機の昇降の速さを自動的に変更できることが好ましい。 By the way, in the outboard motor elevating device, it is preferable that the speed of raising and lowering the outboard motor can be automatically changed.
 本発明は、船外機の昇降の速さを自動的に変更することのできる船外機昇降装置を実現することを目的とする。 An object of the present invention is to realize an outboard motor lifting apparatus capable of automatically changing the speed of lifting and lowering of the outboard motor.
 かかる目的のもと、本発明は、船外機を昇降させる船外機昇降装置において、1又は複数のチルトシリンダと、1又は複数のトリムシリンダと、を備え、前記各トリムシリンダは、当該トリムシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、前記各チルトシリンダは、当該チルトシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、当該船外機昇降装置は、油圧源と、前記油圧源と、前記1又は複数のチルトシリンダの第2室と、前記1又は複数のトリムシリンダの第2室とを接続する第1の油路と、前記1又は複数のトリムシリンダの少なくとも何れかの第1室に接続された第2の油路と、前記第1の油路における前記1又は複数のチルトシリンダの第2室と前記1又は複数のトリムシリンダの第2室との間に設けられた切替弁と、前記第2の油路上に設けられた保持バルブ及び保護バルブと、船体状態信号を参照して前記切替弁を制御する制御部と、を備えていることを特徴とする船外機昇降装置である。 To this end, the present invention relates to an outboard motor elevator apparatus for raising and lowering an outboard motor, comprising: one or more tilt cylinders; and one or more trim cylinders; A piston for dividing a cylinder into a first chamber and a second chamber, and a rod connected to the piston and penetrating the first chamber of the trim cylinder, each tilt cylinder comprising the tilt cylinder as the first chamber The outboard motor lifting device includes: a piston divided into a second chamber; and a rod connected to the piston and penetrating the first chamber of the tilt cylinder, the outboard motor lifting device comprising: a hydraulic source; the hydraulic source; Connected to the first oil passage connecting the second chambers of the plurality of tilt cylinders and the second chamber of the one or more trim cylinders, and the first chamber of at least one of the one or more trim cylinders A second oil passage, and a switching valve provided between the second chamber of the one or more tilt cylinders in the first oil passage and the second chamber of the one or more trim cylinders; An outboard motor elevator apparatus comprising: a holding valve and a protection valve provided on the second oil path; and a control unit that controls the switching valve with reference to a hull state signal. .
 また、本発明は、船外機を昇降させる船外機昇降装置において、1又は複数のチルトシリンダと、1又は複数のトリムシリンダと、を備え、前記各トリムシリンダは、当該トリムシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、前記各チルトシリンダは、当該チルトシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、当該船外機昇降装置は、油圧源と、前記油圧源と、前記1又は複数のチルトシリンダの第2室とを接続する第1の油路と、前記第1の油路上に設けられた切替弁であって、前記油圧源と前記チルトシリンダの第2室とを接続し、かつ、前記油圧源と前記トリムシリンダの第2室とを接続する第1の接続状態と前記油圧源と前記チルトシリンダの第2室とを接続する一方で、前記油圧源と前記トリムシリンダの第2室とを接続しない第2の接続状態とを切り替える切替弁と、船体状態信号を参照して前記切替弁を制御する制御部と、を備えていることを特徴とする船外機昇降装置である。 Further, according to the present invention, in an outboard motor lifting apparatus for raising and lowering an outboard motor, the outboard motor lifting apparatus includes: one or more tilt cylinders; and one or more trim cylinders; A piston divided into a chamber and a second chamber, and a rod connected to the piston and penetrating the first chamber of the trim cylinder, wherein each tilt cylinder includes the tilt cylinder, the first chamber and the second chamber And the rod connected to the piston and penetrating through the first chamber of the tilt cylinder, the outboard motor lifting device includes a hydraulic pressure source, the hydraulic pressure source, and the one or more tilt cylinders A first oil passage connecting the second chamber and the switching valve provided on the first oil passage, and connecting the hydraulic pressure source and the second chamber of the tilt cylinder; Hydraulic source and above A second connection state for connecting the second cylinder of the rim cylinder and a second connection for connecting the hydraulic pressure source and the second chamber of the tilt cylinder while not connecting the hydraulic pressure source and the second chamber of the trim cylinder An outboard motor elevator apparatus comprising: a switching valve for switching between the connection states and a control unit for controlling the switching valve with reference to a hull state signal.
 このような構成とすることにより、船外機の昇降の速さを自動的に変更できる。 With this configuration, the speed of raising and lowering the outboard motor can be automatically changed.
 本発明によれば、船外機の昇降の速さを自動的に変更することができる。 According to the present invention, the speed of raising and lowering of the outboard motor can be automatically changed.
実施形態1に係る船外機昇降装置の使用例及び船外機の概略的な内部構成を示す図である。FIG. 2 is a view showing a usage example of the outboard motor elevator according to Embodiment 1 and a schematic internal configuration of the outboard motor. 実施形態1に係る船外機昇降装置の構成の一例を示す正面図である。FIG. 1 is a front view showing an example of the configuration of an outboard motor elevator according to a first embodiment. 実施形態1に係る船外機昇降装置の側断面図である。FIG. 1 is a side sectional view of an outboard motor elevator according to a first embodiment. 実施形態1に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 2 is a diagram showing a hydraulic circuit of the outboard motor elevator according to Embodiment 1 together with a control unit. 実施形態1に係る制御部の一構成例を示す回路図である。FIG. 5 is a circuit diagram showing an exemplary configuration of a control unit according to the first embodiment. 実施形態1に係る制御部による切替弁の制御の一例を示す図である。FIG. 6 is a view showing an example of control of a switching valve by a control unit according to the first embodiment. 実施形態2に係る制御部の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a control unit according to a second embodiment. 実施形態3に係る制御部の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of a control unit according to a third embodiment. 実施形態4に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 13 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fourth embodiment together with a control unit. 実施形態5に係る船外機昇降装置の油圧回路を制御部と共に示す図である。FIG. 16 is a diagram showing a hydraulic circuit of an outboard motor elevator according to a fifth embodiment together with a control unit. 実施形態1~5係る船外機のエンジン周辺の構成を示す図である。FIG. 7 is a view showing a configuration of an outboard motor and its surroundings according to Embodiment 1 to 5.
 〔実施形態1〕
 以下、本発明の第1の実施形態に係る船外機昇降装置1について、図1~図6を参照して説明する。
Embodiment 1
Hereinafter, an outboard motor elevator 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
 船外機昇降装置1は、船外機300を昇降させるための装置である。図1の(a)は、船外機昇降装置1の使用例を示す図であり、船体(本体)200の後部と船外機300とに取り付けられた船外機昇降装置1を示している。図1の(a)における実線は、船外機300が下降した状態を示し、図1の(a)における破線は、船外機300が上昇した状態を示している。図1の(b)は、船外機300の内部構成を概略的に示す模式図である。図1の(b)に示すように、船外機300は、エンジン301と、プロペラ303と、エンジン301からプロペラ303に動力を伝達する動力伝達機構302とを備えている。ここで、動力伝達機構は、例えば、シャフトやギヤによって構成される。 The outboard motor lifting device 1 is a device for lifting and lowering the outboard motor 300. FIG. 1A is a view showing an application example of the outboard motor lifting device 1, and shows the outboard motor lifting device 1 attached to the rear of the hull (main body) 200 and the outboard motor 300. . The solid line in (a) of FIG. 1 indicates a state in which the outboard motor 300 is lowered, and the broken line in (a) of FIG. 1 indicates a state in which the outboard motor 300 is raised. FIG. 1B is a schematic view schematically showing an internal configuration of the outboard motor 300. As shown in FIG. As shown in (b) of FIG. 1, the outboard motor 300 includes an engine 301, a propeller 303, and a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303. Here, the power transmission mechanism is constituted by, for example, a shaft or a gear.
 図2は、船外機昇降装置1の構成の一例を示す正面図であり、図3は、船外機昇降装置1の側断面図である。図2に示すように、船外機昇降装置1は、シリンダユニット10と、船体200の後部に取り付けられる1対のスターンブラケット70と、船外機300に取り付けられるスイベルブラケット80とを備えている。 FIG. 2 is a front view showing an example of the configuration of the outboard motor elevator 1, and FIG. 3 is a side sectional view of the outboard motor elevator 1. As shown in FIG. 2, the outboard motor lifting apparatus 1 includes a cylinder unit 10, a pair of stern brackets 70 mounted on the rear of the hull 200, and a swivel bracket 80 mounted on the outboard motor 300. .
 シリンダユニット10は、一例として、図2に示すように、2本のトリムシリンダ12、1本のチルトシリンダ14、モータ16、タンク18、上部ジョイント22、基部24を備えている。トリムシリンダ12及びチルトシリンダ14は、基部24に対して相対移動不能に設けられている。 The cylinder unit 10 includes, as an example, two trim cylinders 12, one tilt cylinder 14, a motor 16, a tank 18, an upper joint 22, and a base 24, as shown in FIG. The trim cylinder 12 and the tilt cylinder 14 are provided so as not to move relative to the base 24.
 なお、シリンダユニット10が備えるトリムシリンダ12及びチルトシリンダ14の数は本実施形態を限定するものではなく、1又は複数のトリムシリンダ12及び1又は複数のチルトシリンダ14を備えるシリンダユニット10も本実施形態に含まれる。また、そのように任意の数のトリムシリンダ12及びチルトシリンダ14を有するシリンダユニット10に対しても以下の説明が成り立つ。 The number of trim cylinders 12 and tilt cylinders 14 provided in the cylinder unit 10 does not limit the present embodiment, and the cylinder unit 10 including one or more trim cylinders 12 and one or more tilt cylinders 14 is also implemented in this embodiment. Included in the form. Also, the following description is true for the cylinder unit 10 having such an arbitrary number of trim cylinders 12 and tilt cylinders 14.
 トリムシリンダ12は、シリンダ12aと、シリンダ12a内に摺動可能に設けられたピストン12c(図4参照)と、ピストン12cに固定されたピストンロッド12bとを備えている。また、チルトシリンダ14は、シリンダ14aと、シリンダ14a内に摺動可能に設けられたピストン14c(図4参照)と、ピストン14cに固定されたピストンロッド14bとを備えている。 The trim cylinder 12 includes a cylinder 12a, a piston 12c (see FIG. 4) slidably provided in the cylinder 12a, and a piston rod 12b fixed to the piston 12c. The tilt cylinder 14 also includes a cylinder 14a, a piston 14c (see FIG. 4) slidably provided in the cylinder 14a, and a piston rod 14b fixed to the piston 14c.
 また、図2に示すように、基部24とスターンブラケット70には、それぞれ貫通孔が形成されており、これらの貫通孔を貫通するアンダーシャフト26を介して、基部24とスターンブラケット70とが相対回転可能に接続されている。 Further, as shown in FIG. 2, through holes are respectively formed in the base 24 and the stern bracket 70, and the base 24 and the stern bracket 70 are relative to each other through the undershaft 26 penetrating the through holes. It is rotatably connected.
 また、図2に示すように、ピストンロッド14bの先端には、上部ジョイント22が設けられており、スイベルブラケット80には、支持部材28が固定されている。上部ジョイント22及び支持部材28には、それぞれ貫通孔が形成されており、こられの貫通孔を貫通するアッパーシャフト23を介して、上部ジョイント22とスイベルブラケット80とが相対回転可能に接続されている。 Further, as shown in FIG. 2, an upper joint 22 is provided at the tip of the piston rod 14 b, and a support member 28 is fixed to the swivel bracket 80. A through hole is formed in each of the upper joint 22 and the support member 28, and the upper joint 22 and the swivel bracket 80 are connected so as to be relatively rotatable via the upper shaft 23 passing through the through holes of these. There is.
 また、スターンブラケット70及びスイベルブラケット80の上部一端にはそれぞれ貫通孔が形成されており、図3に示すように、これらの貫通孔を貫通する支持軸32によって、スターンブラケット70とスイベルブラケット80とが相対回転可能に接続されている。 Further, through holes are respectively formed at upper ends of the stern bracket 70 and the swivel bracket 80, and as shown in FIG. 3, the stern bracket 70 and the swivel bracket 80 are formed by the support shaft 32 penetrating the through holes. Are connected rotatably relative to each other.
 (トリム域及びチルト域)
 チルトシリンダ14のピストンロッド14bが上昇及び下降することにより、スイベルブラケット80が上昇及び下降するので、船外機300が上昇及び下降する。
(Trim area and tilt area)
As the piston rod 14b of the tilt cylinder 14 ascends and descends, the swivel bracket 80 ascends and descends, so the outboard motor 300 ascends and descends.
 チルトシリンダ14のピストンロッド14bの上昇及び下降によって調整される船外機300の角度領域は、図1の(a)に示したトリム域とチルト域とから構成される。チルト域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接不能な角度領域であり、チルト域での船外機300の角度調整はチルトシリンダ14のピストンロッド14bによって行われる。 The angular area of the outboard motor 300 adjusted by the raising and lowering of the piston rod 14b of the tilt cylinder 14 is composed of the trim area and the tilt area shown in (a) of FIG. The tilt area is an angle area where the tip of the piston rod 12 b of the trim cylinder 12 can not abut the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 14 b of the tilt cylinder 14.
 一方、トリム域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接可能な角度領域であり、チルト域での船外機300の角度調整はトリムシリンダ12のピストンロッド12b及びチルトシリンダ14のピストンロッド14bの双方によって行われ得る。ただし、後述するように、本実施形態では、チルト域においても、船外機300の角度調整がチルトシリンダ14のピストンロッド14bのみによって行われることもある。 On the other hand, the trim area is an angle area where the tip of the piston rod 12b of the trim cylinder 12 can contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by the piston rod 12b of the trim cylinder 12 and the tilt It can be done by both of the piston rods 14 b of the cylinder 14. However, as described later, in the present embodiment, the angle adjustment of the outboard motor 300 may be performed only by the piston rod 14b of the tilt cylinder 14 even in the tilt region.
 (油圧回路)
 次に、船外機昇降装置1の油圧回路について説明する。図4は、船外機昇降装置1の油圧回路を制御部100と共に示す図である。図4では、すでに説明した部材と同じ部材には同じ符号を付している。
(Hydraulic circuit)
Next, the hydraulic circuit of the outboard motor lifting apparatus 1 will be described. FIG. 4 is a diagram showing a hydraulic circuit of the outboard motor lifting apparatus 1 together with the control unit 100. As shown in FIG. In FIG. 4, the same components as those described above are denoted by the same reference numerals.
 図4に示すように、船外機昇降装置1は、モータ16、ポンプ42、第1の逆止弁44a、第2の逆止弁44b、アップブローバルブ46a、ダウンブローバルブ46b、メインバルブ(ポンプポート)48、マニュアルバルブ52、サーマルバルブ54、チルトシリンダ14、トリムシリンダ12、タンク18、フィルタF1~F2、第1の流路C1~第7の流路C7、及び制御部100を備えている。 As shown in FIG. 4, the outboard motor lifting device 1 includes a motor 16, a pump 42, a first check valve 44a, a second check valve 44b, an up blow valve 46a, a down blow valve 46b, and a main valve ( Pump port 48, manual valve 52, thermal valve 54, tilt cylinder 14, trim cylinder 12, tank 18, filters F1 to F2, first flow path C1 to seventh flow path C7, and control unit 100 There is.
 モータ16によって駆動される油圧源としてのポンプ42は、運転者による船外機の昇降指示を示す昇降信号SIG_UDに応じて、「正転」「反転」「停止」の何れかの動作を行う。タンク18には作動油が貯えられている。 The pump 42 as a hydraulic pressure source driven by the motor 16 performs any one of “forward rotation”, “reverse”, and “stop” according to the elevation signal SIG_UD indicating the elevation instruction of the outboard motor by the driver. The hydraulic oil is stored in the tank 18.
 メインバルブ48は、図4に示すように、スプール48a、第1チェック弁48b、及び第2チェック弁48cを備えている。メインバルブ48は、スプール48aによって、第1チェック弁48b側の第1シャトル室48dと、第2チェック弁48c側の第2シャトル室48eとに仕切られている。 As shown in FIG. 4, the main valve 48 includes a spool 48a, a first check valve 48b, and a second check valve 48c. The main valve 48 is partitioned by the spool 48 a into a first shuttle chamber 48 d on the first check valve 48 b side and a second shuttle chamber 48 e on the second check valve 48 c side.
 第1の流路C1は、ポンプ42と第1シャトル室48dとを接続すると共に、ポンプ42と第1の逆止弁44aとを接続している。また、第1の流路C1には、アップブローバルブ46aが接続されている。第2の流路C2は、ポンプ42と第2シャトル室48eとを接続すると共に、ポンプ42と第2の逆止弁44bとを接続している。また、第2の流路C2には、ダウンブローバルブ46bが接続されている。 The first flow path C1 connects the pump 42 and the first shuttle chamber 48d, and also connects the pump 42 and the first check valve 44a. Further, the up blow valve 46a is connected to the first flow passage C1. The second flow path C2 connects the pump 42 and the second shuttle chamber 48e, and also connects the pump 42 and the second check valve 44b. Further, the down blow valve 46 b is connected to the second flow path C2.
 なお、本明明細書に記載の油路構成における「接続」には、他の油圧エレメントを介さずに流路によって直接接続されている場合と、他の油路エレメントを介して間接的に接続されている場合の双方が含まれる。ここで、他の油圧エレメントには、例えば、バルブ(弁)、シリンダ、及びフィルタ等が含まれる。 Note that the “connection” in the oil passage configuration described in the present specification is indirectly connected via the other oil passage element or directly connected by the flow passage without passing through another hydraulic element. Both cases are included. Here, other hydraulic elements include, for example, a valve, a cylinder, and a filter.
 チルトシリンダ14は、ピストン14cによって上室14fと下室14gとに仕切られており、チルトシリンダ14のピストン14cは、図4に示すように、ショックブローバルブ14d及びリターンバルブ14eを備えている。 The tilt cylinder 14 is divided into an upper chamber 14f and a lower chamber 14g by a piston 14c, and the piston 14c of the tilt cylinder 14 is provided with a shock blow valve 14d and a return valve 14e as shown in FIG.
 トリムシリンダ12は、ピストン12cによって上室12fと下室12gとに仕切られている。 The trim cylinder 12 is divided into an upper chamber 12f and a lower chamber 12g by a piston 12c.
 なお、本明細書において、チルトシリンダ14、およびトリムシリンダ12の「上室」及び「下室」における「上」及び「下」とは、単に互いを区別するための名称であり、当該上室が当該下室よりも鉛直方向上側に位置することを必ずしも意味するものではない。このため、「上室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通する方の室である第1室と表現してもよいし、「下室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通しない方の室である第2室と表現してもよい。 In the present specification, “upper” and “lower” in the “upper chamber” and “lower chamber” of the tilt cylinder 14 and the trim cylinder 12 are simply names for distinguishing between the upper chamber and the lower chamber, respectively. Is not necessarily meant to be located vertically above the lower chamber. Therefore, the "upper chamber" may be expressed as a first chamber, which is a chamber through which the rod connected to the piston passes, of the first chamber and the second chamber partitioned by the piston in the cylinder. The "lower chamber" may be expressed as a second chamber which is a chamber into which the rod connected to the piston does not penetrate, of the first chamber and the second chamber partitioned by the piston in the cylinder.
 本明細書では、特に混乱がない限り「上室」「下室」との表現も用いるが、上記の点に留意すべきである。 In the present specification, the expressions “upper chamber” and “lower chamber” are also used unless there is a particular confusion, but it should be noted that the above points.
 第1チェック弁48bは、チルトシリンダ14の下室14gに、フィルタF1及び第3の流路C3を介して接続されている。一方、第2チェック弁48cは、チルトシリンダ14の上室14fに、フィルタF2及び第4の流路C4を介して接続されている。また、図4に示すように、第4の流路C4には、上室給油バルブ56が接続されている。 The first check valve 48b is connected to the lower chamber 14g of the tilt cylinder 14 via the filter F1 and the third flow passage C3. On the other hand, the second check valve 48c is connected to the upper chamber 14f of the tilt cylinder 14 via the filter F2 and the fourth flow passage C4. Further, as shown in FIG. 4, an upper chamber oil supply valve 56 is connected to the fourth flow path C4.
 第3の流路C3と第4の流路C4とを接続する第5の流路C5にはマニュアルバルブ52及びサーマルバルブ54が接続されている。 A manual valve 52 and a thermal valve 54 are connected to a fifth flow path C5 connecting the third flow path C3 and the fourth flow path C4.
 なお、メインバルブ48及びフィルタF1を介してポンプ42とチルトシリンダ14の下室14gとを接続する第1の流路C1及び第3の流路C3を、纏めて第1の油路とも呼ぶ。 The first channel C1 and the third channel C3 connecting the pump 42 and the lower chamber 14g of the tilt cylinder 14 via the main valve 48 and the filter F1 are collectively referred to as a first oil channel.
 第6の流路C6(当該流路も第1の油路とも呼ぶ。また、第3の油路とも呼びことがある)は、チルトシリンダ14の下室14gに接続された第3の流路C3と、トリムシリンダ12の下室12gと、を接続する。また、第6の流路C6上には、切替弁60が配置されている。 The sixth flow path C6 (the flow path is also referred to as a first oil path, and may also be referred to as a third oil path) is a third flow path connected to the lower chamber 14g of the tilt cylinder 14. C3 and the lower chamber 12g of the trim cylinder 12 are connected. Moreover, the switching valve 60 is arrange | positioned on the 6th flow path C6.
 第7の流路C7(第2の油路とも呼ぶ)は、トリムシリンダ12の上室12fに接続されている。図4に示すように、第7の流路C7には、互いに並列の関係に接続された第1の分流流路C7-1と、第2の分流流路C7-2と、が設けられている。第1の分流流路C7-1上には、保持バルブ71が設けられている。第2の分流流路C7-2上には、保護バルブ72が設けられている。 The seventh flow passage C7 (also referred to as a second oil passage) is connected to the upper chamber 12f of the trim cylinder 12. As shown in FIG. 4, the seventh channel C7 is provided with a first branch channel C7-1 and a second branch channel C7-2 connected in parallel with each other. There is. A holding valve 71 is provided on the first branch flow passage C7-1. A protective valve 72 is provided on the second branch flow channel C7-2.
 また、第7の流路C7は、保持バルブ71及び保護バルブ72を介して、メインバルブ48の2つのシャトル室48d及び48eのうち、チルトシリンダ14の上室14fに接続された第2シャトル室48eに接続されている。 The seventh flow path C7 is a second shuttle chamber connected to the upper chamber 14f of the tilt cylinder 14 out of the two shuttle chambers 48d and 48e of the main valve 48 via the holding valve 71 and the protection valve 72. Connected to 48e.
 トリムシリンダ12の上室12fにおける作動油の圧力が所定の圧力以下でなければ保持バルブ71は開かない。保持バルブ71が開かなければ、トリムシリンダ12の上室12fに作動油が供給されないので、トリムシリンダ12のピストンロッド12bが下がることはない。このように、保持バルブ71は、トリムシリンダ12のピストンロッド12bの位置を保持するという役割を有している。 If the pressure of the hydraulic oil in the upper chamber 12f of the trim cylinder 12 is not less than a predetermined pressure, the holding valve 71 does not open. Since the hydraulic oil is not supplied to the upper chamber 12f of the trim cylinder 12 unless the holding valve 71 is opened, the piston rod 12b of the trim cylinder 12 is not lowered. Thus, the holding valve 71 has a role of holding the position of the piston rod 12 b of the trim cylinder 12.
 一方で、保護バルブ72は、トリムシリンダ12の上室12fの油圧の圧力が所定の圧力以上となった場合に開く。これにより、トリムシリンダ12の上室12fからメインバルブ48の第2シャトル室48eに作動油が回収される。このように、保護バルブ72は、トリムシリンダ12の上室12fにおける過度な圧力の上昇を抑制するという役割を有している。 On the other hand, the protective valve 72 opens when the hydraulic pressure of the upper chamber 12 f of the trim cylinder 12 becomes equal to or higher than a predetermined pressure. As a result, the hydraulic oil is recovered from the upper chamber 12 f of the trim cylinder 12 to the second shuttle chamber 48 e of the main valve 48. Thus, the protection valve 72 has a role of suppressing an excessive pressure increase in the upper chamber 12 f of the trim cylinder 12.
 このように、船外機昇降装置1は、保持バルブ71と保護バルブ72とを備えることによって、トリムシリンダ12のピストンロッド12bの位置を保持しつつ、トリムシリンダ12の上室12fにおける過度な圧力の上昇を抑制することができる。 Thus, the outboard motor lifting device 1 is provided with the holding valve 71 and the protection valve 72 to maintain the position of the piston rod 12 b of the trim cylinder 12 while the excessive pressure in the upper chamber 12 f of the trim cylinder 12. You can control the rise of
 第9の流路C9は、第1の逆止弁44a及び第2の逆止弁44とタンク18とを接続している。 The ninth flow path C9 connects the tank 18 with the first check valve 44a and the second check valve 44.
 第1の逆止弁44aは、トリムシリンダ12及びチルトシリンダ14が収縮し切った状態になってもなおポンプ42が作動油を回収しようとする場合に、タンク18からポンプ42に作動油を供給する。 The first check valve 44a supplies the hydraulic fluid from the tank 18 to the pump 42 when the pump 42 tries to recover the hydraulic fluid even when the trim cylinder 12 and the tilt cylinder 14 contract and complete. Do.
 第2の逆止弁44bは、チルトシリンダ14が伸長する際に、ピストンロッド14bの退出容積分の作動油をタンク18からポンプ42に供給し、また、トリムシリンダ12が伸長する際には、ピストンロッド12bの退出容積分の作動油をタンク18からポンプ42に供給する。 When the tilt cylinder 14 extends, the second check valve 44 b supplies hydraulic oil of the displacement volume of the piston rod 14 b from the tank 18 to the pump 42, and when the trim cylinder 12 extends, The hydraulic fluid of the displacement volume of the piston rod 12 b is supplied from the tank 18 to the pump 42.
 アップブローバルブ46aは、トリムシリンダ12及びチルトシリンダ14が伸長し切った状態になってもなおポンプ42が作動油を供給する場合に、余剰の作動油をタンク18に戻す。 The up blow valve 46 a returns excess hydraulic oil to the tank 18 when the pump 42 supplies hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are extended.
 ダウンブローバルブ46bは、チルトシリンダ14が収縮する際に、ピストンロッド14bの進入容積分の作動油をタンク18に戻し、また、トリムシリンダ12が収縮する際には、ピストンロッド12bの進入容積分の作動油をタンク18に戻す。 The down blow valve 46b returns the hydraulic fluid of the approach volume of the piston rod 14b to the tank 18 when the tilt cylinder 14 contracts, and when the trim cylinder 12 contracts, the down blow valve 46b takes the approach volume of the piston rod 12b. The hydraulic oil of the above is returned to the tank 18.
 マニュアルバルブ52は、手動による開閉が可能であり、船外機昇降装置1のメンテナンス時等においてマニュアルバルブ52を開状態とすることによって、作動油がチルトシリンダ14の下室14gからタンク18に戻される。これにより、チルトシリンダ14が手動で収縮可能となる。 The manual valve 52 can be manually opened and closed, and the hydraulic oil is returned from the lower chamber 14 g of the tilt cylinder 14 to the tank 18 by opening the manual valve 52 at the time of maintenance of the outboard motor lifting apparatus 1 or the like. Be Thereby, the tilt cylinder 14 can be contracted manually.
 サーマルバルブ54は、温度上昇により作動油の体積が増大した場合に、余剰分の作動油をタンク18に戻す。 The thermal valve 54 returns the surplus hydraulic oil to the tank 18 when the volume of the hydraulic oil increases due to the temperature rise.
 (切替弁60)
 切替弁60は、第6の流路C6におけるチルトシリンダ14の下室14gと、トリムシリンダ12の下室12gとの間に設けられる。第6の流路C6上に設けられた切替弁60は、図4に示すように、ソレノイド62と、ソレノイド62によって駆動され、第6の流路C6を遮断状態又は開放状態とするプランジャ64とを備えている。ソレノイド62には、後述する制御部100から制御信号SIG_CONTが供給され、制御信号SIG_CONTに基づき、ソレノイド62のON/OFFが切り替えられる。
 切替弁60は、ソレノイド62がOFFの場合にクローズ状態となることによって第6の流路C6を遮断し、ソレノイド62がONの場合にオープン状態となることによって第6の流路C6を開放するノーマリークローズ弁として構成してもよいし、ソレノイドがOFFの場合にオープン状態となることによって第6の流路C6を開放し、ソレノイドがONの場合にクローズ状態となることによって第6の流路C6を遮断するノーマリーオープン弁として構成してもよい。
(Switching valve 60)
The switching valve 60 is provided between the lower chamber 14g of the tilt cylinder 14 and the lower chamber 12g of the trim cylinder 12 in the sixth flow passage C6. As shown in FIG. 4, the switching valve 60 provided on the sixth flow path C6 is driven by the solenoid 62 and the plunger 62 for driving the sixth flow path C6 in the blocking state or the opening state. Is equipped. A control signal SIG_CONT is supplied to the solenoid 62 from the control unit 100 described later, and the ON / OFF of the solenoid 62 is switched based on the control signal SIG_CONT.
The switching valve 60 closes the sixth flow passage C6 by being closed when the solenoid 62 is OFF, and opens the sixth flow passage C6 by being opened when the solenoid 62 is ON. It may be configured as a normally closed valve, or the sixth flow path C6 is opened by being open when the solenoid is off, and the sixth flow by being closed when the solenoid is on. It may be configured as a normally open valve that shuts off the passage C6.
 切替弁60をノーマリーオープン弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第6の流路C6が開放された状態、すなわち、トリムシリンダ12の下室12gとチルトシリンダ14の下室14gとが連通した状態で維持されるので、チルトシリンダ14及びトリムシリンダ12の双方を用いて船外機300の角度調整を行うことができる。 When the switching valve 60 is configured as a normally open valve, the sixth channel C6 is opened even if the switching valve 60 does not operate, that is, the lower chamber of the trim cylinder 12 Since 12 g is maintained in communication with the lower chamber 14 g of the tilt cylinder 14, angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
 一方で、切替弁60をノーマリークローズ弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第6の流路C6が遮断された状態、すなわち、トリムシリンダ12の下室12gとチルトシリンダ14の下室14gとが非連通状態で維持される。このため、チルトシリンダ14の下室14gから作動油が流出しないので、チルトシリンダ14のみで船外機300の角度調整を行ったり、船外機300を保持し続けたりすることができる。 On the other hand, when the switching valve 60 is configured as a normally closed valve, even if the switching valve 60 does not operate, the sixth channel C6 is shut off, that is, the trim cylinder 12 The lower chamber 12g and the lower chamber 14g of the tilt cylinder 14 are kept out of communication with each other. Therefore, since the hydraulic oil does not flow out from the lower chamber 14g of the tilt cylinder 14, the angle adjustment of the outboard motor 300 can be performed only by the tilt cylinder 14, and the outboard motor 300 can be held continuously.
 なお、本実施形態では、プランジャ64には、第6の流路C6の遮断状態においてトリムシリンダ12の下室12gにおける油圧の過度な上昇を防止するためのトリム下室保護バルブ66が設けられている。 In the present embodiment, the plunger 64 is provided with a trim lower chamber protection valve 66 for preventing an excessive rise of the hydraulic pressure in the lower chamber 12g of the trim cylinder 12 in the closed state of the sixth flow passage C6. There is.
 また、上記の説明では、ソレノイド62がオンオフソレノイドであり、プランジャ64が第6の流路C6を遮断状態及び開放状態の何れか一方の状態とする構成を例に挙げたが、これは本実施形態を限定するものではない。ソレノイド62として比例ソレノイドを採用し、プランジャ64を遮断状態位置から開放状態位置までの任意の位置に制御可能な構成としてもよい。このような構成とすることにより、第6の流路C6を通過する作動油の流量をきめ細かく制御することができるので、船外機300の上昇及び下降をよりきめ細かく制御することができる。 In the above description, the solenoid 62 is the on / off solenoid, and the plunger 64 takes the sixth channel C6 in either the closed state or the open state as an example. It does not limit the form. A proportional solenoid may be employed as the solenoid 62 so that the plunger 64 can be controlled to any position from the blocking position to the opening position. With such a configuration, the flow rate of the hydraulic oil passing through the sixth flow passage C6 can be finely controlled, so that the ascent and descent of the outboard motor 300 can be more finely controlled.
 (制御部100)
 図4に示すように、船外機昇降装置1は制御部100を備えている。制御部100は、船体200のイグニッションのオンオフを示すイグニッション信号SIG_IG、船体状態信号SIG_IN、及び、運転者による船外機300の昇降指示を示す昇降信号SIG_UDを参照し、切替弁60を制御するための制御信号SIG_CONTを生成する。生成した制御信号SIG_CONTは切替弁60に供給される。なお、船体状態信号SIG_INの一例として、船外機300の状態を示す状態信号が挙げられるが、本明細書に記載の実施形態はこれに限定されるものではない。船体状態信号の様々な例については後述する。
(Control unit 100)
As shown in FIG. 4, the outboard motor lifting device 1 includes a control unit 100. The control unit 100 controls the switching valve 60 with reference to the ignition signal SIG_IG indicating turning on / off of the ignition of the hull 200, the hull state signal SIG_IN, and the elevation signal SIG_UD indicating the elevation instruction of the outboard motor 300 by the driver. Control signal SIG_CONT of FIG. The generated control signal SIG_CONT is supplied to the switching valve 60. In addition, although the state signal which shows the state of the outboard motor 300 is mentioned as an example of ship state signal SIG_IN, the embodiment as described in this specification is not limited to this. Various examples of hull condition signals are described below.
 制御部100を備えることにより、船外機昇降装置1は、船外機300の状態に応じて船外機の昇降の速さを自動的に変更することができる。 By providing the control unit 100, the outboard motor lifting device 1 can automatically change the speed of raising and lowering the outboard motor according to the state of the outboard motor 300.
 (制御部100の構成例)
 以下では、制御部100の具体的な構成例について参照する図面を替えて説明する。
(Example of Configuration of Control Unit 100)
Hereinafter, the specific configuration example of the control unit 100 will be described with reference to the drawings.
 図5は、制御部100の一構成例を示す回路図である。本例では、イグニッション信号SIG_IG、船体状態信号SIG_IN、昇降信号SIG_UDは、すべてアナログ信号として制御部100に入力される。 FIG. 5 is a circuit diagram showing one configuration example of the control unit 100. As shown in FIG. In this example, the ignition signal SIG_IG, the hull state signal SIG_IN, and the elevation signal SIG_UD are all input to the control unit 100 as analog signals.
 図5に示すように、本例に係る制御部100は、第1のコネクタ101~第4のコネクタ104、及び、第1のスイッチング素子121~第5のスイッチング素子125等を備えて構成される。ここで、第1のスイッチング素子121、第3のスイッチング素子123、及び第4のスイッチング素子124は、例えばトランジスタによって構成されており、第2のスイッチング素子は、例えばFET(電界効果トランジスタ)によって構成されている。 As shown in FIG. 5, the control unit 100 according to the present embodiment is configured to include a first connector 101 to a fourth connector 104, a first switching element 121 to a fifth switching element 125, and the like. . Here, the first switching element 121, the third switching element 123, and the fourth switching element 124 are, for example, transistors, and the second switching elements are, for example, FETs (field effect transistors). It is done.
 第1のスイッチング素子121のコレクタ電極及び第3のスイッチング素子123のコレクタ電極、並びに、第2のスイッチング素子122のドレイン電極には、第1のコネクタ101を介してイグニッション信号SIG_IGが入力される。 An ignition signal SIG_IG is input to the collector electrode of the first switching element 121, the collector electrode of the third switching element 123, and the drain electrode of the second switching element 122 via the first connector 101.
 第1のスイッチング素子121のベース電極には、第2のコネクタ102及びダイオード111を介して船体状態信号SIG_INが入力され、第3のスイッチング素子123のベース電極には第1のスイッチング素子121のエミッタ電流がダイオード112を介して入力される。また、第4のスイッチング素子124のベース電極には、第3のコネクタ103及びダイオード113を介して昇降信号SIG_UDが入力され、第5のスイッチング素子125のベース電極には、第3のコネクタ103及びダイオード114を介して昇降信号SIG_UDが入力される。 The hull state signal SIG_IN is input to the base electrode of the first switching element 121 via the second connector 102 and the diode 111, and the emitter of the first switching element 121 is input to the base electrode of the third switching element 123. A current is input through the diode 112. Further, the elevation signal SIG_UD is input to the base electrode of the fourth switching element 124 via the third connector 103 and the diode 113, and the third connector 103 and the third electrode 103 are input to the base electrode of the fifth switching element 125. An elevation signal SIG_UD is input via the diode 114.
 第2のスイッチング素子122のゲート電極には、第1のスイッチング素子121のエミッタ電流に応じた信号が、第3のスイッチング素子123及び第4のスイッチング素子を介して、又は、第3のスイッチング素子123及び第5のスイッチング素子を介して入力される。より具体的には、第2のスイッチング素子122のゲート電極には、ダイオード115を介して、第4のスイッチング素子124のエミッタ電流及び第5のスイッチング素子125のエミッタ電流が入力される。 A signal corresponding to the emitter current of the first switching element 121 is transmitted to the gate electrode of the second switching element 122 via the third switching element 123 and the fourth switching element, or the third switching element The signal is input via the 123 and the fifth switching element. More specifically, the emitter current of the fourth switching element 124 and the emitter current of the fifth switching element 125 are input to the gate electrode of the second switching element 122 via the diode 115.
 第2のスイッチング素子122のソース電極からは、第4のコネクタ104を介して、制御信号SIG_CONTが切替弁60に供給される。 The control signal SIG_CONT is supplied from the source electrode of the second switching element 122 to the switching valve 60 via the fourth connector 104.
 (船体状態信号SIG_INの具体例)
 上述した船体状態信号SIG_INの一例として、船外機300が備えるエンジン301の状態を示すエンジン信号が挙げられる。ここで、エンジン信号とは、例えば、エンジン301の回転数を示す信号であり、一例としてエンジン301から取得することができる。なお、エンジンの回転数が0であればエンジンはオフであり、エンジンの回転数がゼロでなければエンジンはオンであるので、エンジンの回転数を示す信号はエンジンのオンオフを示す信号でもある。
(Specific example of ship state signal SIG_IN)
As an example of the above-described hull state signal SIG_IN, an engine signal indicating the state of the engine 301 provided in the outboard motor 300 can be given. Here, an engine signal is a signal which shows the number of rotations of engine 301, for example, and can be acquired from engine 301 as an example. Since the engine is off if the engine speed is 0 and the engine is on if the engine speed is not zero, the signal indicating the engine speed is also a signal indicating on / off of the engine.
 船体状態信号SIG_INをエンジン信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備えるエンジン301の状態に応じて船外機の昇降の速さを自動的に変更することができる。 By using the hull state signal SIG_IN as an engine signal, the outboard motor elevator apparatus 1 automatically raises and lowers the speed of the outboard motor according to the state of the engine 301 provided in the outboard motor 300 as described below Can be changed to
 また、船体状態信号SIG_INの他の一例として、船外機300の備える動力伝達機構302が、動力伝達可能な状態、すなわちインギヤの状態にあるのか否かを示すギヤ信号が挙げられる。ギヤ信号は、一例として動力伝達機構302から取得することができる。 Further, as another example of the hull state signal SIG_IN, there is a gear signal indicating whether the power transmission mechanism 302 provided in the outboard motor 300 is in a power transmittable state, that is, in an in-gear state. The gear signal can be obtained from the power transmission mechanism 302 as an example.
 船体状態信号SIG_INをギヤ信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備える動力伝達機構302の状態に応じて船外機の昇降の速さを自動的に変更することができる。 By using the hull state signal SIG_IN as a gear signal, the outboard motor lifting apparatus 1 moves the lifting speed of the outboard motor in accordance with the state of the power transmission mechanism 302 provided in the outboard motor 300 as will be seen below. It can be changed automatically.
 なお、上述のエンジン信号、及びインギヤ信号は、船外機300の状態を示す状態信号の一例である。 The above-mentioned engine signal and in-gear signal are examples of the state signal indicating the state of the outboard motor 300.
 (船外機昇降装置1の動作例)
 (上昇動作)
 昇降信号SIG_UDが「上昇」を示している場合、ポンプ42が正転し、作動油がポンプ42からメインバルブ48の第1シャトル室48dに圧送される。これにより、第1チェック弁48bが開くと共に、スプール48aが第1チェック弁48b側に移動し、第2チェック弁48cが開く。その結果、作動油がチルトシリンダ14の下室14gに供給されると共に、チルトシリンダ14の上室14fから作動油が回収される。
(Operation Example of Outboard Motor Lifting Device 1)
(Rise movement)
When the elevation signal SIG_UD indicates “rising”, the pump 42 rotates forward, and hydraulic fluid is pumped from the pump 42 to the first shuttle chamber 48 d of the main valve 48. As a result, the first check valve 48b is opened, the spool 48a is moved to the first check valve 48b side, and the second check valve 48c is opened. As a result, the hydraulic oil is supplied to the lower chamber 14 g of the tilt cylinder 14, and the hydraulic oil is recovered from the upper chamber 14 f of the tilt cylinder 14.
 ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gにも供給されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also supplied to the lower chamber 12g of the trim cylinder 12, so both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 rise. .
 一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gには供給されないので、チルトシリンダ14のピストンロッド14bは上昇するが、トリムシリンダ12のピストンロッド12bは上昇しない。 On the other hand, when the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 rises, but the piston rod 12b of the trim cylinder 12 does not rise. .
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gに供給されない。ポンプ42によって供給される単位時間当たりの作動油量は、切替弁60がオープン状態であっても、クローズ状態であっても大きな変化はない。このため、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く上昇する。 When the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12 g of the trim cylinder 12. The amount of hydraulic oil supplied by the pump 42 per unit time does not change significantly whether the switching valve 60 is open or closed. Therefore, the piston rod 14b of the tilt cylinder 14 ascends faster than when the switching valve 60 is in the open state.
 (下降動作)
 昇降信号SIG_UDが「下降」を示している場合、ポンプ42が逆転し、作動油がポンプ42からメインバルブ48の第2シャトル室48eに圧送される。これにより、第2チェック弁48cが開くと共に、スプール48aが第2チェック弁48c側に移動し、第1チェック弁48bが開く。その結果、作動油がチルトシリンダ14の上室14fに供給されると共に、チルトシリンダ14の下室14gから作動油が回収される。
(Descent operation)
When the elevation signal SIG_UD indicates “down”, the pump 42 is reversely rotated, and hydraulic fluid is pumped from the pump 42 to the second shuttle chamber 48 e of the main valve 48. As a result, the second check valve 48 c is opened, the spool 48 a is moved to the second check valve 48 c side, and the first check valve 48 b is opened. As a result, the hydraulic oil is supplied to the upper chamber 14 f of the tilt cylinder 14, and the hydraulic oil is recovered from the lower chamber 14 g of the tilt cylinder 14.
 ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gからも回収されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に下降する。 Here, if the switching valve 60 is in the open state, the hydraulic oil is also recovered from the lower chamber 12g of the trim cylinder 12, so both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 descend. .
 一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは下降するが、トリムシリンダ12のピストンロッド12bは下降しない。 On the other hand, when the switching valve 60 is in the closed state, the hydraulic oil is not recovered from the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 descends, but the piston rod 12b of the trim cylinder 12 does not descend .
 切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く下降する。 When the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12, so the piston rod 14b of the tilt cylinder 14 descends faster than when the switching valve 60 is in the open state. .
 (保持状態)
 昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合、ポンプ42が停止する。ポンプ42が停止すると、船外機昇降装置1の油圧回路内の動作油の移動が収束した状態において、船外機300が保持される。なお、本明細書では、昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合を、便宜的に、昇降信号SIG_UDが「保持」を示している場合と表現することもある。
(Holding state)
When the elevation signal SIG_UD indicates neither “rising” nor “falling”, the pump 42 is stopped. When the pump 42 stops, the outboard motor 300 is held in a state in which the movement of the working oil in the hydraulic circuit of the outboard motor lifting device 1 has converged. In the present specification, the case where the raising and lowering signal SIG_UD does not indicate either “rising” or “falling” may be expressed as the case where the raising / lowering signal SIG_UD indicates “holding” for convenience.
 (切替弁60の制御例)
 以下では、図6を参照して、制御部100による切替弁60の制御例について説明する。
(Example of control of switching valve 60)
Below, with reference to FIG. 6, the example of control of the switching valve 60 by the control part 100 is demonstrated.
 図6は、船体状態信号SIG_INが示す船外機300の状態、昇降信号SIG_UDが示す運転者による船外機の昇降指示、及び、制御部100によって制御された切替弁60の状態を例示する表である。 FIG. 6 is a table exemplifying the state of the outboard motor 300 indicated by the hull state signal SIG_IN, the elevation instruction of the outboard motor by the driver indicated by the elevation signal SIG_UD, and the state of the switching valve 60 controlled by the control unit 100. It is.
 図6に示す例では、船体状態信号SIG_INが「エンジンオン」又は「インギヤ」を示している場合、昇降信号SIG_UDが「上昇」「下降」「保持」の何れを示しているのかに関わらず、制御部100は切替弁60をオープン状態とする。 In the example shown in FIG. 6, when the ship state signal SIG_IN indicates "engine on" or "in gear", regardless of which of "rising", "falling", and "holding" the raising and lowering signal SIG_UD indicates. The control unit 100 brings the switching valve 60 into the open state.
 一例として、船体状態信号SIG_INは、船外機300が備えるエンジン301のエンジン回転部に関連する信号であり、制御部100は、エンジン回転数が回転数に関する第1閾値以上である場合に、航行状態と判定し、切替弁60をオープン状態とする。ここで、回転数に関する第1閾値は、適宜設定された正の値を有している。また、制御部100は、エンジン回転数が回転数に関する第2閾値を超える場合に、航行状態と判定し、切替弁60をオープン状態とする構成でもよい。ここで、回転数に関する第2閾値は、適宜設定された0以上の値を有している。 As an example, the hull state signal SIG_IN is a signal related to the engine rotation unit of the engine 301 provided in the outboard motor 300, and the control unit 100 navigates when the engine rotation speed is equal to or more than the first threshold value for the rotation speed. It determines with it being a state and makes the switching valve 60 an open state. Here, the first threshold relating to the rotational speed has a positive value set appropriately. In addition, the control unit 100 may be configured to determine that the vehicle is in the navigation state and to set the switching valve 60 in the open state when the engine speed exceeds the second threshold related to the speed. Here, the second threshold regarding the rotational speed has a value of 0 or more set appropriately.
 このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、航行状態と判定した場合に、切替弁60をオープン状態となるように制御する。 As described above, the control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the open state when the navigation state is determined.
 したがって、エンジン301がオンであるか又は動力伝達機構302がインギヤの状態では、トリム域において、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇及び下降することによって船外機300の角度調整が行われる。また、船外機300の保持状態において、外力によりトリムシリンダ12の下室12gの内圧が上昇した場合であっても、当該内圧は、チルトシリンダの下室14gに分散される。 Therefore, when engine 301 is on or power transmission mechanism 302 is in the in-gear state, the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 move up and down together in the trim area. The angle adjustment of the machine 300 is performed. Further, even when the internal pressure of the lower chamber 12g of the trim cylinder 12 is increased by an external force in the holding state of the outboard motor 300, the internal pressure is dispersed in the lower chamber 14g of the tilt cylinder.
 一方で、図6に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「上昇」又は「保持」を示す場合に、制御部100は切替弁60をクローズ状態とする。 On the other hand, in the example shown in FIG. 6, when the hull state signal SIG_IN indicates "engine off" or "not in gear" and the elevation signal SIG_UD indicates "rising" or "holding", the control unit 100 switches the switching valve 60. Is closed.
 このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、停船状態と判定した場合に、切替弁60をクローズ状態となるように制御する。 As described above, the control unit 100 refers to the ship state signal SIG_IN to determine the navigation state and the stop state, and controls the switching valve 60 to be in the closed state when it is determined that the ship is in the stop state.
 したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を上昇させる場合、トリム域においても、チルトシリンダ14のピストンロッド14bのみが上昇する。このため、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態では、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く上昇させることができる。 Therefore, when raising the outboard motor 300 while the engine 301 is off or the power transmission mechanism 302 is not in gear, only the piston rod 14b of the tilt cylinder 14 also rises in the trim area. Therefore, when the engine 301 is off or the power transmission mechanism 302 is not in gear, the outboard motor 300 is raised faster than the engine 301 is on or the power transmission mechanism 302 is in gear. be able to.
 また、船外機300の保持状態において、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されることがないので、チルトシリンダ14のピストンロッド14bによって船外機300をしっかりと保持することができる。 Further, since the hydraulic oil is not supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12 when the outboard motor 300 is held, the outboard motor 300 is operated by the piston rod 14b of the tilt cylinder 14. Can be held firmly.
 また、図6に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をオープン状態とする。 Further, in the example shown in FIG. 6, when the hull state signal SIG_IN indicates "engine off" or "not in gear" and the elevation signal SIG_UD indicates "down", the control unit 100 sets the switching valve 60 in the open state. .
 したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給され、トリムシリンダ12のピストンロッド12bが、スイベルブラケット80に当接するまで上昇する。 Therefore, when lowering the outboard motor 300 while the engine 301 is off or the power transmission mechanism 302 is not in gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. The piston rod 12 b of the trim cylinder 12 is raised until it abuts on the swivel bracket 80.
 なお、切替弁60の制御は、上記の例に限定されるものではなく、ユーザの使い勝手や外力に対する船外機昇降装置1の適応性等を鑑みて、適宜設定することができる。 The control of the switching valve 60 is not limited to the above-described example, and can be appropriately set in consideration of the user's convenience, the adaptability of the outboard motor lifting apparatus 1 to external force, and the like.
 例えば、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をクローズ状態としてもよい。 For example, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the elevation signal SIG_UD indicates “down”, the control unit 100 may set the switching valve 60 in the closed state.
 この場合、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されないので、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く下降させることができる。 In this case, when the outboard motor 300 is lowered with the engine 301 off or the power transmission mechanism 302 not in gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. Therefore, the outboard motor 300 can be lowered earlier than when the engine 301 is on or the power transmission mechanism 302 is in gear.
 なお、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、切替弁60をオープン状態とするのかクローズ状態とするのかの選択は、制御部100によって行われる構成としてもよい。このような構成の場合、制御部100はユーザからの指示を示すユーザ指示信号を参照してオープン状態及びクローズ状態の何れかを選択してもよいし、他の信号を参照してオープン状態及びクローズ状態の何れかを選択してもよい。 When the hull state signal SIG_IN indicates "engine off" or "not in gear" and the elevation signal SIG_UD indicates "down", the selection of whether the switching valve 60 is open or closed is controlled. The configuration may be performed by the unit 100. In such a configuration, control unit 100 may select either the open state or the closed state by referring to a user instruction signal indicating an instruction from the user, or by referring to another signal, the open state or One of the closed states may be selected.
 〔実施形態2〕
 以下では、図7を参照して実施形態2に係る制御部100aについて説明する。図7は本実施形態に係る制御部100aの構成を示すブロック図である。
Second Embodiment
The control unit 100a according to the second embodiment will be described below with reference to FIG. FIG. 7 is a block diagram showing the configuration of the control unit 100a according to the present embodiment.
 本実施形態に係る船外機昇降装置は、実施形態1係る船外機昇降装置1において、制御部100に代えて、図7に示す制御部100aを備えたものである。本実施形態に係る船外機昇降装置のその他の構成は実施形態1において説明した船外機昇降装置1と同様である。 The outboard motor elevator according to the present embodiment includes a control unit 100a shown in FIG. 7 in place of the control unit 100 in the outboard motor elevator 1 according to the first embodiment. The other configuration of the outboard motor elevator according to the present embodiment is the same as that of the outboard motor elevator 1 described in the first embodiment.
 制御部100aは、船体状態信号A-D変換回路131、昇降信号A-D変換回路132、演算部133、及び制御信号生成回路134を備えている。本実施形態においても、船体状態信号SIG_IN、及び昇降信号SIG_UDは、アナログ信号として制御部100aに入力される。なお、図7では、船体状態信号A-D変換回路131のことを入力信号A-D変換回路131と表記している。 The control unit 100 a includes a hull state signal AD conversion circuit 131, an elevation signal AD conversion circuit 132, an arithmetic unit 133, and a control signal generation circuit 134. Also in the present embodiment, the hull state signal SIG_IN and the elevation signal SIG_UD are input to the control unit 100a as an analog signal. In FIG. 7, the ship state signal AD conversion circuit 131 is referred to as an input signal AD conversion circuit 131.
 船体状態信号A-D変換回路131は、船体状態信号SIG_INをデジタル信号に変換する変換回路である。変換されたデジタル信号としての船体状態信号SIG_INは、演算部143に供給される。 The hull state signal AD conversion circuit 131 is a conversion circuit that converts the hull state signal SIG_IN into a digital signal. The hull state signal SIG_IN as the converted digital signal is supplied to the calculation unit 143.
 昇降信号A-D変換回路132は、昇降信号SIG_UDをデジタル信号に変換する変換回路である。変換されたデジタル信号としての昇降信号SIG_UDは、演算部143に供給される。 The elevation signal AD conversion circuit 132 is a conversion circuit that converts the elevation signal SIG_UD into a digital signal. The elevation signal SIG_UD as a converted digital signal is supplied to the calculation unit 143.
 演算部133は、デジタル信号としての船体状態信号SIG_IN及び昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 The operation unit 133 refers to the hull state signal SIG_IN and the elevation signal SIG_UD as digital signals, and determines which of the open state and the closed state the switching valve 60 should be in. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 制御信号生成回路134は、上記決定結果を示す信号を参照し、上記決定結果に応じた制御信号SIG_CONTを生成する。生成された制御信号SIG_CONTは、切替弁60に供給される。 The control signal generation circuit 134 refers to the signal indicating the determination result, and generates the control signal SIG_CONT according to the determination result. The generated control signal SIG_CONT is supplied to the switching valve 60.
 演算部133において決定される、船体状態信号SIG_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図6と同様に決定する構成とすることができる。 The relationship between the hull state signal SIG_IN and the elevation signal SIG_UD determined by the calculation unit 133 and the state of the switching valve 60 is not limited to this embodiment, but as an example, it is the same as FIG. 6 of the first embodiment. It can be configured to be determined.
 本実施形態に係る船外機昇降装置は、制御部100aを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、船体状態信号SIG_INを、船外機300の状態を示す状態信号とすれば、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。 Since the outboard motor elevator according to the present embodiment includes the control unit 100a, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, if the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor can be automatically changed according to the state of the outboard motor.
 〔実施形態3〕
 以下では、図8を参照して実施形態3に係る制御部100bについて説明する。図8は本実施形態に係る制御部100bの構成を示すブロック図である。
Third Embodiment
Hereinafter, the control unit 100b according to the third embodiment will be described with reference to FIG. FIG. 8 is a block diagram showing the configuration of the control unit 100b according to the present embodiment.
 本実施形態に係る船外機昇降装置は、実施形態1に係る船外機昇降装置1において、制御部100に代えて、図8に示す制御部100bを備えたものである。以下の説明では、すでに説明した部材と同様の部材には同じ符号を付してその説明を省略する。 The outboard motor elevator according to the present embodiment includes a controller 100b shown in FIG. 8 in place of the controller 100 in the outboard motor elevator 1 according to the first embodiment. In the following description, the same members as those described above are denoted by the same reference numerals, and the description thereof is omitted.
 制御部100bは、図8に示すように、デジタル信号送受信回路141、昇降信号A-D変換回路132、演算部143、及び制御信号生成回路134を備えている。 As shown in FIG. 8, the control unit 100b includes a digital signal transmission / reception circuit 141, an elevation signal AD conversion circuit 132, an operation unit 143, and a control signal generation circuit 134.
 デジタル信号送受信回路141は、船体状態信号としてデジタル信号D_SIGを受信し、受信したデジタル信号D_SIGを演算部143に供給する。 The digital signal transmission / reception circuit 141 receives the digital signal D_SIG as a ship state signal, and supplies the received digital signal D_SIG to the calculation unit 143.
 デジタル信号D_SIGは、船体200上に構成された有線又は無線ネットワークを介して伝送される信号であり、入力情報INFO_INを含んでいる。ここで、入力情報INFO_INとは、実施形態1及び2において説明した船体状態信号SIG_INによって示される情報と同様の情報である。一例として、入力情報INFO_INには、実施形態1及び2において説明した、船外機300の状態を示す状態信号と同等の情報が含まれ得る。入力情報INFO_INの具体例として、例えば、エンジン301のオンオフを示す1ビットのフラグ、船外機300の備える動力伝達機構302がインギヤの状態にあるのか否かを示す1ビットのフラグ等が挙げられる。 The digital signal D_SIG is a signal transmitted via a wired or wireless network configured on the hull 200, and includes input information INFO_IN. Here, the input information INFO_IN is information similar to the information indicated by the hull state signal SIG_IN described in the first and second embodiments. As an example, the input information INFO_IN may include information equivalent to the state signal indicating the state of the outboard motor 300 described in the first and second embodiments. Specific examples of the input information INFO_IN include, for example, a 1-bit flag indicating turning on and off of the engine 301, and a 1-bit flag indicating whether the power transmission mechanism 302 of the outboard motor 300 is in gear. .
 デジタル信号D_SIGは、船体200に関する様々な情報及び船体200外から取得した様々な情報を含み得る。デジタル信号D_SIGを伝送するための具体的な規格は本実施形態を限定するものではないが、一例として、NMEA(National Marine Electronics Association)によって制定されたNMEA2000(登録商標)が挙げられる。 The digital signal D_SIG may include various information on the hull 200 and various information obtained from outside the hull 200. A specific standard for transmitting the digital signal D_SIG is not limited to this embodiment, but one example is NMEA 2000 (registered trademark) established by National Marine Electronics Association (NMEA).
 演算部143は、デジタル信号送受信回路141から供給されるデジタル信号D_SIG、及び、昇降信号A-D変換回路132から供給されるデジタル信号としての昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。 The calculation unit 143 refers to the digital signal D_SIG supplied from the digital signal transmission / reception circuit 141 and the elevation signal SIG_UD as a digital signal supplied from the elevation signal AD conversion circuit 132, and opens the switching valve 60 in an open state. Decide which should be closed. A signal indicating the determination result is supplied to the control signal generation circuit 134.
 演算部143において決定される、入力情報INFO_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図6と同様に決定する構成とすることができる。 The relationship between the input information INFO_IN and the elevation signal SIG_UD determined by the calculation unit 143 and the state of the switching valve 60 is not limited to the present embodiment, but is determined similarly to FIG. 6 of the first embodiment as an example. Can be configured.
 また、演算部143は、デジタル信号D_SIGに含まれる他の情報を更に参照して、切替弁をオープン状態及びクローズ状態の何れにすべきかを決定する構成としてもよい。 In addition, the calculation unit 143 may be configured to determine whether the switching valve should be in the open state or in the closed state by further referring to other information included in the digital signal D_SIG.
 本実施形態に係る船外機昇降装置は、制御部100bを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、デジタル信号D_SIGが、船外機300の状態を示す状態信号と同等の情報を含む構成では、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。 Since the outboard motor elevator according to the present embodiment includes the control unit 100b, the speed of raising and lowering the outboard motor can be automatically changed as in the first embodiment. Further, in the configuration in which the digital signal D_SIG includes information equivalent to the state signal indicating the state of the outboard motor 300, the speed of raising and lowering the outboard motor may be automatically changed according to the state of the outboard motor. it can.
 〔実施形態4〕
 以下では、実施形態4に係る船外機昇降装置1aの構成について、図9を参照して説明する。図9は、本実施形態に係る船外機昇降装置1aの油圧回路を制御部100と共に示す図である。図9では、すでに説明した部材と同じ部材には同じ符号を付している。
Embodiment 4
Hereinafter, the configuration of the outboard motor elevator 1a according to the fourth embodiment will be described with reference to FIG. FIG. 9 is a diagram showing a hydraulic circuit of the outboard motor elevator 1a according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 9, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1aは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。
 図9に示すように、本実施形態に係る船外機昇降装置1aでは、第7の流路C7は、保持バルブ71及び保護バルブ72を介して、タンク18に接続されている。つまり、第7の流路C7は、トリムシリンダ12の上室12fとタンク18とを接続している。
The outboard motor lifting apparatus 1a according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
As shown in FIG. 9, in the outboard motor elevator 1a according to the present embodiment, the seventh flow passage C7 is connected to the tank 18 via the holding valve 71 and the protection valve 72. That is, the seventh flow passage C7 connects the upper chamber 12f of the trim cylinder 12 to the tank 18.
 トリムシリンダ12の上室12fにおける作動油の圧力が所定の圧力以下でなければ保持バルブ71は開かない。保持バルブ71が開かなければ、トリムシリンダ12の上室12fに作動油が供給されないので、トリムシリンダ12のピストンロッド12bが下がることはない。このように、保持バルブ71は、トリムシリンダ12のピストンロッド12bの位置を保持するという役割を有している。 If the pressure of the hydraulic oil in the upper chamber 12f of the trim cylinder 12 is not less than a predetermined pressure, the holding valve 71 does not open. Since the hydraulic oil is not supplied to the upper chamber 12f of the trim cylinder 12 unless the holding valve 71 is opened, the piston rod 12b of the trim cylinder 12 is not lowered. Thus, the holding valve 71 has a role of holding the position of the piston rod 12 b of the trim cylinder 12.
 一方で、保護バルブ72は、トリムシリンダ12の上室12fの油圧の圧力が所定の圧力以上となった場合に開く。これにより、トリムシリンダ12の上室12fからメインバルブ48の第2シャトル室48eに作動油が回収される。このように、保護バルブ72は、トリムシリンダ12の上室12fにおける過度な圧力の上昇を抑制するという役割を有している。 On the other hand, the protective valve 72 opens when the hydraulic pressure of the upper chamber 12 f of the trim cylinder 12 becomes equal to or higher than a predetermined pressure. As a result, the hydraulic oil is recovered from the upper chamber 12 f of the trim cylinder 12 to the second shuttle chamber 48 e of the main valve 48. Thus, the protection valve 72 has a role of suppressing an excessive pressure increase in the upper chamber 12 f of the trim cylinder 12.
 このように、上記のような構成とすることによっても、実施形態1~3において説明した船外機昇降装置と同様の効果を奏することができる。 As described above, also with the above-described configuration, the same advantages as those of the outboard motor lifting device described in the first to third embodiments can be obtained.
 〔実施形態5〕
 以下では、実施形態5に係る船外機昇降装置1bの構成について、図10を参照して説明する。図10は、本実施形態に係る船外機昇降装置1bの油圧回路を制御部100と共に示す図である。図10では、すでに説明した部材と同じ部材には同じ符号を付している。
Fifth Embodiment
Hereinafter, the configuration of the outboard motor elevator 1b according to the fifth embodiment will be described with reference to FIG. FIG. 10 is a diagram showing a hydraulic circuit of the outboard motor elevator 1b according to the present embodiment together with the control unit 100. As shown in FIG. In FIG. 10, the same members as those described above are denoted by the same reference numerals.
 なお、本実施形態に係る船外機昇降装置1bは、実施形態1において説明した制御部100に代えて、実施形態2に係る制御部100aを備える構成としてもよいし、実施形態3に係る制御部100bを備える構成としてもよい。 The outboard motor lifting apparatus 1b according to the present embodiment may be configured to include the control unit 100a according to the second embodiment instead of the control unit 100 described in the first embodiment, and the control according to the third embodiment. It may be configured to include the portion 100b.
 図10に示すように、本実施形態に係る船外機昇降装置1bは、第6の流路C6上に設けられた切替弁90を備えている。切替弁90は、ソレノイド92及びプランジャ94を備えている。 As shown in FIG. 10, the outboard motor elevator 1b according to the present embodiment includes a switching valve 90 provided on the sixth flow passage C6. The switching valve 90 includes a solenoid 92 and a plunger 94.
 また、第7の流路C7は、複数のトリムシリンダ12の上室12fの一つとタンク18とを、フィルタF3を介して接続している。
 プランジャ94には、第3の流路C3をチルトシリンダ40の下室14gに接続し、かつ、第3の流路と第6の流路C6とを接続するよう形成された第1の流路群94-1と、第3の流路C3をチルトシリンダ40の下室14gに接続する一方で、第3の流路と第6の流路C6とを接続しないよう形成された第2の流路群94-2とが設けられている。
The seventh flow passage C7 connects one of the upper chambers 12f of the plurality of trim cylinders 12 and the tank 18 via the filter F3.
In the plunger 94, a first flow path formed to connect the third flow path C3 to the lower chamber 14g of the tilt cylinder 40 and to connect the third flow path and the sixth flow path C6 A second flow formed so as not to connect the third flow path and the sixth flow path C6 while connecting the group 94-1 and the third flow path C3 to the lower chamber 14g of the tilt cylinder 40 A road group 94-2 is provided.
 上記のように構成されたプランジャ94を有する切替弁90は、以下の第1の接続状態と第2の接続状態とを、制御部100から供給される制御信号SIG_CONTに応じて切り替える。 The switching valve 90 having the plunger 94 configured as described above switches the following first connection state and second connection state according to the control signal SIG_CONT supplied from the control unit 100.
 (第1の接続状態)
 第1の接続状態では、ポンプ42に接続された第3の流路C3を、チルトシリンダ40の下室14gに接続し、かつ、ポンプ42に接続された第3の流路とトリムシリンダ12の下室12gに接続された第6の流路C6とを接続状態とする。このように、ポンプ42とチルトシリンダ40の下室14gとが接続され、かつ、ポンプ42とトリムシリンダ12の下室12gとが接続された状態を、第1の接続状態と呼ぶ。
(First connection state)
In the first connection state, the third flow passage C3 connected to the pump 42 is connected to the lower chamber 14g of the tilt cylinder 40 and the third flow passage connected to the pump 42 and the trim cylinder 12 The sixth flow path C6 connected to the lower chamber 12g is brought into a connected state. The state in which the pump 42 and the lower chamber 14g of the tilt cylinder 40 are connected and the pump 42 and the lower chamber 12g of the trim cylinder 12 are connected in this way is referred to as a first connection state.
 (第2の接続状態)
 第2の接続状態では、ポンプ42に接続された第3の流路C3を、チルトシリンダ40の下室14gに接続する一方で、ポンプ42に接続された第3の流路とトリムシリンダ12の下室12gに接続された第6の流路C6とを接続しない状態とする。このように、ポンプ42とチルトシリンダ40の下室14gとを接続する一方で、ポンプ42とトリムシリンダ12の下室12gとを接続しない状態を、第2の接続状態と呼ぶ。
(Second connection state)
In the second connection state, the third flow passage C3 connected to the pump 42 is connected to the lower chamber 14g of the tilt cylinder 40 while the third flow passage connected to the pump 42 and the trim cylinder 12 The sixth flow path C6 connected to the lower chamber 12g is not connected. A state in which the pump 42 and the lower chamber 14g of the tilt cylinder 40 are connected while the pump 42 and the lower chamber 12g of the trim cylinder 12 are not connected in this way is called a second connection state.
 なお、ソレノイド82には、制御部100から制御信号SIG_CONTが供給され、制御信号SIG_CONTに基づき、ソレノイド92のON/OFFが切り替えられる。切替弁90は、ソレノイド92がOFFの場合に、第6の流路C6を接続しない第2の接続状態とし、ソレノイド92がONの場合に、第6の流路C6を接続する第1の接続状態とするノーマリークローズ弁として構成してもよい。また、切替弁90は、ソレノイド92がOFFの場合に、第6の流路C6を接続する第1の接続状態とし、ソレノイドがONの場合に、第6の流路C6を接続しない第2の接続状態とするノーマリーオープン弁として構成してもよい。 A control signal SIG_CONT is supplied from the control unit 100 to the solenoid 82, and the ON / OFF of the solenoid 92 is switched based on the control signal SIG_CONT. The switching valve 90 is set to a second connection state in which the sixth flow path C6 is not connected when the solenoid 92 is off, and a first connection that connects the sixth flow path C6 when the solenoid 92 is on You may comprise as a normally closed valve made into a state. Further, the switching valve 90 is in a first connection state for connecting the sixth flow path C6 when the solenoid 92 is OFF, and is not connected to the sixth flow path C6 when the solenoid is ON. You may comprise as a normally open valve made into a connection state.
 切替弁90をノーマリーオープン弁として構成した場合、万一、切替弁90が作動しなくなった場合であっても、第6の流路C6が接続された状態、すなわち、ポンプ42とチルトシリンダ40の下室14gとが接続され、かつ、ポンプ42とトリムシリンダ12の下室12gとが接続された1の接続状態で維持される。これにより、チルトシリンダ14及びトリムシリンダ12の双方を用いて船外機300の角度調整を行うことができる。 When the switching valve 90 is configured as a normally open valve, the sixth flow passage C6 is connected even if the switching valve 90 does not operate, that is, the pump 42 and the tilt cylinder 40 The lower chamber 14g is connected, and the connection between the pump 42 and the lower chamber 12g of the trim cylinder 12 is maintained. Thereby, the angle adjustment of the outboard motor 300 can be performed using both the tilt cylinder 14 and the trim cylinder 12.
 一方で、切替弁90をノーマリークローズ弁として構成した場合、万一、切替弁90が作動しなくなった場合であっても、第6の流路C6が接続されていない状態、すなわち、ポンプ42とチルトシリンダ40の下室14gとを接続する一方で、ポンプ42とトリムシリンダ12の下室12gとを接続しない第2の接続状態で維持される。このため、チルトシリンダ14のみで船外機300の角度調整を行ったり、船外機300を保持し続けたりすることができる。 On the other hand, when the switching valve 90 is configured as a normally closed valve, the sixth flow path C6 is not connected even if the switching valve 90 does not operate, that is, the pump 42 And the lower chamber 14g of the tilt cylinder 40, while maintaining the second connection state in which the pump 42 and the lower chamber 12g of the trim cylinder 12 are not connected. Therefore, it is possible to adjust the angle of the outboard motor 300 only by the tilt cylinder 14 or keep holding the outboard motor 300.
 なお、切替弁90の具体的な制御は、例えば、上述した実施形態において、例えば図6を参照して説明した制御と同様の制御を行えばよい。ただし、上述した実施形態における「切替弁60がオープン状態である」とは、本実施形態において「切替弁90が第1の接続状態である」ことを指し、「切替弁60がクローズ状態である」とは、本実施形態において「切替弁90が第2の接続状態である」であることを指すものとする。後述の実施形態においても同様である。 In addition, the specific control of the switching valve 90 may perform control similar to the control demonstrated, for example with reference to FIG. 6 in embodiment mentioned above, for example. However, "the switching valve 60 is in the open state" in the above-mentioned embodiment refers to "the switching valve 90 is in the first connection state" in the present embodiment, and "the switching valve 60 is in the closed state". In the present embodiment, "indicates that the switching valve 90 is in the second connection state". The same applies to the embodiments described later.
 以上のように構成された船外機昇降装置1bでは、実施形態1において説明した船外機昇降装置1が備える切替弁60と同等の機能を、切替弁90によって実現することができる。したがって、上記のように構成された船外機昇降装置1bは、上述した船外機昇降装置1と同様の効果を奏する。 In the outboard motor lifting apparatus 1b configured as described above, the switching valve 90 can realize the same function as the switching valve 60 provided in the outboard motor lifting apparatus 1 described in the first embodiment. Therefore, the outboard motor elevator 1b configured as described above exhibits the same effects as the outboard motor elevator 1 described above.
 〔実施形態6〕
 以下では、実施形態6として、実施形態1及び2において説明した船体状態信号SIG_INの他の具体例について説明する。船体状態信号SIG_INは、実施形態1及び2において説明した具体例に代えて、又は、実施形態1及び2において説明した具体例に加えて、後述する他の具体例の1又は複数を含む構成とすることができる。
Sixth Embodiment
Hereinafter, another specific example of the hull state signal SIG_IN described in the first and second embodiments will be described as the sixth embodiment. The hull state signal SIG_IN includes one or more of other specific examples described later, instead of the specific examples described in the first and second embodiments or in addition to the specific examples described in the first and second embodiments. can do.
 なお、実施形態3において説明したように、実施形態3に係るデジタル信号D_SIGは、船体状態信号SIG_INが含む情報と同等の情報を含む。従って、以下において、船体状態信号SIG_INに関し説明する事項は実施形態1及び2のみならず、実施形態3に係るデジタル信号D_SIGに対しても適用されるものである。 As described in the third embodiment, the digital signal D_SIG according to the third embodiment includes information equivalent to the information included in the hull state signal SIG_IN. Therefore, the items described below regarding the hull state signal SIG_IN are applied not only to the first and second embodiments but also to the digital signal D_SIG according to the third embodiment.
 船体状態信号SIG_INに含まれ得る信号は、
 (A)船外機300から取得可能な船外機性能信号
 (B)船体(本体)200から取得可能な船体(本体)性能信号
に分類される。
The signals that may be included in the hull status signal SIG_IN are
(A) Outboard motor performance signal obtainable from outboard motor 300 (B) It is classified into a hull (body) performance signal obtainable from the hull (body) 200.
 船外機300から取得可能な船外機性能信号、及び、当該船外機性能信号を参照した制御部100、100a、100b(以下単に制御部とも記載する)による制御例は以下の通りである。 An example of an outboard motor performance signal obtainable from the outboard motor 300 and an example of control by the control units 100, 100a and 100b (hereinafter also referred to simply as the control unit) with reference to the outboard motor performance signal are as follows. .
 (A-1)イグニッション信号
 イグニッション信号は、船外機300のイグニッションのオンオフを示す信号である。
(A-1) Ignition Signal The ignition signal is a signal indicating on / off of the ignition of the outboard motor 300.
 制御部は、例えば、イグニッションオンである場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、イグニッションオフである場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the ignition is on, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6, and when the ignition is off, the "engine is not on or in gear" in FIG. The control similar to the control of the state of may be performed.
 (A-2)チルト/トリム制御信号
 チルト/トリム制御信号は船外機300のチルト及び/又はトリムを制御するための信号である。
(A-2) Tilt / Trim Control Signal The tilt / trim control signal is a signal for controlling the tilt and / or trim of the outboard motor 300.
 制御部は、チルト/トリム制御信号に応じて、切替弁60を切り替える。 The control unit switches the switching valve 60 in accordance with the tilt / trim control signal.
 (A-3)エンジンニュートラル信号
 エンジンニュートラル信号は、船外機300のエンジンがニュートラルであるか否かを示す信号である。
(A-3) Engine Neutral Signal The engine neutral signal is a signal indicating whether or not the engine of the outboard motor 300 is neutral.
 制御部は、例えば、エンジンがニュートラルでない場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンがニュートラルである場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the engine is not in neutral, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6, and when the engine is in neutral, it is not "engine off or in gear in FIG. Control similar to the control of the state of "" may be performed.
 (A-4)トリム角度信号
 トリム角度信号は、船外機300のトリムの角度を示す信号である。
(A-4) Trim Angle Signal The trim angle signal is a signal indicating the trim angle of the outboard motor 300.
 制御部は、例えば、船外機300のトリムの角度が所定の値よりも小さい場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船外機300のトリムの角度が所定の値以上である場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the trim angle of the outboard motor 300 is smaller than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. The control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed when the angle of is greater than or equal to a predetermined value.
 (A-5)エンジン水温信号
 エンジン水温信号は、船外機300のエンジンの水温を示す信号である。
(A-5) Engine Water Temperature Signal The engine water temperature signal is a signal indicating the water temperature of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの水温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの水温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the water temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6 and the water temperature of the engine is smaller than the predetermined value In addition, control similar to the control of the state of “engine off or not in gear” in FIG. 6 may be performed.
 (A-6)エンジン油温信号
 エンジン水温信号は、船外機300のエンジンの油温を示す信号である。
(A-6) Engine Oil Temperature Signal The engine water temperature signal is a signal indicating the oil temperature of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの油温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the oil temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-7)エンジン油圧信号
 エンジン油圧信号は、船外機300のエンジンの油圧を示す信号である。
(A-7) Engine Oil Pressure Signal The engine oil pressure signal is a signal indicating the oil pressure of the engine of the outboard motor 300.
 制御部は、例えば、エンジンの油圧が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the hydraulic pressure of the engine is equal to or higher than a predetermined value, the control unit performs control similar to the control of the "engine on or in gear" state in FIG. 6, and the oil temperature of the engine is smaller than the predetermined value. In this case, control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-8)水位信号
 水位信号は、船外機300における水面の水位を示す信号である。
(A-8) Water Level Signal The water level signal is a signal indicating the water level at the surface of the outboard motor 300.
 制御部は、水位信号に応じて、切替弁60を切り替える。制御部は、例えば、水位信号の示す水位が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、水位信号の示す水位が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the water level signal. For example, when the water level indicated by the water level signal is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-9)スロットル開度信号
 スロットル開度信号は、船外機300のエンジンのスロットルの開度を示す信号である。
(A-9) Throttle Opening Signal The throttle opening signal is a signal indicating the throttle opening of the engine of the outboard motor 300.
 制御部は、例えば、スロットルの開度が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、スロットルの開度が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 For example, when the throttle opening is equal to or greater than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6, and the throttle opening is smaller than the predetermined value. In this case, control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-10)船速信号(水流信号)
 船速信号は、船速を示す信号である。船速は水流の速さを参照して特定されるので、船速信号は、水流信号と呼んでもよい。
(A-10) Ship speed signal (water flow signal)
The boat speed signal is a signal indicating the boat speed. The ship speed signal may be referred to as a water flow signal since the ship speed is identified with reference to the speed of the water flow.
 制御部は、船速が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船速が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit performs control similar to the control of the "engine on or in gear" state in FIG. 6 when the boat speed is equal to or higher than a predetermined value, and in FIG. 6 when the boat speed is smaller than the predetermined value. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (A-11)バッテリー電圧信号
 バッテリー電圧信号はバッテリーの電圧を示す信号である。
(A-11) Battery Voltage Signal The battery voltage signal is a signal indicating the voltage of the battery.
 制御部は、バッテリーの電圧に応じて、切替弁60を切り替える。制御部は、例えば、バッテリーの電圧が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、バッテリーの電圧が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the voltage of the battery. For example, when the voltage of the battery is equal to or higher than a predetermined value, the control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6, and the voltage of the battery is smaller than the predetermined value. Control similar to the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (A-12)大気圧信号
 大気圧信号は、大気圧を示す信号である。制御部は、大気圧に応じて、切替弁60を切り替える。
(A-12) Atmospheric pressure signal The atmospheric pressure signal is a signal indicating atmospheric pressure. The control unit switches the switching valve 60 according to the atmospheric pressure.
 (A-13)ジェネレータ出力電圧
 上述した実施形態1~11及び本実施形態に係る船外機300は、当該船外機300が備えるエンジン301に接続されたジェネレータを備えている。
(A-13) Generator Output Voltage The outboard motor 300 according to the above-described first to eleventh embodiments and the present embodiment includes a generator connected to the engine 301 provided in the outboard motor 300.
 図11は、船外機300のエンジン301周辺の構成を示すブロック図である。図11に示すように、船外機300は、エンジン301、エンジン301からプロペラ303に動力を伝達する動力伝達機構302、エンジン301により駆動されるジェネレータ(発電機)310、及びメインバッテリー311を備えている。また、一例として船外機300は、メインバッテリー311に加え、予備バッテリーも搭載可能に構成されている。 FIG. 11 is a block diagram showing a configuration around the engine 301 of the outboard motor 300. As shown in FIG. As shown in FIG. 11, the outboard motor 300 includes an engine 301, a power transmission mechanism 302 for transmitting power from the engine 301 to the propeller 303, a generator (generator) 310 driven by the engine 301, and a main battery 311. ing. In addition to the main battery 311, for example, the outboard motor 300 can also be equipped with a spare battery.
 図11に示すように、ジェネレータ310からは、メインバッテリー310aへの導線310aに加え、予備バッテリーへの導線310bが引き出されている。当該導線310bは制御部100、100a、100bに接続され、当該導線310bの電位は、制御部によりジェネレータの出力電圧として参照される。 As shown in FIG. 11, from the generator 310, in addition to the lead 310a to the main battery 310a, the lead 310b to the spare battery is drawn out. The conducting wire 310b is connected to the control units 100, 100a and 100b, and the potential of the conducting wire 310b is referred to by the control unit as an output voltage of the generator.
 本例に係る制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第1閾値以上である場合に、航行状態と判定し、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う。ここで、電圧に関する上記第1閾値は、例えば、適宜設定された正の値を有する。 The control unit according to the present embodiment refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the navigation state is in the case where the output voltage of the generator is equal to or higher than the first threshold related to the voltage. Control similar to the control of the state of "engine on or in gear" is performed. Here, the first threshold value regarding voltage has, for example, a properly set positive value.
 また、制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第2閾値を超える場合に、航行状態と判定し、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う構成としてもよい。ここで、電圧に関する上記第2閾値は、例えば、適宜設定された0以上の値を有する。 Further, the control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the vehicle is in the sailing state when the output voltage of the generator exceeds the second threshold related to the voltage. Control similar to the control of the in-gear state may be performed. Here, the second threshold regarding the voltage has, for example, an appropriately set value of 0 or more.
 なお、以上例示した信号のうち、(A-1)~(A-11)、及び(A-13)は、船外機300の状態を示す状態信号と捉えることもできる。 Among the signals exemplified above, (A-1) to (A-11) and (A-13) can also be regarded as a state signal indicating the state of the outboard motor 300.
 続いて、船体200から取得可能な船体(本体)性能信号、及び、当該船体(本体)性能信号を参照した制御部による制御例は以下の通りである。 Subsequently, a control example by the control unit with reference to a hull (main body) performance signal obtainable from the hull 200 and the hull (main body) performance signal is as follows.
 (B-1)衝撃信号
 衝撃信号は、船体200が受ける衝撃を示す信号である。
(B-1) Impact Signal The impact signal is a signal indicating an impact that the hull 200 is subjected to.
 制御部は、衝撃信号に応じて切替弁60を切り替える。より具体的には、制御部は、船体200が受ける衝撃、又は衝撃信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、衝撃が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、衝撃が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 in response to the shock signal. More specifically, the control unit switches the switching valve 60 in accordance with the presence or absence of an impact received by the hull 200 or an impact signal itself. The control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 6 when the impact is equal to or greater than a predetermined value, and when the impact is smaller than the predetermined value, or If not, it may be configured to perform the same control as the control of the state of "engine off or not in gear" in FIG.
 (B-2)方位信号
 方位信号は、船体200の進行方向を示す信号である。制御部は、方位信号に応じて、切替弁60を切り替える。
(B-2) Orientation Signal The orientation signal is a signal indicating the traveling direction of the hull 200. The control unit switches the switching valve 60 in accordance with the direction signal.
 (B-3)ソナー信号
 ソナー信号は、船体200が備えるソナーから供給される信号である。
(B-3) Sonar Signal The sonar signal is a signal supplied from a sonar provided to the hull 200.
 制御部は、ソナー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、ソナー信号が示す障害物の有無、又は、ソナー信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the sonar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the sonar signal or the presence or absence of the sonar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-4)GPS信号
 GPS信号は、船体200が備えるGPS(Global Positioning System)装置から供給される信号である。なお、GPS装置は船体の上または近辺にあっても良い。
(B-4) GPS Signal The GPS signal is a signal supplied from a GPS (Global Positioning System) device provided in the hull 200. The GPS device may be on or near the hull.
 制御部は、GPS信号が示す船速が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、GPS信号が示す船速が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit performs the same control as the control of the "engine on or in gear" state in FIG. 6 when the boat speed indicated by the GPS signal is equal to or higher than a predetermined value, and the boat speed indicated by the GPS signal has a predetermined value. If smaller, the same control as the control of the state of "engine off or not in gear" in FIG. 6 may be performed.
 (B-5)トランサム振動信号
 トランサム振動信号は、船体200が備えるトランサムの振動を示す信号である。
(B-5) Transom Vibration Signal The transom vibration signal is a signal that indicates the vibration of a transom included in the hull 200.
 制御部は、トランサム振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、トランサム振動信号の示す振動、又は、トランサム振動信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、トランサムの振動が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、トランサムの振動が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the transom vibration signal. More specifically, the control unit switches the switching valve 60 in accordance with the vibration indicated by the transom vibration signal or the presence or absence of the transom vibration signal itself. The control unit performs, for example, the same control as the control of the “engine on or in gear” state in FIG. 6 when the transom vibration is a predetermined value or more, and when the transom vibration is smaller than the predetermined value Alternatively, when there is no signal, it may be configured to perform the same control as the control of the "engine off or not in gear" state in FIG.
 (B-6)水温信号
 水温信号は、船体200の周囲の水温を示す信号である。制御部は、水温信号に応じて、切替弁60を切り替える。
(B-6) Water Temperature Signal The water temperature signal is a signal indicating the water temperature around the hull 200. The control unit switches the switching valve 60 according to the water temperature signal.
 (B-7)振動信号
 振動信号は、船体200の振動を示す信号である。
(B-7) Vibration Signal The vibration signal is a signal indicating the vibration of the hull 200.
 制御部は、振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、振動信号の示す振動、又は振動信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、振動信号の示す振動が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、振動信号の示す振動が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the vibration signal or the presence or absence of the vibration signal itself. For example, when the vibration indicated by the vibration signal is equal to or greater than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6 and the vibration indicated by the vibration signal has a predetermined value In the case of a smaller value or in the absence of a signal, control similar to the control of the "engine off or not in gear" state in FIG. 6 may be performed.
 (B-8)IP画像信号
 IP画像信号は、船体200の周辺の状況を示す画像信号である。
(B-8) IP Image Signal The IP image signal is an image signal indicating the situation around the hull 200.
 制御部は、IP画像信号に応じて、切替弁60を切り替える。より具体的には、制御部は、IP画像信号の示す障害物の有無、または、IP画像信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the IP image signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the IP image signal or the presence or absence of the IP image signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-9)レーダー信号
 レーダー信号は、船体200が備えるレーダーから供給される信号である。
(B-9) Radar Signal The radar signal is a signal supplied from a radar provided to the hull 200.
 制御部は、レーダー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、レーダー信号が示の障害物の有無、または、レーダー信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 according to the radar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of the obstacle indicated by the radar signal or the presence or absence of the radar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when there is no obstacle or there is no signal, FIG. It may be configured to perform the same control as the control of the state of "engine off or not in gear".
 (B-10)音声信号
 音声信号は、操船者(ユーザ)の音声を示す信号である。
(B-10) Voice Signal The voice signal is a signal indicating the voice of the operator (user).
 制御部は、音声信号に応じて、切替弁60を切り替える。制御部は、例えば、音声信号に含まれる音声指示を参照して、図6の制御と同様の制御を行う構成とすればよい。 The control unit switches the switching valve 60 in accordance with the audio signal. The control unit may be configured to perform the same control as the control of FIG. 6 with reference to, for example, an audio instruction included in the audio signal.
 なお、以上例示した信号のうち、(B-1)~(B-9)は、船体(本体)200の状態を示す状態信号と捉えることもできる。 Among the signals exemplified above, (B-1) to (B-9) can also be regarded as a state signal indicating the state of the hull (main body) 200.
 〔ソフトウェアによる実現例〕
 制御部100、100a、100bは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control units 100, 100a, 100b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (central processing unit) .
 後者の場合、制御部100、100a、100bは、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the control units 100, 100a, and 100b are a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read) in which the program and various data are readable by a computer (or CPU). It includes an Only Memory) or a storage device (these are referred to as a "recording medium"), a RAM (Random Access Memory) for developing the program, and the like. The object of the present invention is achieved by the computer (or CPU) reading the program from the recording medium and executing the program. As the recording medium, a “non-transitory tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1、1a、1b 船外機昇降装置
12 トリムシリンダ
14 チルトシリンダ
42 ポンプ(油圧源)
60 切替弁
100、100a、100b 制御部
121 第1のスイッチング素子
122 第2のスイッチング素子
133、143 演算部(決定部)
200 船体(本体)
300 船外機
301 エンジン
302 動力伝達機構
303 プロペラ
310 ジェネレータ
C1 第1の流路(第1の油路)
C2 第2の流路
C3 第3の流路(第1の油路)
C4 第4の流路
C5 第5の流路
C6 第6の流路(第1の油路、第3の油路)
C7 第7の流路(第2の油路)
C9 第9の流路
1, 1a, 1b Outboard motor lifting device 12 trim cylinder 14 tilt cylinder 42 pump (hydraulic source)
60 switching valve 100, 100a, 100b control unit 121 first switching element 122 second switching element 133, 143 computing unit (determination unit)
200 Hull (body)
300 Outboard motor 301 engine 302 power transmission mechanism 303 propeller 310 generator C1 first flow path (first oil path)
C2 second flow path C3 third flow path (first oil path)
C4 fourth flow path C5 fifth flow path C6 sixth flow path (first oil path, third oil path)
C7 Seventh flow path (second oil path)
C9 ninth flow path

Claims (12)

  1.  船外機を昇降させる船外機昇降装置において、
     1又は複数のチルトシリンダと、
     1又は複数のトリムシリンダと、
    を備え、
     前記各トリムシリンダは、
      当該トリムシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、
     前記各チルトシリンダは、
      当該チルトシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、
     当該船外機昇降装置は、
     油圧源と、
     前記油圧源と、前記1又は複数のチルトシリンダの第2室と、前記1又は複数のトリムシリンダの第2室とを接続する第1の油路と、
     前記1又は複数のトリムシリンダの少なくとも何れかの第1室に接続された第2の油路と、
     前記第1の油路における前記1又は複数のチルトシリンダの第2室と前記1又は複数のトリムシリンダの第2室との間に設けられた切替弁と、
     前記第2の油路上に設けられた保持バルブ及び保護バルブと、
     船体状態信号を参照して前記切替弁を制御する制御部と、
    を備えていることを特徴とする船外機昇降装置。
    In the outboard motor lifting device for raising and lowering the outboard motor,
    One or more tilt cylinders,
    One or more trim cylinders,
    Equipped with
    Each trim cylinder is
    A piston that divides the trim cylinder into a first chamber and a second chamber;
    A rod connected to the piston and passing through a first chamber of the trim cylinder;
    Each of the tilt cylinders is
    A piston that divides the tilt cylinder into a first chamber and a second chamber;
    A rod connected to the piston and penetrating a first chamber of the tilt cylinder;
    The outboard motor lifting device
    A hydraulic source,
    A first oil passage connecting the hydraulic pressure source, the second chamber of the one or more tilt cylinders, and the second chamber of the one or more trim cylinders;
    A second oil passage connected to the first chamber of at least one of the one or more trim cylinders;
    A switching valve provided between a second chamber of the one or more tilt cylinders in the first oil passage and a second chamber of the one or more trim cylinders;
    A holding valve and a protection valve provided on the second oil path;
    A control unit that controls the switching valve with reference to a hull state signal;
    An outboard motor lifting apparatus characterized by comprising:
  2.  前記第2の油路は、前記保持バルブ及び保護バルブを介して、貯油タンクに接続されている
    ことを特徴とする請求項1に記載の船外機昇降装置。
    The outboard motor elevator according to claim 1, wherein the second oil passage is connected to an oil storage tank via the holding valve and the protection valve.
  3.  前記油圧源に接続されたポンプポートを更に備え、
     前記第2の油路は、前記保持バルブ及び保護バルブを介して、前記ポンプポートにおける2つのシャトル室のうち、前記チルトシリンダの第1室に接続されたシャトル室に接続されている
    ことを特徴とする、請求項1に記載の船外機昇降装置。
    Further comprising a pump port connected to the hydraulic pressure source;
    The second oil passage is connected to the shuttle chamber connected to the first chamber of the tilt cylinder, of the two shuttle chambers at the pump port, via the holding valve and the protection valve. An outboard motor lifting apparatus according to claim 1, wherein:
  4.  前記切替弁は、ノーマリーオープン型の切替弁であることを特徴とする請求項1から3の何れか1項に記載の船外機昇降装置。 The outboard motor elevator according to any one of claims 1 to 3, wherein the switching valve is a normally open switching valve.
  5.  前記制御部は、
      前記船体状態信号を参照して、航行状態及び停船状態を判定し、
      前記航行状態と判定した場合に、前記切替弁をオープン状態となるように制御し、
      前記停船状態と判定した場合に、前記切替弁がクローズ状態となるように制御する
    ことを特徴とする、請求項1から4の何れか1項に記載の船外機昇降装置。
    The control unit
    Determine the navigation state and the stop state by referring to the ship state signal;
    When the navigation state is determined, the switching valve is controlled to be in an open state,
    The outboard motor elevator according to any one of claims 1 to 4, wherein the switching valve is controlled to be in a closed state when it is determined that the boat is in the stopped state.
  6.  船外機を昇降させる船外機昇降装置において、
     1又は複数のチルトシリンダと、
     1又は複数のトリムシリンダと、
    を備え、
     前記各トリムシリンダは、
      当該トリムシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、
     前記各チルトシリンダは、
      当該チルトシリンダを第1室と第2室とに仕切るピストンと、
      前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、
     当該船外機昇降装置は、
     油圧源と、
     前記油圧源と、前記1又は複数のチルトシリンダの第2室とを接続する第1の油路と、
     前記第1の油路上に設けられた切替弁であって、
      前記油圧源と前記チルトシリンダの第2室とを接続し、かつ、前記油圧源と前記トリムシリンダの第2室とを接続する第1の接続状態と
      前記油圧源と前記チルトシリンダの第2室とを接続する一方で、前記油圧源と前記トリムシリンダの第2室とを接続しない第2の接続状態とを切り替える切替弁と、
     船体状態信号を参照して前記切替弁を制御する制御部と
    を備えていることを特徴とする船外機昇降装置。
    In the outboard motor lifting device for raising and lowering the outboard motor,
    One or more tilt cylinders,
    One or more trim cylinders,
    Equipped with
    Each trim cylinder is
    A piston that divides the trim cylinder into a first chamber and a second chamber;
    A rod connected to the piston and passing through a first chamber of the trim cylinder;
    Each of the tilt cylinders is
    A piston that divides the tilt cylinder into a first chamber and a second chamber;
    A rod connected to the piston and penetrating a first chamber of the tilt cylinder;
    The outboard motor lifting device
    A hydraulic source,
    A first oil passage connecting the hydraulic pressure source and a second chamber of the one or more tilt cylinders;
    A switching valve provided on the first oil path, wherein
    A first connection state connecting the hydraulic pressure source and the second chamber of the tilt cylinder and connecting the hydraulic pressure source and the second chamber of the trim cylinder, the hydraulic pressure source and the second chamber of the tilt cylinder And a second connection state in which the hydraulic pressure source and the second chamber of the trim cylinder are not connected,
    And a control unit configured to control the switching valve with reference to a hull state signal.
  7.  前記制御部は、
      前記船体状態信号を参照して、航行状態及び停船状態を判定し、
      前記航行状態と判定した場合に、前記切替弁を前記第1の接続状態となるように制御し、
      前記停船状態と判定した場合に、前記切替弁が前記第2の接続状態となるように制御する
    ことを特徴とする、請求項6に記載の船外機昇降装置。
    The control unit
    Determine the navigation state and the stop state by referring to the ship state signal;
    When it is determined that the navigation state, the switching valve is controlled to be in the first connection state,
    The outboard motor elevator according to claim 6, wherein the switching valve is controlled to be in the second connection state when it is determined that the boat is in the stopped state.
  8.  前記船体状態信号は、前記船外機が備えるエンジンに接続されたジェネレータの出力電圧であり、
     前記制御部は、前記ジェネレータの出力電圧が、電圧に関する第1閾値以上である場合に、前記航行状態と判定する
    ことを特徴とする請求項5又は7に記載の船外機昇降装置。
    The hull state signal is an output voltage of a generator connected to an engine included in the outboard motor,
    The outboard motor elevator according to claim 5 or 7, wherein the control unit determines that the navigation state is established when the output voltage of the generator is equal to or higher than a first threshold value related to a voltage.
  9.  前記船体状態信号は、前記船外機が備えるエンジンに接続されたジェネレータの出力電圧であり、
     前記制御部は、前記ジェネレータの出力電圧が、電圧に関する第2閾値を超える場合に、前記航行状態と判定する
    ことを特徴とする請求項5又は7に記載の船外機昇降装置。
    The hull state signal is an output voltage of a generator connected to an engine included in the outboard motor,
    The outboard motor elevating device according to claim 5 or 7, wherein the control unit determines that the navigation state is established when the output voltage of the generator exceeds a second threshold related to the voltage.
  10.  前記船体状態信号は、前記船外機のエンジン回転数に関連する信号であり、
     前記制御部は、前記エンジン回転数が、回転数に関する第1閾値以上である場合に、前記航行状態と判定する
     ことを特徴とする、請求項5又は7に記載の船外機昇降装置。
    The hull state signal is a signal related to the engine speed of the outboard motor,
    The outboard motor elevator device according to claim 5 or 7, wherein the control unit determines that the navigation state is established when the engine speed is equal to or more than a first threshold value regarding the engine speed.
  11.  前記船体状態信号は、前記船外機のエンジン回転数に関連する信号であり、
     前記制御部は、前記エンジン回転数が、回転数に関する第2閾値を超える場合に、前記航行状態と判定する
     ことを特徴とする、請求項5又は7に記載の船外機昇降装置。
    The hull state signal is a signal related to the engine speed of the outboard motor,
    The outboard motor elevator device according to claim 5 or 7, wherein the control unit determines that the navigation state is established when the engine speed exceeds a second threshold value related to the engine speed.
  12.  前記船体状態信号は、アナログ信号であり、
     前記制御部は、
     前記船体状態信号が入力されるベース電極を有する第1のスイッチング素子と
     前記第1のスイッチング素子のエミッタ電流に応じた信号が入力されるゲート電極、及び、前記切替弁に接続されたソース電極を有する第2のスイッチング素子と
    を備えていることを特徴とする請求項1から11の何れか1項に記載の船外機昇降装置。
    The hull condition signal is an analog signal,
    The control unit
    A first switching element having a base electrode to which the hull state signal is input, a gate electrode to which a signal corresponding to the emitter current of the first switching element is input, and a source electrode connected to the switching valve; The outboard motor elevator according to any one of claims 1 to 11, further comprising: a second switching element.
PCT/JP2017/031566 2017-08-25 2017-09-01 Outboard motor lifting device WO2019038931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-162621 2017-08-25
JP2017162621A JP6364115B1 (en) 2017-08-25 2017-08-25 Outboard motor lifting device

Publications (1)

Publication Number Publication Date
WO2019038931A1 true WO2019038931A1 (en) 2019-02-28

Family

ID=62976559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031566 WO2019038931A1 (en) 2017-08-25 2017-09-01 Outboard motor lifting device

Country Status (2)

Country Link
JP (1) JP6364115B1 (en)
WO (1) WO2019038931A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device

Also Published As

Publication number Publication date
JP6364115B1 (en) 2018-07-25
JP2019038418A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JPWO2016002850A1 (en) Excavator and control method of excavator
WO2018138959A1 (en) Outboard motor raising/lowering device
WO2019021495A1 (en) Outboard motor hoist
JP6224798B1 (en) Outboard motor lifting device
JP6313891B1 (en) Terminal device, outboard motor lifting system, program, and recording medium.
WO2019038931A1 (en) Outboard motor lifting device
JP6374131B1 (en) Outboard motor lifting device
WO2019038932A1 (en) Outboard motor lifting device
WO2019043958A1 (en) Outboard motor raising/lowering device
WO2019102625A1 (en) Outboard motor hoist
JP6313892B1 (en) Outboard motor lifting device
JP6294550B1 (en) Outboard motor lifting apparatus and control method for outboard motor lifting apparatus
US20070034129A1 (en) Watercraft provided with two floating bodies stacked on top of each other
JP6151052B2 (en) Inclination angle adjustment device, ship propulsion device
SE535692C2 (en) Apparatus and method for leveling a structural part of an off-road vehicle
JP2014177172A (en) Inclination angle adjusting apparatus, and ship propulsion machine
JP2013024383A (en) Hydraulic cylinder device
JP2019043522A (en) Outboard motor raising/lowering device
US20190218083A1 (en) Forklift

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922713

Country of ref document: EP

Kind code of ref document: A1