WO2019035035A1 - Conductive magnetic building blocks - Google Patents

Conductive magnetic building blocks Download PDF

Info

Publication number
WO2019035035A1
WO2019035035A1 PCT/IB2018/056174 IB2018056174W WO2019035035A1 WO 2019035035 A1 WO2019035035 A1 WO 2019035035A1 IB 2018056174 W IB2018056174 W IB 2018056174W WO 2019035035 A1 WO2019035035 A1 WO 2019035035A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
building block
elongated structural
framework unit
magnetic
Prior art date
Application number
PCT/IB2018/056174
Other languages
French (fr)
Inventor
Matthew A. CRANIAS
Wally Dean SPANGLER
Original Assignee
Cranias Matthew A
Spangler Wally Dean
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cranias Matthew A, Spangler Wally Dean filed Critical Cranias Matthew A
Publication of WO2019035035A1 publication Critical patent/WO2019035035A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/042Mechanical, electrical, optical, pneumatic or hydraulic arrangements; Motors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/046Building blocks, strips, or similar building parts comprising magnetic interaction means, e.g. holding together by magnetic attraction
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/06Building blocks, strips, or similar building parts to be assembled without the use of additional elements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/26Magnetic or electric toys

Definitions

  • the present invention generally relates to the field of building blocks. More particularly, the invention relates to a system of conductive magnetic building blocks.
  • Blocks can be classified broadly according to the type of materials used in manufacture and the functionality offered. Ease of use and manipulation are also factors in how appealing and engaging the blocks will be to the end user.
  • Wooden blocks are made of an environmentally safe material and are easy to use and manipulate, but often do not support much additional functionality.
  • wooden blocks can be stacked and aligned, but do not inherently offer structural stability without the use of alignment pins or adhesives. If alignment pins or adhesives are used, the blocks become hard to take apart and rebuild with.
  • LEGO style blocks typically comprise a set of colorful interlocking plastic bricks.
  • LEGO style blocks typically comprise a male and female component that fit together with a compression fit.
  • the LEGO style block may be difficult to manipulate for those lacking in fine motor strength and difficult to pull apart once connected to each other.
  • Magnetic blocks allow the end user to easily combine or stack blocks into complex structures.
  • Typical magnetic blocks such as MAGNATILES or TEGU blocks embed magnets beneath the surface of plastic or wood at the respective edges of each block.
  • a user with even minimal fine motor strength can easily manipulate the blocks to attract to one another and build support structures that are magnetically coupled.
  • the stronger and higher quality magnets used typically offer better user experiences.
  • Still yet another evolution of the building block has been in the conductive style building block i.e. building blocks that conduct electricity for the purpose of powering an electrical element such as an LED, a speaker, or a motor.
  • the present invention seeks to improve upon the current designs of building blocks, while also addressing some of the more common issues in the field relating to structural integrity, modular assembly, and output functionality. Specifically, the invention provides a platform offering increased stability, connectivity, and ease of use, which allows robust assembly and combinations of conductive magnetic blocks capable of powering electronic circuits.
  • the advantage of the present invention is that it allows for the production of complex structures without sacrificing stability or modularity.
  • a user may build a structure with the ease of a typical magnetic block simply by aligning terminals of the building blocks having opposing magnetic polarities. When the terminals are coupled in alignment, an electrical current may be conducted from one block to the next.
  • Each block may be a stand-alone unit configured to conduct current or a particular block may comprise an electrical device to be powered by the current, or a combination of the two.
  • the invention comprises a system of electrically and magnetically conductive building blocks.
  • Each building block comprises a conductive framework disposed within a building block housing.
  • the conductive framework comprises a structural element having magnetic terminals.
  • the conductive framework may be disposed within the block housing such that each magnetic terminal faces a surface of the building block housing.
  • connectivity sake it is optimal, but not required, for each block to have a magnetic terminal on at least two surfaces and for conductivity sake, it is optimal, but not required, for each block to have at least two isolated conductive framework units configured for opposite electrical polarities.
  • each conductive frame unit comprises a bar magnet having opposite magnetic polarities on each end acting as coupling and conduction terminals or a structural element having magnetic ends or magnets with similar or opposite magnetic polarities disposed on each end acting as terminals.
  • Each conductive frame unit may be isolated within the block housing to provide separate current paths, or a plurality of conductive framework units may be coupled to form a single current path that may be conducted through any coupled conductive frame unit.
  • a first conductive framework unit comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member and a second conductive framework unit may comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to opposite non- adjacent corners of the housing and that the elongated members of the second conductive framework unit align to separate opposite non- adjacent corners.
  • the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
  • a first conductive framework unit comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration and a second conductive framework unit may comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner.
  • the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit
  • a first conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and at least one conductive side coupling member in a corner-side-(side+n)-corner configuration and a second conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and a conductive side coupling member in a corner-side-(side+n)- corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to a separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner.
  • each elongated unit in any of the embodiments described above may comprise top and bottom terminal magnets configured to be conductive on the top and bottom surfaces of the building block housing, and side terminals disposed between the top and bottom terminals configured to be conductive on the side surfaces of the building block housing.
  • an electrical component may be coupled to the first conductive framework unit and the second conductive framework unit bridging the circuit and powering the electrical component.
  • the electrical component includes by way of non-limiting example LEDs, speakers, displays, RF radios, motors, switches, resistors, capacitors, diodes, inductors, or integrated circuit chips.
  • the system's output will be dictated by the number, type(s), and shape(s) of the functional components that are electrically activated and coupled to the block's terminal elements.
  • the function of these components can include alternate functionality, including circuit isolation, or non-functionality.
  • the conductive framework units are insert-molded into plastic building block housing.
  • the conductive framework units are pressed and held via a compression fit or adhesive into an already shaped plastic, wood, or other suitable non- conductive housing material building block housing.
  • the terminals may be exposed through the housing such that each building block unit connects directly to each stacked building block through a direct terminal connection.
  • the terminals may be covered housing such that each building block unit connects through induction indirectly to each stacked building block.
  • FIGS. 1A-1B are perspective and top views of an embodiment of the present invention.
  • FIGS. 2A-2B are perspective and top views of an embodiment of the present invention.
  • FIGS. 3A-3B are perspective and top views of an embodiment of the present invention.
  • FIGS. 4A-4B are perspective and top views of an embodiment of the present invention.
  • FIGS. 5A-5B are perspective and top views of an embodiment of the present invention.
  • FIGS. 6A-6B are perspective views of an embodiment of the present invention.
  • FIG. 7 is a perspective view of an embodiment of the present invention.
  • the invention comprises a system 700 of conductive magnetic building blocks.
  • Each building block 20 comprises a conductive framework 30 disposed within a building block housing 40.
  • the conductive framework comprises 30 a structural element 32 having conductive magnetic terminals 34A-B.
  • the conductive framework 30 may be disposed within the block housing 40 such that each magnetic terminal 34A-B faces a surface 42A-F of the building block housing 40.
  • each block 20 For magnetic and electrical connectivity and conductivity sake it is optimal for each block 20 to have a magnetic terminal 34A, 34B on at least two surface 42A-F of the block housing 40 and for conductivity sake.
  • the first embodiment shown in FIGS 1A-1B display a single conductive block 20.
  • the single conductive block 20 comprises a parallelepiped building block housing 40 and a single conductive framework 30 disposed within the housing 40.
  • the single conductive framework 30 further comprises conductive magnetic terminals 34A-B disposed at opposite ends of the single conductive framework 30.
  • the conductive magnetic terminals 34A-B are exposed through the housing 40 allowing additional blocks 20 to directly engage with the terminals 34A-B while in other embodiments the conductive magnetic terminals 34A-B are shielded under the housing 40 such that additional blocks 20 are magnetically coupled through the housing surface 42A, 42B but not directly touching, and electrically coupled through induction through the housing surface 42A, 42B.
  • the parallelepiped is merely an example shaped block housing 40, other shapes may include but are not limited to conical, pyramidal, and cylindrical.
  • the conductive framework units 30 may be insert-molded into plastic building block housings 40.
  • the conductive framework units 30 are pressed into an already shaped plastic, wood, or other suitable non- conductive housing material building block housing 40.
  • the conductive framework 30 is placed within an open block housing 40 and the open block housing is sealed thereafter.
  • the structural element 32 comprises a bar magnet having opposite magnetic polarities on each end acting as terminals 34A-B. It should be recognized by one of skill in the art that the term "bar magnet” may define a bar-shaped or cylindrical shaped magnet.
  • the structural element comprises an elongated conductive material having magnets 34A- B with similar or opposite magnetic polarities disposed on each end acting as conduction terminals 34A-B.
  • Each conductive framework unit 30 may be electrically isolated within the block housing 40 to provide separate current paths, or as shown in FIGS. 2-B a plurality of elongated structural members may be coupled to form a single current path that may be conducted through any coupled conductive framework units 30.
  • a first conductive framework unit and a second conductive framework unit may be electrically isolated and configured to be opposite electrical polarities.
  • a first conductive framework unit 230 comprising two elongated structural members 232A,B having magnets 234 disposed on each terminal end of the elongated structural members 232A,B (or two bar magnets 232A,B) coupled by a conductive corner coupling member 236 and a second conductive framework unit 250 comprising two elongated structural members 250A,B having magnets 234 disposed on each terminal end of the vertical elongated members 250A,B (or two bar magnets 250A,B) coupled by a conductive corner coupling member 256, are disposed within the building block housing 240 such that the elongated members 232A,B of the first conductive framework unit 230 align to opposite non-adjacent corners 242A,C of the housing 240 and that the elongated members of the second conductive framework unit 230 align to separate opposite non-adjacent corners 24
  • corner coupling members 236,256 of the first conductive framework unit 230 and the second conductive framework unit 250 are disposed at different vertical heights of the elongated members such that the first conductive framework unit 230 and the second conductive framework unit 250 remain electrically isolated.
  • a first conductive framework unit 330 comprising three elongated members 332A,B,C having magnets 334 disposed on each terminal end of the elongated members 332A,B,C (or three bar magnets 332A,B,C) coupled by two conductive corner coupling members 336A,B in a corner-side-corner configuration and a second conductive framework unit 350 comprising three elongated members 352A,B,C having magnets 334 disposed on each terminal end of the elongated members 352A,B,C (or three bar magnets 352A,B,C) coupled by two conductive corner coupling members 356A,B in a corner- side-corner configuration, are disposed within the building block housing 340 such that the elongated members 332A,B,C of the first conductive framework unit align to a first corner 344A, an opposite non-adjacent side 342A, and an adjacent
  • corner coupling members 336A,B 356A,B of the first conductive framework unit 330 and the second conductive framework unit 350 are disposed at different vertical heights of the elongated members 332A,B,C 352A,B,C such that the first conductive framework unit 330 and the second conductive framework 350 unit remain electrically isolated.
  • a first conductive framework unit 430 comprising at least four elongated members 432A,B,C,D having magnets 434 disposed on each terminal end of the elongated members 432A,B,C,D (or four bar magnets 432A,B,C,D) coupled by two conductive corner coupling members 436A,B and at least one conductive side coupling member 438 in a corner-side-(side+n)-corner configuration
  • a second conductive framework unit 450 comprising at least four elongated members 452A,B,C,D having magnets 434 disposed on each terminal end of the elongated members (or four bar magnets 452A,B,C,D) coupled by two conductive corner coupling members 456A,B and at least one conductive side coupling member 458 in a corner-side-(side+n)-corner configuration, are disposed within the building block housing 440 such that the e
  • corner coupling members 436A,B 456A,B of the first conductive framework unit 430 and the second conductive framework unit 450 are disposed at different vertical heights of the elongated members 432A, D 452A, D such that the first conductive framework unit 430 and the second conductive framework unit 450 remain electrically isolated.
  • each elongated structural unit 532, 552 in any of the embodiments described above may comprise top and bottom terminal magnets 534 configured to be conductive on the top and bottom surfaces of the building block housing 542E,F and side terminals 538,558 disposed between the top and bottom terminals 534A,B configured to be conductive and magnetic on the side surfaces 542A-D of the building block housing 540.
  • corner coupling members may be used to traverse an angled space while side coupling members may be used to traverse a flat wall. The length of the corner coupling members and side coupling may vary to create a conductive framework unit borders the perimeter of the building block housing or is centered within the building block housing.
  • At least one electrical component 601 may be coupled to the first conductive framework unit 630 and the second conductive framework unit 650 bridging the circuit and powering the electrical component 601.
  • the electrical component 601 may include by way of non-limiting examples LEDs, speakers, displays, RF radios, motors, resistors, capacitors, switches, diodes, inductors, or integrated circuit chips.
  • the system's 600 output will be dictated by the number, type(s), and shape(s) of the functional components that are electrically activated and coupled to the block's terminal elements.
  • the at least one conductive magnetic building block 20,220,320,420,520,620 is coupled to the power source 701 at positive and negative terminals on the power source completing a circuit.
  • the power source is a conventional battery, in other embodiments the power source may comprise a platform having an array of conductive magnetic positive and negative terminals coupled to the power source wherein a conductive magnetic building block may be electrically and magnetically coupled.
  • the conductive framework of any of the embodiments described above may be made of any conducting material including but not limited to an alloy steel, copper, or aluminum. The exact composition of any alloys may change depending on cost; it is only necessary to meet conductivity, anticorrosive, and volumetric mass density requirements.
  • the conductive framework may be a non-conductive material coated with a conductive paint or vacuum deposited conductive film.
  • the magnets described in any of the embodiments above may include but are not limited to 1 nickel-plated sintered Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 1.0 T - 1.4 T and a Min/Max grade of N42-N52, bonded Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 0.7 T - 0.9 T a Min/Max grade of BDM-6 to BDM- 10, Samarium Cobalt (SmCo) having a Min/Max remanence (magnetic strength) of 0.8 T - L I T and a Min/Max grade of YX24 to YXG28, and Aluminum Nickel Cobalt (AINiCo) having a Min/Max remanence (magnetic strength) of 0.6 T - 1.4 T and a Min/Max grade of LNG13 to LNG44.
  • the magnets may have an electrical resist
  • Another aspect of the invention includes a method of using the system of conductive magnetic building blocks comprising the steps of electrically coupling a first conductive magnetic building block to a power supply and building an electrical circuit. Additional steps comprise electrically and magnetically coupling additional building blocks as described above to complete, extend, or isolate the circuit.
  • the building block units are devoid of a building block housing in this embodiment, the conductive framework units can be freely stacked and combined with additional conductive framework units or electrical components and power supplies as described above.
  • the conductive framework may optionally comprise a non-conductive safety coating insulating and isolating the outer surface of the frame everywhere but the terminals.

Abstract

A system of conductive magnetic building blocks. Each building block comprising a conductive magnetic framework configured to magnetically and electrically couple each respective building block to an adjacent or stacked building block. A building block may further comprise a power supply or an electrical device configured to be powered by the current conducted through the conductive magnetic framework.

Description

[0001] CONDUCTIVE MAGNETIC BUILDING BLOCKS
Cross-reference to related applications
[0002] The application claims priority to U.S. Provisional Application Serial No. 62/546,072, filed August 16, 2017 herein incorporated by reference in its entirety.
Background of the Invention
[0003] The present invention generally relates to the field of building blocks. More particularly, the invention relates to a system of conductive magnetic building blocks.
[0004] Many different iterations of building blocks exist in the prior art. Blocks can be classified broadly according to the type of materials used in manufacture and the functionality offered. Ease of use and manipulation are also factors in how appealing and engaging the blocks will be to the end user.
[0005] Wooden blocks, for instance, are made of an environmentally safe material and are easy to use and manipulate, but often do not support much additional functionality. For example, wooden blocks can be stacked and aligned, but do not inherently offer structural stability without the use of alignment pins or adhesives. If alignment pins or adhesives are used, the blocks become hard to take apart and rebuild with.
[0006] Other building blocks in the prior art include LEGO blocks or LEGO style blocks. LEGO style blocks typically comprise a set of colorful interlocking plastic bricks. LEGO style blocks typically comprise a male and female component that fit together with a compression fit. The LEGO style block may be difficult to manipulate for those lacking in fine motor strength and difficult to pull apart once connected to each other. These drawbacks spurred the development of other block designs such as magnetic blocks.
[0007] Magnetic blocks allow the end user to easily combine or stack blocks into complex structures. Typical magnetic blocks such as MAGNATILES or TEGU blocks embed magnets beneath the surface of plastic or wood at the respective edges of each block. A user with even minimal fine motor strength can easily manipulate the blocks to attract to one another and build support structures that are magnetically coupled. The stronger and higher quality magnets used typically offer better user experiences. [0008] Still yet another evolution of the building block has been in the conductive style building block i.e. building blocks that conduct electricity for the purpose of powering an electrical element such as an LED, a speaker, or a motor. This has been accomplished in the prior art by a number of ways such as through the use of a wire being routed through the structure of the block, through metal contact embedded in LEGO style blocks, or even through the use of conductive paint over LEGO style blocks. These solutions have the same coupling shortcomings as LEGO style blocks and other blocks described above, but also in cases, such as the use of conductive paint, the block lacks the ability to separate electrical signals at each terminal and run multiple currents.
[0009] The present invention seeks to improve upon the current designs of building blocks, while also addressing some of the more common issues in the field relating to structural integrity, modular assembly, and output functionality. Specifically, the invention provides a platform offering increased stability, connectivity, and ease of use, which allows robust assembly and combinations of conductive magnetic blocks capable of powering electronic circuits.
Summary of the Invention
[0010] In view of the above, a system of conductive magnetic blocks, capable of conducting an electrical current through magnetic terminals to additional blocks or electrical devices is provided.
[0011] The advantage of the present invention is that it allows for the production of complex structures without sacrificing stability or modularity. A user may build a structure with the ease of a typical magnetic block simply by aligning terminals of the building blocks having opposing magnetic polarities. When the terminals are coupled in alignment, an electrical current may be conducted from one block to the next. Each block may be a stand-alone unit configured to conduct current or a particular block may comprise an electrical device to be powered by the current, or a combination of the two.
[0012] In a first embodiment, the invention comprises a system of electrically and magnetically conductive building blocks. Each building block comprises a conductive framework disposed within a building block housing. The conductive framework comprises a structural element having magnetic terminals. The conductive framework may be disposed within the block housing such that each magnetic terminal faces a surface of the building block housing. For connectivity sake it is optimal, but not required, for each block to have a magnetic terminal on at least two surfaces and for conductivity sake, it is optimal, but not required, for each block to have at least two isolated conductive framework units configured for opposite electrical polarities.
[0013] In some embodiments, each conductive frame unit comprises a bar magnet having opposite magnetic polarities on each end acting as coupling and conduction terminals or a structural element having magnetic ends or magnets with similar or opposite magnetic polarities disposed on each end acting as terminals. Each conductive frame unit may be isolated within the block housing to provide separate current paths, or a plurality of conductive framework units may be coupled to form a single current path that may be conducted through any coupled conductive frame unit.
[0014] In additional embodiments, providing additional structural stability within the building block housing, a first conductive framework unit comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member and a second conductive framework unit may comprising two elongated members having magnets disposed on each terminal end of the elongated members (or two bar magnets) coupled by a conductive corner coupling member, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to opposite non- adjacent corners of the housing and that the elongated members of the second conductive framework unit align to separate opposite non- adjacent corners. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
[0015] In yet another embodiment, a first conductive framework unit comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration and a second conductive framework unit may comprising three elongated members having magnets disposed on each terminal end of the elongated members (or three bar magnets) coupled by two conductive corner coupling members in a corner-side-corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
[0016] In yet another embodiment, a first conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and at least one conductive side coupling member in a corner-side-(side+n)-corner configuration and a second conductive framework unit comprising at least four elongated members having magnets disposed on each terminal end of the elongated members (or four bar magnets) coupled by two conductive corner coupling members and a conductive side coupling member in a corner-side-(side+n)- corner configuration, are disposed within the building block housing such that the elongated members of the first conductive framework unit align to a first corner, an opposite non-adjacent side, and an adjacent corner of the housing and that the elongated members of the second conductive framework unit align to a separate second corner, a separate opposite non-adjacent wall, and a separate adjacent corner. In this embodiment the corner coupling members of the first conductive framework unit and the second conductive framework unit are disposed at different vertical heights of the elongated members such that the first conductive framework unit and the second conductive framework unit remain electrically isolated.
[0017] In another aspect of the invention, each elongated unit in any of the embodiments described above may comprise top and bottom terminal magnets configured to be conductive on the top and bottom surfaces of the building block housing, and side terminals disposed between the top and bottom terminals configured to be conductive on the side surfaces of the building block housing.
[0018] In yet another aspect of the invention, an electrical component may be coupled to the first conductive framework unit and the second conductive framework unit bridging the circuit and powering the electrical component. The electrical component includes by way of non-limiting example LEDs, speakers, displays, RF radios, motors, switches, resistors, capacitors, diodes, inductors, or integrated circuit chips. In any of the embodiments discussed above, the system's output will be dictated by the number, type(s), and shape(s) of the functional components that are electrically activated and coupled to the block's terminal elements. The function of these components can include alternate functionality, including circuit isolation, or non-functionality.
[0019] In one aspect of the invention, the conductive framework units are insert-molded into plastic building block housing.
[0020] In another aspect of the invention, the conductive framework units are pressed and held via a compression fit or adhesive into an already shaped plastic, wood, or other suitable non- conductive housing material building block housing.
[0021] In yet another aspect of the invention, the terminals may be exposed through the housing such that each building block unit connects directly to each stacked building block through a direct terminal connection.
[0022] In yet another aspect of the invention, the terminals may be covered housing such that each building block unit connects through induction indirectly to each stacked building block.
[0023] The methods, systems, apparatuses are set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the methods, apparatuses, and systems. The advantages of the methods, apparatuses, and systems will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the methods, apparatuses, and systems, as claimed.
Brief Description of the Drawings
[0024] In the accompanying figures, like elements are identified by like reference numerals among the several preferred embodiments of the present invention.
[0025] FIGS. 1A-1B are perspective and top views of an embodiment of the present invention.
[0026] FIGS. 2A-2B are perspective and top views of an embodiment of the present invention.
[0027] FIGS. 3A-3B are perspective and top views of an embodiment of the present invention.
[0028] FIGS. 4A-4B are perspective and top views of an embodiment of the present invention.
[0029] FIGS. 5A-5B are perspective and top views of an embodiment of the present invention.
[0030] FIGS. 6A-6B are perspective views of an embodiment of the present invention. [0031] FIG. 7 is a perspective view of an embodiment of the present invention.
[0032] Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description, wherein similar structures have similar reference numerals.
Detailed Description of the Preferred Embodiments
[0033] The foregoing and other features and advantages of the invention will become more apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof.
[0034] As shown in FIGS 1A, IB, and 7, in a first embodiment, the invention comprises a system 700 of conductive magnetic building blocks. Each building block 20 comprises a conductive framework 30 disposed within a building block housing 40. The conductive framework comprises 30 a structural element 32 having conductive magnetic terminals 34A-B. The conductive framework 30 may be disposed within the block housing 40 such that each magnetic terminal 34A-B faces a surface 42A-F of the building block housing 40. For magnetic and electrical connectivity and conductivity sake it is optimal for each block 20 to have a magnetic terminal 34A, 34B on at least two surface 42A-F of the block housing 40 and for conductivity sake.
[0035] The first embodiment shown in FIGS 1A-1B, display a single conductive block 20. The single conductive block 20 comprises a parallelepiped building block housing 40 and a single conductive framework 30 disposed within the housing 40. The single conductive framework 30 further comprises conductive magnetic terminals 34A-B disposed at opposite ends of the single conductive framework 30. In some embodiments the conductive magnetic terminals 34A-B are exposed through the housing 40 allowing additional blocks 20 to directly engage with the terminals 34A-B while in other embodiments the conductive magnetic terminals 34A-B are shielded under the housing 40 such that additional blocks 20 are magnetically coupled through the housing surface 42A, 42B but not directly touching, and electrically coupled through induction through the housing surface 42A, 42B. One of skill in the art would recognize that the parallelepiped is merely an example shaped block housing 40, other shapes may include but are not limited to conical, pyramidal, and cylindrical. [0036] In one aspect of the invention, the conductive framework units 30 may be insert-molded into plastic building block housings 40. In another aspect of the invention, the conductive framework units 30 are pressed into an already shaped plastic, wood, or other suitable non- conductive housing material building block housing 40. In yet another aspect of the invention the conductive framework 30 is placed within an open block housing 40 and the open block housing is sealed thereafter.
[0037] In some embodiments of the conductive framework units 30, the structural element 32 comprises a bar magnet having opposite magnetic polarities on each end acting as terminals 34A-B. It should be recognized by one of skill in the art that the term "bar magnet" may define a bar-shaped or cylindrical shaped magnet. In other embodiments of the conductive framework units 30 the structural element comprises an elongated conductive material having magnets 34A- B with similar or opposite magnetic polarities disposed on each end acting as conduction terminals 34A-B.
[0038] Each conductive framework unit 30 may be electrically isolated within the block housing 40 to provide separate current paths, or as shown in FIGS. 2-B a plurality of elongated structural members may be coupled to form a single current path that may be conducted through any coupled conductive framework units 30. In some embodiments as shown in FIGS. 2-B, a first conductive framework unit and a second conductive framework unit may be electrically isolated and configured to be opposite electrical polarities.
[0039] As shown in FIGS. 2A-B, in additional embodiments 220, providing additional structural stability within the building block housing 240, a first conductive framework unit 230 comprising two elongated structural members 232A,B having magnets 234 disposed on each terminal end of the elongated structural members 232A,B (or two bar magnets 232A,B) coupled by a conductive corner coupling member 236 and a second conductive framework unit 250 comprising two elongated structural members 250A,B having magnets 234 disposed on each terminal end of the vertical elongated members 250A,B (or two bar magnets 250A,B) coupled by a conductive corner coupling member 256, are disposed within the building block housing 240 such that the elongated members 232A,B of the first conductive framework unit 230 align to opposite non-adjacent corners 242A,C of the housing 240 and that the elongated members of the second conductive framework unit 230 align to separate opposite non-adjacent corners 242B,D. In this embodiment the corner coupling members 236,256 of the first conductive framework unit 230 and the second conductive framework unit 250 are disposed at different vertical heights of the elongated members such that the first conductive framework unit 230 and the second conductive framework unit 250 remain electrically isolated.
[0040] In yet another embodiment 320, as shown in FIGS. 3A-3B, a first conductive framework unit 330 comprising three elongated members 332A,B,C having magnets 334 disposed on each terminal end of the elongated members 332A,B,C (or three bar magnets 332A,B,C) coupled by two conductive corner coupling members 336A,B in a corner-side-corner configuration and a second conductive framework unit 350 comprising three elongated members 352A,B,C having magnets 334 disposed on each terminal end of the elongated members 352A,B,C (or three bar magnets 352A,B,C) coupled by two conductive corner coupling members 356A,B in a corner- side-corner configuration, are disposed within the building block housing 340 such that the elongated members 332A,B,C of the first conductive framework unit align to a first corner 344A, an opposite non-adjacent side 342A, and an adjacent corner 344B of the housing 340 and that the elongated members 352A,B,C of the second conductive framework unit 350 align to separate second corner 344C, a separate opposite non- adjacent wall 342C, and a separate adjacent corner 344D. In this embodiment the corner coupling members 336A,B 356A,B of the first conductive framework unit 330 and the second conductive framework unit 350 are disposed at different vertical heights of the elongated members 332A,B,C 352A,B,C such that the first conductive framework unit 330 and the second conductive framework 350 unit remain electrically isolated.
[0041] In yet another embodiment 420, as shown in FIGS. 4A-B a first conductive framework unit 430 comprising at least four elongated members 432A,B,C,D having magnets 434 disposed on each terminal end of the elongated members 432A,B,C,D (or four bar magnets 432A,B,C,D) coupled by two conductive corner coupling members 436A,B and at least one conductive side coupling member 438 in a corner-side-(side+n)-corner configuration and a second conductive framework unit 450 comprising at least four elongated members 452A,B,C,D having magnets 434 disposed on each terminal end of the elongated members (or four bar magnets 452A,B,C,D) coupled by two conductive corner coupling members 456A,B and at least one conductive side coupling member 458 in a corner-side-(side+n)-corner configuration, are disposed within the building block housing 440 such that the elongated members 432A,B,C,D of the first conductive framework unit 430 align to a first corner 444A, an opposite non-adjacent side 442A, and an adjacent corner 444B of the housing 440 and that the elongated members 452A,B,C,D of the second conductive framework unit 450 align to separate second corner 444C, a separate opposite non-adjacent wall 442C, and a separate adjacent corner 444D. In this embodiment the corner coupling members 436A,B 456A,B of the first conductive framework unit 430 and the second conductive framework unit 450 are disposed at different vertical heights of the elongated members 432A, D 452A, D such that the first conductive framework unit 430 and the second conductive framework unit 450 remain electrically isolated.
[0042] In another aspect of the invention, as shown in FIGS. 5A-B each elongated structural unit 532, 552 in any of the embodiments described above may comprise top and bottom terminal magnets 534 configured to be conductive on the top and bottom surfaces of the building block housing 542E,F and side terminals 538,558 disposed between the top and bottom terminals 534A,B configured to be conductive and magnetic on the side surfaces 542A-D of the building block housing 540.
[0043] It is to be understood by one of skill in the art that the rectangular prismatic shapes described above and shown in the figures are merely example housing shapes for the conductive framework elements described. Other prismatic shapes include but are not limited to triangular, pentagonal, hexagonal, irregular polygonal, circular, or elliptical. In these other embodiments, the term "corner" may be defined as the intersection of three walls. In these other embodiments, corner coupling members may be used to traverse an angled space while side coupling members may be used to traverse a flat wall. The length of the corner coupling members and side coupling may vary to create a conductive framework unit borders the perimeter of the building block housing or is centered within the building block housing.
[0044] In yet another aspect of the invention, as further displayed in FIGS. 6A-B at least one electrical component 601 may be coupled to the first conductive framework unit 630 and the second conductive framework unit 650 bridging the circuit and powering the electrical component 601. The electrical component 601 may include by way of non-limiting examples LEDs, speakers, displays, RF radios, motors, resistors, capacitors, switches, diodes, inductors, or integrated circuit chips. In any of the embodiments discussed above, the system's 600 output will be dictated by the number, type(s), and shape(s) of the functional components that are electrically activated and coupled to the block's terminal elements. [0045] Another aspect of the invention as shown in FIG. 7 includes a system comprising at least one conductive magnetic building block 20,220,320,420,520,620 as described above and a power source 701. In this system 700, the at least one conductive magnetic building block 20,220,320,420,520,620 is coupled to the power source 701 at positive and negative terminals on the power source completing a circuit. In some embodiments the power source is a conventional battery, in other embodiments the power source may comprise a platform having an array of conductive magnetic positive and negative terminals coupled to the power source wherein a conductive magnetic building block may be electrically and magnetically coupled.
[0046] The conductive framework of any of the embodiments described above may be made of any conducting material including but not limited to an alloy steel, copper, or aluminum. The exact composition of any alloys may change depending on cost; it is only necessary to meet conductivity, anticorrosive, and volumetric mass density requirements. In some embodiments, the conductive framework may be a non-conductive material coated with a conductive paint or vacuum deposited conductive film.
[0047] The magnets described in any of the embodiments above may include but are not limited to 1 nickel-plated sintered Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 1.0 T - 1.4 T and a Min/Max grade of N42-N52, bonded Neodymium Iron Boron (NdFeB) having a Min/Max remanence (magnetic strength) of 0.7 T - 0.9 T a Min/Max grade of BDM-6 to BDM- 10, Samarium Cobalt (SmCo) having a Min/Max remanence (magnetic strength) of 0.8 T - L I T and a Min/Max grade of YX24 to YXG28, and Aluminum Nickel Cobalt (AINiCo) having a Min/Max remanence (magnetic strength) of 0.6 T - 1.4 T and a Min/Max grade of LNG13 to LNG44. In some embodiments, the magnets may have an electrical resistivity at a maximum of 0.000250 Ω-cm and meet minimum curie point ( T ) requirements.
[0048] Another aspect of the invention includes a method of using the system of conductive magnetic building blocks comprising the steps of electrically coupling a first conductive magnetic building block to a power supply and building an electrical circuit. Additional steps comprise electrically and magnetically coupling additional building blocks as described above to complete, extend, or isolate the circuit.
[0049] In an additional embodiment of the invention, the building block units are devoid of a building block housing in this embodiment, the conductive framework units can be freely stacked and combined with additional conductive framework units or electrical components and power supplies as described above. In this embodiment, the conductive framework may optionally comprise a non-conductive safety coating insulating and isolating the outer surface of the frame everywhere but the terminals.
[0050] The methods, systems, apparatuses are set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by the practice of the methods, apparatuses, and systems. The advantages of the methods, apparatuses, and systems will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the methods, apparatuses, and systems, as claimed.

Claims

Claims
1. A conductive magnetic building block comprising:
a building block housing;
at least one conductive framework unit configured to be electrically conductive disposed within the building block housing;
the conductive framework unit having at least one elongated structural member having a first magnetic terminal end and a second magnetic terminal end; and
wherein the first terminal end and the second terminal end align with and are normal to separate surfaces of the building block housing.
2. The conductive magnetic building block of Claim 1 wherein the elongated structural member is a bar magnet.
3. The conductive magnetic building block of Claim 1 wherein the elongated structural member has a first magnet, magnetic surface, or ferrous surface coupled to or integrated within the first terminal end, a second magnet, magnetic surface, or ferrous surface coupled to or integrated within the second terminal end and wherein the first magnet and second magnet are opposite polarities or similar polarities.
4. The conductive magnetic building block of Claim 1 comprising:
a first conductive framework unit disposed within the building block housing;
a second conductive framework unit disposed within the building block housing; and wherein the first conductive framework unit and the second conductive framework unit are electrically insulated or isolated from each other.
5. The conductive magnetic building block of Claim 4 wherein an electrical component is electrically coupled to the first conductive framework unit and the second conductive framework unit.
6. The conductive magnetic building block of Claim 5 wherein the electrical component comprises a component selected from a group of LEDs, speakers, displays, RF radios, motors, switches, resistors, capacitors, diodes, transducers, transistors, inductors, integrated circuit chips, and batteries.
7. The conductive magnetic building block of Claim 5 wherein the first conductive framework and the second conductive framework are coupled to a power supply completing or expanding an electrical circuit.
8. The conductive magnetic building block of Claim 4 further comprising at least one conductive magnetic terminal coupled to the first conductive framework unit or second conductive framework unit disposed between the first terminal end and second terminal end of the first or second conductive framework unit, wherein the at least one conductive magnet terminal is normal to a surface of the building block adjacent the first terminal end and second terminal end of the first or second conductive framework units.
9. The conductive magnetic building block of Claim 4 wherein the magnetic terminals are exposed through the building block housing.
10. The conductive magnetic building block of Claim 4 wherein the magnetic terminals are covered by the building block housing and the magnetic terminals are configured with a sufficient strength to magnetically and electrically couple through the building block housing to a second conductive magnetic building block.
11. The conductive magnetic building block of Claim 4 wherein:
the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member or at least one first corner coupling member; and
the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member or at least one second corner coupling member.
12. The conductive magnetic building block of Claim 11 wherein:
the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member or at least one first corner coupling member and the first conductive framework unit is disposed within the building block housing such that the first conductive framework unit aligns to a perimeter of the building block housing; and the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member or at least one second corner coupling member and the second conductive framework unit the second conductive framework unit is disposed within the building block housing such that the second conductive framework unit aligns to the perimeter of the building block housing.
13. The conductive magnetic building block of Claim 4 wherein:
the first conductive framework unit comprises at least two elongated structural members coupled by at least one first side coupling member and the first conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with opposite adjacent corners of the building block housing; and
the second conductive framework unit comprises at least two elongated structural members coupled by at least one second conductive side coupling member and the second conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
14. The conductive magnetic building block of Claim 4 wherein:
the first conductive framework unit comprises at least two elongated structural members coupled by a first conductive corner coupling member and the first conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with opposite non-adjacent corners of the building block housing;
the second conductive framework unit comprises at least two elongated structural members coupled by a second conductive corner coupling member and the second conductive framework unit is disposed within the building block housing such that the at least two elongated structural members align with separate opposite non-adjacent corners than the first conductive framework unit of the building block housing;
wherein the first conductive corner coupling member is coupled between elongated structural members at proximal either the first terminal end of the elongated members or the second terminal end of the elongated members; and
wherein the second conductive corner coupling member is coupled between elongated structural members at proximal either the first terminal end of the elongated members or the second terminal end of the elongated members and opposite the terminal end of the coupling of the first conductive corner coupling member.
15. The conductive magnetic building block of Claim 14 wherein:
the first conductive framework unit comprises at least three elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a third conductive corner coupling member to a third elongated structural member and the first conductive framework unit is disposed within the building block housing such that the first elongated structural member and the third elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member aligns to an opposite non- adjacent side of the building block housing; and
the second conductive framework unit comprises at least three elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a third conductive corner coupling member to a third elongated structural member and the second conductive framework unit is disposed within the building block housing such that the first elongated structural member and the third elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member aligns to an opposite non-adjacent side of the building block housing such that at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
16. The conductive magnetic building block of Claim 15 wherein:
the first conductive framework unit comprises at least four elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a conductive side coupling member to a third elongated structural member and the third elongated structural member is coupled to a fourth elongated structural member through the third conductive corner coupling member and the first conductive framework unit is disposed within the building block housing such that the first elongated structural member and the fourth elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member and third elongated structural member align to an opposite non-adjacent side of the building block housing; and
the second conductive framework unit comprises at least four elongated structural members wherein a first elongated structural member is coupled to a second elongated structural member by the first conductive corner coupling member and the second elongated structural members is coupled by a conductive side coupling member to a third elongated structural member and the third elongated structural member is coupled to a fourth elongated structural member through the third conductive corner coupling member and the second conductive framework unit is disposed within the building block housing such that the first elongated structural member and the fourth elongated structural member align to opposite adjacent corners of the building block housing and the second elongated structural member and third elongated structural member align to an opposite non-adjacent side of the building block housing such that at least two elongated structural members align with separate opposite adjacent corners than the first conductive framework unit of the building block housing.
17. The conductive magnetic building block of Claim 16 wherein the first conductive framework unit comprises N number of elongated structural members aligned to a side surface of the building block housing and N- 1 number of conductive side coupling members coupling each elongated structural member in series and wherein the second conductive framework unit comprises N number of elongated structural members aligned to a side surface of the building block housing opposite the first conductive framework and N- 1 number of conductive side coupling members coupling each elongated structural member in series.
18. A system of conductive magnetic building blocks comprising:
a power supply;
at least one conductive magnetic building block having a building block housing, at least one conductive framework unit configured to be electrically conductive disposed within the building block housing, the conductive framework unit having at least one elongated structural member having a first magnetic terminal end and a second magnetic terminal end wherein the first terminal end and the second terminal end align with and are normal to separate surfaces of the building block housing;
the conductive magnetic building block configured to electrically and magnetically couple to at least a second conductive magnetic building block;
wherein the conductive magnetic block is electrically coupled to the power supply and configured to electrically conduct a current from the power supply to the at least second conductive magnetic building block; and
further wherein an electrical polarity of a conductive magnetic block may be changed by altering the physical orientation of the conductive magnetic block.
19. The system of Claim 18 wherein the conductive magnetic building block or at least second conductive magnetic building block further comprise an electrical component is electrically coupled to the conductive framework unit of the conductive magnetic building block or the at least second conductive magnetic building block, and the electrical component is powered through a circuit formed upon activating the coupled power supply.
20. The system of Claim 18 wherein the power supply is a battery or supplied through an AC to DC adaptor.
21. The system of Claim 18 wherein the power supply is coupled to platform comprising an array of electrically and magnetically conductive positive and negative terminals.
22. The system of Claim 18 wherein the power supply is disposed within a power block comprising a battery or AC/DC adaptor and at least one pair of electrically and magnetically conductive positive and negative terminals.
PCT/IB2018/056174 2017-08-16 2018-08-16 Conductive magnetic building blocks WO2019035035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762546072P 2017-08-16 2017-08-16
US62/546,072 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019035035A1 true WO2019035035A1 (en) 2019-02-21

Family

ID=65360083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/056174 WO2019035035A1 (en) 2017-08-16 2018-08-16 Conductive magnetic building blocks

Country Status (2)

Country Link
US (1) US20190054388A1 (en)
WO (1) WO2019035035A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494967B (en) * 2016-04-08 2023-03-21 天卡有限公司 Circuit block
TWD196441S (en) * 2018-01-29 2019-03-11 正崴科技有限公司 An electrical cube module of bettary
US20210213369A1 (en) * 2018-05-31 2021-07-15 Zeon Corporation Connection unit
WO2021016784A1 (en) * 2019-07-29 2021-02-04 深圳市杜安工贸有限公司 Magnetic suction electrically-conductive vehicle model
TWI732301B (en) * 2019-09-26 2021-07-01 百威建設開發有限公司 Combination wood brick
USD1017712S1 (en) * 2020-01-29 2024-03-12 Retrospective Goods, LLC Magnetic building apparatus
CN111370200A (en) * 2020-04-15 2020-07-03 杭州思创磁性器件有限公司 Full-dimensional free-suction magnetic circuit structure
US20220152519A1 (en) * 2020-11-19 2022-05-19 Spark Innovation, Llc Magnetic construction block toy set

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024626A (en) * 1998-11-06 2000-02-15 Mendelsohn; Hillary Singer Magnetic blocks
WO2004062760A1 (en) * 2003-01-14 2004-07-29 Orda Korea Co., Ltd. Joining apparatus with rotatable magnet therein and built-up type toy with the same
US20170065899A1 (en) * 2015-09-03 2017-03-09 Max Moskowitz Magnetic tiles construction set and accessories kit therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168303B (en) * 1986-02-05 1991-03-09 Interlego Ag
US20070184722A1 (en) * 2006-02-07 2007-08-09 Dynatech Action, Inc. Powered modular building block toy
US7955155B2 (en) * 2007-07-09 2011-06-07 Mega Brands International Magnetic and electronic toy construction systems and elements
KR101471335B1 (en) * 2014-04-17 2014-12-09 신동일 Magnetic Toys Bullock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024626A (en) * 1998-11-06 2000-02-15 Mendelsohn; Hillary Singer Magnetic blocks
WO2004062760A1 (en) * 2003-01-14 2004-07-29 Orda Korea Co., Ltd. Joining apparatus with rotatable magnet therein and built-up type toy with the same
US20170065899A1 (en) * 2015-09-03 2017-03-09 Max Moskowitz Magnetic tiles construction set and accessories kit therefor

Also Published As

Publication number Publication date
US20190054388A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2019035035A1 (en) Conductive magnetic building blocks
US11291925B2 (en) Circuit blocks
US9543770B1 (en) Portable device having electric outlets that provide AC electrical power and electrical power for charging electronic communication devices
US20090176383A1 (en) Apparatus and method for transferring power from a stationary unit to a mobile unit
US20120317801A1 (en) Reusable electronic circuit assembling and testing system and uses thereof
WO2004093413A3 (en) Self-rechargeable portable telephone
JP2019530193A (en) Device for the electrical interconnection of battery elements and a storage battery comprising such a device
EP2128936A8 (en) Device with multiple electric connections, corresponding socket base and assembly
US8957747B2 (en) Multi integrated switching device structures
US20210203033A1 (en) Modular multiple magnetic contact connectable solid state battery block apparatus, a process thereof, and a method of using same
KR102036495B1 (en) Rotary apparatus for can of cyimderical lithium ion battery
JP3185101U (en) Electronic device with electromagnetic positioning function
US20110013339A1 (en) Assembly of magnetic capacitor with packaging
US20210057937A1 (en) Modular charging devices and methods for using them
CN209545175U (en) Mobile communication terminal component and its mobile communication terminal being electrically charged by magnetic
US20190199281A1 (en) Combined solar cell module
CN211097523U (en) Electronic building block
GB2442251A (en) Links comprising magnetic cores
JP2008172879A (en) Battery device
WO2019210926A1 (en) Coupling unit attached to a composite board
WO2022158232A1 (en) Connection apparatus
CN209844019U (en) Connector, connection board, and circuit connection structure
CN210040352U (en) Rechargeable battery with mobile power supply function
CN215733547U (en) Switch handle charging seat
US20210110966A1 (en) Magnet with multiple discs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845758

Country of ref document: EP

Kind code of ref document: A1